WO2013099146A1 - 導電部材、プロセスカートリッジ及び電子写真装置 - Google Patents

導電部材、プロセスカートリッジ及び電子写真装置 Download PDF

Info

Publication number
WO2013099146A1
WO2013099146A1 PCT/JP2012/008052 JP2012008052W WO2013099146A1 WO 2013099146 A1 WO2013099146 A1 WO 2013099146A1 JP 2012008052 W JP2012008052 W JP 2012008052W WO 2013099146 A1 WO2013099146 A1 WO 2013099146A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
binder resin
conductive
conductive member
Prior art date
Application number
PCT/JP2012/008052
Other languages
English (en)
French (fr)
Inventor
政浩 渡辺
一浩 山内
悟 西岡
裕一 菊池
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201280064636.1A priority Critical patent/CN104024955B/zh
Priority to US13/919,999 priority patent/US20130281276A1/en
Publication of WO2013099146A1 publication Critical patent/WO2013099146A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • G03G15/751Details relating to xerographic drum, band or plate, e.g. replacing, testing relating to drum
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00953Electrographic recording members
    • G03G2215/00957Compositions

Definitions

  • the present invention relates to a conductive member, a process cartridge, and an electrophotographic apparatus.
  • conductive members are used in various applications, such as charging rollers, developing rollers, and transfer rollers.
  • a conductive member preferably has an electric resistance value in the range of 10 3 to 10 10 ⁇ . Therefore, the conductivity of the conductive layer included in the conductive member is adjusted by the conductive agent.
  • the conductive agent is roughly classified into an electronic conductive agent typified by carbon black and an ionic conductive agent such as a quaternary ammonium salt compound. Each of these conductive agents has advantages and disadvantages.
  • the conductive layer made conductive by an electronic conductive agent such as carbon black has a small change in electrical resistance value depending on the use environment.
  • an electrophotographic photosensitive member hereinafter referred to as “photosensitive member” with which the conductive member including the conductive layer comes into contact is contaminated. Less likely to do.
  • photosensitive member it is difficult to uniformly disperse the electronic conductive agent in the binder resin, and the electronic conductive agent tends to aggregate in the conductive layer. Therefore, local unevenness in electric resistance value may occur in the conductive layer.
  • the ionic conductive agent is uniformly dispersed in the binder resin as compared with the electronic conductive agent, local resistance unevenness hardly occurs in the conductive layer.
  • the ion conductive agent is easily affected by the amount of moisture in the binder resin in the use environment.
  • the conductive layer made conductive by the ionic conductive agent has an increased electrical resistance value in a low temperature and low humidity environment (temperature 15 ° C., relative humidity 10%) (hereinafter sometimes referred to as “L / L environment”), In a high-temperature and high-humidity environment (temperature 30 ° C., relative humidity 80%) (hereinafter sometimes referred to as “H / H environment”), the electrical resistance value decreases. That is, there is a problem that the electrical resistance value has a large environmental dependency. Furthermore, when the conductive member having a conductive layer made conductive with an ionic conductive agent is left in contact with another member for a long time, the ionic conductive agent is placed on the surface of the conductive layer. It may ooze out (hereinafter sometimes referred to as “bleed out”).
  • Patent Document 1 discloses an electrophotographic apparatus member that suppresses voltage dependency and environment dependency of electrical resistance. Specifically, a surfactant structure formed using a binder polymer having at least one of a sulfonic acid group and a sulfonic acid metal salt structure in the molecular structure and a surfactant having a sulfonic acid group in the molecular structure. It has been proposed to form an electrophotographic apparatus member using a semiconductive composition containing a conductive polymer.
  • an object of the present invention is to provide a conductive member for electrophotography in which the electrical resistance value is unlikely to fluctuate even under various environments and the bleed-out of the conductive agent is unlikely to occur even during long-term contact with other members.
  • Another object of the present invention is to provide an electrophotographic image forming apparatus capable of stably forming a high-quality electrophotographic image.
  • a conductive member for electrophotography having a conductive substrate and a conductive layer provided on the substrate,
  • the conductive layer includes a binder resin having a sulfo group or a quaternary ammonium base as an ion exchange group in the molecule, and ions having a polarity opposite to that of the ion exchange group.
  • the binder resin is represented by the formula (1) -1 Any structure selected from the group of structures represented by formula (1) -3 and any structure selected from the group of structures represented by formula (2) -1 and formula (2) -2
  • a conductive member having a molecular structure that does not cause a matrix domain structure due to the binder resin in the conductive layer
  • n1 represents an integer of 1 or more
  • n2 represents an integer of 1 or more
  • n3 represents an integer of 1 or more.
  • m1 and p1 each independently represents an integer of 1 or more, and the ratio m1: p1 of m1 and p1 is 74:26 to 90:10.
  • m2 and p2 each independently represent an integer of 1 or more, and the ratio m2: p2 of m2 and p2 is 74:26 to 90:10.
  • a process cartridge which is configured to be detachable from the main body of the electrophotographic apparatus and includes any one of the conductive members described above. Furthermore, according to the present invention, there is provided an electrophotographic apparatus comprising any one of the above conductive members.
  • a conductive member for electrophotography in which the bleed-out of the ionic conductive agent is suppressed and the electrical resistance is less dependent on environmental fluctuations.
  • a process cartridge and an electrophotographic image forming apparatus that contribute to stable formation of high-quality electrophotographic images can be obtained.
  • FIG. 1 is a schematic configuration diagram illustrating an example of an electrophotographic image forming apparatus having an electrophotographic conductive member according to the present invention. It is a schematic block diagram of the electric current measurement apparatus of an elastic layer.
  • roller-shaped conductive member hereinafter also referred to as “conductive roller” as a specific example of the electrophotographic conductive member according to the present invention.
  • Electroconductive member for electrophotography> 1A, 1B and 1C are schematic views showing the form of an electrophotographic conductive member of the present invention (hereinafter sometimes simply referred to as “conductive member”).
  • the configuration of the conductive member may be a single-layer configuration including a conductive shaft core 1 and an elastic layer 2 provided on the outer periphery thereof as shown in FIG. 1A.
  • FIG. 1A A two-layer configuration in which the surface layer 4 is disposed outside the two may be employed.
  • FIG. 1C a multilayer configuration in which a plurality of intermediate layers 3 and adhesive layers are arranged between the elastic layer 2 and the surface layer 4 may be employed.
  • At least one of the elastic layer 2, the surface layer 4, and the intermediate layer 3 is the conductive layer of the present invention.
  • layers other than the conductive layer of the present invention may be made conductive by other means. However, it is desirable that layers other than the conductive layer of the present invention have a lower electrical resistance value than the conductive layer of the present invention so that the conductivity of the electrophotographic conductive member can be controlled by the conductive layer of the present invention.
  • the conductive layer contains a binder resin having an alkylene oxide structure in the molecular chain as a means for suppressing an increase in electrical resistance of the conductive layer in a low temperature and low humidity environment. Since the alkylene oxide structure is highly polar and has the effect of promoting the dissociation of ions in the same way as water, the increase in the electrical resistance of the conductive layer can be suppressed even in a low temperature and low humidity environment where the amount of water in the binder resin is small. .
  • the alkylene oxide structure is any structure selected from the group of structures represented by the following formulas (1) -1 to (1) -3.
  • n1 represents an integer of 1 or more
  • n2 represents an integer of 1 or more
  • n3 represents an integer of 1 or more.
  • the structure represented by the formula (1) -1 is relatively hydrophilic compared to the structures represented by the formulas (1) -2 and (1) -3.
  • the amount of water in the binder resin tends to increase. Therefore, when the structure represented by the formula (1) -1 is included in order to further reduce the fluctuation of electric resistance under a high temperature and high humidity environment, the formula (1) -1 in the binder resin is included. It is preferable that the content of the structure represented by is suppressed to 30% by mass or less, particularly 20% by mass or less.
  • the binder resin in a high-temperature and high-humidity environment even when the content in the binder resin is large.
  • the amount of water does not rise significantly.
  • it although it is inferior to the structure represented by the formula (1) -1, it contributes sufficiently to the effect of suppressing the increase in the electrical resistance of the conductive layer in a low temperature and low humidity environment.
  • the content of the structure represented by Formula (1) -2 and Formula (1) -3 in the binder resin is preferably 10% by mass or more and 70% by mass or less.
  • the content is 10% by mass or more, it is possible to suppress an increase in electric resistance of the conductive layer even in a low temperature and low humidity environment.
  • the content is 70% by mass or less, an excessive decrease in electrical resistance in a high temperature and high humidity environment can be suppressed.
  • the type and content of the alkylene oxide structure in the binder resin can be calculated by cutting out a part of the conductive layer and analyzing the peak position and the intensity ratio using solid 13 C-NMR measurement. Furthermore, the molecular structure is identified by infrared spectroscopy (IR) analysis and combined with the result of NMR measurement, the quantification of the alkylene oxide structure becomes easier.
  • IR infrared spectroscopy
  • an alkylene oxide compound having functional groups that react with other raw materials constituting the binder resin at both ends is used as a raw material. It may be used as.
  • the functional group is not limited as long as it reacts with other raw materials, but includes the following. Hydroxyl group, amino group, carboxyl group, mercapto group, alkoxyl group, vinyl group, glycidyl group, epoxy group, isocyanate group.
  • the molecular weight of the raw material alkylene oxide compound is also important because it affects the electrical resistance value in a low-temperature, low-humidity environment.
  • Increasing the values of n1, n2, and n3 in the structures represented by the formulas (1) -1 to (1) -3 indicating the number of linked unit units increases the distance between the linked groups, and the crosslinking density of the binder resin. Can be reduced.
  • the crosslinking density of the binder resin is reduced, the molecular mobility of the binder resin is increased, and thus the mobility of dissociated ions is increased, which is preferable for suppressing high resistance in a low temperature and low humidity environment.
  • n1, n2, and n3 are too large, crystallization of the alkylene oxide structure is likely to occur, particularly in the case of the structure represented by the formula (1) -1. Further, since the number of reactive functional groups contributing to the crosslinking reaction is reduced, the crosslinking reaction is difficult to occur, and the amount of unreacted substances contained in the binder resin may be increased.
  • the values of n1, n2, and n3 in the structures represented by the formulas (1) -1 to (1) -3 are preferably 4 to 22.
  • the binder resin of the present invention is characterized by having a nitrile group in its molecular chain.
  • the nitrile group has any structure selected from the group of structures represented by the following formulas (2) -1 and (2) -2.
  • the structure represented by formula (2) -2 which is a structure in which hydrogen is added to the double bond of the butadiene unit having the structure represented by formula (2) -1, is more resistant to the structure represented by formula (2) -1. Ozone property and abrasion resistance are improved, so that it is preferable when used for a charging member or a developing member.
  • the structures represented by the formulas (1) -1 to (1) -3, and the formulas (2) -1 and (2) -2 are used. It is preferable that the number of unit units connected in the structure is small, and the structure represented by the formula (1) and the structure represented by the formula (2) are alternately bonded. Further, by reducing the number of connections of the structures represented by the formulas (1) -1 to (1) -3 and the structures represented by the formulas (2) -1 and (2) -2, the conductive layer It is possible to prevent a matrix domain structure from being formed in the binder resin.
  • the “matrix domain structure” in the present invention means that the structure represented by the formula (1) and the structure represented by the formula (2) constituting the binder resin are unevenly distributed, It means a structure in which a phase including a layer constitutes a matrix and a phase including the other structure forms a domain in the matrix.
  • “does not cause a matrix domain structure” means that the matrix domain structure is not formed in the conductive layer due to the molecular structure of the binder resin itself.
  • n1 represents an integer of 1 or more
  • n2 represents an integer of 1 or more
  • n3 represents an integer of 1 or more.
  • m1 and p1 each independently represents an integer of 1 or more, and the ratio m1: p1 of m1 and p1 is 74:26 to 90:10.
  • m2 and p2 each independently represent an integer of 1 or more, and the ratio m2: p2 of m2 and p2 is 74:26 to 90:10.
  • the ratio [m1: p1] of m1 and p1 and the ratio [m2: p2] of m2 and p2 in the structures represented by the formulas (2) -1 and (2) -2 indicating the number of unit units connected are as follows: Both are [74:26] to [90:10].
  • the molecular weight of the structure represented by formula (2) -1 and formula (2) -2 is preferably 1400 or more and 3800 or less, and more preferably 1800 or more and 3500 or less.
  • the molecular weight is 3800 or less, as described above, the alkylene oxide structure represented by the formula (1) and the nitrile group represented by the formula (2) are closer to each other at the molecular level, so that the environmental dependency of the electrical resistance value is reduced. Will be achieved more reliably.
  • the number of unit units connected in the structures represented by the formulas (1) -1 to (1) -3 and the structures represented by the formulas (2) -1 and (2) -2 is: It can be obtained as follows. For example, after ionizing a sample using matrix-assisted laser desorption / ionization (MALDI) or surface-assisted laser desorption / ionization (SALDI), mass spectrometry using a time-of-flight mass spectrometer (TOF-MS) is performed. Can be estimated.
  • MALDI matrix-assisted laser desorption / ionization
  • SALDI surface-assisted laser desorption / ionization
  • TOF-MS time-of-flight mass spectrometer
  • a modified liquid NBR nitrile having both functional groups that react with other raw materials constituting the binder resin at both ends. It is preferable to use butadiene rubber) as a raw material.
  • the functional group is not limited as long as it reacts with other raw materials, but includes the following. Hydroxyl group, amino group, carboxyl group, mercapto group, alkoxyl group, vinyl group, glycidyl group, epoxy group, isocyanate group.
  • the binder resin is preferably an epoxy resin obtained by reacting an epoxy-modified ethylene oxide having a structure represented by the formula (1) -1 with an amino-modified liquid NBR having a structure represented by the formula (2) -1. Since the reaction of the amino group and the epoxy group proceeds only by mixing and heating, the binder resin of the present invention can be easily obtained.
  • both epoxy-modified ethylene oxide and amino-modified liquid NBR are commercially available with a large number of raw materials differing in the number of unit units and the molecular weight.
  • the binder resin of the present invention has a molecular structure that does not cause matrix domains due to the binder resin in the conductive layer.
  • the number of connected unit units of the structure represented by the formulas (1) and (2) is reduced, or the formula (1 It is effective to alternately combine the structure represented by) and the structure represented by formula (2).
  • the binder resin itself not to form a matrix domain structure in the conductive layer
  • other resins added to the conductive layer within a range not impairing the effects of the present invention, It does not exclude any conductive layer in which domains are formed with respect to the matrix made of the binder resin by fillers, particles, and the like.
  • the presence of the matrix domain structure due to the binder resin in the conductive layer can be confirmed with a transmission electron microscope (TEM) and a scanning electron microscope (SEM-EDX).
  • TEM transmission electron microscope
  • SEM-EDX scanning electron microscope
  • a sample cut out from the conductive layer is embedded in a room temperature curable epoxy resin and cured, and then a sample for observation is prepared by using a microtome to form a thin piece having a thickness of 100 to 300 nm.
  • the observation sample is photographed at a magnification of 100,000 using a TEM, and a portion where a continuous phase is formed is marked on the obtained photograph.
