WO2013103062A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
WO2013103062A1
WO2013103062A1 PCT/JP2012/081395 JP2012081395W WO2013103062A1 WO 2013103062 A1 WO2013103062 A1 WO 2013103062A1 JP 2012081395 W JP2012081395 W JP 2012081395W WO 2013103062 A1 WO2013103062 A1 WO 2013103062A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
concave
lens
metal base
lid
Prior art date
Application number
PCT/JP2012/081395
Other languages
English (en)
French (fr)
Inventor
寿樹 西澤
祐司 三橋
小川 育生
笠原 亮一
Original Assignee
Nttエレクトロニクス株式会社
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nttエレクトロニクス株式会社, 日本電信電話株式会社 filed Critical Nttエレクトロニクス株式会社
Publication of WO2013103062A1 publication Critical patent/WO2013103062A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • G02B6/4242Mounting of the optical light guide to the lid of the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4237Welding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4245Mounting of the opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing
    • G02B6/4265Details of housings characterised by the shape of the housing of the Butterfly or dual inline package [DIP] type

Definitions

  • the present invention relates to an optical module that transmits or receives an optical signal.
  • Patent Document 1 an optical module that transmits or receives an optical signal has been proposed (see, for example, Patent Document 1).
  • the optical module of Patent Document 1 accommodates an optical element, a base (hereinafter referred to as a carrier) on which the optical element is mounted, a lens, and a lens fixture.
  • the lens and the lens fixing bracket are spot welded by a YAG laser after optical alignment and fixed on a carrier, and the carrier is mounted in a module case and mounted in a module.
  • the optical module disclosed in Patent Document 1 has a problem that it takes time to mount the carrier because the carrier is mounted outside the module case and mounted in the module case. Furthermore, when a subassembly optically aligned outside the module case is mounted in the module case, the optical axis position shifts depending on the height tolerance of the subassembly, so optical coupling to a waveguide such as a fiber is not possible. It was difficult.
  • an object of the present invention is to provide an optical module that does not cause optical axis misalignment during YAG laser welding and can be reduced in height while maintaining rigidity.
  • the optical module of the present invention is provided with a notch having the same height as the wiring ceramic, and an optical semiconductor package, a waveguide type optical element, and an optical element surrounded by the side wall.
  • Bathtub-shaped concave metal base on which a lens is mounted, the wiring ceramic that holds terminals for inputting and outputting signals embedded in the notch, the optical semiconductor package, the waveguide optical element, and the optical lens A concave lid in which at least two opposing sides of the open end of the bathtub shape are arranged on the same plane, and the concave metal base and the concave lid.
  • a packing having one surface fixed to the concave metal base and the wiring ceramic and the other surface fixed to the concave lid. .
  • the optical module of the present invention since the base and the lid have a bathtub shape, the internal space formed by the base and the lid can be widened while maintaining the rigidity of the base and the lid.
  • the base and the lid of the optical module of the present invention have a bathtub shape, the rigidity of the base and the lid can be maintained even if the thickness of the base is reduced. For this reason, it is possible to prevent the occurrence of optical axis deviation by reducing the depth of the base to a height at which the optical axis deviation does not occur during YAG laser welding of the optical lens. Therefore, the optical module of the present invention can provide an optical module that does not cause optical axis misalignment during YAG laser welding and can be reduced in height while maintaining rigidity.
  • the optical module of the present invention eliminates the gap between the wiring ceramic and the concave metal base, and fixes the wiring ceramic and the concave metal base with packing, thereby preventing a decrease in rigidity of the wiring ceramic installation portion. Can do. Furthermore, since the packing is fixed between the concave metal base and the concave lid, the rigidity of the optical module can be increased.
