WO2013099012A1 - 電動機の積層コア - Google Patents

電動機の積層コア Download PDF

Info

Publication number
WO2013099012A1
WO2013099012A1 PCT/JP2011/080480 JP2011080480W WO2013099012A1 WO 2013099012 A1 WO2013099012 A1 WO 2013099012A1 JP 2011080480 W JP2011080480 W JP 2011080480W WO 2013099012 A1 WO2013099012 A1 WO 2013099012A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
hole
cylindrical member
laminated core
holes
Prior art date
Application number
PCT/JP2011/080480
Other languages
English (en)
French (fr)
Inventor
小川 徹
純一 三浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/080480 priority Critical patent/WO2013099012A1/ja
Priority to CN201180074952.2A priority patent/CN103959605B/zh
Priority to JP2013551145A priority patent/JP5638705B2/ja
Priority to DE112011106069.6T priority patent/DE112011106069T5/de
Priority to TW101113722A priority patent/TWI465005B/zh
Publication of WO2013099012A1 publication Critical patent/WO2013099012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to a laminated core formed by laminating steel plates used as a rotor core or a stator core of an electric motor.
  • a laminated body having a plurality of through-holes and a plurality of iron core materials having bolt holes on both sides of the through-holes, and the core materials are inserted into the through-holes and expanded.
  • a crushing portion that is crushed by a plate-like punch is formed, the plurality of iron core materials are bound and temporarily fixed, and the laminated body is stored in a case in a temporarily fixed state and the bolt
  • a stator core is disclosed in which a bolt is inserted into a hole and fixed to the case (see, for example, Patent Document 1).
  • the laminated body is provided with a plurality of through holes, bolt holes are provided on both sides of the through hole, and the laminated body is bundled by inserting the bundling cylinder and the bolt into separate holes. Yes. Therefore, there is a problem that the number of holes provided in the laminated body is increased, which adversely affects the magnetic permeability of the laminated body.
  • the conventional technique has a problem that the laminated body is fixed to the case with bolts, so that it cannot be applied to the rotor of the electric motor and can be applied only to the stator.
  • the present invention has been made in view of the above, and reduces the adverse effect on the magnetic permeability by reducing the number of holes for members for binding the steel sheet laminate, and corrects the stacking deviation of the laminated steel sheets. It is an object of the present invention to obtain a laminated core of an electric motor that can improve lamination accuracy and can be used for both a rotor and a stator.
  • the present invention provides a steel plate laminate in which a plurality of annular steel plates provided with a plurality of through holes are laminated, and a cylindrical member inserted through the through holes. And a rivet pin that is inserted through the tubular member, expands the diameter of the tubular member and presses the tubular member into the through hole, and a crimped portion at the tip is crimped to bind the steel sheet laminate. .
  • the laminated core of the electric motor according to the present invention has the effect of high magnetic permeability and high lamination accuracy.
  • the contact area with the case increases and the cooling performance improves, and when used in the rotor, the initial unbalance amount can be reduced, which is advantageous during high-speed rotation.
  • FIG. 1 is a cross-sectional view showing a rotor core according to a first embodiment of the laminated core of the electric motor of the present invention.
  • FIG. 2 is an enlarged view of the caulking portion of FIG.
  • FIG. 3 is an exploded perspective view showing the rotor core according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing the balance ring.
  • FIG. 5 is a perspective view showing the cylindrical member of the first embodiment.
  • FIG. 6 is a partial cross-sectional view showing a first step of manufacturing the rotor core of the first embodiment.
  • FIG. 7 is a partial cross-sectional view showing a second step of manufacturing the rotor core of the first embodiment.
  • FIG. 1 is a cross-sectional view showing a rotor core according to a first embodiment of the laminated core of the electric motor of the present invention.
  • FIG. 2 is an enlarged view of the caulking portion of FIG.
  • FIG. 3 is an exploded perspective view showing the rot
  • FIG. 8 is a partial cross-sectional view showing a third step of manufacturing the rotor core of the first embodiment.
  • FIG. 9 is a perspective view showing the cylindrical member of the second embodiment.
  • FIG. 10 is a perspective view showing the cylindrical member of the third embodiment.
