WO2013102951A1 - バタフライバルブ - Google Patents

バタフライバルブ Download PDF

Info

Publication number
WO2013102951A1
WO2013102951A1 PCT/JP2012/000037 JP2012000037W WO2013102951A1 WO 2013102951 A1 WO2013102951 A1 WO 2013102951A1 JP 2012000037 W JP2012000037 W JP 2012000037W WO 2013102951 A1 WO2013102951 A1 WO 2013102951A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
housing
butterfly valve
valve according
guide member
Prior art date
Application number
PCT/JP2012/000037
Other languages
English (en)
French (fr)
Inventor
横山 雅之
克典 高井
暁 長谷川
綿貫 晴夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/350,423 priority Critical patent/US20140252259A1/en
Priority to JP2013552330A priority patent/JP5714135B2/ja
Priority to PCT/JP2012/000037 priority patent/WO2013102951A1/ja
Publication of WO2013102951A1 publication Critical patent/WO2013102951A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/224Details of bearings for the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/67Pintles; Spindles; Springs; Bearings; Sealings; Connections to actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/69Lift valves, e.g. poppet valves having two or more valve-closing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • F16C23/041Sliding-contact bearings self-adjusting with edge relief
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • F16K1/223Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves with a plurality of valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only

Definitions

  • the present invention relates to a butterfly valve for controlling the flow rate of a high-temperature fluid, such as an EGR (Exhaust Gas Recirculation) valve and a bypass valve for circulating exhaust gas.
  • a butterfly valve for controlling the flow rate of a high-temperature fluid, such as an EGR (Exhaust Gas Recirculation) valve and a bypass valve for circulating exhaust gas.
  • valve shaft holes are formed in a direction crossing the extending direction of the fluid passage of the housing, and both end portions of the valve shaft of the butterfly valve are respectively inserted into the valve shaft holes, A bearing portion was provided to support the rotation (see, for example, Patent Document 1).
  • the present invention has been made in order to solve the above-described problems, and is a butterfly capable of suppressing an increase in fluid leakage while avoiding deterioration and sticking of a valve shaft when a coaxial shift of a bearing portion occurs.
  • the object is to provide a valve.
  • a butterfly valve includes a housing provided with a fluid passage, two bearing portions provided at opposite positions of the housing sandwiching the fluid passage, and a shaft rotatably held by the two bearing portions. And a valve fixed to the shaft and rotated integrally to open and close the fluid passage, and the inner diameter of the bearing portion is gradually expanded along the axial direction of the shaft.
  • the present invention by making the inner diameter of the bearing portion gradually expand along the axial direction of the shaft, while avoiding deterioration of the shaft and sticking when a coaxial shift of the bearing portion occurs, An increase in fluid leakage can be suppressed.
  • FIG. 6 is a cross-sectional view showing a thermal deformation example of the housing according to the first embodiment. It is a figure explaining the shape of the bearing part of Embodiment 1.
  • FIG. It is sectional drawing to which the spring of Embodiment 1 and its peripheral structure were expanded. It is sectional drawing to which the power transmission member of Embodiment 1 and its peripheral structure were expanded.
  • Embodiment 1 FIG.
  • the butterfly valve shown in FIG. 1 includes a housing 10 that is interposed in a pipe (not shown) that circulates a fluid, a shaft 20 that is rotatably supported by the housing 10, and a fluid that rotates integrally with the shaft 20.
  • Butterfly-shaped valves 21 and 22 for opening and closing the passages 11 and 12.
  • the valves 21 and 22 are attached to the shaft 20 at different angles. In the illustrated example, when one valve 21 (or valve 22) opens the fluid passage 11 (or fluid passage 12), the other valve 22 is opened. (Or valve 21) closes fluid passage 12 (or fluid passage 11).
  • the housing 10 is formed with one fluid inlet 13 and two fluid outlets 14 and 15.
  • the fluid passage 11 communicates the fluid inlet 13 and the fluid outlet 14, and the fluid passage 12 communicates the fluid inlet 13 and the fluid outlet 15.
  • a hole that penetrates the shaft 20 is formed in the housing 10.
  • These bearing holders 16 and 17 are provided with bearing parts 18 and 19 that slidably support the shaft 20, and the opening of the bearing holder 17 is closed with a cap.
  • the one end portion of the shaft 20 penetrates the bearing holding portion 16 and protrudes out of the housing 10, and is connected to the power transmission members 32a to 32c of the actuator 30.
  • the forward drive force or reverse drive force of the motor 31 is transmitted to the shaft 20 through the power transmission members 32a to 32c, and the shaft 20 and the valves 21 and 22 rotate integrally to open and close the fluid passages 11 and 12. .
  • a spring 33 between the housing 10 and the shaft 20 is used to suppress the rattling of the shaft 20 due to vibration and fluid force, and to return the shaft 20 to a specified rotational position when the actuator 30 fails. Is installed.
  • FIG. 2 is a cross-sectional view showing a thermal deformation example of the housing 10 and shows a portion where the stress is large in a dark color.
  • the bearing portion 18a shown in FIG. 3A is a cylinder having an inner diameter of 8.0 (the unit is all [mm]). It is estimated that the maximum outer diameter at which the shaft 20 is not fixed and sliding is not deteriorated is 6.4 when a coaxial shift occurs in the bearing holders 16 and 17 (not shown). Therefore, in order to avoid sticking and deterioration of sliding, the normal clearance between the bearing portions 18a and 19a of the shaft 20 needs to be 1.6 at a minimum.
  • the bearing portions 18b and 19b shown in FIG. 3B have a cylindrical shape in which the inner diameter on the side far from the fluid passages 11 and 12 is 8.0, and the inner diameter gradually increases as the fluid passages 11 and 12 are approached. It is.
