WO2013098932A1 - 電池システム、および地絡検知装置 - Google Patents

電池システム、および地絡検知装置 Download PDF

Info

Publication number
WO2013098932A1
WO2013098932A1 PCT/JP2011/080173 JP2011080173W WO2013098932A1 WO 2013098932 A1 WO2013098932 A1 WO 2013098932A1 JP 2011080173 W JP2011080173 W JP 2011080173W WO 2013098932 A1 WO2013098932 A1 WO 2013098932A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
potential
battery
fault detection
unit
Prior art date
Application number
PCT/JP2011/080173
Other languages
English (en)
French (fr)
Inventor
高橋 俊樹
晋 山内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN2011800402521A priority Critical patent/CN103282786A/zh
Priority to US13/817,661 priority patent/US20140301000A1/en
Priority to PCT/JP2011/080173 priority patent/WO2013098932A1/ja
Priority to EP11870828.8A priority patent/EP2808687A1/en
Publication of WO2013098932A1 publication Critical patent/WO2013098932A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system having a ground fault detection function for detecting a ground fault in a current path, and a ground fault detection device.
  • ground fault occurs, in which the current flowing in the current path flows toward the ground.
  • a ground fault detection technology for detecting a ground fault in a current path
  • a ground fault detection technology for detecting a ground fault in a current path
  • the ground fault current does not flow, so there is no ground fault
  • Patent Document 1 discloses a ground fault detection technology in which a plurality of reference potentials of the ground fault detection circuit are prepared in advance and these are dynamically switched to perform ground fault detection. There is.
  • a ground fault other than the negative pole side positive pole side or inside of ungrounded DC power source
  • the ground fault on the negative electrode side is detected by a second ground fault detection circuit having a reference potential other than the negative electrode side (any potential in the positive electrode side of the ungrounded DC power supply or in the range that can be taken internally).
  • a second ground fault detection circuit having a reference potential other than the negative electrode side (any potential in the positive electrode side of the ungrounded DC power supply or in the range that can be taken internally).
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a battery system and a ground fault detection device capable of accurately detecting the presence or absence of a ground fault with a simple configuration in real time.
  • a DC power supply unit in which a plurality of batteries are connected in series between a pair of ungrounded terminals, an inter-battery connection point and a grounding point related to adjacent batteries among the plurality of batteries A ground-fault resistor which appears between the two, and a boosting unit which is provided on the high potential side of the pair of non-ground terminals and outputs a boosted potential obtained by boosting the high potential, the output side of the booster and the contact.
  • a ground fault detection unit for detecting the presence or absence of a ground fault in the DC power supply unit.
  • the presence or absence of a ground fault can be accurately detected with a simple configuration in real time.
  • FIG. 2 is a block diagram conceptually showing a hierarchical structure of a battery system according to the present invention. It is a circuit block diagram of the battery system which concerns on this invention. It is a circuit block diagram which expands and represents the battery pack periphery among the battery systems shown to FIG. 3A. It is a circuit block diagram showing the 1st battery pack equivalent to the battery system concerning a 1st embodiment of the present invention, and a grounding detector. It is a flowchart figure showing the procedure of the 1st battery pack and the earth fault detection operation in an earth detector.
  • FIG. 2 is a block diagram conceptually showing a hierarchical structure of a battery system according to the present invention. It is a circuit block diagram of the battery system which concerns on this invention. It is a circuit block diagram which expands and represents the battery pack periphery among the battery systems shown to FIG. 3A. It is a circuit block diagram showing the 1st battery pack equivalent to the battery system concerning a 1st embodiment of the present invention, and a ground
  • FIG. 6 is a time chart diagram showing an output voltage waveform of a comparator when a ground fault occurs and a ground fault detection signal waveform in comparison.
  • An explanatory diagram showing a closed loop circuit formed in a first battery pack (first ground fault detection device) when a ground fault occurs and the output of the booster is a boosted potential (with voltage boosting) is there.
  • An explanatory diagram showing a closed loop circuit formed in a first battery pack (first ground fault detection device) when a ground fault occurs and the output of the booster is high potential (without boosting). is there.
  • It is a circuit block diagram showing the 2nd battery pack equivalent to the battery system concerning a 2nd embodiment of the present invention, and a grounding detector.
  • a battery system includes a ground fault detection device having a ground fault detection function.
  • the battery system and the ground fault detection device include a direct current power supply unit formed by connecting a plurality of batteries in series between a pair of ungrounded terminals, and a battery between the batteries adjacent to each other among the plurality of batteries.
  • the main feature is to have a ground fault detection unit that detects the presence or absence of a ground fault in the DC power supply unit.
  • the inter-battery connection point between the adjacent batteries among the plurality of batteries is insulated with respect to the ground point (the potential of the ground). Specifically, in the normal state where a ground fault does not occur, a resistance in mega ohms (corresponding to the "ground fault resistance" of the present invention) exists between each of the inter-battery connection point and the ground point.
  • the inventors of the present invention have the problem that the time delay of detection caused by dynamically switching the plurality of ground potential detection reference potentials inevitably caused by the conventional ground fault detection technology and the complication of the device configuration Research was carried out with the aim of solving In particular, trial and error have been repeated about performing ground detection using a single type of ground reference detection potential.
  • the inventors of the present invention set a ground fault detection reference potential outside the DC power supply unit, so that a single type of ground fault detection standard without causing a so-called insensitive body (ground fault undetectable potential). We got the idea that we could use ground potential to detect ground faults.
  • the present inventors brush up the above idea to detect the occurrence state of the ground fault (the location of the ground fault and the light weight of the extent of the ground fault) in addition to the presence or absence of the ground fault. Have found that it is possible to complete the present invention.
  • the presence or absence of the ground fault can be accurately detected with a simple configuration in real time.
  • FIG. 1 is a block diagram showing an outline of a power system 101 to which a battery system 201 according to the present invention is applied.
  • the power system 101 includes a power system 102, a power generation device 103, an inverter 104, and a battery system 201 according to the present invention.
  • the battery system 201 according to the present invention is a concept encompassing both of the battery systems according to the first and second embodiments described later.
  • the power generation device 103 has a function of supplying power generated from natural energy and generated to the power system 102, for example.
  • a battery system 201 according to the present invention is connected via an inverter 104 to a connection point A of an electric wire 105 that connects between the power generation device 103 and the power system 102.
  • the inverter 104 has a function of converting the power generated by the power generation apparatus 103 into DC power and transmitting the converted DC power to the battery system 201, and converting the DC power stored in the battery system 201 into AC power and converting it. And a function of sending AC power to the power system 102. Power is supplied to the load via an AC power system 102.
  • the output fluctuation causes a frequency fluctuation and a voltage fluctuation of the power system 102, which causes the power quality of the power system 102 to be degraded.
  • the battery system 201 functions so that fluctuations in the frequency and voltage of the power system 102 fall within a predetermined range. That is, battery system 201 charges excess power to battery system 201 when excessive power is supplied to power system 102, and discharges power stored in battery system 201 when power is insufficient. It has a so-called buffer function. Thereby, the battery system 201 according to the present invention can suppress the frequency fluctuation and the voltage fluctuation of the power system 102.
  • FIG. 2 is a block diagram conceptually showing the hierarchical structure of the battery system 201 according to the present invention.
  • FIG. 3A is a circuit configuration diagram of a battery system 201 according to the present invention.
  • FIG. 3B is a circuit configuration diagram showing the periphery of the battery pack 252 in the battery system 201 shown in FIG. 3A in an enlarged manner.
  • the battery system 201 is, as shown in FIGS. 2 and 3A, a battery module 314 formed by connecting a plurality of battery cells 310 in series and a battery formed by connecting a plurality of battery modules 314 in series and parallel.
  • the pack 252 and the battery block 212 formed by connecting a plurality of battery packs 252 in parallel are configured to be mutually hierarchical. Note that “connected in series and parallel” means connecting a plurality of constituent elements in series, and further connecting in parallel those connected in series.
  • the basic unit of the smallest scale among the basic units constituting the battery system 201 is the battery module 314.
  • the basic configurations of the plurality of battery modules 314 are all the same. Therefore, by describing the configuration of one battery module 314 as a representative, it will be replaced with the entire description. The same applies to a plurality of battery packs 252 and a plurality of battery blocks 212 described later.
  • the individual battery modules 314 are connected in series to the battery modules 314 belonging to the other battery pack 252 via the positive electrode terminal 352 and the negative electrode terminal 353, as shown in FIGS. 3A and 3B.
  • the battery modules 314 each have four battery groups 312, as shown in FIG. 3B.
  • the four battery groups 312 each have 12 battery cells 310.
  • the four battery groups 312 belonging to one battery module 314 each include a pair of battery cell monitoring units (CCUs) 332 as shown in FIGS. 2 and 3B. Thereby, each battery group 312 is shared and managed by the pair of battery cell monitoring units (CCU) 332.
  • the battery cells 310 each having 12 sets are divided into six each of the high potential side and the low potential side. Both the high potential side and low potential side terminals of each battery cell 310 are respectively connected to input terminals (not shown) of a pair of battery cell monitoring units (CCU) 332.
  • One battery cell monitoring unit (CCU) 332 is in charge of managing the six battery cells 310.
  • one battery cell monitoring unit (CCU) has three battery cell monitoring units (CCU) 332, one battery cell monitoring unit (CCU) 332 manages four battery cells 310, etc.
  • the number of battery cells 310 in charge of which 332 is in charge may be set to any number.
  • the battery cell monitoring unit (CCU) 332 on the high potential side and the low potential side detects the inter-terminal voltage of each battery cell 310 connected to each input terminal, and based on the detected inter-terminal voltage of each battery cell 310
  • SOC State Of Charge or less, sometimes abbreviated as SOC
  • the battery pack 252 In the battery system 201 according to the present invention, among the basic units constituting the battery system 201, the basic unit belonging to the hierarchical scale immediately above the battery module 314 is the battery pack 252. In the example of FIG. 2, three battery packs 252 are depicted.
  • Each battery pack 252 has a battery control unit (BCU) 264, as shown in FIGS. 2, 3A and 3B.
  • FIG. 2 shows a mode in which a plurality of battery modules 314 are connected under the control of a battery control unit (BCU) 264, only one battery module 314 is shown in FIG. 3B in order to briefly show the configuration. The connected aspect is shown. The following description will be made on the assumption that the battery control unit (BCU) 264 belongs to a plurality of battery modules 314 under its control. Moreover, in FIG. 2, description of code
  • the battery control unit (BCU) 264 receives SOC information related to the state of charge (SOC) of the battery cell 310 from the battery cell monitoring unit (CCU) 332 belonging to the battery module 314 under control of the battery control unit (BCU). Based on the SOC information, the battery control unit (BCU) 264 performs management including diagnosis of overcharge or overdischarge for the battery module 314 under its control.
  • SOC state of charge
  • the battery control unit (BCU) 264 reports the above-described SOC information and the like to the integrated control unit (IBCU) 226 and the system control unit (BSCU) 270 (BSCU), which are upper control units of itself.
