WO2013099256A1 - 炭素繊維の製造方法 - Google Patents

炭素繊維の製造方法 Download PDF

Info

Publication number
WO2013099256A1
WO2013099256A1 PCT/JP2012/008356 JP2012008356W WO2013099256A1 WO 2013099256 A1 WO2013099256 A1 WO 2013099256A1 JP 2012008356 W JP2012008356 W JP 2012008356W WO 2013099256 A1 WO2013099256 A1 WO 2013099256A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
catalyst
carbon
silica
titania particles
Prior art date
Application number
PCT/JP2012/008356
Other languages
English (en)
French (fr)
Inventor
山本 竜之
祐輔 山田
中村 武志
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/369,315 priority Critical patent/US20140370282A1/en
Priority to KR1020147006703A priority patent/KR20140050101A/ko
Priority to CN201280065176.4A priority patent/CN104066876A/zh
Publication of WO2013099256A1 publication Critical patent/WO2013099256A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a method for producing carbon fiber. More specifically, the present invention relates to a method for efficiently producing carbon fibers capable of imparting sufficient electrical conductivity or thermal conductivity even when added in a small amount.
  • Carbon fiber is used as a filler used to improve the conductivity and thermal conductivity of resins, metals, ceramics, etc., as an electron emission material for FED (field emission display), as a catalyst carrier for various reactions, as hydrogen, It has been proposed to use it as a medium for storing methane or other gases, or as an electrode material for an electrochemical element such as a battery or a capacitor or an additive to the electrode material.
  • FED field emission display
  • a method for producing carbon fiber As a method for producing carbon fiber, a method of growing a catalyst as a nucleus, a so-called chemical vapor deposition method (hereinafter referred to as a CVD method) is known.
  • the CVD method includes a method of producing using a catalyst in which a catalyst element is supported on a carrier, and a method of producing a catalyst by pyrolyzing an organometallic complex or the like in a gas phase without using a carrier. (Fluidized gas phase method) is known.
  • the carbon fiber obtained by the fluidized gas phase method has many crystal defects in the carbon layer and is too low in crystallinity, and therefore does not exhibit conductivity even when added to a resin or the like as a filler.
  • the electrical conductivity of the carbon fiber itself is increased by heat-treating the carbon fiber obtained by the fluidized gas phase method at a high temperature, but the conductivity imparting effect to the resin material or the like is not always a sufficient level.
  • the method of producing using a supported catalyst can be roughly divided into a method of producing using a substrate carrier (substrate method) and a method of producing using a granular carrier.
  • the production method using a substrate carrier requires complicated steps such as catalyst loading on the substrate and recovery of the carbon fiber from the substrate, and is not suitable for industrial mass production for economic reasons.
  • the method of manufacturing using a granular carrier since the specific surface area of the catalyst carrier is large compared to the method of manufacturing using a substrate carrier, not only the apparatus efficiency is good but also used for various chemical synthesis.
  • the present invention can be applied to not only a production method based on batch processing such as the substrate method but also continuous processing.
  • Known powdered carriers include alumina, magnesia, silica, zeolite, aluminum hydroxide and the like.
  • Patent Document 1 discloses that a microfiber aggregate can be obtained using a catalyst obtained using ⁇ -alumina or magnesia as a carrier.
  • Patent Document 2 describes that a carbon fiber aggregate can be obtained using a catalyst obtained by supporting a catalyst metal or a catalyst metal precursor on a granular carrier obtained by heat treatment of aluminum hydroxide. Yes.
  • An object of the present invention is to provide a method for efficiently producing a carbon fiber capable of imparting sufficient electrical conductivity or thermal conductivity even when added in a small amount.
  • a catalyst is obtained by supporting a catalyst element on a carrier composed of silica titania particles, A method for producing carbon fiber, comprising contacting the catalyst and a carbon element-containing substance in a gas phase.
  • a method for producing carbon fiber comprising contacting the catalyst and a carbon element-containing substance in a gas phase.
  • the production method according to [1] wherein the silica titania particles have a core-shell structure.
  • the silica titania particles have a core containing silica and a shell containing titania.
  • the catalyst element includes an Fe element and / or a Co element.
  • the catalyst element further contains a Mo element and / or a V element.
  • the catalyst element contains Fe element, Co element, and Mo element in an amount of 0 to 100 mol% of Co element with respect to Fe element and 1 to 20 mol% of Mo element with respect to Fe element.
  • the catalytic element contains Co element, Fe element, and Mo element in an amount of 0 to 100 mol% Fe element with respect to the Co element and 1 to 20 mol% Mo element with respect to the Co element.
  • the manufacturing method as described in any one of. [15]
  • the catalyst element contains Fe element, Mo element and V element at 1 to 10 mol% of Mo element with respect to Fe element and 1 to 20 mol% of V element with respect to Fe element. ] The manufacturing method as described in any one of.
  • a current collector comprising a laminate having a conductive substrate and a conductive layer containing the carbon fiber according to [16] or [17].
  • An electrode comprising a laminate having a conductive substrate and an electrode layer containing the carbon fiber and electrode active material according to [16] or [17].
  • An electrode comprising a laminate having the current collector according to [21] and an electrode layer containing the carbon fiber and electrode active material according to [16] or [17].
  • An electrochemical element containing the carbon fiber according to [16] or [17].
  • FIG. 2 is a view showing a scanning electron micrograph image of the carbon fiber mass obtained in Example 1.
  • FIG. It is a figure which shows the square frame part of the carbon fiber lump shown in FIG. It is a figure which shows the square frame part (lower left) of the carbon fiber bundle shown in FIG. It is a figure which shows the square frame part (upper right) of the carbon fiber bundle shown in FIG. It is a figure which shows the square frame part of the carbon fiber shown in FIG. It is a figure which shows the square frame part of the carbon fiber shown in FIG.
  • FIG. 3 is a view showing a transmission electron micrograph image of the carbon fiber obtained in Example 1.
  • FIG. 3 is a view showing a transmission electron micrograph image of the carbon fiber obtained in Example 1.
  • a preferred embodiment of the method for producing carbon fiber according to the present invention includes obtaining a catalyst by supporting a catalyst element on a support made of silica titania particles, and contacting the catalyst with a carbon element-containing substance in a gas phase.
  • the carrier used in the present invention is composed of silica titania particles.
  • Silica titania particles are particles formed by combining silica and titania.
  • Silica titania particles preferably have a core-shell structure.
  • the mass ratio of the core / shell is preferably 80/20 to 99.5 / 0.5, more preferably 85/15 to 99/1, and still more preferably 90 / 10 to 99/1.
  • the silica titania particles having a core-shell structure are preferably those in which the core contains silica and the shell contains titania.
  • Silica titania particles have a silica / titania mass ratio of preferably 80/20 to 99.5 / 0.5, more preferably 85/15 to 99/1, and still more preferably 90/10 to 99/1. .
  • Silica titania particles have a 50% particle size in a volume-based cumulative particle size distribution of preferably 10 ⁇ m to 5 mm, more preferably 10 ⁇ m to 1 mm, still more preferably 25 ⁇ m to 750 ⁇ m, and most preferably 50 ⁇ m to 500 ⁇ m.
  • the 50% particle diameter is a value calculated from the particle size distribution measured by the laser diffraction scattering method.
  • the silica titania particles are preferably porous.
  • Silica titania particles have a pore volume of preferably 0.1 to 10 ml / g, more preferably 0.2 to 5 ml / g, still more preferably 0.6 to 1.5 ml / g.
  • Silica titania particles have a BET specific surface area of preferably 50 to 500 m 2 / g, more preferably 150 to 450 m 2 / g, and further preferably 250 to 400 m 2 / g.
  • Particularly preferred silica titania particles have a pore volume of 0.6 to 1.5 ml / g and a BET specific surface area of 150 to 400 m 2 / g.
  • the BET specific surface area is calculated by the BET method based on the nitrogen adsorption amount.
  • the BET specific surface area and / or the pore volume are in the above ranges, the carbon fiber generation efficiency is high, and the conductivity or thermal conductivity imparting effect by the obtained carbon fiber is high.
  • Silica titania particles are not limited by the production method. For example, by impregnating silica with titanyl sulfate and then heat-treating at 400 to 600 ° C. in an oxidizing atmosphere; hydrolyzing silicon with an alkoxide containing titania and then heat-treating at 400 to 600 ° C. in an oxidizing atmosphere Alternatively, silica titania particles can be obtained by coating by chemical vapor deposition using an alkoxide containing silica or titania as a raw material, followed by heat treatment at 400 to 600 ° C. in an oxidizing atmosphere.
  • the catalyst element used in the present invention is not particularly limited as long as it is an element that promotes the growth of carbon fibers.
  • a catalyst element preferably contains at least one selected from the group consisting of transition metal elements belonging to Groups 3 to 12 in the Periodic Table of Elements (IUPAC: 1990).
  • those containing at least one selected from the group consisting of transition metal elements belonging to Group 3, 5, 6, 8, 9 and 10 are preferable, Fe element, Ni element, Co element, Cr element, Mo element More preferably, it contains at least one selected from W element, V element, Ti element, Ru element, Rh element, Pd element, Pt element, and rare earth element.
  • the catalytic element can be supported on the carrier in the form of a simple substance or a compound.
  • the catalyst element-containing compound include inorganic salts such as nitrate, sulfate and carbonate, organic salts such as acetate, organic complexes such as acetylacetone complex, and organometallic compounds. From the viewpoint of reactivity, nitrates and acetylacetone complexes are preferred.
  • Catalyst elements can be used alone or in combination of two or more. When two or more kinds of catalyst elements are used in combination, the reaction activity can be adjusted. Examples of suitable combinations of catalytic elements include at least one element selected from Fe, Co and Ni, at least one element selected from Ti, V and Cr, and at least one element selected from Mo and W. And a combination of these. Among these, the catalyst element preferably contains an Fe element and / or a Co element, and more preferably contains an Fe element and / or a Co element and a Mo element and / or a V element.
  • the catalyst element includes Fe element, Co element, and Mo element, Co element with respect to Fe element at 0 to 100 mol%, and Mo element at 1 to 20 mol% with respect to Fe element; Co element, Fe element and Mo element containing Fe element in 0 to 100 mol% with respect to Co element and Mo element in 1 to 20 mol% with respect to Co element; Fe element, Mo element and V element with Fe element
  • the element containing 1 to 10 mol% of Mo element with respect to the element and 1 to 20 mol% of V element with respect to the Fe element is preferable.
  • the method for preparing the catalyst used in the present invention is not particularly limited.
  • a method of preparing a catalyst by impregnating a carrier with a liquid containing a catalyst element (impregnation method); a method of preparing a catalyst by co-precipitation of a solution containing the catalyst element and a carrier constituent element (coprecipitation method) And so on.