  • the height from the mounting surface of the optical lens to the side wall in the concave metal base is preferably lower than the height of the lens holding holder that holds the optical lens.
  • the packing is disposed at a position lower than a joint point between a lens holding holder that holds the optical lens and a joint between the optical lens.
  • an optical module having a structure in which optical axis deviation does not occur during YAG laser welding.
  • FIG. 3 shows a cross-sectional view of the optical module according to the present embodiment, taken along line A-A ′.
  • An example of the side view of the optical module which concerns on this embodiment is shown.
  • An example of the irradiation angle of the laser beam in the optical module which concerns on this embodiment is shown.
  • An example of the irradiation angle of the laser beam in the conventional optical module is shown.
  • the optical module according to the present embodiment is compatible with optical phase modulation accompanying further increase in communication traffic, that is, DQPSK (Differential Quadrature Phase Shift Keying) transmission method and DP-QPSK (Dual Polarization-Quadrature Phase integration type reception method). It is an FE module.
  • the PLC receiving optical circuit used in these transmission methods is called a delay interferometer DLI (Delay Line Interferometer) or DPOH (Dual Polarization Optical Hybrid), which converts the difference in phase state of the optical signal into a difference in light intensity.
  • An optical module integrated with a high-frequency amplifier that receives and demodulates it by a PD (Photodiode) that can detect only a difference in intensity, converts the electric signal demodulated by the PD into current / voltage, amplifies it, and outputs it as a high-frequency electric signal. It is.
  • PD Photodiode
  • FIG. 1 is a top view of the optical module according to the present embodiment
  • FIG. 2 is a cross-sectional view taken along line A-A ′
  • FIG. 3 is a side view of the optical module viewed from the A ′ side.
  • the optical module according to the present embodiment includes a bathtub-shaped concave metal base 11, a wiring ceramic 19 that holds terminals for inputting and outputting signals, a metal ring 20 as a packing, a concave lid 15, and an optical semiconductor package. 12, a waveguide type optical element 13, an optical lens 14, and a lens holding holder 17.
  • the package structure includes an optical semiconductor package 12 that can accommodate optical semiconductors such as LD and PD and a high-frequency amplifier, a ceramic 19 for wiring, a concave metal base 11 that holds them, and a U-shaped metal. It consists of a ring 20.
  • the concave metal base 11 has a sufficiently larger area than the optical semiconductor package 12 in which the optical semiconductor is accommodated, and can mount an optical component such as the optical lens 14, an optical fiber 16, and an optical waveguide optical element 13 such as a large area PLC.
  • the concave metal base 11 has an Ni plating finish instead of an Au plating in order to enable spot welding of an optical component such as the optical lens 14 with a YAG laser or the like.
  • the U-shaped ring is also Ni-plated so that the concave lid 15 can be spot welded with a YAG laser or the like.
  • the concave metal base 11 and the concave lid 15 are bathtub-shaped.
  • the metal base thickness can be reduced, and rigidity can be ensured.
  • the package is not displaced even if it is fastened to a PCB (Printed Circuit Board), and good optical characteristics can be maintained.
  • a cutout having the same height as the wiring ceramic 19 is provided on the side wall of the concave metal base 11, and the wiring ceramic 19 is embedded in the cutout.
  • FIG. 2 and FIG. 3 show an example in which the notch is shallower than the side wall of the concave metal base 11, it may be deeper than the side wall as long as it does not penetrate the bottom surface of the concave metal base 11.
  • the metal ring 20 is fixed to the open end of the side wall of the concave metal base 11 in which the wiring ceramic 19 is embedded.
  • the U-shaped metal ring 20 mounted on the concave metal base 11 and the wiring ceramic 19 can further increase the rigidity.