  • IBCU integrated control unit
  • BSCU system control unit
  • the basic unit belonging to the highest hierarchical scale is the battery block 212.
  • the battery block 212 In the example of FIG. 2, three battery blocks 212 are depicted.
  • Each battery block 212 is formed by connecting two battery units 222A and 222B in parallel as shown in FIG. 3A.
  • Each of the two battery units 222A and 222B further includes a plurality of battery packs 252.
  • each of the battery units 222A and 222B has three battery packs 252, respectively.
  • a configuration may be employed in which two sets of battery units 222A and 222B belonging to each battery block 212 are connected in series. Further, the number of battery units 222A and 222B included in each battery block 212 is not limited to two. An appropriate number may be set in consideration of the use purpose and use condition of the battery system 201 according to the present invention.
  • Each battery block 212 has an integrated control unit (IBCU) 226, as shown in FIGS. 2, 3A and 3B.
  • the integrated control unit (IBCU) 226 receives SOC information related to the state of charge (SOC) of the battery cell 310 from the battery cell monitoring unit (CCU) 332 further belonging to the battery module 314 belonging to the battery pack 252 under its control. receive. Based on this SOC information, the integrated control unit (IBCU) 226 performs management including diagnosis of overcharge or overdischarge for the battery pack 252 under its control.
  • each integrated unit 224 includes relays 232, 233, 234, 235, current sensors 227, 228, and voltage sensors 229, 230, 231, in addition to the integrated control unit (IBCU) 226. ing.
  • the integrated control unit (IBCU) 226 manages the inside of the battery block 212.
  • the relays 232, 233, 234, 235 operate to electrically open or close the feed path of each battery unit 222A, 222B.
  • the current sensors 227 and 228 detect the magnitude of the current flowing through each of the battery units 222A and 222B.
  • the voltage sensor 229 detects the positive electrode side voltage (voltage of the positive electrode terminal 244) of the main power supply line of the battery system 201 according to the present invention, as shown in FIG. 3A.
  • the voltage sensors 230 and 231 detect the positive side voltage of the feeding path of each of the battery units 222A and 222B. Specifically, the voltage sensors 230 and 231 detect the voltage between the terminals of each of the battery units 222A and 222B.
  • the integrated control unit (IBCU) 226 detects the charge / discharge current detected by the current sensors 227, 228, the voltage detected by each of the voltage sensors 229, 230, 231, and the ground from the battery pack 252 under its control. Various information including a fault occurrence state or information from the system control unit (BSCU) 270 is received. The integrated control unit (IBCU) 226 performs switching control of the relays 232, 233, 234, and 235 based on the various detected values and information received in this manner.
  • the integrated control unit (IBCU) 226 also includes various information including the occurrence of a ground fault from the battery pack 252, detection values of charge / discharge current by the current sensors 227, 228, and each part by the voltage sensors 229, 230, 231. The voltage detection value is reported to the upper system control unit (BSCU) 270.
  • BSCU system control unit
  • each battery unit 222A, 222B is provided with a current limiter 236, 237.
  • a current limiter 236, 237 For example, when connecting the battery unit 222A between the positive electrode connection 246 and the negative electrode connection 247, first, the relay 232 is closed. Thereby, the battery unit 222A is connected between the positive electrode connection 246 and the negative electrode connection 247 via the current limiter 236. At this time, the current value flowing to the current limiter 236 is detected by the current sensor 227.
  • the relay 234 is closed and then the relay 232 is opened.
  • the charge / discharge current value of the battery cell 310 converges to a safe value.
  • a lithium ion secondary battery is adopted as the battery cell 310.
  • the terminal voltage of the lithium ion secondary battery changes based on the SOC. Therefore, the detected value of the voltage sensor 230 can be used to predict the current when the relay 234 is turned on.
  • the relay 232 is turned on in order to improve safety, and the current flowing in the current limiter 236 is restricted to a safe value, and the relay 234 is turned on based on the detection value of the voltage sensor 230.
  • a configuration to control may be adopted.
  • the relay 234 may be suddenly switched on without omitting the relay 232 on.
  • the control procedure of the relays 233 and 235 regarding the battery unit 222B is the same as the description content regarding the battery unit 222A mentioned above.
  • the positive electrode terminal 244 is connected in parallel to the positive electrode connection 246 via a plurality of disconnectors 238 respectively.
  • the positive electrode connection 246 is connected to the positive electrode output end 248 via one breaker 242.
  • Circuit breaker 242 is controlled to open and close in accordance with a control signal of system control unit (BSCU) 270.
  • BSCU system control unit
  • the negative electrode terminals 245 respectively included in the individual battery blocks 212 are connected in parallel to the negative electrode connection 247 via a plurality of disconnectors 239 respectively.
  • the negative electrode connection 247 is connected to the negative electrode output end 248 via one breaker 240.
  • the disconnectors 238 and 239 and the circuit breakers 240 and 242 may be collectively referred to as "switch".
  • the switches 238, 239, 240, 242 are closed, as shown in FIG. 3A, the battery blocks 212 are connected in parallel to the positive electrode output end 248 and the negative electrode output end 249.
  • the battery system 201 according to the present invention is connected to the positive electrode output end 248 and the negative electrode output end 249, that is, to the inverter 104.
  • a system control unit (BSCU) 270 performs opening / closing control of the circuit breaker 242.
  • the system control unit (BSCU) 270 starts the battery system 201 from the battery system 201 based on the information or request from the integrated control unit (IBCU) 226 or based on the information from the management apparatus of the upper battery system 201.
  • IBCU integrated control unit
  • control is performed to open the circuit breaker 242.
  • the circuit breaker 242 When the circuit breaker 242 is opened, the battery system 201 is electrically disconnected from the grid of the power system 101 shown in FIG. Thereby, the flow of current flowing in the battery system 201 is shut off. Thereafter, the disconnectors 240 are opened, and the disconnectors 238 and 239 for each battery block 212 are also opened.
  • the disconnectors 240 By opening the power supply path of the battery system 201 in such a procedure, maintenance and inspection work can be easily performed in each individual battery system 201, and safety during the work can be ensured.
  • the system control unit (BSCU) 270, the integrated control unit (IBCU) 226, and the battery control unit (BCU) 264 are microcomputers (hereinafter referred to as microcomputers). Implement various functions with the software installed in. Therefore, it is necessary to supply control power for operating the microcomputer to the microcomputer.
  • the microcomputer operates with relatively low DC power of, for example, about 5V. Therefore, in the battery system 201 according to the present invention, AC power is converted into DC power and used instead of the stored DC power.
  • AC power supplied to the microcomputer AC power from the outside may be converted to DC power and used, or DC power stored in the inside may be used.
  • AC power from the outside is supplied via the control power input end 282.
  • AC power from the control power input 282 is supplied to an uninterruptible power supply (UPS) 284.
  • UPS uninterruptible power supply
  • AC power supplied via the control power input 282 produces DC power for control.
  • the uninterruptible power supply (UPS) 284 substitutes for supplying necessary DC power.
  • the DC power supplied from the uninterruptible power supply (UPS) 284 is supplied via the power supply unit (PSU) 286 to the system control unit (BSCU) 270, the integrated control unit (IBCU) 226, and the battery control unit (BCU). H.264 respectively.
  • PSU power supply unit
  • BSCU system control unit
  • IBCU integrated control unit
  • BCU battery control unit
  • the battery system 201 includes the uninterruptible power supply (UPS) 284. Therefore, even if an abnormal situation occurs in which the AC power from the control power input end 282 is interrupted, the battery The operation of the system 201 can be continued. When such an abnormal situation occurs, the use of the AC power from the outside is switched to the use of the DC power supplied by the uninterruptible power supply (UPS) 284.
  • UPS uninterruptible power supply
  • the two sets of insulating circuits (serial transmission lines) 346A and 346B in the battery pack 252 are connected to a battery control unit (BCU) 264 via first transmission lines 342A and 342B, as shown in FIG. 3B.
  • the second transmission lines 344 connect between the battery cell monitoring units (CCUs) 332 adjacent to each other.
  • the battery control unit (BCU) 264 operates by receiving the supply of DC power from the control power supply line 288, as shown in FIG. 3A.
  • Each battery cell monitoring unit (CCU) 332 operates by receiving supply of DC power from the battery cell 310 under its control. Therefore, the reference potential of the power supply voltage supplied to the battery control unit (BCU) 264 and the reference potential of the power supply voltage supplied to each battery cell monitoring unit (CCU) 332 are different from each other. That is, the potentials of the first transmission lines 342A and 342B and the potential of the second transmission line 344 are different from each other. Therefore, the first transmission lines 342A and 342B and the second transmission line 344 are connected via the isolation circuits 346A and 346B.
  • the isolation circuits 346A and 346B are photocouplers and transformers.
  • the isolation circuits 346A and 346B serve to once modulate an electrical signal to another transmission medium such as an optical signal or a magnetic flux signal, and then demodulate it again to an electrical signal.
  • the first transmission lines 342A and 342B and the second transmission line 344 can be reliably electrically isolated.
  • the battery cell monitoring unit (CCU) 332 with the higher potential transmits in order from the lower potential to the lower potential, but conversely, from the lower potential to the higher potential You may transmit toward.
  • connection may be made via an electrical resistance or a diode, It may be connected via a capacitor.
  • each battery cell monitoring unit (CCU) 332 sent from the battery control unit (BCU) 264 is sent from the battery control unit (BCU) 264 to the insulating circuit 346A via the first transmission line 342A. Then, it is sent from the insulating circuit 346 A to the battery cell monitoring unit (CCU) 332 on the high potential side via the second transmission line 344. Next, the data transmitted through the second transmission line 344 is transmitted to the isolation circuit 346B. Then, it returns to the battery control unit (BCU) 264 via the first transmission line 342B.
  • Each battery cell monitoring unit (CCU) 332 checks whether or not the address data in the sent data is addressed to itself, and if the address data is addressed to itself, it responds to the data. Furthermore, information requested based on the content of the command is added to the sent data as necessary, and the data is sent to the next battery cell monitoring unit (CCU) 332 in the order of transmission direction.
  • Each battery cell monitoring unit (CCU) 332 adds various detection results and diagnosis results to the battery control unit (BCU) 264 in response to a request from the battery control unit (BCU) 264.
  • Each battery cell monitoring unit (CCU) 332 can perform various diagnoses in addition to overcharge and overdischarge, and may add and transmit these diagnosis results.
  • a battery control unit (BCU) 264 is connected to an integrated control unit (IBCU) 226, which is a higher control unit, via an information bus 272 and an information bus connector 356, respectively. Data of various detection results and diagnosis results received via the second transmission line 344 are transmitted to the integrated control unit (IBCU) 226.
  • IBCU integrated control unit
  • data of various detection results and diagnosis results received by the battery control unit (BCU) 264 are stored and held in the non-volatile memory 266.
