WO2013099791A1 - Mo-Si-B系合金粉末、金属材料原料粉末およびMo-Si-B系合金粉末の製造方法 - Google Patents

Mo-Si-B系合金粉末、金属材料原料粉末およびMo-Si-B系合金粉末の製造方法 Download PDF

Info

Publication number
WO2013099791A1
WO2013099791A1 PCT/JP2012/083218 JP2012083218W WO2013099791A1 WO 2013099791 A1 WO2013099791 A1 WO 2013099791A1 JP 2012083218 W JP2012083218 W JP 2012083218W WO 2013099791 A1 WO2013099791 A1 WO 2013099791A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
alloy powder
alloy
mass
less
Prior art date
Application number
PCT/JP2012/083218
Other languages
English (en)
French (fr)
Inventor
繁一 山▲崎▼
あゆ里 辻
加藤 昌宏
誠治 中林
明彦 池ヶ谷
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to EP12863978.8A priority Critical patent/EP2799163A4/en
Priority to JP2013551674A priority patent/JP5905907B2/ja
Priority to US14/368,976 priority patent/US9884367B2/en
Publication of WO2013099791A1 publication Critical patent/WO2013099791A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a Mo—Si—B based alloy powder used as a heat resistant material, a metal material raw material powder using the Mo—Si—B based alloy powder, and a method for producing a Mo—Si—B based alloy powder.
  • Friction stir welding tools glass melting jigs, high temperature industrial furnace components, hot extrusion dies, seamless pipe piercer plugs, injection molding hot runner nozzles, casting insert molds, resistance heating vapor deposition containers Mo-based alloys are known as materials used for heat-resistant members particularly in high-temperature environments such as aircraft jet engines and rocket engines.
  • a Mo—Si—B-based alloy such as Mo 5 SiB 2 is known, and the characteristics of the alloy are extremely important as a material that greatly affects the characteristics of the heat-resistant member.
  • Patent Document 1 a mixed powder of Mo powder, Si powder, and B powder is prepared by mechanical alloying, and the resulting mixed powder is subjected to pressure forming and heat treatment to obtain a Mo—Si—B alloy.
  • the Mo alloy containing is manufactured (patent document 1).
  • Patent Documents 2 and 3 a Mo—Si—B alloy is produced by melting and rapidly solidifying a raw material, and the alloy is dispersed in a body-centered cubic Mo matrix, and at 100 ° C. or more at 1300 ° C.
  • the technology which makes the material which has 0.2% yield strength of this is disclosed (patent documents 2 and 3).
  • Patent Document 4 a Mo—Si—B alloy in which Mo, Si, and B are constituent elements and a Mo 3 Si phase, a Mo 5 Si 3 phase, and a Mo 5 SiB 2 phase coexist is formed by plasma spraying. (Patent Document 4).
  • Patent Document 5 Mo—Si—B based alloys are manufactured by various methods and used for parts for friction stir welding as described in Patent Document 5, for example (Patent Document 5).
  • the object to be welded is a metal having a gradually higher melting point, such as Fe-based, FeCr-based (stainless steel, etc.) and Ti-based alloys in recent years, from Al and Cu that have been widely used.
  • parts for friction stir welding are required to have physical properties such as higher proof stress corresponding to higher melting points.
  • the present invention has been made in view of the above-mentioned problems, and its purpose is high density and Mo— for heat-resistant alloys satisfying physical properties such as proof stress corresponding to higher melting points of objects to be joined than before.
  • the object is to provide Si-B alloy powder.
  • the present inventor has intensively studied peak data obtained by X-ray diffraction of Mo—Si—B based alloy powder, and as a result, the full width at half maximum of the peak representing the crystallinity of the powder is particularly characteristic of the alloy. I got the knowledge that affected.
  • the raw material powder used for the sintered body is preferably a powder into which strain is introduced rather than a stress-free powder having good crystallinity.
  • the full width at half maximum of Mo 5 SiB 2 (600) in the X-ray diffraction data of the Mo—Si—B alloy powder by the present inventors and the relative density and high temperature of the sintered body sintered using the same as the raw material As a result of analyzing the relationship with 0.2% proof stress, the relative density and 0.2% proof stress at high temperature may be superior when the full width at half maximum is increased by introducing strain into the powder. I found out. This has the effect of promoting the sintering by introducing strain into the powder, but it means that the high temperature strength of the sintered body is lowered when strain is introduced excessively.
  • the reason why the high temperature strength is lowered by introducing strain is that if the strain is excessively deteriorated and the crystallinity of Mo 5 SiB 2 is deteriorated, the high temperature strength which is the original characteristic of Mo 5 SiB 2 cannot be exhibited. .
  • the present inventors have further studied, and as a result, by controlling the full width at half maximum within a certain range, the relative density of the sintered body and the 0.2% proof stress at high temperature are improved. And led to the present invention.
  • a second aspect of the present invention is a mixed powder of the Mo—Si—B alloy powder described in the first aspect and at least one powder selected from the group consisting of IVA, VA, and VIA group elements. This is a metal material raw material powder.
  • a third aspect of the present invention is a method for producing the Mo—Si—B alloy powder according to the first aspect, wherein Mo powder, MoSi 2 powder and MoB powder are used as raw materials and mixed at a predetermined blending ratio.
  • a method for producing a Mo—Si—B alloy powder comprising: a step of pulverizing the powder obtained by the above step; and a step of sieving the powder obtained in the pulverization treatment step. is there.
  • Mo-Si-B alloy powder for heat-resistant alloys that has high density and satisfies physical properties such as 0.2% proof stress at high temperatures corresponding to higher melting points of objects to be joined than before. Can be provided.
  • FIG. 3 is a flowchart showing a procedure for producing the Mo—Si—B alloy powder of the present invention. It is a figure which shows a Mo-Si-B ternary phase diagram (Source: Nunes, CA, Sakidja, R. & Perepezko, JH: Structural Intermetallics 1997, ed.by M.V.Nath, R. Darolia, CT Liu, PL Martin, DB Miracle, R. Wagner and M. Yamaguchi, TMS (1997), 831-839.). It is a figure which shows the X-ray-diffraction result of the Mo-Si-B type alloy powder of this invention.
  • ICDD is a diagram showing a (International Centre for Diffraction Data) peak intensity of Mo 5 SiB 2 according.
  • FIG. 4 is a graph showing X-ray diffraction results of the Mo—Si—B based alloy powder of the present invention and showing peak data when a high angle side is subjected to a slow scan. It is a figure which shows the method of calculating
  • the Mo—Si—B based alloy powder according to the present invention is obtained by controlling the full width at half maximum of (600) of Mo 5 SiB 2 in the peak data obtained by X-ray diffraction within a predetermined range.
  • the conditions of the Mo—Si—B alloy of the present invention will be described in detail.
  • the Mo—Si—B alloy powder according to the present invention has (213), (211), (310), (114), (204) diffraction peaks of Mo 5 SiB 2 in the peak data of X-ray diffraction. .
  • the full width at half maximum of the above (600) is 0.08 deg. And the full width at half maximum is 0.7 deg. If it exceeds, the effect of increasing the relative density of the sintered material and the 0.2% yield strength at high temperatures cannot be obtained. Therefore, the full width at half maximum of the (600) diffraction peak is 0.08 deg. Above, 0.7 deg. Or less, preferably 0.2 deg. As described above, 0.4 deg. The following is more preferable.
  • the reason for focusing on the full width at half maximum of (600) of X-ray diffraction is that it is a (100) higher-order lattice plane that is generally susceptible to crystal distortion.
  • the influence of crystal distortion tends to appear on higher-order lattice planes.
  • the peak of (600) focused on in the present invention did not overlap with other compounds such as Mo 3 Si and the peak of Mo, and was a peak suitable for analysis of the full width at half maximum.
  • the peak intensity of the (204) plane should be larger than the peak intensity ratio of (114), which is equal to the peak intensity ratio of Mo 5 SiB 2 described in ICDD as shown in FIG. There is no need to do it.
  • the full width at half maximum can be controlled, for example, by controlling the heat treatment temperature during the production of the alloy powder or by controlling the crushing (also referred to as pulverization) treatment conditions after the heat treatment. .
  • the Mo—Si—B alloy according to the present invention is one in which the full width at half maximum of (600) of Mo 5 SiB 2 is controlled within a predetermined range, and therefore contains at least Mo 5 SiB 2 .
  • the Mo—Si—B-based alloy is not necessarily required to have a complete component ratio of Mo 5 SiB 2 , for example, Mo, Si, B including Mo 3 Si, Mo 2 B, etc. as inevitable compounds described later.
  • a compound containing at least two of the above may be included due to the blending of the Mo—Si—B alloy powder of the present invention, but if Mo 5 SiB 2 is the main component, the effect of the present application can be obtained. Is possible.
  • the Si content may be 4.2 mass% or more and 5.9 mass% or less
  • the B content may be 3.5 mass% or more and 4.5 mass% or less.
  • the inevitable compounds such as Mo 3 Si and Mo 2 B, for example, when Mo 5 SiB 2 is the main component of the Mo—Si—B based alloy, the intensity of the Mo 5 SiB 2 strongest peak (213) If the peak intensity of MoB (002) is about 2% and the peak intensity of the Mo 3 Si (211) plane is about 6%, it affects the density of the sintered alloy and the high temperature 0.2% proof stress that are the effects of the present invention. do not do.
  • Inevitable impurities include metal components such as Fe, Ni, and Cr, and C, N, and O.
  • the powder particle size of the Mo—Si—B alloy according to the present invention is such that it can be uniformly mixed / dispersed when mixed with other powders used when producing a sintered body, such as Mo powder. law (Brunauer, Emmet and Teller's method ) at 0.05 m 2 / g or more, desirable that 1.0 m 2 / g or less.
  • the primary particles are mixed with significantly large particles, and therefore, blended together with the alloy powder of the present invention, for example, uniform mixing with Mo powder. This is because the dispersion is hindered and sufficient alloy characteristics cannot be obtained.
  • the presence of aggregated particles makes it difficult to obtain a sufficient molding density. Moreover, if the aggregation becomes strong, it will hinder uniform mixing / dispersion with the Mo powder blended with the alloy powder of the present invention, and sufficient alloy characteristics will not be obtained.
  • Oxygen in the Mo-Si-B alloy powder according to the present invention promotes the sintering of the Mo powder and the alloy powder to increase the grain boundary strength when mixed with the Mo powder and sinters, and increases the grain boundary strength. It was found that there is an effect of increasing the high temperature bending strength. As a result of the investigation by the inventors of the present application, it is preferable that oxygen having an oxygen content of 200 mass ppm or more and 45000 mass ppm or less is contained. Furthermore, in order to promote the sintering and prevent the remaining voids, it is more preferable that the content be 840 mass ppm or more and 21600 mass ppm or less.
  • the oxygen content can be controlled by heat treatment process conditions of the Mo—Si—B alloy powder and by a pre-reduction treatment of the MoB powder among the raw material powders.