  • FIG. 11 is a perspective view showing the cylindrical member of the fourth embodiment.
  • FIG. 12 is an exploded perspective view showing the stator core according to the fifth embodiment of the laminated core of the electric motor of the present invention.
  • FIG. 1 is a cross-sectional view showing a rotor core according to a first embodiment of a laminated core of an electric motor of the present invention
  • FIG. 2 is an enlarged view of a caulking portion of FIG. 1
  • FIG. 3 is a rotor core according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing the balance ring
  • FIG. 5 is a perspective view showing the cylindrical member of the first embodiment.
  • the rotor core 91 as the laminated core of the electric motor according to the first embodiment is an annular steel plate provided with a plurality of (eight) through holes 1a at equal intervals in the same circumference.
  • a steel plate laminate 1 in which a plurality of silicon steel plates are laminated, a cylindrical member 2 inserted through the through hole 1a, and a cylindrical member 2 are inserted into the cylindrical member 2 to expand the diameter of the cylindrical member 2 and press it into the through hole 1a.
  • a rivet pin 3 for binding the steel sheet laminate 1 by crimping the crimping portion 3b at the tip.
  • the diameter of the rivet pin 3 is 8 ⁇ .
  • the diameter of the rivet pin 3 is fixed at 8 ⁇ , and the cylindrical member 2 has a diameter corresponding to the inner diameter of the through hole 1a of the steel plate laminate 1 that increases according to the capacity of the motor. What is necessary is just to change an outer diameter.
  • a shaft hole 1b into which a rotating shaft (not shown) is fitted is provided in the center of the steel sheet laminate 1.
  • eight slit-shaped permanent magnet embedded holes 1e are annularly provided on the outer peripheral side of the through hole 1a.
  • the cylindrical member 2 and the rivet pin 3 are made of iron metal.
  • the cylindrical member 2 is provided with a plurality of slits 2a (see FIG. 5) in the axial direction in order to adjust the compression elastic modulus in the thickness direction.
  • Balance rings 4 as end plates are disposed at both ends of the steel plate laminate 1.
  • a hole 4 g having an inner diameter larger than that of the shaft hole 1 b of the steel plate laminate 1 is provided.
  • Both ends of the cylindrical member 2 are locked to the stepped portion 4d of the stepped through hole 4a, and the rivet pin 3 includes a steel plate laminate 1 and a balance ring (endplate) 4 by a head portion 3a and a crimped portion 3b. Are united.
  • FIG. 6 is a partial cross-sectional view showing a first step of manufacturing the rotor core of the first embodiment
  • FIG. 7 is a partial cross-sectional view showing a second step of manufacturing the rotor core of the first embodiment
  • FIG. FIG. 10 is a partial cross-sectional view showing a third step of manufacturing the rotor core of the first embodiment.
  • the balance ring 4 is arrange
  • the large diameter portion 4b side of the stepped through hole 4a is brought into contact with one end of the steel sheet laminate 1 so that the through hole 1a and the stepped through hole 4a communicate with each other.
  • the cylindrical member 2 is inserted into the through hole 1 a from the other end side of the steel plate laminate 1, and the tip of the cylindrical member 2 is locked to the stepped portion 4 d of the stepped through hole 4 a of the balance ring 4.
  • the inner diameter of the large-diameter portion 4b of the through hole 1a of the steel plate laminate 1 and the stepped through hole 4a of the balance ring 4 and the outer diameter of the tubular member 2 are dimensional tolerances of 0.2 to 0.3 mm clearance fit.
  • the tubular member 2 is manufactured and can be easily inserted into the through hole 1a.
  • another balance ring 4 is arranged opposite to the other end side of the steel sheet laminate 1 with the large diameter portion 4 b side of the stepped through hole 4 a facing.
  • the rivet pin 3 is inserted into the cylindrical member 2 through the stepped through hole 4 a of the balance ring 4.
  • the outer diameter of the rivet pin 3 and the inner diameter of the cylindrical member 2 are manufactured with a dimensional tolerance of 0.3 to 0.4 mm, and in this second step, the rivet pin 3
  • the diameter of the cylindrical member 2 is increased, and the outer peripheral portion of the cylindrical member 2 is pressed against the through-hole 1a of the steel plate laminate 1 and the large-diameter portion 4b of the stepped through-hole 4a of the balance ring 4. Due to this pressing action, the misalignment of the steel plates of the steel plate laminate 1 and the misalignment of the balance ring 4 with respect to the steel plate laminate 1 are corrected, and the lamination accuracy is improved.