  • elemental analysis of the observation sample is performed with SEM-EDX, and it is only necessary to confirm that the marking portion is the binder resin of the present invention.
  • linking group Any structure selected from the group of structures represented by Formula (1) -1 to Formula (1) -3, and a group of structures represented by Formula (2) -1 and Formula (2) -2 It is preferable that any one of the structures is connected by at least one linking group selected from the group consisting of structures represented by the following formulas (3) -1 to (3) -8.
  • the polar group in the linking group promotes dissociation of ions. Further, it is possible to further suppress the increase in resistance of the binder resin in a low temperature and low humidity environment.
  • the binder resin of the present invention is characterized by having a sulfo group or a quaternary ammonium base having high ion dissociation performance as an ion exchange group in the molecule.
  • This ion exchange group is covalently bonded to the binder resin. Since the ion exchange group is chemically bonded to the binder resin, the movement of the ion exchange group in the conductive layer is suppressed, so when compared with a conductive layer using an ionic conductive agent that is not chemically bonded to the binder resin, There is little leaching of ionic components, and fluctuations in electrical resistance hardly occur even when a DC current is applied for a long time.
  • the ionic conductive agent used in the ion exchange reaction has a functional group that reacts with the binder resin.
  • the functional group is not limited as long as it reacts with the binder resin as a raw material, and includes the following. Halogen atoms such as fluorine, chlorine, bromine and iodine, acid groups such as carboxyl groups and acid anhydrides, hydroxyl groups, amino groups, mercapto groups, alkoxyl groups, vinyl groups, glycidyl groups, epoxy groups, nitrile groups and carbamoyl groups.
  • the ion exchange group may be introduced into the main chain of the binder resin or may be introduced at the molecular end. In the case of introducing an ion exchange group into the main chain of the binder resin, it is preferably connected by a linking group having a structure represented by the following formula (4).
  • a 1 represents a divalent organic group
  • X 1 represents an ion exchange group
  • the binder resin when introduced into the molecular terminal of the binder resin, may be linked by at least one linking group selected from the group of structures represented by the following formulas (5) -1 to (5) -7. preferable.
  • a 2 to A 8 represent divalent organic groups, and X 2 to X 8 represent ion exchange groups.
  • the ion exchange group is introduced via any linking group selected from the group represented by the structure represented by the formula (4) and the structure represented by the formulas (5) -1 to (5) -7: Since the polar group in the linking group promotes the dissociation of ions, it is possible to further suppress the increase in resistance of the binder resin in a low temperature and low humidity environment.
  • the molecular structure can be identified by extracting the binder resin cut out from the conductive member with toluene using a Soxhlet extractor and measuring the extracted binder resin by solid-state NMR or infrared spectroscopy (IR) analysis.
  • the addition amount of the ion conductive agent can be appropriately set, it is preferable to blend the ion conductive agent in a ratio of 0.5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin as a raw material.
  • the amount is 0.5 parts by mass or more, the effect of imparting conductivity by adding an ionic conductive agent can be obtained.
  • the environmental dependence of an electrical resistance value can be reduced.
  • the conductive layer of the present invention includes ions having a polarity opposite to that of the ion exchange group (hereinafter referred to as “counter ions”).
  • the counter ions include the following.
  • Alkali metal ions such as proton, lithium ion, sodium ion, potassium ion, imidazolium compound ion, pyrrolidinium compound ion, quaternary ammonium compound ion.
  • the ion exchange group is a quaternary ammonium group
  • examples of the counter ion include the following.
  • Halogen ions such as fluorine ion, chlorine ion, bromine ion and iodine ion, perchlorate ion, sulfonate compound ion, phosphate compound ion, borate compound ion and sulfonylimide ion.
  • a combination of a quaternary ammonium base and a sulfonylimide ion is preferable. This combination is preferable in that the counter ions are easily dissociated and the resistance of the binder resin can be further improved in a low temperature and low humidity environment.
  • Counter ions can be verified by extraction experiments using ion exchange reactions.
  • the binder resin cut out from the conductive member is stirred in a dilute aqueous solution of hydrochloric acid or sodium hydroxide, and ions in the binder resin are extracted into the aqueous solution.
  • Ions can be identified by drying the aqueous solution after extraction, collecting the extract, and performing mass spectrometry with a time-of-flight mass spectrometer (TOF-MS).
  • TOF-MS time-of-flight mass spectrometer
  • element identification is performed by inductively coupled plasma (ICP) emission analysis of the extract and combined with the results of mass spectrometry, ion identification becomes easier.
  • ICP inductively coupled plasma
  • the ion exchange group and counter ion used in the present invention can be produced by utilizing an ion exchange reaction of an ion conductive agent having a sulfo group or a quaternary ammonium base and an ion salt having a desired chemical structure.
  • an ion exchange reaction of an ion conductive agent having a sulfo group or a quaternary ammonium base and an ion salt having a desired chemical structure.
  • glycidyltrimethylammonium bis (trifluoromethanesulfonyl) imide is a hydrophobic ionic liquid
  • water-soluble lithium chloride as a by-product can be easily removed.
  • a solvent such as chloroform, dichloromethane, dichloroethane, and methyl isobutyl ketone.
  • the thickness of the conductive layer is preferably 2 ⁇ m or more and 100 ⁇ m or less.
  • the electric resistance value of the conductive member can be adjusted by the conductive layer even if the electric resistance value of the elastic layer is low. Further, by setting the film thickness to 100 ⁇ m or less, the electrical resistance value of the conductive member does not increase excessively even in a low temperature and low humidity environment.
  • the conductive shaft core has conductivity to supply power to the surface of a conductive member such as a charging roller or a developing roller via the shaft core.
  • the elastic layer can be composed of the following materials.
  • the rubber component that forms the elastic layer is not particularly limited as long as a sufficient nip can be secured between the charging roller or the developing roller and the photosensitive drum, and examples thereof include the following.
  • the electric resistance value of the elastic layer is preferably 1 ⁇ 10 2 ⁇ or more and 1 ⁇ 10 8 ⁇ or less when measured in an environment of temperature 23 ° C./relative humidity 50%.
  • a conductive agent can be added to the elastic layer for the purpose of imparting conductivity, and an electronic conductive agent or an ionic conductive agent can be used as the conductive agent.
  • the electronic conductive agent is not particularly limited, and includes the following. Carbon black; graphite; conductive metal oxides such as titanium oxide, tin oxide and zinc oxide; metal powders such as copper, aluminum and nickel; conductive fibers and the like. Of these, carbon black is preferred because it is readily available.
  • the type of carbon black is not particularly limited, and examples include the following. Gas furnace black, oil furnace black, thermal black, lamp black, acetylene black, ketjen black.
  • the ion conductive agent is not particularly limited and includes the following.
  • Inorganic ionic substances such as lithium perchlorate, sodium perchlorate, calcium perchlorate; lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, octadecyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, trioctylpropylammonium Cationic surfactants such as bromide and modified aliphatic dimethylethylammonium ethosulphate; amphoteric surfactants such as lauryl betaine, stearyl betaine, dimethylalkyl lauryl betaine; tetraethylammonium perchlorate, tetrabutylammonium perchlorate, Quaternary ammonium salts such as trimethyloctadecyl ammonium perchlorate; trifluoromethan
  • the elastic layer insulating particles and additives such as softening oil and plasticizer may be added to adjust the hardness. It is more preferable to use a high molecular type plasticizer, and the molecular weight is preferably 2000 or more, more preferably 4000 or more. Furthermore, the elastic layer may appropriately contain materials that impart various functions, and examples thereof include an anti-aging agent and a filler.
  • the elastic layer can be formed by adhering or covering a sheet or tube obtained by forming a material for the elastic layer in a predetermined film thickness on the shaft core body. Moreover, it can also produce by integrally extruding the material for an axial core body and an elastic layer using the extruder provided with the crosshead.
  • the intermediate layer or the surface layer can be composed of resin, natural rubber, synthetic rubber, or the like.
  • a resin such as a thermosetting resin or a thermoplastic resin can be used.
  • the resin is preferably a fluororesin, a polyamide resin, an acrylic resin, a polyurethane resin, a silicone resin, or a butyral resin because the viscosity of the paint can be easily controlled. These may be used alone or in combination of two or more, or may be a copolymer.
  • a conductive agent can be blended in order to adjust the electric resistance value of the conductive member.
  • the volume resistivity of the intermediate layer or the surface layer can be adjusted by an ionic conductive agent or an electronic conductive agent.
  • the same one as in the case of the elastic layer may be mentioned.
  • Examples of the electronic conductive agent include the following. Metal-based fine particles and fibers such as aluminum, palladium, iron, copper, and silver; conductive metal oxides such as titanium oxide, tin oxide, and zinc oxide; surface treatment of the metal-based fine particles, fibers, and metal oxides; Composite particles surface-treated by spray coating and mixed shaking; and carbon powders such as furnace black, thermal black, acetylene black, ketjen black, PAN (polyacrylonitrile) carbon, and pitch carbon.
  • Metal-based fine particles and fibers such as aluminum, palladium, iron, copper, and silver
  • conductive metal oxides such as titanium oxide, tin oxide, and zinc oxide
  • surface treatment of the metal-based fine particles, fibers, and metal oxides Composite particles surface-treated by spray coating and mixed shaking
  • carbon powders such as furnace black, thermal black, acetylene black, ketjen black, PAN (polyacrylonitrile) carbon, and pitch carbon.
  • the intermediate layer and the surface layer can contain other particles as long as the effects of the present invention are not impaired.
  • other particles include insulating particles.
  • the insulating particles include the following. Polyamide resin, silicone resin, fluororesin, (meth) acrylic resin, styrene resin, phenol resin, polyester resin, melamine resin, urethane resin, olefin resin, epoxy resin, resins such as copolymers, modified products, and derivatives, Ethylene-propylene-diene copolymer (EPDM), styrene-butadiene copolymer rubber (SBR), silicone rubber, urethane rubber, isoprene rubber (IR), butyl rubber, acrylonitrile-butadiene copolymer rubber (NBR), chloroprene rubber (CR ), Rubber such as epichlorohydrin rubber, polyolefin-based thermoplastic elastomer, urethane-based thermoplastic elastomer, polystyrene-
  • These materials constituting the intermediate layer and the surface layer can be dispersed in the liquid by using a conventionally known dispersion apparatus using sand mill, paint shaker, dyno mill, or pearl mill beads.
  • a method for coating the obtained dispersion is not particularly limited, but a dipping method is preferable because of easy operation.
  • the conductive member according to the present invention can be suitably used as, for example, a charging member for contacting a member to be charged such as a photoconductor to charge the member to be charged. Further, in a process cartridge having a member to be charged and a charging member that contacts the member to be charged and charges the member to be charged by applying a voltage, and configured to be detachable from the image forming apparatus main body, As the charging member, the conductive member according to the present invention can be suitably used.
  • the conductive member according to the present invention can be used as a developing member, a transfer member, a charge eliminating member, and a conveying member such as a paper feed roller, in addition to a charging member such as a charging roller.
  • the electrophotographic image forming apparatus shown in FIG. 2 is provided with one electrophotographic process cartridge 5 for forming yellow, cyan, magenta and black images, respectively, in a tandem manner.
  • the developing device is provided with a developing roller 10 and a toner 8 that are installed opposite to the photosensitive drum 6, a toner 8, and a developing container 10 that contains a stirring blade 9 that pumps up the toner. Further, the toner is supplied to the developing roller, and the toner supply roller 11 for scraping off the toner remaining on the developing roller that is not used for development, and the toner carrying amount on the developing roller are regulated and frictionally charged.
  • the developing blade 12 is provided.
  • the charging roller 13 is in contact with the photosensitive drum with a predetermined pressing force, and is driven by the rotation of the photosensitive drum. Then, by applying a DC voltage from the power source to the charging roller, the photosensitive drum is uniformly charged to a predetermined polarity and potential. When image information is irradiated onto the surface of the photosensitive drum as the beam 14, an electrostatic latent image is formed. Next, the toner coated on the developing roller is supplied from the developing roller onto the electrostatic latent image, and a toner image is formed on the surface of the photosensitive drum.
  • the intermediate transfer belt 15 is stretched by a drive roller 16 and a tension roller 17, and a transfer roller 18 is installed inside the transfer conveyance belt at a position facing the photosensitive drum.
  • a bias having a polarity opposite to that of the toner image is applied to the transfer roller 20.
  • the toner image is transferred to the transfer material.
  • the transfer material onto which the toner image has been transferred is sent to the fixing device 21, where the toner image is fixed on the transfer material, and image formation is completed.
  • the photosensitive drum after the transfer of the toner image is further rotated, and the surface of the photosensitive drum is cleaned by the cleaning blade 22.
  • the conductive member of the present invention can be used as a charging roller or a developing roller in the electrophotographic image forming apparatus.
  • the conductive member of the present invention forms an AC charging type electrophotographic image forming that applies a voltage obtained by superimposing an AC voltage on a DC voltage. Can also be used for equipment.
  • Example 53 relates to a conductive member having a configuration in which an elastic layer, an intermediate layer (conductive layer of the present invention), and a surface layer are provided in this order on the outer periphery of the shaft core shown in FIG. 1C. It is related with the electrically-conductive member of the structure by which the electroconductive layer of this invention was provided in the outer periphery of the shaft core body shown by FIG. 1A. Examples and comparative examples other than these relate to a conductive member in which an elastic layer and a surface layer (conductive layer of the present invention) are provided in this order on the outer periphery of the shaft core shown in FIG. 1B.
  • thermosetting adhesive (trade name: METALLOCK is applied to the region of the axial width of 231 mm of the shaft core. U-20, manufactured by Toyo Chemical Laboratory Co., Ltd.) was applied. Subsequently, after heating at 80 degreeC for 30 minutes, it heated at 120 degreeC for 1 hour, and the thermosetting adhesive was heat-hardened.
  • the kneaded material is extruded together with the above shaft core with an extruder with a crosshead, and the outer periphery of the shaft core body is covered with the kneaded material, and an “unvulcanized rubber roller” having an outer diameter of 8.75 to 8.90 mm is formed. Obtained.
  • the rubber roller was vulcanized using a continuous heating furnace having two zones with different temperature settings. By passing the first zone set at a temperature of 80 ° C. in 30 minutes and subsequently passing the second zone set at a temperature of 160 ° C. in 30 minutes, a “vulcanized elastic layer” was obtained.
  • Both ends of the elastic layer were cut, and the length of the elastic layer in the axial direction was 232 mm. Thereafter, the surface of the elastic layer was polished with a rotating grindstone to obtain a crown-shaped “elastic roller A” having an end diameter of 8.26 mm and a central diameter of 8.50 mm.
  • FIG. 3 shows a schematic configuration of an apparatus for measuring the current of the elastic layer.
  • the elastic layer 2 provided on the shaft core body is brought into pressure contact with a cylindrical aluminum drum 31 having a diameter of 30 mm by pressing means (not shown) at both ends of the shaft core body.
  • the pressure is 500 gf at one end (1000 gf at both ends).
  • a DC voltage (200V) is applied to the shaft core body using an external power source, and a voltage value applied to a reference resistor (1000 ⁇ ) connected in series with the aluminum drum is measured.
  • the current value of the elastic layer 31 can be calculated from the resistance value of the reference resistance and the voltage value applied to the reference resistance.
  • the measurement environment may be a temperature 15 ° C./relative humidity 10% environment (hereinafter sometimes referred to as “L / L environment”) and a temperature 30 ° C./relative humidity 80% environment (hereinafter referred to as “H / H environment”). Measured under two circumstances. Table 7-1 shows the measurement results of current values.