  • Carbon in the Mo—Si—B alloy powder according to the present invention when blended with Mo powder to produce a sintered body, not only has the effect of removing oxygen present in the raw material powder of the alloy, but also the Mo parent phase. It has the effect of promoting sintering, increasing the grain boundary strength, and increasing the high-temperature bending strength of the sintered material. However, if oxygen in the Mo—Si—B alloy powder is excessively removed, the effect of promoting the sintering between the Mo—Si—B alloy powder and the Mo powder becomes low. Therefore, the carbon content is preferably 50 mass ppm or more and 1000 mass ppm or less, and more preferably 80 mass ppm or more and 220 mass ppm or less as a range for promoting the sintering.
  • the carbon content may be caused by the presence of the inevitable impurities in the raw material of the Mo-Si-B alloy powder of the present invention, or a carbon source was intentionally added. It may be a thing.
  • the carbon does not have to be chemically bonded to the Mo—Si—B-based powder alloy, and may be free carbon.
  • Carbon as an inevitable impurity may be mixed from a metal or ceramic member of a mixing device, a heat treatment device, or a crushing device.
  • free carbon in addition to simple substances such as carbon black, graphite, carbon fiber, fullerene, and diamond, organic materials, solvents, and combinations of two or more thereof can be used.
  • the mechanism by which the relative density of the sintered body and the 0.2% proof stress at high temperature are improved when these oxygen and carbon are included in the Mo—Si—B alloy powder can be considered as follows.
  • Mo-Si-B alloy powder having a high oxygen content When Mo-Si-B alloy powder having a high oxygen content is mixed with Mo powder and sintered, oxygen in the Mo-Si-B alloy powder reacts with Mo powder to produce molybdenum trioxide MoO 3 . . Since it is known that the melting point of MoO 3 is about 800 ° C., MoO 3 reaches the melting point before reaching the alloy sintering temperature described later, and between Mo powders, between Mo powders and Mo—Si—B system It is thought to penetrate between the alloy powders and improve the wettability of the powders to promote sintering.
  • the formed MoO 3 phase is gradually reduced during sintering in the hydrogen atmosphere and eventually becomes the Mo phase, so that MoO 3 is detected in the sintered material, or the room temperature hardness and high temperature strength of the sintered material Is very unlikely to reduce Although it is considered that MoO 3 may partially evaporate, a fresh surface of Mo appears at the trace where MoO 3 is released, and it is considered that sintering is also promoted in this case.
  • MoO 3 powder As a raw material of the sintered alloy.
  • Mo and Mo—Si—B based alloy in which this MoO 3 powder is a different kind is considered. If it does not exist between the powders, it is difficult to obtain the effect of promoting the sintering, and when added as MoO 3 powder, it is considered that it is difficult to disperse uniformly throughout because of the small amount. Therefore, in order to improve the sinterability and the density of the sintered body, it was considered that oxygen is more preferable in the Mo—Si—B alloy powder.
  • carbon in the Mo—Si—B alloy is considered to be an important component contributing to the reduction of MoO 3 .
  • the carbon component can be added in the mixing step before sintering the alloy.
  • the carbon component is previously added to the Mo—Si—B alloy powder as in the present invention. The ingredients should be included.
  • the method for producing the Mo—Si—B alloy powder of the present invention is not particularly limited as long as an alloy that satisfies the above-described conditions can be produced, but the method shown in FIG. it can.
  • the raw material powder is mixed at a predetermined ratio to generate a mixed powder (S1 in FIG. 1).
  • Examples of the raw material include Mo powder, MoSi 2 powder, and MoB powder, and if necessary, carbon powder is added to control the carbon content of the alloy powder.
  • MoB powder reactivity with oxygen is remarkable in comparison with Mo powder or MoSi 2, there is a possibility that the oxygen content during storage varies greatly as compared with other powder.
  • MoB may have an oxygen content of about 10% by mass when stored for a long time or when exposed to a high humidity environment.
  • an oxygen content can be used as a raw material, but the oxygen content of the Mo—Si—B alloy powder can be stabilized by performing a pre-reduction treatment. Can do.
  • the oxygen content of the MoB powder used as the raw material powder of the Mo—Si—B alloy powder is preferably within 5% by mass. More preferably, it is within 2 mass%, More preferably, it is within 1 mass%. Since this process is intended to reduce MoB, a hydrogen atmosphere is used.
  • the temperature of the preliminary reduction is lower than 900 ° C., the reduction effect is not sufficient, and if it is higher than 1300 ° C., there is a problem that the yield is lowered because the MoB powder burns in the boat where the powder is placed during the heat treatment.
  • the temperature of the preliminary reduction is desirably 900 ° C. to 1300 ° C. Thereby, a stable reduction effect can be obtained and a high recovery rate can be obtained.
  • the temperature of the preliminary reduction is more preferably 1100 ° C. or higher and 1200 ° C. or lower.
  • the mixed powder is heated in an atmosphere containing hydrogen or an inert gas such as argon or nitrogen (S2 in FIG. 1).
  • the pressure during heating was atmospheric pressure.
  • the heating temperature is lower than 1350 ° C.
  • the amount of impurities such as MoB increases even if heating is performed for a long time, and when this is sintered as a raw material, the mechanical strength is reduced.
  • the heating temperature is higher than 1750 ° C.
  • the sintering proceeds and the particles become larger, the crystallinity is improved, and the (600) full width at half maximum of the Mo 5 SiB 2 becomes too small.
  • the first control point of the full width at half maximum control of the present invention is the heat treatment condition.
  • the heat-treated powder is agglomerated and needs to be crushed and sieved, but particularly when a large external force is applied to the powder under the pulverizing conditions, the powder is distorted, and the full width at half maximum of the scope of the present invention May not be obtained.
  • the crystallinity is controlled, and in the crushing step which is the second control point of the second full width at half maximum control, the full width at half maximum outside the scope of the present invention is obtained. It is desirable to make the conditions that do not give distortion.
  • a crushing method it may be dealt with by crushing in a mortar or using a ball mill internally coated with Mo to reduce the container rotation speed and shorten the processing time.
  • the powder of the present invention can be obtained even by applying a strain by adjusting the crushing conditions.
  • the crushing apparatus to be used may be a known one, for example, a mortar or a ball mill, and the conditions may be appropriately adjusted.
  • the above process is the method for producing the Mo—Si—B alloy powder of the present invention.
  • the Mo—Si—B based alloy according to the present invention is a powder in which strain is introduced by controlling the full width at half maximum of (600) of Mo 5 SiB 2 within a predetermined range, so that the sintering can be performed. Since it is possible to obtain a high-density sintered body that is promoted and to give the strain within a range that maintains the crystallinity, the high-temperature strength that is the original characteristic of Mo 5 SiB 2 can be exhibited. In addition, the physical properties such as 0.2% proof stress at a high temperature required for the friction stir welding tool corresponding to the higher melting point of the object to be joined can be satisfied.
  • the Mo—Si—B alloy powder of the present invention is at least one powder selected from the group consisting of IVA, VA, and VIA group elements, for example, at least one of Mo, W, Ta, Nb, and Hf. It can be used as a heat resistant member by mixing with powder and sintering.
  • the weight blending ratio of the Mo—Si—B alloy powder with respect to the weight of at least one powder selected from the group consisting of IVA, VA, and VIA group elements is 0.25 or more with respect to Mo. It is preferable that the value is 0.0 or less.
  • the blending ratio of the Mo—Si—B alloy powder to Mo is smaller than 0.25, the 0.2% proof stress approaches the value of Mo and becomes low, which is one of the uses of the present invention. It is no longer suitable for joining tools.
  • the moldability is deteriorated, the density of the sintered body is lowered, and the sintering cannot be performed.
  • the Mo—Si—B based alloy is a very hard material, if the weight ratio is higher than this, it is more preferable to sinter with the Mo—Si—B based alloy powder than to sinter through the Mo particles. High frequency, thereby increasing the possibility of forming pores.
  • the blending ratio of the Mo—Si—B alloy powder to Mo exceeds 1.3, the hardness of the sintered body increases, so that it exhibits a more excellent effect as a wear resistant material but becomes brittle. Therefore, it is more preferable that the range is 0.25 or more and 1.3 or less for applications that require ductility.
  • the blending ratio of the Mo—Si—B alloy powder to Mo is 0.25 to 4.
  • W, Ta, Nb, and Hf may be mixed so that the volume ratio of Mo and Mo—Si—B alloy is equal to 0.
  • X-ray diffractometer manufactured by Rigaku Corporation (model number: RAD-IIB) Tube: Cu (K ⁇ X-ray diffraction) Divergence slit and scattering slit opening angle: 1 ° Opening width of light receiving slit: 0.3 mm Opening width of monochromator light receiving slit: 0.6mm Tube current: 30 mA Tube voltage: 40 kV Scan speed: 1.0 ° / min
  • the relative density was determined as follows.
  • the relative density here is a value expressed by% by dividing the density measured for the prepared sample (bulk) by the theoretical density.
  • the theoretical density of the Mo—Mo 5 SiB 2 alloy was determined by the following procedure. (1) The mass% of Mo, Si, and B in the bulk was measured by ICP-AES, and the value was converted to mol%. (2) The composition points of mol% of Si and B were plotted on the ternary phase diagram shown in FIG. 2 (see black circles in FIG. 2). Since the bulk composition is mostly Mo or Mo 5 SiB 2 , the plot points are on a straight line connecting the composition point of Mo 5 SiB 2 and the composition point of Mo 100%. (3) As shown in FIG.
  • the distance between the plot point and the Mo 100% composition point is X
  • the distance between the Mo 5 SiB 2 composition point is Y
  • the ratio of X and Y is 100%. Convert.
  • X is the molar ratio of Mo 5 SiB 2
  • Y is the molar ratio of Mo.
  • Mb 8.55 g / cm 3
  • the hardness of the heat-resistant alloy was measured by using a micro Vickers hardness meter (model number: AVK) manufactured by Akashi Co., Ltd., and applying a measurement load of 20 kg at 20 ° C. in the atmosphere.
  • the number of measurement points was 5 and the average value was calculated.
  • the sintered body was processed to have a length: about 25 mm, a width: about 2.5 mm, and a thickness: about 1.0 mm, and the surface was polished using # 600 SiC polishing paper.
  • the sample is set in an Instron high-temperature universal testing machine (model number: 5867 type) so that the pin interval is 16 mm, and the head is pressed against the sample at 1200 ° C. in an Ar atmosphere at a crosshead speed of 1 mm / min.
  • a three-point bending test was performed to measure 0.2% proof stress.