  • the large diameter portion of the stepped through hole 4 a of the balance ring 4 is formed on the other end portion of the tubular member 2 protruding to the other end side of the steel plate laminate 1. 4, the rivet pin 3 is pushed in until the head 3 a comes into contact with the balance ring 4, and the crimping portion 3 b at the tip is crimped to bind the steel plate laminate 1 and the balance ring 4. This completes the rotor core 91 of the motor.
  • a portion of the balance ring 4 in the direction in which the center of gravity is biased is cut with a drill, or screw holes for adjustment are provided in the balance ring 4 at an equal pitch in advance, This can be done by attaching.
  • FIG. FIG. 9 is a perspective view showing the cylindrical member of the second embodiment.
  • the cylindrical member 22 of Embodiment 2 is provided with one slit 2a in the axial direction and has a C-shaped cross section.
  • the cylindrical member 22 of Embodiment 2 is easy to manufacture and can be manufactured at low cost.
  • FIG. 10 is a perspective view showing the cylindrical member of the third embodiment.
  • the cylindrical member 32 of the third embodiment has a mesh structure.
  • the cylindrical member 32 of the third embodiment can reduce the compression elastic coefficient in the thickness direction, and can reduce the insertion resistance of the rivet pin 3.
  • FIG. 11 is a perspective view showing the cylindrical member of the fourth embodiment.
  • the cylindrical member 42 of Embodiment 4 has a spiral winding structure of an elongated plate.
  • the cylindrical member 42 of Embodiment 4 can manufacture a cylindrical member of arbitrary diameters, without using a pipe material.
  • FIG. FIG. 12 is an exploded perspective view showing the stator core according to the fifth embodiment of the laminated core of the electric motor of the present invention.
  • the stator core 95 as the laminated core of the electric motor of Embodiment 5 is a silicon steel plate as an annular steel plate provided with a plurality of (four) through holes 51a at equal intervals in the same circumference.
  • a rivet pin 3 for binding the steel plate laminate 51 by crimping the crimping portion 3b is provided.
  • a large-diameter hole 51b in which a rotor core (not shown) is disposed is provided in the center of the steel sheet laminate 51.
  • a large number of slots 51f around which coils (not shown) are wound are provided along the large-diameter hole 51b.
  • the large diameter portion 4 b has the same diameter as the through hole 51 a and the small diameter portion 4 c has the same diameter as the outer diameter of the rivet pin 3 at the same position as the plurality of through holes 51 a of the steel plate laminate 51.
  • An annular end plate 4 having a through hole 4 a is disposed at both ends of the steel plate laminate 51.
  • a hole 4g having a larger inner diameter than the large diameter hole 51b of the steel plate laminate 51 is provided.
  • Both ends of the cylindrical member 2 are locked to the stepped portion 4d (see FIG. 4) of the stepped through hole 4a, and the rivet pin 3 includes the steel plate laminate 51 and the end plate by the head portion 3a and the crimped portion 3b. 4 is bundled.
  • the stator core 95 of the electric motor according to the fifth embodiment can be manufactured by the same manufacturing method as the manufacturing method of the rotor core 91 of the electric motor shown in FIGS. Further, instead of the cylindrical member 2, the cylindrical members 22, 32, and 42 shown in FIGS. 9 to 11 can be used.
  • the rotor core 91 of the first embodiment and the stator core 95 of the fifth embodiment have a high magnetic permeability because the number of through holes 1a and 51a provided in the steel plate laminates 1 and 51 is small.
  • the rivet pin 3 is inserted into the cylindrical member 2 inserted through the through holes 1a and 51a, the diameter of the cylindrical member 2 is expanded and pressed to the through holes 1a and 51a, and the steel plate laminates 1 and 51 are made of steel plates. Since the misalignment and the misalignment of the balance ring 4 with respect to the steel sheet laminates 1 and 51 are corrected, the effect of high lamination accuracy is achieved.
  • the stator core 95 has an increased contact area with the case, improving the cooling performance, and the rotor core 91 can reduce the initial unbalance amount, which is advantageous during high-speed rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 複数の貫通孔1aが設けられた環状の鋼板を複数枚積層した鋼板積層体1と、前記貫通孔1aに挿通された筒状部材2と、前記筒状部材2に挿通され、該筒状部材2を拡径して前記貫通孔1aに押圧し、先端のカシメ部3bがカシメられて前記鋼板積層体1を結束するリベットピン3と、を備える。前記鋼板積層体1の複数の貫通孔1aと同一位置に、大径部が前記貫通孔1aと同径で小径部が前記リベットピン3の外径と同径の段付貫通孔を有する環状の端板4が、前記鋼板積層体1の両端部に配置され、前記筒状部材2は、両端部が前記段付貫通孔の段部に係止され、前記リベットピン3は、前記鋼板積層体1及び端板4を結束している。