  • At least two opposing sides of the open end of the bathtub-shaped concave lid 15 are arranged on the same plane. These two sides are sides where the wiring ceramic 19 is embedded and fixed to the side wall of the concave metal base 11. Since the two opposing sides are arranged on the same surface, the rigidity of the optical module can be increased when the concave lid 15 is fixed to the metal ring 20.
  • the concave metal base 11 and the wiring ceramic 19 and the wiring ceramic 19 and the metal ring 20 are fixed using a silver solder. Thereby, the rigidity of the optical module can be further increased.
  • an optical semiconductor element, a high frequency amplifier, and an electronic component are mounted using solder, resin, or the like. Since the optical semiconductor element is compatible with the optical phase modulation system, a plurality of elements are arrayed. The number of arrays varies depending on the transmission method, but may be 2, 4, or 8. A plurality of optical semiconductor elements that are not arrayed may be arranged. The array spacing may be equal or non-uniform.
  • a metal ring for sealing is provided on the upper part of the base of the optical semiconductor package 12, and a metal lid is joined by seam welding, resistance welding, or laser welding. Thereby, the optical semiconductor package 12 can be hermetically sealed in an N 2 atmosphere or the like.
  • a waveguide type optical element 13 such as an optical fiber 16 or a PLC is fixed to a predetermined position on the concave metal base 11 by soldering, resin, laser welding or the like.
  • the optical fiber 16 and the waveguide type optical element 13 are arrayed to support the optical phase modulation method.
  • the number of arrays is the same as the number of arrays of optical semiconductor elements, and the array interval may be the same as or different from the array interval of optical semiconductor elements.
  • the waveguide type optical element 13 is a PLC
  • the PLC uses various resins, so outgas from the resin may affect the optical semiconductor.
  • the outgas does not affect the optical semiconductor elements in the optical semiconductor package 12. Therefore, the optical semiconductor element can always perform a stable operation.
  • the signal light of the optical semiconductor and the optical waveguide such as fiber or PLC is optically coupled by the optical lens 14 (FIG. 1).
  • the lens may be one finite system or two confocal systems.
  • the optical lens may be a single lens having a predetermined effective diameter or an array lens.
  • the optical lens 14 is held by a lens holding holder 17 and fixed to the concave metal base 11 of the package by spot welding such as a YAG laser.
  • the lens holding holder 17 is fixed to the bottom of the concave metal base 11 so that the surface of the lens holding holder 17 that holds the optical lens 14 is in a direction orthogonal to the signal light.
  • the optical lens 14 and the lens holding holder 17 are fixed.
  • an optical coupling shift occurs depending on the emission angle of the YAG laser, and the yield deteriorates.
  • the emission angle of the YAG laser can be made nearly horizontal as shown in FIG. it can.
  • the height D B from the mounting surface of the optical lens 14 to the sidewall of the recessed metal base 11 is lower than the height H h of the lens holding holder 17 for holding the optical lens 14.
  • the height H P of the metal ring 20 is disposed at a position lower than the junction point P J of the lens holding holder 17 and the optical lens 14 for holding the optical lens 14.
  • the optical lens 14 does not sink when the optical lens 14 and the lens holding holder 17 are fixed, and the optical axis does not deviate. Therefore, an optical module with good optical coupling can be provided. Furthermore, the effect is enormous due to the arrayed optical coupling.
  • the concave lid 15 as shown in FIGS. 2 and 3 is fixed to the metal ring 20.
  • the concave lid 15 may be a metal or a resin material.
  • the concave lid 15 is fixed to the metal ring 20 by spot welding such as YAG welding, resin fixation, solder fixation, or the like. By fixing the concave lid 15, further rigidity of the package can be secured.
  • An optical module with a low profile and high rigidity can be provided by the module having the concave metal base structure package and the concave lid 15.
  • the optical module according to this embodiment can stably perform difficult arrayed optical coupling and improve optical coupling characteristics.
  • the present invention can be applied to the information and communication industry.