  • Example 1 Evaluation of full width at half maximum by X-ray diffraction of powder> First, a Mo—Si—B alloy powder having a different full width at half maximum of (600) was prepared and mixed with Mo powder to produce a sintered body, and the relative density and 0.2% proof stress were measured. The specific procedure is as follows.
  • Mo—Si—B alloy powder was prepared.
  • Mo powder having a purity of 99.99% by mass or more, an average particle size by the Fsss method of 4.8 ⁇ m and an oxygen content of 580 ppm, and an average particle size by the Fsss method of 8.1 ⁇ m.
  • MoSi 2 powder with an oxygen content of 8250 ppm was blended at a ratio of 14.3% by mass and MoB powder with an average particle size by Fsss method of 8.1 ⁇ m was blended at a ratio of 42.3 mass%, and mixed in a mortar to prepare a mixed powder. .
  • the oxygen content of the MoB powder was 78200 mass ppm
  • a heat treatment was performed at 1150 ° C. in a hydrogen atmosphere to reduce the oxygen content, and the oxygen content was reduced to 19800 mass ppm.
  • the obtained mixed powder was heat-treated at 1250 ° C. to 1800 ° C. for 1 hour in a hydrogen atmosphere to obtain an alloy powder.
  • the full width at half maximum of (600) of Mo 5 SiB 2 can be controlled.
  • the full width at half maximum is the largest at the lowest temperature of 1250 ° C., and the full width at half maximum tends to be smaller as the temperature is increased, and at the highest temperature of 1800 ° C.
  • the full width at half maximum is the smallest.
  • the full width at half maximum of (600) of Mo 5 SiB 2 can also be controlled by changing the crushing time in this step. If the crushing time is in the range of 15 minutes to 120 minutes, the full width at half maximum is the smallest in 15 minutes with the shortest crushing time, and the full width at half maximum tends to increase as the crushing time is increased. In 120 minutes with a long crushing time, the full width at half maximum is the largest.
  • the powder which controlled the full width at half maximum of Mo 5 SiB 2 (600) by the heating temperature and the crushing time was finally sieved using a # 60 sieve, and the powder of Mo 5 SiB 2 (600)
  • the full width at half maximum is 0.05 deg. 0.8 deg.
  • a Mo—Si—B alloy powder was prepared.
  • Table 1 shows the full width at half maximum of the produced Mo—Si—B alloy powder, the relative density of the sintered body, and the 0.2% yield strength at high temperature (1200 ° C.).
  • the produced Mo—Si—B alloy powder has (213), (211), (310), (114), (204) diffraction peaks of Mo 5 SiB 2 , The peak coincides with the peak described in ICDD of Mo 5 SiB 2 shown in FIG. 4, and it was revealed that the obtained alloy contains Mo 5 SiB 2 as a main component.
  • a slow scan was performed to obtain the peak data of FIG.
  • the full width at half maximum was obtained by extracting the full width of the peak at a position half the peak intensity as shown in FIG. As a result, 0.21 deg.
  • all the powders of the present invention were 0.08 deg. Above, 0.7 deg. It was found to be within the following range.
  • the powder C which is a comparative example of another production method, is 90.6% by mass of Mo powder (Fsss: 4.8 ⁇ m), 5.3% by mass of Si powder (Fsss: 10 ⁇ m), and B powder (Fsss: This is an example in which a powder in which 4.1% by mass of 15 ⁇ m) is mixed is prepared and a Mo—Si—B alloy powder is produced by a gas atomization method.
  • the powder D which is a comparative example of another manufacturing method is 90.6 mass% of Mo powder (Fsss: 4.8 ⁇ m), 5.3 mass% of Si powder (Fsss: 10 ⁇ m), and B powder (Fsss: This is an example in which a powder mixed with 4.1% by mass of 15 ⁇ m) is put into a container, substituted with argon gas, subjected to MA treatment with a vibration ball mill using steel balls as media.
  • the powders produced by these existing methods also produced sintered bodies under the same sintering conditions as in Example 1.
  • the full width at half maximum of (600) of Mo 5 SiB 2 was 0.08 deg.
  • powder B 0.7 deg. It was found that the relative density was lower in both cases, and the 0.2% yield strength at high temperatures was significantly reduced.
  • the Mo—Si—B based alloy powder has a full width at half maximum of (600) of Mo 5 SiB 2 of 0.08 deg. ⁇ 0.7 deg. In the range, and it represents the powder size in the measured specific surface area by the BET method to produce what was 0.03m 2 /g ⁇ 1.5m 2 / g.
  • the powder particle size can be controlled by heating temperature, heating time and crushing time. When the heating temperature is increased, the heating time is lengthened, or the crushing time is shortened, the powder particle size is increased, and the particle size value obtained by the BET method is decreased. On the other hand, when the heating temperature is lowered, the heating time is shortened, or the pulverization time is lengthened, the powder particle size becomes small, and the particle size value obtained by the BET method becomes large.
  • the Mo—Si—B alloy powder having a particle size of 0.03 to 1.5 m 2 / g by the BET method, 44% by mass of the Mo—Si—B alloy powder as described above, 54% by mass of the powder and 2% by mass of the MoSi 2 powder were mixed, and compression molded using a uniaxial press machine under conditions of a temperature of 20 ° C. and a molding pressure of 3 ton / cm 2 to obtain a molded body.
  • Table 2 shows the composition of the produced Mo—Si—B alloy powder, the relative density of the sintered body, and the 0.2% yield strength at a high temperature (1200 ° C.).
  • the oxygen content of the Mo—Si—B based alloy powder is set to 190 ppm to 45300 ppm
  • the carbon content is set to 40 ppm to 1050 ppm
  • 44% by mass of the Mo—Si—B based alloy powder and 54% of the Mo powder are obtained in the same manner as described above.
  • 2% by mass of MoSi 2 and MoSi 2 powder were mixed and compression molded using a uniaxial press machine under conditions of a temperature of 20 ° C. and a molding pressure of 3 ton / cm 2 to obtain a molded body.
  • the Mo—Si—B based alloy powder used here has a (600) full width at half maximum of 0.08 deg.
  • the oxygen content of the Mo—Si—B-based alloy powder is affected by the oxygen content of the raw material powder used, particularly the MoB powder, the heating temperature in the pre-reduction treatment of the MoB powder, or the pre-reduction treatment It can be controlled by the amount of carbon powder charged in In addition, the carbon content of the Mo—Si—B alloy powder can be controlled by the amount of carbon powder introduced in the pre-reduction treatment of the MoB powder.
  • Table 3 shows the oxygen content, carbon content, relative density of the sintered body, and 0.2% proof stress of the produced Mo—Si—B alloy powder.
  • the bonded body had a relative density of 5% or more and a 0.2% proof stress of 100 MPa or more as compared with a sintered body using powder outside the range.
  • a sintered body using Mo—Si—B alloy powder having an oxygen content of 840 mass ppm or more and 21600 mass ppm or less and a carbon content of 80 mass ppm or more and 220 mass ppm or less. was found to further increase the 0.2% yield strength.
  • a sintered body was manufactured by setting the weight ratio of the Mo—Si—B alloy powder to the Mo powder to 0.2 to 1.5, and having a relative density and a 0.2% proof stress at a high temperature (1200 ° C.). It was measured.
  • the specific procedure is as follows.
  • the Mo—Si—B based alloy powder has a full width at half maximum of (600) of Mo 5 SiB 2 of 0.08 deg. ⁇ 0.5 deg. In the range of, and was the powder particle size to produce what was 0.05m 2 /g ⁇ 1.0m 2 / g by the BET method.
  • the prepared Mo—Si—B based alloy powder was mixed in a weight ratio of 0.2 to 5.0 with respect to the Mo powder, and the Mo—Si—B based alloy powder and the Mo powder were mixed in the same manner as described above.
  • compression molding was performed under conditions of a temperature of 20 ° C. and a molding pressure of 3 ton / cm 2 to obtain a molded body.
  • a sintered body is produced by atmospheric pressure hydrogen sintering at 1800 ° C.
  • a sintered body was manufactured by hot pressing at a sintering temperature of 1750 ° C. and a pressure of 50 MPa.
  • Table 4 shows the weight ratio, relative density, room temperature hardness, 0.2% proof stress and bending strength at high temperatures (1200 ° C.) of the Mo—Si—B alloy powder to the Mo powder in the produced sintered body. .
  • the relative density of the sintered body is out of the range by setting the weight ratio of the Mo-Si-B alloy powder to the Mo powder in the range of 0.25 to 4.0. Higher than. Moreover, in the range of 0.25 or more and 1.3 or less, the 0.2% proof stress at high temperature is higher than that outside the range, and in the range exceeding 1.3 and 4.0 or less, the room temperature hardness is out of range. 0.2% proof stress could not be measured because the bending amount in the bending test was small, but the strength was evaluated by the bending strength, and it was found that the strength was higher than the one outside the range. It was. However, when the weight ratio of the Mo-Si-B alloy powder to the Mo powder is 0.2 and 0.25, the bending strength does not break and the measurement limit of the testing machine is exceeded. It was not possible to measure.
  • the heating temperature of the heat treatment for reducing MoB is from 900 ° C. to 1300 ° C., whereby an effect of reducing the amount of oxygen is obtained.
  • the amount of oxygen is hardly reduced, and at 1450 ° C.
  • the powder was baked on the boat and the recovery rate was about 60%, which proved unsuitable for practical use.
  • the heating temperature of the heat treatment for reducing MoB is desirably 900 ° C. or higher and 1300 ° C. or lower.
  • Example 2 In Example 1, Mo powder, MoB powder, and MoSi 2 powder were mixed, and the mixed powder was heated in a hydrogen atmosphere to produce a Mo—Si—B-based alloy powder in detail.
  • Example 2 the result of producing the Mo—Si—B alloy powder by heating the mixed powder in an inert gas atmosphere such as argon or nitrogen will be described.
  • Example 2 the same Mo powder as that used in Example 1 was used, but the MoB powder had an oxygen content of 730 ppm, the MoSi 2 powder had an oxygen content of 2830 ppm, and the atmosphere during heating was argon and nitrogen. Otherwise, a Mo—Si—B alloy powder was produced in the same manner as described in Example 1. However, since the amount of oxygen in the raw material MoB powder was sufficiently low, the preliminary reduction step was not performed.
  • Table 6 shows the results of evaluation of the obtained Mo—Si—B alloy powder.
  • the full width at half maximum of Mo 5 SiB 2 (600), the amount of Si, the amount of B, and the particle size measured by the BET method are the same as those synthesized in the hydrogen atmosphere shown in the above examples,
  • the characteristics of the sintered body produced using the obtained Mo—Si—B alloy powder were also equivalent. That is, according to this result, by using a raw material powder having a low oxygen content as the MoB, MoSi 2 powder, and heating in an inert gas atmosphere such as argon or nitrogen, a Mo—Si—B alloy powder is produced. It was found that Mo—Si—B alloy powder satisfying the required characteristics can be produced even in a hydrogen atmosphere.
  • the present invention also includes a friction stir welding tool, a glass melting jig, a high temperature industrial furnace member, a hot extrusion die, a seamless pipe piercer plug, a hot runner nozzle for injection molding, and a nested mold for casting. It can be applied to a heat-resistant member in a high temperature environment such as a resistance heating vapor deposition container, an aircraft jet engine and a rocket engine.
  • the Mo—Si—B alloy powder of the present invention can be applied as powder flame spraying or powder for gas plasma spraying. A high film can be formed and high heat resistance can be imparted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