  • the maximum outer diameter of the shaft 20 that is not fixed and deteriorated even when the same coaxial displacement as that in FIG. 3A occurs is estimated to be 6.9. Therefore, the clearance can be set as small as 1.1. Therefore, shaft leakage can be suppressed as compared with the case of FIG.
  • the bearing portions 18c and 19c shown in FIG. 3 (c) are cylinders whose inner diameter on the side close to the fluid passages 11 and 12 is 8.0 and whose inner diameter gradually increases as the distance from the fluid passages 11 and 12 increases. .
  • the maximum outer diameter of the shaft 20 that is not fixed and does not deteriorate even when the same coaxial displacement as that in FIG. 3A occurs is estimated to be 6.9. Therefore, the clearance can be set as small as 1.1. Therefore, shaft leakage can be suppressed as compared with the case of FIG.
  • the shape of the bearing portions 18c and 19c can reduce the clearance between the shaft 20 on the side closer to the fluid passages 11 and 12 when a coaxial shift occurs. It is also possible to suppress the sheet leakage that occurs through this clearance when fully closed.
  • the bearing portions 18d and 19d shown in FIG. 3 (d) are cylinders in which the inner diameter of the central portion in the axial direction is 8.0, and the inner diameter gradually increases toward both ends.
  • the maximum outer diameter of the shaft 20 that is not fixed and does not deteriorate when the same coaxial displacement as that in FIG. 3A occurs is estimated to be 7.4. Therefore, the clearance can be set as small as 0.6. Therefore, shaft leakage can be suppressed as compared with the case of FIG. 3 (b) and FIG. 3 (c) as well as FIG. 3 (a).
  • the shape of the bearing portions 18d and 19d eliminates the directionality when the bearing portions 18d and 19d are installed on the bearing holding portions 16 and 17, thereby facilitating assembly work.
  • FIG. 3 in order to explain easily the influence which the difference in the inner surface shape of a bearing part has on a clearance, the result of a simulation under a large numerical condition is shown.
  • FIG. 1 and FIG. 4 and FIG. 5 to be described below are expressed more seriously than actual in order to show the shapes of the inner peripheral surfaces of the bearing portions 18 and 19.
  • the bearing portions 18 and 19 in FIG. 1 have the same shape as the bearing portions 18d and 19d in FIG. 3D, and the actual clearance with the shaft 20 is about several ⁇ m.
  • FIG. 4 is an enlarged cross-sectional view of the spring 33 and its peripheral structure. Since the housing 10 through which the high-temperature gas is circulated becomes hot, if the spring 33 is installed directly on the housing 10, a heat sink occurs. However, if the spring 33 is installed away from the housing 10, the entire length of the butterfly valve is extended. Therefore, the influence of high heat is reduced by installing the spring holder 34 on the housing 10 and installing the spring 33 on the spring holder 34 instead of installing the spring 33 directly on the housing 10.
  • the spring holder 34 includes an outer cylinder portion 35 that covers the outside of the spring 33, an inner cylinder portion 36 that covers the inside of the spring 33, and a gap between the outer cylinder portion 35 and the inner cylinder portion 36 on the side close to the fluid passage 11.
  • the bottom portion 37 is closed, and a holder fixing portion 38 that fixes the outer cylinder portion 35 to the housing 10.
  • a convex portion 39 is formed on the outer periphery of the bearing holding portion 16 in the housing 10.
  • the spring holder 34 is arrange
  • a holder fixing portion 38 is formed at a position farthest from the fluid passage 11, that is, at the open end portions of the inner cylinder portion 36 and the outer cylinder portion 35.
  • the spring holder 34 Since the spring holder 34 is in a state where the portions other than the holder fixing portion 38 are separated from the housing 10 (the bearing holding portion 16 and the convex portion 39), the heat of the hot gas flowing through the fluid passage 11 is directly transmitted from the housing 10. Absent. Moreover, the heat transmitted from the bearing holding part 16 to the spring 33 is suppressed by extending the inner cylinder part 36 in the axial direction.
  • the spring holder 34 is a component that holds a hook (not shown) on the fixed side of the spring 33, and is less worn due to relative displacement with the spring 33.
  • the other hook (not shown) of the spring 33 is held by the power transmission member 32c, and the urging force of the spring 33 is transmitted to the shaft 20 via the power transmission member 32c.
  • a guide member 40 and a guide member 41 are provided as a guide for preventing the top end of the torsion spring portion of the spring 33 from falling.
  • One guide member 40 is an annular member that is in sliding contact with the end portion of the spring 33, and is placed on the torsion spring portion to receive an urging force in the axial direction and is pressed against the power transmission member 32c.
  • the guide member 41 is fixed to the shaft 20 with an inner diameter, and when the torsion spring part falls down, the guide member 40 slidably in contact with the torsion spring part also moves in the radial direction and contacts the guide member 41. Since the movement of the is restricted, the fall can be prevented.
  • the guide member 40 and the guide member 41 are formed as separate members so that the guide member 40 in contact with the spring 33 is not directly attached to the shaft 20, thereby reducing heat transmitted from the shaft 20 to the spring 33. Furthermore, a ratchet 42 is provided on the peripheral edge of the guide member 41.
  • This screw turn 42 is a peripheral wall projecting from the peripheral portion of the guide member 41 toward the fluid passage 11, and the hot gas leaked from the clearance between the shaft 20 and the bearing portion 18 is removed from the guide member 40 and the guide member 40.
  • the spring 33 is also prevented from sag due to leaked gas.
  • the leaked gas guided by the ratchet 42 is discharged to the outside through a gap between the bearing holder 16 and the spring holder 34.
  • the mouse turn 42 is formed on the guide member 41, but may be formed on the guide member 40.
  • FIG. 5 is an enlarged cross-sectional view of the power transmission member 32c and its peripheral structure. Since the actuator 30 having the motor 31 has low heat resistance, it is better to reduce heat transfer from the housing 10 as much as possible. Therefore, the actuator 30 is not directly attached to the housing 10, but is attached via the heat insulating member 43.
