WO2013100195A1 - タイヤおよびタイヤ成形用金型 - Google Patents
タイヤおよびタイヤ成形用金型 Download PDFInfo
- Publication number
- WO2013100195A1 WO2013100195A1 PCT/JP2012/084302 JP2012084302W WO2013100195A1 WO 2013100195 A1 WO2013100195 A1 WO 2013100195A1 JP 2012084302 W JP2012084302 W JP 2012084302W WO 2013100195 A1 WO2013100195 A1 WO 2013100195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- tread
- performance
- molding
- snow
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
- B29D30/0606—Vulcanising moulds not integral with vulcanising presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
- B29C33/424—Moulding surfaces provided with means for marking or patterning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
- B29D30/0606—Vulcanising moulds not integral with vulcanising presses
- B29D2030/0607—Constructional features of the moulds
- B29D2030/0612—Means for forming recesses or protrusions in the tyres, e.g. grooves or ribs, to create the tread or sidewalls patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0601—Vulcanising tyres; Vulcanising presses for tyres
- B29D30/0606—Vulcanising moulds not integral with vulcanising presses
- B29D2030/0607—Constructional features of the moulds
- B29D2030/0616—Surface structure of the mould, e.g. roughness, arrangement of slits, grooves or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
- B29K2995/0074—Roughness, e.g. anti-slip patterned, grained
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2030/00—Pneumatic or solid tyres or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0008—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
- B60C2011/0016—Physical properties or dimensions
Definitions
- the present invention relates to a tire and a tire molding die, and more particularly, to a tire excellent in performance on ice and in snow, and a tire molding die used for manufacturing the tire.
- Patent Document 1 by providing a plurality of sipes in each block formed in the tread portion, the edge component in the ground contact surface is increased and the snow biting effect is improved, so that the snow / ice road surface (frozen road surface or Techniques for improving running performance on snowy road surfaces have been proposed.
- Patent Document 2 in a tire having a tread rubber having a so-called cap-and-base structure composed of a cap rubber and a base rubber, the water removal performance is greatly improved by using foamed rubber as the cap rubber. Technologies for improving the performance on ice and on snow have been proposed.
- Patent Document 3 with respect to the surface property of the tread portion 1 of the tire, the surface roughness is obtained by providing a protruding portion 2 having a sharp tip on the surface of the tread portion.
- a technique for improving the on-ice performance and on-snow performance of a tire by increasing the friction and increasing the frictional force between the tire surface and the road surface.
- the projection When a load is applied, the projection may be crushed and desired performance may not be obtained. That is, in the technique in which the protruding portion having a sharp tip is provided on the surface of the tread portion, as shown in FIG. 1B, the protruding portion 2 is crushed by contact with the road surface T, and the volume of the water removal gap 3 is reduced. However, as a result of the reduction in water removal, desired performance on ice and performance on snow may not be obtained. Therefore, the technique described in Patent Document 3 has room for further improvement in performance on ice and performance on snow. Furthermore, as a result of repeated investigations by the inventors on tires employing the techniques described in Patent Documents 1 to 3, these conventional tires are affected by chemical substances attached to the tire surface during the tire manufacturing process.
- Patent Documents 1 to 3 have room for improving the performance on ice and the performance on snow especially when the tire is new. Furthermore, as a result of the inventor's repeated studies on tires employing the techniques described in Patent Documents 1 to 3, the cause of these conventional tires is not clear, but sufficient on-ice performance and on-snow performance especially when new. It was also found that there was a problem that could not be obtained. Therefore, the techniques described in Patent Documents 1 to 3 have room for improving the performance on ice and the performance on snow especially when the tire is new.
- An object of the present invention is to solve the above-described problems, and to provide a tire with improved performance on ice and performance on snow, and a mold for tire molding used for manufacturing (molding) of the tire. To do.
- the present inventor has intensively studied to solve the above problems. As a result, the present inventor can further improve the on-ice performance and on-snow performance of the tire by suppressing a decrease in block rigidity and a decrease in water removal, if a predetermined fine structure is formed on the tread portion tread, and It has been found that sufficient performance on ice and performance on snow can be exhibited even when a tire is new, and the present invention has been completed.
- the tire according to the present invention is characterized in that at least a part of the tread surface has a surface roughness with a roughness motif upper limit length A of 5 ⁇ m to 100 ⁇ m. According to this configuration, since the surface roughness of the tread portion tread has a roughness motif upper limit length A of 5 ⁇ m or more and 100 ⁇ m or less, while further suppressing a decrease in block rigidity and a decrease in water removal performance, The performance and the performance on snow can be further improved sufficiently.
- the roughness motif upper limit length A is 5 ⁇ m or more, so a space for water removal can be secured, while the roughness motif upper limit length A is 100 ⁇ m. Since it is the following, the frictional force of a tire and a road surface is securable.
- the “roughness motif upper limit length A” means “roughness motif upper limit length A” defined in JIS B 0631 (2000), and is measured using a microscope or the like under no-load conditions. Is.
- the tire molding die of the present invention is a tire molding die having a tread surface molding surface for molding a tread portion tread surface of a tire, and at least a part of the tread surface molding surface is a roughness motif.
- the upper limit length A has a surface roughness of 5 ⁇ m to 100 ⁇ m.
- at least a part of the tread part tread described above has a surface roughness with a roughness motif upper limit length A of 5 ⁇ m or more and 100 ⁇ m or less, and a tire excellent in ice performance and snow performance can be formed. .
- (A) It is a schematic sectional drawing which shows typically the tread part tread of the conventional tire.
- (B) It is a schematic sectional drawing which shows typically a mode that a tread part tread of a tire and a road surface contact at the time of load load of a tire.
- It is a tire width direction sectional view of the tire concerning one embodiment of the present invention.
- It is a figure which expands and shows typically the shape of a part of tread part tread of the tire shown in Drawing 2
- (a) is a top view
- (b) is a tire width direction sectional view.
- FIG. 1 is a schematic partial perspective view schematically illustrating a part of a tire molding die according to an embodiment of the present invention. It is a figure which expands and shows typically the shape of a part of tread surface molding surface of the metal mold
- the tire according to the present invention is characterized in that a predetermined fine structure is formed on at least a part of a tread surface (a surface that contacts the road surface), and a surface property (tread surface property) of the tread portion is a predetermined property.
- the tire molding die according to the present invention is used for manufacturing the tire according to the present invention, and has a predetermined inner surface of the mold, specifically, at least a part of a tread surface that forms a tread portion tread surface of the tire. It is characterized in that a microstructure is formed and the surface texture of the tread surface is made predetermined.
- FIG. 2 is a sectional view in the tire width direction of one embodiment of the tire of the present invention.
- the tire 20 of the present embodiment includes a pair of bead portions 4, a pair of sidewall portions 5 that extend outward from each bead portion 4 in the tire radial direction, and the sidewall portions 5. And a tread portion 6 extending across.
- the tire 20 of the present embodiment includes a carcass 7 straddling a toroidal shape between a pair of bead cores 4a embedded in the pair of bead portions 4, and a two-layer belt disposed on the outer side in the tire radial direction of the carcass 7.
- a belt 8 composed of layers 8a and 8b.
- a tread rubber made of non-foamed rubber is disposed outside the belt 8 in the tire radial direction.
- FIG. 3A shows an enlarged plan view of the tread portion tread surface 6a
- FIG. 3B shows an enlarged cross-sectional view along the tire width direction on the tread portion tread surface 6a side
- FIG. 9 As shown in the SEM photograph of the tread, in the tire according to the present embodiment, a large number of minute protrusions 9 (having a hemispherical shape in the illustrated example) that are convex outward in the tire radial direction are formed on the entire tread surface 6a.