  • the impregnation method is preferred.
  • a more specific method of the impregnation method includes a method comprising dissolving or dispersing a catalyst element-containing substance in a solvent to obtain a solution or dispersion, impregnating the solution or dispersion into a granular carrier, and then drying.
  • the liquid containing the catalyst element may be a liquid organic compound containing the catalyst element, or a solution obtained by dissolving or dispersing a compound containing the catalyst element in an organic solvent or water.
  • a dispersant or a surfactant may be added to the liquid containing the catalyst element in order to improve the dispersibility of the catalyst element in the liquid.
  • the surfactant a cationic surfactant, an anionic surfactant, or a nonionic surfactant is preferably used.
  • the concentration of the catalytic element in the liquid containing the catalytic element can be appropriately selected according to the type of solvent, the type of catalytic element, and the like.
  • the amount of the liquid containing the catalytic element mixed with the carrier is preferably equivalent to the amount of liquid absorbed by the carrier used. Drying after thoroughly mixing the liquid containing the catalyst element and the carrier is usually carried out at 70 to 150 ° C. In drying, vacuum drying may be used. Further, after drying, it is preferable to perform pulverization and classification in order to obtain an appropriate size.
  • the carbon element-containing substance is not particularly limited as long as it is a substance that is a carbon element supply source.
  • Examples of carbon element-containing substances include saturated aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, heptane, and octane; unsaturated aliphatic carbonization such as butene, isobutene, butadiene, ethylene, propylene, and acetylene.
  • Alcohols such as methanol, ethanol, propanol, butanol
  • aromatic hydrocarbons such as benzene, toluene, xylene, styrene, indene, naphthalene, anthracene, ethylbenzene, phenanthrene; cyclopropane, cyclopentane, cyclohexane, cyclopentene, cyclohexene, Cyclopentadiene, dicyclopentadiene, alicyclic hydrocarbons such as steroids; methyl thiol, methyl ethyl sulfide, dimethyl thioketone, phenyl thiol, dipheny Heteroelement-containing organic compounds such as sulfide, pyridine, quinoline, benzothiophene, thiophene; halogenated hydrocarbons such as chloroform, carbon tetrachloride, chloroethane,
  • Natural gas, gasoline, kerosene, heavy oil, creosote oil, kerosene, turpentine oil, camphor oil, pine oil, gear oil, cylinder oil, and the like can be used as the carbon element-containing substance.
  • carbon monoxide, methane, ethane, propane, butane, ethylene, propylene, butadiene, methanol, ethanol, propanol, butanol, acetylene, benzene, toluene, xylene and mixtures thereof are preferred, and ethylene, propylene and ethanol are preferred. More preferred.
  • the method of synthesizing the carbon fiber by bringing the catalyst and the carbon element-containing substance into contact in the gas phase can be performed by a method similar to a conventionally known vapor phase growth method.
  • the catalyst may be set in the reactor in a fixed bed type that is placed on a boat in the reactor (for example, a quartz boat) or in a fluidized bed type that is flowed with a carrier gas in the reactor. May be set.
  • the catalyst may be in an oxidized state, it is preferable to reduce the catalyst by supplying a gas containing a reducing gas before supplying the carbon element-containing substance.
  • the temperature during the reduction is preferably 300 to 1000 ° C, more preferably 500 to 700 ° C.
  • the reduction time varies depending on the scale of the reactor, but is preferably 10 minutes to 5 hours, more preferably 10 minutes to 60 minutes.
  • the carbon element-containing substance that is liquid or solid at room temperature is preferably supplied by heating and vaporizing.
  • the carrier gas used for supplying the carbon element-containing substance it is preferable to use a reducing gas such as hydrogen gas.
  • the amount of the carrier gas can be appropriately selected depending on the type of the reactor, but is preferably 0.1 to 70 mol parts per 1 mol part of the carbon element-containing substance.
  • an inert gas such as nitrogen gas, helium gas, argon gas, or krypton gas may be used at the same time.
  • the gas composition may be changed during the progress of the reaction.
  • the concentration of the reducing gas is preferably 1% by volume or more, more preferably 30% by volume or more, and particularly preferably 85% by volume or more with respect to the entire carrier gas.
  • the supply amount of the carbon element-containing material is not uniquely determined because it varies depending on the catalyst used, the carbon element-containing material, the type of the reactor, and the reaction conditions.
  • the flow rate + the gaseous carbon element-containing substance flow rate) is preferably 10 to 90% by volume, more preferably 30 to 70% by volume.
  • the carbon element-containing material is ethylene, 30 to 90% by volume is particularly preferable.
  • the temperature in the contact region between the catalyst and the carbon element-containing material is preferably 400 to 1100 ° C., more preferably 500 to 1000 ° C., more preferably 530 to 850 ° C., and further preferably 550 to 800 ° C. If the temperature is too low or too high, the amount of carbon fiber produced may be significantly reduced. Further, at a high temperature at which a side reaction occurs, a large amount of non-conductive substance tends to adhere to the carbon fiber surface.
  • the carbon fiber produced by the contact between the catalyst and the carbon element-containing substance can be subjected to treatments such as pulverization, air oxidation, acid treatment, and heat treatment as necessary.
  • the preferred form of carbon fiber according to the present invention contains silica titania particles and a transition metal element, preferably Fe element and / or Co element.
  • the preferred carbon fiber according to the present invention has a number average fiber diameter of preferably 5 to 100 nm, more preferably 5 to 30 nm, and an aspect ratio (fiber length / fiber diameter) of 5 to 1000.
  • Preferred carbon fibers according to the present invention have 90% or more of fibers in the range of 5 to 30 nm in the number-based fiber diameter distribution. The average fiber diameter and the average fiber length were photographed with about 10 fields of view through a transmission electron microscope at a magnification of about 200,000 times, and the diameter and length of the projected fibers were measured by 100 or more.
  • a suitable carbon fiber has a specific surface area of preferably 20 to 400 m 2 / g, more preferably 150 to 250 m 2 / g, and still more preferably 150 to 230 m 2 / g.
  • the specific surface area is determined by the BET method using nitrogen adsorption.
  • the shape of the carbon fiber according to the present invention is preferably a tube shape having a cavity in the center of the fiber (see FIG. 7).
  • the hollow portion may be continuous in the fiber longitudinal direction or may be discontinuous.
  • the ratio (d 0 / d) between the cavity inner diameter d 0 and the fiber diameter d is not particularly limited, but is usually 0.1 to 0.8.
  • Carbon fibers of the preferred embodiment according to the present invention, d 002 is preferably 0.335 ⁇ 0.345 nm, more preferably 0.338 ⁇ 0.342nm.
  • d002 is calculated from a diffraction spectrum measured by a powder X-ray diffraction method (Gakushin method).
  • carbon fiber is intertwined and the carbon fiber bundle is formed (refer FIG.2, FIG.3, FIG.4).
  • the carbon fiber bundle has a diameter of preferably 1 ⁇ m or more, more preferably 1.5 to 8 ⁇ m, and a length of preferably 5 ⁇ m or more, more preferably 10 to 30 ⁇ m.
  • the diameter and length of the carbon fiber bundle are measured from an electron micrograph.
  • the carbon fibers are preferably entangled without being oriented in a specific direction (see FIGS. 5 and 6).
  • the orientation of the carbon fiber is determined by drawing two parallel lines with a distance of about 100 nm on the electron micrograph and measuring the crossing angle (fiber direction) between the line and the axis of the carbon fiber. It can be judged from the frequency distribution. For example, in the case of FIG. 5, about 20% of fibers having an intersection angle of 0-30 °, about 20% of fibers of 30-60 °, about 20% of fibers of 60-90 °, and about 90% of fibers of 90-120 °. 20%, 120-150 ° fibers were about 14%, 150-180 ° fibers were about 8%. In the case of FIG.
  • the fibers having an intersection angle of 0 to 30 ° are about 0%, the fibers of 30 to 60 ° are about 34%, the fibers of 60 to 90 ° are about 27%, and the fibers of 90 to 120 ° are about 14%.
  • 120-150 ° fibers were about 20% and 150-180 ° fibers were about 8%. In all cases, the fiber orientation was almost random, and no orientation in a specific direction was observed.
  • the carbon fiber bundle aggregates and forms the carbon fiber lump (refer FIG. 1, FIG. 2).
  • the carbon fiber mass in a preferred form according to the present invention has a volume resistivity (consolidation specific resistance) at a density of 0.8 g / cm 3, preferably 0.04 ⁇ ⁇ cm or less, more preferably 0.03 ⁇ ⁇ cm or less.
  • the preferred form of carbon fiber mass according to the present invention has a bulk density of preferably 0.01 to 0.2 g / cm 3 , more preferably 0.02 to 0.15 g / cm 3 .
  • the carbon fiber, carbon fiber bundle, or carbon fiber lump according to the present invention is excellent in permeability or dispersibility into a matrix of resin, liquid, etc.
  • high conductivity and thermal conductivity can be obtained by including the carbon fiber in the matrix.
  • the composite material is a material having excellent antistatic properties.
  • the amount of carbon fiber added to the matrix is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass.
  • the resin to which the carbon fiber according to the present invention is added examples include a thermoplastic resin, a thermosetting resin, and a photocurable resin.
  • a thermoplastic resin a resin to which a thermoplastic elastomer or a rubber component is added in order to improve impact resistance can also be used.
  • thermosetting resin for example, polyamide, polyether, polyimide, polysulfone, epoxy resin, unsaturated polyester resin, phenol resin and the like
  • photocurable resin for example, radical curable resin (acrylic resin) Acrylic monomers such as polyester monomers, polyester acrylates, urethane acrylates, epoxy acrylates, unsaturated polyesters, enethiol polymers), cationic curing resins (epoxy resins, oxetane resins, vinyl ether resins), etc.
  • thermoplastic resin for example, nylon resin, polyethylene resin, polyamide resin, polyester resin, polycarbonate resin, polyarylate resin, cyclopolyolefin resin, and the like can be used.
  • various other resin additives can be blended within a range that does not impair the performance and function of the resin.
  • the resin additive include a colorant, a plasticizer, a lubricant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a filler, a foaming agent, a flame retardant, a rust inhibitor, and an antioxidant. These resin additives are preferably blended in the final step when preparing the resin material.
  • the resin composite material containing the carbon fiber according to the present invention is a product required to have conductivity and antistatic properties in addition to impact resistance, such as OA equipment, electronic equipment, conductive packaging parts, conductive sliding members, It can be suitably used as a molding material for conductive heat conductive members, antistatic packaging parts, and automobile parts to which electrostatic coating is applied.
  • a current collector made of a laminate having a conductive layer containing carbon fibers according to the present invention, an electrode made of a laminate having an electrode layer containing carbon fibers according to the present invention, the current collector and the present invention The electrode which consists of a laminated body which has an electrode layer containing the carbon fiber which concerns on this, the electrochemical element containing the carbon fiber which concerns on this invention, the electroconductive material containing the carbon fiber which concerns on this invention, etc. are mentioned.