 従来よりも接合対象物の高融点化に対応した耐力や硬度等の物性を充足する耐熱合金用のMo-Si-B系合金を提供する。 本発明のMo-Si-B系合金粉末はX線回折のピークデータにおけるMoSiBの(600)の半値全幅が0.08deg.以上、0.7deg.以下である。

Description

Mo-Si-B系合金粉末、金属材料原料粉末およびMo-Si-B系合金粉末の製造方法
 本発明は、耐熱材料に用いられるMo-Si-B系合金粉末、Mo-Si-B系合金粉末を用いた金属材料原料粉末およびMo-Si-B系合金粉末の製造方法に関する。
 摩擦攪拌接合用工具、ガラス溶融用治工具、高温工業炉用部材、熱間押出し用ダイス、継目無製管用ピアサープラグ、射出成形用ホットランナノズル、鋳造用入子金型、抵抗加熱蒸着用容器、航空機用ジェットエンジン及びロケットエンジンなどの特に高温環境下での耐熱性部材に用いられる材料として、Mo系の合金が知られている。
 このMo系の合金は高温での機械特性や耐酸化性を改善するために、Moに種々の合金や化合物を添加することが行われている。
 このような添加物としてはMoSiBのような、Mo-Si-B系合金が知られており、耐熱性部材の特性を大きく左右する材料として、合金の特性は極めて重要である。
 ここで、従来は、Mo-Si-B系合金の特性の制御は、原料粉末および焼結方法等の選択・改良によりなされて来た。
 例えば特許文献1では、Mo粉末、Si粉末、B粉末をメカニカルアロイングで混合粉末を作製し、得られた混合粉末を加圧成形して熱処理を行うことにより、Mo-Si-B系合金を含むMo合金を製造している(特許文献1)。
 また、特許文献2、3では、原料を溶融して急冷凝固させることにより、Mo-Si-B系合金を製造し、体心立方晶のMoマトリックスに当該合金を分散させ、1300℃で100MPa以上の0.2%耐力を有する材料とする技術が開示されている(特許文献2、3)。
 さらに、特許文献4では、プラズマ溶射法により、Mo、Si、及びBを構成元素とし、MoSi相、MoSi相及びMoSiB相が共存するMo-Si-B合金を形成している(特許文献4)。
 このように、Mo-Si-B系合金は様々な方法により製造され、例えば特許文献5に記載のように、摩擦攪拌接合用の部品に用いられている(特許文献5)。
米国特許第7767138号 米国特許第5595616号 米国特許第5593156号 特開2004-115833号公報 特開2008-246553号公報
 ここで、例えば摩擦攪拌接合に関しては、接合対象物は、従来広く用いられていたAl、Cuから、近年ではFe系、FeCr系(ステンレス等)、Ti系合金のように、次第に融点の高い金属が用いられるようになってきており、摩擦攪拌接合用の部品には、高融点化に対応した、より高い耐力等の物性が特に求められている。
 しかしながら、前記の文献記載のMo-Si-B系合金は、いずれも1300℃での0.2%耐力が100MPa程度であり、接合対象物の高融点化に対応した耐力等の物性を充足していないという問題があった。
 即ち、従来のように、製造方法を工夫するのみでは、接合対象物の高融点化に対応した耐力等の物性を充足させるのが困難となっているのが現状であった。
 本発明は前記の課題に鑑みてなされたものであり、その目的は高密度であり、かつ従来よりも接合対象物の高融点化に対応した耐力等の物性を充足する耐熱合金用のMo-Si-B系合金粉末を提供することにある。
 前記した課題を解決するために、本発明者はMo-Si-B系合金粉末のX線回折で得られるピークデータを鋭意研究した結果、特に粉末の結晶性を表すピークの半値全幅が合金特性に影響する知見を得た。
 一般に、粉末の半値全幅が大きいということは、粉末に歪みや欠陥が導入されたことを意味し、このような粉末を用いて焼結させる場合、粉末に蓄積された歪みエネルギーが開放され焼結を促進する効果がある。即ち、焼結体に用いられる原料粉末としては、結晶性の良いストレスフリーな粉末よりも、歪みを導入された粉末のほうが望ましいと考えられていた。
 しかしながら、本発明者らがMo-Si-B系合金粉末のX線回折データにおけるMoSiBの(600)の半値全幅と、それを原料として焼結した焼結体の相対密度および高温での0.2%耐力との関係を分析した結果、粉末に歪みを導入し半値全幅を大きくした場合よりも、小さくした場合のほうが相対密度および高温での0.2%耐力に優れる場合があることを見出した。これは、粉末に歪を導入することにより焼結を促進する効果があるが、過度に歪を導入するとかえって焼結体の高温強度を低下させることを意味する。歪を導入したことによって高温強度を低下させる理由は、過度に歪を導入しMoSiBの結晶性を悪化させると、MoSiB本来の特性である高温強度を発揮できなくなるためである。
 前記の知見に基づき、本発明者らはさらに検討を重ねた結果、前記半値全幅を一定の範囲に制御することにより、焼結体の相対密度および高温での0.2%耐力が向上することを見出し、本発明をするに至った。
 即ち、本発明の第1の態様は、Mo-Si-B系合金粉末において、X線回折でMoSiBの(213)、(211)、(310)、(114)、(204)回折ピークを有し、かつ、MoSiBの(600)のピークの半値全幅が0.08deg.以上、0.7deg.以下であることを特徴とする、Mo-Si-B系合金粉末である。
 本発明の第2の態様は、第1の態様に記載のMo-Si-B系合金粉末と、IVA、VA、VIA族元素よりなる群から選択される少なくとも1種の粉末による混合粉末であることを特徴とする金属材料原料粉末である。
 本発明の第3の態様は、第1の態様に記載のMo-Si-B系合金粉末の製造方法であって、原料としてMo粉末、MoSi粉末およびMoB粉末を用い所定の配合比率で混合する混合工程と、前記混合工程により得られた混合粉末を水素、もしくは、アルゴンまたは窒素等の不活性ガスを含む雰囲気にて1350℃以上、1750℃以下で加熱処理する熱処理工程と、前記熱処理工程により得られた粉末を解砕処理する工程と、前記解砕処理工程で得られた粉末を篩分する工程と、を具えることを特徴とするMo-Si-B系合金粉末の製造方法である。
 本発明においては、高密度であり、かつ従来よりも接合対象物の高融点化に対応した高温での0.2%耐力等の物性を充足する耐熱合金用のMo-Si-B系合金粉末を提供することができる。
本発明のMo-Si-B系合金粉末の製造の手順を示すフローチャートである。 Mo-Si-B三元系状態図を示す図である(出典:Nunes,C.A.,Sakidja,R.& Perepezko,J.H.:Structural Intermetallics 1997,ed.by M.V.Nathal,R.Darolia,C.T.Liu,P.L.Martin,D.B.Miracle,R.Wagner and M.Yamaguchi,TMS(1997),831-839.)。 本発明のMo-Si-B系合金粉末のX線回折結果を示す図である。 ICDD(International Centre for Diffraction Data)記載のMoSiBのピーク強度を示す図である。 本発明のMo-Si-B系合金粉末のX線回折結果であり、高角度側をスロースキャンした場合のピークデータを示す図である。 半値全幅を求める方法を示す図である。
 以下、図面を参照して本発明に好適な実施形態を詳細に説明する。
 前記のように、本発明に係るMo-Si-B系合金粉末は、X線回折で得られるピークデータにおけるMoSiBの(600)の半値全幅を所定の範囲に制御したものであるが、以下、本発明のMo-Si-B系合金の条件について、詳細に説明する。
<X線回折のピークデータ>
 本発明に係るMo-Si-B系合金粉末は、X線回折のピークデータにおいて、MoSiBの(213)、(211)、(310)、(114)、(204)回折ピークを有する。
 ただし、前記(600)の半値全幅が0.08deg.未満、また、半値全幅が0.7deg.を超えると、焼結した材料の相対密度および高温での0.2%耐力を高める効果は得られない。そのため、(600)回折ピークの半値全幅は、0.08deg.以上、0.7deg.以下であるのが好ましく、0.2deg.以上、0.4deg.以下であるのがより好ましい。
 ここで、X線回折の(600)の半値全幅に着目した理由は、一般的に結晶の歪みの影響が現れやすい(100)の高次の格子面であるからである。また、高次の格子面には、さらに結晶の歪みの影響が現れやすい傾向がある。さらに、本発明で着目した(600)のピークは、他のMoSiなどの化合物やMoのピークと重なることはなく、半値全幅の解析に適するピークであった。
 また、より好ましくは、(204)面のピーク強度が、前記(114)のピーク強度比より大きいものであればよく、図4に示すようなICDD記載のMoSiBのピーク強度比と一致している必要はない。
 なお、詳細は後述するが、前記半値全幅は例えば合金粉末の生成時の加熱処理温度を制御することや加熱処理後の解砕(粉砕とも言う)処理条件を制御することにより、制御可能である。
<Mo、Si、Bの組成>
 本発明に係るMo-Si-B系合金は、MoSiBの(600)の半値全幅を所定の範囲に制御したものであるため、少なくともMoSiBを含んでいる。
 ただし、Mo-Si-B系合金は、MoSiBの完全な成分比である必要は必ずしもなく、例えば後述する不可避化合物として、MoSiやMoB等を含めたMo、Si、Bの少なくとも2種以上を含む化合物が本願発明のMo-Si-B系合金粉末の配合に起因し含まれることがあり得るが、MoSiBが主成分であれば、本願の効果を得ることが可能である。
 具体的には、Si含有量が4.2質量%以上、5.9質量%以下、B含有量が3.5質量%以上、4.5質量%以下であってもよい。前記のMoSiやMoB等の不可避化合物は、例えば、MoSiBをMo-Si-B系合金の主成分とした場合、MoSiB最強線ピーク(213)の強度に対し、MoB(002)のピーク強度が2%、MoSi(211)面ピーク強度が6%程度であれば本願発明の作用効果である焼結体合金の密度や高温0.2%耐力に影響しない。
