WO2013099321A1 - 熱電発電装置 - Google Patents

熱電発電装置 Download PDF

Info

Publication number
WO2013099321A1
WO2013099321A1 PCT/JP2012/064637 JP2012064637W WO2013099321A1 WO 2013099321 A1 WO2013099321 A1 WO 2013099321A1 JP 2012064637 W JP2012064637 W JP 2012064637W WO 2013099321 A1 WO2013099321 A1 WO 2013099321A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
additional
storage body
temperature
Prior art date
Application number
PCT/JP2012/064637
Other languages
English (en)
French (fr)
Inventor
中沼 忠司
Original Assignee
Nakanuma Tadashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakanuma Tadashi filed Critical Nakanuma Tadashi
Priority to US14/364,350 priority Critical patent/US10644215B2/en
Priority to CN201610803832.6A priority patent/CN106340583B/zh
Priority to KR1020167020962A priority patent/KR101759124B1/ko
Priority to PCT/JP2012/083650 priority patent/WO2013099943A1/ja
Priority to JP2013534103A priority patent/JP5436727B2/ja
Priority to EP16175967.5A priority patent/EP3093895B1/en
Priority to CN201280064460.XA priority patent/CN104025327B/zh
Priority to KR1020147017854A priority patent/KR101719482B1/ko
Priority to AU2012361686A priority patent/AU2012361686B2/en
Priority to EP12862448.3A priority patent/EP2800157B1/en
Publication of WO2013099321A1 publication Critical patent/WO2013099321A1/ja
Priority to JP2013226924A priority patent/JP5619256B2/ja
Priority to US16/835,858 priority patent/US11316090B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/008Variable conductance materials; Thermal switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a thermoelectric power generation device that generates power by using a thermoelectric conversion module by using a temperature change of an external environment, and more particularly to a thermoelectric power generation device for small power.
  • thermoelectric power generation apparatuses that use a thermoelectric conversion module and obtain electric power from thermal energy have been proposed so far (see, for example, Patent Documents 1 to 3).
  • thermoelectric generator when generating electricity, heat is supplied to one end side of the thermoelectric conversion module by heating, while heat is discharged from the other end side by cooling, and is fixed on both sides of the thermoelectric conversion module. It was necessary to create a temperature difference of magnitude. That is, in a conventional thermoelectric generator, power generation is performed using a temperature difference between a heating source and a cooling source that are close to each other, so that the installation location of the thermoelectric generator is limited.
  • thermoelectric generator in an electronic device with low power consumption such as a wireless sensor or a remote monitor, it is desirable to use environmental energy as a power source instead of a commercial power source or a battery because of maintenance. Therefore, it is conceivable to incorporate the thermoelectric generator into the power supply unit of these electronic devices. However, as described above, the installation location of the thermoelectric generator is limited, so that the electronic device can be freely installed where necessary. There was a problem that could not.
  • an object of the present invention is to heat one end side of the thermoelectric conversion module and cool the other end side in order to generate a temperature difference between both sides of the thermoelectric conversion module in the environment where the thermoelectric power generation apparatus is arranged.
  • An object of the present invention is to provide a thermoelectric generator that can generate power stably even without it.
  • thermoelectric power generation device that is disposed in an environment where temperature rise and fall is repeated and generates power by using a temperature change of the environment, is in contact with the environment, and the environment
  • One heat conducting body capable of exchanging heat with the environment in accordance with a temperature change of at least one, a heat accumulating body, a coating layer having a certain thermal resistance and covering the heat accumulating body, the heat conducting body and the heat accumulating body
  • At least one thermoelectric conversion unit disposed between bodies, or between the heat storage bodies, or both, and utilizing a temperature difference generated between one end side and the other end side of the thermoelectric conversion unit.
  • the thermoelectric power generation device includes one heat storage body and the one thermoelectric conversion unit disposed between the heat conducting body and the heat storage body, and the thermoelectric conversion unit.
  • the thermoelectric generator is disposed between the heat conducting body and the heat storage body in the coating layer, and is thermally expanded and contracted or thermally deformed.
  • the first position for contacting the heat conductor and the heat storage body and transferring heat between the heat conductor and the heat storage body, and spaced apart from at least one of the heat conductor and the heat storage body Auxiliary heat conduction means taking a second position to stop heat transfer, the auxiliary heat conduction means, when the temperature of the heat conductor is near the maximum temperature, or the temperature of the heat conductor is near the minimum temperature At some point, the first position is taken.
  • thermoelectric generator is disposed between the heat conductor and the heat storage body in the coating layer, and is in contact with the heat conductor and the heat storage body.
  • a heat flow switch that takes an ON state in which heat is transferred between the heat storage body and an OFF state in which the heat transfer is stopped after being separated from at least one of the heat transfer body and the heat storage body, and a temperature of the heat transfer body
  • a heat flow switch control unit for switching between.
  • the heat flow switch is provided between the heat conducting body and the one end of the thermoelectric conversion unit, or between the heat storage body and the other end of the thermoelectric conversion unit. When it is arranged and takes the ON state, it contacts the heat conducting body via the thermoelectric conversion unit, or contacts the heat storage body via the thermoelectric conversion unit.
  • thermoelectric generator is disposed between the first and second heat storage bodies and the first and second heat storage bodies, and one end thereof is the first heat storage body.
  • One thermoelectric conversion unit that contacts the heat storage body and the other end contacts the second heat storage body, and is disposed between the heat conductor and the first heat storage body, and the heat conductor and the first heat storage body.
  • An ON state in which the heat is transferred between the heat conducting body and the first heat storage body in contact with the body, and the heat movement is stopped after being separated from at least one of the heat conducting body and the first heat storage body.
  • a first heat flow switch that is in an OFF state, and is disposed between the heat conducting body and the second heat storage body, and contacts the heat conducting body and the second heat storage body so as to contact the heat conducting body and the second heat storage body.
  • ON state in which heat is transferred between bodies, the heat conductor and the front A second heat flow switch that is spaced from at least one of the second heat accumulators to stop the heat transfer, and the covering layer is in contact with the first heat flow switch and the thermoelectric conversion unit. Covering the entire first heat storage body excluding the contact portion with the second heat storage body excluding the contact portion with the second heat flow switch and the contact portion with the thermoelectric conversion unit.
  • the thermoelectric generator further includes a first temperature sensor for detecting a temperature of the heat conducting body, a second temperature sensor for detecting a temperature of the first heat storage body, and a temperature of the second heat storage body. And a heat flow switch control unit that switches the ON state and the OFF state of the first and second heat flow switches based on the detection values of the first to third temperature sensors. , Be prepared The heat flow switch control unit sets the first heat flow switch to the ON state at the same time when the temperature of the heat transfer body is near the maximum temperature, and simultaneously sets the second heat flow switch to the OFF state.
  • the first heat flow switch When the temperature of the first heat storage switch is in the vicinity of the minimum temperature, the first heat flow switch is set to the OFF state, and at the same time, the second heat flow switch is set to the ON state, so that the first heat storage body becomes the highest heat transfer body. While the temperature is kept near the temperature, the second heat storage body is kept at a temperature near the lowest temperature of the heat conducting body, thereby utilizing the temperature difference generated between the first and second heat storage bodies. Thus, electric energy is extracted from the thermoelectric conversion unit.
  • thermoelectric generator is disposed between the first heat flow switch and the first heat storage body, and one end contacts the first heat flow switch, The other end is disposed between the first Peltier element that contacts the first heat storage body, the second heat flow switch and the second heat storage body, and the other end contacts the second heat flow switch, A second Peltier element with the other end contacting the second heat storage body, and when the first heat flow switch is in the ON state, the first Peltier element absorbs heat at the one end. When the second heat flow switch is in the ON state, the second Peltier element generates heat at the one end and absorbs heat at the other end.
  • the heat conductor covers the entire surface of the covering layer.
  • the covering layer is formed of a heat insulating material.
  • at least one heat storage body is formed of a latent heat storage material.
  • the thermoelectric power generation device includes a first additional heat storage body, a second additional heat storage body, and the first and second additional heat storage bodies. Between the first and second additional heat accumulators, and an additional thermoelectric conversion unit, one end of which contacts the first additional heat accumulator and the other end contacts the second additional heat accumulator An additional Peltier element having one end in contact with the first additional heat storage body and the other end in contact with the second additional heat storage body, and having a certain thermal resistance, and the additional thermoelectric An additional covering layer covering the entirety of the first and second additional heat storage elements excluding the contact portion with the conversion unit and the contact portion with the additional Peltier element, and the additional thermoelectric conversion unit Except for the electric energy output by the thermoelectric conversion unit, the additional pel A temperature difference is generated between the first and second additional heat accumulators by converting to thermal energy by the element, and electric energy is extracted from the additional thermoelectric conversion unit using the temperature difference.
  • the additional thermoelectric conversion unit when the operation of the electronic device that receives the supply of electricity from the thermoelectric generator is intermittent, and the electric output from the thermoelectric generator may be intermittent, the additional Peltier While omitting the element, the additional thermoelectric conversion unit is configured from a Seebeck element, and when outputting electricity from the thermoelectric power generation device, the additional thermoelectric conversion unit functions as a Seebeck element, while the thermoelectric power generation device When no electricity is output, the additional thermoelectric conversion unit can function as a Peltier element.
  • the thermoelectric power generation device includes a first additional heat storage body, a second additional heat storage body, and the first and second additional heat storage bodies.
  • An additional thermoelectric conversion unit one end of which is in contact with the first additional heat storage body and the other end of which is in contact with the second additional heat storage body.
  • An additional coating layer covering the entirety of the first and second additional heat accumulators excluding a contact portion with the conversion unit; and the first additional heat accumulator in contact with the first additional heat accumulator inside the additional coating layer
  • the first additional heat accumulator is heated by converting the electric energy output by the thermoelectric conversion unit excluding the additional thermoelectric conversion unit into heat energy by the heater, Said first and second additions Causing a temperature difference between the regenerator, by using the temperature difference, which is to extract electrical energy from the additional thermoelectric conversion unit.
  • At least one of the first and second additional heat storage members is formed of a latent heat storage material.
  • the thermoelectric power generation device includes a first additional heat storage body, a second additional heat storage body, and the first and second additional heat storage bodies. Between the first and second additional heat accumulators, and an additional thermoelectric conversion unit, one end of which contacts the first additional heat accumulator and the other end contacts the second additional heat accumulator An additional Peltier element having one end contacting the first additional heat storage body and the other end contacting the second additional heat storage body, wherein the second additional heat storage body comprises:
  • the thermoelectric power generation device further comprises a structure in which the thermoelectric power generation device is installed, the thermoelectric power generation device further having a certain thermal resistance, and a contact portion with the additional thermoelectric conversion unit and a contact portion with the additional Peltier element
  • An additional covering layer covering the entirety of the first additional heat storage body except for The electrical energy output from the thermoelectric conversion unit, excluding the additional thermoelectric conversion unit, is converted into thermal energy by the additional Peltier element, thereby generating a temperature difference between the first and second additional heat storage elements.
  • the electric energy is extracted from the additional thermoelectric conversion unit using the temperature difference.
  • the additional Peltier While omitting the element, the additional thermoelectric conversion unit is configured from a Seebeck element, and when outputting electricity from the thermoelectric power generation device, the additional thermoelectric conversion unit functions as a Seebeck element, while the thermoelectric power generation device When no electricity is output, the additional thermoelectric conversion unit can function as a Peltier element.
  • the thermoelectric generator is disposed between a first additional heat storage body, a second additional heat storage body, and the first and second heat storage bodies.
  • An additional thermoelectric conversion unit having one end in contact with the first additional heat storage body and the other end in contact with the second additional heat storage body; and the additional thermoelectric conversion unit having a certain thermal resistance.
  • An additional covering layer that covers the entirety of the first and second additional heat accumulators excluding a contact portion with the first and second additional heat accumulators in contact with the first additional heat accumulator.
  • the second additional heat storage body is made of a structure in which the thermoelectric power generator is installed, and the heater outputs the electric energy output by the thermoelectric conversion unit excluding the additional thermoelectric conversion unit. To convert it into thermal energy
  • the first additional heat storage body is heated, a temperature difference is generated between the first and second additional heat storage bodies, and the temperature difference is used to generate an electric power from the additional thermoelectric conversion unit. It is designed to extract energy.
  • the first additional heat storage body is formed of a latent heat storage material.
  • thermoelectric generator has a power transmission side function of a wireless power feeding system.
  • a heat conductor that contacts an environment that repeats temperature changes exchanges heat with the environment, thereby automatically generating a temperature difference between the heat conductor and the heat storage body or between the heat storage bodies.
  • a proportional voltage can be taken from the thermoelectric conversion unit.
  • thermoelectric conversion unit disposed between the heat storage body and the heat conductor are provided, one end of the thermoelectric conversion unit is in contact with the heat conductor, and the other end is in contact with the heat storage body.
  • the layer is configured to cover the entire heat storage body excluding the contact portion with the thermoelectric conversion unit, the temperature of the heat transfer body is raised and lowered according to the temperature change of the environment, while the temperature of the heat storage body is set to the maximum temperature of the heat transfer body.
  • a temperature difference is automatically generated between the heat conducting body and the heat storage body, and a voltage proportional to the temperature difference can be taken out from the thermoelectric conversion unit.
  • thermoelectric conversion unit which one end contacts one thermal storage body, and the other end contacts the other thermal storage body, and a heat conducting body and thermal storage body
  • An ON state that is arranged between the heat conducting body and the heat storage body so as to transfer heat between them, and an OFF state that stops the heat transfer after being separated from at least one of the heat conducting body and the heat storage body.
  • a temperature sensor that covers the entire heat storage body excluding the contact portion with the heat flow switch and the contact portion with the thermoelectric conversion unit, and further detects the temperature of the heat conductor and the heat storage body
  • a heat flow switch control unit that switches between the ON state and the OFF state of each heat flow switch based on the detection value of the temperature sensor, the temperature of the heat conductor is near the maximum temperature. When one heat flow switch is turned on, the other heat flow switch is turned off. When the temperature of the heat conductor is near the minimum temperature, one heat flow switch is turned off and at the same time the other heat flow switch is turned on.
  • thermoelectric conversion unit The temperature generated between the two heat storage bodies by keeping one heat storage body at a temperature near the maximum temperature of the heat conductor while keeping the other heat storage body at a temperature near the minimum temperature of the heat conduction body by turning it on.
  • a voltage proportional to the difference can be taken from the thermoelectric conversion unit.
  • thermoelectric generator in an environment where the temperature rise and fall is repeated, and in the environment where the thermoelectric generator is arranged like the conventional thermoelectric generator. There is no need to heat one end side of the thermoelectric conversion unit and cool the other end side so as to cause a temperature difference between both sides of the thermoelectric conversion unit.
  • FIG. 1 is a longitudinal sectional view of a thermoelectric generator according to one embodiment of the present invention. It is the graph which showed an example of the temperature change of a heat conducting body and a thermal storage body at the time of arrange
  • FIG. 2 is a view similar to FIG. 1 showing a thermoelectric generator according to another embodiment of the present invention. It is a figure which shows the structural example of this power supply at the time of using the thermoelectric generator shown in FIG. 1 as a power supply of an electronic device. It is an expanded longitudinal cross-sectional view which shows the principal part of the thermoelectric power generator by another Example of this invention. It is an enlarged view of the attaching part of the auxiliary heat conducting means in FIG.
  • FIG. 3 is a view similar to FIG. 1 showing a thermoelectric generator according to still another embodiment of the present invention. It is an enlarged view of the attachment part of the heat flow switch of the thermoelectric generator shown in FIG. It is an enlarged view of the attachment part of the heat flow switch of the thermoelectric generator shown in FIG. It is a longitudinal cross-sectional view of the thermoelectric power generator by another Example of this invention. It is a graph similar to FIG.
  • thermoelectric power generator 2 which shows an example of the temperature change of a heat conducting body and the 1st and 2nd thermal storage body at the time of arrange
  • thermoelectric power generating device by another Example of this invention.
  • thermoelectric power generator by another Example of this invention.
  • thermoelectric power generator by another Example of this invention.
  • thermoelectric power generator by another Example of this invention.
  • thermoelectric power generator by another Example of this invention It is a longitudinal cross-sectional view of the thermoelectric power generator by another Example of this invention.
  • thermoelectric generator according to the present invention is arranged in an environment where temperature rise and fall is repeated.
  • the “environment in which temperature rises and falls repeatedly” includes the outdoors and the surface of mechanical equipment that is placed indoors and changes temperature according to the operating state, etc. It is.
  • FIG. 1 is a longitudinal sectional view showing the configuration of a thermoelectric generator according to one embodiment of the present invention.
  • the thermoelectric generator according to the present invention is in contact with the environment and can exchange heat with the environment according to the temperature change of the environment, one heat storage body 2,
  • a thermoelectric conversion unit 3 that is disposed between the heat conductor 1 and the heat storage body 2, has one end 3 a in contact with the heat conductor 1, and the other end 3 b in contact with the heat storage body 2, and has a certain thermal resistance.
  • 3 is provided with a coating layer 4 that covers the entire heat storage body 2 excluding the contact portion with the heat storage body 3.
  • the heat storage body 2 covered with the covering layer 4 is preferably shaped so that it has no corners and is rounded as a whole and the surface area becomes as small as possible.
  • thermoelectric conversion unit 3 any unit that can convert heat energy into electric energy can be used.
  • thermoelectric conversion module using the Seebeck effect is used.