  • the battery control unit (BCU) 264 when receiving an abnormality diagnosis result including information related to the occurrence state of the ground fault (the location of the ground fault and information on the weight and weight level of the ground fault), the battery control unit (BCU) 264 is the basis of the fault diagnosis.
  • the detected result is stored in the non-volatile memory 266 together with the identification data of the battery cell 310 related to the abnormality diagnosis.
  • Information reported from the battery control unit (BCU) 264 to the integrated control unit (IBCU) 226 is further reported to the system control unit (BSCU) 270 via the information bus 272.
  • the battery system 201 configured as described above is provided with the first ground fault detection device 10-1 having a ground fault detection function for detecting the presence or absence of a ground fault.
  • a first battery pack 252-1 corresponding to the battery system according to the first embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a first battery pack 252-1 and a first ground fault detection device 10-1 corresponding to the battery system according to the first embodiment of the present invention.
  • the first battery pack 252-1 is configured to include a first ground fault detection device 10-1 having a ground fault detection function.
  • the first ground fault detection device 10-1 includes the battery module 314, the booster 11, the fuse 17, the diode 21, a battery control unit (BCU) 264, and a ground resistor 45.
  • the fuse 17 is not an essential component of the present invention, and may be omitted.
  • a battery module 314 formed by connecting a plurality of battery cells 310 in series is interposed between the positive electrode terminal 352 and the negative electrode terminal 353, as shown in FIGS. 3B and 4.
  • the battery module 314 corresponds to the "DC power supply unit" of the present invention.
  • the positive electrode terminal 352 and the negative electrode terminal 353 are members corresponding to the “pair of ungrounded terminals” in the present invention, and none of them is grounded.
  • the positive electrode terminal 352 corresponds to the "high potential side of the non-grounding terminals" in the present invention, and the negative electrode terminal 353 corresponds to the "low potential side of the non-grounding terminals" of the present invention.
  • the first connection point 13 connected to the positive electrode terminal 352 is connected to the second connection point 15 connected to the input side of the booster 11 via the fuse 17. Further, between the second connection point 15 and the third connection point 19 connected to the output side of the boosting unit 11, the boosting unit 11 and the diode 21 are connected in parallel.
  • the boosting unit 11 is provided on the high potential (see the potential E0 of FIG. 4) side (the first connection point 13) of the battery module 314 and is a boosted potential obtained by boosting the high potential (see potential E0 + E2 in FIG. 4). ) Has a function to output.
  • an insulating DC-DC converter may be used as the booster 11 as appropriate.
  • the potential (refer to the potential E2 in FIG. 4) of the boosted portion in the booster 11 is 5% (24 V) to 20% (96 V) It is preferable to set in the range.
  • the booster 11 can be made compact, but it becomes difficult to improve the detection accuracy of the ground fault. Further, if the ratio to the high potential is too large, it is advantageous to enhance the detection accuracy of the ground fault, but it becomes difficult to configure the booster 11 compact.
  • the diode 21 is disposed in parallel to the booster 11 so as to connect the cathode terminal to the second connection point 15 and connect the anode terminal to the third connection point 19.
  • the battery control unit (BCU) 264 includes a protection resistor 25, a ground fault detection resistor 27, a voltage sensor 31, a comparator 33, first and second resistors 35 and 37, and a ground fault detection unit 41. It is configured with.
  • a protective resistance (resistance value: R0) 25 and a ground fault detection resistance (resistance value: R1) 27 are connected in series.
  • the resistance values R0 and R1 of the protective resistance 25 are set so that the resistance value R0 of the protection resistance 25 is sufficiently large compared to the resistance value R1 of the ground fault detection resistance 27.
  • the resistance value of the protection resistor 25; R0 is set in mega ohms, while the resistance value of the ground fault detection resistor 27; R1 is set to about 20 to 30 times lower than the resistance value R0. .
  • a voltage sensor 31 is provided in parallel to the ground fault detection resistor 27 between the ground terminal 23 and a first connection point 29 between the protective resistor 25 and the ground fault detection resistor 27 and the ground terminal 23.
  • the voltage sensor 31 has a function of detecting and outputting the voltage across the ground detection resistor 27.
  • the first inter-resistor connection point 29 corresponds to the "inter-resistor connection point" in the present invention.
  • the first inter-resistor connection point 29 is connected to the non-inverted input terminal (+) of the comparator 33.
  • First and second resistors 35 and 37 are connected in series between the DC power supply (voltage; Vcc) 34 and the ground terminal 23 to generate an input signal to the inverting input terminal (-) of the comparator 33.
  • the second inter-resistance connection point 39 between the first and second resistors 35 and 37 is connected to the inverting input terminal ( ⁇ ) of the comparator 33.
  • the output terminal (output voltage; Vout) of the comparator 33 is connected to the ground fault detection unit 41.
  • the ground fault detection unit 41 is configured such that the potential of the first resistance connection point 29 between the protective resistance 25 and the ground fault detection resistance 27 and the potential of the predetermined threshold (between the first and second resistances 35 and 37). It has a function of detecting the occurrence state of the ground fault in the battery module 314 based on the comparison result concerning the magnitude relation with the potential of the second resistance connection point 39; Vref).
  • the occurrence state of the ground fault is a concept including the occurrence point of the ground fault and the degree of the ground fault, as described later.
  • the ground fault detection unit 41 is configured to output, to the booster unit 11, an on / off control signal for turning on or off the booster function of the booster unit 11.
  • the ground fault detection unit 41 determines that the ground fault detection voltage V1 exceeds the potential Vref of the threshold when the boost unit 11 is on. It is assumed that a ground fault has occurred.
  • the mechanism of action is as follows.
  • the potential of the first inter-resistive junction 29 when the booster 11 is on is set to the high potential (the potential E0 shown in FIG. 4) associated with the second junction 15.
  • the potential of the first resistance connection point 29 when the booster 11 is turned on is higher than the potential of the second connection point 15 (the potential E0 shown in FIG.
  • the potential (the potential (E0 -E1 + E2) shown in FIG. 4) obtained by adding the potential E2 shown is a protective resistance (resistance value: R0) 25 and a ground fault detection resistance (resistance value: R1) 27 and a ground described later.
  • the ground fault detection voltage V1 which is the potential of the first resistance connection point 29 when the booster 11 is on, falls below the threshold potential Vref.
  • the potential of the first resistance connection point 29 when the booster 11 is turned on is considered even if the decrease in the relative potential E1 of the occurrence point 43 of the ground fault is taken into account.
  • the resistance value related to the ground fault resistance 45 is increased by the consumed amount.
  • the ground fault detection voltage V1 which is the potential of the first inter-resistor connection point 29 when the booster 11 is on, exceeds the threshold Vref. .
  • the potential Vref of the threshold value is the connection point between the first resistances in the normal state where no ground fault occurs and the abnormal state where the ground fault occurs when the booster 11 is on. It is set with reference to the potential of 29 (ground fault detection voltage V1). Specifically, when the boosting portion 11 is turned on, the ground potential detection voltage V1 in the normal state converges below the threshold potential Vref, and the ground potential detection voltage V1 in the abnormal state is detected. Is set in consideration of exceeding the threshold potential Vref.
  • the ground fault detection voltage V1 (the potential of the first inter-resistor connection point 29) generated in the ground fault detection resistance (resistance value R1) 27 is obtained by E2 ⁇ R1 / (R0 + R1 + R2). Therefore, if the threshold potential Vref is set such that Vref E E2 ⁇ R1 / (R0 + R1 + R2), even if a ground fault occurs between any of the battery cells 310, this ground fault is assured Can be detected.
  • the threshold voltage Vref can be increased as the value of the boosted voltage E2 is increased. Therefore, the ground fault detection accuracy can be improved as the value of the boosted potential E2 is increased.
  • each of inter-battery connection points 311 (see FIG. 4) between battery cells 310 (see FIG. 3B) adjacent to each other is relative to ground point 23. It is electrically isolated. At this time, an insulation resistance having a resistance value of mega ohms exists between any inter-cell connection point 311 and the ground point 23.
  • ground fault resistance resistance value: R2
  • ground fault location 43 the degree of ground fault between inter-cell connection point 43 and ground point 23.
  • the resistance value R2 of the ground resistor 45 is lower than that of the insulation resistance having a resistance value of mega ohms.
  • the resistance value of the ground fault resistor 45 By determining R2 and using this resistance value R2, the occurrence state of the ground fault is determined.
  • FIG. 5 is a flowchart showing a procedure of ground fault detection processing in the first battery pack 252-1 and the first ground fault detection device 10-1.
  • FIG. 6A is a time chart showing the output voltage waveform Vout of the comparator 33 when a ground fault occurs at time t1
  • FIG. 6B is a ground fault detection when a ground fault occurs at time t1. It is a time chart figure showing a signal waveform.
  • the battery control unit (BCU) 264 executes the ground fault detection process shown in FIG. 5 for detecting the presence or absence of a ground fault in the first battery pack 252-1 (first ground fault detection device 10-1). Be done.
  • the battery control unit (BCU) 264 repeats the ground fault detection process shown in FIG. 5 at a predetermined cycle time when the first battery pack 252-1 (first ground fault detection device 10-1) is in operation. Run. If the occurrence of a ground fault is detected and the degree of the ground fault is severe, the battery system 201 according to the present invention is not limited to the first battery pack 252-1 and the first ground fault detection device 10-1. It is necessary to promptly take appropriate measures such as electrically disconnecting the
  • step S11 shown in FIG. 5 the ground fault detection unit 41 sends a control signal to the effect that the boosting function of the boosting unit 11 is turned on, to the boosting unit 11.
  • the boosting unit 11 adds a boosted potential (potential E2 shown in FIG. 4) to the high potential (potential E0 shown in FIG. 4) at the second connection point 15 (FIG. 4).
  • the booster 11 returns to the ground fault detector 41 to that effect.
  • step S ⁇ b> 12 the ground fault detection unit 41 inputs the detection value of the voltage sensor 31 at the timing when the return related to the boosted potential output from the boosting unit 11 is received. Thereby, the ground fault detection unit 41 detects a ground fault detection voltage V1 which is the potential of the first resistance connection point 29 when the booster 11 is on.
  • step S13 the ground fault detection unit 41 detects the ground fault detection voltage V1 detected in step S12 and the potential of the predetermined threshold (the second resistance connection point between the first and second resistors 35 and 37). The magnitude relationship with the potential 39) Vref is compared.
  • step S13 If it is determined that the ground fault detection voltage V1 is equal to or lower than the threshold potential Vref as a result of the comparison in step S13 ("No" in step S13), the battery control unit (BCU) 264 performs processing of The flow is returned to step S11, and the following processing is performed.
  • step S13 if it is determined that the ground fault detection voltage V1 exceeds the threshold potential Vref as a result of comparison in step S13 ("Yes" in step S13, see FIG. 6A), the battery The control unit (BCU) 264 deems that a ground fault has occurred in the battery module 314, and advances the flow of processing to the next step S14.