 不可避不純物としては、Fe、Ni、Crなどの金属成分や、C、N、Oがある。
<粉末粒度>
 本発明に係るMo-Si-B系合金の粉末粒度は、焼結体を作製する際に用いられる他の粉末、例えばMo粉末と混合した際に均一な混合・分散を可能とするため、BET法(Brunauer,Emmet and Teller's method)で0.05m/g以上、1.0m/g以下であるのが望ましい。
 これは、粒度が0.05m/g未満の場合、1次粒子に顕著に大きい粒子が混在する状態となるため、本願発明の合金粉末と共に配合される、例えばMo粉末との均一な混合・分散に支障を与え、十分な合金特性が得られなくなるためである。
 また、1.0m/gを超えると、逆に1次粒子が小さ過ぎて凝集してしまい、大きな2次粒子を形成し易くなるためである。
 即ち、凝集粒子の存在は十分な成形密度が得られ難くなる。また凝集が強くなると本願発明の合金粉末と共に配合されるMo粉末との均一な混合・分散に支障を与え、十分な合金特性が得られなくなる。
<酸素含有量>
 本発明に係るMo-Si-B系合金粉末における酸素は、Mo粉末と混合して焼結する際に、Mo粉末と合金粉末の焼結を促進し粒界強度を高め、焼結した材料の高温曲げ強さを高める効果があることがわかった。本願発明者の調査の結果、酸素含有量が200質量ppm以上、45000質量ppm以下の酸素が含まれていることが好ましい。さらに焼結の促進と空孔の残存を防止させるためには、840質量ppm以上、21600質量ppm以下とした方がより好ましい。
 なお、詳細は後述するが、酸素含有量は、Mo-Si-B系合金粉末の加熱処理工程条件や原料粉末のうちの特にMoB粉末の予備還元処理にて制御可能である。
<炭素含有量>
 本発明に係るMo-Si-B系合金粉末における炭素は、例えばMo粉末と配合し焼結体を製造した場合、合金の原料粉末に存在する酸素を除去する効果だけでなく、Mo母相の焼結を促進し粒界強度を高め、焼結した材料の高温曲げ強さを高める効果がある。しかし、Mo-Si-B系合金粉末の酸素を過度に除去すると、Mo-Si-B系合金粉末とMo粉末間の焼結を促進する効果が低くなる。そのため、炭素含有量が50質量ppm以上、1000質量ppm以下であるのが好ましく、さらに焼結を促進する範囲として、80質量ppm以上、220質量ppm以下であるのがより好ましい。
 なお、詳細は後述するが、炭素含有量は、本願発明のMo-Si-B系合金粉末の原料中に不可避不純物として存在したことにより起因したものでもよいし、炭素源を意図的に添加したものでもよい。
 即ち、炭素はMo-Si-B系粉末合金と化学的に結合している状態でなくともよく、遊離炭素であってもよい。不可避不純物としての炭素は、混合装置、加熱処理装置や解砕装置の金属またはセラミック製の部材などから混入する可能性がある。遊離炭素として添加する場合は、カーボンブラック、黒鉛、カーボンファイバー、フラーレン、ダイヤモンドなどの単体の他、有機質材料、溶剤、およびこれらの2種以上の組合せを用いることができる。
 これら酸素および炭素をMo-Si-B系合金粉末に含ませると焼結体の相対密度および高温での0.2%耐力が向上するメカニズムは以下のように考えることができる。
 高い酸素量を有するMo-Si-B系合金粉末をMo粉末と混合して焼結すると、Mo-Si-B系合金粉末中の酸素がMo粉末と反応して三酸化モリブデンMoOを生成する。MoOの融点は約800℃であることが知られていることから、後述する合金焼結温度に到達する前にMoOが融点に達し、Mo粉末間、Mo粉末とMo-Si-B系合金粉末間に浸透して粉末の濡れ性を向上させて焼結を促進すると考えられる。
 形成されたMoO相は、水素雰囲気により焼結中に徐々に還元され最終的にはMo相になるため、焼結材料中にMoOが検出されたり、焼結材料の室温硬度や高温強度を低下させたりする可能性は非常に低い。部分的にはMoOが気化する場合もあると考えられるが、MoOが抜けた跡にはMoのフレッシュな表面が現れるため、この場合も焼結が促進されるようになると考えられる。
 また、この効果を得るために焼結合金の原料としてMoO粉末を必要量添加することも一案と考えられるが、このMoO粉末が異種の物であるMoとMo-Si-B系合金粉末間に存在せねば、焼結促進効果が得られ難く、またMoO粉末として添加した場合、微量である為に全体に均一に分散し難いことも考えられる。よって、焼結性を向上させ、焼結体の密度を向上させるには、Mo-Si-B系合金粉末に酸素がある方がより好ましいと考えられた。
 また、Mo-Si-B系合金中の炭素は、MoOの還元に寄与する重要な成分であると考えられる。炭素成分は後述のように、合金を焼結する前の混合工程で添加することもできるが、成分分散の均一性の観点からは本発明のようにMo-Si-B合金粉末中に予め炭素成分が含まれているほうがよい。
 なお、MoOは400℃から生成され、MoCは1100℃以上にて生成されることから、Moは酸化物が生成される前に炭化物が生成される可能性は非常に低く、前記の濡れ性の効果が得られる。
 前記より、Mo粉末とMo-Si-B系合金粉末の間に選択的に作用させるためにMo-Si-B系合金粉末に酸素および炭素を含ませることが望ましいと考えられる。
 以上が本発明のMo-Si-B系合金粉末の条件である。
<製造方法>
 次に、本発明のMo-Si-B系合金粉末の製造方法について説明する。
 本発明のMo-Si-B系合金粉末の製造方法については、前記した条件を満たす合金が製造できるものであれば、特に限定されるものではないが、図1に示す方法を例示することができる。
 まず、原料粉末を所定の比率で混合して混合粉末を生成する(図1のS1)。
 原料としては、Mo粉末、MoSi粉末およびMoB粉末が挙げられるほか、必要に応じて炭素粉末を添加して合金粉末の炭素量を制御する。
 なお、MoB粉末は酸素との反応性がMo粉末やMoSiに比べて顕著であり、保管中における酸素量が他の粉末と比べて大きく変動する可能性がある。
 原料の酸素量に起因する合金粉末の酸素量を安定化するために、MoB粉末を予備還元処理することが望ましい(図1のS0)。
 その理由は、MoBは長期保管した場合や湿度の高い環境に曝した場合に、酸素含有量が10質量%程度になることがあるからである。本発明の製造方法であれば、この程度の酸素含有量であっても原料として用いることができるが、予備還元処理を行うことにより、Mo-Si-B系合金粉末の酸素量を安定させることができる。
 Mo-Si-B系合金粉末の原料粉末として使用するMoB粉末の酸素含有量は、5質量%以内が好ましい。より好ましくは2質量%以内、さらに好ましくは1質量%以内である。この工程はMoBを還元することが目的であるため水素雰囲気を用いる。
 予備還元の温度は、900℃より低いと還元効果が十分ではなく、1300℃よりも高いと加熱処理時に粉末を設置するボートにMoB粉末が焼きつくため歩留まりを低下させる問題がある。
 そのため、予備還元の温度は、900℃から1300℃が望ましく、これにより、安定した還元効果が得られ、かつ高い回収率を得られる。
 また、より安定した還元効果と回収率を得るためには、予備還元の温度は1100℃以上、1200℃以下がより望ましい。
 次に、混合粉末を水素、もしくは、アルゴンまたは窒素等の不活性ガスを含む雰囲気にて加熱処理を行う(図1のS2)。加熱時の圧力は大気圧とした。
 具体的には、1350℃以上、1750℃以下で加熱処理を行うのが望ましい。
 これは、加熱温度が1350℃よりも低いと長時間の加熱を行ってもMoB等の不純物の量が増大し、これを原料として焼結した場合、機械的強度の低下を招くためであり、また、加熱温度が1750℃よりも高いと焼結が進行するため粒子が大きくなるとともに、結晶性がよくなり前記MoSiBの(600)の半値全幅が小さくなりすぎてしまう。さらに、後述する解砕工程における処理時間の増大を招く恐れもあるためである。即ち、本願発明の半値全幅制御の第一の制御ポイントが加熱処理条件である。
 次に、熱処理工程により得られた粉末は、軽度に凝集した状態となるため解砕処理する(図1のS3)。
 最後に、解砕処理工程で得られた粉末を篩分して、前記粒度の粉末を抽出する(図1のS4)。
 ここで、加熱処理された粉末は凝集しており、解砕、篩分する必要があるが、特に解砕条件にて粉末に大きな外力が加わると粉末に歪が生じ、本願発明範囲の半値全幅の粉末が得られなくなる場合がある。基本的には、前記の加熱処理工程にて、結晶性を制御し、第二の半値全幅制御の第二の制御ポイントである解砕工程では、本願発明の範囲外の半値全幅となるような歪を与えない条件とすることが望ましい。例えば、解砕方法としては乳鉢での解砕やMoにて内面被覆されたボールミルにて容器回転数を少なくかつ処理時間を短くするなどで対処すればよい。
 なお、場合によっては前記の加熱工程にて上限温度域で長時間処理した場合は、この解砕条件を調整することにより、歪を与えても本願発明の粉末を得られる。使用する解砕装置は公知のもの、例えば乳鉢やボールミルでもよく、条件を適宜調整すればよい。
 以上の工程が、本発明のMo-Si-B系合金粉末の製造方法である。
 このように、本発明に係るMo-Si-B系合金は、MoSiBの(600)の半値全幅を所定の範囲に制御することにより、歪が導入された粉末となるため焼結が促進され高密度な焼結体を得ることができ、かつ、結晶性を維持する範囲内で前記歪を与えることによりMoSiB本来の特性である高温強度を発揮することができるため、従来よりも接合対象物の高融点化に対応した摩擦撹拌接合用工具に要求される高温での0.2%耐力等の物性を充足することができる。
<Mo-Si-B系合金粉末と金属粉末の混合粉末>
 本発明のMo-Si-B系合金粉末は、IVA、VA、VIA族元素よりなる群から選択される少なくとも1種の粉末、例えばMo、W、Ta、Nb、Hfのうちの少なくとも1種の粉末と混合して焼結することにより、耐熱性部材として用いることができる。
 この際、IVA、VA、VIA族元素よりなる群から選択される少なくとも1種の粉末重量に対する、前記Mo-Si-B系合金粉末の重量配合比率は、Moに対して0.25以上、4.0以下となるようにすることが好ましい。