  • a conventionally known resin molding method can be used. Examples of the molding method include an injection molding method, a hollow molding method, an extrusion molding method, a sheet molding method, a thermoforming method, a rotational molding method, a laminate molding method, and a transfer molding method.
  • liquid material in which the carbon fibers according to the present invention are dispersed examples include heat conductive fluid dispersed in water, alcohol, ethylene glycol, etc., and conductivity and antistatic property dispersed in the liquid together with paint and binder resin.
  • a liquid dispersion for forming a paint or a film is preferably mentioned.
  • the carbon fiber according to the present invention has a high conductivity imparting effect, it is suitable for use in electrochemical devices such as batteries and capacitors.
  • a method for applying carbon fiber to an electrode for an electrochemical device is described in, for example, Japanese Patent Application Laid-Open No. 2005-63955. Specifically, it comprises a laminate of a conductive substrate and a conductive layer by a method comprising preparing a slurry or paste containing the carbon fiber according to the present invention and laminating the slurry or paste on the conductive substrate.
  • the slurry or paste according to the present invention may contain a substance other than carbon fiber in order to constitute the conductive layer or the electrode layer as described above.
  • the conductive layer usually contains a binder material.
  • the electrode layer may contain a conductive auxiliary such as carbon black as necessary.
  • a thickener such as carboxymethyl cellulose or a salt thereof (such as sodium carboxymethyl cellulose) or a polymer such as polyethylene glycol may be contained.
  • the electrode layer usually contains a known electrode active material in addition to the above substances that can be contained in the conductive layer.
  • binder material for the electrode layer examples include fluoropolymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber polymers such as SBR (styrene butadiene rubber).
  • binder material for the conductive layer examples include the above-described fluorine-based polymers and rubber-based polymers, and other examples include polysaccharides and polysaccharide cross-linked products.
  • solvent known materials suitable for each binder, for example, toluene, N-methylpyrrolidone, acetone and the like can be used for a fluorine-based polymer; water and the like can be used for SBR.
  • the method for preparing the slurry or paste is not particularly limited.
  • a slurry or paste for an electrode layer is obtained by mixing the electrode active material, carbon fiber, and binder material at once; by mixing the electrode active material and carbon fiber, and then adding and mixing the binder material; It can be obtained by mixing the electrode active material and the binder and then adding and mixing the carbon fiber; or by mixing the carbon fiber and the binder material and then adding and mixing the electrode active material.
  • dry mixing without using a solvent and wet mixing using a solvent can be used in combination.
  • a binder material can be dry-mixed with an electrode active material, carbon fiber or a mixture thereof, and then kneaded with a solvent; the binder material is diluted with a solvent, and then the electrode active material, carbon fiber or a mixture thereof The mixture can be added and kneaded. Since the carbon fiber according to the present invention is excellent in dispersibility in an organic solvent, the carbon fiber can be contained in a highly dispersed state in the conductive layer or the electrode layer.
  • Examples of the conductive substrate used for the electrode or current collector include metal substrates such as copper, aluminum, stainless steel, nickel and alloys thereof, and carbon substrates such as carbon sheets.
  • the method for laminating the conductive layer or electrode layer on the conductive substrate is not particularly limited, and for example, methods disclosed in Japanese Patent Application Laid-Open No. 2007-226969 and WO07 / 043515 can be employed. Specifically, a method including applying a slurry or paste to a conductive substrate or a current collector by a known application means such as a doctor blade or a bar coat, drying, and then pressing can be employed.
  • the carbon fiber according to the present invention not only has excellent dispersibility in the conductive layer and the electrode layer, but also has excellent liquid absorption retention of the electrolytic solution, so that cycle characteristics and the like can be improved. Moreover, since the resistance value of an electrode can be reduced significantly by using the carbon fiber which concerns on this invention, the internal resistance of a battery or a capacitor falls as a result, and a high rate characteristic improves.
  • Fe element is 20 parts by mass with respect to 80 parts by mass of support
  • Co element is 100 mol% with respect to Fe element
  • Mo element is added.
  • Catalyst A1 supported at 10 mol% with respect to Fe element was obtained.
  • the weighed catalyst A1 was placed on a quartz boat, and the quartz boat was placed in a quartz reaction tube and sealed. The inside of the reaction tube was replaced with nitrogen gas, and the reactor was heated from room temperature to 690 ° C. over 60 minutes while flowing nitrogen gas. It was kept at 690 ° C. for 30 minutes while flowing nitrogen. While maintaining the temperature at 690 ° C., the gas was switched to a mixed gas of hydrogen gas (250 parts by volume) and ethylene gas (250 parts by volume) and allowed to flow through the reactor to cause vapor phase growth reaction for 60 minutes. The mixed gas was switched to nitrogen gas, the inside of the reactor was replaced with nitrogen gas, and the mixture was cooled to room temperature. The reactor was opened and the quartz boat was taken out. Carbon fibers grown with the catalyst as a nucleus were obtained.
  • the increase in mass was 61.6. Scanning electron micrographs of the obtained carbon fibers are shown in FIGS. 1 to 6, and transmission electron micrographs are shown in FIGS.
  • the carbon fiber has an average fiber diameter (diameter) of 13.2 nm, 90% or more of fibers in the fiber diameter distribution (number basis) in the range of 5 to 30 nm, an average fiber length of 6 ⁇ m, and an aspect ratio of 450.
  • the carbon fibers were intertwined into a carbon fiber bundle without being oriented in a specific direction. Moreover, this carbon fiber bundle was further aggregated to form a carbon fiber lump.
  • the carbon fiber mass had a BET specific surface area of 167 m 2 / g, a consolidation specific resistance of 0.018 ⁇ cm, and a bulk density of 0.111 g / cm 3 .
  • the characteristics of the carbon fiber are shown in Table 1.
  • Example 2 The same procedure as in Example 1 except that the catalyst element was changed to 20 parts by mass of Fe element with respect to 80 parts by mass of the support, Co element to 0 mol% with respect to Fe element, and Mo element to 10 mol% with respect to Fe element. Catalyst A2 and carbon fiber were obtained. The characteristics of the carbon fiber are shown in Table 1.
  • Example 3 The same procedure as in Example 1 except that the catalyst element was changed to 10 parts by mass with respect to 90 parts by mass of the Fe element, 100 mol% with respect to the Fe element, and 10 mol% with respect to the Fe element.
  • the catalyst A3 and carbon fiber were obtained.
  • the characteristics of the carbon fiber are shown in Table 1.
  • Example 4 The catalyst element was changed to 20 parts by mass with respect to 80 parts by mass of the Fe element, Mo element to 3 mol% with respect to the Fe element, V element to 20 mol% with respect to the Fe element, and the reaction temperature was changed to 640 ° C. Except for the above, catalyst A4 and carbon fiber were obtained in the same manner as in Example 1. The characteristics of the carbon fiber are shown in Table 1. In addition, ammonium metavanadate was used as a raw material for the V element.
  • Example 6 The same procedure as in Example 1 except that the catalyst element was changed to 20 parts by mass with respect to 80 parts by mass of the Co element, 20 mol% of the Fe element with respect to the Co element, and 10 mol% with respect to the Co element.
  • the catalyst A6 and carbon fiber were obtained.
  • the characteristics of the carbon fiber are shown in Table 1.
  • Example 7 The same procedure as in Example 1 except that the catalyst element was changed to 20 parts by mass with respect to 80 parts by mass of the Co element, 50 mol% with respect to the Co element, and 10 mol% with respect to the Co element.
  • the catalyst A7 and carbon fiber were obtained.
  • the characteristics of the carbon fiber are shown in Table 1.
  • Comparative Example 1 In the same manner as in Example 1, except that ⁇ -alumina particles (manufactured by Strem Chemical Co., BET specific surface area 130 m 2 / g, 50% particle size 10 ⁇ m) were used instead of silica titania particles [1], And carbon fiber was obtained. The characteristics of the carbon fiber are shown in Table 1.
  • silica gel (Fuji Silysia Chemical Co., CARiACT Q-15, BET specific surface area of 191 m 2 / g, nominal particle diameter of 1700 to 4000 ⁇ m, pore volume of 0.99 ml / g) was used. Obtained the catalyst and carbon fiber by the same method as Example 1. The characteristics of the carbon fiber are shown in Table 1.
  • Example 8 The carbon fiber obtained in Example 1 was pulverized using a counter jet mill (manufactured by Hosokawa / Alpine: 100AFG / 50ATP) at a pulverization pressure of 0.5 MPa.
  • the crushed carbon fiber had a specific surface area of 170 m 2 / g, a bulk density of 0.040 g / cm 3 , and a consolidation specific resistance of 0.020 ⁇ cm.
  • Positive electrode active material LiFePO 4 manufactured by Aleees, average particle size: 2 ⁇ m
  • 90 parts by mass of the crushed carbon fiber, acetylene black (Denka Black: manufactured by Denki Kagaku Kogyo Co., Ltd.) 3 parts by weight were weighed and placed in a dry mixer (Nobilta: Hosokawa Micron Corporation, peripheral speed: 30-50 m / s, effective volume: 500 mL), and dry mixed for 12 minutes to obtain a mixed powder.
  • the peripheral speed of the mixing blade was 40 m / s.
  • TK-Hibismix f-Model.03 type manufactured by Primix
  • vinylidene fluoride resin binder KF-polymer L # 1320: manufactured by Kureha Chemical Industry Co., Ltd., N-methyl-2-pyrrolidone solution of vinylidene fluoride resin (PVDF)) in an amount of 5 parts by mass as PVDF content.
  • PVDF vinylidene fluoride resin
  • kneading was carried out while adding N-methyl-2-pyrrolidone (manufactured by Showa Denko KK) to obtain a slurry adjusted to a viscosity suitable for coating.
  • the obtained slurry was applied onto an aluminum foil using an automatic coating machine and a doctor blade. Thereafter, it was dried on a hot plate (80 ° C.) for 30 minutes and then in a vacuum dryer (120 ° C.) for 1 hour. Then, it punched to the predetermined magnitude
  • the press pressure was 5 MPa.
  • LiPF 6 was dissolved as an electrolyte in a mixed solvent of 2 parts by mass of EC (ethylene carbonate) and 3 parts by mass of EMC (ethyl methyl carbonate) to obtain an electrolytic solution.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Comparative Example 3 A positive electrode having an electrode density of 1.86 g / cm 3 was obtained in the same manner as in Example 8, except that the amount of carbon fiber was changed to 0 parts by mass and the amount of acetylene black was changed to 5 parts by mass. The same test as in Example 8 was performed. The results are shown in Table 2.
  • the catalyst using the support composed of silica titania particles and the carbon element-containing substance are contacted in the gas phase, the carbon fiber and the carbon fiber having a large specific surface area and a low consolidation specific resistance. It turns out that a bundle or a carbon fiber lump can be manufactured with high efficiency. Moreover, in the lithium ion battery using the carbon fiber obtained by the manufacturing method of this invention, it turns out that a high rate discharge capacity retention is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Fibers (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