  • step S ⁇ b> 14 the ground fault detection unit 41 sends a control signal to the effect that the boosting function of the boosting unit 11 is turned off to the boosting unit 11.
  • the booster 11 outputs the high potential (the potential E0 shown in FIG. 4) at the second connection point 15.
  • the booster 11 turns off its own boosting function and outputs the high potential E0, the booster 11 returns to the ground fault detector 41 to that effect.
  • step S ⁇ b> 15 the ground fault detection unit 41 inputs the detection value of the voltage sensor 31 at the timing of receiving the reply related to the high potential output from the boosting unit 11. Thereby, the ground fault detection unit 41 detects a ground fault detection voltage V2 which is the potential of the first resistance connection point 29 when the boosting unit 11 is off.
  • step S16 the ground fault detection unit 41 uses the ground fault detection voltages V1 and V2 to calculate the resistance value R2 of the ground fault resistor 43 and the relative potential E1 of the ground fault location 43.
  • the procedure for calculating the resistance value R2 related to the ground fault resistance 43 and the relative potential E1 of the ground fault location will be described later in detail.
  • step S17 the ground fault detection unit 41 calculates the occurrence state of the ground fault based on the resistance value R2 related to the ground fault resistance 43 calculated in step S16 and the relative potential E1 of the ground fault location.
  • production state of a ground fault it mentions later in detail.
  • step S18 the ground fault detection unit 41 generates a ground fault detection signal (see FIG. 6B) including the occurrence state of the ground fault acquired by the calculation of step S17.
  • the battery control unit (BCU) 264 sends the generated ground fault detection signal to its superior integrated control unit (IBCU) 226 and system control unit (BSCU) 270.
  • the battery control unit (BCU) 264 returns the flow of the process to step S11 and causes the following process to be performed.
  • Each of integrated control unit (IBCU) 226 and system control unit (BSCU) 270 that has received the ground fault detection signal determines the occurrence state of the ground fault, and according to the determination result, for example, according to the present invention. Appropriate measures such as electrically disconnecting the first battery pack 252-1 and the first ground fault detection device 10-1 from the battery system 201 are performed.
  • FIG. 7A shows a case where a ground fault occurs at a certain inter-battery connection point (ground fault location) 43, and the output of the booster 11 is a boosted potential (with boosting).
  • 1 is an explanatory view showing a closed loop circuit C1 formed in the first ground detecting device 10-1.
  • FIG. 7B shows that the first battery pack 252- has a ground fault at a certain inter-battery connection point (ground fault location) 43 and the output of the booster 11 is at a high potential (without boosting).
  • 1 is an explanatory view showing a closed loop circuit C2 formed in the first ground detecting device 10-1.
  • the voltage sensor 31 can detect the ground fault detection voltage V1 which is the potential of the first inter-resistive junction 29 when the booster 11 is on. Therefore, the current I1 flowing through the closed loop circuit C1 can be described by the following equation (2) as the current I1 flowing through the ground fault detecting resistor R1.
  • I1 V1 / R1 (equation 2)
  • the output of the booster 11 is switched to a high potential (without boosting) in a state where a ground fault occurs at a certain inter-battery connection point (ground fault location) 43.
  • the first battery pack 252-1 the first ground fault detection device 10-1
  • the battery module 314 the first connection point 13, the fuse 17, and the second
  • the third connection point 19 the protection resistor 25, the first connection point between resistances 29, the ground fault detection resistance 27, the ground terminal 23, the virtual conductor 24 connecting between the ground terminals 23, the ground terminal 23, and
  • a closed loop circuit C2 reaching the inter-battery connection point 43 which is a ground fault location is formed via the ground fault resistance 45, respectively.
  • the voltage sensor 31 can detect a ground fault detection voltage V2 which is the potential of the first inter-resistive junction 29 when the booster 11 is off. Therefore, the current I2 flowing through the closed loop circuit C2 can be described by the following equation 6 as the current I2 flowing through the ground fault detecting resistor R1.
  • I2 V2 / R1 (equation 6)
  • the resistance value R2 related to the ground fault resistance 43 is a value in mega ohms in a normal state in which no ground fault occurs. However, in an abnormal state in which a ground fault occurs, the value decreases according to the degree of the ground fault. Therefore, by evaluating the resistance value R2 related to the ground fault resistance 43, the degree of the ground fault at the ground fault location (inter-battery connection point) is either mild, medium or heavy You can recognize the
  • the relative potential E1 of the ground fault point is zero in the normal state in which no ground fault occurs.
  • the battery module 314 is defined by previously defining the potential width to which each of the plurality of inter-battery connection points belongs, and checking which inter-battery connection point the relative potential E1 of the ground fault corresponds to. It is possible to uniquely identify the position of the ground fault point in
  • the storage voltage of one battery cell 310 is 3V.
  • the potential width of the lowest potential inter-battery connection point (L1) is 2.7 V to 3.3 V
  • the potential width of L2) is 5.7 V to 6.3 V
  • the potential width of the inter-cell connection point (L3) adjacent to the high potential side with respect to the inter-cell connection point (L2) is 8.7 V to 9.3 V
  • the potential width to which each of the plurality of inter-battery connection points (L1 to L3) belongs is defined in advance, and so on.
  • the data of the potential width to which each of the plurality of inter-battery connection points (L1 to L3) belongs is stored and managed in the battery cell monitoring unit (CCU) 332.
  • the ground fault detection unit 41 has a relative potential E1 of the ground fault location and a potential width stored in the battery cell monitoring unit (CCU) 332 and to which the plurality of inter-battery connection points (L1 to L3) belong. Based on the data, it is uniquely specified that the position of the ground fault in the battery module 314 is the inter-battery connection point (L2) adjacent to the high-potential side with respect to the lowest inter-battery connection point (L1) can do.
  • the ground fault in the DC power supply unit (battery module 314) based on the result of comparison between the potential at the junction 29 between the protective resistor 25 and the ground fault detection resistor 27 and the potential Vref at a predetermined threshold value. It was decided to adopt a configuration having a ground fault detection unit 41 that detects the presence or absence.
  • the high potential of the DC power supply unit (battery module 314) Since the boosted potential (E0 + E2) obtained by boosting E0) is adopted as a ground fault detection reference potential, a single type ground fault detection reference potential without causing a so-called insensitive body (ground fault undetectable potential) The presence or absence of a ground fault can be accurately detected with a simple configuration in real time using
  • ground fault detection unit 41 is connected to the DC power supply unit (battery module 314) when the potential at the connection point 29 between the protection resistor 25 and the ground fault detection resistor 27 exceeds the threshold potential Vref.
  • a configuration is employed to detect that a ground fault has occurred.
  • the ground fault is generated in real time by determining whether or not the potential at the inter-resistor connection point 29 between the protective resistor 25 and the ground fault detection resistor 27 exceeds the threshold potential Vref.
  • the presence or absence can be detected accurately with a simple configuration.
  • the boosting unit 11 has a function of switching and outputting one of the high potential (E0) and the boosted potential (E0 + E2)
  • the ground fault detecting unit 41 has a function of boosting the output of the boosting unit 11
  • the occurrence of a ground fault in the DC power supply unit (battery module 314) is determined using the potential at the resistance connection point 29 in the case and the potential at the connection point 29 when the output of the booster 11 is high.
  • a configuration for detecting may be adopted.
  • the generation state of the ground fault in the DC power supply unit (battery module 314) can be detected, so detailed information on the generation state of the ground fault is grasped
  • it is possible to promptly take appropriate measures such as electrically disconnecting the first battery pack 252-1 and the first ground fault detection device 10-1 from the battery system 201 according to the present invention. Can be carried out.
  • FIG. 8 is a circuit diagram of a second battery pack 252-2 corresponding to the battery system according to the first embodiment of the present invention, and a first ground fault detection device 10-2.
  • the first battery pack 252-1 and the first ground fault detection device 10-1, and the second battery pack 252-2 and the second ground fault detection device 10-2 are replaced by the booster 11.
  • the other configuration is the same in principle except that the step-down unit 51 is adopted. Therefore, by describing the difference between the two, the description will replace the description of the battery system (second battery pack 252-2) and the second ground fault detection device 10-2 according to the second embodiment of the present invention. .
  • the boosted potential (E0 + E2) obtained by boosting the high potential (E0) of the DC power supply unit (battery module 314) by the booster unit 11 is While the second battery pack 252-2 and the second ground fault detection device 10-2 are used as the ground potential detection reference potential, the low potential of the DC power supply unit (battery module 314)
  • a step-down potential obtained by stepping down 0 V) by the step-down unit 51 is adopted as a ground fault detection reference potential.
  • an insulating DC-DC converter may be used as the step-down unit 51 as appropriate.
  • the potential of the step-down portion in the step-down unit 51 is 5% (24 V) to 20% (96 V) like the case of the booster 11 It is preferable to set in the range of The reason is the same as the case of the booster 11.
  • the first battery pack 252-1 and the first ground fault detection device 10-2 according to the adoption of the step-down unit 51, the first battery pack 252-1 and the first ground fault detection device 10.
  • the positive / negative relationship of the voltage is reversed compared to -1.
  • the diode 21 provided in parallel with the step-down unit 51 is the first battery pack 252-1,
  • the cathode terminal is connected to the third connection point 19, while the anode terminal is connected to the second connection point 15. ing.
  • the ground fault in the DC power supply unit (battery module 314) based on the result of comparison between the potential at the junction 29 between the protective resistor 25 and the ground fault detection resistor 27 and the potential Vref at a predetermined threshold value. It was decided to adopt a configuration having a ground fault detection unit 41 that detects the presence or absence. Also in the case of the second embodiment, the basic concept is the same as the first embodiment, assuming that a ground fault occurs at the first connection point 13 shown in FIG.
  • the potential Vref may be set appropriately.
  • the low potential of the DC power supply unit (battery module 314) Since the step-down step-down potential is adopted as a ground fault detection reference potential, a single type of ground fault detection reference potential can be used in real time without generating a so-called insensitive body (ground fault undetectable potential). The presence or absence of a ground fault can be detected accurately with a simple configuration.
  • the ground fault detection unit 41 generates a DC power supply unit (battery module) when the potential at the connection point 29 between the protection resistor 25 and the ground fault detection resistor 27 exceeds the threshold potential Vref.
  • a configuration is employed to detect that a ground fault has occurred in 314).
  • the step-down unit 51 has a function of switching and outputting either low potential or step-down potential
  • the ground fault detection unit 41 is a connection point between resistances when the output of the step-down unit 51 is a step-down potential.
  • a configuration is employed in which the occurrence of a ground fault in the DC power supply unit (battery module 314) is detected using the 29 potential and the potential of the inter-resistor connection point 29 when the output of the step-down unit 51 is low. May be
  • the generation state of the ground fault in the DC power supply unit (battery module 314) can be detected, so detailed information on the generation state of the ground fault is grasped
  • it is possible to promptly take appropriate measures such as electrically disconnecting the first battery pack 252-1 and the first ground fault detection device 10-1 from the battery system 201 according to the present invention. Can be carried out.