  • a stainless steel pipe having a low thermal conductivity is used as the heat insulating member 43 so that only both ends of the pipe are in contact with the housing 10 and the base plate 45. Thereby, the actuator 30 can be mounted away from the housing 10, and heat transfer from the housing 10 to the actuator 30 can be reduced.
  • the surface of the housing 10 facing the actuator 30 is covered with a cover 44 so as to block the radiant heat of the housing 10 and the leaked gas.
  • the cover 44 may be made of a material having high thermal conductivity to improve heat dissipation.
  • holes for inserting bolts 46 are formed in the cover 44 and the base plate 45 of the actuator 30, and screw holes for fastening the bolts 46 are formed in the housing 10.
  • a contact portion 47 that is one step higher is formed around the insertion hole of the cover 44, and only the contact portion 47 is in contact with the base plate 45, and other portions are separated from the base plate 45. Thereby, a gap is formed between the cover 44 and the base plate 45, and heat transfer from the cover 44 to the base plate 45 to which the actuator 30 is attached can be reduced.
  • the butterfly valve includes the housing 10 provided with the fluid passages 11 and 12, and the bearing portions 18 and 19 provided at the opposing positions of the housing 10 across the fluid passages 11 and 12.
  • the shaft 20 is rotatably held by the bearings 18 and 19, and the valves 21 and 22 are fixed to the shaft 20 and rotate integrally to open and close the fluid passages 11 and 12.
  • the inner diameter of 19 is configured to gradually widen along the axial direction of the shaft 20. For this reason, it is possible to suppress an increase in fluid leakage while avoiding deterioration and sticking of the shaft 20 when a coaxial shift of the bearing portions 18 and 19 occurs.
  • bearing portion 18c when the bearing portions 18 and 19 are formed so as to gradually expand along the axial direction of the shaft 20 so that the inner diameter near the fluid passages 11 and 12 is small and the inner diameter on the far side is large (bearing portion 18c). 19c) has the effect of suppressing leakage of the seat flowing from the upstream side to the downstream side via the clearance between the shaft 20 and the bearing portions 18 and 19 when the valve 21 or the valve 22 is fully closed. . Further, when the bearing portions 18 and 19 are formed so as to gradually expand toward both ends along the axial direction of the shaft 20 so that the inner diameter of the center portion is small and the inner diameters of both ends are large (bearing portions 18d, 19d) has the effect of facilitating assembly work in addition to the above effects.
  • the butterfly valve is fixed to the shaft 20 inside the guide member 40 and the annular guide member 40 that is in sliding contact with the end of the spring 33 installed on the outer periphery of the shaft 20.
  • the guide member 41 is configured such that the outer peripheral portion abuts on the inner peripheral portion of the guide member 40 and restricts the radial movement of the guide member 40, and the screw 42 is formed on the outer peripheral portion of the guide member 41. For this reason, propagation of heat from the shaft 20 can be reduced while suppressing the fall of the spring 33. Moreover, since the high temperature gas leaked from the bearing portion 18 can be released in a direction not directly hitting the spring 33 by the screw return 42, the heat settling of the spring 33 can be suppressed.
  • the butterfly valve is provided with the spring holder 34 that accommodates the spring 33 around the hole of the housing 10 that penetrates the end of the shaft 20.
  • the inner cylinder part 36 that covers the inner side of the inner side 33, the outer cylinder part 35 that covers the outer side, and the bottom part 37 that closes the gap between the inner cylinder part 36 and the outer cylinder part 35, the inner cylinder part 36 and the outer cylinder part 35 is fixed to the convex portion 39 of the housing 10 by the holder fixing portion 38 on the open side, and the other portions are separated from the housing 10. For this reason, the heat propagated from the housing 10 to the spring 33 can be reduced.
  • the butterfly valve is provided between the actuator 30 that rotationally drives the shaft 20, and between the actuator 30 and the housing 10, and the heat insulation that holds the actuator 30 in a state of being separated from the housing 10.
  • the member 43 is provided. For this reason, heat transfer to the actuator 30 having low heat resistance can be reduced as much as possible.
  • the butterfly valve is configured to include the cover 44 that covers the surface of the housing 10 that faces the actuator 30, so that the radiant heat and leakage gas of the housing 10 are blocked, The low actuator 30 can be protected.
  • the butterfly valve is configured to provide a gap between the base plate 45 to which the actuator 30 is attached and the cover 44, so that heat transfer from the cover 44 to the actuator 30 can be reduced. it can.
  • any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.
  • Embodiment 1 described above an example in which the present invention is applied to a butterfly valve configured to open and close a fluid passage that is bifurcated by two valves fixed to a shaft has been described. You may apply to the butterfly valve of the structure which opens and closes one fluid channel
  • the housing is asymmetrical on the upstream side and the downstream side, a coaxial shift is likely to occur. Therefore, even in the case of a butterfly valve having one valve and one fluid passage, the housing is asymmetrical. The effect of the invention becomes remarkable. Further, since the coaxial displacement of the bearing portion tends to increase as the shaft becomes longer, the effect of the present invention becomes more remarkable as the number of valves increases (that is, as the shaft becomes longer).
  • the butterfly valve according to the present invention is adapted to be used for an EGR valve that circulates exhaust gas at a high temperature (500 ° C. to 800 ° C.) because the effect of high temperature is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lift Valve (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Valve Housings (AREA)