少量の添加でも充分な導電性または熱伝導性が付与可能な炭素繊維を効率的に製造する方法を提供する。コアがシリカを含み且つシェルがチタニアを含んで成るシリカチタニア粒子からなる担体に、Fe元素、Co元素、Mo元素、V元素などの触媒元素を担持させて触媒を得、該触媒に、メタン、エタン、エチレン、アセチレンなどの炭素元素含有物質を、500~1000℃程度の加熱領域下で接触させることを含む炭素繊維の製造方法。

Description

炭素繊維の製造方法
 本発明は、炭素繊維の製造方法に関する。より詳細に、本発明は、少量の添加でも充分な導電性または熱伝導性が付与可能な炭素繊維を効率的に製造する方法に関する。
 炭素繊維は、樹脂、金属、セラミックス等の導電性や熱伝導性を改善するために用いられるフィラーとして、FED(フィールドエミッションディスプレー)用の電子放出素材として、各種反応用の触媒担体として、水素、メタンもしくはその他の気体を吸蔵するための媒体として、または電池やキャパシタなどの電気化学素子用の電極材または電極材への添加剤などとして、用いることが提案されている。
 炭素繊維の製造方法としては、触媒を核として成長させる方法、いわゆる化学気相成長法(以下、CVD法という。)が知られている。該CVD法には、触媒元素を担体に担持してなる触媒を用いて製造する方法と、担体を用いずに有機金属錯体などを気相中で熱分解させて触媒を生成させながら製造する方法(流動気相法)が知られている。
 流動気相法で得られる炭素繊維は、炭素層の結晶欠陥が多く、結晶性が低すぎるため、フィラーとして樹脂等に添加しても導電性を発現しない。流動気相法によって得られる該炭素繊維を高温で熱処理することによって炭素繊維自身の導電性は上昇するが、それでも樹脂材料等への導電性付与効果は必ずしも充分なレベルでない。
 一方、担持触媒を用いて製造する方法は、基板担体を用いて製造する方法(基板法)と、粉粒状担体を用いて製造する方法に大別できる。
 基板担体を用いて製造する方法は、基板への触媒担持、炭素繊維の基板からの回収などの煩雑な工程を要するので、経済的な理由で工業的大量生産に不向きである。
 一方、粉粒状担体を用いて製造する方法では、基板担体を用いて製造する方法と比較して、触媒担体の比表面積が大きいため、装置効率が良いだけでなく、さまざまな化学合成に用いられている反応装置が適用可能で、基板法のようなバッチ処理を前提とした生産方式だけでなく、連続処理が可能になるという利点を有する。
 粉粒状担体として、アルミナ、マグネシア、シリカ、ゼオライト、水酸化アルミニウムなどが知られている。例えば、特許文献1には、担体としてγ-アルミナやマグネシアを用いて得られた触媒を用いて微小繊維の凝集物が得られることが開示されている。
 また、特許文献2には、水酸化アルミニウムを加熱処理して得られる粉粒状担体に触媒金属または触媒金属前駆体を担持させてなる触媒を用いて炭素繊維凝集体が得られることが記載されている。
米国特許5456897 WO2010/101215
 本発明の課題は、少量の添加でも充分な導電性または熱伝導性が付与可能な炭素繊維を効率的に製造する方法を提供することである。
 本発明者らは、上記目的を達成するために鋭意検討した。その結果、以下のような態様を包含する本発明を完成するに至った。
〔1〕 シリカチタニア粒子からなる担体に触媒元素を担持させて触媒を得、
 該触媒と炭素元素含有物質とを気相中で接触させることを含む炭素繊維の製造方法。
〔2〕 シリカチタニア粒子はコアシェル構造を成すものである、〔1〕に記載の製造方法。
〔3〕 シリカチタニア粒子はコアがシリカを含み且つシェルがチタニアを含むものである〔2〕に記載の製造方法。
〔4〕 シリカチタニア粒子はコア/シェルの質量比が90/10~99/1である〔2〕または〔3〕に記載の製造方法。
〔5〕 シリカチタニア粒子はシリカ/チタニアの質量比が90/10~99/1である〔1〕~〔4〕のいずれかひとつに記載の製造方法。
〔6〕 シリカチタニア粒子は体積基準累積粒度分布における50%粒子径が10μm~5000μmである〔1〕~〔5〕のいずれかひとつに記載の製造方法。
〔7〕 シリカチタニア粒子はBET比表面積が50~500m2/gである〔1〕~〔6〕のいずれかひとつに記載の製造方法。
〔8〕 シリカチタニア粒子は細孔容積が0.1~10ml/gである〔1〕~〔7〕のいずれかひとつに記載の製造方法。
〔9〕 シリカチタニア粒子は細孔容積が0.6~1.5ml/gで且つ比表面積が150~400m2/gである〔1〕~〔8〕のいずれかひとつに記載の製造方法。
〔10〕 触媒元素は遷移金属元素から選ばれる少なくとも1つを含む〔1〕~〔9〕のいずれかひとつに記載の製造方法。
〔11〕 触媒元素はFe元素および/またはCo元素を含む〔1〕~〔10〕のいずれかひとつに記載の製造方法。
〔12〕 触媒元素はMo元素および/またはV元素をさらに含む〔11〕に記載の製造方法。
〔13〕 触媒元素は、Fe元素、Co元素およびMo元素を、Fe元素に対してCo元素が0~100mol%、Fe元素に対してMo元素が1~20mol%で含む〔1〕~〔10〕のいずれかひとつに記載の製造方法。
〔14〕 触媒元素は、Co元素、Fe元素およびMo元素を、Co元素に対してFe元素が0~100mol%、Co元素に対してMo元素が1~20mol%で含む〔1〕~〔10〕のいずれかひとつに記載の製造方法。
〔15〕 触媒元素は、Fe元素、Mo元素およびV元素を、Fe元素に対してMo元素が1~10mol%、Fe元素に対してV元素が1~20mol%で含む〔1〕~〔10〕のいずれかひとつに記載の製造方法。
〔16〕 シリカチタニア粒子ならびに遷移金属元素を含有する、数平均繊維径が5~100nmで且つアスペクト比が5~1000である炭素繊維。
〔17〕 シリカチタニア粒子、ならびにFe元素および/またはCo元素を含有する、数平均繊維径が5~100nmで且つアスペクト比が5~1000である炭素繊維。
〔18〕 前記〔16〕または〔17〕に記載の炭素繊維が絡み合ってなる、直径が1μm以上で且つ長さが5μm以上である炭素繊維束。
〔19〕 炭素繊維が特定方向に配向せずに絡み合っている前記〔18〕に記載の炭素繊維束。
〔20〕 前記〔18〕または〔19〕に記載の炭素繊維束が集合してなる炭素繊維塊。
〔21〕 前記〔16〕または〔17〕に記載の炭素繊維を含有するペーストまたはスラリー。
〔22〕 導電性基材と、〔16〕または〔17〕に記載の炭素繊維を含む導電性層とを有する積層体からなる集電体。
〔23〕 導電性基材と、〔16〕または〔17〕に記載の炭素繊維および電極活物質を含む電極層とを有する積層体からなる電極。
〔24〕 前記〔21〕に記載の集電体と、〔16〕または〔17〕に記載の炭素繊維および電極活物質を含む電極層とを有する積層体からなる電極。
〔25〕 前記〔16〕または〔17〕に記載の炭素繊維を含有する電気化学素子。
〔26〕 前記〔16〕または〔17〕に記載の炭素繊維を含有する導電性材料。
実施例1で得られた炭素繊維塊の走査電子顕微鏡写真像を示す図である。 図1に示した炭素繊維塊の四角枠部分を示す図である。 図2に示した炭素繊維束の四角枠部分(左下)を示す図である。 図2に示した炭素繊維束の四角枠部分(右上)を示す図である。 図3に示した炭素繊維の四角枠部分を示す図である。 図4に示した炭素繊維の四角枠部分を示す図である。 実施例1で得られた炭素繊維の透過電子顕微鏡写真像を示す図である。 実施例1で得られた炭素繊維の透過電子顕微鏡写真像を示す図である。
 本発明に係る好ましい形態の炭素繊維の製造方法は、シリカチタニア粒子からなる担体に触媒元素を担持させて触媒を得、該触媒と炭素元素含有物質とを気相中で接触させることを含む。
 本発明に用いられる担体は、シリカチタニア粒子からなる。シリカチタニア粒子は、シリカとチタニアとが複合してなる粒子である。
 シリカチタニア粒子は、コアシェル構造を成すものが好ましい。シリカチタニア粒子がコアシェル構造を成すものである場合、コア/シェルの質量比は好ましくは80/20~99.5/0.5、より好ましくは85/15~99/1、さらに好ましくは90/10~99/1である。
 また、コアシェル構造を成すシリカチタニア粒子は、コアがシリカを含み且つシェルがチタニアを含むものが好ましい。
 シリカチタニア粒子は、シリカ/チタニアの質量比が、好ましくは80/20~99.5/0.5、より好ましくは85/15~99/1、さらに好ましくは90/10~99/1である。
 シリカチタニア粒子は、体積基準累積粒度分布における50%粒子径が、好ましくは10μm~5mm、より好ましくは10μm~1mm、さらに好ましくは25μm~750μm、最も好ましくは50μm~500μmである。ここで、50%粒子径はレーザー回折散乱法によって測定した粒度分布から算出した値である。
 シリカチタニア粒子は、多孔質であることが好ましい。シリカチタニア粒子は、細孔容積が、好ましくは0.1~10ml/g、より好ましくは0.2~5ml/g、さらに好ましくは0.6~1.5ml/gである。
 また、シリカチタニア粒子は、BET比表面積が、好ましくは50~500m2/g、より好ましくは150~450m2/g、さらに好ましくは250~400m2/gである。特に好ましいシリカチタニア粒子は、細孔容積が0.6~1.5ml/gでかつBET比表面積が150~400m2/gである。なお、BET比表面積は窒素吸着量に基づいてBET法で算出したものである。BET比表面積および/または細孔容積が上記範囲にあると、炭素繊維生成効率が高く、得られる炭素繊維による導電性または熱伝導性の付与効果が高い。