  • this rubber roller was vulcanized at a temperature of 160 ° C. for 30 minutes to obtain an elastic layer. Both ends of the elastic layer were cut, and the length of the elastic layer in the axial direction was 232 mm. Thereafter, the surface of the elastic layer was polished with a rotating grindstone to obtain a crown-shaped “elastic roller B” having an end diameter of 8.26 mm and a central diameter of 8.50 mm. Table 7-1 shows the measurement results of current values.
  • thermosetting adhesive (trade name: XP81-405) is applied to a cylindrical steel shaft core having a diameter of 6 mm and a length of 275 mm, the surface of which is nickel-plated, and an axial width of 236 mm. Momentive Performance Materials Japan LLC). Next, heat treatment was performed at 150 ° C. for 30 minutes to heat and cure the thermosetting adhesive.
  • the shaft core was placed in the center of the cylindrical mold, and the shaft core and the cylindrical mold were preheated at a temperature of 110 ° C. for 5 minutes.
  • the kneaded material was injected from the injection port of the cylindrical mold and heated and cured at a temperature of 110 ° C. for 5 minutes.
  • the shaft core on which the elastic layer is formed is taken out of the cylindrical mold, and for 2 hours with hot air at a temperature of 200 ° C. for the purpose of removing reaction residues and unreacted low molecules in the elastic layer. Heated. After cooling again, both ends of the elastic layer were cut to obtain “elastic roller C” having a thickness of 3 mm and an axial length of 236 mm. Table 7-1 shows the measurement results of current values.
  • ionic conductive agent a 8.56 g (56.5 mmol) of glycidyltrimethylammonium chloride and 16.22 g (56.5 mmol) of bis (trifluoromethanesulfonyl) imidolithium were dissolved in 50 ml of purified water. These two aqueous solutions were mixed and stirred for 2 hours, and then allowed to stand overnight. As a result, the aqueous solution was separated into two layers: an aqueous layer in which lithium chloride was dissolved and an oil layer composed of glycidyltrimethylammonium bis (trifluoromethanesulfonylimide).
  • the oil layer recovered using a separatory funnel was washed twice with purified water, and lithium chloride remaining in a small amount in the oil layer was removed to obtain an ionic conductive agent a having a glycidyl group as a reactive functional group.
  • the ion conductive agent a has a quaternary ammonium base as an ion exchange group and bis (trifluoromethanesulfonylimide) ion as a counter ion.
  • ionic conductive agent c 8.56 g (56.5 mmol) of glycidyltrimethylammonium chloride and 7.03 g (56.5 mmol) of sodium perchlorate were dissolved in 50 ml of purified water. These two aqueous solutions were mixed and stirred for 2 hours, and then allowed to stand overnight to separate into two layers: an aqueous layer in which sodium chloride was dissolved and an oil layer composed of glycidyltrimethylammonium perchlorate.
  • the oil layer recovered using a separatory funnel was washed twice with purified water, and sodium chloride remaining in a small amount in the oil layer was removed, whereby an ionic conductive agent c having a glycidyl group was obtained.
  • This ionic conductive agent has a quaternary ammonium base as an ion exchange group and a perchlorate ion as a counter ion.
  • the oil layer recovered using a separatory funnel was washed twice with purified water, and lithium chloride remaining in a small amount in the oil layer was removed to obtain an ionic conductive agent d having a glycidyl group.
  • the ionic conductive agent has a quaternary ammonium base as an ion exchange group and a bis (nonafluorobutanesulfonylimide) ion as a counter ion.
  • ionic conductive agent e 7.07 g (56.5 mmol) of taurine and 2.26 g (56.5 mmol) of sodium hydroxide were each dissolved in 50 ml of purified water. These two aqueous solutions were mixed and stirred for 2 hours. After stirring, water was distilled off under reduced pressure to obtain an ionic conductive agent e having an amino group as a reactive functional group.
  • This ionic conductive agent has a sulfo group as an ion exchange group and a sodium ion as a counter ion.
  • ionic conductive agent f 1.45 g (14 mmol) of 1-butyl-3-methylimidazolium chloride was dissolved in 50 ml of absolute ethanol. To this solution was added 2.05 g (14 mmol) of sodium taurine and stirred overnight. After stirring, the solution was filtered, and the solvent was distilled off from the obtained filtrate under reduced pressure to obtain an ionic conductive agent f having an amino group.
  • This ionic conductive agent has a sulfo group as an ion exchange group and 1-butyl-3-methylimidazolium ion as a counter ion.
  • ionic conductive agent g 7.90 g (56.5 mmol) of choline chloride and 16.22 g (56.5 mmol) of bis (trifluoromethanesulfonyl) imide lithium were each dissolved in 50 ml of methanol. After mixing these two solutions and stirring for 2 hours, methanol was distilled off under reduced pressure. The residue was extracted with 50 ml of methyl ethyl ketone and filtered, and the solvent was distilled off from the obtained filtrate under reduced pressure to obtain an ionic conductive agent g having a hydroxyl group.
  • This ionic conductive agent has a quaternary ammonium base as an ion exchange group and bis (trifluoromethanesulfonylimide) ion as a counter ion.
  • Example 1 [Example 1] [1. Preparation of coating liquid for conductive layer] Polyethylene glycol diglycidyl ether (mass average molecular weight: 744) 0.735 g (0.988 mmol) and ethylene glycol bis (2-aminoethyl) ether 0.057 g (0 .384 mmol), a terminal amine-modified NBR (trade name: ATBN1300X35, manufactured by Ube Industries, Ltd.) 1.169 g (0.835 mmol) as a compound having the structure represented by the formula (2) -1, and an ionic conductive agent a: 0 0.039 g (2 parts by mass with respect to 100 parts by mass of the binder resin) was dissolved in isopropyl alcohol (IPA) to prepare “Coating Liquid 1” having a solid content of 27% by mass. Note that n1 in the formula (1) -1 was 13, and [m1: p1] in the formula (2) -1 was 74:26.
  • IPA isoprop
  • the elastic roller A was immersed in the coating liquid 1 with its longitudinal direction set to the vertical direction, and applied by a dipping method.
  • the dipping time was 9 seconds
  • the pulling speed was 20 mm / s for the initial speed
  • 2 mm / s for the final speed was changed linearly with respect to the time.
  • the obtained coated product was air-dried at room temperature for 30 minutes or more, then heated in a hot air circulating dryer at a temperature of 90 ° C. for 1 hour, and further heated in a hot air circulating dryer at a temperature of 160 ° C. for 3 hours.
  • “conductive roller 1” was obtained in which the conductive layer (surface layer) of the present invention was formed on the outer periphery of the elastic layer.
  • the binder resin for the conductive layer includes a linking group having a structure represented by formula (3) -1 and formula (3) -2 and a molecular terminal having a structure represented by formula (5) -1 and formula (5) -2.
  • the content of the structure represented by formula (1) -1 was 30% by mass, and the thickness of the conductive layer was 10 ⁇ m. Further, the binder resin did not cause a matrix domain structure in the conductive layer.
  • Image evaluation under a high temperature and high humidity environment was performed as follows.
  • a color laser printer (trade name: Color LaserJet CP3525n, manufactured by HP) and its magenta electrophotographic process cartridge were prepared.
  • the photosensitive drum was taken out from the electrophotographic process cartridge, and a pinhole having a diameter of 20 ⁇ m was formed only in the charge transport layer on the surface of the photosensitive drum.
  • the photosensitive drum having pinholes and the conductive member of this example were incorporated into an electrophotographic process cartridge as a charging roller.
  • the color laser printer and the electrophotographic process cartridge were left in an H / H environment for 24 hours, and 10 halftone images were output in the H / H environment as they were.
  • Examples 2 to 47 The conductive roller was the same as in Example 1 except that the materials shown in Table 4 were used as the raw material of the conductive layer and the amount of each material used was changed to the values shown in Tables 5-1 to 5-4. 2 to 47 were prepared and evaluated as charging rollers. The evaluation results are shown in Tables 7-1 to 7-5.
  • Example 48 Except for changing the elastic roller A to the elastic roller B, a conductive member 48 was produced in the same manner as in Example 1 and evaluated as a charging roller. The evaluation results are shown in Table 7-5.
  • Example 49 Except that the elastic roller A was changed to the elastic roller C, the conductive member 49 was produced in the same manner as in Example 1 and evaluated as a developing roller. The evaluation results are shown in Table 7-5.
  • the reflection density of the output solid white image was 16 points (each central point of 16 squares formed by dividing the gloss paper into 4 parts vertically and 4 parts horizontally).
  • the average value measured was Ds (%), and the solid white image Ds-Dr was defined as “fogging amount” when the average value obtained by measuring the reflection density of the glossy paper before output of 16 points was Dr (%).
  • the reflection density was measured using a reflection densitometer (trade name: white photometer TC-6DS / A, manufactured by Tokyo Denshoku).
  • the fog image was evaluated according to the following criteria. The evaluation results are shown in Table 7-5.
  • B The fogging amount is 0.5% or more and less than 2%.
  • C The fogging amount is 2% or more and less than 5%.
  • D The fogging amount is 5% or more.
  • Example 50 This embodiment relates to a conductive member shown in FIG. 1A in which the conductive layer of the present invention is provided on the outer periphery of the shaft core body.
  • a conductive member 50 was produced in the same manner as in Example 1 except that the coating liquid 1 was directly applied onto a shaft core having a diameter of 8 mm, and evaluated as a charging roller. The evaluation results are shown in Table 7-5.
  • Example 51 A conductive member 51 was produced in the same manner as in Example 1 except that the thickness of the conductive layer was 2 ⁇ m, and evaluated as a charging roller. The evaluation results are shown in Table 7-6.
  • Example 52 A conductive member 52 was produced in the same manner as in Example 1 except that the thickness of the conductive layer was 100 ⁇ m, and evaluated as a charging roller. The evaluation results are shown in Table 7-6.
  • Example 53 This embodiment relates to a conductive roller shown in FIG. 1C in which an elastic layer, an intermediate layer (conductive layer of the present invention), and a surface layer are provided in this order on the outer periphery of the shaft core.
  • Methyl isobutyl ketone (MIBK) was added to an ⁇ -caprolactone-modified acrylic polyol solution (trade name: Plaxel DC2016, manufactured by Daicel Chemical Industries) to dilute the solid content to 19% by mass.
  • ⁇ -caprolactone-modified acrylic polyol solution trade name: Plaxel DC2016, manufactured by Daicel Chemical Industries
  • MA100 manufactured by Mitsubishi Chemical Corporation
  • SH28PA modified dimethyl silicone oil
  • SH28PA modified dimethyl silicone oil
  • the blocked isocyanate mixture is a 7: 3 mixture of hexamethylene diisocyanate (trade name: Duranate TPA-B80E, manufactured by Asahi Kasei Kogyo Co., Ltd.) and isophorone diisocyanate (trade name: Bestanat B1370, manufactured by Degussa Huls).
  • 200 g of the above mixed solution was placed as a dispersion medium in a glass bottle having a volume of 450 mL together with 200 g of glass beads having an average particle diameter of 0.8 mm, and dispersed for 100 hours using a paint shaker disperser. After the dispersion, the glass beads were removed to obtain “Coating Liquid 2” for the surface layer.
  • Example 1 [2. Application of coating liquid for surface layer]
  • the above coating solution was applied to the outer periphery of the conductive member obtained in the same manner as in Example 1 by the dipping method in the same manner as in Example 1.
  • the obtained coated material is air-dried at room temperature for 30 minutes or more, then heated in a hot air circulating dryer at a temperature of 80 ° C. for 1 hour, and further heated in a hot air circulating dryer at a temperature of 160 ° C. for 1 hour to conduct electricity.
  • a surface layer was formed on the outer periphery of the roller 1.
  • a conductive roller 53 having a surface layer on the surface of the conductive roller 1 according to Example 1 was produced and evaluated as a charging roller.
  • the evaluation results are shown in Table 7-6.
  • Example 54 A conductive roller 54 was produced in the same manner as in Example 1, and this was evaluated as a transfer roller.
  • Example 55 and 56 Conductive rollers 55 and 56 were prepared in the same manner as in Example 1 except that the raw materials for the conductive layer were changed to the materials shown in Table 4 and the amount of each material used was changed to the values shown in Table 5-5. Rated as a roller. The evaluation results are shown in Table 7-6.
  • Example 57 As a compound having a structure represented by the formula (1) -1, 0.209 g (0.281 mmol) of polyethylene glycol diglycidyl ether (mass average molecular weight: 744) and a compound having a structure represented by the formula (2) -1 0.983 g (0.281 mmol) of terminal carboxy-modified NBR (trade name: CTBN1300X13, manufactured by Ube Industries, Ltd.) and 0.012 g of triphenylphosphine were mixed, heated and stirred at a temperature of 120 ° C. for 2 hours, and then cooled to room temperature. did.
  • polyethylene glycol diglycidyl ether mass average molecular weight: 744
  • a compound having a structure represented by the formula (2) -1 0.983 g (0.281 mmol) of terminal carboxy-modified NBR (trade name: CTBN1300X13, manufactured by Ube Industries, Ltd.) and 0.012 g of triphenylphosphine were
  • the conductive roller 57 was produced in the same manner as in Example 1 and evaluated as a charging roller. The evaluation results are shown in Table 7-6.
  • Example 58 A conductive roller 58 was produced in the same manner as in Example 1 except that the material of the conductive layer was changed to the materials shown in Table 4 and the amount of each material used was changed to the values shown in Table 5-5. evaluated. The evaluation results are shown in Table 7-6.
  • Example 59 Polyetheramine (trade name: JEFAMIN T-403, manufactured by HUNTSMAN) 0.506 g (1.150 mmol) as a compound having a structure represented by the formula (1) -2, and a structure represented by the formula (2) -1 0.586 g (0.418 mmol) of terminal amino-modified NBR (trade name: ATBN1300X35, manufactured by Ube Industries, Ltd.) was mixed as a compound having the compound.
  • ionic conductive agent a 0.039 g (2 parts by mass with respect to 100 parts by mass of binder resin) and acid anhydride-based curing agent (trade name: Jamaicacid TMEG-500, manufactured by Shin Nippon Rika Co., Ltd.) 0.869 g (2.095 mmol) and toluene were added to prepare “Coating Liquid 4” having a solid content of 27 mass%.
  • n1 in the formula (1) -1 was 13
  • m1: p1 in the formula (2) -1 was 74:26.
  • the conductive roller 59 was produced in the same manner as in Example 1 and evaluated as a charging roller. The evaluation results are shown in Table 7-6.
  • Example 60 [1. Preparation of coating liquid for conductive layer] 0.621 g (1.137 mmol) of polyethylene glycol (mass average molecular weight: 744) as the compound having the structure represented by the formula (1) -1 and terminal amine-modified NBR as the compound having the structure represented by the formula (2) -1 (Product name: ATBN1300X35, manufactured by Ube Industries, Ltd.) 1.013 g (0.724 mmol), ionic conductive agent g: 0.039 g (2 parts by mass with respect to 100 parts by mass of binder resin), and polyfunctional isocyanate (product Name: Millionate MR-200 (manufactured by Nippon Polyurethane Industry Co., Ltd.) (0.327 g) was dissolved in methyl ethyl ketone (MEK) to prepare “Coating Liquid 5” having a solid content of 35 mass%. Note that n1 in the formula (1) -1 was 12, and m1: p1 in the formula (2) -1 was 74
  • the coating liquid was applied to the outer periphery of the elastic roller A by the dipping method in the same manner as in Example 1.
  • the obtained coated material was air-dried at room temperature for 30 minutes or more, and then heated at a temperature of 140 ° C. for 2 hours with a hot air circulating dryer to form a conductive layer on the outer periphery of the elastic roller A, whereby a conductive roller 60 was obtained. .
  • the binder resin of the conductive layer includes a linking group of a compound having a structure represented by formula (3) -6 and formula (3) -8 and a molecular end of a compound having a structure represented by formula (5) -6,
  • the content of the compound having the structure represented by the formula (1) -1 was 30% by mass, and the film thickness of the conductive layer was 10 ⁇ m. Further, the binder resin did not cause a matrix domain structure in the conductive layer.
  • Table 7-6 The results of evaluating this conductive roller 60 as a charging roller are shown in Table 7-6.
  • Example 61 to 68 Conductive rollers 61 to 68 were produced in the same manner as in Example 54 except that the elastic layer and the conductive layer were changed from the elastic layer and the material shown in Table 4 to the usage amounts shown in Table 5-6. Rated as a roller. The evaluation results are shown in Table 7-7.
  • Example 69 A conductive roller 69 was produced in the same manner as in Example 54 except that the elastic layer and the conductive layer were changed from the elastic layer and the material shown in Table 4 to the usage amounts shown in Table 5-6. evaluated. The evaluation results are shown in Table 7-7.
  • Example 70 This embodiment relates to a conductive member shown in FIG. 1A in which the conductive layer of the present invention is provided on the outer periphery of the shaft core body.
  • a conductive roller 70 was produced in the same manner as in Example 54 except that the coating liquid was directly applied to a shaft core having a diameter of 8 mm, and evaluated as a charging roller. The evaluation results are shown in Table 7-7.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