  • the present invention when occurrence of a ground fault is detected in any one of the first or second battery pack 252-1 and 252-2.
  • the relevant battery pack in which the occurrence of the ground fault has been detected is electrically separated from the battery system 201 according to the present invention, the present invention is not limited to this example.
  • the corresponding battery pack in which the occurrence of the ground fault is detected is detected from the battery system 201 according to the present invention It is also possible to adopt a configuration that electrically disconnects and warns or notifies of that.
  • the ground fault may be caused by any one of the first or second ground fault detection device 10-1 or 10-2.
  • the corresponding ground fault detection device in which the occurrence of the ground fault has been detected is electrically disconnected from the battery system 201 according to the present invention. It is not limited.
  • the corresponding ground fault detection device in which the occurrence of the ground fault has been detected is While electrically disconnecting from the battery system 201 according to the present invention, a configuration to warn or notify of that may be adopted.

Abstract

第1の電池パック(252-1)は、正極端子(352)および負極端子(353)間に複数の電池セル(310)を直列接続してなる電池モジュール(314)と、複数の電池セル(310)のうち相互に隣り合う電池セル(310)間に係る電池間接続点(311)および接地点(23)の間にそれぞれあらわれる地絡抵抗(45)と、正極端子(352)に設けられて電池モジュール(314)のうち高電位を昇圧した昇圧電位を出力する昇圧部(11)と、昇圧部(11)の出力側である第3の接続点(19)および接地点(23)の間に直列に設けられる保護抵抗(25)および地絡検知抵抗(27)と、保護抵抗(25)および地絡検知抵抗(27)間に係る抵抗間接続点(29)の電位と、予め定められるしきい値の電位(Vref )との比較結果に基づいて、電池モジュール(314)における地絡の有無を検知する地絡検知部(41)と、を有する。

Description

電池システム、および地絡検知装置
 本発明は、電流路における地絡を検知する地絡検知機能を有する電池システム、および地絡検知装置に関する。
 電流路と大地との間は、電気的な絶縁状態を常に維持していることが求められる。この電気的な絶縁状態が何らかの異常発生によって破壊されると、電流路を流れていた電流が大地に向かって流れる、“地絡”と呼ばれる現象が起こる。
 従来、電流路での地絡を検知する地絡検知技術としては、地絡箇所からアースを介して流れる地絡電流を検出することで地絡の有無を検知するものが知られている。かかる地絡検知技術では、地絡電流を流すための起電力が発生しない電位(地絡検知回路の基準電位)で地絡が生じた場合は、地絡電流が流れないため、地絡の有無を検知することができないという不感帯の問題がある。
 かかる地絡検知の不感帯を除くために、特許文献1には、地絡検知回路の基準電位を予め複数用意し、これらを動的に切り替えて地絡検知を行う地絡検知技術が開示されている。
 特許文献1に係る地絡検知技術では、例えば、非接地直流電源の負極側を基準電位とする第1の地絡検知回路で負極側以外(非接地直流電源の正極側または内部)の地絡を検知する一方、負極側の地絡は、負極側以外(非接地直流電源の正極側または内部がとりえる範囲の任意の電位)を基準電位とする第2の地絡検知回路で検知する構成を採用している。
 特許文献1に係る地絡検知技術によれば、地絡検知に係る不感帯を生じさせることなく地絡発生の有無を精度良く検出することができる。
特開2005-189005号公報
 しかしながら、特許文献1に係る地絡検知技術では、複数種類の地絡検知用基準電位を動的に切り替える制御回路を備える必要があるため、切り替えによる検知の時間遅れや、装置構成の複雑化を招くという問題が生じていた。
 本発明は、上記実情に鑑みてなされたものであり、実時間で地絡の有無を簡素な構成をもって精度よく検知可能な電池システム、および地絡検知装置を提供することを目的とする。
 本発明に係る電池システムは、一対の非接地端子間に複数の電池を直列接続してなる直流電源部と、前記複数の電池のうち相互に隣り合う電池間に係る電池間接続点および接地点の間にそれぞれあらわれる地絡抵抗と、前記一対の非接地端子のうち高電位の側に設けられて当該高電位を昇圧した昇圧電位を出力する昇圧部と、前記昇圧部の出力側および前記接地点の間に直列に設けられる保護抵抗および地絡検知抵抗と、前記保護抵抗および前記地絡検知抵抗間に係る抵抗間接続点の電位と、予め定められるしきい値の電位との比較結果に基づいて、前記直流電源部における地絡の有無を検知する地絡検知部と、を有することを最も主要な特徴とする。
 本発明に係る電池システムによれば、実時間で地絡の有無を簡素な構成をもって精度よく検知することができる。
本発明に係る電池システムが適用される電力システムの概要を表すブロック図である。 本発明に係る電池システムの階層構造を概念的に表すブロック図である。 本発明に係る電池システムの回路構成図である。 図3Aに示す電池システムのうち、電池パック周辺を拡大して表す回路構成図である。 本発明の第1実施形態に係る電池システムに相当する第1の電池パック、および地絡検知装置を表す回路構成図である。 第1の電池パック、および地絡検知装置における地絡検知動作の手順を表すフローチャート図である。 地絡が生じた場合のコンパレータの出力電圧波形、および、地絡検知信号波形を対比して表すタイムチャート図である。 地絡が発生し、かつ、昇圧部の出力が昇圧電位(昇圧あり)である場合に、第1の電池パック(第1の地絡検知装置)内に形成される閉ループ回路を表す説明図である。 地絡が発生し、かつ、昇圧部の出力が高電位(昇圧なし)である場合に、第1の電池パック(第1の地絡検知装置)内に形成される閉ループ回路を表す説明図である。 本発明の第2実施形態に係る電池システムに相当する第2の電池パック、および地絡検知装置を表す回路構成図である。
 以下、本発明の第1および第2実施形態に係る電池システムについて、図面を参照して説明する。
[本発明に係る電池システムの概要]
 はじめに、本発明の第1および第2実施形態に係る電池システムを包括する概念である、本発明に係る電池システムの概要について説明する。
 本発明に係る電池システムは、地絡検知機能を有する地絡検知装置を備える。本発明に係る電池システム、および地絡検知装置は、一対の非接地端子間に複数の電池を直列接続してなる直流電源部と、複数の電池のうち相互に隣り合う電池間に係る電池間接続点および接地点の間にそれぞれあらわれる地絡抵抗と、一対の非接地端子のうち高電位の側に設けられて当該高電位を昇圧した昇圧電位を出力する昇圧部と、昇圧部の出力側および接地点の間に直列に設けられる保護抵抗および地絡検知抵抗と、保護抵抗および地絡検知抵抗間に係る抵抗間接続点の電位と、予め定められるしきい値の電位との比較結果に基づいて、直流電源部における地絡の有無を検知する地絡検知部と、を有することを最も主要な特徴とする。
 前記の直流電源部において、複数の電池のうち相互に隣り合う電池間に係る電池間接続点は、接地点(大地の電位)に対して絶縁されている。具体的には、地絡を生じていない通常時では、メガオーム単位の抵抗(本発明の“地絡抵抗”に相当する。)が、電池間接続点および接地点のそれぞれの間に存在する。
 本発明者らは、従来の地絡検知技術が不可避的に有する、複数種類の地絡検知用基準電位を動的に切り替えるために生じる検知の時間遅れや、装置構成の複雑化を招くといった問題を解決する目的で、鋭意研究を進めていた。特に、単一種類の地絡検知用基準電位を用いて地絡の検知を遂行することについて、試行錯誤を繰り返していた。
 そうしたところ、本発明者らは、地絡検知用基準電位を直流電源部の外にとれば、いわゆる不感体(地絡検知不能電位)を生じさせることなく、単一種類の地絡検知用基準電位を用いて地絡の検知を遂行することができるのではないか、との発想を得た。
 そして、本発明者らは、前記発想をブラッシュアップすることによって、地絡の発生有無に加えて、地絡の発生状態(地絡の発生箇所や、地絡の程度の軽重)をも検知することができることを見出し、本発明を完成させた。
 本発明に係る電池システム、および地絡検知装置によれば、実時間で地絡の有無を簡素な構成をもって精度よく検知することができる。
 さて、風力発電や太陽光発電などの自然エネルギーに由来する電力系統では、自然環境に及ぼす負荷が少ないという利点がある反面、その発電能力が自然環境に左右される。具体的には、風力や太陽光の強さは時々刻々と変化するため、電力系統に周波数変動や電圧変動などの悪影響を及ぼすことが懸念される。
 こうした懸念を除くアプローチのひとつとして、自然エネルギー発電装置に電池システムを併設し、電力系統の周波数変動や電圧変動の抑制を図る電力システムが提案された。図1は、本発明に係る電池システム201が適用される電力システム101の概要を表すブロック図である。
 電力システム101は、図1に示すように、電力系統102と、発電装置103と、インバータ104と、本発明に係る電池システム201とを備えて構成される。
 なお、本発明に係る電池システム201とは、後記する第1および第2実施形態に係る電池システムの両者を包括する概念である。
 発電装置103は、例えば、自然エネルギーに由来して発電した電力を電力系統102に供給する機能を有する。発電装置103と電力系統102との間を接続する電線105の連結点Aには、インバータ104を介して、本発明に係る電池システム201が接続されている。
 インバータ104は、発電装置103で発電された電力を直流電力に変換し、変換した直流電力を電池システム201へ送る機能と、電池システム201に蓄えられた直流電力を交流電力に変換し、変換した交流電力を電力系統102へ送る機能とを有する。負荷への給電は、交流の電力系統102を介して行われる。
 発電装置103として自然エネルギー発電装置103を採用した場合、その出力は、天候や季節などの自然環境の変化に係る影響を受けて変動する。この出力変動は、電力系統102の周波数変動や電圧変動を招き、電力系統102の電力品質を低下させる要因となる。