  • reference numeral 5 denotes a pair of electrodes of the thermoelectric conversion module.
  • the heat conducting body 1 has a configuration in which heat exchange (heat absorption and heat dissipation) with the environment can be performed with higher efficiency. Therefore, for example, when the installation environment of the thermoelectric generator is in the atmosphere where the temperature changes, the surface of the heat conductor 1 has irregularities or is formed on a rough surface in order to ensure as large a surface area as possible. Preferably, the surface of the heat conductor 1 has a dark color such as black (facilitation of radiation). Also, for example, when the installation environment of the thermoelectric generator is the surface of a mechanical facility whose temperature changes depending on the operating state, the heat conductor 1 has a shape that conforms to the surface so as to be in close contact with the surface of the mechanical facility. It is preferable (conduction promotion).
  • the heat storage body 2 may be made of a waterproof container filled with a liquid such as water.
  • a liquid such as water.
  • the liquid filling the container may be any liquid as long as it is hard to rot and freeze, for example, pure water, pure water mixed with antifreeze, or pure water with a preservative. A mixture of these can be used.
  • the liquid includes a gel.
  • the heat storage body 2 may be made of a solid metal or non-metal. In this case, it is preferable to use an aluminum block, a plastic block or a concrete block as the heat storage body 2.
  • the coating layer 4 has only a certain thermal resistance and may cover the entire heat storage body 2 excluding the contact portion with the thermoelectric conversion unit 3, and there is no particular limitation on the forming material and structure thereof.
  • the coating layer 4 is made of a known appropriate heat insulating material that covers the entire heat storage body 2 excluding a contact portion with the thermoelectric conversion unit 3.
  • the “constant thermal resistance” takes into consideration the heat capacity of the heat storage body 2 and the power generation efficiency of the thermoelectric conversion unit 3 (heat leakage from the thermoelectric conversion unit 3 and heat transfer due to power generation by the thermoelectric conversion unit 3). On the other hand, it means a thermal resistance that can maintain the temperature of the heat storage body 2 in the vicinity of the intermediate temperature between the highest temperature and the lowest temperature of the heat conducting body 1. In terms of device design, the thermal time constant determined by the product of the heat capacity of the heat storage body 2 and the thermal resistance of the coating layer 4 is made sufficiently longer than the repetition cycle of temperature rise and fall in the environment where the thermoelectric generator is arranged. This “constant thermal resistance” is achieved.
  • thermoelectric power generator according to the present invention the power generation capability of the thermoelectric power generator according to the present invention will be considered.
  • the thermoelectric generator according to the present invention is placed in the outdoor atmosphere. It is known that the average temperature difference between the highest and lowest temperatures in Japan is about 10 ° C on average, so even in the environment where the thermoelectric generator of the present invention is placed, Suppose that it is about 10 degreeC.
  • thermoelectric generator in Japan is 30 to 45 degrees north latitude and is surrounded by the ocean.
  • heating occurs due to solar radiation in the daytime, while nighttime Cooling by radiant cooling occurs, and the repetition of day and night causes a change in temperature, so it goes without saying that the thermoelectric generator according to the present invention functions regardless of the area.
  • FIG. 2 is a graph showing an example of a daily temperature change of the heat conductor 1 and the heat accumulator 2 of the thermoelectric generator of the present invention in such an environment.
  • the vertical axis represents temperature (° C.)
  • the horizontal axis represents time (hour)
  • the curve X and the curve Y indicate the temperature change of the heat conducting body 1 and the temperature change of the heat storage body 2, respectively.
  • the temperature of the heat conductor 1 of the thermoelectric generator rises and falls within a temperature range of about 10 ° C. substantially following the temperature change.
  • the temperature of the heat storage body 2 is an ideal condition in which the coating layer 4 has infinite thermal resistance, and there is no heat leakage from the thermoelectric conversion unit 3 and no heat transfer due to power generation of the thermoelectric conversion unit 3. Below, it stabilizes to the intermediate temperature of the maximum temperature of the heat conductor 1, and the minimum temperature. However, in reality, since the thermal resistance of the coating layer 4 is finite, heat leakage occurs from the coating layer 4, and furthermore, heat leakage from the thermoelectric conversion unit 3 and heat transfer due to power generation of the thermoelectric conversion unit 3 occur. As a result, the temperature of the heat storage body 2 changes near an intermediate temperature between the highest temperature and the lowest temperature of the heat conductor 1.
  • the temperature difference between the heat conductor 1 and the heat accumulator 2 is within the range of 0 ° C. to 5 ° C., with the maximum value being about 5 ° C. which is half of the difference between the maximum temperature and the minimum temperature of the heat conductor 1 (about 10 ° C.). Fluctuates.
  • the heat capacity of the heat storage body 2 is changed within a range of about 2 ° C. If it sets to the magnitude
  • thermoelectric generator of the present invention is that thermoelectric power generation is performed using the temperature difference thus secured.
  • the temperature change of the heat storage body 2 is set to 2 ° C.
  • thermoelectric power generator having a constant power generation efficiency
  • This amount of power is large enough to operate a normal low-power electronic device (power consumption is about several ⁇ W).
  • power consumption is about several ⁇ W.
  • the temperature change of the heat storage body 2 is set to 2 ° C.
  • the heat capacity of the heat storage body 2 is 0.21 cal / g of specific heat of aluminum and a specific gravity of 2. 7
  • thermoelectric generator of the present invention the heat conductor 1 that is in thermal contact with the environment where the temperature rises and falls repeatedly, the heat storage body 2 that is not easily affected by the environment due to the action of the coating layer 4, and one end that conducts heat.
  • a thermoelectric conversion unit 3 that is in thermal contact with the body 1 and whose other end is in thermal contact with the heat storage body 2, and raises or lowers the temperature of the heat conducting body 1 in accordance with the temperature change of the environment.
  • a voltage proportional to the temperature difference automatically generated between the heat conducting body 1 and the heat storage body 2 can be taken out from the thermoelectric conversion unit 3 by keeping the temperature in the vicinity of the maximum temperature and the minimum temperature of the heat conducting body 1.
  • thermoelectric generator it is possible to take out electrical energy simply by placing the thermoelectric generator in an environment where the temperature rises and falls repeatedly, and in the environment where the thermoelectric generator is placed like the conventional thermoelectric generator. There is no need to heat one end side of the thermoelectric conversion unit and cool the other end side so as to cause a temperature difference between both sides of the thermoelectric conversion unit.
  • thermoelectric generator according to the present invention is used as a power source for an electronic device such as a wireless sensor or a remote monitor, an independent power source that does not require power supply wiring or battery replacement work from the commercial power source to the electronic device can be obtained. These electronic devices can be freely installed where necessary.
  • thermoelectric generator of the present invention is installed in a place where the heat conducting body 1 can receive direct sunlight and scattered light, and the heat conducting body 1 is easily exposed to sunlight and is also easily cooled by radiation at night.
  • the difference between the maximum temperature and the minimum temperature of the heat conductor 1 is further increased, the generated power can be further increased.
  • the contact area with the air it is preferable to make the contact area with the air as small as possible so that the surface of the heat conductor 1 is not uneven. This prevents the heat conducting body 1 from being cooled by the air when it becomes higher than the air temperature due to solar radiation, and from being heated by the air when the heat conducting body 1 is lowered by the radiation cooling.
  • a transparent plate such as glass may be used, and the heat conductor 1 and the transparent plate may be insulated by a vacuum.
  • the transparent plate is preferably made of an appropriate material in consideration of the characteristics of transmission, reflection, and absorption of sunlight and infrared rays.
  • FIG. 3 shows a thermoelectric generator according to another embodiment of the present invention.
  • the heat conductor 1 ′ covers the entire surface of the coating layer 4.
  • the surface area of the heat conductor 1 ′ can be considerably increased without significantly increasing the volume of the entire thermoelectric generator, thereby further improving the efficiency of heat exchange with the environment of the heat conductor 1 ′.
  • the heat conductor 1 ′ is formed from a hard material such as metal, the heat storage body 2, the thermoelectric conversion unit 3, and the covering layer 4 can be protected by the heat conductor 1 ′.
  • the heat storage body 2 is composed of a container 7 filled with a liquid 6.
  • a means for promoting heat conduction and convection of the liquid 6 is provided in the container 7 such as providing a plurality of heat exchange fins 8 at intervals on the inner wall surface of the container 7.
  • FIG. 4 is a diagram showing an example of a configuration when the thermoelectric generator according to the present invention is incorporated in a power supply unit of a low power consumption electronic device.
  • an alternating current is generated in the pair of electrodes 5 due to the temperature increase / decrease of the installation environment.
  • a polarity / voltage conversion circuit 11 connected to a pair of electrodes 5 of the thermoelectric conversion unit 3 of the apparatus, and a secondary battery 12 such as a lithium ion battery connected to a subsequent stage of the polarity / voltage conversion circuit 11 are provided.
  • the power generated by the thermoelectric generator of the present invention is temporarily stored in the secondary battery 12 and supplied from the secondary battery 12 to the electronic device 13, so that it is stable when needed for the operation of the electronic device 13. Power can be supplied.
  • the thermoelectric power generation device of the present invention is built in the electronic device 13 or provided independently of the electronic device 13, but a part of the electronic device (for example, a casing) is a heat conductor of the thermoelectric power generation device. You may make it comprise the whole or one part.
  • the electronic device 13 can also be arrange
  • FIG. 5 is an enlarged longitudinal sectional view showing a main part of a thermoelectric generator according to still another preferred embodiment of the present invention.
  • the embodiment shown in FIG. 5 is different from the embodiment shown in FIG. 1 only in that auxiliary heat conducting means is incorporated in the coating layer 4. Therefore, in FIG. 5, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • auxiliary heat conducting means 14 is incorporated between heat conducting body 1 and heat storage body 2 in coating layer 4.
  • the auxiliary heat conducting means 14 is mounted in the opening 9 extending through the coating layer 4 and extending between the heat conducting body 1 and the heat accumulating body 2, and is thermally expanded and contracted, or thermally deformed, whereby the heat conducting body
  • the first position where the heat transfer body 1 and the heat storage body 2 are moved in contact with the first heat storage body 2 and the heat storage body 2 are moved away from at least one of the heat transfer body 1 and the heat storage body 2 and the heat transfer is stopped. Take position 2.
  • the auxiliary heat conducting means 14 takes the first position when the temperature of the heat conducting body 1 is in the vicinity of the maximum temperature or when the temperature of the heat conducting body 1 is in the vicinity of the minimum temperature. Operates to take a position.
  • the auxiliary heat conducting means 14 is made of a bimetal 14a.
  • the bimetal 14a is formed in an arch shape, the heat conductor 1 side is convex, and the lower end portion is fixed to the heat storage body 2 in contact.
  • the bimetal 9a is greatly deformed when the heat conductor 1 is near the maximum temperature (when the heat conductor 1 is at a high temperature) or when the heat conductor 1 is near the minimum temperature (when the heat conductor 1 is at a low temperature).
  • the apex region of is brought into contact with the heat conducting body 1 and takes the first position (see FIG. 6B), but during other periods, it is deformed within the range not in contact with the heat conducting body 1 and takes the second position (see FIG. 6). 6A).
  • the auxiliary heat conducting means 14 is made of a heat shrinkable material 14b.
  • a heat-shrinkable material 14b for example, a heat-shrinkable rubber blended with metal powder that enhances thermal conductivity can be used.
  • the upper surface of the heat-shrink material 14b is fixed in contact with the heat storage body 2.
  • the heat-shrinkable material 14b expands greatly when the heat conductor 1 is near the maximum temperature (when the heat conductor 1 is at a high temperature), and the lower surface is brought into contact with the heat accumulator 2 to take the first position (FIG. 7B). However, in other cases, it expands and contracts in a range not contacting the heat storage body 2 and takes the second position (see FIG. 7A).
  • FIG. 8 is a graph similar to FIG. 2 showing an example of the temperature change of the heat conductor 1 and the heat storage body 2 when the thermoelectric generator shown in FIG. 5 is placed in the outdoor atmosphere.
  • X represents the temperature change of the heat conductor 1
  • the curve Y represents the temperature change of the heat storage body 2.
  • Sh has shown the period when the auxiliary
  • the electric power obtained is proportional to the square of the voltage, so if the voltage is double, the amount of electric power obtained by the thermoelectric generator is quadrupled, and the heat capacity of the heat accumulator is increased. Even if they are the same, more electric energy can be obtained.
  • auxiliary heat conduction means that passively controls heat transfer by expanding, contracting, or deforming in accordance with the temperature change of the heat conducting body 1 (temperature change of the external environment). It is also possible to arrange a heat flow switch that actively controls heat transfer.
  • FIG. 9 shows a configuration of a thermoelectric power generation device provided with a heat flow switch.
  • an ON state in which heat transfer is performed between the heat conductor 1 and the heat storage body 2 in contact with the heat conductor 1 and the heat storage body 2 between the heat conductor 1 and the heat storage body 2 in the coating layer 4.
  • a heat flow switch 15 which is separated from at least one of the heat conducting body 1 and the heat storage body 2 and takes an OFF state in which the heat transfer is stopped.
  • a first temperature sensor 16 that detects the temperature of the heat conducting body 1 and a second temperature sensor 17 that detects the temperature of the heat storage body 2 are provided.
  • the first and second temperature sensors 16 and 17 are preferably arranged at positions as far as possible from the heat flow switch 15 and at the positions indicating the centers or average temperatures of the heat conducting body 1 and the heat storage body 2, respectively.
  • a heat flow switch control unit 18 is provided, and the heat flow switch 15 is switched between the ON state and the OFF state based on the detection values of the first and second temperature sensors 16 and 17.
  • the function of the heat flow switch 15 is basically the same as that of the auxiliary heat conducting means.
  • the heat flow switch control unit 18 determines the temperature of the heat conducting body 1 based on the detection values of the first and second temperature sensors 16 and 17.
  • the heat flow switch 15 is turned on, while the temperature of the heat transfer body 1 is higher than the temperature of the heat storage body 2.
  • the heat flow switch 15 is turned off. .
  • the operation of the heat flow switch 15 is performed using part of the electric power output from the thermoelectric generator.
  • the heat flow switch 15 can also shift the temperature of the heat storage body 2 to the low temperature side of the heat conducting body 1, and in this case, the heat flow switch control unit 18 can control the first and second temperature sensors 16, 17. Only when it is determined that the temperature of the heat conducting body 1 is lower than the temperature of the heat storage body and the temperature difference is equal to or higher than a preset temperature based on the detected value, the heat flow switch 15 is turned on.
  • the heat flow switch 15 includes a linear actuator 29a and a movable heat conducting block 29b connected to the tip of the operation rod of the linear actuator 29a.
  • the heat flow switch 15 is in the OFF state, as shown in FIG. 10A, the operation rod of the linear actuator 29a is in the retracted position, and the movable heat conducting block 29b is separated from the heat conducting body 1 and the heat accumulating body 2.
  • the heat flow switch control unit 18 determines that the temperature of the heat conducting body 1 is higher than the temperature of the heat storage body 2 and the temperature difference is equal to or greater than a preset value, the heat flow switch 15 is turned on. As shown in FIG. 10B, the operation rod of the linear actuator 29a protrudes and the movable heat conducting block 29b comes into contact with the heat conducting body 1 and the heat accumulating body 2, thereby transferring heat from the heat conducting body 1 to the heat accumulating body 2. Then, the heat storage body 2 is heated, and the temperature of the heat storage body 2 is shifted to the high temperature side of the heat conducting body 1.
  • the heat flow switch 15 includes a rotary actuator 29c and a movable heat conducting block 29d driven to rotate by the actuator 29c.
  • the movable heat conducting block 29d is located at a position separated from the heat conducting body 1 and the heat storage body 2, but for example, by the heat flow switch control unit 18,
  • the heat flow switch 15 is turned on and is movable as shown in FIG. 11B.
  • the heat conducting block 29d is rotated by the actuator 29c to come into contact with the heat conducting body 1 and the heat accumulating body 2, whereby heat is transferred from the heat conducting body 1 to the heat accumulating body 2, the heat accumulating body 2 is heated, and the temperature of the heat accumulating body 2 is increased. Shifts to the high temperature side of the heat conductor 1.
  • the movable heat conducting blocks 29 b and 29 d of the heat flow switch 15 have a shape in which the contact surfaces with the heat conducting body 1 and the heat accumulating body 2 are easy to adhere in order to improve the thermal conductivity.
  • the heat flow switch 15 except for the contact surface is preferably covered with a heat insulating material so as to suppress heat leakage.
  • thermoelectric conversion unit 3 is also used as the heat flow switch 15. That is, a part of the electric power output from the thermoelectric generator is used, and an appropriate voltage is applied to the thermoelectric conversion unit based on the Seebeck effect under the control of the heat flow switch control unit 18. Thereby, the thermoelectric conversion unit can generate heat (heating) and heat absorption (cooling) by the Peltier effect, and can have the same function as the heat flow switch.
  • the ON state of the heat flow switch 15 is operated by causing the thermoelectric conversion unit 3 to operate so that heat transfer occurs from the higher temperature to the lower temperature of the heat conductor 1 and the heat storage body 2 due to the Peltier effect.
  • the OFF state is realized by operating the heat transfer from the lower temperature to the higher temperature by the Peltier effect.
  • the heat flow switch 15 is provided between the heat conductor 1 and the one end 3a of the thermoelectric conversion unit 3 or between the heat storage body 2 and the thermoelectric conversion unit 3. When it is arranged between the end 3 b and is in the ON state, it contacts the heat conducting body 1 through the thermoelectric conversion unit 3 or contacts the heat storage body 2 through the thermoelectric conversion unit 3.
  • the entire surface excluding the contact portion with the thermoelectric conversion unit in the heat accumulator can be obtained when a constant thermal time constant can be secured. Is mirror-finished, and the mirror-finished surface of the heat storage body forms a coating layer. In this case, the mirror-finishing of the surface of the heat storage body is performed by polishing the surface or plating the surface with metal.
  • FIG. 12 is a longitudinal sectional view of a thermoelectric generator according to still another embodiment of the present invention.
  • the thermoelectric generator is arranged between one heat conductor 1, the first and second heat storage bodies 2a, 2b, and the first and second heat storage bodies 2a, 2b.
  • One end 3a is in contact with the first heat storage body 2a, and the other end 3b is provided with a thermoelectric conversion unit 3 in thermal contact with the second heat storage body 2b.
  • thermoelectric generator is also disposed between the heat conductor 1 and the first heat storage body 2a, and is in contact with the heat conductor 1 and the first heat storage body 2a to generate heat between the heat conductor 1 and the first heat storage body 2a.
  • a first heat flow switch 15a that takes an ON state to be moved, and an OFF state in which the heat transfer is stopped after being separated from at least one of the heat conductor 1 and the first heat storage body 2a, and the heat conductors 1 and 2 Between the heat storage body 2b, the ON state in which the heat transfer body 1 and the second heat storage body 2b are in contact with each other and thermally transferred between the heat transfer body 1 and the second heat storage body 2b, and the heat transfer body 1 and the second heat storage body 2b.