 シリカチタニア粒子は、その製法によって制限されない。例えば、シリカに硫酸チタニルを含浸させ、次いで酸化性雰囲気下400~600℃にて熱処理することによって; ケイ素をチタニアを含むアルコキシドで加水分解させ、次いで酸化性雰囲気下400~600℃にて熱処理することによって; またはシリカやチタニアを含むアルコキシドを原料とした化学気相成長によってコーティングし、次いで酸化性雰囲気下400~600℃で熱処理することによって、シリカチタニア粒子を得ることができる。
 本発明に用いられる触媒元素は、炭素繊維の成長を促進する元素であれば、特に制限されない。このような触媒元素としては、元素周期表(IUPAC:1990年)における3~12族に属する遷移金属元素からなる群から選ばれる少なくとも1つを含むものが好ましい。これらの中でも、3、5、6、8、9および10族に属する遷移金属元素からなる群から選ばれる少なくとも1つを含むものが好ましく、Fe元素、Ni元素、Co元素、Cr元素、Mo元素、W元素、V元素、Ti元素、Ru元素、Rh元素、Pd元素、Pt元素、及び希土類元素から選ばれる少なくとも1つを含むものが更に好ましい。
 触媒元素は、単体または化合物の形態で前記担体に担持することができる。触媒元素含有化合物としては、硝酸塩、硫酸塩、炭酸塩などの無機塩類、酢酸塩などの有機塩、アセチルアセトン錯体などの有機錯体、有機金属化合物などが挙げられる。反応性の観点からは硝酸塩やアセチルアセトン錯体などが好ましい。
 触媒元素は1種単独でまたは2種以上を組み合わせて用いることができる。2種以上の触媒元素を組み合わせて用いると反応活性を調節することができる。好適な触媒元素の組合せの例としては、Fe、Co及びNiから選択される少なくともひとつの元素とTi、V及びCrから選択される少なくともひとつの元素とMo及びWから選択される少なくともひとつの元素とを組み合わせたものが挙げられる。中でも、触媒元素は、Fe元素および/またはCo元素を含むものが好ましく、Fe元素および/またはCo元素並びにMo元素および/またはV元素を含むものがより好ましい。
 より具体的な形態として、触媒元素は、Fe元素、Co元素およびMo元素を、Fe元素に対してCo元素が0~100mol%、Fe元素に対してMo元素が1~20mol%で含むもの; Co元素、Fe元素およびMo元素を、Co元素に対してFe元素が0~100mol%、Co元素に対してMo元素が1~20mol%で含むもの; Fe元素、Mo元素およびV元素を、Fe元素に対してMo元素が1~10mol%、Fe元素に対してV元素が1~20mol%で含むものが好ましい。
 本発明で使用する触媒の調製法は特に制限されない。例えば、触媒元素を含む液を担体に含浸させることにより触媒を調製する方法(含浸法); 触媒元素と担体構成元素とを含む溶液を共沈させることにより触媒を調製する方法(共沈法);などが挙げられる。これらのうち含浸法が好ましい。
 含浸法のより具体的な方法としては、触媒元素含有物質を溶媒に溶解または分散させて溶液または分散液を得、これを粉粒状担体に含浸させ、次いで乾燥することを含む方法が挙げられる。
 触媒元素を含む液は、触媒元素を含む液状有機化合物でもよいし、触媒元素を含む化合物を有機溶媒または水に溶解または分散させたものでもよい。触媒元素を含む液には触媒元素の液中での分散性を改善するなどのために、分散剤や界面活性剤を添加してもよい。界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤が好ましく用いられる。触媒元素を含む液における触媒元素濃度は、溶媒の種類、触媒元素の種類などに応じて適宜選択することができる。担体と混合される触媒元素を含む液の量は、用いる担体の吸液量相当であることが好ましい。触媒元素を含む液と担体とを十分に混合した後の乾燥は、通常70~150℃で行う。乾燥においては真空乾燥を用いてもよい。さらに、乾燥後、適当な大きさにするために粉砕および分級をすることが好ましい。
 次に触媒と炭素元素含有物質とを接触させる。炭素元素含有物質は、炭素元素の供給源となる物質であれば特に制限されない。炭素元素含有物質としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタンなどの飽和脂肪族炭化水素;ブテン、イソブテン、ブタジエン、エチレン、プロピレン、アセチレンなどの不飽和脂肪族炭化水素; メタノール、エタノール、プロパノール、ブタノールなどのアルコール類; ベンゼン、トルエン、キシレン、スチレン、インデン、ナフタレン、アントラセン、エチルベンゼン、フェナントレンなどの芳香族炭化水素; シクロプロパン、シクロペンタン、シクロヘキサン、シクロペンテン、シクロヘキセン、シクロペンタジエン、ジシクロペンタジエン、ステロイドなどの脂環式炭化水素;メチルチオール、メチルエチルスルフィド、ジメチルチオケトン、フェニルチオール、ジフェニルスルフィド、ピリジン、キノリン、ベンゾチオフェン、チオフェンなどヘテロ元素含有有機化合物;クロロホルム、四塩化炭素、クロルエタン、トリクロルエチレン等のハロゲン化炭化水素;クメン、ホルムアルデヒド、アセトアルデヒド、アセトンなどのその他の有機化合物や、一酸化炭素、二酸化炭素などが挙げられる。これらは1種単独でまたは2種以上を組み合わせて用いることができる。また、天然ガス、ガソリン、灯油、重油、クレオソート油、ケロシン、テレピン油、樟脳油、松根油、ギヤー油、シリンダ油などを炭素元素含有物質として用いることができる。これらのうち、一酸化炭素、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブタジエン、メタノール、エタノール、プロパノール、ブタノール、アセチレン、ベンゼン、トルエン、キシレン及びこれらの混合物が好ましく、エチレン、プロピレン、エタノールがより好ましい。
 触媒と炭素元素含有物質とを気相中で接触させて炭素繊維を合成する方法は、従来公知の気相成長法と同様の方法で行うことができる。例えば、所定温度に加熱された縦型または横型の反応器に前記触媒をセットし、該反応器に炭素元素含有物質をキャリアガスで供給して接触させる方法がある。触媒は、反応器内のボート(例えば、石英製ボート)などに載せておく固定層式で反応器にセットしてもよいし、反応器内でキャリアガスで流動させる流動層式で反応器にセットしてもよい。触媒は酸化状態になっていることがあるので、炭素元素含有物質を供給する前に、還元性ガスを含むガスを流通させて触媒を還元することが好ましい。還元時の温度は好ましくは300~1000℃、より好ましくは500~700℃である。還元時間は、反応器の規模に応じて変わるが、好ましくは10分間~5時間、より好ましくは10分間~60分間である。
 炭素元素含有物質はガス状態で反応場に供給することが好ましい。常温で液体または固体の炭素元素含有物質は、加熱し気化させて供給することが好ましい。
 炭素元素含有物質を供給するために用いられるキャリアガスとしては、水素ガスなどの還元性ガスを使用することが好ましい。キャリアガスの量は反応器の形式によって適宜選択できるが、炭素元素含有物質1モル部に対して好ましくは0.1~70モル部である。還元性ガス以外に、窒素ガス、ヘリウムガス、アルゴンガス、クリプトンガスなどの不活性ガスを同時に使用してもよい。また、反応の進行途中でガスの組成を変えてもよい。還元性ガスの濃度は、キャリアガス全体に対して、好ましくは1体積%以上、より好ましくは30体積%以上、特に好ましくは85体積%以上である。
 炭素元素含有物質の供給量は、使用する触媒、炭素元素含有物質、反応器の形式、反応条件によって異なるため一義的には決められないが、(ガス状炭素元素含有物質流量)/(キャリアガス流量+ガス状炭素元素含有物質流量)が、好ましくは10~90体積%、より好ましくは30~70体積%である。炭素元素含有物質がエチレンの場合は、特に30~90体積%が好ましい。
 触媒と炭素元素含有物質との接触領域における温度は、好ましくは400~1100℃、より好ましくは500~1000℃、より好ましくは530~850℃、さらに好ましくは550~800℃である。温度は低過ぎても高過ぎても炭素繊維の生成量が著しく低くなる場合がある。また、副反応が起こるような高温では、炭素繊維表面に非導電性の物質が多量に付着する傾向がある。
 触媒と炭素元素含有物質との接触によって生成した炭素繊維は、必要に応じて、粉砕、空気酸化、酸処理、熱処理などの処理をすることができる。
 本発明に係る好ましい形態の炭素繊維は、上記のような製造方法で製造されるので、シリカチタニア粒子と、遷移金属元素、好ましくはFe元素および/またはCo元素とを含有している。また、本発明に係る好ましい炭素繊維は、数平均繊維径が好ましくは5~100nm、より好ましくは5~30nmであり、アスペクト比(繊維長/繊維径)が5~1000である。本発明に係る好ましい炭素繊維は、数基準の繊維径分布において90%以上の繊維が5~30nmの範囲にある。なお、平均繊維径および平均繊維長さは、倍率20万倍程度で透過型電子顕微鏡を通して10視野程度写真撮影し、写し出された繊維の径および長さを100本以上測定して、それらの数平均値として求められる。また、好適な炭素繊維は、比表面積が、好ましくは20~400m2/g、より好ましくは150~250m2/g、さらに好ましくは150~230m2/gである。なお、比表面積は窒素吸着によるBET法で求められる。