Abstract

 本発明は、YAGレーザ溶接時において光軸ズレが発生しない構造を有する光モジュールの提供を目的とする。 本願発明の光モジュールは、配線用セラミック19と同一高さの切り欠きが側壁に設けられ、当該側壁で囲まれた内部に光半導体パッケージ12、導波路型光学素子13及び光学レンズ14を搭載するバスタブ形状の凹型金属ベース11と、前記切り欠きに埋め込まれた配線用セラミック19と、光半導体パッケージ12、導波路型光学素子13及び光学レンズ14を覆うバスタブ形状であり、当該バスタブ形状の開放された端部のうちの少なくとも対向する2辺が同一面上に配置されている凹型リッド15と、凹型金属ベース11と凹型リッド15との間に配置され、一方の面が凹型金属ベース11及び配線用セラミック19と固着され、他方の面が凹型リッド15と固着されるパッキンとしての金属リング20と、を備える。

Description

光モジュール
 本発明は、光信号を送信又は受信する光モジュールに関する。
 従来より、光信号を送信又は受信する光モジュールが提案されている(例えば、特許文献1参照。)。特許文献1の光モジュールは、光素子と、光素子を搭載するベース(以下、キャリアと記載する。)と、レンズと、レンズ固定金具と、が収容される。レンズとレンズ固定金具は光学調芯後YAGレーザによりスポット溶接され、キャリア上に固定され、そのキャリアをモジュールケース内に搭載しモジュール実装している。
特開2000-277843号公報
 特許文献1の光モジュールは、キャリアをモジュールケース外で実装し、それをモジュールケース内に搭載していたため、実装に時間を要するという問題があった。更に、モジュールケース外で光学調芯したサブアセンブリをモジュールケース内に搭載した場合、サブアセンブリの高さ公差に依存し、光軸位置がシフトするため、ファイバのような導波路への光結合が困難であった。
 この問題を解決する方法として、パッケージ内で光学調芯を行い、YAGレーザにてレンズとレンズ固定金具をスポット溶接することが考えられる。しかし、図5に示すように、フレーム118があるため、レーザ光の照射角度を水平近くにすることができず、レーザ光を上から照射することになる。そうすると、光学レンズ114がレンズ保持ホルダ117内で沈み込んでしまうことがある。これにより、光軸ズレが発生し、歩留まりが低下する。特に、光学レンズ114が複数ポートの光を入出力する場合、歩留まりの低下は著しい。
 そこで、本発明は、YAGレーザ溶接時において光軸ズレが発生せず、かつ、剛性を維持しつつ低背化が可能な光モジュールの提供を目的とする。
 上記目的を達成するために、本願発明の光モジュールは、配線用セラミックと同一高さの切り欠きが側壁に設けられ、当該側壁で囲まれた内部に光半導体パッケージ、導波路型光学素子及び光学レンズを搭載するバスタブ形状の凹型金属ベースと、前記切り欠きに埋め込まれ、信号の入出力を行う端子を保持する前記配線用セラミックと、前記光半導体パッケージ、前記導波路型光学素子及び前記光学レンズを覆うバスタブ形状であり、当該バスタブ形状の開放された端部のうちの少なくとも対向する2辺が同一面上に配置されている凹型リッドと、前記凹型金属ベースと前記凹型リッドとの間に配置され、一方の面が前記凹型金属ベース及び前記配線用セラミックと固着され、他方の面が前記凹型リッドと固着されるパッキンと、を備える。
 本願発明の光モジュールは、ベース及びリッドがバスタブ形状であるため、ベース及びリッドの剛性を保ちつつ、ベース及びリッドで形成される内部空間を広くすることができる。ここで、本願発明の光モジュールは、ベース及びリッドがバスタブ形状であるため、ベースの厚さを薄くしてもベース及びリッドの剛性を保つことができる。このため、光学レンズのYAGレーザ溶接時において光軸ズレが発生しない高さまでベースの深さを浅くすることによって、光軸ズレの発生を防止することができる。したがって、本願発明の光モジュールは、YAGレーザ溶接時において光軸ズレが発生せず、かつ、剛性を維持しつつ低背化が可能な光モジュールを提供することができる。
 さらに、本願発明の光モジュールは、配線用セラミックと凹型金属ベースの間の間隙をなくし、配線用セラミック及び凹型金属ベースをパッキンで固定するため、配線用セラミック設置部分の剛性の低下を防止することができる。さらに、凹型金属ベースと凹型リッドとの間にパッキンを挟んで固定するため、光モジュールの剛性を高めることができる。