イオン導電剤の滲み出しを抑えつつ、低温低湿及び高温高湿の両環境下で電気抵抗に起因する画像不良が発生しにくい電子写真用導電部材を提供する。 導電性の軸芯体と、その外周に設けられた導電層とを有する電子写真用導電部材であって、該導電層は、分子内にイオン交換基としてスルホ基または四級アンモニウム塩基を有するバインダー樹脂と、該イオン交換基とは逆極性のイオンとを含み、該バインダー樹脂は、更に、式(1)-1~式(1)-3で示される構造の群から選択される何れかの構造と、式(2)-1及び式(2)-2で示される構造の群から選択される何れかの構造とを有し、かつ該バインダー樹脂は、該導電層に、マトリクス・ドメインを生じさせない分子構造を有する。n1、n2、n3は1以上の整数を、m1、p1、m及びp2は各々独立に1以上の整数を示す。[m1:p1]及び[m2:p2]は、共に74:26から90:10である。

Description

導電部材、プロセスカートリッジ及び電子写真装置
 本発明は、導電部材、プロセスカートリッジ及び電子写真装置に関する。
 電子写真画像形成装置においては、導電性部材が様々な用途、例えば、帯電ローラ、現像ローラ、転写ローラとして使用されている。このような導電性部材は、電気抵抗値が10~1010Ωの範囲内にあることが好ましい。そのため、導電性部材が具備する導電層は導電剤によって導電性が調整されている。ここで、導電剤は、カーボンブラックに代表される電子導電剤と、四級アンモニウム塩化合物等のイオン導電剤とに大別される。これらの導電剤はそれぞれ、長所と短所を有している。
 カーボンブラック等の電子導電剤によって導電化された導電層は、使用環境による電気抵抗値の変化が小さい。また、電子導電剤は、導電層の表面にブリードし難いため、かかる導電層を具備する導電性部材が当接する部材、例えば、電子写真感光体(以下、「感光体」という)の表面を汚染する可能性が少ない。しかし、電子導電剤はバインダー樹脂中に均一に分散させることが難しく、導電層中で電子導電剤が凝集しやすい。そのため、導電層に局所的な電気抵抗値のムラが生じる可能性がある。
 一方、イオン導電剤によって導電化された導電層は、電子導電剤と比較して、イオン導電剤がバインダー樹脂中に均一に分散されるため、導電層に局所的な抵抗ムラが生じにくい。しかし、イオン導電剤は、イオン伝導性能が使用環境下におけるバインダー樹脂中の水分量の影響を受けやすい。そのため、イオン導電剤により導電化された導電層は、低温低湿環境(温度15℃、相対湿度10%)(以下、「L/L環境」という場合がある)下では電気抵抗値が上昇し、高温高湿環境(温度30℃、相対湿度80%)(以下、「H/H環境」という場合がある)下では、電気抵抗値が低下する。すなわち、電気抵抗値の環境依存性が大きいという課題を有する。さらに、イオン導電剤で導電化された導電層を備えた導電性部材に、長時間に亘って他の部材と当接させて静置しておいた場合、イオン導電剤が導電層の表面に滲み出してくることがある(以下、「ブリードアウト」という場合がある)。
 特許文献1には、電気抵抗の電圧依存性及び環境依存性を抑えた電子写真機器部材が開示されている。具体的には、分子構造中にスルホン酸基及びスルホン酸金属塩構造の少なくとも一方を有するバインダーポリマーと、分子構造中にスルホン酸基を有する界面活性剤を用いて形成された界面活性剤構造を有する導電性ポリマーとを含む半導電性組成物を用いて電子写真機器部材を形成することが提案されている。
特開2004―184512号公報
 特許文献1にかかる電子写真機器部材について、本発明者らが検討したところ、電気抵抗の環境変動依存性の低減には、未だ改善の余地があるものと認識した。
 そこで、本発明の目的は、多様な環境の下でも電気抵抗値が変動し難く、かつ、他の部材との長期当接時においても導電剤のブリードアウトが生じ難い電子写真用の導電部材の提供にある。また、本発明の他の目的は、高品位な電子写真画像を安定して形成可能な電子写真画像形成装置の提供にある。
 本発明によれば、導電性の基体と、該基体上に設けられた導電層とを有する電子写真用導電部材であって、
 該導電層は、分子内にイオン交換基としてスルホ基または四級アンモニウム塩基を有するバインダー樹脂と、該イオン交換基とは逆極性のイオンとを含み、該バインダー樹脂は、式(1)-1~式(1)-3で示される構造の群から選択される何れかの構造と、式(2)-1及び式(2)-2で示される構造の群から選択される何れかの構造とを有し、かつ、該導電層中に該バインダー樹脂によるマトリクス・ドメイン構造を生じさせない分子構造を有するものである導電部材が提供される。
Figure JPOXMLDOC01-appb-C000001
式(1)-1中、n1は1以上の整数、式(1)-2中、n2は1以上の整数、式(1)-3中、n3は1以上の整数を示す。
Figure JPOXMLDOC01-appb-C000002
 式(2)-1中、m1及びp1は各々独立に1以上の整数を示し、m1及びp1の比m1:p1は、74:26から90:10である。式(2)-2中、m2及びp2は各々独立に1以上の整数を示し、m2及びp2の比m2:p2は、74:26から90:10である。
 また本発明によれば、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、前記の何れかの導電部材を具備しているプロセスカートリッジが提供される。更に本発明によれば、前記の何れかの導電部材を具備している電子写真装置が提供される。
 本発明によれば、イオン導電剤のブリードアウトを抑えつつ、電気抵抗の環境変動依存性が小さい電子写真用の導電部材を得ることができる。また、本発明によれば、高品位な電子写真画像の安定的な形成に資するプロセスカートリッジ及び電子写真画像形成装置を得ることができる。
本発明に係る電子写真用導電部材の一形態を示す概略断面図である。 本発明に係る電子写真用導電部材の他の形態を示す概略断面図である。 本発明に係る電子写真用導電部材のさらに他の形態を示す概略断面図である。 本発明に係る電子写真用導電部材を有する電子写真画像形成装置の一例を示す概略構成図である。 弾性層の電流測定装置の概略構成図である。
 以下、本発明に係る電子写真用の導電部材の具体例としてローラ形状の導電性部材(以下、「導電ローラ」という場合がある)によって、本発明を詳細に説明する。
<電子写真用導電部材>
 図1A、1B及び1Cは本発明の電子写真用導電部材(以下、単に「導電部材」という場合がある)の形態を示す概略図である。導電部材の構成は図1Aに示すように、導電性の軸芯体1とその外周に設けられた弾性層2とからなる単層構成であっても良く、図1Bに示すように、弾性層2の外側に表面層4を配置した2層構成であっても良い。さらに、図1Cに示すように、弾性層2と表面層4との間に中間層3や接着層を複数層配置した多層構成であっても良い。
 図1A、1B及び1C中の弾性層2、表面層4及び中間層3の少なくとも何れかが本発明の導電層である。また、本発明の導電層以外の層が他の手段で導電化されていても良い。ただし、本発明の導電層によって電子写真導電部材の導電性が制御できるように、本発明の導電層以外の層は本発明の導電層より電気抵抗値が低いことが望ましい。
<導電層>
[アルキレンオキサイド構造]
 本発明では、低温低湿環境下における導電層の電気抵抗の上昇を抑制させる手段として、導電層が分子鎖中にアルキレンオキサイド構造を有するバインダー樹脂を含む。アルキレンオキサイド構造は極性が大きく、水と同様にイオンの解離を促進する効果があるため、バインダー樹脂中の水分量が少ない低温低湿環境下においても導電層の電気抵抗の上昇を抑制することができる。アルキレンオキサイド構造は、下記式(1)-1~式(1)-3で示される構造の群の中から選択される何れかの構造である。
Figure JPOXMLDOC01-appb-C000003
 式(1)-1中、n1は1以上の整数、式(1)-2中、n2は1以上の整数、式(1)-3中、n3は1以上の整数を示す。
 イオン解離の観点においては、上記アルキレンオキサイド構造の中でも特に式(1)-1で示される構造を有する化合物を用いた場合には、低温低湿環境下でバインダー樹脂をより低抵抗化させることが可能である。なお、式(1)-1で示される構造は、式(1)-2、式(1)-3で示される構造と比較して相対的に親水性が高いため、高温高湿環境下ではバインダー樹脂中の水分量が多くなりやすい。
 そのため、高温高湿環境下での電気抵抗の変動のより一層の低減を図るうえで、式(1)-1で示される構造を含ませる場合には、バインダー樹脂中における式(1)-1で示される構造の含有量を30質量%以下、特には、20質量%以下に抑えることが好ましい。
 一方、アルキレンオキサイド構造として式(1)-2、式(1)-3で示される構造を用いた場合は、バインダー樹脂中の含有量が多い場合においても、高温高湿環境下におけるバインダー樹脂の水分量が大きく上昇することはない。また、式(1)-1で示される構造よりは劣るものの、低温低湿環境下における導電層の電気抵抗の上昇の抑制効果には十分に寄与することから、電気抵抗値の環境依存性の観点からは式(1)-2、または式(1)-3で示される構造が好ましい。
 バインダー樹脂中における式(1)-2、及び式(1)-3で示される構造の含有量としては、10質量%以上70質量%以下であることが好ましい。含有量が10質量%以上の場合には、低温低湿環境下においても導電層の電気抵抗の上昇の抑制を図ることができる。含有量が70質量%以下の場合には、高温高湿環境下における過度な電気抵抗の低下を抑えることができる。
 なお、バインダー樹脂中のアルキレンオキサイド構造の種類、及び含有量については、導電層からその一部を切り出し、固体13C-NMR測定を用い、ピーク位置と強度比の解析により算出できる。さらに、赤外分光(IR)分析により分子構造の同定を行い、NMR測定の結果と組み合わせることで、アルキレンオキサイド構造の定量はより容易となる。
 式(1)-1~式(1)-3で示される構造をバインダー樹脂に導入するためには、バインダー樹脂を構成する他の原料と反応する官能基を両末端に有するアルキレンオキサイド化合物を原料として用いれば良い。官能基としては、他の原料と反応する限りにおいては制限されるものではないが、以下のものが挙げられる。水酸基、アミノ基、カルボキシル基、メルカプト基、アルコキシル基、ビニル基、グリシジル基、エポキシ基、イソシアネート基。
 原料のアルキレンオキサイド化合物の分子量も、低温低湿環境下の電気抵抗値に影響を与えるので重要である。単位ユニットの連結数を示す式(1)-1~式(1)-3で示される構造中のn1、n2、n3の値を大きくすれば連結基間の距離が広がり、バインダー樹脂の架橋密度を小さくすることができる。バインダー樹脂の架橋密度が小さくなると、バインダー樹脂の分子運動性が上がるため、解離したイオンの移動度が大きくなり、低温低湿環境下での高抵抗化を抑えるのに好ましい。一方で、n1、n2、n3の値を大きくし過ぎると、アルキレンオキサイド構造の結晶化が起こりやすくなり、特に式(1)-1で示される構造の場合は顕著である。また、架橋反応に寄与する反応性官能基の数が減少するために架橋反応が起こりにくくなり、バインダー樹脂中に含まれる未反応物の量が増加する恐れがある。以上のような理由から式(1)-1~式(1)-3で示される構造中のn1、n2、n3の値は4~22であることが好ましい。
[ニトリル基]
 アルキレンオキサイド構造の近距離に誘電率が高いニトリル基が存在すると、イオンの解離を促進する効果がそれぞれを単独で用いた場合以上に増幅され、低温低湿環境下でバインダー樹脂をさらに低抵抗化させることができる。このため本発明のバインダー樹脂はその分子鎖中にニトリル基を有することを特徴としている。ニトリル基は下記式(2)-1及び式(2)-2で示される構造の群の中から選択される何れかの構造を有する。式(2)-1で示される構造のブタジエン単位の二重結合に水素を付加させた構造である式(2)-2で示される構造は、式(2)-1で示される構造より耐オゾン性や耐摩耗性が向上するため、帯電部材や現像部材に使用する場合には好ましい。
 ニトリル基とアルキレンオキサイド構造を分子レベルで近接させるためには、式(1)-1~式(1)-3で示される構造、及び式(2)-1及び式(2)-2で示される構造の単位ユニットの連結数は小さく、そして式(1)で示される構造と式(2)で示される構造が交互に結合していることが好ましい。また、式(1)-1~式(1)-3で示される各構造、及び式(2)-1及び式(2)-2で示される構造の連結数を小さくすることで、導電層中にバインダー樹脂によるマトリクス・ドメイン構造が形成されることを防ぐことができる。
 ここで、本発明における「マトリクス・ドメイン構造」とは、バインダー樹脂を構成する式(1)で示される構造と式(2)で示される構造とがそれぞれ偏在して、いずれか一方の構造を含む相がマトリクスを構成し、他方の構造を含む相が該マトリクス中でドメインを形成している構造を意味する。そして、本発明において、「マトリクス・ドメイン構造を生じさせない」とは、バインダー樹脂自体の分子構造によって導電層中にマトリクス・ドメイン構造が形成されないことを意味する。
Figure JPOXMLDOC01-appb-C000004
 式(1)-1中、n1は1以上の整数、式(1)-2中、n2は1以上の整数、式(1)-3中、n3は1以上の整数を示す。
Figure JPOXMLDOC01-appb-C000005
 式(2)-1中、m1及びp1は各々独立に1以上の整数を示し、m1及びp1の比m1:p1は、74:26から90:10である。式(2)-2中、m2及びp2は各々独立に1以上の整数を示し、m2及びp2の比m2:p2は、74:26から90:10である。
 単位ユニットの連結数を示す式(2)-1及び式(2)-2で示される構造中のm1とp1の比[m1:p1]、及びm2とp2の比[m2:p2]は、ともに[74:26]~[90:10]である。p1及びp2の比を26以下にすることで、極性が高いニトリル基による高温高湿環境下での過剰な吸水を抑えることができ、バインダー樹脂の低抵抗化による過放電の発生を抑制できる。また、p1及びp2の比を10以上にすることで、イオンを解離するのに有効なニトリル基数が確保できるため、低温低湿環境下における低抵抗化の効果を発現できる。
 式(2)-1及び式(2)-2で示される構造の分子量としては、1400以上3800以下が好ましく、1800以上3500以下がより好ましい。分子量を1400以上にすることで、バインダー樹脂の分子運動性が上がり、解離したイオンの移動度が大きくなるため、低温低湿環境下での高抵抗化を抑えるのに好ましい。分子量を3800以下にすれば、前記したように式(1)で示されるアルキレンオキサイド構造と、式(2)で示されるニトリル基が分子レベルでより近接するので電気抵抗値の環境依存性の低減がより確実に図られることとなる。
 なお、バインダー樹脂中の式(1)-1~式(1)-3で示される構造、及び式(2)-1及び式(2)-2で示される構造の単位ユニットの連結数は、次のようにして求めることができる。例えば、マトリクス支援レーザー脱離イオン化法(MALDI)や、表面支援レーザー脱離イオン化法(SALDI)を用い試料をイオン化した後に、飛行時間型質量分析装置(TOF-MS)を用いた質量分析を行うことで見積もることができる。