  • a second heat flow switch 15b is provided which is in an OFF state in which the heat transfer is stopped by being separated from at least one of the heat storage bodies 2b.
  • thermoelectric conversion unit 3 The entire second heat storage body 2b excluding the contact portion is covered with a coating layer 4 having a certain thermal resistance.
  • the thermoelectric generator further includes a first temperature sensor 19 that detects the temperature of the heat conductor 1, a second temperature sensor 20 that detects the temperature of the first heat storage body 2a, and the temperature of the second heat storage body 2b. And a heat flow switch for switching between the ON state and the OFF state of the first and second heat flow switches 15a and 15b based on the detection values of the first to third temperature sensors 19 to 21 A control unit 22 is provided.
  • the first heat flow switch 15a when the heat conductor 1 is near the maximum temperature, the first heat flow switch 15a is turned on, while the second heat flow switch 15b is turned off, whereby the heat conductor 1 and the first heat flow switch 15a are turned on.
  • the first heat flow switch 15a When heat transfer occurs between the heat storage elements 2a, the temperature of the first heat storage element 2a is maintained near the maximum temperature, and the heat conductor 1 is near the minimum temperature, the first heat flow switch 15a is in the OFF state.
  • the second heat flow switch 15b is turned on, heat transfer occurs between the heat conducting body 1 and the second heat storage body 2b, and the temperature of the second heat storage body 2b is kept near the lowest temperature. It is like that. And electric energy is taken out by the thermoelectric conversion unit 3 using the temperature difference which arose between the 1st and 2nd thermal storage bodies 2a and 2b.
  • thermoelectric power generation apparatus having a single heat storage body performs continuous and stable power supply. Therefore, the secondary battery that is necessary for this can be omitted.
  • FIG. 13 is similar to FIG. 2 showing an example of the temperature change of the heat conductor 1 and the first and second heat accumulators 2a and 2b when the thermoelectric generator shown in FIG. 12 is arranged in the outdoor atmosphere. It is a graph.
  • the vertical axis represents temperature (° C.)
  • the horizontal axis represents time (hour)
  • the curve X, the curve Y, and the curve Z represent the heat conductor 1, the first heat storage body 2a, and the second, respectively.
  • the temperature change of the thermal storage body 2b is shown.
  • FIG. 13 is similar to FIG. 2 showing an example of the temperature change of the heat conductor 1 and the first and second heat accumulators 2a and 2b when the thermoelectric generator shown in FIG. 12 is arranged in the outdoor atmosphere. It is a graph.
  • the vertical axis represents temperature (° C.)
  • the horizontal axis represents time (hour)
  • the curve X, the curve Y, and the curve Z represent the heat conductor 1, the first heat storage body 2a
  • Sh indicates a period in which the first heat flow switch 15a is in the ON state and the second heat flow switch 15b is in the OFF state
  • Si indicates that the first heat flow switch 15a is OFF. The period when the second heat flow switch 15b is in the ON state is shown.
  • the temperature of the heat conductor 1 of the thermoelectric generator rises and falls within a temperature range of about 10 ° C. almost following the temperature change.
  • the thermal resistance of the coating layer 4 is infinite and there is no heat leakage from the thermoelectric conversion unit 3 and no heat transfer due to power generation of the thermoelectric conversion unit 3
  • the first heat storage body 2a Is maintained near the maximum temperature of the heat conductor 1
  • the temperature of the second heat storage body 2b is maintained near the minimum temperature of the heat conductor 1.
  • the temperature Y of the first heat storage body 2a changes in a temperature range lower than the maximum temperature of the heat conductor 1
  • the temperature Z of the second heat storage body 2b is a temperature higher than the minimum temperature of the heat conductor 1. Varies with range.
  • the temperature difference ⁇ T between the first heat storage body 2a and the second heat storage body 2b varies in a temperature range smaller than the difference between the maximum temperature and the minimum temperature of the heat conductor 1 (about 10 ° C.).
  • the heat capacities of the first and second heat storage bodies 2a and 2b are set to the first and second heat capacity.
  • the first and second heat storage bodies 2a and 2b which can be used for actual power generation through a change in the temperature of the day.
  • the temperature difference ⁇ T about 8 ° C. can be continuously secured, and power generation is performed at this temperature difference ⁇ T, and the integrated value for 24 hours becomes the generated power amount for one cycle (one day and night).
  • thermoelectric power generation apparatus having a single heat storage body in which power generation is intermittently performed and the power generation voltage changes with time
  • a thermoelectric power generation apparatus having two heat storage bodies has a power generation voltage that is approximately twice as high as 24. Since it is generated continuously for a period of time, it is possible to generate generated power exceeding about 20 times.
  • thermoelectric power generation device shown in FIG. 12, there is no temperature difference between the first and second heat storage bodies 2a and 2b immediately after manufacture or when the thermoelectric power generation device is stored at a constant temperature for a long period of time. Is stopped, and the method of starting the stopped thermoelectric generator becomes a problem.
  • the first heat flow switch 15a a type that is always in an ON state in an initial state or an uncontrolled state (b contact in an electric circuit) is used, and the second heat flow switch 15b is used.
  • a type a contact in an electric circuit
  • the temperature of the first heat storage body 2a follows the temperature change of the heat conducting body 1 while the temperature of the second heat storage body 2b from the time when the thermoelectric generator is installed in an environment where the temperature changes. Stays near the original temperature.
  • thermoelectric conversion unit 3 generates a voltage, which is a heat flow switch.
  • the heat flow switch controller 22 is supplied to the controller 22 and starts operating.
  • the heat flow switch control unit 22 controls the first heat flow switch 15a to the ON state when the temperature of the heat conducting body 1 is near the maximum temperature or higher than the temperature of the first heat storage body 2a, and the heat conducting body When the temperature of 1 is close to the minimum temperature or lower than the temperature of the second heat storage body 2b, the second heat flow switch 15b is controlled to be in the ON state.
  • the temperature of the first heat storage body 2a approaches the maximum temperature of the heat conductor 1
  • the temperature of the second heat storage body 2b approaches the minimum temperature of the heat conductor 1
  • the thermoelectric generator automatically starts operating. Yes (start).
  • thermoelectric conversion unit is arranged between the heat conductor 1 and the first or second heat storage body 2a, 2b, and the first and second heat flow switches 15a, 15b are in the initial state.
  • the method of using the type (a contact in an electric circuit) which is in an OFF state in an uncontrolled state is used. According to this method, from the time when the thermoelectric generator is disposed in an environment where the temperature changes, the temperature of the heat conductor 1 follows the temperature change of the environment, while the first and second heat storage bodies 2a, 2b Stays near the original temperature. Thus, the temperature difference between the heat conducting body 1 and the first and second heat storage bodies 2a and 2b gradually increases with time.
  • thermoelectric generator is started through the same operation process as in the case of the first starting method described above.
  • the present invention in the configuration shown in FIG. 12, it is further disposed between the first heat flow switch 15a and the first heat storage body 2a, and one end is in contact with the first heat flow switch 15a.
  • the other end is disposed between the first Peltier element that contacts the first heat storage body 2a and the second heat flow switch 15b and the second heat storage body 2b, and one end contacts the second heat flow switch 15b.
  • a second Peltier element whose other end is in contact with the second heat storage body 2b is provided.
  • the first Peltier element when the first heat flow switch 15a is in the ON state, the first Peltier element absorbs heat at one end, generates heat at the other end, and the second heat flow switch 15b is in the ON state.
  • the second Peltier element generates heat at one end and absorbs heat at the other end. Accordingly, the first heat storage body 2a having a temperature near the maximum temperature of the heat conductor 1 is heated to further increase the temperature, and the second heat storage body 2b having a temperature near the minimum temperature of the heat conductor 1 is cooled. Then, the temperature can be further lowered to generate a larger temperature difference ⁇ T.
  • thermoelectric conversion module using the Seebeck effect is used as the thermoelectric conversion unit, but the power generation efficiency of this type of thermoelectric conversion module is only several percent to several tens of percent. Therefore, in the above-described embodiment, the power generation efficiency of the thermoelectric conversion module is assumed to be about 10%.
  • thermoelectric conversion module using the spin Seebeck effect since a magnetic insulator having a large thermal resistance is used, there is little heat leakage and an improvement in each stage of power generation efficiency is expected.
  • thermoelectric conversion module using the Seebeck effect a thermoelectric power generation device having a power generation capability of 1 mWh to several tens of Wh can be realized.
  • the thermoelectric conversion module can be used from less than several tens mWh. A thermoelectric generator with a power generation capacity exceeding several hundred Wh can be realized.
  • FIG. 14 is a perspective view showing a thermoelectric generator according to still another embodiment of the present invention.
  • the thermoelectric generator shown in FIG. 1 is in the form of a commercially available dry battery.
  • 23 is a heat conductor
  • 24 is a heat accumulator.
  • the positive electrode 25 and the negative electrode 26 of the battery may be a pair of electrodes (see FIG. 1) of the thermoelectric conversion unit.
  • the output of the secondary battery It may be a terminal (see FIG. 4).
  • the electrode 26 may be configured as part of the heat conductor 1.
  • the + electrode 25 is electrically insulated from the heat conductor 23 by the insulating portion 27.
  • FIG. 15 is a longitudinal sectional view of a thermoelectric generator according to still another embodiment of the present invention.
  • the thermoelectric power generator includes a first additional heat storage body 30, a second additional heat storage body 31, in addition to the configuration of the embodiment shown in FIG. 1.
  • An additional one is disposed between the first and second additional heat storage bodies 30, 31, with one end 32 a contacting the first additional heat storage body 30 and the other end 32 b contacting the second additional heat storage body 31. It arrange
  • 1st and 2nd additional heat storage which has the fixed Peltier element 33 which contacts 31, and a fixed thermal resistance, and excludes the contact part with the additional thermoelectric conversion unit 32, and the contact part with the additional Peltier element 33 And an additional covering layer 4 ′ covering the entire body 30, 31.
  • the first and second additional heat accumulators 30, 31, the additional thermoelectric conversion unit 32, the additional Peltier element 33, and the additional coating layer 4 ′ are provided on the thermoelectric generator as shown in FIG. It may be formed integrally with the remaining part, or may be formed as a part independent of the remaining part of the thermoelectric generator. In the latter case, the two parts are connected to each other by electric wires.
  • thermoelectric conversion units 3 other than the additional thermoelectric conversion unit 32 is applied to the additional Peltier element 33 via, for example, the polarity / voltage conversion circuit 28, One of the second additional heat storage bodies 30, 31 is heated and the other is cooled. Thus, a temperature difference is generated between the first and second additional heat storage bodies 30 and 31, and electric energy is taken out from the additional thermoelectric conversion unit 32 using this temperature difference.
  • the temperature of the heat storage body 2 changes only within the temperature change range of the environment, whereas the temperature change range of the first and second additional heat storage bodies 30 and 31 is unlimited. Therefore, a larger temperature difference is generated between the first and second heat storage bodies 30 and 31 to store more heat energy, and a large electric energy can be taken out from the additional thermoelectric conversion unit 32.
  • the additional Peltier element 33 is used. Can be omitted.
  • the additional thermoelectric conversion unit 32 composed of a Seebeck element functions as a Seebeck element, and electric energy is extracted.
  • the electrical energy output from the thermoelectric conversion unit 3 other than the additional thermoelectric conversion unit 32 is added to the additional thermoelectric conversion unit 32 via the polarity / voltage conversion circuit 28, for example.
  • the additional thermoelectric conversion unit 32 functions as a Peltier element, and heat storage is performed.
  • FIG. 17 is a longitudinal sectional view of a thermoelectric generator according to still another embodiment of the present invention. As can be easily seen from FIG. 17, this embodiment is the same as the embodiment shown in FIG. 15 except that the Peltier element 33 is removed and, instead, the heater 40 is disposed in contact with the first additional heat storage body 30. It is a thing. Then, the electrical energy output from the thermoelectric conversion unit 3 other than the additional thermoelectric conversion unit 32 is applied to the heater 40 via, for example, the polarity / voltage conversion circuit 28, and the first additional heat storage body 30 is heated by the heater 40. To do.
  • the first additional heat accumulator 30 has a temperature higher than the temperature near the middle of the remaining portion of the thermoelectric generator and the temperature change range of the environment via the additional coating layer 4 ′.
  • the two additional heat storage bodies 31 are stabilized at a temperature near the middle of the temperature change range of the environment and the rest of the thermoelectric generator via the additional coating layer 4 ′.
  • a temperature difference is generated between the first and second additional heat storage bodies 30 and 31, and electric energy is taken out from the additional thermoelectric conversion unit 32 using this temperature difference.
  • FIG. 16 is a longitudinal sectional view of a thermoelectric generator according to still another embodiment of the present invention.
  • the thermoelectric power generation apparatus includes the first to third temperature sensors shown in FIG. And the heat flow switch control unit are omitted.), The first additional heat storage body 36, the second additional heat storage body 37, and the first and second additional heat storage bodies 36, 37.
  • An additional thermoelectric conversion unit 38 whose one end 38 a is in contact with the first additional heat storage body 36 and whose other end 38 b is in contact with the second additional heat storage body 37, and the first and second additional heat storage bodies 36.
  • the second additional heat storage body 37 is composed of a structure in which the thermoelectric generator is installed.
  • the thermoelectric generator further has a certain thermal resistance and covers the entire first additional heat storage body 36 except for a contact portion with the additional thermoelectric conversion unit 38 and a contact portion with the additional Peltier element 39.
  • An additional covering layer 4 ' is provided.
  • an additional thermoelectric conversion unit 38 and an additional Peltier element 39, and a second An additional heat conducting body is disposed between the additional heat accumulating body 37.
  • thermoelectric conversion unit 3 excluding the additional thermoelectric conversion unit 38
  • the electric energy output from the thermoelectric conversion unit 3 excluding the additional thermoelectric conversion unit 38 is applied to the additional Peltier element 39, for example, via the polarity / voltage conversion circuit 34.
  • One of the second additional heat accumulators 36, 37 is heated, the other is cooled, a temperature difference is generated between the first and second additional heat accumulators 36, 37, and this temperature difference is utilized.
  • Electrical energy is taken from the additional thermoelectric conversion unit 38. According to this embodiment, the same effect as that of the embodiment of FIG. 15 can be obtained.
  • the operation of the electronic device that receives electricity from the thermoelectric generator is intermittent, and correspondingly, the output of electricity from the thermoelectric generator may be intermittent.
  • the Peltier element 39 can be omitted.
  • the additional thermoelectric conversion unit 38 made of a Seebeck element functions as a Seebeck element, and electric energy is extracted.
  • the electrical energy output from the thermoelectric conversion unit 3 other than the additional thermoelectric conversion unit 38 is added to the additional thermoelectric conversion unit 38 via the polarity / voltage conversion circuit 34, for example.
  • the additional thermoelectric conversion unit 38 functions as a Peltier element, and heat storage is performed.
  • FIG. 18 is a longitudinal sectional view of a thermoelectric generator according to still another embodiment of the present invention.
  • this embodiment is the same as the embodiment shown in FIG. 16, except that the Peltier element 39 is removed and, instead, the heater 41 is arranged in contact with the first additional heat storage body 36. It is a thing.
  • the electric energy output from the thermoelectric conversion unit 3 other than the additional thermoelectric conversion unit 38 is applied to the heater 41 via, for example, the polarity / voltage conversion circuit 34, and the first additional heat storage body 36 is heated by the heater 41. To do.
  • the first additional heat storage body 36 has a temperature higher than the temperature near the middle of the remaining temperature range of the thermoelectric generator and the environmental temperature change range via the additional coating layer 4 ′
  • the second additional heat storage body 37 is a structure in which the thermoelectric power generator is installed, and has a large heat capacity, so that it is stable at a temperature in the middle of the temperature change range of the environment. In this way, a temperature difference is generated between the first and second additional heat accumulators 36 and 37, and electric energy is extracted from the additional thermoelectric conversion unit 38 using this temperature difference.
  • At least one of the heat storage elements is formed from a latent heat storage material.
  • a latent heat storage material By using the latent heat storage material, a large amount of heat can be absorbed or released more compactly, thereby realizing a more compact thermoelectric generator having a larger power generation amount.
  • wireless power feeding technology that wirelessly transmits electric power has been put into practical use in order to supply electric power to portable electronic devices and moving automobiles without using a power cord and to charge them in a non-contact manner.
  • a wireless power feeding technique an electromagnetic induction system, a magnetic resonance system, an electric field coupling system, a radio wave reception system, and the like are known, and power can be supplied wirelessly over a distance of several millimeters to several meters.
  • the thermoelectric generator of the present invention it is difficult to integrate the thermoelectric generator, and a portable terminal or a sensor network terminal that is required to be smaller and lighter.
  • power receiving side function power can be supplied. In this case, power can be supplied simultaneously or sequentially from a single thermoelectric generator having a power transmission side function to a plurality of terminals having a power reception side function.
  • thermoelectric generator of the present invention can be applied not only to a normal power source of electronic equipment but also to other uses.
  • the thermoelectric generator according to the present invention is attached to an artificial satellite, the heat conductor of the thermoelectric generator is arranged on the surface of the case of the artificial satellite, and the heat storage body covered with the coating layer is arranged inside the case, the artificial satellite As the body rotates, the heat conductor is periodically exposed to the sun and enters the shade of the sun.
  • the thermal time constant of the heat storage body longer than the rotation period of the artificial satellite, the temperature of the heat storage body is maintained near the intermediate temperature between the maximum temperature and the minimum temperature of the heat transfer body, thereby stabilizing the power generation. Can be done.
  • thermoelectric generator of the present invention is installed in a part that becomes hot when a mechanical facility fails, and is kept in a standby state during normal operation of the mechanical facility, generates power only when the mechanical facility fails, and supplies power to the failure detection sensor. It is also possible to operate the failure detection sensor by supplying In this configuration, it is not necessary to store the generated power of the thermoelectric generator, and therefore a secondary battery is not necessary.
  • the thermoelectric generator of the present invention can be used as a thermometer power source, stored at room temperature for a long time, and when necessary, the thermoconductor can be operated by bringing the heat conductor into contact with the body to operate the thermometer. Even in this configuration, the secondary battery is not necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromechanical Clocks (AREA)
  • Control Of Temperature (AREA)
  • Central Heating Systems (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 温度昇降を繰り返す環境に接触し、環境の温度変化に応じて環境と熱交換し得る導熱体1と、蓄熱体2と、導熱体および蓄熱体間に配置されるとともに、一端3aが導熱体に熱的に接触し、他端3bが蓄熱体に熱的に接触する熱電変換ユニット3と、一定の熱抵抗を有し、熱電変換ユニットとの接触部分を除く蓄熱体の全体を被覆する被覆層4とを備える。蓄熱体が導熱体の最高温度と最低温度の中間付近の温度に保たれることにより、導熱体と蓄熱体との間に生じる温度差を利用して、熱電変換ユニットから電気エネルギーを取り出す。