Description

電動機の積層コア
 本発明は、電動機のロータコアやステータコアとして用いられる、鋼板を積層して形成された積層コアに関する。
 従来、複数の貫通孔を有すると共に当該貫通孔の両脇にボルト孔を有する鉄心材を複数枚積層してなる積層体と、前記貫通孔に挿入され拡開されることにより前記鉄心材同士を結束する結束筒体とを備え、前記結束筒体の前記積層体から突出した両端部に、その一部または全部が径方向に拡開された抜止部が形成されると共に、当該抜止部に、板状のポンチにて圧潰された圧潰部が形成されて、前記複数枚の鉄心材同士が結束されて仮止めされ、前記積層体は、仮止めされた状態でケースに収納されると共に前記ボルト孔にボルトが挿入されて当該ケースに固定される固定子鉄心が開示されている(例えば、特許文献1参照)。
特開2011-19400号公報
 しかしながら、上記従来の技術によれば、積層体に複数の貫通孔を設けると共に貫通孔の両脇にボルト孔を設け、結束筒体とボルトを別々の孔に挿入して積層体を結束している。そのため、積層体に設けた孔の数が多くなり、積層体の透磁率に悪影響を及ぼす、という問題があった。また、上記従来の技術は、積層体をボルトでケースに固定するので、電動機のロータに適用することはできず、ステータにしか適用できない、という問題がある。
 本発明は、上記に鑑みてなされたものであって、鋼板積層体を結束する部材のための孔の数を少なくして透磁率への悪影響を低減すると共に、積層鋼板の積層ズレを修正して積層精度を向上することができ、ロータにもステータにも用いることができる電動機の積層コアを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数の貫通孔が設けられた環状の鋼板を複数枚積層した鋼板積層体と、前記貫通孔に挿通された筒状部材と、前記筒状部材に挿通され、該筒状部材を拡径して前記貫通孔に押圧し、先端のカシメ部がカシメられて前記鋼板積層体を結束するリベットピンと、を備えることを特徴とする。
 本発明にかかる電動機の積層コアは、透磁率が高く、積層精度が高い、という効果を奏する。その結果、ステータに用いれば、ケースとの接触面積が増加して、冷却性能が向上し、ロータに用いれば、初期アンバランス量を低減することができ、高速回転時に優位となる。
図1は、本発明の電動機の積層コアの実施の形態1のロータコアを示す断面図である。 図2は、図1のカシメ部の拡大図である。 図3は、実施の形態1のロータコアを示す分解斜視図である。 図4は、バランスリングを示す断面図である。 図5は、実施の形態1の筒状部材を示す斜視図である。 図6は、実施の形態1のロータコア製造の第1工程を示す部分断面図である。 図7は、実施の形態1のロータコア製造の第2工程を示す部分断面図である。 図8は、実施の形態1のロータコア製造の第3工程を示す部分断面図である。 図9は、実施の形態2の筒状部材を示す斜視図である。 図10は、実施の形態3の筒状部材を示す斜視図である。 図11は、実施の形態4の筒状部材を示す斜視図である。 図12は、本発明の電動機の積層コアの実施の形態5のステータコアを示す分解斜視図である。
 以下に、本発明にかかる電動機の積層コアの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の電動機の積層コアの実施の形態1のロータコアを示す断面図であり、図2は、図1のカシメ部の拡大図であり、図3は、実施の形態1のロータコアを示す分解斜視図であり、図4は、バランスリングを示す断面図であり、図5は、実施の形態1の筒状部材を示す斜視図である。