 式(2)-1及び式(2)-2で示される構造をバインダー樹脂に導入するためには、バインダー樹脂を構成する他の原料と反応する官能基を両末端に有する変性液状NBR(ニトリルブタジエンゴム)を原料として用いることが好ましい。官能基としては、他の原料と反応する限りにおいては制限されるものではないが、以下のものが挙げられる。水酸基、アミノ基、カルボキシル基、メルカプト基、アルコキシル基、ビニル基、グリシジル基、エポキシ基、イソシアネート基。
 バインダー樹脂としては、式(1)-1で示される構造を有するエポキシ変性エチレンオキサイドと、式(2)-1で示される構造を有するアミノ変性液状NBRを反応させて得られるエポキシ樹脂が好ましい。アミノ基とエポキシ基の反応が混合、加熱するだけで進むため、簡便に本発明のバインダー樹脂を得ることができる。また、エポキシ変性エチレンオキサイド、アミノ変性液状NBRともに、単位ユニットの連結数や分子量等が異なる原料が数多く市販されており、容易に入手できる。
 本発明のバインダー樹脂は、導電層中に該バインダー樹脂によるマトリクス・ドメインを生じさせないような分子構造を有する。バインダー樹脂によるマトリクス・ドメイン構造を導電層中に生じさせないためには、前記したように式(1)及び式(2)で示される構造の単位ユニットの連結数を小さくし、または、式(1)で示される構造と式(2)で示される構造を交互に結合させることが有効である。
 なお、本発明においては、バインダー樹脂自体によって導電層中にマトリクス・ドメイン構造が形成されていないことが必要であるものの、本発明の効果を損なわない範囲で導電層中に添加した他の樹脂や充填剤、粒子等によって該バインダー樹脂からなるマトリクスに対してドメインが形成されているような導電層を何ら排除するものでない。
 導電層中における、バインダー樹脂によるマトリクス・ドメイン構造の存在は、透過型電子顕微鏡(TEM)と走査型電子顕微鏡(SEM-EDX)で確認することができる。具体的には、導電層から切り出したサンプルを常温硬化性のエポキシ樹脂中に包埋、硬化させた後、ミクロトームを用いて厚さ100~300nmの薄片状にして観察用試料を作製する。次に、TEMを用いて観察用試料を倍率100000倍で写真撮影し、得られた写真に連続相が形成されている部分をマーキングする。続いて、SEM-EDXで観察用試料の元素分析を行い、上記マーキング部分が本発明のバインダー樹脂であることが確認できれば良い。
[連結基]
 式(1)-1~式(1)-3で示される構造の群から選択される何れかの構造と、式(2)-1及び式(2)-2で示される構造の群から選択される何れかの構造は、下記式(3)-1~式(3)-8で示される構造からなる群から選択される少なくとも1つの連結基で連結されていることが好ましい。式(3)-1~式(3)-8で示される構造からなる群から選択される連結基を介して連結されている場合は、連結基中の極性基がイオンの解離を促進するため、低温低湿環境下におけるバインダー樹脂の高抵抗化をさらに抑制することができる。
Figure JPOXMLDOC01-appb-C000006
[イオン交換基]
 本発明のバインダー樹脂は分子内にイオン交換基としてイオン解離性能の高いスルホ基または四級アンモニウム塩基を有することを特徴としている。このイオン交換基は、バインダー樹脂と共有結合で結合している。イオン交換基がバインダー樹脂に化学結合していることからイオン交換基の導電層内での移動が抑制されるので、バインダー樹脂と化学結合していないイオン導電剤を用いた導電層と較べると、イオン成分の滲み出しが少なく、長時間の直流電流の通電によっても電気抵抗の変動が生じにくい。
 イオン交換基をバインダー樹脂に導入するためには、上記のイオン交換反応で使用するイオン導電剤がバインダー樹脂と反応する官能基を有していることが必要である。官能基としては、原料としてのバインダー樹脂と反応する限り限定されず、以下のものが挙げられる。フッ素、塩素、臭素、及びヨウ素等のハロゲン原子、カルボキシル基、酸無水物等の酸基、水酸基、アミノ基、メルカプト基、アルコキシル基、ビニル基、グリシジル基、エポキシ基、ニトリル基、カルバモイル基。
 イオン交換基は、バインダー樹脂の主鎖中に導入しても、分子末端に導入しても構わない。バインダー樹脂の主鎖中にイオン交換基を導入する場合においては、下記式(4)で示される構造の連結基で連結されていることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(4)中、Aは2価の有機基を示し、Xはイオン交換基を示す。 
 また、バインダー樹脂の分子末端に導入する場合においては、下記式(5)-1~式(5)-7で示される構造の群から選択される少なくとも1つの連結基で連結されていることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(5)-1~(5)-7中、A~Aは2価の有機基を示し、X~Xはイオン交換基を示す。
 イオン交換基が、式(4)で示される構造や式(5)-1~式(5)-7で示される構造の群から選択される何れかの連結基を介して導入された場合は、連結基中の極性基がイオンの解離を促進するため、低温低湿環境下におけるバインダー樹脂の高抵抗化をさらに抑制することができる。
 イオン交換基がバインダー樹脂に導入されているか否かは、次のようにして検証することができる。導電部材から切り出したバインダー樹脂を、ソックスレー抽出器を使ってトルエンで抽出し、抽出後のバインダー樹脂を固体NMRや赤外分光(IR)分析で測定すれば、分子構造を同定することができる。
 イオン導電剤の添加量は適宜設定することができるが、原料としてのバインダー樹脂100質量部に対してイオン導電剤を0.5質量部以上20質量部以下の割合で配合することが好ましい。配合量が0.5質量部以上の場合には、イオン導電剤の添加による導電性の付与効果を得ることができる。また、20質量部以下の場合には、電気抵抗値の環境依存性を低減させることができる。
[カウンターイオン]
 また、本発明の導電層は、前記イオン交換基とは逆極性のイオン(以下「カウンターイオン」という)を含んでいる。イオン交換基がスルホ基の場合、カウンターイオンとしては以下のものが挙げられる。プロトン、リチウムイオン、ナトリウムイオン、カリウムイオン等のアルカリ金属イオン、イミダゾリウム化合物イオン、ピロリジニウム化合物イオン、四級アンモニウム化合物イオン。イオン交換基が四級アンモニウム基の場合、カウンターイオンとしては以下のものが挙げられる。フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン等のハロゲンイオン、過塩素酸イオン、スルホン酸化合物イオン、リン酸化合物イオン、ホウ酸化合物イオン、スルホニルイミドイオン。
 上記のイオン交換基とカウンターイオンの組み合わせとしては、四級アンモニウム塩基とスルホニルイミドイオンの組み合わせが好ましい。この組み合わせはカウンターイオンが解離しやすく、低温低湿環境下におけるバインダー樹脂の高抵抗化をより改善できる点で好適である。
 スルホニルイミドイオンとしては、特に制限されないが、以下のものが挙げられる。ビス(トリフルオロメタンスルホニル)イミド、ビス(ペンタフルオロメタンスルホニル)イミド、ビス(ノナフルオロブタンスルホニル)イミド、シクロ-ヘキサフルオロプロパン-1,3-ビス(スルホニル)イミド。
 カウンターイオンは、イオン交換反応を利用した抽出実験により検証できる。導電部材から切り出したバインダー樹脂を塩酸または水酸化ナトリウムの希薄水溶液中で撹拌し、バインダー樹脂中のイオンを水溶液中に抽出する。抽出後の水溶液を乾燥し、抽出物を回収後、飛行時間型質量分析装置(TOF-MS)にて質量分析を行うことでイオンの同定が可能である。さらに、抽出物の誘導結合プラズマ(ICP)発光分析により元素分析を行い、質量分析の結果と組み合わせることで、イオンの同定はより容易となる。
 本発明で用いられるイオン交換基とカウンターイオンは、スルホ基または四級アンモニウム塩基を有するイオン導電剤と、所望の化学構造を有するイオンの塩のイオン交換反応を利用して製造することができる。例えば、イオンの塩としてリチウムビス(トリフルオロメタンスルホニル)イミド、イオン導電剤としてグリシジルトリメチルアンモニウムクロライドを用いる場合、まず、それぞれを精製水に溶解させる。これらの2つの水溶液を混合撹拌すると、イオン交換反応により、イオン交換性の高い塩素イオンがビス(トリフルオロメタンスルホニル)イミドイオンと置換される。生成したグリシジルトリメチルアンモニウム・ビス(トリフルオロメタンスルホニル)イミドは疎水性を示すイオン液体のため、副生成物である水溶性のリチウムクロライドは容易に除去できる。この方法で得られたイオン導電剤が親水性の場合においても、クロロホルム、ジクロロメタン、ジクロロエタン、メチルイソブチルケトン等の溶剤を選択することにより副生成物を容易に除去できる。
 本発明の導電層を中間層や表面層として用いた場合、導電層の膜厚は2μm以上100μm以下であることが好ましい。膜厚を2μm以上にすることで、弾性層の電気抵抗値が低くても導電部材の電気抵抗値を導電層によって調整することができる。また、膜厚を100μm以下にすることで、低温低湿環境下でも導電部材の電気抵抗値が過剰に上がることがなくなる。
<導電性の軸芯体>
 導電性の軸芯体は、軸芯体を介して帯電ローラや現像ローラ等の導電部材の表面に給電するために導電性を有する。
<弾性層>
 本発明の導電層が図1Bに示すような中間層または表面層として用いられた場合、弾性層は以下の材料で構成することができる。弾性層を形成するゴム成分としては、帯電ローラや現像ローラと感光体ドラムとの間で十分なニップを確保できれば特に制限はなく、以下のものが挙げられる。エピクロルヒドリンゴム、NBR(ニトリルブタジエンゴム)、クロロプレンゴム、ウレタンゴム、シリコーンゴム、あるいはSBS(スチレン・ブタジエン・スチレン-ブロックコポリマー)、SEBS(スチレン・エチレンブチレン・スチレン-ブロックコポリマー)。これらを単独または2種類以上組み合わせて用いることができる。
 弾性層の電気抵抗値は、温度23℃/相対湿度50%環境下で測定して、1×10Ω以上1×10Ω以下であることが好ましい。弾性層には導電性を付与する目的で導電剤を添加することができ、導電剤としては電子導電剤またはイオン導電剤を用いることができる。
 電子導電剤としては特に限定されるものではなく、以下のものが挙げられる。カーボンブラック;グラファイト;酸化チタン、酸化スズ、酸化亜鉛等の導電性金属酸化物;銅、アルミニウム、ニッケル等の金属粉;導電性の繊維等。これらの内、カーボンブラックは容易に入手できるので好適である。カーボンブラックの種類は、特に限定されず、以下のものが挙げられる。ガスファーネスブラック、オイルファーネスブラック、サーマルブラック、ランプブラック、アセチレンブラック、ケッチェンブラック。
 イオン導電剤としては特に限定されるものではなく、以下のものが挙げられる。過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウム等の無機イオン物質;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、トリオクチルプロピルアンモニウムブロミド、変性脂肪族ジメチルエチルアンモニウムエトサルフェート等の陽イオン性界面活性剤;ラウリルベタイン、ステアリルベタイン、ジメチルアルキルラウリルベタイン等の両性イオン界面活性剤;過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、過塩素酸トリメチルオクタデシルアンモニウム等の四級アンモニウム塩;トリフルオロメタンスルホン酸リチウム等の有機酸リチウム塩。これらを単独または2種類以上組み合わせて用いることができる。
 弾性層には絶縁性粒子や、硬度を調整するために軟化油、可塑剤等の添加剤を添加しても良い。可塑剤としては高分子タイプのものを用いることがより好ましく、その分子量は好ましくは2000以上、より好ましくは4000以上である。さらに、弾性層には、種々な機能を付与する材料を適宜含有させてもよく、これらの例として老化防止剤、充填剤等を挙げることができる。
 弾性層は、弾性層用の材料を予め所定の膜厚に形成して得たシートあるいはチューブを軸芯体に接着、または被覆することによって形成することができる。また、クロスヘッドを備えた押出し機を用いて、軸芯体と弾性層用の材料を一体的に押出して作製することもできる。
<中間層、表面層>
 本発明の導電層が弾性層として用いられた場合、中間層または表面層は、樹脂、天然ゴムや合成ゴム等で構成することができる。樹脂としては、熱硬化性樹脂、熱可塑性樹脂等の樹脂が使用できる。特に塗料の粘度の制御が容易な点で、樹脂としてはフッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂が好ましい。これらは、単独または2種以上を組み合わせて混合して用いてもよく、また共重合体であっても良い。
 中間層や表面層には、導電部材の電気抵抗値を調整するために導電剤を配合することができる。中間層や表面層の体積抵抗率は、イオン導電剤や電子導電剤により調整することができる。
 イオン導電剤としては、前記弾性層の場合と同様のものが挙げられる。
 電子導電剤としては以下のものが挙げられる。アルミニウム、パラジウム、鉄、銅、銀等の金属系の微粒子や繊維;酸化チタン、酸化錫、酸化亜鉛等の導電性金属酸化物;前記金属系微粒子、繊維や金属酸化物の表面を電解処理、スプレー塗工、混合振とうにより表面処理した複合粒子;及び、ファーネスブラック、サーマルブラック、アセチレンブラック、ケッチェンブラック、PAN(ポリアクリロニトリル)系カーボン、ピッチ系カーボン等のカーボン粉。
 中間層や表面層には、本発明の効果を損なわない範囲で他の粒子を含有させることができる。他の粒子としては、絶縁性粒子を挙げることができる。絶縁性粒子としては以下のものが挙げられる。ポリアミド樹脂、シリコーン樹脂、フッ素樹脂、(メタ)アクリル樹脂、スチレン樹脂、フェノール樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、オレフィン樹脂、エポキシ樹脂、これらの共重合体や変性物、誘導体等の樹脂、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエン共重合ゴム(SBR)、シリコーンゴム、ウレタンゴム、イソプレンゴム(IR)、ブチルゴム、アクリロニトリル-ブタジエン共重合ゴム(NBR)、クロロプレンゴム(CR)、エピクロルヒドリンゴム等のゴム、ポリオレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、エチレン酢酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、塩素化ポリエチレン系熱可塑性エラストマー等の熱可塑性エラストマー。特に、(メタ)アクリル樹脂、スチレン樹脂、ウレタン樹脂、フッ素樹脂、シリコーン樹脂が好ましい。
 これらの中間層や表面層を構成する材料は、サンドミル、ペイントシェーカー、ダイノミル、またはパールミルのビーズを利用した従来公知の分散装置を使用して、液中に分散させることができる。得られた分散液を塗工する方法は特に限定されないが、操作が簡便なことからディッピング法が好適である。
<電子写真装置及びプロセスカートリッジ>