Description

熱電発電装置
 本発明は、外部環境の温度変化を利用し、熱電変換モジュールを用いて熱エネルギーを電気エネルギーに変換することで発電を行う熱電発電装置、特に、小電力用の熱電発電装置に関するものである。
 近年、エネルギー・ハーベスティング技術が注目されつつある。エネルギー・ハーベスティング技術は、熱や振動、光、電磁波といった環境エネルギーを電力に変換するものである。
 そして、このエネルギー・ハーベスティング技術の1つとして、熱電変換モジュールを用い、熱エネルギーから電力を得るようにした熱電発電装置がこれまでに提案されている(例えば、特許文献1~3参照)。
 従来の熱電発電装置によれば、発電を行う際には、熱電変換モジュールの一端側に加熱によって熱を供給する一方、他端側から冷却によって熱を排出し、熱電変換モジュールの両側に一定の大きさの温度差を生じさせる必要があった。すなわち、従来の熱電発電装置においては、近接して存在する加熱源と冷却源との間の温度差を利用して発電するので、熱電発電装置の設置場所が制限されていた。
 一方、ワイヤレスセンサーやリモートモニター等の消費電力が小さい電子機器においては、メンテナンスの関係上、電源として、商用電源や電池ではなく、環境エネルギーを利用することが望ましい。
 そのため、熱電発電装置をこれらの電子機器の電源部に組み込むことが考えられるが、上述のように熱電発電装置の設置場所が制限されることから、電子機器を必要な場所に自由に設置することができないという問題があった。
特開2004-47635号公報 特開2005-347348号公報 特開2010-45881号公報
 したがって、本発明の課題は、熱電発電装置が配置される環境中の熱電変換モジュールを挟んだ両側に温度差を生じさせるために、熱電変換モジュールの一端側を加熱し、他端側を冷却しなくても、安定的に発電することができる熱電発電装置を提供することにある。
 上記課題を解決するため、本発明によれば、温度昇降を繰り返す環境中に配置され、前記環境の温度変化を利用して発電を行う熱電発電装置であって、前記環境に接触し、前記環境の温度変化に応じて前記環境と熱交換し得る1つの導熱体と、少なくとも1つの蓄熱体と、一定の熱抵抗を有し、前記蓄熱体を被覆する被覆層と、前記導熱体および前記蓄熱体間、または前記蓄熱体間、またはそれらの両方に配置された少なくとも1つの熱電変換ユニットと、を備え、前記熱電変換ユニットの一端側と他端側との間に生じる温度差を利用して、前記熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする熱電発電装置が提供される。
 本発明の好ましい実施例によれば、前記熱電発電装置は、1つの前記蓄熱体と、前記導熱体および前記蓄熱体間に配置された1つの前記熱電変換ユニットと、を備え、前記熱電変換ユニットの一端が前記導熱体に接触する一方、他端が前記蓄熱体に接触し、前記被覆層は前記熱電変換ユニットとの接触部分を除く前記蓄熱体の全体を被覆しており、前記蓄熱体が前記導熱体の最高温度と最低温度の中間付近の温度に保たれ、それによって、前記導熱体と前記蓄熱体との間に生じる温度差を利用して、前記熱電変換ユニットから電気エネルギーを取り出すようになっている。
 本発明の別の好ましい実施例によれば、前記熱電発電装置は、前記被覆層内における前記導熱体および前記蓄熱体間に配置され、熱的に膨張および収縮すること、または熱的に変形することで、前記導熱体および前記蓄熱体に接触して前記導熱体と前記蓄熱体の間で熱移動させる第1の位置と、前記導熱体および前記蓄熱体のうちの少なくとも一方から離間して前記熱移動を停止させる第2の位置とをとる補助導熱手段を備え、前記補助導熱手段は、前記導熱体の温度が前記最高温度付近にあるとき、または前記導熱体の温度が前記最低温度付近にあるときに前記第1の位置をとる。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、前記被覆層内における前記導熱体および前記蓄熱体間に配置され、前記導熱体および前記蓄熱体に接触して前記導熱体と前記蓄熱体の間で熱移動させるON状態と、前記導熱体および前記蓄熱体のうちの少なくとも一方から離間して前記熱移動を停止させるOFF状態とをとる熱流スイッチと、前記導熱体の温度を検出する第1の温度センサーと、前記蓄熱体の温度を検出する第2の温度センサーと、前記第1および第2の温度センサーの検出値に基づいて、前記熱流スイッチのON状態とOFF状態を切り替える熱流スイッチ制御部とを備えている。
 本発明のさらに別の好ましい実施例によれば、前記熱流スイッチは、前記導熱体と前記熱電変換ユニットの前記一端との間、または前記蓄熱体と前記熱電変換ユニットの前記他端との間に配置され、前記ON状態をとるとき、前記熱電変換ユニットを介して前記導熱体に接触し、または前記熱電変換ユニットを介して前記蓄熱体に接触する。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、第1および第2の前記蓄熱体と、前記第1および第2の蓄熱体間に配置され、一端が前記第1の蓄熱体に接触し、他端が前記第2の蓄熱体に接触する1つの前記熱電変換ユニットと、前記導熱体および前記第1の蓄熱体間に配置され、前記導熱体および前記第1の蓄熱体に接触して前記導熱体と前記第1の蓄熱体の間で熱移動させるON状態と、前記導熱体および前記第1の蓄熱体のうちの少なくとも一方から離間して当該熱移動を停止させるOFF状態とをとる第1の熱流スイッチと、前記導熱体および前記第2の蓄熱体間に配置され、前記導熱体および前記第2の蓄熱体に接触して前記導熱体と前記第2の蓄熱体の間で熱移動させるON状態と、前記導熱体および前記第2の蓄熱体のうちの少なくとも一方から離間して当該熱移動を停止させる第2の熱流スイッチと、を備え、前記被覆層は、前記第1の熱流スイッチとの接触部分および前記熱電変換ユニットとの接触部分を除く前記第1の蓄熱体の全体と、前記第2の熱流スイッチとの接触部分および前記熱電変換ユニットとの接触部分を除く前記第2の蓄熱体の全体を被覆しており、前記熱電発電装置は、さらに、前記導熱体の温度を検出する第1の温度センサーと、前記第1の蓄熱体の温度を検出する第2の温度センサーと、前記第2の蓄熱体の温度を検出する第3の温度センサーと、前記第1~第3の温度センサーの検出値に基づいて、前記第1および第2の熱流スイッチの前記ON状態と前記OFF状態を切り替える熱流スイッチ制御部と、を備え、前記熱流スイッチ制御部が、前記導熱体の温度が最高温度付近にあるとき、前記第1の熱流スイッチを前記ON状態にすると同時に、前記第2の熱流スイッチを前記OFF状態にし、前記導熱体の温度が最低温度付近にあるとき、前記第1の熱流スイッチを前記OFF状態にすると同時に、前記第2の熱流スイッチを前記ON状態にすることにより、第1の蓄熱体が前記導熱体の最高温度付近の温度に保たれる一方、前記第2の蓄熱体が前記導熱体の最低温度付近の温度に保たれ、それによって、前記第1および第2の蓄熱体間に生じる温度差を利用して、前記熱電変換ユニットから電気エネルギーを取り出すようになっている。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、前記第1の熱流スイッチおよび前記第1の蓄熱体間に配置され、一端が前記第1の熱流スイッチに接触する一方、他端が前記第1の蓄熱体に接触する第1のペルチェ素子と、前記第2の熱流スイッチおよび前記第2の蓄熱体間に配置され、一端が前記第2の熱流スイッチに接触する一方、他端が前記第2の蓄熱体に接触する第2のペルチェ素子と、を備え、前記第1の熱流スイッチが前記ON状態にあるとき、前記第1のペルチェ素子が、前記一端において吸熱して、前記他端において発熱し、前記第2の熱流スイッチが前記ON状態にあるとき、前記第2のペルチェ素子が、前記一端において発熱して、前記他端において吸熱する。
 本発明のさらに別の好ましい実施例によれば、前記導熱体が前記被覆層の表面の全体を被覆している。
 本発明のさらに別の好ましい実施例によれば、前記被覆層は断熱材から形成されている。
 本発明のさらに別の好ましい実施例によれば、少なくとも1つの前記蓄熱体が潜熱蓄熱材から形成されている。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、第1の追加の蓄熱体と、第2の追加の蓄熱体と、前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加のペルチェ素子と、一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分および前記追加のペルチェ素子との接触部分を除く前記第1および第2の追加の蓄熱体の全体を被覆する追加の被覆層と、を備え、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記追加のペルチェ素子によって熱エネルギーに変換することによって、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すようになっている。
 この実施例において、前記熱電発電装置から電気の供給を受ける電子機器の動作が間欠的であり、それに対応して、前記熱電発電装置による電気の出力が間欠的でもよい場合には、追加のペルチェ素子を省略するとともに、前記追加の熱電変換ユニットをゼーベック素子から構成し、前記熱電発電装置から電気を出力するときは、前記追加の熱電変換ユニットをゼーベック素子として機能させる一方、前記熱電発電装置から電気を出力しないときは、前記追加の熱電変換ユニットをペルチェ素子として機能させることもできる。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、第1の追加の蓄熱体と、第2の追加の蓄熱体と、前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分を除く前記第1および第2の追加の蓄熱体の全体を被覆する追加の被覆層と、前記追加の被覆層の内部において前記第1の追加の蓄熱体に接触して配置されたヒーターと、を備え、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記ヒーターによって熱エネルギーに変換することによって、前記第1の追加の蓄熱体を加熱し、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すようになっている。
 本発明のさらに別の好ましい実施例によれば、前記第1および第2の追加の蓄熱体のうちの少なくとも一方が潜熱蓄熱材から形成されている。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、第1の追加の蓄熱体と、第2の追加の蓄熱体と、前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加のペルチェ素子と、を備え、前記第2の追加の蓄熱体は、前記熱電発電装置が設置される構造物からなり、前記熱電発電装置は、さらに、一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分および前記追加のペルチェ素子との接触部分を除く前記第1の追加の蓄熱体の全体を被覆する追加の被覆層を備え、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記追加のペルチェ素子によって熱エネルギーに変換することによって、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すようになっている。
 この実施例において、前記熱電発電装置から電気の供給を受ける電子機器の動作が間欠的であり、それに対応して、前記熱電発電装置による電気の出力が間欠的でもよい場合には、追加のペルチェ素子を省略するとともに、前記追加の熱電変換ユニットをゼーベック素子から構成し、前記熱電発電装置から電気を出力するときは、前記追加の熱電変換ユニットをゼーベック素子として機能させる一方、前記熱電発電装置から電気を出力しないときは、前記追加の熱電変換ユニットをペルチェ素子として機能させることもできる。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、第1の追加の蓄熱体と、第2の追加の蓄熱体と、前記第1および第2の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分を除く前記第1および第2の追加の蓄熱体の全体を被覆する追加の被覆層と、前記追加の被覆層の内部において前記第1の追加の蓄熱体に接触して配置されたヒーターと、を備え、前記第2の追加の蓄熱体は、前記熱電発電装置が設置される構造物からなり、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記ヒーターによって熱エネルギーに変換することによって、前記第1の追加の蓄熱体を加熱し、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すようになっている。
 本発明のさらに別の好ましい実施例によれば、前記第1の追加の蓄熱体が潜熱蓄熱材から形成されている。
 本発明のさらに別の好ましい実施例によれば、前記熱電発電装置は、ワイヤレス給電システムの送電側機能を備えている。
 本発明によれば、温度変化を繰り返す環境に接触する導熱体が該環境と熱交換することによって、導熱体および蓄熱体間あるいは蓄熱体間に自動的に温度差を生じさせ、この温度差に比例した電圧を熱電変換ユニットから取り出すことができる。
 また、1つの蓄熱体と、該蓄熱体および導熱体間に配置された1つの熱電変換ユニットを備え、熱電変換ユニットの一端が導熱体に接触する一方、他端が蓄熱体に接触し、被覆層が熱電変換ユニットとの接触部分を除く蓄熱体の全体を被覆する構成とした場合には、導熱体の温度を環境の温度変化に従って昇降させる一方、蓄熱体の温度を導熱体の最高温度と最低温度の中間付近の温度に保つことによって、導熱体および蓄熱体間に温度差を自動的に生じさせ、この温度差に比例した電圧を熱電変換ユニットから取り出すことができる。
 また、2つの蓄熱体と、これらの蓄熱体間に配置され、一端が一方の蓄熱体に接触し、他端が他方の蓄熱体に接触する1つの熱電変換ユニットと、導熱体と蓄熱体のそれぞれとの間に配置され、導熱体および蓄熱体に接触してそれらの間で熱移動させるON状態と、導熱体および蓄熱体のうちの少なくとも一方から離間して当該熱移動を停止させるOFF状態とをとる熱流スイッチとを備え、被覆層が熱流スイッチとの接触部分および熱電変換ユニットとの接触部分を除く蓄熱体の全体を被覆し、さらに、導熱体および蓄熱体の温度を検出する温度センサーと、温度センサーの検出値に基づいて、各熱流スイッチのON状態とOFF状態を切り替える熱流スイッチ制御部とを備えた構成とした場合には、導熱体の温度が最高温度付近にあるとき、一方の熱流スイッチをON状態にすると同時に、他方の熱流スイッチをOFF状態にし、導熱体の温度が最低温度付近にあるとき、一方の熱流スイッチをOFF状態にすると同時に、他方の熱流スイッチをON状態にすることにより、一方の蓄熱体が導熱体の最高温度付近の温度に保つ一方、他方の蓄熱体を導熱体の最低温度付近の温度に保つことによって、2つの蓄熱体間に生じる温度差に比例した電圧を熱電変換ユニットから取り出すことができる。
 こうして、本発明によれば、温度昇降を繰り返す環境中に熱電発電装置を配置するだけで電気エネルギーを取り出すことができ、従来の熱電発電装置のように、熱電発電装置が配置された環境中の熱電変換ユニットを挟んだ両側に温度差を生じさせるべく、熱電変換ユニットの一端側を加熱し、他端側を冷却する必要がない。
本発明の1実施例による熱電発電装置の縦断面図である。 図1に示した熱電発電装置を屋外の大気中に配置した場合の、導熱体と蓄熱体の温度変化の一例を示したグラフである。 本発明の別の実施例による熱電発電装置を示す図1に類似の図である。 図1に示した熱電発電装置を電子機器の電源として使用した場合の該電源の構成例を示す図である。 本発明のさらに別の実施例による熱電発電装置の主要部を示す拡大縦断面図である。 図5における補助導熱手段の取付部の拡大図である。 図5における補助導熱手段の取付部の拡大図である。 図5に示した熱電発電装置を屋外の大気中に配置した場合の、導熱体と蓄熱体の温度変化の一例を示す図2に類似のグラフである。 本発明のさらに別の実施例による熱電発電装置を示す図1に類似の図である。 図9に示した熱電発電装置の熱流スイッチの取付部の拡大図である。 図9に示した熱電発電装置の熱流スイッチの取付部の拡大図である。 本発明のさらに別の実施例による熱電発電装置の縦断面図である。 図12に示した熱電発電装置を屋外の大気中に配置した場合の、導熱体と第1および第2の蓄熱体の温度変化の一例を示す図2に類似のグラフである。 本発明のさらに別の実施例による熱電発電装置の斜視図である。 本発明のさらに別の実施例による熱電発電装置の縦断面図である。 本発明のさらに別の実施例による熱電発電装置の縦断面図である。 本発明のさらに別の実施例による熱電発電装置の縦断面図である。 本発明のさらに別の実施例による熱電発電装置の縦断面図である。
 以下、添付図面を参照して本発明の好ましい実施例を説明する。
 本発明による熱電発電装置は、温度昇降を繰り返す環境中に配置されるようになっている。ここに、「温度昇降を繰り返す環境」には、昼夜で周期的に温度変化する屋外の大気中や、屋内に配置され、稼働状態に応じて温度変化する機械設備の近傍および表面上等が含まれる。
 図1は、本発明の1実施例による熱電発電装置の構成を示す縦断面図である。
 図1に示された実施例では、本発明による熱電発電装置は、環境に接触し、環境の温度変化に応じて環境と熱交換し得る1つの導熱体1と、1つの蓄熱体2と、導熱体1および蓄熱体2間に配置されて、一端3aが導熱体1に接触し、他端3bが蓄熱体2に接触する熱電変換ユニット3と、一定の熱抵抗を有し、熱電変換ユニット3との接触部分を除く蓄熱体2の全体を被覆する被覆層4を備えている。
 被覆層4によって被覆された蓄熱体2は、好ましくは、角がなく全体に丸味を帯び、表面積が出来るだけ小さくなるような形状とされる。
 熱電変換ユニット3としては、熱エネルギーを電気エネルギーに変換し得る任意のものが使用可能であるが、この実施例では、ゼーベック効果を利用した熱電変換モジュールが使用される。なお、図1中、5は、熱電変換モジュールの一対の電極である。
 導熱体1は、環境との熱交換(熱吸収および放熱)がより高い効率で行えるような構成を有していることが好ましい。そのため、例えば、熱電発電装置の設置環境が、温度変化する大気中である場合は、できるだけ大きな導熱体1の表面積を確保すべく、導熱体1の表面が凹凸を有し、または粗面に形成されていることが好ましく(伝導、対流の促進)、また、導熱体1の表面が黒色等の濃い色を有していることが好ましい(放射の促進)。また、例えば、熱電発電装置の設置環境が、稼働状態によって温度変化する機械設備の表面である場合は、導熱体1が機械設備の表面に密着すべく、当該表面に適合する形状を有していることが好ましい(伝導の促進)。
 蓄熱体2は、水等の液体によって満たされた、防水性を有する容器からなっていてもよく、この場合、容器の壁の少なくとも熱電変換ユニットとの接触部分は、熱伝導性を有している。
 容器を満たす液体は、腐敗しにくく、凍結しにくいものであれば、どのような液体からなっていてもよく、例えば、純水、または純水に不凍液を混合したもの、または純水に防腐剤を混合したものを使用することができる。なお、液体にはゲル状のものも含まれる。
 蓄熱体2は、固体状の金属または非金属からなっていてもよく、この場合、蓄熱体2として、アルミニウム塊またはプラスチック塊またはコンクリート塊を用いることが好ましい。
 被覆層4は、一定の熱抵抗を有し、熱電変換ユニット3との接触部分を除く蓄熱体2の全体を被覆するものであればよく、その形成材料や構造に特に制限はない。この実施例では、被覆層4は、熱電変換ユニット3との接触部分を除く蓄熱体2の全体を被覆する公知の適当な断熱材からなっている。
 ここに、「一定の熱抵抗」とは、蓄熱体2の熱容量と、熱電変換ユニット3の発電効率(熱電変換ユニット3からの熱漏洩および熱電変換ユニット3による発電に伴う熱移動)を考慮しつつ、蓄熱体2の温度を導熱体1の最高温度と最低温度の中間の温度付近に保つことができる程度の熱抵抗を意味する。
 装置設計上は、蓄熱体2の熱容量と被覆層4の熱抵抗との積によって定まる熱時定数が、熱電発電装置が配置される環境の温度昇降の繰り返し周期よりも十分に長くなるようにすることによって、この「一定の熱抵抗」が達成される。