 例えば、Moに対するMo-Si-B系合金粉末の配合比率が0.25よりも小さいときは、0.2%耐力がMoの値に近づき低くなり、本発明の用途の一つである摩擦攪拌接合用工具には適さなくなる。一方4.0よりも大きいときは、成形性が悪くなり焼結体の密度が低下し焼結できなくなる。Mo-Si-B系合金は非常に硬い材料であるため、重量比率がこれより高くなるとMo粒子を介して焼結することよりもMo-Si-B系合金粉末同士で焼結することのほうが高頻度となり、それによって気孔を形成する可能性が高くなる。ただし、前記のMoに対するMo-Si-B系合金粉末の配合比率が1.3を超える場合には、焼結体の硬度が高くなるため耐摩耗材料としてさらに優れた効果を発揮するが脆くなるため、延性も必要とする用途での範囲としては0.25以上1.3以下とするのがより好ましい。
 また、Moの他に、例えば、W、Ta、Nb、Hfのうち少なくとも1種の粉末を混合する場合には、Moに対するMo-Si-B系合金粉末の配合比率が0.25~4.0の場合のMoとMo-Si-B系合金の体積比率に等しくなるように、W、Ta、Nb、Hfを混合すればよい。
 ここで、本願発明における各種特性の測定条件を記す。
<本願発明粉末のX線回折の条件>
 装置:(株)リガク製X線回折装置(型番:RAD-IIB)
 管球:Cu(KαX線回折)
 発散スリット及び散乱スリットの開き角:1°
 受光スリットの開き幅:0.3mm
 モノクロメーター用受光スリットの開き幅:0.6mm
 管電流:30mA
 管電圧:40kV
 スキャンスピード:1.0°/min
<本願発明粉末の酸素含有量、炭素含有量>
 次に、Mo-Si-B系合金粉末の酸素含有量の測定は、LECO製酸素分析装置「TC600」を用いて行い、炭素含有量の測定は、堀場製作所製炭素硫黄分析装置「EMIA-810」を用いて行った。
<本願発明粉末の粒度>
 粉末粒度の測定は、スペクトリス製表面積測定装置「モノソーブ」を用いて行った。
<本願発明粉末を用いて作製された焼結体の相対密度の算出方法>
 相対密度は、次のようにして求めた。ここでいう相対密度とは、作製した試料(バルク)について測定した密度を理論密度で除して%で表した値である。
 以下、具体的な測定方法について説明する。
(バルク密度の測定)
 バルク密度はアルキメデス法により求めた。具体的には、空中と水中での重量を測定し、下記計算式を用いてバルク密度を求めた。 
 バルク密度=空中重量/(空中重量-水中重量)×水の密度
(理論密度の測定)
 まず、以下の手順でMo-MoSiB合金の理論密度を求めた。 
(1)ICP-AESにより、バルク中のMo、Si、Bの質量%を測定し、その値をmol%に換算した。 
(2)図2に示す三元系状態図上にSi、Bのmol%の組成点をプロットした(図2の黒丸参照)。なお、バルクの組成は大部分がMoかMoSiBなので、MoSiBの組成点とMo100%の組成点を結ぶ直線上にプロット点が乗る。 
(3)図2に示すように、前記プロット点とMo100%の組成点の間の距離をX、MoSiBの組成点との間の距離をYとして、XとYの比率を100%換算する。このとき、XはMoSiBのmol比率、YはMoのmol比率となる。 
(4)Moの原子量をa(=95.94g/mol)、MoSiBの原子量をb(=105.9g/mol)とし、Moの密度をMa(=10.2g/cm3)、理想的に組成調整されたMoSiBのバルク材の密度をMb(=8.55g/cm3)とする。 
(5)ここでMoSiBとMoの質量比は以下のように表される。 
 MoSiB:Mo=X・b:Y・a
 これより、合金全体の質量は以下のように表される。 
合金全体の質量=X・b+Y・a
 また、合金全体の体積は以下のように表される。 
 合金全体の体積=(X・b/Mb)+(Y・a/Ma)
 よって、合金の密度は、合金全体の質量/合金全体の体積で求められ、
 理論密度Mt=(X・b+Y・a)/[(X・b/Mb)+(Y・a/Ma)]となる。
<本願発明粉末を用いて作製された焼結体の硬度測定>
 耐熱合金の硬度測定は(株)アカシ製マイクロビッカース硬度計(型番:AVK)を用い、大気中20℃にて測定荷重20kgを加えることにより、ビッカース硬度を測定した。測定点数は5点とし、平均値を算出した。
<本願発明粉末を用いて作製された焼結体の0.2%耐力>
 耐熱合金の0.2%耐力は、以下の手順により測定した。
 まず、焼結体を長さ:約25mm、幅:約2.5mm、厚さ:約1.0mmとなるように加工し、表面を#600のSiC研磨紙を用いて研磨した。
 次に、試料をピン間隔が16mmとなるようにインストロン社製高温万能試験機(型番:5867型)にセットし、Ar雰囲気下1200℃で、クロスヘッドスピード1mm/minでヘッドを試料に押し付けて3点曲げ試験を行い、0.2%耐力を測定した。
 以下、実施例に基づき、本発明をさらに詳細に説明する。
(実施例1)
<粉末のX線回折による半値全幅の評価>
 まず、(600)の半値全幅の異なる、Mo-Si-B系合金粉末を作製してMo粉末と混合して焼結体を製造し、相対密度と0.2%耐力を測定した。具体的な手順は以下の通りである。
 まず、Mo-Si-B系合金粉末を作製した。
 具体的には、まず、純度99.99質量%以上、Fsss法による平均粒度が4.8μmで酸素含有量が580ppmのMo粉末を43.4質量%、Fsss法による平均粒度が8.1μmで酸素含有量が8250ppmのMoSi粉末を14.3質量%、Fsss法による平均粒度が8.1μmのMoB粉末を42.3質量%の割合で配合し、乳鉢で混合し、混合粉末を作製した。
 ただし、前記MoB粉末の酸素含有量は78200質量ppmあったため、還元するために水素雰囲気で1150℃の加熱処理を行い、19800質量ppmにまで酸素量を低減させてから前記粉末混合に供した。
 次に、得られた混合粉末を水素雰囲気にて1250℃~1800℃で1時間加熱処理し、合金粉末を得た。この工程における加熱処理温度を変えることで、MoSiBの(600)の半値全幅を制御することができる。前記温度範囲1250℃~1800℃であれば、最も低い温度の1250℃において前記半値全幅が最も大きくなり、温度を高くするほど前記半値全幅が小さくなる傾向を示し、最も高い温度の1800℃においては、前記半値全幅が最も小さくなる。
 次に、得られた合金粉末50gを乳鉢により15分~120分解砕処理した。乳鉢はメノウ製のものを用い、回転数を7rpmとした。乳棒もメノウ製のものを用い回転数を120rpmとした。MoSiBの(600)の半値全幅は、この工程における解砕時間を変えることでも制御することができる。前記解砕時間15分~120分の範囲であれば、最も解砕時間の短い15分において前記半値全幅が最も小さくなり、解砕時間を長くするほど前記半値全幅が大きくなる傾向を示し、最も解砕時間の長い120分においては、前記半値全幅が最も大きくなる。
 このようにして加熱温度と解砕時間によりMoSiBの(600)の半値全幅を制御した粉末を、最後に#60の篩を用いて篩分し、MoSiBの(600)の半値全幅が0.05deg.~0.8deg.のMo-Si-B系合金粉末を作製した。
 次に、作製したMo-Si-B系合金粉末を44質量%、Mo粉末を54質量%、およびMoSi粉末を2質量%混合し、一軸式プレス機を用いて、温度20℃、成形圧3ton/cmの条件下で圧縮成形し、成形体を得た。
 次に、1800℃の常圧水素焼結により焼結体を作製した。
 作製したMo-Si-B系合金粉末の半値全幅、焼結体の相対密度および高温(1200℃)での0.2%耐力を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、粉末4のものに対して、以下の条件でX線回折を行った結果を、図3に示す。
 この図に示した通り、作製したMo-Si-B系合金粉末は、MoSiBの(213)、(211)、(310)、(114)、(204)回折ピークを有し、このピークは図4に示すMoSiBのICDD記載のピークとも一致しており、得られた合金がMoSiBを主成分として含むことが明らかとなった。
 また、(204)のピーク強度が、前記(114)のピーク強度比より大きいこともわかった。
 さらに、半値全幅を評価するために、スキャンスピードを0.5°/minとし、他の条件は前記と同様とし、2θ=100deg.~135deg.のスロースキャンを行い、図5のピークデータを得た。この図における(600)の半値全幅は、図6に示すようにピーク強度の半分の位置でピークの全幅を抽出し半値全幅を求めた。その結果、0.21deg.となり、また同様に、本発明の粉末は全て0.08deg.以上、0.7deg.以下の範囲内にあることがわかった。ただし、製造条件の一つである加熱温度が1750℃を超える比較例に示した粉末Aの場合や、比較例に示した粉末Bのように1350℃未満の場合には、前記(600)の半値全幅は、本発明の範囲外となり相対密度が低く、高温(1200℃)での0.2%耐力も低下することがわかった。
 一方、他の製法の比較例である粉末Cは、まずMo粉末(Fsss:4.8μm)を90.6質量%、Si粉末(Fsss:10μm)を5.3質量%、B粉末(Fsss:15μm)を4.1質量%混合した粉末を用意し、ガスアトマイズ法によりMo-Si-B系合金粉末を作製した例である。また、さらに別の製法の比較例である粉末Dは、Mo粉末(Fsss:4.8μm)を90.6質量%、Si粉末(Fsss:10μm)を5.3質量%、B粉末(Fsss:15μm)を4.1質量%混合した粉末を容器に投入し、アルゴンガス置換を行って鋼球をメディアとして使用し振動ボールミルにてMA処理を行った例である。これら既存方法で作製した粉末も、実施例1と同様の焼結条件で焼結体を作製した。粉末Aについては、MoSiBの(600)の半値全幅が0.08deg.よりも小さくなり、粉末Bについては、0.7deg.よりも大きくなり、いずれの場合も相対密度が低くなり、高温での0.2%耐力も著しく低下することがわかった。