 本発明に係る炭素繊維の形状は、繊維の中心部に空洞を有するチューブ状であることが好ましい(図7参照)。空洞部分は繊維長手方向に連続していてもよいし、不連続になっていてもよい。空洞部内径d0と繊維径dとの比(d0/d)は特に限定されないが、通常0.1~0.8である。
 本発明に係る好ましい形態の炭素繊維は、d002が、好ましくは0.335~0.345nm、より好ましくは0.338~0.342nmである。d002は粉末X線回折法(学振法)にて測定した回折スペクトルから算出する。
 本発明に係る好ましい形態では、炭素繊維が絡み合って炭素繊維束を形成していることが好ましい(図2、図3、図4参照)。該炭素繊維束は、直径が好ましくは1μm以上、より好ましくは1.5~8μmであり、長さが好ましくは5μm以上、より好ましくは10~30μmである。炭素繊維束の直径、及び長さは、電子顕微鏡写真から測定する。
 該炭素繊維束では、炭素繊維が特定方向に配向せずに絡み合っていることが好ましい(図5、図6参照)。ここで、炭素繊維の配向性は、電子顕微鏡写真に、100nm程度距離を開けた平行線を2本引き、該線と炭素繊維の軸との交差角度(繊維の向き)を測定し、それらの頻度分布から判断できる。例えば、図5の場合、交差角度0~30°の繊維が約20%、30~60°の繊維が約20%、60~90°の繊維が約20%、90~120°の繊維が約20%、120~150°の繊維が約14%、150~180°の繊維が約8%であった。また図6の場合、交差角度0~30°の繊維が約0%、30~60°の繊維が約34%、60~90°の繊維が約27%、90~120°の繊維が約14%、120~150°の繊維が約20%、150~180°の繊維が約8%であった。いずれも繊維の向きはほぼランダムになっており、特定方向への配向がみられなかった。
 本発明に係る好ましい形態では、炭素繊維束が集合して炭素繊維塊を形成していることが好ましい(図1、図2参照)。
 本発明に係る好ましい形態の炭素繊維塊は、密度0.8g/cm3における体積抵抗率(圧密比抵抗)が好ましくは0.04Ω・cm以下、より好ましくは0.03Ω・cm以下である。また、本発明に係る好ましい形態の炭素繊維塊は、嵩密度が、好ましくは0.01~0.2g/cm3、より好ましくは0.02~0.15g/cm3である。
 本発明に係る炭素繊維、炭素繊維束または炭素繊維塊は、樹脂、液などのマトリックスへの浸透性または分散性に優れるので、該炭素繊維をマトリックスに含有させることによって高い導電性や熱伝導性を有する複合材料を得ることができる。当該複合材料は帯電防止性に優れた材料である。満足のできる導電性または熱伝導性を得るために、マトリックへの炭素繊維の添加量は好ましくは0.5~10質量%、より好ましくは0.5~5質量%である。
 本発明に係る炭素繊維が添加される樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂が挙げられる。上記熱可塑性樹脂として、耐衝撃性向上のために熱可塑性エラストマーもしくはゴム成分が添加された樹脂を用いることもできる。
 熱硬化性樹脂としては、例えば、ポリアミド、ポリエーテル、ポリイミド、ポリスルホン、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂などを用いることができ、光硬化性樹脂としては、例えば、ラジカル硬化系樹脂(アクリル系モノマーやポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレートなどのアクリル系オリゴマー、不飽和ポリエステル、エンチオール系の重合体)、カチオン硬化系樹脂(エポキシ樹脂、オキセタン樹脂、ビニルエーテル系樹脂)などを用いることができ、熱可塑性樹脂としては、例えば、ナイロン樹脂、ポリエチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、シクロポリオレフィン樹脂などを用いることができる。
 本発明に係る炭素繊維を含有させてなる樹脂材料には、樹脂の性能、機能を損なわない範囲で、他の各種樹脂添加剤を配合させることができる。樹脂添加剤としては、例えば、着色剤、可塑剤、滑剤、熱安定剤、光安定剤、紫外線吸収剤、充填剤、発泡剤、難燃剤、防錆剤、酸化防止剤などが挙げられる。これらの樹脂添加剤は、樹脂材料を調製する際の最終工程で配合するのが好ましい。
 本発明に係る炭素繊維を配合した樹脂複合材料は、耐衝撃性と共に、導電性や帯電防止性が要求される製品、例えばOA機器、電子機器、導電性包装用部品、導電性摺動用部材、導電性熱伝導性部材、帯電防止性包装用部品、静電塗装が適用される自動車部品などの成形材料として好適に使用できる。例えば、本発明に係る炭素繊維を含む導電性層とを有する積層体からなる集電体、本発明に係る炭素繊維を含む電極層とを有する積層体からなる電極、該集電体と本発明に係る炭素繊維を含む電極層とを有する積層体からなる電極、本発明に係る炭素繊維を含有する電気化学素子、本発明に係る炭素繊維を含有する導電性材料などが挙げられる。
 これら製品を製造する際には、従来知られている樹脂成形法によることができる。成形法としては、例えば、射出成形法、中空成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、トランスファー成形法などが挙げられる。
 本発明に係る炭素繊維を分散させた液状物としては、水、アルコール、エチレングリコールなどに分散させた熱伝導性の流体や、塗料やバインダー樹脂とともに液中に分散させた導電性や帯電防止性の塗料や皮膜を形成するための液分散体が好適に挙げられる。
 さらに、本発明に係る炭素繊維は、導電性付与効果が高いので、電池やキャパシタなどの電気化学素子への使用にも好適である。
 電気化学素子用電極への炭素繊維の適用方法は、例えば、特開2005-63955号公報などに記載されている。具体的には、本発明に係る炭素繊維を含有するスラリーまたはペーストを調製し、これを導電性基材に積層させることを含む方法によって、導電性基材と導電性層との積層体からなる集電体、導電性基材と電極層との積層体からなる電極または集電体(導電性基材と導電性層との積層体)と電極層との積層体からなる電極を得ることができる。
 本発明に係るスラリーまたはペーストは、上記のような導電性層または電極層を構成するために、炭素繊維以外の物質を含んでいてもよい。
 導電性層ではバインダー材料を通常含有している。また当該電極層では必要に応じてカーボンブラック等の導電助剤を含有していてもよい。またスラリーまたはペーストの粘度調整の為に、カルボキシメチルセルロースまたはその塩(sodium carboxymethyl celluloseなど)やポリエチレングリコール等のポリマーのような増粘材を含有してもよい。電極層では導電性層に含有させることができる上記物質以外に公知の電極活物質を通常含有している。
 電極層用のバインダー材料としては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマーや、SBR(スチレンブタジエンラバー)等のゴム系ポリマー等が挙げられる。導電性層用のバインダー材料としては、上記のようなフッ素系ポリマーやゴム系ポリマーが挙げられ、その他に、多糖類、多糖類架橋物などが挙げられる。溶媒には、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーならトルエン、N-メチルピロリドン、アセトンなど; SBRなら水などが使用できる。
 スラリーまたはペーストの調製方法は、特に限定されない。たとえば、電極層用のスラリーまたはペーストは、電極活物質と炭素繊維とバインダー材料を一度に混合することによって; 電極活物質と炭素繊維を混合し、次いでバインダー材料を添加して混合することによって; 電極活物質とバインダーを混合し、次いで炭素繊維を添加して混合することによって; または炭素繊維とバインダー材料を混合し、次いで電極活物質を添加して混合することによって、得ることができる。混合では、溶媒を用いない乾式混合と溶媒を用いる湿式混合とを併用できる。例えば、電極活物質、炭素繊維またはこれらの混合物にバインダー材料を乾式混合し、次いで溶媒を加えて混練りすることができ; バインダー材料を溶媒で希釈し、それに電極活物質、炭素繊維またはこれらの混合物を添加して混練りすることもできる。本発明に係る炭素繊維は有機溶剤への分散性に優れるので、導電性層や電極層に炭素繊維を高分散状態で含有させることができる。
 電極または集電体に用いられる導電性基材としては、銅、アルミニウム、ステンレス、ニッケル及びそれらの合金などの金属基材、カーボンシートなど炭素基材が挙げられる。
 導電性基材への導電性層または電極層の積層方法は、特に限定されず、たとえば、特開2007-226969号公報やWO07/043515に開示された方法を採用できる。具体的には、ドクターブレードやバーコートなどの公知の塗布手段によってスラリーまたはペーストを導電性基材または集電体に塗布し、乾燥し、次いでプレスすることを含む方法などを採用可能である。
 本発明に係る炭素繊維は、導電性層や電極層における分散性に優れるだけでなく、電解液の吸液保持にも優れるので、サイクル特性等を向上させることができる。また、本発明に係る炭素繊維を用いることによって、電極の抵抗値を大幅に低減することができるので、結果的に電池やキャパシタの内部抵抗が低下して、ハイレート特性が向上する。