Abstract

 軸受け部18,19を、中央部の内径が小さく、両端部の内径が大きくなるよう、シャフト20の軸方向に沿って両端部へ向かって徐々に広がる形状にし、ハウジング10が変形して同軸ずれが生じた場合にシャフト20の摺動悪化および固着を防止する。

Description

バタフライバルブ
 この発明は、排気ガスを流通するEGR(Exhaust Gas Recirculation)バルブおよびバイパスバルブのような、高温流体の流量制御用のバタフライバルブに関する。
 従来のバタフライバルブは、ハウジングの流体通路の延在方向に対して交差する方向に2箇所の弁軸孔を形成し、バタフライバルブの弁軸の両端部をそれぞれ弁軸孔に挿通して、それぞれに軸受部を設けて回転自在に支持していた(例えば、特許文献1参照)。
特開2007-32301号公報
 上記特許文献1のように2箇所の軸受部で弁軸を支持するバタフライバルブにおいて、この弁軸を挟んで上流側と下流側とでハウジング形状が非対称である場合、高温流体を流すとハウジングが上流側と下流側とで非対称に熱膨張して、2箇所の軸受部の同軸度がずれ、弁軸と軸受部の摺動が悪化したり固着したりする課題があった。
 また、この摺動悪化を避けるために、弁軸と軸受部のクリアランスを拡大した場合、このクリアランスを通って流体通路からハウジング外への軸漏れが増加するという課題があった。さらに、バタフライバルブが全閉状態でも、このクリアランスを通って上流側から下流側へのシート漏れが生じる課題もあった。
 この発明は、上記のような課題を解決するためになされたもので、軸受部の同軸ずれが発生した際に弁軸の摺動悪化および固着を回避しつつ、流体漏れの増加を抑制できるバタフライバルブを提供することを目的とする。
 この発明のバタフライバルブは、流体通路を設けたハウジングと、流体通路を挟んだハウジングの対向位置それぞれに設けた2箇所の軸受け部と、2箇所の軸受け部により回動自在に保持されるシャフトと、シャフトに固定されて一体に回動し、流体通路を開閉するバルブとを備え、軸受け部の内径を、シャフトの軸方向に沿って徐々に広がる形状にしたものである。
 この発明によれば、軸受け部の内径を、シャフトの軸方向に沿って徐々に広がる形状にすることにより、軸受け部の同軸ずれが発生した際のシャフトの摺動悪化および固着を回避しつつ、流体漏れの増加を抑制することができる。
この発明の実施の形態1に係るバタフライバルブの構成を示す断面図である。 実施の形態1のハウジングの熱変形例を示す断面図である。 実施の形態1の軸受け部の形状を説明する図である。 実施の形態1のスプリングとその周辺構造を拡大した断面図である。 実施の形態1の動力伝達部材とその周辺構造を拡大した断面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示すバタフライバルブは、流体を流通する管(不図示)に介装されるハウジング10と、ハウジング10に回動自在に保持されたシャフト20と、シャフト20と一体に回動して流体通路11,12を開閉するバタフライ形状のバルブ21,22とを備える。バルブ21,22は互いに異なる角度でシャフト20に取り付けられており、図示例では一方のバルブ21(またはバルブ22)が流体通路11(または流体通路12)を開弁するとき、もう一方のバルブ22(またはバルブ21)が流体通路12(または流体通路11)を閉弁する。
 ハウジング10には1個の流体入口13と2個の流体出口14,15が形成されている。流体通路11は流体入口13と流体出口14を連通し、流体通路12は流体入口13と流体出口15を連通する。
 また、ハウジング10にはシャフト20を貫通する穴が形成されている。このうちの、流体通路11,12を間に挟んだ対向位置それぞれの穴を、軸受け保持部16,17とする。これら軸受け保持部16,17には、シャフト20を摺動自在に支持する軸受け部18,19が設置され、軸受け保持部17の開口部はキャップで塞がれている。
 シャフト20の一端部は、軸受け保持部16を貫通してハウジング10外へ突出し、アクチュエータ30の動力伝達部材32a~32cに連結されている。モータ31の正転駆動力または逆転駆動力が動力伝達部材32a~32cを介してシャフト20に伝達されて、シャフト20とバルブ21,22が一体に回動して流体通路11,12を開閉する。振動および流体力などによるシャフト20のがたつきを抑制するために、また、アクチュエータ30が故障した際にシャフト20を規定の回動位置に戻すために、ハウジング10とシャフト20の間にスプリング33が設置されている。
 図2は、ハウジング10の熱変形例を示す断面図であり、応力が大きい部位を濃い色で示す。不図示の配管に流体入口13と流体出口14,15をそれぞれ固定した状態で、流体入口13から流体出口14,15へ高温ガスを流通させると、ハウジング10が膨張し、流体入口13付近に応力が集中して大きく歪む。この結果、シャフト20を挟んだ上流側(流体入口13側)と下流側(流体出口14,15側)とで線膨張による膨張の歪みが非対称となり、軸受け保持部16,17に同軸ずれが発生する。
 また、流体通路11,12の片側のみに高温ガスを流通させ続けると、ハウジング10に温度分布が生じ、歪みによる同軸ずれが更に悪化する。
 従って、ハウジング10を加工する際の軸受け保持部16,17の同軸ずれ、および上述した膨張による同軸ずれが発生した場合の、軸受け部18,19でのシャフト20の固着および摺動悪化を避けるためには、シャフト20と軸受け部18,19との間のクリアランスを拡大する必要がある。ただし、クリアランスを拡大すると、このクリアランスからの漏れが増大するため、単純に拡大することは好ましくない。
 図3(a)に示す軸受け部18aは、内径が8.0(単位は全て[mm]とする)の円筒である。不図示の軸受け保持部16,17に同軸ずれが発生した場合に、シャフト20の固着および摺動悪化しない最大の外径は6.4と推定される。そのため、固着および摺動悪化を避けるためには、シャフト20の軸受け部18a,19aとの間の正常時のクリアランスを、最小でも1.6にする必要がある。