 これらの結果からから明らかなように、MoSiBの(600)の半値全幅が0.08deg.以上、0.7deg.以下の範囲内とすることにより、Mo-Si-B系合金粉末を用いた焼結体の相対密度と高温での0.2%耐力を上昇させられることがわかった。
<粉末粒度の影響の評価>
 次に、加熱条件と開催条件の調整により、粉末粒度の異なるMo-Si-B系合金粉末をMo粉末と混合して焼結体を製造し、相対密度と0.2%耐力を測定した。具体的な手順は以下の通りである。
 まず、Mo-Si-B系合金粉末は、MoSiBの(600)の半値全幅が0.08deg.~0.7deg.の範囲で、かつ粉末粒度をBET法で測定した比表面積で表し、0.03m/g~1.5m/gとしたものを作製した。ここで、粉末粒度は加熱温度、加熱時間および解砕時間で制御することができる。加熱温度を高くし、加熱時間を長くし、または、解砕時間を短くすると粉末粒径が大きくなり、BET法で得られる粒度の値は小さくなる。一方、加熱温度を低くし、加熱時間を短くし、または粉砕時間を長くすると粉末粒径は小さくなり、BET法で得られる粒度の値は大きくなる。
 このようにして作製した粒度がBET法で0.03~1.5m/gのMo-Si-B系合金粉末を、前記と同様にMo-Si-B系合金粉末を44質量%、Mo粉末を54質量%、およびMoSi粉末を2質量%混合し、一軸式プレス機を用いて、温度20℃、成形圧3ton/cmの条件下で圧縮成形し、成形体を得た。
 次に、1800℃の常圧水素焼結により焼結体を作製した。
 作製したMo-Si-B系合金粉末の組成、焼結体の相対密度および高温(1200℃)での0.2%耐力を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、0.05m/g以上、1.0m/g以下の範囲のMo-Si-B系合金粉末を用いた焼結体は、相対密度、高温(1200℃)での0.2%耐力の両方が、範囲外のものよりも高く、特に0.2%耐力は100MPa以上高かった。
 この結果から、粉末粒径を制御することにより、Mo-Si-B系合金粉末を用いた焼結体の相対密度と0.2%耐力を上昇させられることがわかった。
<酸素含有量、炭素含有量の影響の評価>
 次に、Mo-Si-B系合金粉末の酸素含有量を190ppm~45300ppm、炭素含有量を40ppm~1050ppmとして、前記と同様にMo-Si-B系合金粉末を44質量%、Mo粉末を54質量%、およびMoSi粉末を2質量%混合し、一軸式プレス機を用いて、温度20℃、成形圧3ton/cmの条件下で圧縮成形し、成形体を得た。ここで用いたMo-Si-B系合金粉末は、MoSiBの(600)の半値全幅が0.08deg.~0.5deg.の範囲で、かつ粉末粒度をBET法で0.05m/g~1.0m/gとしたものである。ここで、Mo-Si-B系合金粉末の酸素含有量は、用いる原料粉末、特にMoB粉末の酸素含有量に影響を受けるため、MoB粉末の予備還元処理での加熱温度、または前記予備還元処理で投入する炭素粉末の量によって制御可能である。また、Mo-Si-B系合金粉末の炭素含有量は、前記MoB粉末の予備還元処理で投入する炭素粉末の量によって制御可能である。
 次に、1800℃の常圧水素焼結により焼結体を作製した。
 作製したMo-Si-B系合金粉末の酸素含有量、炭素含有量、焼結体の相対密度および0.2%耐力を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、酸素含有量が200質量ppm以上、45000質量ppm以下、炭素含有量が50質量ppm以上、1000質量ppm以下の範囲のMo-Si-B系合金粉末を用いた焼結体は、範囲外の粉末を用いた焼結体と比べて相対密度が5%以上、0.2%耐力が100MPa以上高くなっていた。さらに前記範囲の中でも、酸素含有量が840質量ppm以上、21600質量ppm以下、炭素含有量が80質量ppm以上、220質量ppm以下の範囲のMo-Si-B系合金粉末を用いた焼結体は、0.2%耐力がさらに高くなることがわかった。
 この結果から、酸素含有量と炭素含有量を制御することにより、Mo-Si-B系合金粉末を用いた焼結体の相対密度と高温(1200℃)での0.2%耐力を上昇させられることがわかった。
<本願発明粉末を用いた焼結体作成時の原料粉末の重量配合比率>
 次に、Mo粉末に対するMo-Si-B系合金粉末の重量配合比率を0.2~1.5として焼結体を製造し、相対密度と高温(1200℃)での0.2%耐力を測定した。具体的な手順は以下の通りである。
 まず、Mo-Si-B系合金粉末は、MoSiBの(600)の半値全幅が0.08deg.~0.5deg.の範囲で、かつ粉末粒度をBET法で0.05m/g~1.0m/gとしたものを作製した。
 作製したMo-Si-B系合金粉末を、Mo粉末に対する重量配合比率で0.2~5.0として、前記と同様にMo-Si-B系合金粉末、およびMo粉末を混合し、一軸式プレス機を用いて、温度20℃、成形圧3ton/cmの条件下で圧縮成形し、成形体を得た。
 次に、Mo粉末に対するMo-Si-B系合金粉末の重量配合比率が、1.5未満の場合は、1800℃の常圧水素焼結により焼結体を作製し、1.5以上の場合には焼結温度1750℃、圧力50MPaとしてホットプレスにより焼結体を製作した。
 作製した焼結体における、Mo粉末に対するMo-Si-B系合金粉末の重量配合比率、相対密度、室温硬度、高温(1200℃)での0.2%耐力および抗折力を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなようにMo粉末に対するMo-Si-B系合金粉末の重量配合比率が0.25以上、4.0以下の範囲とすることにより、焼結体の相対密度が範囲外のものよりも高くなった。また、0.25以上、1.3以下の範囲では、高温での0.2%耐力が範囲外のものよりも高く、1.3を超え4.0以下の範囲では、室温硬度が範囲外のものよりも高く、曲げ試験におけるたわみ量が小さいため、0.2%耐力が測定できなかったが、抗折力で強度を評価したところ、範囲外のものよりも高強度であることがわかった。ただし、Mo粉末に対するMo-Si-B系合金粉末の重量配合率が、0.2と0.25のものについては、曲げ試験で破断せずに試験機の測定限界を超えたため抗折力を測定できなかった。
 この結果から、適切な重量配合比率とすることにより、Mo-Si-B系合金粉末を用いた焼結体の相対密度、高温での0.2%耐力、および抗折力を上昇させられることがわかった。
<原料MoB粉末の予備還元処理の評価>
 なお、以上の実施例においてMo-Si-B系合金粉末の製造に用いたMoB粉末は、酸素量7.82%のものを用いたが、これでも予備還元処理を施すことにより本発明の目的を十分に達成することができることを示した。しかしMoB粉末は、保管中に空気中の水分を吸着しながら酸化が進行し、酸素含有量が10質量%程度まで高くなってしまうこともある。そこで次に、MoBを予備還元する加熱処理の効果について詳述する。具体的には、酸素含有量9.8%のMoB粉末を800℃~1450℃の温度で1時間加熱処理を行い、その後15分間乳鉢で解砕処理を行った後、酸素含有量を測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5からわかるように、MoBを還元する加熱処理の加熱温度は、900℃から1300℃とすることにより、酸素量低減効果が得られ、800℃ではほとんど酸素量が低減せず、1450℃では粉末がボートに焼付き回収率が60%程度となって実用には不向きであることがわかった。
 この結果から、MoBを還元する加熱処理の加熱温度は、900℃以上、1300℃以下とすることが望ましいことがわかった。
(実施例2)
 実施例1においては、Mo粉末、MoB粉末、およびMoSi粉末を混合し、混合粉末を水素雰囲気中で加熱してMo-Si-B系合金粉末を作製した結果について詳細に説明した。
 次に、実施例2として前記混合粉末を、アルゴン、または、窒素などの不活性ガス雰囲気中で加熱してMo-Si-B系合金粉末を作製した結果について説明する。
 具体的には、Mo粉末は、実施例1と同じものを用いたが、MoB粉末については酸素量730ppm、MoSi粉末については酸素量2830ppmのものを用い、加熱時の雰囲気をアルゴン、窒素とし、それ以外は、実施例1に記載した方法と同様にしてMo-Si-B系合金粉末を製作した。ただし、原料MoB粉末の酸素量が十分低かったため、予備還元工程は実施しなかった。
 得られたMo-Si-B系合金粉末について評価した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示したように、MoSiB(600)の半値全幅、Si量、B量、BET法により測定した粒度は、前記実施例で示した水素雰囲気で合成した場合と同等であり、得られたMo-Si-B系合金粉末を用いて作製した焼結体の特性も同等であった。即ち、この結果により、MoB、MoSi粉末として酸素量の低い原料粉末を使用し、アルゴンまたは窒素等の不活性ガス雰囲気中で加熱してMo-Si-B系合金粉末を製作することにより、水素雰囲気中でなくとも、必要な特性を満足したMo-Si-B系合金粉末を製作できることがわかった。
 以上、本発明を実施形態および実施例に基づき説明したが、本発明は前記の実施形態に限定されることはない。
 当業者であれば、本発明の範囲内で各種変形例や改良例に想到するのは当然のことであり、これらも本発明の範囲に属するものと了解される。
 また、本発明は、摩擦攪拌接合用工具、ガラス溶融用治工具、高温工業炉用部材、熱間押出し用ダイス、継目無製管用ピアサープラグ、射出成形用ホットランナノズル、鋳造用入子金型、抵抗加熱蒸着用容器、航空機用ジェットエンジン及びロケットエンジンなどの特に高温環境下での耐熱性部材に適用できる。
 さらに本発明のMo-Si-B系合金粉末を造粒することにより、粉末フレーム溶射や、ガスプラズマ溶射用粉末としても適用することができ、それによって、種々の金属材料の表面に耐熱性の高い被膜を形成し、高い耐熱性を付与することができるようになる。