 また、装置設計上、あるいは構造上、例えば、蓄熱体2の全体が被覆層4によって完全されず、蓄熱体2の一部が外部の環境に接していても、「一定の熱抵抗」が確保されていればよい。
 次に、本発明による熱電発電装置の発電能力について考察する。
 本発明による熱電発電装置を屋外の大気中に配置した場合を考える。日本各地の一日の最高気温と最低気温の温度差は、平均すると約10℃であることが知られているので、本発明の熱電発電装置を配置した環境においても、一日の気温差が約10℃であるとする。
 なお、この実施例では、北緯30~45°に位置し海洋に囲まれた日本での気温を前提とするが、地球上のどの地域においても、昼間は太陽の日射による加熱が生じる一方、夜間は放射冷却による冷却が生じ、昼夜の繰り返しが気温変化を生じさせることに変わりはなく、よって、本発明による熱電発電装置は、地域によらず機能することは言うまでもない。
 図2は、このような環境中における、本発明の熱電発電装置の導熱体1と蓄熱体2の一日の温度変化の一例を示したグラフである。図2のグラフ中、縦軸は温度(℃)を、横軸は時刻(時)を表し、曲線Xおよび曲線Yはそれぞれ導熱体1の温度変化および蓄熱体2の温度変化を示している。
 図2のグラフからわかるように、熱電発電装置の導熱体1の温度は、気温変化にほぼ追従して、約10℃の温度範囲内で昇降する。
 一方、蓄熱体2の温度は、被覆層4が無限大の熱抵抗を有し、かつ、熱電変換ユニット3からの熱漏洩および熱電変換ユニット3の発電に伴う熱移動がない、理想的な条件下においては、導熱体1の最高温度と最低温度の中間の温度に安定する。
 しかしながら、現実には、被覆層4の熱抵抗は有限であるから、被覆層4から熱漏洩が生じ、さらには、熱電変換ユニット3からの熱漏洩および熱電変換ユニット3の発電に伴う熱移動が生じるので、蓄熱体2の温度は、導熱体1の最高温度と最低温度の中間温度付近で変化する。そして、導熱体1と蓄熱体2の温度差は、導熱体1の最高温度と最低温度の差(約10℃)の半分の約5℃を最大値として、0℃~約5℃の範囲内で変動する。
 そこで、被覆層4および熱電変換ユニット3からの熱漏洩、並びに熱電変換ユニット3の発電に伴う熱移動を考慮し、蓄熱体2の熱容量を、蓄熱体2が約2℃の範囲内で温度変化する大きさに設定すると、蓄熱体2の温度は導熱体1の温度変化よりも遅れて変化するので、導熱体1の温度変化と蓄熱体2の温度変化は互いに位相がずれる。
 この場合、被覆層4の熱抵抗を介して熱容量を有する蓄熱体2に熱移動が生じる際は、時間遅延が生じるので、温度変化が正弦波形を示す場合は最大90°、すなわち1周期の1/4だけ位相がずれる。外部環境が高温の時は、蓄熱体2の最高温度は導熱体1の最高温度に近づくが、この位相差により、導熱体1と蓄熱体2の温度差として、導熱体1の最高温度とその平均温度との差に近い値が確保される。これは、外部環境が低温の時も同様である。こうして確保された温度差を利用して熱電発電を行う点が、本発明の熱電発電装置の特徴の1つである。
 外部環境が屋外大気中の場合、図2に示したように、太陽熱による気温上昇は急激である一方、熱放射による気温下降は緩やかであるから、気温変化のグラフは正弦曲線に一致しないが、約1/4周期の位相のずれがあり、温度差が反転して変化するΔTの温度差が生じる。
 その結果、1日の気温の変化を通じて、実際に発電に使用可能な、導熱体1と蓄熱体2の温度差約5℃を確保することができ、この温度差に応じて、導熱体1の昇温時と降温時の2回にわたって発電が行われ、その積分値が一周期(昼夜1サイクル)の発電電力量となる。
 そして、例えば、蓄熱体2を1000mLの水で満たされた容器から構成した場合には、容器の熱容量を小さいとして無視すると、上記考察に基づき、蓄熱体2の温度変化を2℃として、蓄熱体2の熱容量は、水の比熱が1cal/gであり、1cal=4.2Jであるから、次のようになる。
熱容量=1×1000×2=2000(cal)
   =8400(J)=8400(Ws)=2.33(Wh)
 仮に、熱電変換ユニット3の発電効率が10%であるとすると、発電で得られる電力量は233mWhとなり、昼夜2回の同量の発電が可能であれば、1日当たり466mWhの電力量を得ることができる。
 こうして、一定の熱量の熱エネルギーが、一定の発電効率を有する熱電発電装置の働きによって一定の電力量の電気エネルギーに変換される。
 1000mLの水は、一辺が10cmの立方体の容器内に充填可能であるが、使用する水の量を1/10の100mLとして、2.5(cm)×4(cm)×10(cm)の直方体容器内に充填した蓄熱体2の場合、前と同じ発電効率であれば、1日当たり46.6mWhの電力量が得られる。
 この電力量は、通常の小電力型の電子機器(消費電力が数μW程度)を作動させるのに十分な大きさである。例えば、50μWの電子機器を1日(24時間)動作させるのに必要な電力量は、50×24=1,200μWh=1.2mWhであり、仮に熱電発電装置の発電効率が10%の数分の1であっても十分に供給可能な量である。
 また、蓄熱体2を体積100mLのアルミニウムから構成した場合には、蓄熱体2の温度変化を2℃として、蓄熱体2の熱容量は、アルミニウムの比熱が0.21cal/gで、比重が2.7であるから、
 熱容量=0.21×2.7×100×2=113.4(cal)
    =476(J)=476(Ws)=0.132(Wh)
 そして、熱電変換ユニット3の発電効率が10%であるとすると、発電で得られる電力量は13.2mWhとなり、昼夜2回の同量の発電が可能であれば、1日当たり26.4mWhの電力量(水の場合の約0.62倍の電力量)を得ることができる。
 この場合、アルミニウムは、水よりも高価であるが、加工等の取扱いが容易であり、水を使用した場合と比較して蓄熱体2の構造を簡略化することができる。
 こうして、本発明の熱電発電装置においては、温度昇降を繰り返す環境に熱的に接触する導熱体1と、被覆層4の作用によって該環境から熱的影響を受けにくい蓄熱体2と、一端が導熱体1に熱的に接触し、他端が蓄熱体2に熱的に接触する熱電変換ユニット3とを備え、導熱体1の温度を環境の温度変化に従って昇降させる一方、蓄熱体2の温度を導熱体1の最高温度と最低温度の中間付近の温度に保つようにし、導熱体1および蓄熱体2間に自動的に生じた温度差に比例した電圧を熱電変換ユニット3から取り出すことができる。
 すなわち、本発明によれば、熱電発電装置を温度昇降を繰り返す環境中に配置するだけで電気エネルギーを取り出すことができ、従来の熱電発電装置のように、熱電発電装置が配置された環境中の熱電変換ユニットを挟んだ両側に温度差を生じさせるべく、熱電変換ユニットの一端側を加熱し、他端側を冷却する必要がない。
 そして、本発明による熱電発電装置をワイヤレスセンサーやリモートモニター等の電子機器の電源として使用した場合には、商用電源から電子機器への電力供給配線や電池の交換作業が不要な独立電源が得られ、これらの電子機器を必要な場所に自由に設置することができる。
 なお、図2のグラフにおいて、蓄熱体2がより小さい熱容量を有するように設計され、あるいは被覆層4がより小さい熱抵抗を有するように設計された場合、曲線Yは次第に曲線Xに近づき、それによって、導熱体1と蓄熱体2の温度差は小さくなる一方、蓄熱体2がより大きい熱容量を有するように設計され、あるいは被覆層4がより大きい熱抵抗を有するように設計された場合、曲線Xは、曲線Xの最大値と最小値の中間値付近において、次第にフラットになり、それによって、導熱体1と蓄熱体2の温度差は大きくなる。
 また、本発明の熱電発電装置を、導熱体1が直射日光や散乱光を受け得る場所に設置するとともに、導熱体1を、日射を受けやすく、しかも夜間には放射冷却されやすいような構造とすることによって、導熱体1の最高温度および最低温度の差をより大きくすれば、発電電力をさらに増大させることができる。
 この場合には、導熱体1の表面に凹凸が形成されないようにして、空気との接触面積をできるだけ小さくすることが好ましい。それによって、導熱体1が日射によって空気温度より高温になったときに、空気によって冷却されること、および、導熱体1が放射冷却によって低温になったときに、空気によって暖められることが防止される。
 なお、この場合、空気の影響を遮断すべく、ガラス等の透明板を使用し、導熱体1と透明板との間を真空にして断熱してもよい。透明板は、太陽光線や赤外線の透過、反射および吸収の特性を適切に考慮し、適切な材質のものを用いることが好ましい。
 図3には、本発明の別の実施例による熱電発電装置を示した。なお、図3中、図1に示したものと同じ構成要素には同一番号を付している。
 図3Aを参照して、この実施例では、導熱体1’が被覆層4の表面の全体を被覆している。この構成によれば、熱電発電装置全体の体積はさほど増大させずに、導熱体1’の表面積をかなり増大させることができ、それによって、導熱体1’の環境との熱交換の効率をより高めることができる。さらには、導熱体1’を金属等の硬質の材料から形成した場合には、蓄熱体2、熱電変換ユニット3および被覆層4を導熱体1’によって保護することができる。
 また、図3Bを参照して、この実施例では、蓄熱体2が、液体6で満たされた容器7から構成されている。この場合、容器7の内壁面に、複数の熱交換用フィン8を互いに間隔をあけて設ける等の、液体6の熱伝導や対流を促進する手段を容器7内に設けることがより好ましい。
 図4は、本発明による熱電発電装置を低消費電力の電子機器の電源部に組み込んだ場合の構成の1例を示した図である。図4を参照して、本発明の熱電発電装置においては、設置環境の温度昇降によって一対の電極5に交流が発生するので、電源部10は、本発明の熱電変換装置のほかに、熱電発電装置の熱電変換ユニット3の一対の電極5に接続された極性・電圧変換回路11と、極性・電圧変換回路11の後段に接続されたリチウムイオン電池等の二次電池12とを備えている。
 こうして、本発明の熱電発電装置による発電電力を一旦二次電池12に蓄え、二次電池12から電子機器13に供給することによって、電子機器13の動作のために必要とされるときに、安定して電力を供給することができる。
 この実施例では、本発明の熱電発電装置は電子機器13に内蔵され、あるいは電子機器13とは独立に設けられるが、電子機器の一部(例えば筐体)が、熱電発電装置の導熱体の全体あるいは一部を構成するようにしてもよい。
 また、電子機器13を、本発明の熱電発電装置の蓄熱体内に配置することもできる。この構成によれば、電子機器13の温度を、外部環境の最高温度と最低温度の中間温度付近に保つことができ、それによって、電子機器13を温度ストレスから保護し、安定的に動作させることができる。
 図5は、本発明のさらに別の好ましい実施例による熱電発電装置の主要部を示す拡大縦断面図である。図5の実施例は、被覆層4の内部に補助導熱手段を組み込んだ点が、図1の実施例と異なるだけである。よって、図5中、図1に示した構成要素と同じ構成要素には同一番号を付して、詳細な説明を省略する。
 図5を参照して、この実施例では、被覆層4内における導熱体1および蓄熱体2間に補助導熱手段14が組み込まれている。補助導熱手段14は、被覆層4を貫通して導熱体1および蓄熱体2間にのびる開口9内に取付けられ、熱的に膨張および収縮すること、または熱的に変形することで、導熱体1および蓄熱体2に接触して導熱体1と蓄熱体2の間で熱移動させる第1の位置と、導熱体1および蓄熱体2のうちの少なくとも一方から離間して熱移動を停止させる第2の位置をとる。
 そして、補助導熱手段14は、導熱体1の温度が最高温度付近にあるときまたは導熱体1の温度が最低温度付近にあるときは第1の位置をとる一方、それ以外のときは第2の位置をとるように動作する。
 図6および図7は、図5における補助導熱手段の取付部の拡大図であり、補助導熱手段14を例示したものである。
 図6に示した実施例では、補助導熱手段14は、バイメタル14aからなっている。バイメタル14aは、アーチ状に形成され、導熱体1側が凸になる配置で、下端部が蓄熱体2に接触状態で固定されている。そして、バイメタル9aは、導熱体1が最高温度付近にあるとき(導熱体1の高温時)または導熱体1が最低温度付近にあるとき(導熱体1の低温時)に大きく変形して、アーチの頂点領域を導熱体1に接触させ、第1の位置をとる(図6B参照)が、それ以外の期間は、導熱体1に接触しない範囲内で変形し、第2の位置をとる(図6A参照)。
 図7に示した実施例では、補助導熱手段14は、熱収縮材料14bからなっている。熱収縮材料14bとしては、例えば、熱収縮ゴムに熱伝導性を高める金属粉を配合したものが使用できる。熱収縮材料14bは、上面が蓄熱体2に接触状態で固定されている。そして、熱収縮材料14bは、導熱体1が最高温度付近にあるとき(導熱体1の高温時)に大きく膨張して、下面を蓄熱体2に接触させ、第1の位置をとる(図7B参照)が、それ以外のときは、蓄熱体2に接触しない範囲で膨張・収縮し、第2の位置をとる(図7A参照)。
 図8は、図5に示した熱電発電装置を屋外の大気中に配置した場合の、導熱体1と蓄熱体2の温度変化の一例を示す図2に類似のグラフであり、グラフ中、曲線Xは導熱体1の温度変化を示し、曲線Yは蓄熱体2の温度変化を示している。また、図8のグラフ中、Shは、補助導熱手段9が第1の位置をとっている期間を示している。
 図8のグラフからわかるように、図5の実施例によれば、導熱体1の高温時には、蓄熱体2の温度が導熱体1の温度付近まで上昇し、それによって、導熱体1および蓄熱体2間の、導熱体1の最高温度と最低温度の差に近い温度差ΔTが得られる。その結果、補助導熱手段9を備えていない場合と比べて約2倍の温度差となり、この温度差に比例して、熱電変換ユニット3の出力電圧が約2倍になる。
 この場合、負荷抵抗が一定であれば、得られる電力は電圧の2乗に比例するので、電圧が2倍であれば、熱電発電装置によって得られる電力量は4倍となり、蓄熱体の熱容量が同じであっても、より多くの電力量が得られることになる。
 図5に示した実施例のように導熱体1の温度変化(外部環境の温度変化)に応じて、膨張・収縮または変形することによって受動的に熱移動を制御する補助導熱手段を配置する代わりに、能動的に熱移動を制御する熱流スイッチを配置することもできる。
 図9には、熱流スイッチを備えた熱電発電装置の構成を示した。図9に示した実施例では、被覆層4内における導熱体1および蓄熱体2間に、導熱体1および蓄熱体2に接触して導熱体1と蓄熱体2の間で熱移動させるON状態と、導熱体1および蓄熱体2のうちの少なくとも一方から離間して前記熱移動を停止させるOFF状態とをとる熱流スイッチ15が配置される。
 また、導熱体1の温度を検出する第1の温度センサー16と、蓄熱体2の温度を検出する第2の温度センサー17が備えられる。第1および第2の温度センサー16、17は、熱流スイッチ15からできるだけ離れた位置であって、それぞれ、導熱体1および蓄熱体2の中心または平均温度を示す位置に配置されることが好ましい。
 さらに、熱流スイッチ制御部18が備えられ、第1および第2の温度センサー16、17の検出値に基づいて、熱流スイッチ15のON状態とOFF状態を切り替えるようになっている。
 熱流スイッチ15の機能は、基本的に補助導熱手段と同様である。
 例えば、蓄熱体2の温度を導熱体1の高温側にシフトさせる場合は、熱流スイッチ制御部18が、第1および第2の温度センサー16、17の検出値に基づき、導熱体1の温度が蓄熱体2の温度よりも高く、かつその温度差が予め設定された値以上であると判定したとき、熱流スイッチ15をON状態にする一方、導熱体1の温度が蓄熱体2の温度よりも高いが、その温度差が予め設定された値以下であると判定したとき、または、導熱体1の温度が蓄熱体2の温度よりも低いと判定したときは、熱流スイッチ15をOFF状態とする。
 なお、熱流スイッチ15の作動は、熱電発電装置が出力する電力の一部を用いてなされる。
 もちろん、熱流スイッチ15によって、蓄熱体2の温度を導熱体1の低温側にシフトさせることもでき、この場合には、熱流スイッチ制御部18が、第1および第2の温度センサー16、17の検出値に基づき、導熱体1の温度が蓄熱体の温度よりも低く、かつその温度差が予め設定された温度以上であると判定したときにのみ、熱流スイッチ15をON状態にする。
 図10および図11は、図9における熱流スイッチの取付部の拡大図であり、熱流スイッチを例示したものである。
 図10に示した実施例では、熱流スイッチ15は、リニアアクチュエータ29aと、リニアアクチュエータ29aの操作ロッドの先端に接続された可動導熱ブロック29bとから構成される。そして、熱流スイッチ15がOFF状態にあるときは、図10Aに示すように、リニアアクチュエータ29aの操作ロッドは引っ込んだ位置にあって、可動導熱ブロック29bは導熱体1および蓄熱体2から離間しているが、例えば、熱流スイッチ制御部18によって、導熱体1の温度が蓄熱体2の温度よりも高くかつその温度差が予め設定された値以上であると判定されたとき、熱流スイッチ15はON状態になり、図10Bに示すように、リニアアクチュエータ29aの操作ロッドが突き出し、可動導熱ブロック29bが導熱体1および蓄熱体2に接触し、それによって、導熱体1から蓄熱体2に熱が移動し、蓄熱体2が加熱され、蓄熱体2の温度が導熱体1の高温側にシフトする。
 図11に示した実施例では、熱流スイッチ15は、回転型のアクチュエータ29cと、このアクチュエータ29cによって回転駆動される可動導熱ブロック29dとから構成される。そして、熱流スイッチ15がOFF状態にあるときは、図11Aに示すように、可動導熱ブロック29dは、導熱体1および蓄熱体2から離間した位置にあるが、例えば、熱流スイッチ制御部18によって、導熱体1の温度が蓄熱体2の温度よりも高くかつその温度差が予め設定された値以上であると判定されたとき、熱流スイッチ15はON状態になり、図11Bに示すように、可動導熱ブロック29dがアクチュエータ29cによって回転せしめられて導熱体1および蓄熱体2に接触し、それによって、導熱体1から蓄熱体2に熱が移動し、蓄熱体2が加熱され、蓄熱体2の温度が導熱体1の高温側にシフトする。
 図10および図11に示した実施例において、熱流スイッチ15の可動導熱ブロック29b、29dは、熱伝導性を向上させるべく、導熱体1および蓄熱体2との接触面が、密着しやすい形状を有しかつ弾力性を有していることが好ましく、また、この接触面を除く熱流スイッチ15の表面が、熱漏洩を抑制すべく、断熱材で覆われていることが好ましい。
 図示はしないが、本発明の別の実施例によれば、熱電変換ユニット3が熱流スイッチ15としても使用される。すなわち、熱電発電装置から出力される電力の一部が使用され、熱流スイッチ制御部18による制御のもと、ゼーベック効果による熱電変換ユニットに適当な電圧が適用される。それによって、熱電変換ユニットに、ペルチェ効果による発熱(加熱)および吸熱(冷却)作用を生じさせ、熱流スイッチと同等の機能を生じさせることができる。
 この場合、熱流スイッチ15のON状態は、熱電変換ユニット3を、ペルチェ効果によって、導熱体1および蓄熱体2のうちの温度の高い方から低い方に熱移動が生じるように動作させることによって、逆に、OFF状態は、ペルチェ効果によって、温度の低いほうから高い方に熱移動を生じるように動作させることによって実現される。
 また、図示はしないが、本発明のさらに別の実施例によれば、熱流スイッチ15は、導熱体1と熱電変換ユニット3の一端3aとの間、または蓄熱体2と熱電変換ユニット3の他端3bとの間に配置され、ON状態をとるとき、熱電変換ユニット3を介して導熱体1に接触し、または熱電変換ユニット3を介して蓄熱体2に接触する。
 また、図示はしないが、本発明のさらに別の好ましい実施例によれば、一定の大きさの熱時定数を確保できる場合には、蓄熱体における熱電変換ユニットとの接触部分を除く表面の全体が鏡面仕上げされ、蓄熱体の鏡面仕上げされた表面が被覆層を形成する。この場合、蓄熱体表面の鏡面仕上げは、表面を研磨することによって、あるいは表面を金属メッキすることによってなされる。
 図12は、本発明のさらに別の実施例による熱電発電装置の縦断面図である。図12に示した実施例では、熱電発電装置は、1つの導熱体1と、第1および第2の蓄熱体2a、2bと、第1および第2の蓄熱体2a、2b間に配置され、一端3aが第1の蓄熱体2aに接触し、他端3bが第2の蓄熱体2bに熱的に接触する熱電変換ユニット3を備えている。