 以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。
 物性等は以下の方法により測定した。
(嵩密度)
 メスシリンダーに炭素繊維1gを充填し、前記メスシリンダーを振とう機(ヤマト製タッチミキサー MT-31)に載せて1分間振動させた。その後、炭素繊維の体積を測定して、嵩密度を算出した。
(圧密比抵抗)
 炭素繊維塊0.2gを精秤し、粉体抵抗測定システム(MCP-PD51、株式会社三菱化学アナリティック製)によって密度ごとに体積抵抗率を測定した。
(質量増加)
 質量増加は、使用した触媒の質量に対する得られた炭素繊維の質量の比(炭素繊維の質量/触媒の質量)で表した。
 実施例1
 担体としてのシリカチタニア粒子[1](富士シリシア化学社製、ST205、BET比表面積257m2/g、称呼粒子径75~150μm、細孔容積1.14ml/g、チタニア/シリカ質量比=7/93、チタニア結晶構造:アナターゼ型、シリカコア-チタニアシェル構造)1質量部と、硝酸鉄9水和物、硝酸コバルト6水和物及び七モリブデン酸六アンモニウムの水溶液とを混合した。次いで、それを熱風乾燥機にて110℃で16時間乾燥させて、触媒元素として、Fe元素を担体80質量部に対して20質量部、Co元素をFe元素に対して100mol%、Mo元素をFe元素に対して10mol%担持した触媒A1を得た。
 秤量した触媒A1を石英ボートに載せ、石英製反応管に該石英ボートを入れ、密閉した。反応管内を窒素ガスで置換し、窒素ガスを流しながら、反応器を室温から690℃まで60分間かけて昇温させた。窒素を流しながら690℃で30分間保持した。
 温度690℃を維持したまま、水素ガス(250容量部)とエチレンガス(250容量部)との混合ガスに切り替え反応器に流し、60分間、気相成長反応させた。混合ガスを窒素ガスに切り替え、反応器内を窒素ガスで置換し、室温まで冷やした。反応器を開き石英ボートを取り出した。触媒を核として成長してなる炭素繊維が得られた。
 質量増加(反応後に回収された炭素繊維の質量/触媒質量)は61.6であった。得られた炭素繊維の走査電子顕微鏡写真像を図1~6に、透過電子顕微鏡写真像を図7および8に示す。炭素繊維は、平均繊維径(直径)が13.2nmであり、繊維径分布(本数基準)において90%以上の繊維が5~30nmの範囲にあり、平均繊維長が6μmであり、アスペクト比が450であった。炭素繊維は特定方向に配向せずに絡み合って炭素繊維束となっていた。また、この炭素繊維束はさらに凝集して炭素繊維塊を形成していた。炭素繊維塊は、BET比表面積が167m2/gであり、圧密比抵抗が0.018Ωcmであり、嵩密度が0.111g/cm3であった。該炭素繊維の特性を表1に示す。
 実施例2
 触媒元素を、Fe元素を担体80質量部に対して20質量部、Co元素をFe元素に対して0mol%、Mo元素をFe元素に対して10mol%に変えた他は実施例1と同じ手法にて触媒A2、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
 実施例3
 触媒元素を、Fe元素を担体90質量部に対して10質量部、Co元素をFe元素に対して100mol%、Mo元素をFe元素に対して10mol%に変えた他は実施例1と同じ手法にて触媒A3、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
 実施例4
 触媒元素を、Fe元素を担体80質量部に対して20質量部、Mo元素をFe元素に対して3mol%、V元素をFe元素に対して20mol%に変え、反応温度を640℃に変えた以外は実施例1と同じ手法にて触媒A4、および炭素繊維を得た。該炭素繊維の特性を表1に示す。なお、V元素の原料としてメタバナジン酸アンモニウムを用いた。
 実施例5
 シリカチタニア粒子[1]の代わりにシリカチタニア粒子[2](昭和タイタニウム社製、シリカチタニア粉末ジュピターS F4S05、BET比表面積47m2/g、称呼粒子径0.03μm、チタニア/シリカ質量比=95/5、チタニア結晶構造:アナターゼ型、チタニアコア-シリカシェル構造)を用いた以外は、実施例1と同じ手法にて触媒A5、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
 実施例6
 触媒元素を、Co元素を担体80質量部に対して20質量部、Fe元素をCo元素に対して20mol%、Mo元素をCo元素に対して10mol%に変えた以外は実施例1と同じ手法にて触媒A6、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
 実施例7
 触媒元素を、Co元素を担体80質量部に対して20質量部、Fe元素をCo元素に対して50mol%、Mo元素をCo元素に対して10mol%に変えた以外は実施例1と同じ手法にて触媒A7、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
 比較例1
 シリカチタニア粒子[1]の代わりにγ-アルミナ粒子(ストレムケミカル社製、BET比表面積130m2/g、50%粒子径10μm)を用いた以外は、実施例1と同じ手法にて触媒、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
 比較例2
 シリカチタニア粒子[1]の代わりにシリカゲル(富士シリシア化学社製、CARiACT Q-15、BET比表面積191m2/g、呼称粒子径1700~4000μm、細孔容積0.99ml/g)を用いた以外は、実施例1と同じ手法にて触媒、および炭素繊維を得た。該炭素繊維の特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例8
 実施例1で得られた炭素繊維をカウンタジェットミル(ホソカワ/アルピネ製:100AFG/50ATP)を用いて、粉砕圧力0.5MPaで解砕した。解砕後の炭素繊維は、比表面積が170m2/g、嵩密度が0.040g/cm3、圧密比抵抗が0.020Ωcmであった。また、炭素繊維は、空洞部内径d0と繊維径dとの比(d0/d)=0.5、d002が0.340nmであった。
〔電池の正極の製造〕
 正極活物質(LFP-NCO:Aleees社製 LiFePO4、平均粒子径:2μm)90質量部と、前記の解砕された炭素繊維2質量部と、アセチレンブラック(デンカブラック:電気化学工業株式会社製)3質量部とを量り採り、乾式混合器(ノビルタ:ホソカワミクロン社製、周速度:30~50m/s、実効容積:500mL)に入れ、12分間乾式混合して混合粉を得た。混合羽根の周速度は40m/sとした。その後、混合粉をスラリー混練機(TK-ハイビスミックスf-Model.03型:プライミクス社製)に移し変えた。これに、フッ化ビニリデン樹脂バインダー(KF-ポリマー L#1320:呉羽化学工業社製、フッ化ビニリデン樹脂(PVDF)のN-メチル-2-ピロリドン溶液)をPVDF分として5質量部となる量で加え、混練した。その後、N-メチル-2-ピロリドン(昭和電工社製)を加えながら混練し、塗工に適した粘度に調整されたスラリーを得た。得られたスラリーを、自動塗工機とドクターブレードを用いて、アルミ箔上に塗布した。その後、ホットプレート(80℃)上で30分間、次いで真空乾燥機(120℃)にて1時間乾燥した。その後、所定の大きさに打抜き、プレス成形機を用いてプレスした。次いで、真空乾燥機(120℃)にて12時間乾燥して、電極密度1.89g/cm3の正極を得た。なお、プレス圧は5MPaとした。
(電解液の調製)
 EC(エチレンカーボネート)2質量部とEMC(エチルメチルカーボネート)3質量部との混合溶媒に電解質としてLiPF6を1.0モル/リットルとなるように溶解させて電解液を得た。
(Liイオン電池試験セルの作製)
 露点-80℃以下の乾燥アルゴン雰囲気下で下記の操作を実施した。
 セパレータとしてポリプロピレン製マイクロポーラスフィルム(セルガード社製、セルガード2400)、25μm)を4枚用意した。一枚目のセパレータの上に、参照極(リチウム金属箔)、二枚目のセパレータ、上記で製造した正極、三枚目のセパレータ、対向極(リチウム金属箔)、四枚目のセパレータを順次重ね載せて積層体を得た。得られた積層体をアルミニウム製ラミネートで包み、三辺をヒートシールした。これに電解液を注入し、真空中でヒートシールして試験セルを得た。
(大電流負荷試験)
 レストポテンシャルから4.2Vまでを0.2Cの電流で定電流充電し、次いで2mVで定電圧充電して、電流値が12μAに低下した時点で充電を止めた。次に、0.2C相当および2.0C相当の電流値でそれぞれ定電流放電を行い、電圧2.5Vでカットオフした。
 0.2C相当の電流値で放電したときの容量に対する2.0C相当の電流値で放電したときの容量の割合を、容量比(=高率放電容量保持率)として算出した。
比較例3
 炭素繊維の量を0質量部、アセチレンブラックの量を5質量部にそれぞれ変更した以外、実施例8と同じ手法にて電極密度1.86g/cm3の正極を得た。実施例8と同じ試験を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、本発明に従って、シリカチタニア粒子からなる担体を用いた触媒と、炭素元素含有物質とを気相中で接触させると、比表面積が大きくや圧密比抵抗が低い炭素繊維、炭素繊維束または炭素繊維塊を高効率で製造できることがわかる。また、本発明の製造方法で得られる炭素繊維を用いたリチウムイオン電池においては、高率放電容量保持率が高いことがわかる。