 図1~図5に示すように、実施の形態1の電動機の積層コアとしてのロータコア91は、同一円周状に等間隔に複数(8個)の貫通孔1aが設けられた環状の鋼板としての珪素鋼板を複数枚積層した鋼板積層体1と、貫通孔1aに挿通された筒状部材2と、筒状部材2に挿通され、筒状部材2を拡径して貫通孔1aに押圧し、先端のカシメ部3bがカシメられて鋼板積層体1を結束するリベットピン3と、を備えている。
 実施の形態1では、リベットピン3の直径は、8φである。電動機のシリーズが小容量から大容量まである場合、リベットピン3の直径は8φで固定し、電動機の容量に応じて大きくなる鋼板積層体1の貫通孔1aの内径に合わせて筒状部材2の外径を変更すればよい。
 鋼板積層体1の中央には、回転軸(図示せず)が嵌合する軸孔1bが設けられている。また、貫通孔1aの外周側には、環状に、8つのスリット状の永久磁石埋込孔1eが設けられている。筒状部材2及びリベットピン3は、鉄系金属製である。筒状部材2には、肉厚方向の圧縮弾性係数を調整するために、軸方向に複数のスリット2a(図5参照)が設けられている。
 鋼板積層体1の複数の貫通孔1aと同一位置に、大径部4bが貫通孔1aと同径で小径部4cがリベットピン3の外径と同径の段付貫通孔4aを有する環状の端板としてのバランスリング4が、鋼板積層体1の両端部に配置されている。バランスリング4の中央には、鋼板積層体1の軸孔1bより内径が大きい孔4gが設けられている。
 筒状部材2は、両端部が段付貫通孔4aの段部4dに係止され、リベットピン3は、頭部3aとカシメ部3bとにより、鋼板積層体1及びバランスリング(端板)4を結束している。
 次に、実施の形態1の電動機のロータコアの製造方法を説明する。図6は、実施の形態1のロータコア製造の第1工程を示す部分断面図であり、図7は、実施の形態1のロータコア製造の第2工程を示す部分断面図であり、図8は、実施の形態1のロータコア製造の第3工程を示す部分断面図である。
 図6に示すように、第1工程で、鋼板積層体1の一端に、バランスリング4を配置する。このとき、段付貫通孔4aの大径部4b側が鋼板積層体1の一端に当接し、貫通孔1aと段付貫通孔4aが連通するようにする。続いて、鋼板積層体1の他端側から筒状部材2を貫通孔1aに挿入し、筒状部材2の先端をバランスリング4の段付貫通孔4aの段部4dに係止させる。
 鋼板積層体1の貫通孔1a及びバランスリング4の段付貫通孔4aの大径部4bの内径と筒状部材2の外径とは、0.2~0.3mmの隙間嵌めの寸法公差で製作されており、筒状部材2は、容易に貫通孔1aに挿入することができる。
 次に、図7に示すように、第2工程で、鋼板積層体1の他端側に、もう一つのバランスリング4を、段付貫通孔4aの大径部4b側を向けて対向配置し、リベットピン3を、バランスリング4の段付貫通孔4aを通して筒状部材2に挿入する。
 リベットピン3の外径と筒状部材2の内径とは、0.3~0.4mmの絞り嵌めの寸法公差で製作されており、この第2工程で、リベットピン3は筒状部材2を拡径し、筒状部材2の外周部を鋼板積層体1の貫通孔1a及びバランスリング4の段付貫通孔4aの大径部4bに押圧する。この押圧作用により、鋼板積層体1の鋼板の積層ズレ及び鋼板積層体1に対するバランスリング4のズレが修正され、積層精度が向上する。
 次に、図8に示すように、第3工程で、鋼板積層体1の他端側に突出している筒状部材2の他端部に、バランスリング4の段付貫通孔4aの大径部4を嵌合させ、リベットピン3を、頭部3aがバランスリング4に当たるまで押込み、先端のカシメ部3bをカシメることにより、鋼板積層体1及びバランスリング4を結束すれば、実施の形態1の電動機のロータコア91が完成する。ロータコア91の回転バランスの調整は、重心が偏っている方向のバランスリング4の部位をドリルで削るか、又は、バランスリング4に予め調整用ネジ穴を等ピッチで設けておき、軽い方にネジを取付けることにより行なうことができる。