- FIG. 3 shows a case where the protrusion 9 is a hemispherical protrusion, but in the tire of the present invention, the protrusion is a truncated cone or truncated pyramid, as shown in FIG.
- the roughness of the tread portion tread surface has a roughness motif upper limit length A of 5 ⁇ m or more and 100 ⁇ m or less, while suppressing a decrease in block rigidity and a decrease in slow water, The performance on ice and the performance on snow can be improved sufficiently. That is, in the tire 20, the surface roughness of the tread surface has a roughness motif upper limit length A of 5 ⁇ m or more, so that a space for water removal can be secured, while the roughness motif upper limit length. Since A is 100 ⁇ m or less, the frictional force between the tire and the road surface can be ensured.
- the formation of the minute protrusions 9 having a predetermined shape achieves the suppression of the reduction in water removal and the improvement of the performance on ice and the performance on snow. Therefore, an excessive number of sipes are formed, There is no need to use foam rubber.
- the cause of the tire 20 is not clear, but sufficient on-ice performance and on-snow performance can be exhibited even when it is new (unused state).
- the tire 20 it is possible to further improve the on-ice performance and on-snow performance of the tire even when it is new, by suppressing the decrease in block rigidity and the decrease in water removal.
- the portion where the protrusion 9 is formed has a surface property such that the roughness motif upper limit length A has a surface roughness of 20 ⁇ m or more and 80 ⁇ m or less for the same reason. More preferably.
- the shape of the protruding portion 9 is hemispherical. This is because if the shape of the protrusion 9 is hemispherical, the protrusion 9 is not easily crushed and water removal can be ensured.
- the height H of the protrusion 9 formed on the tread surface is preferably 1 to 50 ⁇ m. This is because if the height H of the protrusions 9 is 1 ⁇ m or more, a sufficient volume of the gaps between the protrusions 9 can be secured and water removal can be enhanced. Further, if the height H of the protrusion 9 is 50 ⁇ m or less, the rigidity of the protrusion 9 can be increased and sufficient water removal can be ensured.
- the height of the protrusion is defined by a first virtual plane orthogonal to a tire radial line extending through the tip of the protrusion (outer end in the tire radial direction), an outer contour line of the protrusion, and the tire radial line.
- the “number of protrusions” and the “height of protrusions” can be measured by, for example, enlarging the tread surface with a SEM or a microscope.
- protrusions having a height H of more than 20 ⁇ m at a number density of 80 pieces / mm 2 or more on at least a part of the tread surface Accordingly, it is possible to further improve the on-ice performance and the on-snow performance of the tire by further suppressing the decrease in water removal while further suppressing the decrease in block rigidity. That is, with respect to the surface properties of the tread surface, the protrusions having a height of 20 ⁇ m or more can be formed, so that a space for water removal can be secured between the protrusions, while the height of 20 ⁇ m or more is ensured.
- the projecting portions having a number density of 80 pieces / mm 2 or more are formed, the ground contact area of the projecting portions can be ensured.
- the number density of the projection part whose height exceeds 20 micrometers becomes 150 pieces / mm ⁇ 2 > or more for the same reason. More preferably, the number density of the protrusions having a height exceeding 20 ⁇ m is more preferably 150 pieces / mm 2 or more and 250 pieces / mm 2 or less.
- the number of protrusions exceeding 30 ⁇ m is a number density of 100 pieces / mm 2 or more.
- the height of the protrusion is less than 50 ⁇ m, and if it is 50 ⁇ m or more, the rigidity of the protrusion will decrease, and the protrusion may be crushed when a large load is applied to the tire, so that the braking force cannot be expressed. Because there is sex.
- the “number of protrusions” and “height of protrusions” can be measured by, for example, enlarging the tread surface with a SEM or a microscope.
- the tread surface has a surface roughness such that the average height Rc of the contour curve element is 1 ⁇ m or more and 50 ⁇ m or less. Accordingly, it is possible to further improve the on-ice performance and the on-snow performance of the tire by further suppressing the decrease in water removal while further suppressing the decrease in block rigidity. Further, if the surface roughness of the tread portion tread surface is set such that the average height Rc of the contour curve element is 1 ⁇ m or more and 50 ⁇ m or less, the block rigidity and the dewatering performance are further suppressed, while the tire surface is on ice. The performance and the performance on snow can be further improved sufficiently.
- the average height Rc of the contour curve element is 1 ⁇ m or more, a water removal space can be secured, while the average height Rc of the contour curve element is If the thickness is 50 ⁇ m or less, the rigidity of the protrusion can be ensured.
- the average height Rc of the contour curve element has a surface property having a surface roughness of 10 ⁇ m or more and 40 ⁇ m or less.
- the average height Rc of the contour curve element means “the average height Rc of the contour curve element” defined in JIS B 0601 (2001).
- Rc measures the height of a mountain existing in a unit length (1 mm), and takes the average by excluding the height of the mountain included in the upper and lower ranges of 10% on the basis of the height. Can be obtained.
- the tread surface has a surface roughness such that the maximum peak height Rp of the contour curve is 5 ⁇ m or more and 70 ⁇ m or less. Accordingly, it is possible to further improve the on-ice performance and the on-snow performance of the tire by further suppressing the decrease in water removal while further suppressing the decrease in block rigidity.
- the surface roughness of the tread surface is such that the maximum peak height Rp of the contour curve is not less than 5 ⁇ m and not more than 70 ⁇ m, the on-ice performance of the tire is further suppressed while further suppressing the decrease in block rigidity and the dewatering performance. In addition, the performance on snow can be further improved sufficiently.
- the maximum peak height Rp of the contour curve is 5 ⁇ m or more, a space for water removal can be secured, while the maximum peak height Rp of the contour curve is 70 ⁇ m. If it is set as follows, the rigidity of the protrusion can be ensured. For the same reason, it is more preferable that the portion where the protrusion is formed has a maximum peak height Rp of the contour curve of 10 ⁇ m or more and 40 ⁇ m or less.
- the “maximum peak height Rp of the contour curve” means “maximum peak height Rp of the contour curve” defined in JIS B 0601 (2001).
- Rp can be calculated
- the ten-point average roughness Rz of the tread surface of the tire due to the hemispherical protrusion is preferably 1.0 to 50 ⁇ m. This is because when Rz is 1.0 ⁇ m or more, a void for water removal can be secured, while when Rz is 50 ⁇ m or less, a contact area with the road surface can be secured. This is because the performance on the ice and the performance on the snow of the tire can be further improved.
- “ten-point average roughness Rz” is measured in accordance with the provisions of JIS B 0601 (1994), and the reference length is 0.8 mm and the evaluation length is 4 mm. Is.
- the average interval S between the local peaks of the protrusions 9 formed on the tread surface of the tire is preferably 5.0 to 100 ⁇ m. This is because when the distance S is 5.0 ⁇ m or more, it is possible to ensure a water removal gap, while when the distance S is 100 ⁇ m or less, it is possible to ensure a contact area with the road surface. This is because the performance on the ice and the performance on the snow of the tire can be further improved.
- “the average interval between the local peaks” is measured in accordance with JIS B 0601 (1994), and the reference length is 0.8 mm and the evaluation length is 4 mm.
- tire mentioned above can be manufactured using the following molds for tire molding, without being specifically limited.
- the tire molding using the following tire molding die can be performed according to a conventional method.
- FIG. 5 is a schematic partial perspective view showing a part of a tire molding die used for molding the tire of the present invention.