 本願発明の光モジュールでは、前記凹型金属ベースにおける前記光学レンズの搭載面から前記側壁までの高さは、前記光学レンズを保持するレンズ保持ホルダの高さよりも低いことが好ましい。
 本願発明の光モジュールでは、前記パッキンは、前記光学レンズを保持するレンズ保持ホルダと前記光学レンズとの接合との接合点よりも低い位置に配置されていることが好ましい。
 本発明によれば、YAGレーザ溶接時において光軸ズレが発生しない構造を有する光モジュールを提供することができる。
本実施形態に係る光モジュールの上面図の一例を示す。 本実施形態に係る光モジュールのA-A’断面図を示す。 本実施形態に係る光モジュールの側面図の一例を示す。 本実施形態に係る光モジュールにおけるレーザ光の照射角度の一例を示す。 従来の光モジュールにおけるレーザ光の照射角度の一例を示す。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 本実施形態に係る光モジュールは更なる通信トラフィック増大に伴う光位相変調すなわちDQPSK(Differential Quadrature Phase Shift Keying)伝送方式やDP-QPSK(Dual Polarization-Quadrature Phase Shift Keying)伝送方式に対応した集積型受信FEモジュールである。これらの伝送方式で使用されるPLC受信光回路は遅延干渉計DLI(Delay Line Interferometer)やDPOH(Dual Polarization Optical Hybrid)と呼ばれ、光信号の位相状態の差異を光強度の差異に変換するもので、それを強度差異のみ検出可能なPD(PhotoDiode)で受信して復調し、PDで復調された電気信号を電流/電圧変換し増幅して高周波電気信号として出力する高周波アンプを集積した光モジュールである。
 図1及び図2及び図3に、本実施形態に係る光モジュールの一例を示す。図1は本実施形態に係る光モジュールの上面図であり、図2はA-A’断面図であり、図3はA’側から見た光モジュールの側面図である。本実施形態に係る光モジュールは、バスタブ形状の凹型金属ベース11と、信号の入出力を行う端子を保持する配線用セラミック19と、パッキンとしての金属リング20と、凹型リッド15と、光半導体パッケージ12と、導波路型光学素子13と、光学レンズ14と、レンズ保持ホルダ17と、を備える。
 パッケージ構成はLDやPDなどの光半導体及び高周波アンプが収納される局所封止可能な光半導体パッケージ12と、配線用セラミックス19と、それらを保持する凹型の金属ベース11と、U字型の金属リング20から成っている。凹型金属ベース11は光半導体が収納される光半導体パッケージ12より十分面積が大きく、光学レンズ14などの光学部品や光ファイバ16、大面積PLCなどの光導波路型光学素子13を搭載することができる。更に凹型金属ベース11は光学レンズ14などの光学部品をYAGレーザなどのスポット溶接を可能にするためAuメッキではなく、Niメッキ仕上げとなっている。またU字型リングも凹型リッド15をYAGレーザなどのスポット溶接を可能にするためNiメッキ仕上げとなっている。
 図2に示すように、凹型金属ベース11及び凹型リッド15はバスタブ形状である。このように、パッケージベース形状を凹型形状にすることで金属ベース厚を薄肉化でき剛性を確保することが可能となる。これにより、光モジュールをトランシーバ化する際にPCB(Printed Circuit Board)に共締め固定してもパッケージが変位することがなく、良好な光学特性を維持することができる。
 凹型金属ベース11の側壁には配線用セラミック19と同一高さの切り欠きが設けられており、その切り欠きに配線用セラミック19が埋め込まれている。図2及び図3では切り欠きが凹型金属ベース11の側壁よりも浅い例を示したが、凹型金属ベース11の底面を突き抜けない範囲で側壁よりも深くなっていてもよい。金属リング20は、配線用セラミック19が埋め込まれた凹型金属ベース11の側壁の開放された端部に固定される。凹型金属ベース11と配線用セラミック19上に搭載されているU字型の金属リング20により更に剛性を高めることが可能である。