実施の形態2.
 図9は、実施の形態2の筒状部材を示す斜視図である。図9に示すように、実施の形態2の筒状部材22は、軸方向に1つのスリット2aが設けられ、横断面がC字形となっている。実施の形態2の筒状部材22は、製作が容易であり低コストで製作することができる。
実施の形態3.
 図10は、実施の形態3の筒状部材を示す斜視図である。図10に示すように、実施の形態3の筒状部材32は、メッシュ構造になっている。実施の形態3の筒状部材32は、肉厚方向の圧縮弾性係数を小さくすることができ、リベットピン3の挿入抵抗を小さくすることができる。
実施の形態4.
 図11は、実施の形態4の筒状部材を示す斜視図である。図11に示すように、実施の形態4の筒状部材42は、細長板の螺旋巻構造になっている。実施の形態4の筒状部材42は、パイプ材を用いずに任意の径の筒状部材を製作することができる。
実施の形態5.
 図12は、本発明の電動機の積層コアの実施の形態5のステータコアを示す分解斜視図である。図12に示すように、実施の形態5の電動機の積層コアとしてのステータコア95は、同一円周状に等間隔に複数(4個)の貫通孔51aが設けられた環状の鋼板としての珪素鋼板を複数枚積層した鋼板積層体51と、貫通孔51aに挿通される筒状部材2と、筒状部材2に挿通され、筒状部材2を拡径して貫通孔51aに押圧し、先端のカシメ部3bがカシメられて鋼板積層体51を結束するリベットピン3と、を備えている。
 鋼板積層体51の中央には、図示しないロータコアが内部に配置される大径孔51bが設けられている。大径孔51bに沿って、図示しないコイルが巻装される多数のスロット51fが設けられている。
 鋼板積層体51の複数の貫通孔51aと同一位置に、図4に示すような、大径部4bが貫通孔51aと同径で小径部4cがリベットピン3の外径と同径の段付貫通孔4aを有する環状の端板4が、鋼板積層体51の両端部に配置されている。端板4の中央には、鋼板積層体51の大径孔51bより内径が大きい孔4gが設けられている。
 筒状部材2は、両端部が段付貫通孔4aの段部4d(図4参照)に係止され、リベットピン3は、頭部3aとカシメ部3bとにより、鋼板積層体51及び端板4を結束している。実施の形態5の電動機のステータコア95は、図6~図8に示す電動機のロータコア91の製造方法と同様の製造方法により製造することができる。また、筒状部材2に替えて、図9~図11に示す筒状部材22、32、42を用いることができる。
 以上説明したように、実施の形態1のロータコア91及び実施の形態5のステータコア95は、鋼板積層体1、51に設けられた貫通孔1a、51aの数が少ないので透磁率が高い。また、貫通孔1a、51aに挿通された筒状部材2にリベットピン3を挿通し、筒状部材2を拡径して貫通孔1a、51aに押圧し、鋼板積層体1、51の鋼板の積層ズレ及び鋼板積層体1、51に対するバランスリング4のズレを修正するので、積層精度が高い、という効果を奏する。その結果、ステータコア95は、ケースとの接触面積が増加して、冷却性能が向上し、ロータコア91は、初期アンバランス量を低減することができ、高速回転時に優位となる。
 1、51 鋼板積層体
 1a、51a 貫通孔
 1b 軸孔
 1e 永久磁石埋込孔
 51b 大径孔
 51f スロット
 2、22、32、42 筒状部材
 2a スリット
 3 リベットピン
 3a 頭部
 3b カシメ部
 4 バランスリング(端板)
 4a 段付貫通孔
 4b 大径部
 4c 小径部
 4d 段部
 4g 孔
 91 電動機のロータコア(電動機の積層コア)
 95 電動機のステータコア(電動機の積層コア)