- the mold 10 has a molding surface 11 for vulcanizing and molding a tire.
- This molding surface 11 has a tread surface molding surface 11a that forms a tread portion tread surface.
- a side wall molding surface 11b that molds the outer surface of the sidewall portion, and a bead portion that molds the outer surface of the bead portion. It also has a molding surface 11c.
- molding surface 11 is not specifically limited, For example, it can form with aluminum.
- the tread portion tread surface having the above-described surface property of the tire of the present invention can be formed by the tire vulcanization mold 10 including the tread surface molding surface 11a having the surface property corresponding to the surface property.
- FIG. 6A shows an enlarged plan view of the tread forming surface 11a
- FIG. 6B shows an enlarged cross-sectional view along the width direction on the tread forming surface 11a side of the mold 10.
- the tire molding die 10 according to the present embodiment has a large number of recesses 12 on the entire tread surface molding surface 11a for molding the tread portion tread surface of the tire.
- FIG. 6 shows the case where the concave portion 12 is a hemispherical concave portion.
- the concave portion 12 has a truncated hemispherical shape, a truncated cone shape, a truncated pyramid shape, and a cylindrical shape. Alternatively, it may be a prismatic recess.
- the surface shape of the tread surface molding surface 11a of the mold 10 is transferred as the surface shape of the tread portion tread surface of the tire.
- a large number of protrusions 9 are formed on the tread portion tread of the manufactured tire, and the tread portion tread has a surface roughness with a roughness motif upper limit length A of 5 ⁇ m to 100 ⁇ m. Therefore, a tire excellent in performance on ice and on snow can be formed.
- a method for forming the tread surface molding surface 11a of the mold 10 will be described.
- the tread surface molding surface 11a can be formed by a projection material projecting step of projecting a projection material having a specific shape and colliding with the molding surface as shown in FIG.
- the tire molding die obtained through the projecting material projecting step has a tread surface molding surface having many recesses 12 as described above, and at least a part of the tread surface molding surface has a roughness motif upper limit length. Since A has a surface roughness of 5 ⁇ m or more and 100 ⁇ m or less, the tread portion tread surface of the tire vulcanized using this mold has the roughness motif upper limit length A as described above.
- the surface roughness is 5 ⁇ m or more and 100 ⁇ m or less.
- the tread surface molding surface 11a (entire surface or part) is formed by projecting and colliding a spherical projection material having a sphericity of 15 ⁇ m or less. This is because, by setting the sphericity of the projection material to 15 ⁇ m or less, it is possible to form a large number of concave portions having desired properties on the molding surface of the mold of the mold, and the tire molded using this mold This is because the tread surface can be formed into a desired surface shape.
- the sphericity of the projection material is more preferably 10 ⁇ m or less. If the sphericity of the projection material is set to 10 ⁇ m or less, it is possible to easily form a large number of concave portions having desired properties on the molding surface of the mold, so that the tread surface of the tire formed using the mold is used. This is because it is possible to form a tire having more excellent performance on ice and performance on snow by forming a large number of protrusions having a desired shape.
- the sphericity of the projection material is more preferably 5 ⁇ m or less. This is because a recess having a desired property can be more easily formed on the tread surface molding surface of the mold.
- the average particle diameter of the projection material used in the projection material projecting step is preferably 10 ⁇ m to 1 mm. Because, by setting the average particle size of the projection material to 10 ⁇ m or more, it becomes easy to obtain a mold having a desired concave shape on the tread surface molding surface, and in the projection material projection step, when projecting under high pressure, This is because the projection material can be prevented from being scattered around, and on the other hand, by setting the average particle size of the projection material to 1 mm or less, it is possible to suppress the wear of the mold surface early. .
- the average particle diameter of the projection material is more preferably 20 ⁇ m to 0.7 mm, and further preferably 30 ⁇ m to 0.5 mm.
- the “average particle size” is a photograph of the projection material taken by SEM, and 10 projection materials are taken out arbitrarily, and the average of the diameter of the inscribed circle and the diameter of the circumscribed circle in contact with each of the projection materials is calculated. The value obtained by averaging these values with the ten projectiles shall be referred to.
- the Mohs hardness of the projection material is preferably 2 to 10. This is because by setting the Mohs hardness of the projection material to 2 or more, it becomes easy to obtain a mold having a desired concave shape on the tread surface molding surface. On the other hand, by setting the Mohs hardness of the projection material to 10 or less, it is possible to reduce the early pain of the mold. For the same reason, the Mohs hardness of the projection material is more preferably 3.0 to 9.0, and further preferably 5.0 to 9.0.
- the Mohs hardness of the tire molding die is preferably 2.0 to 5.0, and the difference in Mohs hardness between the tire molding die and the projection material is 3.0 to 5.0. Preferably there is.
- the specific gravity of the projection material is preferably 0.5-20. This is because by setting the specific gravity of the projection material to 0.5 or more, it is possible to improve the workability by suppressing the scattering of the projection material in the projection process. On the other hand, by setting the specific gravity of the projection material to 20 or less, energy for accelerating the projection material can be reduced, and early wear of the mold can be suppressed. For the same reason, the specific gravity of the projection material is more preferably 0.8-18, and still more preferably 1.2-15.
- the material of the projection material is not particularly limited, but for example, it is preferable to use gyricon, iron, cast steel, ceramics, or the like.
- the projecting material projecting step it is preferable to project the projecting material onto the molding surface of the mold with high pressure air of 100 to 1000 kPa for 30 seconds to 10 minutes. Because, by projecting the projection material at 100 kPa or more for 30 seconds or more, the tread surface can be uniformly formed into the desired shape described above, while the projection material is projected at 1000 kPa or less and 10 minutes or less. This is because it is possible to suppress damage to the tread surface molding surface.
- the distance between the projection nozzle of the projection material and the tire molding die is preferably 50 to 200 (mm).
- the projection time of the above-mentioned projection material means the projection time per mold, for example, when molding a tire with nine molds, the tread of nine molds that mold one tire It is preferable to project on the molding surface for a total of 270 seconds to 90 minutes.
- the projection of the projection material onto the tread surface molding surface of one mold can be performed while shifting the position projected by the operator while considering the shape of the mold. In this way, the projection material can be projected more uniformly.
- the tread surface of the mold preferably has a surface property such that the roughness motif upper limit length A is a surface roughness of 20 ⁇ m or more and 80 ⁇ m or less.
- the tread surface of the formed tire can be molded as a surface property having a roughness motif upper limit length A of 20 ⁇ m or more and 80 ⁇ m or less, and the tire performance on ice and snow performance are further improved. This is because the tire can be molded.
- the roughness motif upper limit length A of the recess 12 can be controlled by adjusting the particle size of the projection material. Specifically, when the particle size of the projection material is increased, the roughness motif upper limit length A can be increased.
- the shape of the recess 12 is hemispherical. This is because if the shape of the recess 12 is hemispherical, the hemispherical protrusion 9 can be formed on the tread surface of the tire.
- the shape of the recessed part 12 can be controlled by adjusting the particle size, the injection speed, and the projection angle of the projection material.
- the depth h of the recess 12 is preferably 1 to 50 ⁇ m. This is because if the depth h of the recess 12 is 1 to 50 ⁇ m, the protrusion 9 having a height of 1 to 50 ⁇ m can be formed on the tread surface of the tire.
- the depth h of the recess 12 can be controlled by adjusting the projection speed. Specifically, when the projection speed is increased, the depth h can be increased.