 この点、本発明に係る電池システム201は、電力系統102の周波数や電圧の変動が所定の範囲に収まるように機能する。すなわち、電池システム201は、電力系統102に過剰な電力が供給された場合はその過剰電力を電池システム201に充電する一方、電力が不足する場合は電池システム201に蓄えられた電力を放電する、いわゆるバッファ機能を有する。これにより、本発明に係る電池システム201は、電力系統102の周波数変動や電圧変動を抑制することができる。
[本発明に係る電池システム201の具体的構成]
 次に、本発明に係る電池システム201の具体的構成について、図2、図3A、および図3Bを参照して説明する。
 図2は、本発明に係る電池システム201の階層構造を概念的に表すブロック図である。図3Aは、本発明に係る電池システム201の回路構成図である。図3Bは、図3Aに示す電池システム201のうち、電池パック252周辺を拡大して表す回路構成図である。
 本発明に係る電池システム201は、図2および図3Aに示すように、複数の電池セル310を直列に接続してなる電池モジュール314と、複数の電池モジュール314を直並列に接続してなる電池パック252と、複数の電池パック252を並列に接続してなる電池ブロック212とを、相互に階層化して構成されている。
 なお、“直並列に接続”とは、複数の構成要素間を直列に接続するとともに、こうして直列に接続したもの同士をさらに並列に接続すること意味する。
〔電池モジュール314の構成〕
 本発明に係る電池システム201において、電池システム201を構成する基本単位のうち最小規模の基本単位が、電池モジュール314である。
 複数の電池モジュール314のそれぞれは、その基本構成がいずれも同一である。そこで、ひとつの電池モジュール314の構成を代表して説明することにより、全体の説明に代えることとする。このことは、後記する複数の電池パック252、および、複数の電池ブロック212についても同様である。
 個々の電池モジュール314は、図3Aおよび図3Bに示すように、正極端子352および負極端子353を介して、他の電池パック252に属する電池モジュール314に対して直列に接続されている。電池モジュール314は、図3Bに示すように、それぞれ4つの電池グループ312を有する。4つの電池グループ312は、それぞれ12個を組とする電池セル310を有する。
 ひとつの電池モジュール314に属する4つの電池グループ312は、図2および図3Bに示すように、一対の電池セル監視部(CCU)332をそれぞれ備えている。これにより、個々の電池グループ312は、一対の電池セル監視部(CCU)332によって分担管理される。12個を1組とする電池セル310は、高電位側および低電位側の各6つづつに分けられる。各電池セル310の高電位側および低電位側の両端子は、一対の電池セル監視部(CCU)332の入力端子(不図示)にそれぞれ接続されている。
 ひとつの電池セル監視部(CCU)332は、6つの電池セル310の管理を担当する。ただし、電池セル監視部(CCU)332の数を3つとし、ひとつの電池セル監視部(CCU)332が4つの電池セル310を管理するなどといったように、ひとつの電池セル監視部(CCU)332がその管理を担当する電池セル310の数は、任意の数に設定にしてもよい。
 高電位側および低電位側の電池セル監視部(CCU)332は、それぞれの入力端子に接続された各電池セル310の端子間電圧を検出し、検出した各電池セル310の端子間電圧に基づいて、各電池セル310毎の充電状態(SOC:State Of Charge 以下、SOCと省略する場合がある。)を演算する。さらに各電池セル310毎の端子間電圧に基づいて、過充電または過放電の診断を行う。
〔電池パック252の構成〕
 本発明に係る電池システム201において、電池システム201を構成する基本単位のうち、電池モジュール314に対して直近上位の階層規模に属する基本単位が、電池パック252である。図2の例では、3組の電池パック252が描かれている。
 個々の電池パック252は、図2,図3A,および図3Bに示すように、電池制御装置(BCU)264をそれぞれ有している。
 なお、図2では、電池制御装置(BCU)264の支配下に電池モジュール314を複数接続した態様を示しているが、図3Bでは、構成を簡潔に示すために、電池モジュール314をただ1つ接続した態様を示している。以下では、電池制御装置(BCU)264には、その支配下に複数の電池モジュール314が属しているものとして説明を進める。また、図2では、符号222A,222Bの記載を省略している。
 電池制御装置(BCU)264は、自身の支配下にある電池モジュール314に属する電池セル監視部(CCU)332から、電池セル310の充電状態(SOC)に係るSOC情報を受ける。このSOC情報に基づいて、電池制御装置(BCU)264は、自身の支配下にある電池モジュール314について、過充電または過放電の診断を含む管理を行う。
 また、電池制御装置(BCU)264は、上記のSOC情報などを、自身の上位の制御装置である統合制御装置(IBCU)226およびシステム制御装置(BSCU)270(BSCU)へ報告する。
〔電池ブロック212の構成〕
 本発明に係る電池システム201において、電池システム201に係る基本単位のうち、最上位の階層規模に属する基本単位が、電池ブロック212である。図2の例では、3組の電池ブロック212が描かれている。
 個々の電池ブロック212は、図3Aに示すように、2組の電池ユニット222A,222Bを並列に接続してなる。2組の各電池ユニット222A,222Bは、さらに複数の電池パック252を有している。本発明に係る電池システム201では、各電池ユニット222A,222Bは、それぞれ3つの電池パック252を有している。
 なお、蓄電する直流電圧の大きさによっては、個々の電池ブロック212に属する2組の電池ユニット222A,222Bを直列に接続する構成を採用してもよい。また、個々の電池ブロック212が有する電池ユニット222A,222Bの数は、2組に限るものではない。本発明に係る電池システム201の使用目的や使用条件を考慮して、適宜の数を設定すればよい。
 個々の電池ブロック212は、図2,図3A,図3Bに示すように、統合制御装置(IBCU)226をそれぞれ有している。統合制御装置(IBCU)226は、自身の支配下にある電池パック252に属する電池モジュール314にさらに属する電池セル監視部(CCU)332から、電池セル310の充電状態(SOC)に係るSOC情報を受ける。このSOC情報に基づいて、統合制御装置(IBCU)226は、自身の支配下にある電池パック252について、過充電または過放電の診断を含む管理を行う。
 また、統合制御装置(IBCU)226は、上記のSOC情報などを、自身の上位の制御装置であるシステム制御装置(BSCU)270へ報告する。
〔統合ユニット224の構成〕
 個々の電池ブロック212は、図3Aに示すように、統合ユニット224をそれぞれ有している。各統合ユニット224は、図3Aに示すように、統合制御装置(IBCU)226の他、継電器232,233,234,235と、電流センサ227,228と、電圧センサ229,230,231とを備えている。統合制御装置(IBCU)226は、電池ブロック212内の管理を行う。継電器232,233,234,235は、各電池ユニット222A,222Bの給電経路を電気的に開放または閉止するように動作する。電流センサ227,228は、各電池ユニット222A,222Bをそれぞれ流れる電流の大きさを検出する。
 電圧センサ229は、図3Aに示すように、本発明に係る電池システム201の主電源ラインの正極側電圧(正極端子244の電圧)を検出する。電圧センサ230,231は、各電池ユニット222A,222Bの給電経路の正極側電圧を検出する。具体的には、電圧センサ230,231は、各電池ユニット222A,222Bのそれぞれの端子間電圧を検出する。
 統合制御装置(IBCU)226は、電流センサ227,228による充放電電流の検出値、電圧センサ229,230,231による各部の電圧検出値、並びに、自身の支配下にある電池パック252からの地絡発生状態を含む各種情報、または、システム制御装置(BSCU)270からの情報を受信する。こうして受信した各種の検出値、および情報に基づき、統合制御装置(IBCU)226は、継電器232,233,234,235の開閉制御を行う。
 また、統合制御装置(IBCU)226は、電池パック252からの地絡発生状態を含む各種情報、電流センサ227,228による充放電電流の検出値、並びに、電圧センサ229,230,231による各部の電圧検出値を、上位のシステム制御装置(BSCU)270へ報告する。
〔継電器232,234、並びに開閉器238,239,240,242の動作〕
 本発明に係る電池システム201では、複数の各電池ユニット222A,222B毎にそれぞれ保守点検を行う。このため、保守点検作業を行っている間は、電池システム201の使用を停止する。このように使用を停止していた電池セル310では、運転を継続していた電池セル310と比べて、充電状態(SOC)が異なってくる。相互に充電状態(SOC)の異なる電池ユニット222を並列に接続した場合、充電状態(SOC)の大きい電池ユニット222から充電状態(SOC)の小さい電池ユニット222へ向かって大電流の流れるおそれがある。また、電池ユニット222のうちいずれかで地絡が生じた場合も、接地端子へと大電流の流れるおそれがある。
 こうした大電流の流通に係るリスクを避けるため、各電池ユニット222A,222Bには、電流制限器236,237が設けられている。例えば、電池ユニット222Aを、正極結線246および負極結線247の間に接続する場合には、まず、継電器232を閉止させる。これにより、電池ユニット222Aを正極結線246と負極結線247間に、電流制限器236を介して接続する。このとき、電流制限器236に流れる電流値を電流センサ227により検出する。
 電流センサ228による検出値(電池ユニット222Aの充電または放電電流値)が、予め定めた値以下である場合、継電器234を閉止した後、継電器232を開放する。かかる手順を採用することにより、電池セル310の充放電電流値を安全な値に収束させる。
 本発明に係る電池システム201では、電池セル310としてリチウムイオン二次電池を採用している。リチウムイオン二次電池の端子間電圧は、SOCに基づいて変化する。従って、電圧センサ230の検出値を用いて、継電器234の投入時の電流を予測することができる。電池ユニット222Aの投入時は安全性向上の点から継電器232を投入するようにして電流制限器236で流れる電流を安全な値に制限し、電圧センサ230の検出値に基づいて継電器234の投入を制御する構成を採用してもよい。
 さらに、電圧センサ230の検出値が、他の電池ユニット222Bの端子間電圧に対して規定の範囲内にある場合は、継電器232の投入を省略して、いきなり継電器234を投入してもよい。なお、電池ユニット222Bに関する継電器233,235の制御手順は、上述した電池ユニット222Aに関する説明内容と同じである。
 個々の電池ブロック212がそれぞれ有する正負の極性端子のうちの正極端子244は、図3Aに示すように、複数の断路器238をそれぞれ介して正極結線246に並列接続されている。正極結線246は、ひとつの遮断機242を介して正極出力端248に接続されている。遮断機242は、システム制御装置(BSCU)270の制御信号に従って開閉制御される。
 同様に、個々の電池ブロック212がそれぞれ有する負極端子245は、図3Aに示すように、複数の断路器239をそれぞれ介して負極結線247に並列接続されている。負極結線247は、ひとつの遮断機240を介して負極出力端248に接続されている。