 本発明に係る導電部材は、例えば、感光体等の被帯電部材に当接して当該被帯電体を帯電させるための帯電部材として好適に用い得る。また、被帯電部材と、当該被帯電部材に接触し電圧の印加により前記被帯電部材を帯電する帯電部材とを有し、画像形成装置本体に対して着脱可能に構成されてなるプロセスカートリッジにおいて、当該帯電部材として、本発明に係る導電性部材を好適に用い得る。
 なお、本発明に係る導電性部材は、帯電ローラ等の帯電部材以外に、現像部材、転写部材、除電部材や、給紙ローラ等の搬送部材としても使用可能である。
 本発明の導電部材を有する電子写真画像形成装置の一例を、図2を用いて説明する。図2に示す電子写真画像形成装置は、それぞれイエロー、シアン、マゼンタ及びブラックの画像を形成する電子写真プロセスカートリッジ5が各々1個、タンデム方式で設けられている。
 現像装置は、感光体ドラム6と対向設置された現像ローラ7とトナー8、そしてトナーを汲み上げる撹拌羽9を収容した現像容器10を備えている。さらに、現像ローラにトナーを供給すると共に現像に使用されずに現像ローラに残っているトナーを掻き取るためのトナー供給ローラ11と、現像ローラ上のトナーの担持量を規制すると共に摩擦帯電するための現像ブレード12が設けられている。
 帯電ローラ13は感光体ドラムに対して所定の押圧力で当接しており、感光体ドラムの回転に従動している。そして、電源から直流電圧を帯電ローラに印加することによって、感光体ドラムが所定の極性、電位に一様に帯電される。ビーム14として画像情報が感光体ドラムの表面に照射されると、静電潜像が形成される。次いで、現像ローラ上にコートされたトナーが、現像ローラから静電潜像上に供給され、感光体ドラムの表面にトナー像が形成される。
 中間転写ベルト15は、駆動ローラ16、テンションローラ17で張架され、転写搬送ベルトの内側には感光体ドラムと対向した位置に転写ローラ18が設置されている。そして、転写材19が転写位置まで搬送されると、トナー像とは逆極性のバイアスが転写ローラ20に印加される。これによって、転写材にトナー像が転写される。
 トナー像が転写された転写材は、定着装置21に送られ、トナー像が転写材に定着されて、画像形成が完了する。一方、トナー像の転写が終わった感光体ドラムはさらに回転し、クリーニングブレード22により感光体ドラムの表面がクリーニングされる。
 本発明の導電部材は、上記の電子写真画像形成装置における帯電ローラや現像ローラとして使用することができる。また、本発明の導電部材は、上記の直流電圧のみを印加するDC帯電方式の電子写真画像形成装置の他に、直流電圧に交流電圧を重畳した電圧を印加するAC帯電方式の電子写真画像形成装置にも使うことができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。尚、実施例53は図1Cで示される軸芯体の外周に弾性層、中間層(本発明の導電層)及び表面層がこの順に設けられた構成の導電部材に関し、実施例50及び70は図1Aで示される軸芯体の外周に本発明の導電層が設けられた構成の導電部材に関する。これら以外の実施例及び比較例は、図1Bで示される軸芯体の外周に弾性層と表面層(本発明の導電層)がこの順に設けられた導電部材に関する。
 先ず、実施例で使用される弾性ローラA~Cの作製、並びに、イオン導電剤a~hの作製・準備について説明する。
〔1-1.弾性ローラAの作製〕
 下記表1の材料を6リットル加圧ニーダー(製品名:TD6-15MDX、株式会社トーシン製)を用いて、充填率70体積%、ブレード回転数35rpmで16分間混合して「未加硫ゴム組成物1」を得た。
Figure JPOXMLDOC01-appb-T000001
 次いで、この未加硫ゴム組成物174質量部に対して、加硫促進剤としてテトラベンジルチウラムジスルフィド(商品名:パーカシットTBzTD、フレキシス株式会社製)4.5質量部、加硫剤として硫黄1.2質量部を加えた。そして、ロール径12インチのオープンロールで、前ロール回転数8rpm、後ロール回転数10rpm、ロール間隙2mmで、左右の切り返しを合計20回実施した。その後、ロール間隙を0.5mmとして薄通し10回を行い、「弾性層用の混練物1」を得た。
 次に、表面をニッケルメッキ加工した直径6mm、長さ252mmの円柱形の鋼製の軸芯体を準備し、軸芯体の軸方向幅231mmの領域に熱硬化性接着剤(商品名:メタロックU-20、株式会社東洋化学研究所製)を塗布した。次いで温度80℃で30分間加熱した後、さらに120℃で1時間加熱して、熱硬化性接着剤を加熱硬化させた。
 上記の軸芯体と共に混練物をクロスヘッド付き押出成形機にて押し出し、軸芯体の外周を前記混練物で被覆し、外径8.75~8.90mmの「未加硫のゴムローラ」を得た。クロスヘッド付きの押出成形機は、シリンダー径70mm、L/D=20であり、ヘッドの温度を90℃、シリンダーの温度を90℃、スクリューの温度を90℃とした。
 次いでこのゴムローラを異なる温度設定にした2つのゾーンを有する連続加熱炉を用いて加硫した。温度80℃に設定した第1のゾーンを30分で通過させ、続いて温度160℃に設定した第2のゾーンを30分で通過させることで、「加硫された弾性層」を得た。 
 弾性層の両端を切断し、弾性層の軸方向の長さを232mmとした。その後、弾性層の表面を回転砥石で研磨することで、端部直径8.26mm、中央部直径8.50mmのクラウン形状の「弾性ローラA」を得た。
[評価1:弾性層の電流測定]
 図3に弾性層の電流を測定する装置の概略構成を示す。軸芯体上に設けられた弾性層2は、軸芯体の両端部を不図示の押圧手段で直径30mmの円柱状のアルミドラム31に圧接されており、アルミドラム31の回転駆動に伴って従動回転する。押圧は片端500gf(両端で1000gf)である。アルミドラム31を30rpmで回転させながら、外部電源を用いて軸芯体に直流電圧(200V)を印加し、アルミドラムと直列に接続した基準抵抗(1000Ω)にかかる電圧値を測定する。弾性層31の電流値は、基準抵抗の抵抗値と、基準抵抗にかかる電圧値から算出することができる。測定環境は、温度15℃/相対湿度10%環境(以下、「L/L環境」という場合がある)、及び温度30℃/相対湿度80%環境(以下、「H/H環境」という場合がある)の2環境下で測定した。電流値の測定結果を表7-1に示す。
〔1-2.弾性ローラBの作製〕
 下記表2の材料を温度100℃に温度調節した加圧ニーダーを用いて、10分間混合して未加硫ゴム組成物2を得た。
Figure JPOXMLDOC01-appb-T000002
 次いで、この未加硫ゴム組成物165質量部に対して、加硫促進剤としてジペンタメチレンチウラムテトラスルフィド(商品名:ノクセラーTRA、大内新興化学工業株式会社製)2質量部、加硫剤として硫黄0.5質量部を加えた。更に、弾性ローラAの場合と同様にして、混練物を得、軸芯体の表面処理を行った。また、押出成形機のヘッドの温度、シリンダーの温度、及びスクリューの温度を70℃としたこと以外は、弾性ローラAの場合と同様にして、未加硫のゴムローラを得た。
 次いでこのゴムローラを温度160℃で30分間、加硫して弾性層を得た。弾性層の両端を切断し、弾性層の軸方向の長さを232mmとした。その後、弾性層の表面を回転砥石で研磨することで、端部直径8.26mm、中央部直径8.50mmのクラウン形状の「弾性ローラB」を得た。電流値の測定結果を表7-1に示す。
〔1-3.弾性ローラCの作製〕
 下記表3の材料を2リットルプラネタリーミキサー(製品名:PLM-2、株式会社井上製作所製)を用いて3時間混練し、未加硫ゴム組成物3を得た。
Figure JPOXMLDOC01-appb-T000003
 次いで、この未加硫ゴム組成物114質量部に対して、触媒として白金-ジビニルテトラメチルジシロキサン錯体(商品名:SIP6830.3、アヅマックス株式会社製)3質量部、硬化遅延剤として2-メチル-3-ブチン-2-オール3質量部を加えた。そして、再び2リットルプラネタリーミキサーで10分間混練し、弾性層用の混練物を得た。 
 次に、表面をニッケルメッキ加工した直径6mm、長さ275mmの円柱形の鋼製の軸芯体に、軸芯体の軸方向幅236mmの領域に熱硬化性接着剤(商品名:XP81-405、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)を塗布した。次いで温度150℃で30分間熱処理して、熱硬化性接着剤を加熱硬化させた。
 上記の軸芯体を円筒形金型の中心部に配置し、温度110℃で5分間、軸芯体と円筒形金型を予熱した。円筒金型の注入口から混練物を注入し、温度110℃で5分間、加熱硬化させた。円筒形金型を冷却後、弾性層が形成された軸芯体を円筒形金型から取り出し、弾性層中の反応残渣及び未反応低分子を除去する目的で、温度200℃の熱風で2時間加熱した。再び冷却後、弾性層の両端を切断することで、厚みが3mm、軸方向の長さが236mmの「弾性ローラC」を得た。電流値の測定結果を表7-1に示す。
[2-1.イオン導電剤aの作製]
 グリシジルトリメチルアンモニウムクロライド8.56g(56.5mmol)、及びビス(トリフルオロメタンスルホニル)イミドリチウム16.22g(56.5mmol)をそれぞれ精製水50mlに溶解させた。これら2つの水溶液を混合し2時間撹拌した後、一晩静置したところ、リチウムクロライドが溶解した水層と、グリシジルトリメチルアンモニウムビス(トリフルオロメタンスルホニルイミド)からなる油層の2層に分離した。分液漏斗を用いて回収した油層を精製水で2回洗浄し、油層に少量残存していたリチウムクロライドを除去することで、反応性官能基としてグリシジル基を有するイオン導電剤aを得た。尚、このイオン導電剤aは、イオン交換基として四級アンモニウム塩基を、カウンターイオンとしてビス(トリフルオロメタンスルホニルイミド)イオンを有する。
[2-2.イオン導電剤bの準備]
 グリシジルトリメチルアンモニウムクロライドをイオン導電剤bとして使用した。
[2-3.イオン導電剤cの作製]
 グリシジルトリメチルアンモニウムクロライド8.56g(56.5mmol)、及び過塩素酸ナトリウム7.03g(56.5mmol)をそれぞれ精製水50mlに溶解させた。これら2つの水溶液を混合し2時間撹拌した後、一晩静置したところ、ナトリウムクロライドが溶解した水層と、グリシジルトリメチルアンモニウムパークロレートからなる油層の2層に分離した。分液漏斗を用いて回収した油層を精製水で2回洗浄し、油層に少量残存していたナトリウムクロライドを除去することで、グリシジル基を有するイオン導電剤cを得た。尚、このイオン導電剤は、イオン交換基として四級アンモニウム塩基を、カウンターイオンとして過塩素酸イオンを有する。
[2-4.イオン導電剤dの作製]
 グリシジルトリメチルアンモニウムクロライド8.56g(56.5mmol)、及びビス(ノナフルオロブタンスルホニル)イミドリチウム33.17g(56.5mmol)をそれぞれ精製水50mlに溶解させた。これら2つの水溶液を混合し2時間撹拌した後、一晩静置したところ、リチウムクロライドが溶解した水層と、グリシジルトリメチルアンモニウムビス(ノナフルオロブタンスルホニルイミド)からなる油層の2層に分離した。分液漏斗を用いて回収した油層を精製水で2回洗浄し、油層に少量残存していたリチウムクロライドを除去することで、グリシジル基を有するイオン導電剤dを得た。尚、このイオン導電剤は、イオン交換基として四級アンモニウム塩基を、カウンターイオンとしてビス(ノナフルオロブタンスルホニルイミド)イオンを有する。
[2-5.イオン導電剤eの作製]
 タウリン7.07g(56.5mmol)、及び水酸化ナトリウム2.26g(56.5mmol)をそれぞれ精製水50mlに溶解させた。これら2つの水溶液を混合し2時間撹拌した。撹拌後、水を減圧留去することで、反応性官能基としてアミノ基を有するイオン導電剤eを得た。尚、このイオン導電剤は、イオン交換基としてスルホ基を、カウンターイオンとしてナトリウムイオンを有する。
[2-6.イオン導電剤fの作製]
 1-ブチル-3-メチルイミダゾリウムクロライド2.45g(14mmol)を無水エタノール50mlに溶解させた。この溶液にタウリンナトリウム2.05g(14mmol)を加え、一晩撹拌した。撹拌後、溶液を濾過し、得られた濾液から溶媒を減圧留去することで、アミノ基を有するイオン導電剤fを得た。尚、このイオン導電剤は、イオン交換基としてスルホ基を、カウンターイオンとして1-ブチル-3-メチルイミダゾリウムイオンを有する。
[2-7.イオン導電剤gの作製]
 コリンクロリド7.90g(56.5mmol)、及びビス(トリフルオロメタンスルホニル)イミドリチウム16.22g(56.5mmol)をそれぞれメタノール50mlに溶解させた。これら2つの溶液を混合し、2時間撹拌した後、メタノールを減圧留去した。残留物を50mlのメチルエチルケトンで抽出して濾過し、得られた濾液から溶媒を減圧留去することで、水酸基を有するイオン導電剤gを得た。尚、このイオン導電剤は、イオン交換基として四級アンモニウム塩基を、カウンターイオンとしてビス(トリフルオロメタンスルホニルイミド)イオンを有する。
[2-8.イオン導電剤hの準備]
 テトラエチルアンモニウムクロリドをイオン導電剤hとして使用した。
〔実施例1〕
[1.導電層用塗工液の調製]
 式(1)-1で示される構造を有する化合物としてポリエチレングリコールジグリシジルエーテル(質量平均分子量:744)0.735g(0.988mmol)とエチレングリコールビス(2-アミノエチル)エーテル0.057g(0.384mmol)、式(2)-1で示される構造を有する化合物として末端アミン変性NBR(商品名:ATBN1300X35、宇部興産株式会社製)1.169g(0.835mmol)、そしてイオン導電剤a:0.039g(バインダー樹脂100質量部に対して2質量部)をイソプロピルアルコール(IPA)に溶解し、固形分が27質量%の「塗工液1」を調製した。なお、式(1)-1のn1は13、式(2)-1の[m1:p1]は74:26であった。
[2.導電層用塗工液の塗工]
 弾性ローラAを、その長手方向を鉛直方向にして塗工液1中に浸漬してディッピング法で塗工した。浸漬時間は9秒、引き上げ速度は初期速度が20mm/s、最終速度は2mm/s、その間は時間に対して直線的に速度を変化させた。得られた塗工物を常温で30分間以上風乾した後、熱風循環乾燥機にて温度90℃で1時間加熱し、さらに熱風循環乾燥機にて温度160℃で3時間加熱した。このようにして弾性層の外周に本発明の導電層(表面層)が形成された「導電ローラ1」を得た。
 導電層のバインダー樹脂は、式(3)-1及び式(3)-2で示される構造を有する連結基と式(5)-1及び式(5)-2で示される構造を有する分子末端を含み、式(1)-1で示される構造の含有量は30質量%、導電層の膜厚は10μmであった。また、バインダー樹脂は導電層にマトリクス・ドメイン構造を生じさせていなかった。
[評価2:導電層の電気抵抗率の測定、及び、電気抵抗率の環境依存性の評価]
 導電層の電気抵抗率は、四端子法による交流インピーダンス測定を行って算出した。測定環境は、L/L環境とH/H環境の2環境とした。測定前に導電部材1を各環境下に48時間以上放置し、電気抵抗率の測定は電圧振幅5mV、周波数1Hzから1MHzで行った。また、電気抵抗率の環境依存性の評価として、L/L環境下における電気抵抗率R1とH/H環境下における電気抵抗率R2との比(R1/R2)の対数を算出した。電気抵抗率の測定結果と、環境依存性の評価結果を表7-1に示す。
[評価3:ブリードアウトの評価]