- the depth of the concave portion 12 is in contact with the third virtual plane orthogonal to the radial line extending through the deepest portion (radially inner end) of the concave portion 12 and the outer contour line of the concave portion 12 and the radial line.
- the “radial direction” refers to a radial direction of an annular tread surface molding surface, that is, a direction corresponding to a tire radial direction of a tire molded using the mold 10.
- the depth of the recessed part 12 can be measured with SEM and a microscope.
- the tire molding die of the present invention is a tire molding die having a tread surface molding surface for molding the tread portion tread surface of the tire, and at least a part of the tread surface molding surface has a depth. It is preferable to form recesses having a thickness h of more than 20 ⁇ m at a number density of 80 / mm 2 or more. As a result, a tire excellent in performance on ice and in snow can be formed by forming protrusions having a height of more than 20 ⁇ m at a number density of 80 pieces / mm 2 or more on at least a part of the tread surface. Because it can.
- the number density of recesses having a depth exceeding 20 ⁇ m is 150 pieces / mm 2 or more. More preferably, the number density of recesses having a depth exceeding 20 ⁇ m is more preferably 150 pieces / mm 2 or more and 250 pieces / mm 2 or less. Further, as a preferable depth of the recesses, the number density of recesses exceeding 30 ⁇ m is desirably 100 / mm 2 or more. Further, the height of the recess is preferably less than 50 ⁇ m.
- the number density of the recesses on the molding surface of the mold surface of the mold can be controlled by adjusting the particle diameter and the number of grains of the projection material.
- the number density can be increased by increasing the number of grains of the projection material. Further, the number density can be reduced by increasing the particle size of the projection material. Further, the depth of the recess on the molding surface of the mold of the mold can be controlled by adjusting the projection speed of the projection material. Specifically, when the projection speed of the projection material is increased, the depth can be increased.
- “number density of recesses” and “depth of recesses” can be measured by, for example, enlarging the tread surface with a SEM or a microscope.
- the tread surface has a surface roughness such that the average height Rc of the contour curve element is 1 ⁇ m or more and 50 ⁇ m or less. Accordingly, it is possible to further improve the on-ice performance and the on-snow performance of the tire by further suppressing the decrease in water removal while further suppressing the decrease in block rigidity. Further, if the surface roughness of the tread portion tread surface is set such that the average height Rc of the contour curve element is 1 ⁇ m or more and 50 ⁇ m or less, the block rigidity and the dewatering performance are further suppressed, while the tire surface is on ice. The performance and the performance on snow can be further improved sufficiently.
- the average height Rc of the contour curve element is 1 ⁇ m or more, a water removal space can be secured, while the average height Rc of the contour curve element is If the thickness is 50 ⁇ m or less, the rigidity of the protrusion can be ensured.
- the average height Rc of the contour curve element has a surface property having a surface roughness of 10 ⁇ m or more and 40 ⁇ m or less.
- the average height Rc of the contour curve element means “the average height Rc of the contour curve element” defined in JIS B 0601 (2001).
- Rc measures the height of a mountain existing in a unit length (1 mm), and takes the average by excluding the height of the mountain included in the upper and lower ranges of 10% on the basis of the height. Can be obtained.
- the tire molding die of the present invention is a tire molding die having a tread surface molding surface for molding the tread portion tread surface of the tire, and at least a part of the tread surface molding surface is a contour curve.
- the maximum peak height Rp preferably has a surface roughness of 5 ⁇ m or more and 70 ⁇ m or less.
- at least a part of the tread portion tread described above has a surface roughness with a maximum peak height Rp of the contour curve of 5 ⁇ m or more and 70 ⁇ m or less, and a tire having excellent on-ice performance and on-snow performance can be formed. Because.
- the tread surface molding surface of the mold has a surface property such that the maximum peak height Rp of the contour curve is 10 ⁇ m or more and 40 ⁇ m or less.
- the tread surface of the formed tire can be formed as a surface property such that the maximum peak height Rp of the contour curve is 10 ⁇ m or more and 40 ⁇ m or less, and a tire excellent in performance on ice and on snow can be formed. Because.
- the maximum peak height Rp of the contour curve of the tread surface can be controlled by adjusting the projection speed. Specifically, when the projection speed is increased, the maximum peak height Rp of the contour curve can be increased.
- the ten-point average roughness Rz of the tread surface of the mold is preferably 1.0 to 50 ⁇ m. This is because a tire having a 10-point average roughness Rz of the tread portion tread of 1.0 to 50 ⁇ m can be formed.
- the average particle diameter of the projection material used in the projection material projecting step is set to 50 to 400 ⁇ m, it is possible to obtain a tire molding die having a tread surface molding surface having a ten-point average roughness Rz in the above range. .
- the average distance between the local peaks of the concave portions on the mold surface of the tread of the mold is preferably 5.0 to 100 ⁇ m. This is because the tire can be molded with an average distance S between the local peaks of the protrusions formed on the tread surface of the tire being 5.0 to 100 ⁇ m.
- the average particle size of the projection material used in the projection material projecting step is set to 50 to 400 ⁇ m, it is possible to obtain a tire molding die including a tread surface molding surface having an average interval S in the above range.
- a projection material (ceramic system) is projected on the tread molding surface of an aluminum tire molding mold by changing the projection conditions (projection pressure, projection speed, etc.), and the tread molding surface having the surface properties shown in Table 1 is used.
- the tire molding dies 1 to 4 were produced.
- the surface property of the tread surface molding surface of the produced mold was measured using an SEM and a microscope.
- Tires 1 to 4 having a tire size of 205 / 55R16 were produced using the produced tire molding dies 1 to 4 in accordance with a conventional method. And the surface property of the tread part tread of the produced tire was measured using SEM and a microscope. The results are shown in Table 2. Further, the performance on ice and the performance on snow of each tire produced were evaluated by the following evaluation methods. The results are shown in Table 2.
- the friction coefficient on the snow was measured on a snowy road under a condition of a speed of 30 km / h with a load per front wheel set to 4.3 kN.
- the tire friction coefficient on snow of the tire 1 was set to 100, and the friction coefficient on snow of each tire was evaluated as an index.