 熱電発電装置は、また、導熱体1および第1の蓄熱体2a間に配置され、導熱体1および第1の蓄熱体2aに接触して導熱体1と第1の蓄熱体2aの間で熱移動させるON状態と、導熱体1および第1の蓄熱体2aのうちの少なくとも一方から離間して当該熱移動を停止させるOFF状態とをとる第1の熱流スイッチ15aと、導熱体1および第2の蓄熱体2b間に配置され、導熱体1および第2の蓄熱体2bに接触して導熱体1と第2の蓄熱体2bの間で熱移動させるON状態と、導熱体1および第2の蓄熱体2bのうちの少なくとも一方から離間して当該熱移動を停止させるOFF状態とをとる第2の熱流スイッチ15bを備えている。
 そして、第1の熱流スイッチ15aとの接触部分および熱電変換ユニット3との接触部分を除く第1の蓄熱体2aの全体と、第2の熱流スイッチ15bとの接触部分および熱電変換ユニット3との接触部分を除く第2の蓄熱体2bの全体が、一定の熱抵抗を有する被覆層4によって被覆されている。
 熱電発電装置は、さらに、導熱体1の温度を検出する第1の温度センサー19と、第1の蓄熱体2aの温度を検出する第2の温度センサー20と、第2の蓄熱体2bの温度を検出する第3の温度センサー21と、第1~第3の温度センサー19~21の検出値に基づいて、第1および第2の熱流スイッチ15a、15bのON状態とOFF状態を切り替える熱流スイッチ制御部22を備えている。
 この実施例においては、導熱体1が最高温度付近にあるとき、第1の熱流スイッチ15aがON状態になる一方、第2の熱流スイッチ15bはOFF状態となり、それによって、導熱体1および第1の蓄熱体2a間で熱移動が生じて、第1の蓄熱体2aの温度が当該最高温度付近に保たれ、導熱体1が最低温度付近にあるときは、第1の熱流スイッチ15aがOFF状態になる一方、第2の熱流スイッチ15bはON状態となり、導熱体1および第2の蓄熱体2b間で熱移動が生じて、第2の蓄熱体2bの温度が当該最低温度付近に保たれるようになっている。そして、第1および第2の蓄熱体2a、2b間に生じた温度差を利用して、熱電変換ユニット3によって電気エネルギーが取り出される。
 こうして、24時間(温度変化の全周期)にわたり最高温度と最低温度の差に近い温度差を維持しつつ、当該温度差を利用して安定して大きな発電電力を得ることができる。この場合には、2つの蓄熱体2a、2bに蓄えられた熱エネルギーによって連続した発電が可能であり、単一の蓄熱体を備えた熱電発電装置においては連続的でかつ安定した電力供給を行うのに必要であった二次電池を省略できる。
 図13は、図12に示した熱電発電装置を屋外の大気中に配置した場合の、導熱体1と第1および第2の蓄熱体2a、2bの温度変化の一例を示す図2に類似のグラフである。図13のグラフ中、縦軸は温度(℃)を、横軸は時刻(時)を表し、曲線X、曲線Yおよび曲線Zは、それぞれ、導熱体1、第1の蓄熱体2aおよび第2の蓄熱体2bの温度変化を示している。また、図13のグラフ中、Shは、第1の熱流スイッチ15aがON状態にあり、かつ第2の熱流スイッチ15bがOFF状態にある期間を示し、Siは、第1の熱流スイッチ15aがOFF状態にあり、かつ第2の熱流スイッチ15bがON状態にある期間を示している。
 図13のグラフからわかるように、熱電発電装置の導熱体1の温度は、気温変化にほぼ追従して、約10℃の温度範囲内で昇降する。
 一方、被覆層4の熱抵抗が無限大で、かつ、熱電変換ユニット3からの熱漏洩および熱電変換ユニット3の発電に伴う熱移動がない、理想的な条件下では、第1の蓄熱体2aの温度は、導熱体1の最高温度付近に保たれ、第2の蓄熱体2bの温度は、導熱体1の最低温度付近に保たれる。
 しかしながら、現実には、被覆層4の熱抵抗は有限であるから、被覆層4から熱漏洩が生じ、さらには、熱電変換ユニット3からの熱漏洩および熱電変換ユニット3の発電に伴う熱移動が生じるので、第1の蓄熱体2aの温度Yは、導熱体1の最高温度よりも低い温度範囲で変化し、第2の蓄熱体2bの温度Zは、導熱体1の最低温度よりも高い温度範囲で変化する。その結果、第1の蓄熱体2aと第2の蓄熱体2bとの温度差ΔTは、導熱体1の最高温度と最低温度の差(約10℃)よりも小さい温度範囲で変動する。
 そこで、被覆層4および熱電変換ユニット3からの熱漏洩、並びに熱電変換ユニット3の発電に伴う熱移動を考慮し、第1および第2の蓄熱体2a、2bの熱容量を、第1および第2の蓄熱体2a、2bが約2℃の範囲内で温度変化し得る大きさに設定すると、1日の気温変化を通じて実際に発電に使用可能な、第1および第2の蓄熱体2a、2b間の温度差ΔTとして約8℃を連続して確保することができ、この温度差ΔTで発電が行われ、その24時間の積分値が一周期(昼夜1サイクル)の発電電力量となる。
 間欠的に発電が行われ、時間とともに発電電圧が変化する単一の蓄熱体を備えた熱電発電装置と比べて、2つの蓄熱体を備えた熱電発電装置は、約2倍の発電電圧を24時間継続的に生じさせることから、約20倍を超える発電電力を発生させることができる。
 図12に示した熱電発電装置においては、製造直後や、一定温度下に長期間保管されていた場合には、第1および第2の蓄熱体2a、2b間に温度差がなく、熱電発電装置は停止しており、この停止した熱電発電装置の起動法が問題になる。
 かかる場合の起動法の1つとして、第1の熱流スイッチ15aとして、初期状態または制御されない状態では常にON状態にある形式のもの(電気回路におけるb接点)を使用し、第2の熱流スイッチ15bとして、初期状態または制御されない状態では常にOFF状態にある形式のもの(電気回路におけるa接点)を使用する方法が挙げられる。
 この方法によれば、熱電発電装置が温度変化する環境中に設置された時点から、第1の蓄熱体2aの温度が導熱体1の温度変化に追従する一方、第2の蓄熱体2bの温度は当初の温度付近にとどまる。そして、環境の温度が最高温度に近づくにつれて、第1および第2の蓄熱体2a、2b間に一定の温度差が生じ、それによって、熱電変換ユニット3が電圧を発生し、この電圧が熱流スイッチ制御部22に供給され、熱流スイッチ制御部22が動作を開始する。
 熱流スイッチ制御部22は、導熱体1の温度が最高温度付近にあるとき、または第1の蓄熱体2aの温度よりも高いときは、第1の熱流スイッチ15aをON状態に制御し、導熱体1の温度が最低温度付近にあるとき、または第2の蓄熱体2bの温度よりも低いときは、第2の熱流スイッチ15bをON状態に制御する。その結果、第1の蓄熱体2aの温度は導熱体1の最高温度に近づく一方、第2の蓄熱体2bの温度は導熱体1の最低温度に近づき、熱電発電装置が自動的に動作を開始する(起動する)。
 別の起動法として、導熱体1と第1または第2の蓄熱体2a、2bとの間に第3の熱電変換ユニットを配置し、第1および第2の熱流スイッチ15a、15bは、初期状態または制御されない状態でOFF状態にある形式のもの(電気回路におけるa接点)を使用する方法が挙げられる。
 この方法によれば、熱電発電装置が温度変化する環境中に配置された時点から、導熱体1の温度は環境の温度変化に追従する一方、第1および第2の蓄熱体2a、2bは、当初の温度付近にとどまる。こうして、時間の経過につれて、導熱体1と第1および第2の蓄熱体2a、2bとの間の温度差が次第に大きくなる。そして、一定の温度差になると、第3の熱電変換ユニットが電圧を発生し、この電圧が熱流スイッチ制御部22に供給され、熱流スイッチ制御部22が動作を開始する。その後は、上述の第1の起動法の場合と同様の動作過程を経て、熱電発電装置が起動する。
 本発明のさらに別の実施例によれば、図12に示した構成において、さらに、第1の熱流スイッチ15aおよび第1の蓄熱体2a間に配置され、一端が第1の熱流スイッチ15aに接触する一方、他端が第1の蓄熱体2aに接触する第1のペルチェ素子と、第2の熱流スイッチ15bおよび第2の蓄熱体2b間に配置され、一端が第2の熱流スイッチ15bに接触する一方、他端が第2の蓄熱体2bに接触する第2のペルチェ素子が備えられる。
 この実施例によれば、第1の熱流スイッチ15aがON状態にあるとき、第1のペルチェ素子が、一端において吸熱して、他端において発熱し、第2の熱流スイッチ15bがON状態にあるとき、第2のペルチェ素子が、一端において発熱して、他端において吸熱する。それによって、導熱体1の最高温度付近の温度を有する第1の蓄熱体2aを加熱してその温度をより上昇させ、導熱体1の最低温度付近の温度を有する第2の蓄熱体2bを冷却してその温度をより下降させて、より大きな温度差ΔTを生じさせることができる。
 上述の実施例では、熱電変換ユニットとしてゼーベック効果を用いた熱電変換モジュールが使用されているが、この種の熱電変換モジュールの発電効率は数%~十数%にとどまる。そのため、上述の実施例では、熱電変換モジュールの発電効率を約10%と仮定した。これに対し、スピンゼーベック効果を用いた熱電変換モジュールでは、大きな熱抵抗をもつ磁性絶縁体が使用されるので、熱漏洩が少なく、発電効率の各段の向上が期待される。
 ゼーベック効果を用いた熱電変換モジュールによれば、1mWh~数十Whの発電能力をもつ熱電発電装置が実現可能であるが、スピンゼーベック効果を用いた熱電変換モジュールによれば、数十mWh未満から数百Wh超の発電能力をもつ熱電発電装置が実現可能である。
 図14は、本発明のさらに別の実施例による熱電発電装置を示した斜視図である。この実施例は、図1に示した熱電発電装置を市販の乾電池の形態としている。なお、明瞭にするため、図14中、熱電発電装置の導熱体および蓄熱体以外の構成要素は省略してある。
 図14において、23は導熱体であり、24は蓄熱体である。電池の+電極25および-電極26は、熱電変換ユニットの一対の電極(図1参照)であってもよいし、熱電発電装置が二次電池を備えている場合には、二次電池の出力端子であってもよい(図4参照)。-電極26は、導熱体1の一部として構成されていてもよい。+電極25は、絶縁部分27によって導熱体23から電気的に絶縁されている。
 図15は、本発明のさらに別の実施例による熱電発電装置の縦断面図である。図15を参照して、この実施例では、熱電発電装置は、図1に示した実施例の構成に加えて、第1の追加の蓄熱体30と、第2の追加の蓄熱体31と、第1および第2の追加の蓄熱体30、31間に配置され、一端32aが第1の追加の蓄熱体30に接触し、他端32bが第2の追加の蓄熱体31に接触する追加の熱電変換ユニット32と、第1および第2の追加の蓄熱体30、31間に配置され、一端33aが第1の追加の蓄熱体30に接触し、他端33bが第2の追加の蓄熱体31に接触する追加のペルチェ素子33と、一定の熱抵抗を有し、追加の熱電変換ユニット32との接触部分および追加のペルチェ素子33との接触部分を除く第1および第2の追加の蓄熱体30、31の全体を被覆する追加の被覆層4’とを備えている。
 この場合、第1および第2の追加の蓄熱体30、31、追加の熱電変換ユニット32、追加のペルチェ素子33、および追加の被覆層4’は、図15に示すように、熱電発電装置の残りの部分と一体に形成されてもよいし、熱電発電装置の残りの部分とは独立な部分として形成されてもよい。後者の場合には、2つの部分が互いに電線で接続される。
 そして、追加の熱電変換ユニット32以外の熱電変換ユニット3が出力する電気エネルギーを、例えば極性・電圧変換回路28を介して、追加のペルチェ素子33に適用し、追加のペルチェ素子33によって第1および第2の追加の蓄熱体30、31の一方を加熱し、他方を冷却する。こうして、第1および第2の追加の蓄熱体30、31間に温度差を生じさせ、この温度差を利用して、追加の熱電変換ユニット32から電気エネルギーを取り出す。
 この実施例によれば、蓄熱体2の温度が環境の温度変化の範囲内でしか変化しないのに対し、第1および第2の追加の蓄熱体30、31の温度変化の範囲は無制限となるので、第1および第2の蓄熱体30、31間により大きな温度差を生じさせてより多くの熱エネルギーを蓄え、追加の熱電変換ユニット32から大きな電気エネルギーを取り出すことができる。
 この実施例において、熱電発電装置から電気の供給を受ける電子機器の動作が間欠的であり、それに対応して、熱電発電装置による電気の出力が間欠的でもよい場合には、追加のペルチェ素子33を省略することができる。
 この場合、熱電発電装置から電気を出力するときは、ゼーベック素子からなる追加の熱電変換ユニット32がゼーベック素子として機能し、電気エネルギーが取り出される。一方、熱電発電装置から電気を出力しないときは、追加の熱電変換ユニット32以外の熱電変換ユニット3から出力される電気エネルギーが、例えば極性・電圧変換回路28を介して、追加の熱電変換ユニット32に適用され、追加の熱電変換ユニット32がペルチェ素子として機能し、蓄熱が行われる。
 図17は、本発明のさらに別の実施例による熱電発電装置の縦断面図である。図17から容易にわかるように、この実施例は、図15に示した実施例において、ペルチェ素子33を取り除き、その代わりに、ヒーター40を、第1の追加の蓄熱体30に接触して配置したものである。
 そして、追加の熱電変換ユニット32以外の熱電変換ユニット3が出力する電気エネルギーを、例えば極性・電圧変換回路28を介してヒーター40に適用し、ヒーター40によって第1の追加の蓄熱体30を加熱する。それによって、第1の追加の蓄熱体30は、追加の被覆層4’を介して、熱電発電装置の残りの部分および環境の温度変化範囲の中間付近の温度よりも高い温度となる一方、第2の追加の蓄熱体31は、追加の被覆層4’を介して、環境および熱電発電装置の残りの部分の温度変化範囲の中間付近の温度に安定する。こうして、第1および第2の追加の蓄熱体30、31間に温度差を生じさせ、この温度差を利用して、追加の熱電変換ユニット32から電気エネルギーを取り出す。
 図16は、本発明のさらに別の実施例による熱電発電装置の縦断面図である。図16を参照して、この実施例では、熱電発電装置は、図12に示した実施例の構成に加えて(明瞭のために、図16中、図12の第1~第3の温度センサーおよび熱流スイッチ制御部は省略してある。)、第1の追加の蓄熱体36と、第2の追加の蓄熱体37と、第1および第2の追加の蓄熱体36、37間に配置され、一端38aが第1の追加の蓄熱体36に接触し、他端38bが第2の追加の蓄熱体37に接触する追加の熱電変換ユニット38と、第1および第2の追加の蓄熱体36、37間に配置され、一端39aが第1の追加の蓄熱体36に接触し、他端39bが第2の追加の蓄熱体37に接触する追加のペルチェ素子39とを備えている。この場合、第2の追加の蓄熱体37は、熱電発電装置が設置される構造物からなっている。
 熱電発電装置は、さらに、一定の熱抵抗を有し、追加の熱電変換ユニット38との接触部分および追加のペルチェ素子39との接触部分を除く第1の追加の蓄熱体36の全体を被覆する追加の被覆層4’を備えている。この場合、追加の熱電変換ユニット38の他端38bおよび追加のペルチェ素子39の他端39bを保護するために、必要に応じて、追加の熱電変換ユニット38および追加のペルチェ素子39と、第2の追加の蓄熱体37との間に追加の導熱体が配置される。
 そして、追加の熱電変換ユニット38を除く熱電変換ユニット3が出力する電気エネルギーを、例えば極性・電圧変換回路34を介して、追加のペルチェ素子39に適用し、追加のペルチェ素子39によって第1および第2の追加の蓄熱体36、37の一方を加熱し、他方を冷却し、第1および第2の追加の蓄熱体36、37間に温度差を生じさせ、この温度差を利用して、追加の熱電変換ユニット38から電気エネルギーを取り出す。
 この実施例によっても、図15の実施例と同様の効果が得られる。
 図16に示した実施例において、熱電発電装置から電気の供給を受ける電子機器の動作が間欠的であり、それに対応して、熱電発電装置による電気の出力が間欠的でもよい場合には、追加のペルチェ素子39を省略することができる。
 この場合、熱電発電装置から電気を出力するときは、ゼーベック素子からなる追加の熱電変換ユニット38がゼーベック素子として機能し、電気エネルギーが取り出される。一方、熱電発電装置から電気を出力しないときは、追加の熱電変換ユニット38以外の熱電変換ユニット3から出力される電気エネルギーが、例えば極性・電圧変換回路34を介して、追加の熱電変換ユニット38に適用され、追加の熱電変換ユニット38がペルチェ素子として機能し、蓄熱が行われる。
 図18は、本発明のさらに別の実施例による熱電発電装置の縦断面図である。図18から容易にわかるように、この実施例は、図16に示した実施例において、ペルチェ素子39を取り除き、その代わりに、ヒーター41を、第1の追加の蓄熱体36に接触して配置したものである。
 そして、追加の熱電変換ユニット38以外の熱電変換ユニット3が出力する電気エネルギーを、例えば極性・電圧変換回路34を介してヒーター41に適用し、ヒーター41によって第1の追加の蓄熱体36を加熱する。それによって、第1の追加の蓄熱体36は、追加の被覆層4’を介して、熱電発電装置の残りの部分および環境の温度変化範囲の中間付近の温度よりも高い温度となる一方、第2の追加の蓄熱体37は、熱電発電装置が設置される構造物であって、大きな熱容量を有するから、環境の温度変化範囲の中間付近の温度に安定する。こうして、第1および第2の追加の蓄熱体36、37間に温度差を生じさせ、この温度差を利用して、追加の熱電変換ユニット38から電気エネルギーを取り出す。
 本発明のさらに別の好ましい実施例によれば、蓄熱体のうちの少なくとも1つが潜熱蓄熱材から形成される。潜熱蓄熱材を使用することで、よりコンパクトに大量の熱を吸収しまたは放出することができ、それによって、よりコンパクトでかつより発電量の大きな熱電発電装置を実現することができる。
 近年、携帯される電子機器や移動する自動車に対し、電源コードを使用せずに電力を供給し、また非接触で充電するために、無線で電力伝送を行うワイヤレス給電技術が実用化されている。ワイヤレス給電技術としては、電磁誘導方式、磁気共鳴方式、電界結合方式、電波受信方式等が知られており、数mm~数mの距離を無線で電力を供給できる。
 そして、このワイヤレス給電システムの送電側機能を本発明の熱電発電装置に付加する一方、熱電発電装置を一体化することに難があり、より小型、軽量化が求められる携帯端末またはセンサーネットワーク端末等に受電側機能を付加することによって、電力供給を行うことができる。この場合、送電側機能を備えた1つの熱電発電装置から、受電側機能を備えた複数の端末に対し、同時または順次に給電することもできる。
 本発明の熱電発電装置は、電子機器の通常の電源に適用できるだけでなく、他の用途にも適用可能である。例えば、本発明による熱電発電装置を人工衛星に取り付け、熱電発電装置の導熱体を人工衛星の筐体表面に配置し、被覆層によって被覆された蓄熱体を筐体内部に配置すれば、人工衛星の自転運動に伴って、導熱体は周期的に太陽に晒されたり、太陽の陰に入ったりする。そして、蓄熱体の熱時定数を人工衛星の自転周期よりも長く設定することで、蓄熱体の温度は、導熱体の最高温度と最低温度の中間温度付近に保たれ、それによって発電を安定的に行うことができる。
 また、本発明の熱電発電装置を、機械設備の故障時に高温になる部分に設置し、機械設備の常動作時は待機状態としておき、機械設備の故障時にのみ発電を行い、故障検知センサーに電力を供給して、故障検知センサーを動作させることもできる。この構成においては、熱電発電装置の発電電力を蓄えておく必要がなく、そのため、二次電池は不要となる。
 また、本発明の熱電発電装置を体温計の電源として使用し、長時間にわたり室温で保管しておき、必要時に、導熱体を身体に接触させることで発電し、体温計を動作させることもできる。この構成においても、二次電池は不要となる。
1、1’ 導熱体
2 蓄熱体
3 熱電変換ユニット
3a 一端
3b 他端
4 被覆層
4’ 追加の被覆層
4a 開口
5 電極
6 液体状の蓄熱体
7 容器
8 熱交換用フィン
9 開口
10 電源
11 極性・電圧変換回路
12 二次電池
13 電子機器
14 補助導熱手段
14a バイメタル
14b 熱収縮性材料
15 熱流スイッチ
15a 第1の熱流スイッチ
15b 第2の熱流スイッチ
16 第1の温度センサー
17 第2の温度センサー
18 熱流スイッチ制御部
19 第1の温度センサー
20 第2の温度センサー
21 第3の温度センサー
22 熱流スイッチ制御部
23 導熱体
24 蓄熱体
25 +電極
26 -電極
27 絶縁部分
28 極性・電圧変換回路
29a リニアアクチュエータ
29b 可動導熱ブロック
29c 回転型アクチュエータ
29d 可動導熱ブロック
30 第1の追加の蓄熱体
31 第2の追加の蓄熱体
32 追加の熱電変換ユニット
32a 一端
32b 他端
33 追加のペルチェ素子
33a 一端
33b 他端
34 極性・電圧変換回路
36 第1の追加の蓄熱体
37 第2の追加の蓄熱体
38 追加の熱電変換ユニット
38a 一端
38b 他端
39 追加のペルチェ素子
39a 一端
39b 他端
40、41 ヒーター