 以下の説明では、断路器238,239、並びに遮断機240,242を総称して“開閉器”と呼ぶ場合がある。開閉器238,239,240,242が閉じている場合、図3Aに示すように、正極出力端248および負極出力端249に対して、各電池ブロック212が並列に接続された状態となる。同様に、正極出力端248および負極出力端249に対して、つまり、インバータ104に対して、本発明に係る電池システム201が接続された状態となる。
 図3Aに示す電池システム201を、図1に示す電力システム101(インバータ104)から電気的に切り離す場合は、切り離し対象となる電池システム201において以下の手順を実行する。すなわち、まず、システム制御装置BSCU270の指令に基づいて、遮断機242を開放し、電池モジュール314の充電電流または放電電流を遮断する。その後、開閉器238,239,240を順次開放する。
 これとは逆に、図3Aに示す電池システム201を、その他の電池システム201と並列接続する場合は、接続対象となる電池システム201において以下の手順を実行する。すなわち、まず、開閉器238,239,240を順次閉止する。その後、システム制御装置BSCU270の指令に基づいて、遮断機242を閉止する。
〔電池システム201の情報伝送と制御〕
 本発明に係る電池システム201では、例えば、統合制御装置(IBCU)226からの情報は、情報バス272を介してシステム制御装置(BSCU)270に伝送される。さらに、図1に示す電池システム201の管理装置(不図示)からは、情報入出力端274を介してシステム制御装置(BSCU)270宛に様々な情報が送られてくる。
 システム制御装置(BSCU)270は、遮断機242の開閉制御を行う。システム制御装置(BSCU)270は、統合制御装置(IBCU)226からの情報や要求に基づいて、または、上位の電池システム201の管理装置からの情報に基づいて、電池システム201を電池システム201から電気的に切り離す条件が成立した場合に、遮断機242を開放させる制御を行う。
 遮断機242が開放されると、電池システム201は、図1に示す電力システム101の系統から電気的に切り離される。これにより、電池システム201内を流通する電流の流れが遮断される。その後、断路器240が開放されるとともに、各電池ブロック212毎の断路器238,239も開放される。こうした手順で電池システム201の給電経路を開放することにより、各個別の電池システム201単位での保守点検作業を容易に行わせると共に、同作業時の安全性を確保する。
〔制御用電力の供給〕
 本発明に係る電池システム201では、図3Aに示すように、システム制御装置(BSCU)270、統合制御装置(IBCU)226、並びに、電池制御装置(BCU)264は、マイクロコンピュータ(以下、マイコンと省略する。)にインストールされたソフトウェアによって各種の機能を実現する。そこで、マイコンを動作させるための制御用電力をマイコンに供給することが必要となる。
 マイコンは、例えば5V程度の比較的低い直流電力で動作する。このため、本発明に係る電池システム201では、蓄電している直流電力に代えて、交流電力を直流電力に変換して用いる。ただし、マイコンに供給する直流電力としては、外部からの交流電力を直流電力に変換して用いてもよいし、内部に蓄電している直流電力を用いてもよい。
 本発明に係る電池システム201では、図3Aに示すように、外部からの交流電力が制御用電源入力端282を介して供給される。制御用電源入力端282からの交流電力は、無停電電源装置(UPS)284に供給される。通常は、制御用電源入力端282を介して供給される交流電力によって、制御用の直流電力が作られる。ただし、外部からの交流電力の供給が停止した場合には、無停電電源装置(UPS)284が代わって必要な直流電力を供給する。
 無停電電源装置(UPS)284から供給された直流電力は、電源ユニット(PSU)286を介して、システム制御装置(BSCU)270、統合制御装置(IBCU)226、および、電池制御装置(BCU)264にそれぞれ供給される。
 本発明に係る電池システム201は、無停電電源装置(UPS)284を備えているので、仮に、制御用電源入力端282からの交流電力が遮断されるような異常事態が生じた場合でも、電池システム201の運転を継続することができる。かかる異常事態が生じた場合は、外部からの交流電力の利用から無停電電源装置(UPS)284が供給する直流電力の利用に切り替わるからである。
〔電池パック252内の伝送路〕
 電池パック252内の2組の絶縁回路(シリアル伝送路)346A,346Bは、図3Bに示すように、第1伝送線342A,342Bを介して電池制御装置(BCU)264に接続されている。第2伝送線344は、相互に隣接する電池セル監視部(CCU)332の間を接続している。電池制御装置(BCU)264は、図3Aに示すように、制御用電源ライン288からの直流電力の供給を受けて動作する。
 各電池セル監視部(CCU)332は、自身の支配下にある電池セル310から直流電力の供給を受けて動作する。このため、電池制御装置(BCU)264に供給される電源電圧の基準電位と各電池セル監視部(CCU)332に供給される電源電圧の基準電位とは、相互に異なっている。つまり、第1伝送線342A,342Bの電位と第2伝送線344の電位とは、相互に異なっている。そこで、第1伝送線342A,342Bと第2伝送線344との間を、絶縁回路346A,346Bを介して接続するようにしている。
 絶縁回路346A,346Bは、具体的にはフォトカプラやトランスである。絶縁回路346A,346Bは、電気信号を一旦他の伝送媒体である光信号や磁束信号に変調し、その後再び電気信号に復調する役割を果たす。これにより、第1伝送線342A,342Bと第2伝送線344との間を確実に電気的に絶縁することができる。
 本発明に係る電池システム201では、電位の高い電池セル監視部(CCU)332から順に電位の低い方に向かって伝送されるが、これとは逆に、電位の低い方から電位の高い方へ向かって伝送してもよい。また、電池セル監視部(CCU)332の出力端を次の電池セル監視部(CCU)332の入力端に電気的に接続する場合に、電気抵抗やダイオードを介して接続してもよいし、コンデンサを介して接続してもよい。
 電池制御装置(BCU)264から送られた各電池セル監視部(CCU)332宛のデータは、電池制御装置(BCU)264から第1伝送線342Aを介して絶縁回路346Aに送られる。次いで、絶縁回路346Aから第2伝送線344を介して高電位側の電池セル監視部(CCU)332へ送られる。次いで、第2伝送線344を経由したデータは絶縁回路346Bに伝えられる。そして、第1伝送線342Bを介して電池制御装置(BCU)264に戻る。
 各電池セル監視部(CCU)332では、送られてきたデータの内のアドレスデータが自分宛であるか否かを確認し、アドレスデータが自分宛である場合は、そのデータに応答する。さらに、送られてきたデータに、必要に応じて命令内容に基づき要求された情報を加えて、伝送方向の順に次の電池セル監視部(CCU)332へと送信する。
 各電池セル監視部(CCU)332は、電池制御装置(BCU)264の要求に対応して、各種の検知結果や診断結果を付加して電池制御装置(BCU)264へ伝送する。各電池セル監視部(CCU)332は、過充電や過放電のほかにも様々な診断を行うことが可能であり、これらの診断結果を付加して送信してもよい。
 電池制御装置(BCU)264は、情報バス272および情報バス用コネクタ356をそれぞれ介して、上位の制御装置である統合制御装置(IBCU)226に接続されている。第2伝送線344を経由して受信した各種の検知結果や診断結果のデータは、統合制御装置(IBCU)226に送信される。
 また、電池制御装置(BCU)264が受信した各種の検知結果や診断結果のデータは、不揮発性メモリ266に記憶保持される。特に、地絡の発生状態に係る情報(地絡の発生箇所や、地絡の軽重レベルに関する情報)を含む異常診断結果を受信した場合、電池制御装置(BCU)264は、その異常診断の基となった検知結果を、その異常診断に係る電池セル310の識別データと共に不揮発性メモリ266に記憶保持する。電池制御装置(BCU)264から統合制御装置(IBCU)226へ報告された情報は、さらに情報バス272を介してシステム制御装置(BSCU)270へと報告される。
 さて、前記のように構成された本発明に係る電池システム201において、地絡の発生有無を検知する地絡検知機能を有する第1の地絡検知装置10-1を備えてなるのが、本発明の第1実施形態に係る電池システムに相当する、第1の電池パック252-1である。
[本発明の第1実施形態に係る電池システム(第1の電池パック252-1)、および第1の地絡検知装置10-1の構成]
 本発明の第1実施形態に係る電池システム、および第1の地絡検知装置10-1の構成について、図4を参照して説明する。図4は、本発明の第1実施形態に係る電池システムに相当する第1の電池パック252-1、および第1の地絡検知装置10-1の回路構成図である。
 第1の電池パック252-1は、図4に示すように、地絡検知機能を有する第1の地絡検知装置10-1を備えて構成される。第1の地絡検知装置10-1は、前記した電池モジュール314、昇圧部11、ヒューズ17、ダイオード21、電池制御装置(BCU)264、および、地絡抵抗45を備えて構成されている。
 なお、ヒューズ17は、本発明において必須の構成要件ではないため、これを省略してもよい。
 複数の電池セル310を直列接続してなる電池モジュール314は、図3Bおよび図4に示すように、正極端子352および負極端子353の間に介挿されている。電池モジュール314は、本発明の“直流電源部”に相当する。正極端子352および負極端子353は、本発明の“一対の非接地端子”に相当する部材であり、これらはいずれも接地されていない。また、正極端子352は、本発明の“非接地端子のうち高電位の側”に相当する一方、負極端子353は、本発明の“非接地端子のうち低電位の側”に相当する。
 正極端子352に連なる第1の接続点13は、図4に示すように、昇圧部11の入力側に連なる第2の接続点15に対し、ヒューズ17を介して接続されている。また、第2の接続点15と、昇圧部11の出力側に連なる第3の接続点19との間には、昇圧部11、および、ダイオード21がそれぞれ並列に接続されている。
 昇圧部11は、電池モジュール314のうち高電位(図4の電位E0 参照)の側(第1の接続点13)に設けられて当該高電位を昇圧した昇圧電位(図4の電位E0 +E2 参照)を出力する機能を有する。昇圧部11としては、例えば絶縁型DC-DCコンバータなどを適宜用いればよい。昇圧部11における昇圧分の電位(図4の電位E2 参照)は、例えば、直流電源部(電池モジュール314)の電圧容量が480Vである場合、その5%(24V)~20%(96V)の範囲内で設定するのが好ましい。
 高電位に対する割合が小さすぎると、昇圧部11をコンパクトに構成することができる反面、地絡の検知精度を高めるのが難しくなる。また、高電位に対する割合が大きすぎると、地絡の検知精度を高めるのに有利な反面、昇圧部11をコンパクトに構成することが難しくなる。
 ダイオード21は、昇圧部11に対して並列に、カソード端子を第2の接続点15に接続する一方、アノード端子を第3の接続点19に接続するように配設されている。
 電池制御装置(BCU)264は、図4に示すように、保護抵抗25、地絡検知抵抗27、電圧センサ31、コンパレータ33、第1および第2抵抗35,37、並びに、地絡検知部41を備えて構成されている。