- Table 2 shows the results. In Table 2, the larger the numerical value, the greater the friction coefficient on snow and the better performance on snow.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
例えば、特許文献1では、トレッド部に形成した各ブロックに複数のサイプを設けることにより、接地面内のエッジ成分を増大させると共に、雪噛み効果を向上させて、タイヤの氷雪路面(凍結路面や積雪路面)上での走行性能を向上させる技術が提案されている。
また、例えば、特許文献2では、キャップゴムとベースゴムとからなる、いわゆるキャップアンドベース構造のトレッドゴムを有するタイヤにおいて、キャップゴムとして発泡ゴムを用いることにより、除水性を大幅に向上させ、タイヤの氷上性能および雪上性能を向上させる技術が提案されている。
また、特許文献2に記載の、キャップゴムに発泡ゴムを用いる技術では、発泡ゴムの使用によりブロック全体の剛性が低下する場合があり、タイヤの耐磨耗性が必ずしも十分ではなかった。
更に、特許文献3に記載の、先端が尖った突起部をトレッド部の表面に設ける技術では、突起部の剛性が低いため、特に車両のノーズダイブによる前輪への荷重増大時など、タイヤに大きな荷重が負荷された際に、突起部が潰れて所望の性能が得られなくなる場合があった。即ち、先端が尖った突起部をトレッド部の表面に設ける技術では、図1(b)に示すように、路面Tとの接触により突起部2が潰れ、除水用の空隙3の体積が減少し、除水性が低下してしまう結果、所望の氷上性能および雪上性能が得られない場合があった。従って、特許文献3に記載の技術には、氷上性能および雪上性能をさらに向上させる余地があった。
更にまた、特許文献1~3に記載の技術を採用したタイヤについて発明者らが検討を重ねた結果、それらの従来のタイヤには、タイヤ製造過程でタイヤ表面に付着した化学物質の影響等により、特に新品時に十分な氷上性能および雪上性能が得られないという問題点があることも分かった。そのため、特許文献1~3に記載の技術には、特にタイヤ新品時の氷上性能および雪上性能を改善する余地があった。
更にまた、特許文献1~3に記載の技術を採用したタイヤについて発明者が検討を重ねた結果、それらの従来のタイヤには、原因は明らかでないが、特に新品時に十分な氷上性能および雪上性能が得られないという問題点があることも分かった。そのため、特許文献1~3に記載の技術には、特にタイヤ新品時の氷上性能および雪上性能を改善する余地があった。
その結果、本発明者は、トレッド部踏面に所定の微細構造を形成すれば、ブロック剛性の低下や除水性の低下を抑制してタイヤの氷上性能および雪上性能をさらに向上させ得ること、並びに、タイヤ新品時であっても十分な氷上性能および雪上性能を発揮させ得ることを見出し、本発明を完成させた。
本発明のタイヤは、トレッド部踏面の少なくとも一部が、粗さモチーフ上限長さAが、5μm以上100μm以下となる表面粗さを有することを特徴とする。この構成によれば、トレッド部踏面の表面粗さが、粗さモチーフ上限長さAが、5μm以上100μm以下となるため、ブロック剛性の低下や除水性の低下をさらに抑制しつつ、タイヤの氷上性能および雪上性能をさらに十分に向上させることができる。
即ち、トレッド部踏面の表面性状について、粗さモチーフ上限長さAが、5μm以上であるため、除水用の空間を確保することができ、一方で、粗さモチーフ上限長さAが、100μm以下であるため、タイヤと路面との摩擦力を確保することができる。
ここで、「粗さモチーフ上限長さA」とは、JIS B 0631(2000年)に規定の「粗さモチーフ上限長さA」を意味し、無負荷条件でマイクロスコープ等を用いて計測するものである。
これにより、上記した、トレッド部踏面の少なくとも一部が、粗さモチーフ上限長さAが、5μm以上100μm以下となる表面粗さを有する、氷上性能および雪上性能に優れるタイヤを成形することができる。
図2は、本発明のタイヤの一実施形態のタイヤ幅方向断面図である。
図2に示すように、本実施形態のタイヤ20は、一対のビード部4と、各ビード部4からそれぞれタイヤ径方向外方に延びる一対のサイドウォール部5と、該サイドウォール部5間に跨って延びるトレッド部6とを有している。
また、本実施形態のタイヤ20は、一対のビード部4に埋設された一対のビードコア4a間にトロイダル状に跨るカーカス7と、該カーカス7のタイヤ径方向外側に配設された2層のベルト層8a、8bからなるベルト8とを有している。更に、ベルト8のタイヤ径方向外側には、非発泡ゴムよりなるトレッドゴムが配設されている。
なお、図3では、突起部9が半球状の突起部である場合を示しているが、本発明のタイヤでは、突起部は、裁頭円錐状、裁頭角錐状といった、図7(a)に示すような断面台形状のものや、円柱状、角柱状といった、図7(b)に示すような断面矩形状のものや、図7(c)に示すような裁頭半球状のものなど、様々な形状のものとすることができる。
即ち、このタイヤ20では、トレッド踏面の表面性状について、粗さモチーフ上限長さAが、5μm以上であるため、除水用の空間を確保することができ、一方で、粗さモチーフ上限長さAが、100μm以下であるため、タイヤと路面との摩擦力を確保することができる。
なお、このタイヤ20では、所定の形状を有する微小突起部9の形成により除水性の低下の抑制および氷上性能および雪上性能の向上を達成しているので、過剰な数のサイプを形成したり、発泡ゴムを使用したりする必要がない。
また、このタイヤ20では、原因は明らかではないが、新品時(未使用状態)であっても十分な氷上性能および雪上性能を発揮することができる。
突起部の高さは、突起部の先端(タイヤ径方向外端)を通って延びるタイヤ径方向線に直交する第1仮想平面と、突起部の外輪郭線に接し且つ前記タイヤ径方向線に直交する仮想平面のうち前記第1仮想平面に最も近い第2仮想平面との間のタイヤ径方向に沿う距離をいうものとする。なお、本発明において「突起部の個数」、及び「突起部の高さ」は、例えば、トレッド部踏面をSEM、マイクロスコープにより拡大して測定することができる。
これにより、ブロック剛性の低下をさらに抑制しつつ、さらに除水性の低下を抑制して、タイヤの氷上性能および雪上性能をさらに向上させることができる。
即ち、トレッド部踏面の表面性状について、20μm以上の高さを有する突起部を形成したことにより、突起部間に除水用の空間を確保することができ、一方で、20μm以上の高さを有する突起部を80個/mm2以上の個数密度で形成するため、突起部の接地面積を確保することができる。
なお、突起部9が形成されている部分は、同様の理由により、高さが20μmを超える突起部の個数密度が、150個/mm2以上となることがさらに好ましい。より好適には、高さが20μmを超える突起部の個数密度が、150個/mm2以上、250個/mm2以下となることがさらに望ましい。
また、好適な突起部の高さとしては、30μmを超える突起部が100個/mm2以上の個数密度であることが望ましい。また、突起部の高さは50μm未満であることが望ましく、50μm以上だと、突起部の剛性が低下し、タイヤに大きな荷重が負荷された際に突起部が潰れて制動力を発現できない可能性があるからである。
ここで、本発明において「突起部の個数」、及び「突起部の高さ」は、例えば、トレッド部踏面をSEM、マイクロスコープにより拡大して測定することができる。
これにより、ブロック剛性の低下をさらに抑制しつつ、除水性の低下をさらに抑制して、タイヤの氷上性能および雪上性能をさらに向上させることができる。また、トレッド部踏面の表面粗さを、輪郭曲線要素の平均高さRcが、1μm以上50μm以下となるようにすれば、ブロック剛性の低下や除水性の低下をさらに抑制しつつ、タイヤの氷上性能および雪上性能をさらに十分に向上させることができる。即ち、トレッド部踏面の表面性状について、輪郭曲線要素の平均高さRcを、1μm以上とすれば、除水用の空間を確保することができ、一方で、輪郭曲線要素の平均高さRcを、50μm以下とすれば、突起部の剛性を確保することができる。なお、同様の理由により、輪郭曲線要素の平均高さRcは、10μm以上40μm以下となる表面粗さを有するような表面性状を有していることがさらに好ましい。
ここで、「輪郭曲線要素の平均高さRc」とは、JIS B 0601(2001年)に規定の「輪郭曲線要素の平均高さRc」を意味する。測定条件は、なお、Rcは、単位長さ(1mm)に存在する山の高さを測定し、高さ基準で上下それぞれ10%の範囲に含まれる山の高さを除外して平均をとることにより、求めることができる。
これにより、ブロック剛性の低下をさらに抑制しつつ、除水性の低下をさらに抑制して、タイヤの氷上性能および雪上性能をさらに向上させることができる。また、トレッド部踏面の表面粗さを、輪郭曲線の最大山高さRpが、5μm以上70μm以下となるようにすれば、ブロック剛性の低下や除水性の低下をさらに抑制しつつ、タイヤの氷上性能および雪上性能をさらに十分に向上させることができる。即ち、トレッド部踏面の表面性状について、輪郭曲線の最大山高さRpを、5μm以上とすれば、除水用の空間を確保することができ、一方で、輪郭曲線の最大山高さRpを、70μm以下とすれば、突起部の剛性を確保することができる。なお、同様の理由により、突起部が形成されている部分は、輪郭曲線の最大山高さRpが、10μm以上40μm以下となることがさらに好ましい。
ここで、「輪郭曲線の最大山高さRp」とは、JIS B 0601(2001年)に規定の「輪郭曲線の最大山高さRp」を意味する。なお、Rpは、単位長さ(1mm)に存在する山の高さを測定して求めることができる。