Claims (17)

  1.  温度昇降を繰り返す環境中に配置され、前記環境の温度変化を利用して発電を行う熱電発電装置であって、
     前記環境に接触し、前記環境の温度変化に応じて前記環境と熱交換し得る1つの導熱体と、
     少なくとも1つの蓄熱体と、
     一定の熱抵抗を有し、前記蓄熱体を被覆する被覆層と、
     前記導熱体および前記蓄熱体間、または前記蓄熱体間、またはそれらの両方に配置された少なくとも1つの熱電変換ユニットと、を備え、前記熱電変換ユニットの一端側と他端側との間に生じる温度差を利用して、前記熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする熱電発電装置。
  2.  1つの前記蓄熱体と、前記導熱体および前記蓄熱体間に配置された1つの前記熱電変換ユニットと、を備え、前記熱電変換ユニットの一端が前記導熱体に接触する一方、他端が前記蓄熱体に接触し、前記被覆層は前記熱電変換ユニットとの接触部分を除く前記蓄熱体の全体を被覆しており、前記蓄熱体が前記導熱体の最高温度と最低温度の中間付近の温度に保たれ、それによって、前記導熱体と前記蓄熱体との間に生じる温度差を利用して、前記熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする請求項1に記載の熱電発電装置。
  3.  前記被覆層内における前記導熱体および前記蓄熱体間に配置され、熱的に膨張および収縮すること、または熱的に変形することで、前記導熱体および前記蓄熱体に接触して前記導熱体と前記蓄熱体の間で熱移動させる第1の位置と、前記導熱体および前記蓄熱体のうちの少なくとも一方から離間して前記熱移動を停止させる第2の位置とをとる補助導熱手段を備え、前記補助導熱手段は、前記導熱体の温度が前記最高温度付近にあるとき、または前記導熱体の温度が前記最低温度付近にあるときに前記第1の位置をとることを特徴とする請求項2に記載の熱電発電装置。
  4.  前記被覆層内における前記導熱体および前記蓄熱体間に配置され、前記導熱体および前記蓄熱体に接触して前記導熱体と前記蓄熱体の間で熱移動させるON状態と、前記導熱体および前記蓄熱体のうちの少なくとも一方から離間して前記熱移動を停止させるOFF状態とをとる熱流スイッチと、
     前記導熱体の温度を検出する第1の温度センサーと、
     前記蓄熱体の温度を検出する第2の温度センサーと、
     前記第1および第2の温度センサーの検出値に基づいて、前記熱流スイッチのON状態とOFF状態を切り替える熱流スイッチ制御部と、を備えていることを特徴とする請求項2または請求項3に記載の熱電発電装置。
  5.  前記熱流スイッチは、前記導熱体と前記熱電変換ユニットの前記一端との間、または前記蓄熱体と前記熱電変換ユニットの前記他端との間に配置され、前記ON状態をとるとき、前記熱電変換ユニットを介して前記導熱体と前記蓄熱体の間で熱移動させることを特徴とする請求項4に記載の熱電発電装置。
  6.  第1および第2の前記蓄熱体と、
     前記第1および第2の蓄熱体間に配置され、一端が前記第1の蓄熱体に接触し、他端が前記第2の蓄熱体に接触する1つの前記熱電変換ユニットと、
     前記導熱体および前記第1の蓄熱体間に配置され、前記導熱体および前記第1の蓄熱体に接触して前記導熱体と前記第1の蓄熱体の間で熱移動させるON状態と、前記導熱体および前記第1の蓄熱体のうちの少なくとも一方から離間して当該熱移動を停止させるOFF状態とをとる第1の熱流スイッチと、
     前記導熱体および前記第2の蓄熱体間に配置され、前記導熱体および前記第2の蓄熱体に接触して前記導熱体と前記第2の蓄熱体の間で熱移動させるON状態と、前記導熱体および前記第2の蓄熱体のうちの少なくとも一方から離間して当該熱移動を停止させるOFF状態とをとる第2の熱流スイッチと、を備え、前記被覆層は、前記第1の熱流スイッチとの接触部分および前記熱電変換ユニットとの接触部分を除く前記第1の蓄熱体の全体と、前記第2の熱流スイッチとの接触部分および前記熱電変換ユニットとの接触部分を除く前記第2の蓄熱体の全体を被覆しており、さらに、
     前記導熱体の温度を検出する第1の温度センサーと、
     前記第1の蓄熱体の温度を検出する第2の温度センサーと、
     前記第2の蓄熱体の温度を検出する第3の温度センサーと、
     前記第1~第3の温度センサーの検出値に基づいて、前記第1および第2の熱流スイッチの前記ON状態と前記OFF状態を切り替える熱流スイッチ制御部と、を備え、前記熱流スイッチ制御部が、前記導熱体の温度が最高温度付近にあるとき、前記第1の熱流スイッチを前記ON状態にすると同時に、前記第2の熱流スイッチを前記OFF状態にし、前記導熱体の温度が最低温度付近にあるとき、前記第1の熱流スイッチを前記OFF状態にすると同時に、前記第2の熱流スイッチを前記ON状態にすることにより、第1の蓄熱体が前記導熱体の最高温度付近の温度に保たれる一方、前記第2の蓄熱体が前記導熱体の最低温度付近の温度に保たれ、それによって、前記第1および第2の蓄熱体間に生じる温度差を利用して、前記熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする請求項1に記載の熱電発電装置。
  7.  前記第1の熱流スイッチおよび前記第1の蓄熱体間に配置され、一端が前記第1の熱流スイッチに接触する一方、他端が前記第1の蓄熱体に接触する第1のペルチェ素子と、
     前記第2の熱流スイッチおよび前記第2の蓄熱体間に配置され、一端が前記第2の熱流スイッチに接触する一方、他端が前記第2の蓄熱体に接触する第2のペルチェ素子と、を備え、前記第1の熱流スイッチが前記ON状態にあるとき、前記第1のペルチェ素子が、前記一端において吸熱して、前記他端において発熱し、前記第2の熱流スイッチが前記ON状態にあるとき、前記第2のペルチェ素子が、前記一端において発熱して、前記他端において吸熱することを特徴とする請求項6に記載の熱電発電装置。
  8.  前記導熱体が前記被覆層の表面の全体を被覆していることを特徴とする請求項1~請求項7のいずれかに記載の熱電発電装置。
  9.  前記被覆層は断熱材から形成されていることを特徴とする請求項1~請求項8のいずれかに記載の熱電発電装置。
  10.  少なくとも1つの前記蓄熱体が潜熱蓄熱材から形成されていることを特徴とする請求項1~請求項9のいずれかに記載の熱電発電装置。
  11.  第1の追加の蓄熱体と、
     第2の追加の蓄熱体と、
     前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、
     前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加のペルチェ素子と、
     一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分および前記追加のペルチェ素子との接触部分を除く前記第1および第2の追加の蓄熱体の全体を被覆する追加の被覆層と、を備え、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記追加のペルチェ素子によって熱エネルギーに変換することによって、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする請求項1~請求項10のいずれかに記載の熱電発電装置。
  12.  第1の追加の蓄熱体と、
     第2の追加の蓄熱体と、
     前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、
     一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分を除く前記第1および第2の追加の蓄熱体の全体を被覆する追加の被覆層と、
     前記追加の被覆層の内部において前記第1の追加の蓄熱体に接触して配置されたヒーターと、を備え、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記ヒーターによって熱エネルギーに変換することによって、前記第1の追加の蓄熱体を加熱し、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする請求項1~請求項10のいずれかに記載の熱電発電装置。
  13.  前記第1および第2の追加の蓄熱体のうちの少なくとも一方が潜熱蓄熱材から形成されていることを特徴とする請求項11または請求項12に記載の熱電発電装置。
  14.  第1の追加の蓄熱体と、
     第2の追加の蓄熱体と、
     前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、
     前記第1および第2の追加の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加のペルチェ素子と、を備え、前記第2の追加の蓄熱体は、前記熱電発電装置が設置される構造物からなり、さらに、
     一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分および前記追加のペルチェ素子との接触部分を除く前記第1の追加の蓄熱体の全体を被覆する追加の被覆層を備え、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記追加のペルチェ素子によって熱エネルギーに変換することによって、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする請求項1~請求項10のいずれかに記載の熱電発電装置。
  15.  第1の追加の蓄熱体と、
     第2の追加の蓄熱体と、
     前記第1および第2の蓄熱体間に配置され、一端が前記第1の追加の蓄熱体に接触し、他端が前記第2の追加の蓄熱体に接触する追加の熱電変換ユニットと、
     一定の熱抵抗を有し、前記追加の熱電変換ユニットとの接触部分を除く前記第1および第2の追加の蓄熱体の全体を被覆する追加の被覆層と、
     前記追加の被覆層の内部において前記第1の追加の蓄熱体に接触して配置されたヒーターと、を備え、前記第2の追加の蓄熱体は、前記熱電発電装置が設置される構造物からなり、前記追加の熱電変換ユニットを除く前記熱電変換ユニットが出力する電気エネルギーを前記ヒーターによって熱エネルギーに変換することによって、前記第1の追加の蓄熱体を加熱し、前記第1および第2の追加の蓄熱体間に温度差を生じさせ、前記温度差を利用して、前記追加の熱電変換ユニットから電気エネルギーを取り出すものであることを特徴とする請求項1~請求項10のいずれかに記載の熱電発電装置。
  16.  前記第1の追加の蓄熱体が潜熱蓄熱材から形成されていることを特徴とする請求項14または請求項15に記載の熱電発電装置。
  17.  ワイヤレス給電システムの送電側機能を備えたものであることを特徴とする請求項1~請求項16のいずれかに記載の熱電発電装置。
PCT/JP2012/064637 2011-12-26 2012-06-07 熱電発電装置 WO2013099321A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP16175967.5A EP3093895B1 (en) 2011-12-26 2012-12-26 Thermoelectric generator
CN201610803832.6A CN106340583B (zh) 2011-12-26 2012-12-26 热电发电装置
KR1020167020962A KR101759124B1 (ko) 2011-12-26 2012-12-26 열전발전장치
PCT/JP2012/083650 WO2013099943A1 (ja) 2011-12-26 2012-12-26 熱電発電装置
JP2013534103A JP5436727B2 (ja) 2011-12-26 2012-12-26 熱電発電装置
US14/364,350 US10644215B2 (en) 2011-12-26 2012-12-26 Thermoelectric generator
CN201280064460.XA CN104025327B (zh) 2011-12-26 2012-12-26 热电发电装置
KR1020147017854A KR101719482B1 (ko) 2011-12-26 2012-12-26 열전발전장치
AU2012361686A AU2012361686B2 (en) 2011-12-26 2012-12-26 Thermoelectric generator
EP12862448.3A EP2800157B1 (en) 2011-12-26 2012-12-26 Thermoelectric generator
JP2013226924A JP5619256B2 (ja) 2011-12-26 2013-10-31 熱電発電装置
US16/835,858 US11316090B2 (en) 2011-12-26 2020-03-31 Thermoelectric generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011283769 2011-12-26
JP2011-283769 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099321A1 true WO2013099321A1 (ja) 2013-07-04