 凹型リッド15のバスタブ形状の開放された端部のうちの少なくとも対向する2辺は同一面上に配置されている。この2辺は、配線用セラミック19が埋め込まれ、凹型金属ベース11の側壁に固着される辺である。このように対向する2辺が同一面上に配置されていることで、凹型リッド15を金属リング20に固着したときに、光モジュールの剛性を高めることができる。
 さらに、凹型金属ベース11と配線用セラミック19、配線用セラミック19と金属リング20は、銀ろうを用いて固定することが好ましい。これにより、光学モジュールの剛性をさらに高めることができる。
 光半導体パッケージ12には光半導体素子、高周波アンプ、電子部品がハンダや樹脂などにより搭載される。光半導体素子は光位相変調方式対応のため複数の素子がアレイ化されている。アレイ数は伝送方式により異なるが、2アレイでも4アレイでも8アレイでもよい。またアレイ化されていない光半導体素子を複数個並べてもよい。アレイの間隔は等間隔でも不均一でもよい。
 光半導体パッケージ12のベース上部には封止用の金属リングが備え付けられており、金属製のリッドをシーム溶接、抵抗溶接、レーザ溶接により接合する。これにより、N雰囲気などで光半導体パッケージ12を気密封止することができる。
 光ファイバ16やPLCなどの導波路型光学素子13は凹型金属ベース11上にハンダ、樹脂、レーザ溶接などで所定の位置に固定される。光ファイバ16や導波路型光学素子13は光位相変調方式対応のためアレイ化されている。アレイ数は光半導体素子のアレイ数と同じであり、アレイ間隔は光半導体素子のアレイ間隔と同じであっても異なっていてもよい。導波路型光学素子13がPLCの場合、PLCは様々な樹脂を使用しているため樹脂からのアウトガスが光半導体に影響を及ぼす可能性がある。しかし本発明は光半導体パッケージ12のみ個別封止しているためアウトガスは光半導体パッケージ12中の光半導体素子に影響を及ぼすことはない。よって光半導体素子は常に安定した動作を行うことができる。
 光半導体とファイバやPLCなどの光導波路の信号光は光学レンズ14により光結合される(図1)。レンズは1枚の有限系でも2枚の共焦点系でも良い。光学レンズは所定の有効径をもった1枚のレンズでも、アレイレンズでもよい。光学レンズ14はレンズ保持ホルダ17により保持されYAGレーザなどのスポット溶接によりパッケージの凹型金属ベース11に固定される。
 固定手順はまず、レンズ保持ホルダ17の光学レンズ14を保持する面が信号光と直交方向になるように、レンズ保持ホルダ17を凹型金属ベース11の底に固定する。次に、光学レンズ14とレンズ保持ホルダ17を固定する。この時、従来の構成であれば、図5に示すように、YAGレーザの出射角度に依存し光結合ズレが発生し、歩留りが悪化してしまう。
 本実施形態に係る光モジュールはYAGレーザ溶接時において光軸ズレが発生しない高さまでベースの深さを浅くすることができるため、図4のようにYAGレーザの出射角度を水平近くにすることができる。例えば、図2に示すように、凹型金属ベース11における光学レンズ14の搭載面から側壁までの高さDは、光学レンズ14を保持するレンズ保持ホルダ17の高さHよりも低い。また、金属リング20の高さHは、光学レンズ14を保持するレンズ保持ホルダ17と光学レンズ14との接合点Pよりも低い位置に配置される。その結果、光学レンズ14とレンズ保持ホルダ17との固定時に光学レンズ14の沈み込みがなく、光軸ずれが発生しない。よって光結合が良好な光モジュールが提供できる。更にはアレイ化光結合のため、その効果は絶大である。
 光学実装が完了したら図2及び図3のような凹型リッド15を金属リング20に固定する。凹型リッド15は金属でも樹脂系材料でもよい。凹型リッド15はYAG溶接などのスポット溶接や樹脂固定、ハンダ固定などで金属リング20に固定される。凹型リッド15を固定することで更にパッケージの剛性が確保できる。凹型金属ベース構造のパッケージと凹型リッド15を備えるモジュールにより低背化且つ高剛性な光モジュールを提供できる。
 以上のように、本実施形態に係る光モジュールは、困難なアレイ化光結合を安定して行うとともに、光結合特性を良好にすることができる。
 本発明は情報通信産業に適用することができる。
11:凹型金属ベース
12:光半導体パッケージ
13:導波路型光学素子
14、114:光学レンズ
15:凹型リッド
16:光ファイバ
17、117:レンズ保持ホルダ
19:配線用セラミック
20:金属リング
118:フレーム