なぜなら、Rzが1.0μm以上であることにより、除水用の空隙を確保することができ、一方で、Rzが50μm以下であることにより、路面との接触面積を確保することができるからであり、これらにより、タイヤの氷上性能及び雪上性能をさらに向上させることができるからである。
ここで、「十点平均粗さRz」とは、JIS B 0601(1994年)の規定に準拠して測定されるものであり、基準長さを0.8mm、評価長さを4mmとして求めたものである。
なぜなら、間隔Sが5.0μm以上であることにより、除水用の空隙を確保することができ、一方で、間隔Sが100μm以下であることにより、路面との接触面積を確保することができるからであり、これらにより、タイヤの氷上性能及び雪上性能をさらに向上させることができるからである。
ここで、「局部山頂の平均間隔」は、JIS B 0601(1994年)に準拠して計測されるものであり、基準長さを0.8mm、評価長さを4mmとして求めるものとする。
図5は、本発明のタイヤを成形するのに用いるタイヤ成形用金型の一部を示す概略部分斜視図である。
図5に示すように、この金型10は、タイヤを加硫成形する成形面11を有する。
この成形面11は、トレッド部踏面を形成する踏面成形面11aを有し、図示例では、サイドウォール部の外表面を成形するサイドウォール成形面11b、及びビード部の外表面を成形するビード部成形面11cも有する。
この成形面11は、特には限定しないが、例えばアルミニウムで形成することができる。
本発明のタイヤの、上述した表面性状を有するトレッド部踏面は、当該表面性状に対応した表面性状を有する踏面成形面11aを備えるタイヤ加硫金型10によって形成することができる。具体的には、図6(a)に踏面成形面11aの拡大平面図を示し、図6(b)に金型10の踏面成形面11a側の幅方向に沿う拡大断面図を示すように、本実施形態にかかるタイヤ成形用金型10は、タイヤのトレッド部踏面を成形する踏面成形面11aの全体に、凹部12を多数有している。そして、踏面成形面の少なくとも一部(図示例では全面)が、粗さモチーフ上限長さAが、5μm以上100μm以下となる表面粗さを有する。なお、図6では、凹部12が半球状の凹部である場合を示しているが、本発明の金型では、凹部12は、裁頭半球状、裁頭円錐状、裁頭角錐状、円柱状または角柱状の凹部であっても良い。
すなわち、この金型10を用いた、タイヤの加硫工程では、金型10の踏面成形面11aの表面形状が、タイヤのトレッド部踏面の表面形状として転写される。そして、製造されたタイヤのトレッド部踏面には、突起部9が多数形成され、トレッド部踏面は、粗さモチーフ上限長さAが、5μm以上100μm以下となる表面粗さとなる。従って、氷上性能および雪上性能に優れたタイヤを成形することができる。
以下、金型10の踏面成形面11aを形成する方法について説明する。
ここで、この投射材投射工程において、上記踏面成形面11a(全面又は一部)は、真球度15μm以下の球形の投射材を投射して衝突させることにより形成することが好ましい。
なぜなら、投射材の真球度を15μm以下とすることにより、金型の踏面成形面に、所望の性状の凹部を多数形成することができるからであり、この金型を用いて成形するタイヤのトレッド部踏面を所望の表面形状とすることができるからである。
投射材の真球度を10μm以下とすれば、金型の踏面成形面に、所望の性状の凹部を容易に多数形成することができるので、その金型を用いて形成したタイヤのトレッド部踏面に所望の形状の突起部を多数形成して、氷上性能および雪上性能にさらに優れたタイヤを成形することができるからである。
また、投射材の真球度は、5μm以下であることがさらに好ましい。
これにより、金型の踏面成形面に、所望の性状の凹部をより容易に形成することができるからである。
なぜなら、投射材の平均粒径を10μm以上とすることにより、踏面成形面に所望の凹部形状を有する金型が得やすくなり、また、投射材投射工程において、高圧下での投射の際に、投射材が周囲に飛散するのを抑制することができ、一方で、投射材の平均粒径を1mm以下とすることにより、金型表面を早期に摩耗させるのを抑制することができるからである。
同様の理由により、投射材の平均粒径は、20μm~0.7mmとするのがより好ましく、30μm~0.5mmとするのがさらに好ましい。
ここで、「平均粒径」とは、SEMにより投射材の写真を撮影し、投射材を任意に10個取り出し、それぞれの投射材に接する内接円の直径と外接円の直径との平均を求め、これらを当該10個の投射材で平均した値をいうものとする。
なぜなら、投射材のモース硬度を2以上とすることにより、踏面成形面に所望の凹部形状を有する金型が得やすくなるからである。一方、投射材のモース硬度を10以下とすることにより、金型が早期に痛むのを軽減することができるからである。
同様の理由により、投射材のモース硬度は、3.0~9.0とするのがより好ましく、5.0~9.0とするのがさらに好ましい。
また、タイヤ成形用金型のモース硬度は、2.0~5.0であることが好ましく、タイヤ成形用金型と、投射材とのモース硬度の差は、3.0~5.0であることが好ましい。
なぜなら、投射材の比重を0.5以上とすることにより、投射工程における投射材の飛散を抑制して作業性を向上させることができるからである。一方、投射材の比重を20以下とすることにより、投射材を加速するためのエネルギーを低減することができ、また、金型の早期の摩耗を抑制することができるからである。
同様の理由により、投射材の比重は、0.8~18とするのがより好ましく、1.2~15とするのがさらに好ましい。
なぜなら、投射材を100kPa以上で、30秒以上投射することにより、踏面成形面を満遍なく、上記した所望の形状にすることができ、一方で、投射材を1000kPa以下で、10分以下投射することにより、踏面成形面を損傷させるのを抑制することができるからである。
なお、投射材の比重や投射圧力を調整して、投射材の投射速度を0.3~10(m/s)とするのが好ましく、0.5~7(m/s)とするのがより好ましい。
このとき、投射材の投射用のノズルと、タイヤ成形用金型との距離を、50~200(mm)とすることが好ましい。
ここで、上記投射材の投射時間とは、金型1個当たりの投射時間をいい、例えば金型9個でタイヤを成形する場合には、1個のタイヤを成形する金型9個の踏面成形面に、合計270秒間~90分間投射することが好ましい。
なお、金型1個の踏面成形面への投射材の投射は、金型の形状等を考慮しながら、作業者が投射する位置をずらしつつ行うことができる。このようにすれば、投射材をより均一に投射することができる。
凹部12の粗さモチーフ上限長さAは、投射材粒径を調整することにより、制御することができる。具体的には、投射材粒径を大きくすると、粗さモチーフ上限長さAを大きくすることができる。
ここで、凹部12の深さは、凹部12の最深部(径方向内端)を通って延びる径方向線に直交する第3仮想平面と、凹部12の外輪郭線に接し且つ前記径方向線に直交する仮想平面のうち前記第3仮想平面に最も近い第4仮想平面との間の径方向に沿う距離をいうものとする。因みに、「径方向」とは、円環状の踏面成形面の径方向、即ち、金型10を用いて成形されるタイヤのタイヤ径方向に対応する方向を指す。
なお、凹部12の深さは、SEM、マイクロスコープにより測定することができる。
これにより、上記した、トレッド部踏面の少なくとも一部に、高さが20μmを超える突起部を80個/mm2以上の個数密度で形成した、氷上性能および雪上性能に優れるタイヤを成形することができるからである。
同様に、さらに所望のトレッド部踏面の表面性状を得るために、深さが20μmを超える凹部の個数密度が、150個/mm2以上となることがさらに好ましい。より好適には、深さが20μmを超える凹部の個数密度が、150個/mm2以上、250個/mm2以下となることがさらに望ましい。また、好適な凹部の深さとしては、30μmを超える凹部が100個/mm2以上の個数密度であることが望ましい。また、凹部の高さは50μm未満であることが望ましい。
なお、金型の踏面成形面の凹部の個数密度は、投射材の粒径や粒個数を調整することにより、制御することができる。具体的には、投射材の粒個数を多くすると、個数密度を大きくすることができる。また、投射材の粒径を大きくすると、個数密度を小さくすることができる。また、金型の踏面成形面の凹部の深さは投射材の投射速度を調整することにより、制御することができる。具体的には、投射材の投射速度を大きくすると、深さを大きくすることができる。
ここで、本発明において「凹部の個数密度」及び「凹部の深さ」は、例えば、トレッド部踏面をSEM、マイクロスコープにより拡大して測定することができる。
これにより、ブロック剛性の低下をさらに抑制しつつ、除水性の低下をさらに抑制して、タイヤの氷上性能および雪上性能をさらに向上させることができる。また、トレッド部踏面の表面粗さを、輪郭曲線要素の平均高さRcが、1μm以上50μm以下となるようにすれば、ブロック剛性の低下や除水性の低下をさらに抑制しつつ、タイヤの氷上性能および雪上性能をさらに十分に向上させることができる。即ち、トレッド部踏面の表面性状について、輪郭曲線要素の平均高さRcを、1μm以上とすれば、除水用の空間を確保することができ、一方で、輪郭曲線要素の平均高さRcを、50μm以下とすれば、突起部の剛性を確保することができる。なお、同様の理由により、輪郭曲線要素の平均高さRcは、10μm以上40μm以下となる表面粗さを有するような表面性状を有していることがさらに好ましい。
ここで、「輪郭曲線要素の平均高さRc」とは、JIS B 0601(2001年)に規定の「輪郭曲線要素の平均高さRc」を意味する。測定条件は、なお、Rcは、単位長さ(1mm)に存在する山の高さを測定し、高さ基準で上下それぞれ10%の範囲に含まれる山の高さを除外して平均をとることにより、求めることができる。