Claims (8)

  1.  複数の貫通孔が設けられた環状の鋼板を複数枚積層した鋼板積層体と、
     前記貫通孔に挿通された筒状部材と、
     前記筒状部材に挿通され、該筒状部材を拡径して前記貫通孔に押圧し、先端のカシメ部がカシメられて前記鋼板積層体を結束するリベットピンと、
     を備えることを特徴とする電動機の積層コア。
  2.  前記鋼板積層体の複数の貫通孔と同一位置に、大径部が前記貫通孔と同径で小径部が前記リベットピンの外径と同径の段付貫通孔を有する環状の端板が、前記鋼板積層体の両端部に配置され、前記筒状部材は、両端部が前記段付貫通孔の段部に係止され、前記リベットピンは、前記鋼板積層体及び端板を結束していることを特徴とする請求項1に記載の電動機の積層コア。
  3.  前記電動機の積層コアは、電動機のロータコアであることを特徴とする請求項2に記載の電動機の積層コア。
  4.  前記端板は、バランスリングであることを特徴とする請求項3に記載の電動機の積層コア。
  5.  前記電動機の積層コアは、電動機のステータコアであることを特徴とする請求項1又は2に記載の電動機の積層コア。
  6.  前記筒状部材は、軸方向に1つ又は複数のスリットが設けられていることを特徴とする請求項1に記載の電動機の積層コア。
  7.  前記筒状部材は、メッシュ構造になっていることを特徴とする請求項1に記載の電動機の積層コア。
  8.  前記筒状部材は、細長板の螺旋巻構造になっていることを特徴とする請求項1に記載の電動機の積層コア。
PCT/JP2011/080480 2011-12-28 2011-12-28 電動機の積層コア WO2013099012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/080480 WO2013099012A1 (ja) 2011-12-28 2011-12-28 電動機の積層コア
CN201180074952.2A CN103959605B (zh) 2011-12-28 2011-12-28 电动机的层叠铁心
JP2013551145A JP5638705B2 (ja) 2011-12-28 2011-12-28 電動機の積層コア
DE112011106069.6T DE112011106069T5 (de) 2011-12-28 2011-12-28 Geschichteter Kern für Elektromotor
TW101113722A TWI465005B (zh) 2011-12-28 2012-04-18 電動機之積層鐵芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080480 WO2013099012A1 (ja) 2011-12-28 2011-12-28 電動機の積層コア

Publications (1)

Publication Number Publication Date
WO2013099012A1 true WO2013099012A1 (ja) 2013-07-04

Family

ID=48696571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080480 WO2013099012A1 (ja) 2011-12-28 2011-12-28 電動機の積層コア

Country Status (5)

Country Link
JP (1) JP5638705B2 (ja)
CN (1) CN103959605B (ja)
DE (1) DE112011106069T5 (ja)
TW (1) TWI465005B (ja)
WO (1) WO2013099012A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457420A (zh) * 2013-08-22 2013-12-18 宁波菲仕运动控制技术有限公司 一种伺服电机转子铁芯铆压工装
CN103706751A (zh) * 2013-12-31 2014-04-09 泰信电机(苏州)有限公司 一种用于电机转子铁芯铆钉装置
JP2020137373A (ja) * 2019-02-25 2020-08-31 株式会社デンソー 電機子及び回転電機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017003450A (es) * 2014-09-15 2017-11-13 Faber Spa Motor para una unidad de succion de una campana extractora con desempeño mejorado.
JP6612713B2 (ja) * 2016-10-27 2019-11-27 トヨタ自動車株式会社 着磁ヨークの組付方法
DE102022129147A1 (de) 2022-11-04 2024-05-08 Audi Aktiengesellschaft Verfahren zur Herstellung eines Rotors für eine elektrische Maschine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960840U (ja) * 1982-10-14 1984-04-20 松下電器産業株式会社 小型電動機
JPS63217941A (ja) * 1987-03-05 1988-09-12 Hitachi Ltd 回転電機の回転子
JPH027748U (ja) * 1988-06-24 1990-01-18
JP2000184645A (ja) * 1998-12-18 2000-06-30 Calsonic Kansei Corp モータ
JP2004080950A (ja) * 2002-08-21 2004-03-11 Sankyo Seiki Mfg Co Ltd 回転電機の電機子
JP2006187063A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ロータ構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1880461B1 (en) * 2005-05-12 2013-02-13 LG Electronics Inc. Rotor of synchronous reluctance motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960840U (ja) * 1982-10-14 1984-04-20 松下電器産業株式会社 小型電動機
JPS63217941A (ja) * 1987-03-05 1988-09-12 Hitachi Ltd 回転電機の回転子
JPH027748U (ja) * 1988-06-24 1990-01-18
JP2000184645A (ja) * 1998-12-18 2000-06-30 Calsonic Kansei Corp モータ
JP2004080950A (ja) * 2002-08-21 2004-03-11 Sankyo Seiki Mfg Co Ltd 回転電機の電機子
JP2006187063A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd ロータ構造