 これに対し、図3(b)に示す軸受け部18b,19bは、流体通路11,12から遠い側の内径を8.0とし、流体通路11,12へ近づくにつれ徐々に内径が広がるような円筒である。この軸受け部18b,19bを使用した場合、図3(a)と同等の同軸ずれが発生したときにも固着および摺動悪化が起こらないシャフト20の最大の外径は6.9と推定されるため、クリアランスを1.1と小さく設定することができる。そのため、図3(a)の場合に比べて軸漏れを抑制することができる。
 また、図3(c)に示す軸受け部18c,19cは、流体通路11,12に近い側の内径を8.0とし、流体通路11,12から遠ざかるにつれ徐々に内径が広がるような円筒である。この軸受け部18c,19cを使用した場合、図3(a)と同等の同軸ずれが発生したときにも固着および摺動悪化が起こらないシャフト20の最大の外径は6.9と推定されるため、クリアランスを1.1と小さく設定することができる。そのため、図3(a)の場合に比べて軸漏れを抑制することができる。
 また、軸受け部18c,19cの形状であれば、同軸ずれが発生したときに、流体通路11,12に近い側でシャフト20との間のクリアランスを小さくすることができるため、バルブ21またはバルブ22の全閉時にこのクリアランスを介して発生するシート漏れも抑制することができる。
 また、図3(d)に示す軸受け部18d,19dは、軸方向の中央部の内径を8.0とし、両端へ向かうにつれ徐々に内径が広がるような円筒である。この軸受け部18d,19dを使用した場合、図3(a)と同等の同軸ずれが発生したときにも固着および摺動悪化が起こらないシャフト20の最大の外径は7.4と推定されるため、クリアランスを0.6と小さく設定することができる。そのため、図3(a)だけでなく図3(b)および図3(c)の場合に比べて、軸漏れを抑制することができる。
 また、軸受け部18d,19dの形状であれば、軸受け保持部16,17へ設置する際の方向性がなくなるため、組み立て作業が容易になる。
 なお、図3では、軸受け部の内面形状の違いがクリアランスに及ぼす影響を分かり易く説明するために、大きい数値の条件でシミュレーションした結果を示した。同様に、図1および以下に説明する図4、図5でも、軸受け部18,19の内周面の形状を示すために実際より甚だしく表現した。ちなみに、図1の軸受け部18,19は図3(d)の軸受け部18d,19dと同様の形状であり、シャフト20との間の実際のクリアランスは数μm程度である。
 図4は、スプリング33とその周辺構造を拡大した断面図である。
 高温ガスを流通するハウジング10は高温になるため、スプリング33を直接ハウジング10に設置すると熱へたりが生じる。しかしながら、スプリング33をハウジング10から離して設置すると、バタフライバルブの全長が伸びる。
 そこで、スプリング33をハウジング10に直接設置するのではなく、ハウジング10にスプリングホルダ34を設置して、このスプリングホルダ34にスプリング33を設置することにより、高熱の影響を低減する。
 スプリングホルダ34は、スプリング33の外側を被覆する外筒部35と、スプリング33の内側を被覆する内筒部36と、外筒部35と内筒部36の流体通路11に近い側の隙間を塞ぐ底部37と、外筒部35をハウジング10に固定するホルダ固定部38とから構成されている。
 一方、ハウジング10には、軸受け保持部16の外周に凸部39が形成されている。そして、軸受け保持部16と凸部39の間にスプリングホルダ34を配置し、凸部39とホルダ固定部38とを固定する。このとき、ハウジング10からの熱の影響を抑制するために、流体通路11から最も離れた位置、即ち、内筒部36と外筒部35の開放側の端部にホルダ固定部38を形成して、スプリングホルダ34をハウジング10に固定することが望ましい。
 スプリングホルダ34は、ホルダ固定部38以外の部位がハウジング10(軸受け保持部16および凸部39)から離間させた状態になるため、流体通路11を流通する高温ガスの熱がハウジング10から直接伝わらない。また、内筒部36を軸方向に長く伸ばすことにより、軸受け保持部16からスプリング33に伝わる熱を抑制する。
 スプリング33の捻りバネ部分は、捻ると倒れるため、内筒部36が捻りバネ部分の内側に接することにより倒れ防止のガイドの役目を果たす。このスプリングホルダ34は、スプリング33の固定側のフック(不図示)を保持する部品であり、スプリング33との相対変位による磨耗が少ない。スプリング33のもう一方のフック(不図示)は、動力伝達部材32cに保持されており、スプリング33の付勢力は動力伝達部材32cを介してシャフト20に伝達される。
 また、スプリング33の捻りバネ部分の上端側の倒れ防止のガイドとして、ガイド部材40とガイド部材41の2部品を設ける。一方のガイド部材40はスプリング33の端部に摺接する環状の部材であり、捻りバネ部分に載置されて軸方向の付勢力を受け、動力伝達部材32cに押付けられた状態になる。ガイド部材41は内径でシャフト20に固定されており、捻りバネ部分が倒れる際、この捻りバネ部分に摺接したガイド部材40も一緒に径方向へ移動してガイド部材41に当接し、それ以上の移動が規制されるため、倒れを防止できる。
 このガイド部材40とガイド部材41を別部材にし、スプリング33に接するガイド部材40を直接シャフト20に取り付けない構造にすることで、シャフト20からスプリング33へ伝達される熱を低減する。
 さらに、ガイド部材41の周縁部にねずみ返し42を設ける。このねずみ返し42は、ガイド部材41の周縁部から流体通路11側へ突設された周壁であって、シャフト20と軸受け部18との間のクリアランスから軸漏れした高温ガスを、ガイド部材40およびスプリング33に直接当たらない方向(図4に矢印で示す方向)へ逃がすことで、漏出ガスによるスプリング33のへたりも抑制する。ねずみ返し42に案内された漏出ガスは、軸受け保持部16とスプリングホルダ34との間の隙間を通って外部へ排出される。
 なお、図示例ではねずみ返し42をガイド部材41に形成したが、ガイド部材40に形成してもよい。
 図5は、動力伝達部材32cとその周辺構造を拡大した断面図である。