これにより、上記した、トレッド部踏面の少なくとも一部が、輪郭曲線の最大山高さRpが、5μm以上70μm以下となる表面粗さを有する、氷上性能および雪上性能に優れるタイヤを成形することができるからである。
ここで、金型の踏面成形面は、輪郭曲線の最大山高さRpが、10μm以上40μm以下となるような表面性状を有していることがさらに好ましい。形成したタイヤのトレッド部踏面を、輪郭曲線の最大山高さRpが、10μm以上40μm以下となるような表面性状として成形することができ、氷上性能および雪上性能に優れたタイヤを成形することができるからである。
踏面成形面の輪郭曲線の最大山高さRpは、投射速度を調整することにより、制御することができる。具体的には投射速度を大きくすると、輪郭曲線の最大山高さRpを大きくすることができる。
なお、投射材投射工程において用いる投射材の平均粒径を50~400μmとすることにより、上記の範囲の十点平均粗さRzを有する踏面成形面を備えるタイヤ成形用金型を得ることができる。
なお、投射材投射工程において用いる投射材の平均粒径を50~400μmとすることにより、上記の範囲の平均間隔Sを有する踏面成形面を備えるタイヤ成形用金型を得ることができる。
アルミニウム製のタイヤ成形用金型の踏面成形面に対し、投射条件(投射圧力、投射速度など)を変更して投射材(セラミック系)を投射し、表1に示す表面性状の踏面成形面を有するタイヤ成形用金型1~4を製造した。なお、作製した金型の踏面成形面の表面性状は、SEMおよびマイクロスコープを用いて測定した。
作製したタイヤ成形用金型1~4をそれぞれ用いて、常法に従いタイヤサイズ205/55R16のタイヤ1~4をそれぞれ製造した。そして、作製したタイヤのトレッド部踏面の表面性状をSEMおよびマイクロスコープを用いて測定した。結果を表2に示す。
また、作製した各タイヤの氷上性能および雪上性能を下記の評価方法で評価した。結果を表2に示す。
作製直後のタイヤを適用リムに組み込み、JATMAに規定の正規内圧を充填して車両に装着した。そして、前輪1輪当たりの荷重を4.3kNとして、凍結路において、速度30km/hの条件下で氷上摩擦係数を測定した。タイヤ1の氷上摩擦係数を100として各タイヤの氷上摩擦係数を指数評価した。表2に結果を示す。表2中、数値が大きいほど氷上摩擦係数が大きく、氷上性能が優れていることを示す。
<雪上性能>
作製直後のタイヤを適用リムに組み込み、JATMAに規定の正規内圧を充填して車両に装着した。そして、前輪1輪当たりの荷重を4.3kNとして、積雪路において、速度30km/hの条件下で雪上摩擦係数を測定した。タイヤ1の雪上摩擦係数を100として各タイヤの雪上摩擦係数を指数評価した。表2に結果を示す。表2中、数値が大きいほど雪上摩擦係数が大きく、雪上性能が優れていることを示す。
2 突起部
3 空隙
4 ビード部
4a ビードコア
5 サイドウォール部
6 トレッド部
7 カーカス
8 ベルト
8a、8b ベルト層
9 突起部
10 金型
11 成形面
11a 踏面成形面
11b サイドウォール部成形面
11c ビード部成形面
12 凹部
20 タイヤ
T 路面
Claims (2)
- トレッド部踏面の少なくとも一部が、粗さモチーフ上限長さAが、5μm以上100μm以下となる表面粗さを有することを特徴とする、タイヤ。
- タイヤ成形用の金型であって、
タイヤのトレッド踏面を成形する踏面成形面を有し、該踏面成形面の少なくとも一部が、粗さモチーフ上限長さAが、5μm以上100μm以下となる表面粗さを有することを特徴とする、タイヤ成形用金型。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280065078.0A CN104023999B (zh) | 2011-12-28 | 2012-12-28 | 轮胎和轮胎成型用模具 |
EP12862443.4A EP2799250B1 (en) | 2011-12-28 | 2012-12-28 | Tire and tire-forming mold |
US14/363,860 US9403407B2 (en) | 2011-12-28 | 2012-12-28 | Tire and tire forming mold |
RU2014131025/11A RU2578652C2 (ru) | 2011-12-28 | 2012-12-28 | Шина и пресс-форма для формования шины |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-289216 | 2011-12-28 | ||
JP2011289216A JP6088137B2 (ja) | 2011-12-28 | 2011-12-28 | タイヤおよびタイヤ成形用金型 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013100195A1 true WO2013100195A1 (ja) | 2013-07-04 |
Family
ID=48697655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/084302 WO2013100195A1 (ja) | 2011-12-28 | 2012-12-28 | タイヤおよびタイヤ成形用金型 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9403407B2 (ja) |
EP (1) | EP2799250B1 (ja) |
JP (1) | JP6088137B2 (ja) |
CN (1) | CN104023999B (ja) |
RU (1) | RU2578652C2 (ja) |
WO (1) | WO2013100195A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016215732B4 (de) | 2016-08-23 | 2024-10-10 | Continental Reifen Deutschland Gmbh | Vulkanisierform für Fahrzeugreifen und Fahrzeugreifen als Solcher |
WO2020250072A1 (en) * | 2019-06-13 | 2020-12-17 | Pirelli Tyre S.P.A. | Insert for a mould for vulcanising tyres for vehicle wheels, process for producing said insert and process for vulcanising tyres |
JP6915649B2 (ja) * | 2019-07-03 | 2021-08-04 | 横浜ゴム株式会社 | タイヤ加硫用モールドおよびタイヤの製造方法 |
DE102020214007A1 (de) * | 2020-11-09 | 2022-05-12 | Continental Reifen Deutschland Gmbh | Fahrzeugreifen mit Neureifenkennzeichnung, Verfahren zur Herstellung eines Fahrzeugreifens mit Neureifenkennzeichnung, Reifenheizform für die Herstellung eines solchen Fahrzeugreifens und Verwendung einer Neureifenkennzeichnung auf einem solchen Fahrzeugreifen |
FR3117927B1 (fr) * | 2020-12-18 | 2022-12-23 | Michelin & Cie | Texture de surface de bande de roulement de pneumatique |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07257111A (ja) * | 1994-03-18 | 1995-10-09 | Niitsu:Kk | 空気入りタイヤとそれを製造する加硫成型用金型 |
JPH11301217A (ja) | 1998-04-24 | 1999-11-02 | Bridgestone Corp | 空気入りタイヤ |
JP2002192914A (ja) | 2000-12-25 | 2002-07-10 | Yokohama Rubber Co Ltd:The | 氷雪路用空気入りタイヤ |
JP2007015621A (ja) * | 2005-07-08 | 2007-01-25 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ及びタイヤ用モールド |
JP2007320248A (ja) * | 2006-06-02 | 2007-12-13 | Bridgestone Corp | 空気入りタイヤの製造方法、加硫モールド、及び、空気入りタイヤ |
JP2009067378A (ja) | 2007-08-22 | 2009-04-02 | Bridgestone Corp | 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3813954A1 (de) * | 1988-04-26 | 1989-11-09 | Uniroyal Englebert Gmbh | Fahrzeugluftreifen |