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457420A (zh) * 2013-08-22 2013-12-18 宁波菲仕运动控制技术有限公司 一种伺服电机转子铁芯铆压工装
CN103457420B (zh) * 2013-08-22 2015-07-08 宁波菲仕运动控制技术有限公司 一种伺服电机转子铁芯铆压工装
CN103706751A (zh) * 2013-12-31 2014-04-09 泰信电机(苏州)有限公司 一种用于电机转子铁芯铆钉装置
JP2020137373A (ja) * 2019-02-25 2020-08-31 株式会社デンソー 電機子及び回転電機
WO2020175222A1 (ja) * 2019-02-25 2020-09-03 株式会社デンソー 電機子及び回転電機
JP7147629B2 (ja) 2019-02-25 2022-10-05 株式会社デンソー 電機子及び回転電機

Also Published As

Publication number Publication date
TW201328124A (zh) 2013-07-01
CN103959605B (zh) 2017-09-08
JP5638705B2 (ja) 2014-12-10
TWI465005B (zh) 2014-12-11
JPWO2013099012A1 (ja) 2015-04-30
DE112011106069T5 (de) 2014-09-11
CN103959605A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5638705B2 (ja) 電動機の積層コア
US10916996B2 (en) Method of manufacturing rotational electric machine rotor
JP4666500B2 (ja) 永久磁石埋込型モータの回転子
JP4771107B1 (ja) 回転電機、回転電機の製造方法、および風力発電システム
JP4367375B2 (ja) リラクタンスモータ用ロータコア及びその製造方法
US20110148246A1 (en) Stator and motor provided with the stator
WO2012114577A1 (ja) 固定子鉄心の製造方法、および、固定子鉄心
JP5245435B2 (ja) モータ
JP2010207090A (ja) 永久磁石埋込型モータの回転子
US20130076199A1 (en) Rotor for rotary electric machine, and rotary electric machine that uses the rotor
JP5251384B2 (ja) 積層コアおよびその製造方法
JP5988915B2 (ja) 回転電機の積層鉄心および回転電機の積層鉄心の製造方法およびステータおよび回転電機
JP5139500B2 (ja) 固定子及び固定子の製造方法
JP5030153B2 (ja) フレームレス回転電機の固定子及びその製造方法
WO2014136145A1 (ja) 回転電機のステータ鉄心及び回転電機並びにその製造方法
JP4662262B2 (ja) 固定子鉄心及び固定子鉄心の製造方法
JP2013034335A (ja) 磁石埋め込み型モータ用ロータ構造
JP5306975B2 (ja) 積層構造体及びその製造方法
JP2010110123A (ja) 積層コア及びその製造方法
JP2013153575A (ja) 回転電機の積層鉄心及びその製造方法並びに回転電機の電機子
JP2009100516A (ja) 巻き積層鉄心に用いる連続セグメント鉄心材及びこれを用いた巻き積層鉄心
JP5335633B2 (ja) 回転電機および回転電機の製造方法
JP2013143872A (ja) 回転電機のロータコア及びその製造方法
JP2003264944A (ja) モータのステータコア組立体、及びステータ組立体の組み付け方法
JP6727458B2 (ja) 固定子鉄心及びその固定子鉄心を備えた電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551145

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120111060696

Country of ref document: DE

Ref document number: 112011106069

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878917

Country of ref document: EP

Kind code of ref document: A1