Claims (12)

  1.  シリカチタニア粒子からなる担体に触媒元素を担持させて触媒を得、
     該触媒と炭素元素含有物質とを気相中で接触させることを含む炭素繊維の製造方法。
  2.  シリカチタニア粒子はコアシェル構造を成すものである請求項1に記載の製造方法。
  3.  シリカチタニア粒子はコアがシリカを含み且つシェルがチタニアを含むものである請求項2に記載の製造方法。
  4.  シリカチタニア粒子はコア/シェルの質量比が90/10~99/1である請求項2または3に記載の製造方法。
  5.  シリカチタニア粒子はシリカ/チタニアの質量比が90/10~99/1である請求項1~4のいずれかひとつに記載の製造方法。
  6.  シリカチタニア粒子ならびに遷移金属元素を含有する、
     数平均繊維径が5~100nmで且つアスペクト比が5~1000である炭素繊維。
  7.  請求項6に記載の炭素繊維が絡み合ってなる、
     直径が1μm以上で且つ長さが5μm以上である炭素繊維束。
  8.  炭素繊維が特定方向に配向せずに絡み合っている請求項7に記載の炭素繊維束。
  9.  請求項7または8に記載の炭素繊維束が集合してなる炭素繊維塊。
  10.  請求項6に記載の炭素繊維を含有するペーストまたはスラリー。
  11.  請求項6に記載の炭素繊維を含有する電気化学素子。
  12.  請求項6に記載の炭素繊維を含有する導電性材料。
PCT/JP2012/008356 2011-12-27 2012-12-27 炭素繊維の製造方法 WO2013099256A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/369,315 US20140370282A1 (en) 2011-12-27 2012-12-27 Method of producing carbon fibers
KR1020147006703A KR20140050101A (ko) 2011-12-27 2012-12-27 탄소섬유의 제조 방법
CN201280065176.4A CN104066876A (zh) 2011-12-27 2012-12-27 碳纤维的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-285730 2011-12-27
JP2011285730 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099256A1 true WO2013099256A1 (ja) 2013-07-04

Family

ID=48696787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008356 WO2013099256A1 (ja) 2011-12-27 2012-12-27 炭素繊維の製造方法

Country Status (6)

Country Link
US (1) US20140370282A1 (ja)
JP (1) JPWO2013099256A1 (ja)
KR (1) KR20140050101A (ja)
CN (1) CN104066876A (ja)
TW (1) TW201343250A (ja)
WO (1) WO2013099256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064972A (ja) * 2014-09-22 2016-04-28 デンカ株式会社 カーボンナノファイバーの製造方法およびカーボンナノファイバー
CN106661333A (zh) * 2014-08-07 2017-05-10 电化株式会社 导电性高分子材料及其成型制品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052489A1 (ja) * 2014-09-29 2016-04-07 株式会社Ihi 画像解析装置、画像解析方法及びプログラム
CN104538609B (zh) * 2014-12-23 2017-02-01 东莞市迈科科技有限公司 一种锂离子电池用负极复合材料及其制备方法
EP3511946A4 (en) 2017-06-08 2019-11-13 LG Chem, Ltd. COMPOSITE CONDUCTIVE MATERIAL HAVING EXCELLENT DISPERSIBILITY, SLURRY TO FORM A LITHIUM SECONDARY BATTERY ELECTRODE USING THE SAME, AND LITHIUM SECONDARY BATTERY
TWI750042B (zh) * 2020-04-10 2021-12-11 大陸商東莞東陽光科研發有限公司 電極結構材料及製備電極結構材料的方法、電解電容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063955A (ja) * 2003-07-28 2005-03-10 Showa Denko Kk 高密度電極及びその電極を用いた電池
JP2007055854A (ja) * 2005-08-25 2007-03-08 Toray Ind Inc カーボンナノチューブの分離回収方法
JP2009079106A (ja) * 2007-09-26 2009-04-16 Sanyo Chem Ind Ltd 多層構造粒子の製造方法
JP2010001173A (ja) * 2008-06-18 2010-01-07 Showa Denko Kk カーボンナノファイバー、その製造方法及び用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503913C (zh) * 2003-08-26 2009-06-24 昭和电工株式会社 卷曲碳纤维及其制备方法
EP1664417B1 (en) * 2003-09-16 2018-02-21 Showa Denko K.K. Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
CN101974803B (zh) * 2004-06-08 2012-10-17 昭和电工株式会社 气相生长的碳纤维、其制备方法和包含该碳纤维的复合材料
US20100221535A1 (en) * 2006-01-20 2010-09-02 Showa Denko K.K. Platelet-type slit-incorporated vapor grown carbon fiber and production method thereof
JP4197729B2 (ja) * 2006-12-21 2008-12-17 昭和電工株式会社 炭素繊維および炭素繊維製造用触媒
JP5566628B2 (ja) * 2008-06-18 2014-08-06 昭和電工株式会社 炭素繊維の製造方法
JP5420982B2 (ja) * 2008-06-18 2014-02-19 昭和電工株式会社 炭素繊維及び炭素繊維製造用触媒
EP2307311A1 (en) * 2008-06-30 2011-04-13 Showa Denko K.K. Process for producing carbon nanomaterial and system for producing carbon nanomaterial

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063955A (ja) * 2003-07-28 2005-03-10 Showa Denko Kk 高密度電極及びその電極を用いた電池
JP2007055854A (ja) * 2005-08-25 2007-03-08 Toray Ind Inc カーボンナノチューブの分離回収方法
JP2009079106A (ja) * 2007-09-26 2009-04-16 Sanyo Chem Ind Ltd 多層構造粒子の製造方法
JP2010001173A (ja) * 2008-06-18 2010-01-07 Showa Denko Kk カーボンナノファイバー、その製造方法及び用途

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661333A (zh) * 2014-08-07 2017-05-10 电化株式会社 导电性高分子材料及其成型制品
JPWO2016021672A1 (ja) * 2014-08-07 2017-08-03 デンカ株式会社 導電性高分子材料およびそれを用いた成形品
US10629326B2 (en) 2014-08-07 2020-04-21 Denka Company Limited Conductive polymer material and molded article using same
JP2016064972A (ja) * 2014-09-22 2016-04-28 デンカ株式会社 カーボンナノファイバーの製造方法およびカーボンナノファイバー

Also Published As

Publication number Publication date
JPWO2013099256A1 (ja) 2015-04-30
US20140370282A1 (en) 2014-12-18
TW201343250A (zh) 2013-11-01
CN104066876A (zh) 2014-09-24
KR20140050101A (ko) 2014-04-28

Similar Documents

Publication Publication Date Title
Jia et al. Advances in production and applications of carbon nanotubes
WO2013099256A1 (ja) 炭素繊維の製造方法
Salvatierra et al. Graphene carbon nanotube carpets grown using binary catalysts for high-performance lithium-ion capacitors
KR102124946B1 (ko) 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지
CN108140841B (zh) 导电材料分散液和使用其制造的二次电池
Zhang et al. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries
Sun et al. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries
Long et al. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials
KR100980186B1 (ko) 탄소 섬유 결합체 및 이것을 이용한 복합 재료
Zai et al. 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors
EP2778266B1 (en) Composite carbon fibers
US10312519B2 (en) Method for manufacturing electroconductive paste, and electroconductive paste
CN107851800A (zh) 导电材料分散液和使用其制造的锂二次电池
CN107148692B (zh) 电极用导电性组合物、使用该导电性组合物的电极以及锂离子二次电池
Yetiman et al. Microwave-assisted fabrication of high-performance supercapacitors based on electrodes composed of cobalt oxide decorated with reduced graphene oxide and carbon dots
JP6889408B2 (ja) 鉄酸化物−炭素複合体粒子粉末及びその製造方法
Yang et al. Carbon Nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted face masks
EP3438045B1 (en) Highly conductive carbon nanotubes
Sharma et al. Enhanced supercapacitive performance of Ni0. 5Mg0. 5Co2O4 flowers and rods as an electrode material for high energy density supercapacitors: Rod morphology holds the key
EP2543756A1 (en) Process for production of carbon fibers
Shah et al. Amino functionalized metal-organic framework/rGO composite electrode for flexible Li-ion batteries
Zawar et al. Mn0. 06Co2. 94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors
Wang et al. Electrochemical performance of Bi2O2CO3 nanosheets as negative electrode material for supercapacitors
JP5551817B2 (ja) 炭素繊維、炭素繊維製造用触媒および炭素繊維の評価方法。
Jayasubramaniyan et al. Hydrothermal synthesis of novel Mn1/3Ni1/3Co1/3MoO4 on reduced graphene oxide with a high electrochemical performance for supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551255

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147006703

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369315

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12863043

Country of ref document: EP

Kind code of ref document: A1