Claims (3)

  1.  配線用セラミックと同一高さの切り欠きが側壁に設けられ、当該側壁で囲まれた内部に光半導体パッケージ、導波路型光学素子及び光学レンズを搭載するバスタブ形状の凹型金属ベースと、
     前記切り欠きに埋め込まれ、信号の入出力を行う端子を保持する前記配線用セラミックと、
     前記光半導体パッケージ、前記導波路型光学素子及び前記光学レンズを覆うバスタブ形状であり、当該バスタブ形状の開放された端部のうちの少なくとも対向する2辺が同一面上に配置されている凹型リッドと、
     前記凹型金属ベースと前記凹型リッドとの間に配置され、一方の面が前記凹型金属ベース及び前記配線用セラミックと固着され、他方の面が前記凹型リッドと固着されるパッキンと、
     を備える光モジュール。
  2.  前記凹型金属ベースにおける前記光学レンズの搭載面から前記側壁までの高さは、前記光学レンズを保持するレンズ保持ホルダの高さよりも低いことを特徴とする請求項1に記載の光モジュール。
  3.  前記パッキンは、前記光学レンズを保持するレンズ保持ホルダと前記光学レンズとの接合との接合点よりも低い位置に配置されることを特徴とする請求項1又は2に記載の光モジュール。
PCT/JP2012/081395 2012-01-05 2012-12-04 光モジュール WO2013103062A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012000362A JP2013140258A (ja) 2012-01-05 2012-01-05 光モジュール
JP2012-000362 2012-01-05

Publications (1)

Publication Number Publication Date
WO2013103062A1 true WO2013103062A1 (ja) 2013-07-11

Family

ID=48720066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081395 WO2013103062A1 (ja) 2012-01-05 2012-12-04 光モジュール

Country Status (3)

Country Link
JP (1) JP2013140258A (ja)
CN (2) CN203164478U (ja)
WO (1) WO2013103062A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140258A (ja) * 2012-01-05 2013-07-18 Ntt Electornics Corp 光モジュール
EP3514591B1 (en) * 2016-10-11 2021-12-29 Huawei Technologies Co., Ltd. Light transceiving assembly
CN113523565A (zh) * 2021-08-09 2021-10-22 大连藏龙光电子科技有限公司 一种带金属环的透镜焊接方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837247A (ja) * 1994-07-22 1996-02-06 Kyocera Corp 光半導体素子収納用パッケージ
JPH0969585A (ja) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp 電子部品搭載装置およびその気密封止方法
JPH09325247A (ja) * 1996-06-06 1997-12-16 Oki Electric Ind Co Ltd 光ファイバモジュール
JPH10293230A (ja) * 1997-04-18 1998-11-04 Nec Corp 光ファイバ導入部の気密封止方法及び気密封止構造
JP2002094171A (ja) * 2000-09-19 2002-03-29 Komatsu Electronics Inc 光通信モジュールの製造方法
JP2003060280A (ja) * 2001-08-14 2003-02-28 Mitsubishi Electric Corp 光モジュール、光送信器および光受信器
JP2006064885A (ja) * 2004-08-25 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> 光モジュールおよびその製造方法
JP2011033900A (ja) * 2009-08-03 2011-02-17 Ntt Electornics Corp 光学部品保持ホルダ及び光構造物
JP2011188132A (ja) * 2010-03-05 2011-09-22 Sumitomo Electric Ind Ltd コヒーレント光通信用受信機及びその光軸調整方法
JP2011193347A (ja) * 2010-03-16 2011-09-29 Nippon Telegr & Teleph Corp <Ntt> 光受信モジュール
JP2012242400A (ja) * 2011-05-13 2012-12-10 Ntt Electornics Corp 光モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827505B2 (en) * 2002-12-16 2004-12-07 International Business Machines Corporation Optoelectronic package structure and process for planar passive optical and optoelectronic devices
CN1523389A (zh) * 2003-02-21 2004-08-25 樊承钧 光电子有源器件的气密性封装和光束准直方法
JPWO2007108508A1 (ja) * 2006-03-22 2009-08-06 古河電気工業株式会社 光モジュール
JP2013140258A (ja) * 2012-01-05 2013-07-18 Ntt Electornics Corp 光モジュール