Claims (13)

  1.  MoSiBを含み、かつ、X線回折におけるMoSiBの(600)のピークの半値全幅が0.08deg.以上、0.7deg.以下であることを特徴とするMo-Si-B系合金粉末。
  2.  MoSiBを主成分とすることを特徴とする請求項1に記載のMo-Si-B系合金粉末。
  3.  Si含有量が4.2質量%以上、5.9質量%以下、B含有量が3.5質量%以上、4.5質量%以下で、残部がMoおよび不可避不純物であることを特徴とする請求項1または2のいずれか一項に記載のMo-Si-B系合金粉末。
  4.  BET法で測定した粒度が0.05m/g以上、1.0m/g以下であることを特徴とする請求項1~3のいずれか一項に記載のMo-Si-B系合金粉末。
  5.  X線回折でMoSiBの(204)のピーク強度が、前記(114)のピーク強度より大きいことを特徴とする請求項1~4のいずれか一項に記載のMo-Si-B系合金粉末。
  6.  酸素含有量が200質量ppm以上、45000質量ppm以下、炭素含有量が50質量ppm以上、1000質量ppm以下および不可避化合物と不可避不純物とからなることを特徴とする請求項1~5のいずれか一項に記載のMo-Si-B系合金粉末。
  7.  酸素含有量が840質量ppm以上、21600質量ppm以下、炭素含有量が80質量ppm以上、220質量ppm以下であることを特徴とする請求項1~5のいずれか一項に記載のMo-Si-B系合金粉末。
  8.  請求項1~7のいずれか一項に記載のMo-Si-B系合金粉末と、IVA、VA、VIA族元素よりなる群から選択される少なくとも1種以上の粉末による混合粉末であることを特徴とする金属材料原料粉末。
  9.  前記IVA、VA、VIA族元素よりなる群から選択される粉末が、Mo、W、Ta、Nb、Hfのうちの少なくとも1種以上の粉末であることを特徴とする請求項8記載の金属材料原料粉末。
  10.  前記IVA、VA、VIA族元素よりなる群から選択される少なくとも1種以上の粉末重量に対する、前記Mo-Si-B系合金粉末の重量配合比率は、Moに対して0.25以上、4.0以下とし、この場合のMoとMo-Si-B系合金の体積比率を等しくなるように、IVA、VA、VIA族の各元素をMo-Si-B系合金と混合したことを特徴とする請求項8または9のいずれか一項に記載の金属材料原料粉末。
  11.  前記Mo-Si-B系合金粉末の重量配合比率は、Moに対して0.25以上、1.3以下とし、この場合のMoとMo-Si-B系合金の体積比率を等しくなるように、IVA、VA、VIA族の各元素をMo-Si-B系合金と混合したことを特徴とする請求項8または9のいずれか一項に記載の金属材料原料粉末。
  12.  請求項1~7のいずれか一項に記載のMo-Si-B系合金粉末の製造方法であって、
     原料としてMo粉末、MoSi粉末およびMoB粉末を用い所定の配合比率で混合する混合工程と、
     前記混合工程により得られた混合粉末を水素または不活性ガスを含む雰囲気にて1350℃以上、1750℃以下で加熱処理する熱処理工程と、
     前記熱処理工程により得られた粉末を解砕処理する工程と、
     前記解砕処理工程で得られた粉末を篩分する工程と、
     を具えることを特徴とするMo-Si-B系合金粉末の製造方法。
  13. 前記MoB粉末を、前記混合工程に先立ち、予め水素雰囲気で900℃以上、1300℃以下で加熱処理する予備還元工程を有することを特徴とする請求項12記載のMo-Si-B系合金粉末の製造方法。
PCT/JP2012/083218 2011-12-28 2012-12-21 Mo-Si-B系合金粉末、金属材料原料粉末およびMo-Si-B系合金粉末の製造方法 WO2013099791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12863978.8A EP2799163A4 (en) 2011-12-28 2012-12-21 MEL-Si-B-BASED ALLOY POWDER, METAL RAW POWDER AND METHOD FOR PRODUCING MEL-Si-B-BASED ALLOY POWDER
JP2013551674A JP5905907B2 (ja) 2011-12-28 2012-12-21 Mo−Si−B系合金粉末、金属材料原料粉末およびMo−Si−B系合金粉末の製造方法
US14/368,976 US9884367B2 (en) 2011-12-28 2012-12-21 Mo—Si—B-based alloy powder, metal-material raw material powder, and method of manufacturing a Mo—Si—B-based alloy powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-288321 2011-12-28
JP2011288321 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099791A1 true WO2013099791A1 (ja) 2013-07-04

Family

ID=48697278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083218 WO2013099791A1 (ja) 2011-12-28 2012-12-21 Mo-Si-B系合金粉末、金属材料原料粉末およびMo-Si-B系合金粉末の製造方法

Country Status (4)

Country Link
US (1) US9884367B2 (ja)
EP (1) EP2799163A4 (ja)
JP (1) JP5905907B2 (ja)
WO (1) WO2013099791A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014339B1 (fr) * 2013-12-06 2016-01-08 Snecma Procede de fabrication d'une piece par fusion selective de poudre
DE102015209583A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Molybdän-Silizium-Borlegierung und Verfahren zur Herstellung sowie Bauteil
EP3254785B1 (en) * 2016-06-10 2021-11-24 Raytheon Technologies Corporation Method of forming mo-si-b powder
WO2021076823A1 (en) * 2019-10-17 2021-04-22 University Of Florida Research Foundation Solar collection energy storage and energy conversion or chemical conversion systems
US11761064B2 (en) 2020-12-18 2023-09-19 Rtx Corporation Refractory metal alloy
CN113695579B (zh) * 2021-08-23 2022-10-28 北京工业大学 一种用于铌基合金表面的高温抗氧化涂层

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593156A (en) 1993-12-10 1997-01-14 Karoly-J Ltd. Ground marker and methods of using same to mark distances and/or advertise on a golf course
US5595616A (en) 1993-12-21 1997-01-21 United Technologies Corporation Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
JP2004115833A (ja) 2002-09-24 2004-04-15 Univ Tohoku Mo−Si−B合金
JP2005314715A (ja) * 2004-04-27 2005-11-10 Japan New Metals Co Ltd スパッタリング用高純度金属Mo焼結ターゲットの製造に原料粉末として用いるのに適した高純度金属Mo粗粒粉末
JP2008114258A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 摩擦攪拌接合用ツール及び摩擦攪拌接合装置
JP2008246553A (ja) 2007-03-30 2008-10-16 Tohoku Univ 摩擦攪拌接合用撹拌工具
US7767138B2 (en) 2004-02-25 2010-08-03 Plansee Se Process for the production of a molybdenum alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT6955U1 (de) * 2003-09-19 2004-06-25 Plansee Ag Ods-molybdän-silizium-bor-legierung
US20090011266A1 (en) * 2007-07-02 2009-01-08 Georgia Tech Research Corporation Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
US8268035B2 (en) * 2008-12-23 2012-09-18 United Technologies Corporation Process for producing refractory metal alloy powders

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593156A (en) 1993-12-10 1997-01-14 Karoly-J Ltd. Ground marker and methods of using same to mark distances and/or advertise on a golf course
US5595616A (en) 1993-12-21 1997-01-21 United Technologies Corporation Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy
JP2004115833A (ja) 2002-09-24 2004-04-15 Univ Tohoku Mo−Si−B合金
US7767138B2 (en) 2004-02-25 2010-08-03 Plansee Se Process for the production of a molybdenum alloy
JP2005314715A (ja) * 2004-04-27 2005-11-10 Japan New Metals Co Ltd スパッタリング用高純度金属Mo焼結ターゲットの製造に原料粉末として用いるのに適した高純度金属Mo粗粒粉末
JP2008114258A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 摩擦攪拌接合用ツール及び摩擦攪拌接合装置
JP2008246553A (ja) 2007-03-30 2008-10-16 Tohoku Univ 摩擦攪拌接合用撹拌工具

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAZUHIRO ITO ET AL.: "Mechanical and Functional Properties of Mo-Si-B Ternary Alloys for Ultra- high Temperature Applications", MATERIA JAPAN, THE JAPAN INSTITUTE OF METALS, vol. 44, no. 2, 20 February 2005 (2005-02-20), pages 131 - 137, XP008174312 *
NUNES, C. A.; SAKIDJA, R.; PEREPEZKO, J. H.: "TMS", 1997, article "Structural Intermetallics", pages: 831 - 839
See also references of EP2799163A4

Also Published As

Publication number Publication date
US9884367B2 (en) 2018-02-06
EP2799163A1 (en) 2014-11-05
JP5905907B2 (ja) 2016-04-20
EP2799163A4 (en) 2015-09-30
JPWO2013099791A1 (ja) 2015-05-07
US20140373681A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP5905907B2 (ja) Mo−Si−B系合金粉末、金属材料原料粉末およびMo−Si−B系合金粉末の製造方法
CN104372230B (zh) 一种高强韧超细晶高熵合金及其制备方法
JP5905903B2 (ja) 耐熱合金およびその製造方法
Cheng et al. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering
JP5447743B1 (ja) Fe−Co系合金スパッタリングターゲット材およびその製造方法
KR102350989B1 (ko) 소결 구성요소를 생성하는 방법 및 소결 구성요소
JP5550013B2 (ja) 磁性ナノコンポジット及びその製造方法
WO2012133328A1 (ja) 硬質焼結合金
JP7272353B2 (ja) 超硬合金、切削工具および超硬合金の製造方法
WO2014208447A1 (ja) サーメットおよびその製造方法並びに切削工具
JP5872590B2 (ja) 耐熱合金およびその製造方法
WO2011125663A1 (ja) モリブデン合金およびその製造方法
CN108342634B (zh) 一种可调节负热膨胀系数的材料及其制备方法和应用
KR20160051760A (ko) 크롬 금속 분말
JP2001089823A (ja) 複硼化物系硬質焼結合金及びその合金を用いた樹脂加工機械用スクリュー
JP7110629B2 (ja) 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体
CN113798488B (zh) 铝基粉末冶金材料及其制备方法
JP6845715B2 (ja) 硬質焼結体
JP2004142993A (ja) 六方晶複合炭化物およびその製造方法
KR20180021536A (ko) 소결용 조성물
JPH083601A (ja) アルミニウムー窒化アルミニウム複合材料およびその製造方法
JP5799969B2 (ja) セラミックス結晶粒子、セラミックス焼結体およびそれらの製造方法
JP4140176B2 (ja) 低熱膨張耐熱合金及びその製造方法
JP6217638B2 (ja) ターゲット材およびその製造方法
JP2005281769A (ja) 高硬度の高炭素ナノ結晶鉄合金粉末及びバルク材並びにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551674

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14368976

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012863978

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012863978

Country of ref document: EP