 モータ31を有するアクチュエータ30は耐熱性が低いため、ハウジング10からの伝熱を極力低減する方がよい。そこで、アクチュエータ30を直接ハウジング10に取り付けず、断熱部材43を介在させて取り付ける。例えば図5の例では、断熱部材43として、熱伝導率の低いステンレス鋼のパイプを用い、パイプの両端のみがハウジング10とベースプレート45に接触するように取り付ける。これにより、アクチュエータ30をハウジング10から遠ざけて取り付け可能となり、また、ハウジング10からアクチュエータ30への伝熱を低減できる。
 さらに、ハウジング10の輻射熱、および漏出ガスを遮断するように、アクチュエータ30に対向するハウジング10の面をカバー44で覆う。このカバー44を熱伝導率の高い材質で構成して放熱性を高めるとよい。図5の例では、カバー44およびアクチュエータ30のベースプレート45には、ボルト46を挿通するための穴がそれぞれ形成され、ハウジング10にはボルト46を締結するためのネジ穴が形成されている。また、カバー44の挿通穴周辺には一段高い当接部47が形成され、当接部47のみがベースプレート45に接し、それ以外の部分はベースプレート45から離間した状態となる。これにより、カバー44とベースプレート45の間に隙間ができ、カバー44からアクチュエータ30が取り付けられたベースプレート45への伝熱を低減できる。
 以上より、実施の形態1によれば、バタフライバルブは、流体通路11,12を設けたハウジング10と、流体通路11,12を挟んだハウジング10の対向位置それぞれに設けた軸受け部18,19と、軸受け部18,19により回動自在に保持されるシャフト20と、シャフト20に固定されて一体に回動し、流体通路11,12を開閉するバルブ21,22とを備え、軸受け部18,19の内径は、シャフト20の軸方向に沿って徐々に広がる形状になるよう構成した。このため、軸受け部18,19の同軸ずれが発生した際のシャフト20の摺動悪化および固着を回避しつつ、流体漏れの増加を抑制することができる。
 特に、軸受け部18,19を、流体通路11,12に近い側の内径が小さく、遠い側の内径が大きくなるよう、シャフト20の軸方向に沿って徐々に広がる形状にした場合(軸受け部18c,19c)には、上記効果に加え、バルブ21またはバルブ22の全閉時にシャフト20と軸受け部18,19の間のクリアランスを介して上流側から下流側へ流れるシート漏れを抑制する効果もある。
 また、軸受け部18,19を、中央部の内径が小さく、両端部の内径が大きくなるよう、シャフト20の軸方向に沿って両端部へ向かって徐々に広がる形状にした場合(軸受け部18d,19d)には、上記効果に加え、組み立て作業を容易化できる効果もある。
 また、上記実施の形態1によれば、バタフライバルブは、シャフト20の外周に設置されるスプリング33の端部に摺接する環状のガイド部材40と、ガイド部材40の内側でシャフト20に固定され、その外周部がガイド部材40の内周部に当接してガイド部材40の径方向の移動を規制するガイド部材41とを備え、ガイド部材41の外周部にねずみ返し42を形成するよう構成した。このため、スプリング33の倒れを抑制しつつ、シャフト20からの熱の伝播を低減することができる。また、ねずみ返し42により、軸受け部18から漏出した高温ガスをスプリング33に直接当たらない方向へ逃がすことができるので、スプリング33の熱へたりを抑制することができる。
 また、上記実施の形態1によれば、バタフライバルブは、シャフト20の端部を貫通させるハウジング10の穴の周囲に、スプリング33を収容するスプリングホルダ34を設置し、このスプリングホルダ34は、スプリング33の内側を被覆する内筒部36、外側を被覆する外筒部35、および内筒部36と外筒部35の隙間を塞ぐ底部37とから構成され、これら内筒部36と外筒部35の開放側のホルダ固定部38でハウジング10の凸部39に固定され、それ以外の部位はハウジング10から離間した状態になるよう構成した。このため、ハウジング10からスプリング33に伝播する熱を低減することができる。
 また、上記実施の形態1によれば、バタフライバルブは、シャフト20を回動駆動するアクチュエータ30と、アクチュエータ30とハウジング10の間に設けられ、アクチュエータ30をハウジング10から離間した状態に保持する断熱部材43とを備える構成にした。このため、耐熱性の低いアクチュエータ30への伝熱を極力低減することができる。
 また、実施の形態1によれば、バタフライバルブは、アクチュエータ30に対向するハウジング10の面を被覆するカバー44を備える構成にしたので、ハウジング10の輻射熱および漏出ガスを遮断して、耐熱性の低いアクチュエータ30を保護することができる。
 また、実施の形態1によれば、バタフライバルブは、アクチュエータ30が取り付けられたベースプレート45とカバー44の間に隙間を設ける構成にしたので、カバー44からアクチュエータ30への伝熱を低減することができる。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 例えば、上記実施の形態1では、シャフトに固定された2個のバルブが、二手に分岐した流体通路を開閉する構成のバタフライバルブに本願発明を適用した例を説明したが、1個のバルブが1本の流体通路を開閉する構成のバタフライバルブに適用してもよい。ただし、上流側と下流側でハウジングが非対称形状の場合に同軸ずれが発生しやすいので、1個のバルブと1本の流体通路を有するバタフライバルブの場合にもそのハウジングが非対称形状であると本願発明の効果が顕著となる。また、シャフトが長いほど軸受け部の同軸ずれも大きくなる傾向があるため、バルブの数が多くなるほど(即ち、シャフトが長くなるほど)本願発明の効果が顕著となる。
 以上のように、この発明に係るバタフライバルブは、高温の影響を軽減するようにしたので、高温(500℃~800℃)の排気ガスを流通するEGRバルブなどに用いるのに適している。
 10 ハウジング、 11,12 流体通路、 13 流体入口、 14,15 流体出口、 16,17 軸受け保持部、 18,19 軸受け部、 20 シャフト、 21,22 バルブ、 30 アクチュエータ、 31 モータ、 32a~32c 動力伝達部材、 33 スプリング、 34 スプリングホルダ、 35 外筒部、 36 内筒部、 37 底部、 38 ホルダ固定部、 39 凸部、 40,41 ガイド部材、 42 ねずみ返し(周壁)、 43 断熱部材、 44 カバー、 45 ベースプレート、 46 ボルト、 47 当接部。