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837247A (ja) * 1994-07-22 1996-02-06 Kyocera Corp 光半導体素子収納用パッケージ
JPH0969585A (ja) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp 電子部品搭載装置およびその気密封止方法
JPH09325247A (ja) * 1996-06-06 1997-12-16 Oki Electric Ind Co Ltd 光ファイバモジュール
JPH10293230A (ja) * 1997-04-18 1998-11-04 Nec Corp 光ファイバ導入部の気密封止方法及び気密封止構造
JP2002094171A (ja) * 2000-09-19 2002-03-29 Komatsu Electronics Inc 光通信モジュールの製造方法
JP2003060280A (ja) * 2001-08-14 2003-02-28 Mitsubishi Electric Corp 光モジュール、光送信器および光受信器
JP2006064885A (ja) * 2004-08-25 2006-03-09 Nippon Telegr & Teleph Corp <Ntt> 光モジュールおよびその製造方法
JP2011033900A (ja) * 2009-08-03 2011-02-17 Ntt Electornics Corp 光学部品保持ホルダ及び光構造物
JP2011188132A (ja) * 2010-03-05 2011-09-22 Sumitomo Electric Ind Ltd コヒーレント光通信用受信機及びその光軸調整方法
JP2011193347A (ja) * 2010-03-16 2011-09-29 Nippon Telegr & Teleph Corp <Ntt> 光受信モジュール
JP2012242400A (ja) * 2011-05-13 2012-12-10 Ntt Electornics Corp 光モジュール

Also Published As

Publication number Publication date
CN103197390A (zh) 2013-07-10
CN203164478U (zh) 2013-08-28
JP2013140258A (ja) 2013-07-18
CN103197390B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5583632B2 (ja) 光モジュール
US8721194B2 (en) Optical transceiver module
US20060162104A1 (en) High speed optical sub-assembly with ceramic carrier
US10191236B2 (en) High-speed multi-channel optical transmitter module and method for fabricating the same
JP5426730B2 (ja) 光モジュール用パッケージ
JP2008304903A (ja) 光学アセンブリおよびその形成方法
CN105705975A (zh) 用于光学通信设备的方法和系统
US9671583B2 (en) Optical transceiver having plug board independent of circuit board and a holder that holds the circuit board on a level with the plug board
JPH02139506A (ja) 光モジュール
WO2013103062A1 (ja) 光モジュール
WO2013103063A1 (ja) 平板配置用受光パッケージ及び光モジュール
US20050123249A1 (en) Structure for manufacturing optical module
US20130266264A1 (en) Optical module and method for making the same
JP2004347809A (ja) 光データリンク、および光データリンクを製造する方法
US11327258B2 (en) Optical module
JP3907051B2 (ja) 光モジュール及びその製造方法
JP2010129833A (ja) 光モジュール
JP2004029161A (ja) 光半導体素子モジュール
CN105093432A (zh) 光传输模块
JPH0422908A (ja) 光モジュール
JP2000111775A (ja) フィルタチップ保持装置
JP5809098B2 (ja) 光送信モジュール
JP2015219436A (ja) 光モジュールの製造方法および光モジュールの製造装置
JP2005222003A (ja) マウント、光部品、光送受信モジュール及び双方向光通信モジュール
WO2015002049A1 (ja) 平板配置用受光パッケージ及び光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864227

Country of ref document: EP

Kind code of ref document: A1