Family

ID=48696843

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/064637 WO2013099321A1 (ja) 2011-12-26 2012-06-07 熱電発電装置
PCT/JP2012/083650 WO2013099943A1 (ja) 2011-12-26 2012-12-26 熱電発電装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083650 WO2013099943A1 (ja) 2011-12-26 2012-12-26 熱電発電装置

Country Status (7)

Country Link
US (2) US10644215B2 (ja)
EP (2) EP2800157B1 (ja)
JP (2) JP5436727B2 (ja)
KR (2) KR101759124B1 (ja)
CN (2) CN106340583B (ja)
AU (1) AU2012361686B2 (ja)
WO (2) WO2013099321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5816769B1 (ja) * 2015-04-03 2015-11-18 株式会社協同 発電装置、発電装置の組立キットおよび発電装置の組立方法
CN105226997A (zh) * 2015-10-03 2016-01-06 淄博夸克医药技术有限公司 一种可再生新能源转化为电能的装置
DE102014119080A1 (de) 2014-12-18 2016-06-23 Albrecht Kretzschmar Wärmespeicher-System mit thermo-elektrischem Generator
JP2020202337A (ja) * 2019-06-13 2020-12-17 いすゞ自動車株式会社 蓄熱容器

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677519B2 (ja) * 2013-07-01 2015-02-25 株式会社村田製作所 温度検出装置
KR101620725B1 (ko) 2014-10-23 2016-05-13 주식회사 포스코 적층형 열전 발전 장치
DE102015201323A1 (de) * 2015-01-27 2016-07-28 Siemens Aktiengesellschaft Verfahren zur Energieerzeugung in einem Gebäude und Gebäude
WO2016124338A1 (en) * 2015-02-06 2016-08-11 Mirko Dudas Solar module arrangement and a method retrofitting a solar module element
JP6358384B2 (ja) * 2015-02-20 2018-07-18 富士通株式会社 熱電変換モジュール、センサモジュール及び情報処理システム
CN107921305B (zh) * 2015-05-28 2019-11-29 耐克创新有限合伙公司 能够捕获能量的体育运动监测设备
US20180306524A1 (en) * 2015-10-21 2018-10-25 Soreq Nucelar Research Center Ultra-compact cooling systems based on phase change material heat reservoirs
WO2017149764A1 (ja) * 2016-03-04 2017-09-08 富士通株式会社 熱電変換モジュール、センサモジュール及び情報処理システム
ES2882064T3 (es) * 2016-06-14 2021-12-01 Ariel Scient Innovations Ltd Generador termoeléctrico
CN109564965A (zh) * 2016-07-22 2019-04-02 富士通株式会社 热电转换模块、传感器模块以及信息处理系统
TWI642212B (zh) 2016-08-11 2018-11-21 財團法人工業技術研究院 一種熱電轉換裝置
TWI604640B (zh) * 2016-10-17 2017-11-01 財團法人工業技術研究院 熱電感測裝置
KR102369905B1 (ko) 2016-10-31 2022-03-03 주식회사 테그웨이 피드백 디바이스 및 이를 이용하는 열적 피드백 제공 방법
US10747323B2 (en) 2016-10-31 2020-08-18 Tegway Co., Ltd. Feedback device and method for providing thermal feedback by means of same
KR20180048227A (ko) 2016-10-31 2018-05-10 주식회사 테그웨이 피드백 디바이스 및 이를 이용하는 열적 피드백 제공 방법
US10736576B2 (en) 2016-10-31 2020-08-11 Tegway Co., Ltd. Feedback device and method for providing thermal feedback using the same
WO2018080028A1 (ko) 2016-10-31 2018-05-03 주식회사 테그웨이 피드백 디바이스 및 이를 이용하는 열적 피드백 제공 방법
ES2610507B1 (es) * 2017-02-23 2018-02-08 Nabla Thermoelectrics, S.L. Generador termoeléctrico y aparato de calefacción que comprende dicho generador termoeléctrico
JP6634664B2 (ja) * 2017-07-03 2020-01-22 株式会社エナジーフロント 環境温度の時間変動から定常熱流や安定電力を得る機構
WO2019045165A1 (ko) * 2017-08-31 2019-03-07 주식회사 테그웨이 피드백 디바이스 및 이를 이용하는 열적 피드백 제공 방법
JP2021522462A (ja) 2018-04-19 2021-08-30 エンバー テクノロジーズ, インコーポレイテッド アクティブ温度制御を備えた携帯型冷却器
EP3588667A1 (en) * 2018-06-25 2020-01-01 APR Technologies AB Immersion cooling of battery device
KR102195388B1 (ko) * 2018-08-10 2020-12-24 한양대학교 산학협력단 열전 소자 및 상변화물질을 이용한 발전 장치 및 발전 방법
KR102108633B1 (ko) * 2018-08-23 2020-05-07 한양대학교 산학협력단 열전소자를 이용한 온도 제어 장치
WO2020142130A2 (en) * 2018-10-16 2020-07-09 Tham Douglas W Thermoelectric systems, methods, and devices
CN109446623B (zh) * 2018-10-19 2022-11-04 沈阳工业大学 一种基于传热速率平衡的固态蓄热加热特性匹配设计方法
CN118640630A (zh) 2019-01-11 2024-09-13 恩伯技术公司 具有主动温度控制的便携式冷却器
US20220260319A1 (en) * 2019-07-11 2022-08-18 Innovation Thru Energy Co., Ltd. Thermoelectric power generation system
CA3178289A1 (en) 2020-04-03 2021-10-07 Clayton Alexander Portable cooler with active temperature control
CN112201742B (zh) * 2020-05-15 2021-05-18 四川大学 一种用于沙漠地区昼夜运行的热电转换系统
CN113606633B (zh) * 2021-06-29 2022-07-29 国网天津市电力公司电力科学研究院 双玻双面pv/t组件与热泵耦合的供暖系统及其控制方法
JP7083202B1 (ja) 2021-09-16 2022-06-10 株式会社Gceインスティチュート 環境発電装置、及び環境発電システム
CA3231352A1 (en) * 2021-09-10 2023-03-16 Hiroshi Goto Energy harvesting device and energy harvesting system
EP4194790A1 (de) * 2021-12-13 2023-06-14 Rowe Holding GmbH Wärmespeichersystem und verfahren zur wärmespeicherung und -entnahme
US11946700B2 (en) * 2022-02-16 2024-04-02 Rowe Holding Gmbh Heat storage system and method for storing and extracting heat
WO2024105954A1 (ja) * 2022-11-14 2024-05-23 陽力熱電株式会社 熱電発電装置
CN116677015B (zh) * 2023-08-04 2023-10-10 江苏巨数智能科技有限公司 一种具有多项检测模组的温差发电式智能井盖

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284235A (ja) * 1998-03-27 1999-10-15 Union Material Kk 熱電充電器および熱電充電器一体型二次電池
JP2009247049A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 熱電発電システムと方法
JP2011152018A (ja) * 2010-01-25 2011-08-04 Sony Corp ワイヤレス蓄電システムおよびワイヤレス給電システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3430669B2 (ja) 1994-05-13 2003-07-28 東海ゴム工業株式会社 ダイナミックダンパ付ロッド状振動体
US5761909A (en) * 1996-12-16 1998-06-09 The United States Of America As Represented By The Secretary Of The Navy Breathing gas temperature modification device
US5867990A (en) * 1997-12-10 1999-02-09 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
US20080257395A1 (en) 2001-12-12 2008-10-23 Hi-Z Corporation Miniature quantum well thermoelectric device
US7400050B2 (en) * 2001-12-12 2008-07-15 Hi-Z Technology, Inc. Quantum well thermoelectric power source
JP4175839B2 (ja) 2002-07-10 2008-11-05 株式会社東芝 流路管用熱電変換モジュール
JP2005347348A (ja) 2004-05-31 2005-12-15 Toshiba Corp 電源装置
US8267983B2 (en) * 2007-01-11 2012-09-18 Scion Neurostim, Llc. Medical devices incorporating thermoelectric transducer and controller
DE102007017461B4 (de) * 2007-04-10 2014-04-17 Micropelt Gmbh Vorrichtung mit einer elektrischen Einrichtung und einem Modul zur Energieversorgung der elektrischen Einrichtung
JP2010045881A (ja) 2008-08-08 2010-02-25 Stress Chosa Kenkyusho:Kk 地熱利用の給電装置
CN101534077A (zh) * 2009-03-31 2009-09-16 浙江大学 太阳能温差发电装置
DE102010007420A1 (de) 2010-02-10 2011-08-11 Minebea Co., Ltd. Vorrichtung zur Umwandlung von thermischer in elektrische Energie
US8400743B2 (en) 2010-06-30 2013-03-19 Advanced Micro Devices, Inc. Electrostatic discharge circuit
US20120152297A1 (en) * 2010-12-15 2012-06-21 The Boeing Company Power generation using a thermoelectric generator and a phase change material
US20120192908A1 (en) * 2011-02-01 2012-08-02 Simmonds Precision Products, Inc. Sinkless thermoelectric energy generator
US8904809B2 (en) * 2011-03-17 2014-12-09 The Aerospace Corporation Methods and systems for solid state heat transfer
US8581088B2 (en) * 2011-12-03 2013-11-12 Jeffery J. Bohl Thermoelectric power generation apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11284235A (ja) * 1998-03-27 1999-10-15 Union Material Kk 熱電充電器および熱電充電器一体型二次電池
JP2009247049A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 熱電発電システムと方法
JP2011152018A (ja) * 2010-01-25 2011-08-04 Sony Corp ワイヤレス蓄電システムおよびワイヤレス給電システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014119080A1 (de) 2014-12-18 2016-06-23 Albrecht Kretzschmar Wärmespeicher-System mit thermo-elektrischem Generator
JP5816769B1 (ja) * 2015-04-03 2015-11-18 株式会社協同 発電装置、発電装置の組立キットおよび発電装置の組立方法
CN105226997A (zh) * 2015-10-03 2016-01-06 淄博夸克医药技术有限公司 一种可再生新能源转化为电能的装置
JP2020202337A (ja) * 2019-06-13 2020-12-17 いすゞ自動車株式会社 蓄熱容器
JP7222314B2 (ja) 2019-06-13 2023-02-15 いすゞ自動車株式会社 蓄熱容器

Also Published As

Publication number Publication date
US20140338713A1 (en) 2014-11-20
US11316090B2 (en) 2022-04-26
KR101719482B1 (ko) 2017-03-24
KR101759124B1 (ko) 2017-07-18
AU2012361686A1 (en) 2014-07-17
EP2800157A1 (en) 2014-11-05
KR20140114347A (ko) 2014-09-26
CN106340583B (zh) 2018-10-30
JP2014053635A (ja) 2014-03-20
WO2013099943A1 (ja) 2013-07-04
KR20160095200A (ko) 2016-08-10
CN104025327A (zh) 2014-09-03
EP2800157B1 (en) 2020-08-19
JP5436727B2 (ja) 2014-03-05
EP2800157A4 (en) 2015-10-07
CN106340583A (zh) 2017-01-18
EP3093895B1 (en) 2017-09-13
JPWO2013099943A1 (ja) 2015-05-11
AU2012361686B2 (en) 2016-01-21
EP3093895A1 (en) 2016-11-16
JP5619256B2 (ja) 2014-11-05
US20200235274A1 (en) 2020-07-23
CN104025327B (zh) 2017-02-22
US10644215B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2013099321A1 (ja) 熱電発電装置
KR101296234B1 (ko) 부유식 발전 장치
RU166483U1 (ru) Термоэлектрический генератор
CN203617934U (zh) 微型半导体温差发电装置
WO2002101912A1 (fr) Dispositif a effet thermoelectrique, systeme direct de conversion d'energie, et systeme de conversion d'energie
Wang et al. Efficient Power Conversion Using a PV-PCM-TE System Based on a Long Time Delay Phase Change With Concentrating Heat
US20190049160A1 (en) Solar cooling system
RU2626242C1 (ru) Способ работы термоэлектрического генератора
JP4253471B2 (ja) エネルギー変換システム
CN202662739U (zh) 锂聚合物电池充电的温度调节装置
JP2013243303A (ja) 発電装置及び発電方法
KR101637950B1 (ko) 태양열 집열형 열전발전 장치
RU135450U1 (ru) Термоэлектрический генератор
KR101388076B1 (ko) 배터리 일체형 벽체 모듈
CN203377220U (zh) 具有移动电源的薄膜太阳能电池
CN103607139B (zh) 浪涌和太阳能联合发电系统
KR101528866B1 (ko) 열전소자를 이용한 보온 장치
Soliman et al. Energy harvesting in wireless sensor networks a comprehensive survey
KR20210047798A (ko) 온도 감지 장치 및 그의 동작 방법
Kumar et al. Design and Fabrication of Portable Solar Thermoelectric Refrigerator
US20170244017A1 (en) Electric generator having a thermoelectric generator
CN112019156A (zh) 太阳能发热装置
UA126886U (uk) Гібридний термогенератор
CN104143952A (zh) 具有移动电源的薄膜太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12862110

Country of ref document: EP

Kind code of ref document: A1