JPH02147411A (ja) * | 1988-11-30 | 1990-06-06 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ及びその加硫金型 |
CN1133548C (zh) * | 1996-12-19 | 2004-01-07 | 米凯林技术研究公司 | 具有改进轮胎磨损的牺牲花纹条的轮胎 |
JP2000142026A (ja) * | 1998-11-10 | 2000-05-23 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ、空気入りタイヤの製造方法及びタイヤ成形用金型 |
CA2324807A1 (en) * | 1999-11-05 | 2001-05-05 | Sumitomo Rubber Industries, Ltd. | Studless tire with radially directed short fibers |
ITTO20010971A1 (it) * | 2001-10-12 | 2003-04-12 | Bridgestone Firestone Tech | Pneumatico per trasporto pesante. |
JP4170652B2 (ja) * | 2002-04-10 | 2008-10-22 | 住友ゴム工業株式会社 | タイヤ加硫金型、及びタイヤ加硫金型の成形面処理方法 |
DE102004010060A1 (de) * | 2004-03-02 | 2005-09-22 | Continental Ag | Reifen für Kraftfahrzeuge |
EP2028023B1 (en) | 2007-08-22 | 2011-05-25 | Bridgestone Corporation | Pneumatic tire, shoe, tire chain, and pneumatic tire vulcanization-mold |
EP2085201A1 (de) * | 2008-01-30 | 2009-08-05 | Continental Aktiengesellschaft | Reifenvulkanisierform und mit dieser Reifenvulkanisierform hergestellter Reifen |
JP6068139B2 (ja) * | 2010-03-26 | 2017-01-25 | 株式会社ブリヂストン | タイヤ、及びタイヤ加硫用金型の製造方法 |
JP4920760B2 (ja) * | 2010-04-08 | 2012-04-18 | 東洋ゴム工業株式会社 | 空気入りタイヤ、タイヤモールド及び空気入りタイヤの製造方法 |
-
2011
- 2011-12-28 JP JP2011289216A patent/JP6088137B2/ja not_active Expired - Fee Related
-
2012
- 2012-12-28 RU RU2014131025/11A patent/RU2578652C2/ru active
- 2012-12-28 US US14/363,860 patent/US9403407B2/en not_active Expired - Fee Related
- 2012-12-28 WO PCT/JP2012/084302 patent/WO2013100195A1/ja active Application Filing
- 2012-12-28 CN CN201280065078.0A patent/CN104023999B/zh not_active Expired - Fee Related
- 2012-12-28 EP EP12862443.4A patent/EP2799250B1/en not_active Not-in-force
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07257111A (ja) * | 1994-03-18 | 1995-10-09 | Niitsu:Kk | 空気入りタイヤとそれを製造する加硫成型用金型 |
JPH11301217A (ja) | 1998-04-24 | 1999-11-02 | Bridgestone Corp | 空気入りタイヤ |
JP2002192914A (ja) | 2000-12-25 | 2002-07-10 | Yokohama Rubber Co Ltd:The | 氷雪路用空気入りタイヤ |
JP2007015621A (ja) * | 2005-07-08 | 2007-01-25 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ及びタイヤ用モールド |
JP2007320248A (ja) * | 2006-06-02 | 2007-12-13 | Bridgestone Corp | 空気入りタイヤの製造方法、加硫モールド、及び、空気入りタイヤ |
JP2009067378A (ja) | 2007-08-22 | 2009-04-02 | Bridgestone Corp | 空気入りタイヤ、靴、タイヤチェーン、及び、空気入りタイヤ用加硫金型 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2799250A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN104023999A (zh) | 2014-09-03 |
RU2014131025A (ru) | 2016-02-20 |
RU2578652C2 (ru) | 2016-03-27 |
US20140345765A1 (en) | 2014-11-27 |
EP2799250B1 (en) | 2017-09-06 |
CN104023999B (zh) | 2018-05-04 |
JP2013136357A (ja) | 2013-07-11 |
JP6088137B2 (ja) | 2017-03-01 |
EP2799250A1 (en) | 2014-11-05 |
EP2799250A4 (en) | 2015-07-29 |
US9403407B2 (en) | 2016-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6088137B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6348248B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP5314122B2 (ja) | タイヤ成形用金型、タイヤ、及びタイヤの製造方法 | |
JP2013136279A (ja) | タイヤおよびタイヤ成形用金型 | |
JP5986374B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013139180A (ja) | タイヤおよびタイヤ成形用金型 | |
WO2013100198A1 (ja) | タイヤ及びタイヤ成形用金型 | |
JP5986376B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6018750B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP5986377B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6042611B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP5986375B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP6423573B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP5977519B2 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136346A (ja) | タイヤおよびタイヤ成形用金型 | |
WO2013100206A1 (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136334A (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136340A (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136355A (ja) | タイヤおよびタイヤ成形用金型 | |
JP2013136336A (ja) | タイヤおよびタイヤ成形用金型 | |
JP6042612B2 (ja) | タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12862443 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14363860 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2012862443 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012862443 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014131025 Country of ref document: RU Kind code of ref document: A |