 本実施例の導電部材を軸芯体の両端部に片端500gf(両端で1000gf)の押圧でポリエチレンテレフタラートシート(PET)に圧接させ、温度40℃/相対湿度95%環境下で2週間放置した。放置後、PETシート表面を光学顕微鏡(10倍)で観察し、導電部材からのブリードアウトを以下の基準で評価した。評価結果を表7-1に示す。A:PETシート表面にブリードアウトの付着物が確認できない。
B:PETシート表面の一部に軽微なブリードアウトの付着物が確認できる。
C:PETシート表面の全面にブリードアウトの付着物が確認できる。
[評価4:低温低湿環境下での帯電ローラの画像評価]
 低温低湿環境下での画像評価は、次のように実施した。カラーレーザープリンター(商品名:Color LaserJet CP3525n、HP製)と、そのマゼンタの電子写真プロセスカートリッジを用意し、本実施例の導電部材を帯電ローラとして電子写真プロセスカートリッジに組み込んだ。カラーレーザープリンターと電子写真プロセスカートリッジをL/L環境に24時間放置後、そのままL/L環境にてハーフトーン画像(感光体ドラムの回転方向と垂直方向に幅1ドット、間隔2ドットの横線を描く画像)を1枚出力した。低温低湿環境下で帯電ローラが高抵抗化すると、スジ状画像となりやすい。得られたハーフトーン画像から、スジ状画像を以下の基準で評価した。評価結果を表7-1に示す。
A:スジ状画像がない。
B:一部に軽微なスジ状画像が確認できる。
C:全面に軽微なスジ状画像が確認できる。
D:全面に重度のスジ状画像が確認できる。
[評価5:高温高湿環境下での帯電ローラの画像評価]
 高温高湿環境下での画像評価は、次のようにして実施した。カラーレーザープリンター(商品名:Color LaserJet CP3525n、HP製)と、そのマゼンタの電子写真プロセスカートリッジを用意した。電子写真プロセスカートリッジから感光体ドラムを取り出し、感光体ドラムの表面の電荷輸送層のみに直径20μmのピンホールを穿った。ピンホールを有する感光体ドラムと、本実施例の導電部材を帯電ローラとして電子写真プロセスカートリッジに組み込んだ。カラーレーザープリンターと電子写真プロセスカートリッジをH/H環境に24時間放置後、そのままH/H環境にてハーフトーン画像を10枚出力した。高温高湿環境下で帯電ローラが低抵抗化すると、感光体ドラム上のピンホールの位置でスジ状画像となりやすい。得られたハーフトーン画像から、スジ状画像を以下の基準で評価した。評価結果を表7-1に示す。
A:10枚全てのハーフトーン画像にスジ状画像がない。
B:10枚のハーフトーン画像のうち、1~3枚にスジ状画像が確認できる。
C:10枚のハーフトーン画像のうち、4枚以上にスジ状画像が確認できる。
〔実施例2~47〕
 導電層の原料として、表4に示す材料を用いたこと及び各材料の使用量を表5-1~表5-4に示す値に変更したこと以外は、実施例1と同様にして導電ローラ2~47を作製し、帯電ローラとして評価した。評価結果を表7-1~表7-5に示す。
〔実施例48〕
 弾性ローラAを弾性ローラBに変更したこと以外は、実施例1と同様にして導電部材48を作製し、帯電ローラとして評価した。評価結果を表7-5に示す。
〔実施例49〕
 弾性ローラAを弾性ローラCに変更したこと以外は、実施例1と同様にして導電部材49を作製し、現像ローラとして評価した。評価結果を表7-5に示す。
[評価6:低温低湿環境下での現像ローラの画像評価]
 低温低湿環境下での画像評価は、次のように実施した。カラーレーザープリンター(商品名:Color LaserJet CP3525n、HP製)と、そのマゼンタの電子写真プロセスカートリッジを用意し、本実施例の導電部材を現像ローラとして電子写真プロセスカートリッジに組み込んだ。カラーレーザープリンターと電子写真プロセスカートリッジをL/L環境に24時間放置後、そのままL/L環境にて2%印字画像を10000枚出力し、最後にグロス紙にベタ白画像を1枚出力した。低温低湿環境下で現像ローラが高抵抗化すると、かぶり画像となる。出力したベタ白画像の反射濃度を16点(グロス紙を均等に縦に4分割、横に4分割してできた16マスの各中心点)測定した平均値をDs(%)、ベタ白画像の出力前のグロス紙の反射濃度を16点測定した平均値をDr(%)としたときのDs-Drを「かぶり量」とした。なお、反射濃度は反射濃度計(商品名:白色光度計TC-6DS/A、東京電色社製)を用いて測定した。かぶり画像を以下の基準で評価した。評価結果を表7-5に示す。
A:かぶり量が0.5%未満である。
B:かぶり量が0.5%以上2%未満である。
C:かぶり量が2%以上5%未満である。
D:かぶり量が5%以上である。
[評価7:高温高湿環境下での現像ローラの画像評価]
 本実施例の導電部材を帯電ローラとしてではなく現像ローラとして電子写真プロセスカートリッジに組み込んだこと以外は、[評価5]と同様にして評価した。評価結果を表7-5に示す。
〔実施例50〕
 この実施例は、図1Aで示される、軸芯体の外周に本発明の導電層が設けられた導電部材に関する。塗工液1を直径8mmの軸芯体上に直接塗工したこと以外は実施例1と同様にして導電部材50を作製し、帯電ローラとして評価した。評価結果を表7-5に示す。
〔実施例51〕
 導電層の膜厚を2μmにしたこと以外は、実施例1と同様にして導電部材51を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例52〕
 導電層の膜厚を100μmにしたこと以外は、実施例1と同様にして導電部材52を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例53〕
 この実施例は、図1Cで示される、軸芯体の外周に弾性層、中間層(本発明の導電層)及び表面層がこの順に設けられた導電ローラに関する。
[1.表面層用塗工液の調製]
 ε-カプロラクトン変性アクリルポリオール溶液(商品名:プラクセルDC2016、ダイセル化学工業社製)にメチルイソブチルケトン(MIBK)を加え、固形分が19質量%となるように希釈した。この希釈溶液526.3質量部(アクリルポリオール固形分100質量部)に対して、カーボンブラック(商品名:MA100、三菱化学株式会社製)45質量部、変性ジメチルシリコーンオイル(商品名:SH28PA、東レ・ダウコーニングシリコーン株式会社製)0.08質量部、ブロックイソシアネート混合物80.14質量部を混合した。なお、ブロックイソシアネート混合物は、ヘキサメチレンジイソシアネート(商品名:デュラネートTPA-B80E、旭化成工業株式会社製)とイソホロンジイソシアネート(商品名:ベスタナートB1370、デグサ・ヒュルス社製)の7:3混合物である。上記混合溶液200gを、分散メディアとして平均粒径0.8mmのガラスビーズ200gと共に容積450mLのガラス瓶に入れ、ペイントシェーカー分散機を用いて100時間分散した。分散後、ガラスビーズを除去して表面層用の「塗工液2」を得た。
[2.表面層用の塗工液の塗工]
 実施例1と同様にして得られた導電部材の外周に上記塗工液を、実施例1と同様にしてディッピング法で塗工した。得られた塗工物を、常温で30分間以上風乾した後、熱風循環乾燥機にて温度80℃で1時間加熱し、さらに熱風循環乾燥機にて温度160℃で1時間加熱して、導電ローラ1の外周に表面層を形成した。
 こうして、実施例1に係る導電ローラ1の表面に、表面層を具備してなる導電ローラ53を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例54〕
 実施例1と同様にして導電ローラ54を作製し、これを転写ローラとして評価した。
[評価8:転写ローラの画像評価]
 画像評価は、次のように実施した。カラーレーザープリンター(商品名:Color LaserJet CP3525n、HP製)と、そのマゼンタの電子写真プロセスカートリッジを用意し、本実施例の導電部材を転写ローラとしてカラーレーザープリンターに改造して組み込み、画像出力を行った。カラーレーザープリンターと電子写真プロセスカートリッジをL/L環境に24時間放置後、そのままL/L環境にて2%印字画像を10000枚出力し、最後にハーフトーン画像を1枚出力した。ハーフトーン画像を以下の基準で評価した。評価結果を表7-4に示す。L/L環境の場合と同様にしてH/H環境においても画像評価を行った。評価結果を表7-6に示す。
A:問題なく良好なハーフトーン画像である。
B:トナーの一部が中間転写ベルトに転写せず、ハーフトーン画像の一部が欠けている。C:トナーが中間転写ベルトに全く転写せず、ハーフトーン画像が出力されない。
〔実施例55及び56〕
 導電層の原料を、表4に示す材料としかつ各材料の使用量を表5-5に示す値に変更したこと以外は、実施例1と同様にして導電ローラ55及び56を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例57〕
 式(1)-1で示される構造を有する化合物としてポリエチレングリコールジグリシジルエーテル(質量平均分子量:744)0.209g(0.281mmol)と、式(2)-1で示される構造を有する化合物として末端カルボキシ変性NBR(商品名:CTBN1300X13、宇部興産株式会社製)0.983g(0.281mmol)、そしてトリフェニルホスフィン0.012gを混合し、温度120℃で2時間加熱撹拌した後、室温まで冷却した。得られた反応液に式(1)-1で示される構造を有する化合物としてポリエチレングリコールジグリシジルエーテル(質量平均分子量:744)0.572g(0.768mmol)と、イオン導電剤a:0.039g(バインダー樹脂100質量部に対して2質量部)と、酸無水物系硬化剤(商品名:リカシッドTMEG-500、新日本理化株式会社製)0.198g(0.477mmol)、そして硬化促進剤として1-ベンジル-2-メチルイミダゾール(商品名:キュアゾール1B2MZ、四国化成工業株式会社製)0.04gをトルエンに溶解し、固形分が27質量%の「塗工液3」を調製した。なお、式(1)-1のn1は13、式(2)-1のm1:p1は74:26であった。
 塗工液の塗工以降の作業は、実施例1と同様にして導電ローラ57を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例58〕
 導電層の原料を、表4に示す材料としかつ各材料の使用量を表5-5に示す値に変更したこと以外は、実施例1と同様にして導電ローラ58を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例59〕
 式(1)-2で示される構造を有する化合物としてポリエーテルアミン(商品名:JEFAMIN T-403、HUNTSMAN製)0.506g(1.150mmol)と、式(2)-1で示される構造を有する化合物として末端アミノ変性NBR(商品名:ATBN1300X35、宇部興産株式会社製)0.586g(0.418mmol)を混合した。さらに、イオン導電剤a:0.039g(バインダー樹脂100質量部に対して2質量部)と、酸無水物系硬化剤(商品名:リカシッドTMEG-500、新日本理化株式会社製)0.869g(2.095mmol)、トルエンを加え、固形分が27質量%の「塗工液4」を調製した。なお、式(1)-1のn1は13、式(2)-1のm1:p1は74:26であった。
 塗工液の塗工以降の作業は、実施例1と同様にして導電ローラ59を作製し、帯電ローラとして評価した。評価結果を表7-6に示す。
〔実施例60〕
[1.導電層用塗工液の調製]
 式(1)-1で示される構造を有する化合物としてポリエチレングリコール(質量平均分子量:744)0.621g(1.137mmol)、式(2)-1で示される構造を有する化合物として末端アミン変性NBR(商品名:ATBN1300X35、宇部興産株式会社製)1.013g(0.724mmol)、イオン導電剤g:0.039g(バインダー樹脂100質量部に対して2質量部)、そして多官能型イソシアネート(商品名:ミリオネートMR-200、日本ポリウレタン工業株式会社製)0.327gをメチルエチルケトン(MEK)に溶解させ、固形分が35質量%の「塗工液5」を調製した。なお、式(1)-1のn1は12、式(2)-1のm1:p1は74:26であった。
[2.導電層用塗工液の塗工]
 弾性ローラAの外周に上記塗工液を実施例1と同様にしてディッピング法で塗工した。得られた塗工物を常温で30分間以上風乾した後、熱風循環乾燥機にて温度140℃で2時間加熱して、弾性ローラAの外周に導電層を形成し、導電ローラ60を得た。
 導電層のバインダー樹脂は、式(3)-6、式(3)-8で示される構造を有する化合物の連結基と式(5)-6で示される構造を有する化合物の分子末端を含み、式(1)-1で示される構造を有する化合物の含有量は30質量%、導電層の膜厚は10μmであった。また、バインダー樹脂は導電層にマトリクス・ドメイン構造を生じさせていなかった。この導電ローラ60を帯電ローラとして評価した結果を表7-6に示す。
〔実施例61~68〕
 弾性層及び導電層の原料を、表4に示す弾性層と材料を表5-6に示す使用量に変更したこと以外は、実施例54と同様にして導電ローラ61~68を作製し、帯電ローラとして評価した。評価結果を表7-7に示す。
〔実施例69〕
 弾性層及び導電層の原料を、表4に示す弾性層と材料を表5-6に示す使用量に変更したこと以外は、実施例54と同様にして導電ローラ69を作製し、現像ローラとして評価した。評価結果を表7-7に示す。
〔実施例70〕
 この実施例は、図1Aで示される、軸芯体の外周に本発明の導電層が設けられた導電部材に関する。塗工液を直径8mmの軸芯体に直接塗工したこと以外は、実施例54と同様にして導電ローラ70を作製し、帯電ローラとして評価した。評価結果を表7-7に示す。
〔比較例1~3〕
 導電層の原料を、表4に示す材料と表8に示す使用量に変更したこと以外は、実施例1と同様にして導電ローラC1~C3を作製し、帯電ローラとして評価した。評価結果を表8に示す。
〔比較例4〕
 式(2)-1で示される構造を有する化合物として末端アミノ変性NBR(商品名:ATBN1300X35、宇部興産株式会社製)0.451g(0.322mmol)と末端カルボキシ変性NBR(商品名:CTBN1300X13、宇部興産株式会社製)1.223g(0.322mmol)をトルエンに溶解させ、温度120℃で2時間加熱撹拌した後、室温まで冷却した。得られた反応液に式(1)-1で示される構造を有する化合物としてポリエチレングリコールジグリシジルエーテル(質量平均分子量:744)0.239g(0.322mmol)とエチレングリコールビス(2-アミノエチル)エーテル0.048g(0.322mmol)、イオン導電剤a:0.039g(バインダー樹脂100質量部に対して2質量部)を混合し、固形分が27質量%になるようにトルエンを加え、「塗工液6」を調製した。なお、式(1)-1のn1は2、13、式(2)-1のm1:p1は74:26であった。
 塗工液の塗工以降の手順は、実施例1と同様にして導電ローラC4を作製し、帯電ローラとして評価した。評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 この出願は2011年12月26日に出願された日本国特許出願第2011-284451からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
1‥‥軸芯体
2‥‥弾性層
3‥‥中間層
4‥‥表面層