Claims (10)

  1.  流体通路を設けたハウジングと、
     前記流体通路を挟んだ前記ハウジングの対向位置それぞれに設けた2箇所の軸受け部と、
     前記2箇所の軸受け部により回動自在に保持されるシャフトと、
     前記シャフトに固定されて一体に回動し、前記流体通路を開閉するバルブとを備え、
     前記軸受け部の内径は、前記シャフトの軸方向に沿って徐々に広がる形状であることを特徴とするバタフライバルブ。
  2.  軸受け部は、流体通路に近い側の内径が小さく、遠い側の内径が大きくなるようシャフトの軸方向に沿って徐々に広がる形状であることを特徴とする請求項1記載のバタフライバルブ。
  3.  軸受け部は、中央部の内径が小さく、両端部の内径が大きくなるようシャフトの軸方向に沿って徐々に広がる形状であることを特徴とする請求項1記載のバタフライバルブ。
  4.  ハウジングは、シャフトを挟んで上流側と下流側の形状が非対称であることを特徴とする請求項1記載のバタフライバルブ。
  5.  シャフトの外周に設置されるスプリングの端部に摺接する環状の第1のガイド部材と、
     前記第1のガイド部材の内側で前記シャフトに固定され、その外周部が前記第1ガイド部材の内周部に当接して前記第1のガイド部材の径方向の移動を規制する第2のガイド部材とを備え、
     前記第1のガイド部材または前記第2のガイド部材のうちの一方は、その周縁部に周壁が形成されていることを特徴とする請求項1記載のバタフライバルブ。
  6.  シャフト端部を貫通させるハウジングの穴の周囲に、スプリングを収容するスプリングホルダを設置し、
     当該スプリングホルダは、前記スプリングの内側を被覆する内筒、外側を被覆する外筒、および当該内筒と当該外筒の前記ハウジング側の隙間を塞ぐ底面とから構成され、当該内筒と当該外筒の開放側で前記ハウジングに固定され、それ以外の部位は前記ハウジングから離間した状態であることを特徴とする請求項1記載のバタフライバルブ。
  7.  シャフトを回動駆動するアクチュエータと、
     前記アクチュエータとハウジングの間に設けられ、前記アクチュエータを前記ハウジングから離間した状態に保持する断熱部材とを備えることを特徴とする請求項1記載のバタフライバルブ。
  8.  アクチュエータに対向するハウジング面を被覆するカバーを備えることを特徴とする請求項7記載のバタフライバルブ。
  9.  アクチュエータとカバーの間に隙間を設けたことを特徴とする請求項8記載のバタフライバルブ。
  10.  シャフトに固定された2個のバルブが、二手に分岐した流体通路を開閉することを特徴とする請求項4記載のバタフライバルブ。
PCT/JP2012/000037 2012-01-05 2012-01-05 バタフライバルブ WO2013102951A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/350,423 US20140252259A1 (en) 2012-01-05 2012-01-05 Butterfly valve
JP2013552330A JP5714135B2 (ja) 2012-01-05 2012-01-05 バタフライバルブ
PCT/JP2012/000037 WO2013102951A1 (ja) 2012-01-05 2012-01-05 バタフライバルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000037 WO2013102951A1 (ja) 2012-01-05 2012-01-05 バタフライバルブ