Claims (10)

  1.  導電性の軸芯体と、その外周に設けられた導電層とを有する電子写真用の導電部材であって、
     該導電層は、
     分子内にイオン交換基としてスルホ基または四級アンモニウム塩基を有するバインダー樹脂と、該イオン交換基とは逆極性のイオンとを含み、
     該バインダー樹脂は、
     式(1)-1~式(1)-3で示される構造の群から選択される何れかの構造と、
     式(2)-1及び式(2)-2で示される構造の群から選択される何れかの構造とを有し、かつ、マトリクス・ドメイン構造を該導電層に生じさせない分子構造を有するものであることを特徴とする導電部材:
    Figure JPOXMLDOC01-appb-C000009
    [[式(1)-1中、n1は1以上の整数、式(1)-2中、n2は1以上の整数、式(1)-3中、n3は1以上の整数を示す。]、
    Figure JPOXMLDOC01-appb-C000010
    [式(2)-1中、m1及びp1は各々独立に1以上の整数を示し、m1及びp1の比m1:p1は、74:26から90:10である。式(2)-2中、m2及びp2は各々独立に1以上の整数を示し、m2及びp2の比m2:p2は、74:26から90:10である。]]。
  2.  前記n1、n2及びn3の値が各々独立に4~22である請求項1に記載の導電部材。
  3.  前記バインダー樹脂が、
     前記式(1)-1~式(1)-3で示される構造の群から選択される何れかの構造と、
     前記式(2)-1及び式(2)-2で示される構造の群から選択される何れかの構造とが、下記式(3)-1~式(3)-8で示される構造の群から選択される少なくとも1つの連結基で連結されてなる構造を含む請求項1または2に記載の導電部材:
    Figure JPOXMLDOC01-appb-C000011
  4.  前記バインダー樹脂が、
     前記式(1)-1~式(1)-3で示される構造の群から選択される何れかの構造と、
     前記式(2)-1及び式(2)-2で示される構造の群から選択される何れかの構造とが、下記式(4)の連結基で連結されてなる構造を含む請求項1~3のいずれか一項に記載の導電部材:
    Figure JPOXMLDOC01-appb-C000012
    [式(4)中、Aは2価の有機基を示し、Xはイオン交換基を示す。]。
  5.  前記バインダー樹脂の分子末端が、下記式(5)-1~式(5)-7で示される構造の群から選択される少なくとも1つの構造を含む請求項1~4のいずれか一項に記載の導電部材:
    Figure JPOXMLDOC01-appb-C000013
    [式(5)-1~式(5)-7中、A~Aは2価の有機基を示し、X~Xはイオン交換基を示す。]。
  6.  前記式(1)-1で示される構造の含有量が、前記バインダー樹脂の30質量%以下である請求項1~5のいずれかの一項に記載の導電部材。
  7.  前記バインダー樹脂が、アミノ変性液状NBRとエポキシ変性エチレンオキサイドとを反応することにより得られたエポキシ樹脂である請求項1~6のいずれかの一項に記載の導電部材。
  8.  前記イオン交換基が四級アンモニウム塩基であり、かつ、前記逆極性のイオンがスルホニルイミドである請求項1~7のいずれか一項に記載の導電部材。
  9.  電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、請求項1~8のいずれか一項に記載の導電部材を具備していることを特徴とするプロセスカートリッジ。
  10.  請求項1~8のいずれか一項に記載の導電部材を具備していることを特徴とする電子写真装置。
PCT/JP2012/008052 2011-12-26 2012-12-17 導電部材、プロセスカートリッジ及び電子写真装置 WO2013099146A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280064636.1A CN104024955B (zh) 2011-12-26 2012-12-17 导电构件、处理盒和电子照相设备
US13/919,999 US20130281276A1 (en) 2011-12-26 2013-06-17 Electrically conductive member, process cartridge and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011284451A JP5882724B2 (ja) 2011-12-26 2011-12-26 導電部材、プロセスカートリッジ及び電子写真装置
JP2011-284451 2011-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/919,999 Continuation US20130281276A1 (en) 2011-12-26 2013-06-17 Electrically conductive member, process cartridge and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2013099146A1 true WO2013099146A1 (ja) 2013-07-04

Family

ID=48696693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008052 WO2013099146A1 (ja) 2011-12-26 2012-12-17 導電部材、プロセスカートリッジ及び電子写真装置

Country Status (4)

Country Link
US (1) US20130281276A1 (ja)
JP (1) JP5882724B2 (ja)
CN (1) CN104024955B (ja)
WO (1) WO2013099146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934882B2 (en) 2014-05-15 2018-04-03 Canon Kabushiki Kaisha Amine compound and ionic conductive agent, and electroconductive resin composition

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972150B2 (ja) 2011-12-19 2016-08-17 キヤノン株式会社 電子写真用導電性部材、プロセスカートリッジおよび電子写真画像形成装置
WO2013094164A1 (ja) 2011-12-22 2013-06-27 キヤノン株式会社 導電性部材、プロセスカートリッジ及び電子写真装置
JP5693441B2 (ja) 2011-12-26 2015-04-01 キヤノン株式会社 電子写真用導電性部材、プロセスカートリッジおよび電子写真装置
WO2015045370A1 (ja) 2013-09-27 2015-04-02 キヤノン株式会社 電子写真用の導電性部材、プロセスカートリッジおよび電子写真装置
US9977353B2 (en) 2014-05-15 2018-05-22 Canon Kabushiki Kaisha Electrophotographic member, process cartridge and electrophotographic image forming apparatus
CN106687869B (zh) 2014-09-10 2019-04-16 佳能株式会社 电子照相用导电性构件和季铵盐
JP2016061849A (ja) * 2014-09-16 2016-04-25 住友ゴム工業株式会社 半導電性ローラ
JP6706101B2 (ja) 2015-03-27 2020-06-03 キヤノン株式会社 電子写真用の導電性部材、プロセスカートリッジおよび電子写真装置
CN107430367B (zh) 2015-04-03 2020-02-21 佳能株式会社 充电构件、处理盒和电子照相设备
US9599914B2 (en) 2015-04-03 2017-03-21 Canon Kabushiki Kaisha Electrophotographic member having bow-shaped resin particles defining concavity and protrusion at surface thereof
US9740133B2 (en) 2015-09-30 2017-08-22 Canon Kabushiki Kaisha Charging member, process cartridge and electrophotographic image forming apparatus
US10678158B2 (en) 2016-09-26 2020-06-09 Canon Kabushiki Kaisha Electro-conductive member for electrophotography, process cartridge, and electrophotographic image forming apparatus
JP6976774B2 (ja) 2016-09-27 2021-12-08 キヤノン株式会社 電子写真用導電性部材、プロセスカートリッジおよび電子写真画像形成装置
US10416588B2 (en) 2016-10-31 2019-09-17 Canon Kabushiki Kaisha Charging member, process cartridge, electrophotographic image forming apparatus, and method for manufacturing charging member
CN112005173B (zh) 2018-04-18 2023-03-24 佳能株式会社 导电性构件、处理盒和图像形成设备
CN112020678B (zh) 2018-04-18 2022-11-01 佳能株式会社 导电性构件、处理盒和电子照相图像形成设备
CN111989622B (zh) 2018-04-18 2022-11-11 佳能株式会社 显影构件、处理盒和电子照相设备
WO2019203227A1 (ja) 2018-04-18 2019-10-24 キヤノン株式会社 導電性部材、プロセスカートリッジ、および画像形成装置
WO2019203225A1 (ja) 2018-04-18 2019-10-24 キヤノン株式会社 導電性部材、プロセスカートリッジ及び電子写真画像形成装置
JP7446878B2 (ja) 2019-03-29 2024-03-11 キヤノン株式会社 導電性部材、電子写真用プロセスカートリッジ、及び電子写真画像形成装置
US11169454B2 (en) 2019-03-29 2021-11-09 Canon Kabushiki Kaisha Electrophotographic electro-conductive member, process cartridge, and electrophotographic image forming apparatus
JP7337651B2 (ja) 2019-10-18 2023-09-04 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
JP7337650B2 (ja) 2019-10-18 2023-09-04 キヤノン株式会社 プロセスカートリッジおよび電子写真装置
JP7336351B2 (ja) 2019-10-18 2023-08-31 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット
US11112719B2 (en) 2019-10-18 2021-09-07 Canon Kabushiki Kaisha Process cartridge and electrophotographic apparatus capable of suppressing lateral running while maintaining satisfactory potential function
JP7404026B2 (ja) 2019-10-18 2023-12-25 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット
WO2021075441A1 (ja) 2019-10-18 2021-04-22 キヤノン株式会社 導電性部材、プロセスカートリッジ及び電子写真画像形成装置
JP7330852B2 (ja) 2019-10-18 2023-08-22 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット
CN114556231B (zh) 2019-10-18 2023-06-27 佳能株式会社 导电性构件、其制造方法、处理盒以及电子照相图像形成设备
JP7401255B2 (ja) 2019-10-18 2023-12-19 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット
JP7401256B2 (ja) 2019-10-18 2023-12-19 キヤノン株式会社 電子写真装置、プロセスカートリッジ及びカートリッジセット
JP7330851B2 (ja) 2019-10-18 2023-08-22 キヤノン株式会社 電子写真装置、プロセスカートリッジ、及びカートリッジセット
JP7337652B2 (ja) 2019-10-18 2023-09-04 キヤノン株式会社 プロセスカートリッジ及びそれを用いた電子写真装置
JP7337649B2 (ja) 2019-10-18 2023-09-04 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
JP7321884B2 (ja) 2019-10-18 2023-08-07 キヤノン株式会社 電子写真装置、プロセスカートリッジ及びカートリッジセット

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221474A (ja) * 2001-11-08 2003-08-05 Canon Inc 導電性部材
JP2004184512A (ja) * 2002-11-29 2004-07-02 Tokai Rubber Ind Ltd 電子写真機器部材用半導電性組成物およびそれを用いた電子写真機器部材
JP2007147733A (ja) * 2005-11-24 2007-06-14 Canon Inc 現像剤担持体
JP2009069783A (ja) * 2007-09-18 2009-04-02 Tokai Rubber Ind Ltd 電子写真機器用導電性組成物、電子写真機器用導電性架橋体および電子写真機器用導電性部材
JP2012215840A (ja) * 2011-03-30 2012-11-08 Canon Inc イオン導電性樹脂、および電子写真用導電性部材
JP2013015770A (ja) * 2011-07-06 2013-01-24 Canon Inc 帯電部材およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180861B2 (ja) * 1993-10-22 2001-06-25 キヤノン株式会社 電子写真用帯電部材
JPH08254876A (ja) * 1995-01-18 1996-10-01 Canon Inc 接触帯電部材、その製造方法及びそれを用いた電子写真装置
JP5361665B2 (ja) * 2009-11-02 2013-12-04 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221474A (ja) * 2001-11-08 2003-08-05 Canon Inc 導電性部材
JP2004184512A (ja) * 2002-11-29 2004-07-02 Tokai Rubber Ind Ltd 電子写真機器部材用半導電性組成物およびそれを用いた電子写真機器部材
JP2007147733A (ja) * 2005-11-24 2007-06-14 Canon Inc 現像剤担持体
JP2009069783A (ja) * 2007-09-18 2009-04-02 Tokai Rubber Ind Ltd 電子写真機器用導電性組成物、電子写真機器用導電性架橋体および電子写真機器用導電性部材
JP2012215840A (ja) * 2011-03-30 2012-11-08 Canon Inc イオン導電性樹脂、および電子写真用導電性部材
JP2013015770A (ja) * 2011-07-06 2013-01-24 Canon Inc 帯電部材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9934882B2 (en) 2014-05-15 2018-04-03 Canon Kabushiki Kaisha Amine compound and ionic conductive agent, and electroconductive resin composition

Also Published As

Publication number Publication date
CN104024955A (zh) 2014-09-03
JP2013134367A (ja) 2013-07-08
JP5882724B2 (ja) 2016-03-09
CN104024955B (zh) 2015-11-25
US20130281276A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5882724B2 (ja) 導電部材、プロセスカートリッジ及び電子写真装置
KR101496589B1 (ko) 도전 부재, 프로세스 카트리지 및 전자 사진 화상 형성 장치
JP5693441B2 (ja) 電子写真用導電性部材、プロセスカートリッジおよび電子写真装置
JP5312568B2 (ja) 導電性部材、プロセスカートリッジおよび電子写真装置
JP5875416B2 (ja) 電子写真用導電性部材
KR101581519B1 (ko) 이온 도전성 수지 및 전자 사진용 도전성 부재
US6697587B2 (en) Semiconductive rubber composition, charging member, electrophotographic apparatus, and process cartridge
EP2696246B1 (en) Conductive member for electrophotography, electrophotographic device, and process cartridge
JP2008164757A (ja) 導電性ゴムローラ及び転写ローラ
JP5459101B2 (ja) 環状部材、帯電装置、プロセスカートリッジ、及び画像形成装置
JP5687135B2 (ja) 電子写真機器用導電性ゴム組成物およびこれを用いた電子写真機器用帯電ロール
WO2016158813A1 (ja) 電子写真機器用導電性部材
JP6576709B2 (ja) 電子写真機器用導電性部材
JP2014089415A (ja) 電子写真用帯電部材、プロセスカートリッジ及び電子写真装置
JP2013088681A (ja) 現像装置用ローラの検査方法及び製造方法
JP5730107B2 (ja) 導電性部材、プロセスカートリッジ及び電子写真装置
JP2017116685A (ja) 電子写真機器用導電性部材
JP4925337B2 (ja) 弾性ローラ及び画像形成装置
JP2020166209A (ja) 導電性部材、プロセスカートリッジ並びに電子写真画像形成装置
JP5814660B2 (ja) 帯電部材およびその製造方法
JP5744603B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP2008107622A (ja) 導電性ローラ及び導電性ローラの製造方法
CN107168023B (zh) 充电元件、处理盒以及图像形成装置
JP2007178752A (ja) 帯電ロール
JP2015114402A (ja) 電子写真用導電部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863985

Country of ref document: EP

Kind code of ref document: A1