Publications (1)

Publication Number Publication Date
WO2013102951A1 true WO2013102951A1 (ja) 2013-07-11

Family

ID=48745029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000037 WO2013102951A1 (ja) 2012-01-05 2012-01-05 バタフライバルブ

Country Status (3)

Country Link
US (1) US20140252259A1 (ja)
JP (1) JP5714135B2 (ja)
WO (1) WO2013102951A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105276202A (zh) * 2015-10-08 2016-01-27 瑞安市阀门一厂 气动快开百叶蝶阀
JP2017101626A (ja) * 2015-12-03 2017-06-08 愛三工業株式会社 スロットル装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10197187B2 (en) * 2014-10-31 2019-02-05 Mitsubishi Electric Corporation Fluid control valve
CN104373255A (zh) * 2014-11-21 2015-02-25 无锡隆盛科技股份有限公司 电动egr阀动力部分保护结构
WO2016096875A1 (de) * 2014-12-19 2016-06-23 Continental Automotive Gmbh Ventilvorrichtung in einem kraftfahrzeug
US10400817B2 (en) 2016-11-22 2019-09-03 Woodward, Inc. Radial bearing device
FR3080427B1 (fr) * 2018-04-24 2020-04-03 Faurecia Systemes D'echappement Vanne pour une ligne d'echappement
DE102018214069A1 (de) * 2018-08-21 2020-02-27 Continental Automotive Gmbh Ventil zur Steuerung von Abgas oder Frischluft in einer Antriebseinheit eines Kraftfahrzeuges oder Generators
US11022079B1 (en) * 2020-02-21 2021-06-01 Deere & Company Dual element engine gas valve
KR102455463B1 (ko) * 2022-04-29 2022-10-17 캄텍주식회사 차량용 3웨이 밸브

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256975U (ja) * 1988-10-19 1990-04-24
JP2005256971A (ja) * 2004-03-12 2005-09-22 Kitz Corp バタフライ弁
JP2010071397A (ja) * 2008-09-19 2010-04-02 Aisan Ind Co Ltd 軸受装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038282B2 (ja) * 1993-04-12 2000-05-08 株式会社日立製作所 スロットル弁開閉装置
US5427141A (en) * 1994-09-19 1995-06-27 Fuji Oozx Inc. Pressure fluid control valve device
JP2002339766A (ja) * 2001-05-15 2002-11-27 Aisan Ind Co Ltd スロットル弁制御装置
EP1610011B1 (en) * 2003-04-02 2019-06-12 Diamet Corporation Oil-impregnated sintered bearing and method of producing the same
US7303481B2 (en) * 2005-02-04 2007-12-04 Itt Manufacturing Enterprises, Inc. Electrically isolated actuator output shaft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0256975U (ja) * 1988-10-19 1990-04-24
JP2005256971A (ja) * 2004-03-12 2005-09-22 Kitz Corp バタフライ弁
JP2010071397A (ja) * 2008-09-19 2010-04-02 Aisan Ind Co Ltd 軸受装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105276202A (zh) * 2015-10-08 2016-01-27 瑞安市阀门一厂 气动快开百叶蝶阀
JP2017101626A (ja) * 2015-12-03 2017-06-08 愛三工業株式会社 スロットル装置

Also Published As

Publication number Publication date
JPWO2013102951A1 (ja) 2015-05-11
US20140252259A1 (en) 2014-09-11
JP5714135B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5714135B2 (ja) バタフライバルブ
CN102959294B (zh) 流体控制阀
JP6432433B2 (ja) バルブ装置
EP2961953B1 (en) Heat recovery device
WO2010041368A1 (ja) Egrバルブ装置
JP5355792B2 (ja) ステップタイプバルブ
KR101096525B1 (ko) 저온 및 고온에서 실링성능이 유지되는 버터플라이 밸브
WO2012131777A1 (ja) バタフライバルブ
WO2011105090A1 (ja) 可変容量型ターボチャージャ
JP7421643B2 (ja) 電子膨張弁及びこの電子膨張弁を用いる空調システム
CN108496033B (zh) 废热回收系统
JP2016501336A (ja) 内燃機関のフラップ装置
US10408170B2 (en) EGR cooler bypass valve
WO2024109423A1 (zh) 一种三偏心蝶阀
US20100301249A1 (en) Butterfly valve plate sealing assembly
KR101676680B1 (ko) 야금 분야 장치를 위한 열풍 유량 조절 밸브
JP2020159514A (ja) 制御バルブ
JP2012072678A (ja) 排気ガス再循環バルブ
JP6570948B2 (ja) バルブハウジング
WO2016088419A1 (ja) 排気熱回収装置
WO2017154204A1 (ja) バルブ装置
JP2018053807A (ja) 排気制御弁
JP2012202465A (ja) バルブ装置
JP2002130490A (ja) バルブの軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552330

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864583

Country of ref document: EP

Kind code of ref document: A1