 第3の接続点19および接地端子23の間には、図4に示すように、保護抵抗(抵抗値;R0 )25および地絡検知抵抗(抵抗値;R1 )27が直列に接続されている。保護抵抗25の抵抗値;R0 は、地絡検知抵抗27の抵抗値;R1 と比べて十分に大きい値となるように、それぞれの抵抗値;R0 ,R1 が設定される。具体的には、例えば、保護抵抗25の抵抗値;R0 をメガオーム単位に設定する一方、地絡検知抵抗27の抵抗値;R1 を、抵抗値;R0 の20~30分の1程度に設定する。
 保護抵抗25および地絡検知抵抗27間に係る第1抵抗間接続点29と、接地端子23との間には、地絡検知抵抗27に対して並列に、電圧センサ31が設けられている。この電圧センサ31は、地絡検知抵抗27の端子間電圧を検出し出力する機能を有する。
 なお、第1抵抗間接続点29は、本発明の“抵抗間接続点”に相当する。
 第1抵抗間接続点29は、コンパレータ33の非反転入力端子(+)に接続されている。コンパレータ33の反転入力端子(-)に対する入力信号を生成するために、直流電源(電圧;Vcc)34と接地端子23との間には、第1および第2抵抗35,37が直列に接続されている。第1および第2抵抗35,37間に係る第2抵抗間接続点39は、コンパレータ33の反転入力端子(-)に接続されている。そして、コンパレータ33の出力端子(出力電圧;Vout )は、地絡検知部41に接続されている。
 地絡検知部41は、保護抵抗25および地絡検知抵抗27間に係る第1抵抗間接続点29の電位と、予め定められるしきい値の電位(第1および第2抵抗35,37間に係る第2抵抗間接続点39の電位;Vref )との大小関係に係る比較結果に基づいて、電池モジュール314における地絡の発生状態を検知する機能を有する。ここで、地絡の発生状態とは、後記するように、地絡の発生箇所と、同地絡の程度とを含む概念である。
 なお、地絡検知部41は、昇圧部11に対して、昇圧部11が有する昇圧機能をオンまたはオフさせるオンオフ制御信号を出力するようになっている。
 具体的には、地絡検知部41は、昇圧部11のオン時において、地絡検知電圧V1 がしきい値の電位Vref を超えている旨の判定が下された場合に、電池モジュール314において地絡が発生したとみなすこととしている。その作用機序は次のとおりである。
 すなわち、地絡が発生していない通常状態では、昇圧部11のオン時における第1抵抗間接続点29の電位は、第2の接続点15に係る高電位(図4に示す電位E0 )に対して昇圧分の電位(図4に示す電位E2 )を加えた昇圧電位(図4に示す電位(E0 +E2 ))を、保護抵抗(抵抗値;R0 )25および地絡検知抵抗(抵抗値;R1 )27の各抵抗値で分圧した値(R1 ×(E0 +E2 )/(R0 +R1 ))となる。
 これに対し、地絡が発生している異常状態では、昇圧部11のオン時における第1抵抗間接続点29の電位は、第2の接続点15に係る高電位(図4に示す電位E0 )から、後記する地絡の発生箇所43の相対電位(図4に示す電位E1 )を引き算した電位(図4に示す電位(E0 -E1 ))に対し、さらに昇圧分の電位(図4に示す電位E2 )を加えた電位(図4に示す電位(E0 -E1 +E2 ))を、保護抵抗(抵抗値;R0 )25、並びに、地絡検知抵抗(抵抗値;R1 )27および後記の地絡抵抗(抵抗値;R2 )45に係る合成抵抗(抵抗値;R1+R2 )の各抵抗値で分圧した値(R1 ×(E0 -E1 +E2 )/(R0 +R1 +R2 ))となる。
 ここで、地絡が発生していない通常状態では、昇圧部11のオン時における第1抵抗間接続点29の電位である地絡検知電圧V1 は、しきい値の電位Vref 以下に収まっている。ところが、地絡が発生している異常状態では、昇圧部11のオン時における第1抵抗間接続点29の電位は、地絡の発生箇所43の相対電位E1 に関する減少分を考慮しても、地絡が発生していない通常状態の昇圧部11のオン時における第1抵抗間接続点29の電位と比べて、地絡抵抗45に係る抵抗値;R2 で消費される分だけ上昇する。その結果、地絡が発生している異常状態では、昇圧部11のオン時における第1抵抗間接続点29の電位である地絡検知電圧V1 は、しきい値の電位Vref を超えることとなる。
 したがって、地絡検知部41は、昇圧部11のオン時において、地絡検知電圧V1 がしきい値の電位Vref を超えている旨の判定が下された場合に、電池モジュール314において地絡が発生したとみなすこととしている。
 ここで、しきい値の電位Vref は、昇圧部11のオン時において、地絡が発生していない通常状態、および、地絡が発生している異常状態でのそれぞれの第1抵抗間接続点29の電位(地絡検知電圧V1 )を参照して設定される。具体的には、しきい値の電位Vref は、昇圧部11のオン時において、通常状態の地絡検知電圧V1 がしきい値の電位Vref 以下に収束すると共に、異常状態の地絡検知電圧V1 がしきい値の電位Vref を超えることを考慮して設定される。
 なお、本第1実施形態では、図4に示す第1の接続点13で地絡が生じた場合に、最も低い起電力が発生する。このとき地絡検知抵抗(抵抗値;R1 )27に発生する地絡検知電圧V1 (第1抵抗間接続点29の電位)は、E2 ×R1 /(R0 +R1 +R2 )により求められる。このため、Vref ≦E2 ×R1 /(R0 +R1 +R2 )が成立するようにしきい値の電位Vref を設定すれば、いずれかの電池セル310間で地絡が生じたとしても、この地絡を確実に検知することができる。また、しきい値の電位Vref の設定条件を評価すると、昇圧分の電位E2 の値を大きくすればするほど、しきい値の電位Vref を大きくすることができることがわかる。したがって、昇圧分の電位E2 の値を大きくすればするほど、地絡検知精度を向上することができる。
 電池モジュール314において地絡が発生していない通常状態では、相互に隣接する電池セル310(図3B参照)間に係る電池間接続点311(図4参照)のそれぞれは、接地点23に対して電気的に絶縁されている。このとき、任意の電池間接続点311と、接地点23との間には、メガオーム単位の抵抗値を有する絶縁抵抗が存在する。
 仮に、電池モジュール314における任意の電池間接続点43(図4参照)において、地絡が生じたとする。この場合、電池間接続点43(以下、“地絡箇所43”と呼ぶ場合がある。)および接地点23の間に、地絡の程度に応じた値を有する地絡抵抗(抵抗値;R2 )45があらわれる。この地絡抵抗45の抵抗値;R2 は、メガオーム単位の抵抗値を有する絶縁抵抗と比べて低い値となる。
 本発明の第1実施形態に係る電池システムに相当する第1の電池パック252-1、および第1の地絡検知装置10-1では、後記するように、この地絡抵抗45の抵抗値;R2 を求めると共に、この抵抗値;R2 を用いることにより、地絡の発生状態を判定するようにしている。
[本発明の第1実施形態に係る電池システム(第1の電池パック252-1)、および第1の地絡検知装置10-1の動作]
 次に、本発明の第1実施形態に係る電池システムに相当する第1の電池パック252-1、および第1の地絡検知装置10-1の動作について、図5および図6(a),(b)を参照して説明する。
 図5は、第1の電池パック252-1、および第1の地絡検知装置10-1における地絡検知処理の手順を表すフローチャート図である。図6(a)は、時間t1において地絡が生じた場合のコンパレータ33の出力電圧波形Vout を表すタイムチャート図、図6(b)は、時間t1において地絡が生じた場合の地絡検知信号波形を表すタイムチャート図である。
 第1の電池パック252-1(第1の地絡検知装置10-1)内における地絡の有無を検知するための図5に示す地絡検知処理は、電池制御装置(BCU)264において実行される。電池制御装置(BCU)264は、第1の電池パック252-1(第1の地絡検知装置10-1)の稼働時において、図5に示す地絡検知処理を、所定のサイクルタイムで繰り返し実行する。仮に、地絡の発生が検知され、かつ、その地絡の程度が重度である場合、本発明に係る電池システム201から第1の電池パック252-1や第1の地絡検知装置10-1を電気的に切り離すなどの適切な処置を速やかに行う必要があるからである。
 図5に示すステップS11において、地絡検知部41は、昇圧部11の昇圧機能をオンさせる旨の制御信号を昇圧部11へ送る。これを受けて昇圧部11は、第2の接続点15に係る高電位(図4に示す電位E0 )に対して昇圧分の電位(図4に示す電位E2 )を加えた昇圧電位(図4に示す電位(E0 +E2 ))を出力する。昇圧部11は、自身の昇圧機能がオンして昇圧電位(E0 +E2 )を出力したとき、その旨を地絡検知部41に返す。
 ステップS12において、地絡検知部41は、昇圧部11からの昇圧電位出力に係る返信を受けたタイミングをもって、電圧センサ31の検出値を入力する。これにより、地絡検知部41は、昇圧部11のオン時における第1抵抗間接続点29の電位である地絡検知電圧V1 を検出する。
 ステップS13において、地絡検知部41は、ステップS12で検出した地絡検知電圧V1 と、予め定められるしきい値の電位(第1および第2抵抗35,37間に係る第2抵抗間接続点39の電位)Vref との大小関係を比較する。
 ステップS13の比較の結果、地絡検知電圧V1 がしきい値の電位Vref 以下である旨の判定が下された場合(ステップS13の“No”)、電池制御装置(BCU)264は、処理の流れをステップS11へと戻し、以下の処理を行わせる。
 一方、ステップS13の比較の結果、地絡検知電圧V1 がしきい値の電位Vref を超えている旨の判定が下された場合(ステップS13の“Yes”、図6(a)参照)、電池制御装置(BCU)264は、電池モジュール314において地絡が発生したとみなして、処理の流れを次のステップS14へと進ませる。
 ステップS14において、地絡検知部41は、昇圧部11の昇圧機能をオフさせる旨の制御信号を昇圧部11へ送る。これを受けて昇圧部11は、第2の接続点15に係る高電位(図4に示す電位E0 )を出力する。昇圧部11は、自身の昇圧機能をオフして高電位E0 を出力したとき、その旨を地絡検知部41に返す。
 ステップS15において、地絡検知部41は、昇圧部11からの高電位出力に係る返信を受けたタイミングをもって、電圧センサ31の検出値を入力する。これにより、地絡検知部41は、昇圧部11のオフ時における第1抵抗間接続点29の電位である地絡検知電圧V2 を検出する。
 ステップS16において、地絡検知部41は、地絡検知電圧V1 ・V2 を用いて、地絡抵抗43に係る抵抗値R2 、および、地絡箇所43の相対電位E1 を算出する。
 なお、地絡抵抗43に係る抵抗値R2 、および、地絡箇所の相対電位E1 の算出手順について、詳しくは後記する。
 ステップS17において、地絡検知部41は、ステップS16で算出した地絡抵抗43に係る抵抗値R2 、および、地絡箇所の相対電位E1 に基づいて、地絡の発生状態を演算する。
 なお、地絡の発生状態の演算手法について、詳しくは後記する。
 ステップS18において、地絡検知部41は、ステップS17の演算によって取得した地絡の発生状態を含む地絡検知信号(図6(b)参照)を生成する。これを受けて電池制御装置(BCU)264は、生成した地絡検知信号を、自身の上位の統合制御装置(IBCU)226、および、システム制御装置(BSCU)270へ送出する。その後、電池制御装置(BCU)264は、処理の流れをステップS11へと戻し、以下の処理を行わせる。
 なお、地絡検知信号を受けた統合制御装置(IBCU)226、および、システム制御装置(BSCU)270のそれぞれは、地絡の発生状態を判断し、その判断結果に従って、例えば、本発明に係る電池システム201から第1の電池パック252-1や第1の地絡検知装置10-1を電気的に切り離すなどの、適切な処置を行う。
[地絡抵抗43に係る抵抗値R2 、および、地絡箇所の相対電位E1 の算出手順]
 次に、地絡抵抗43に係る抵抗値R2 、および、地絡箇所の相対電位E1 の算出手順について、図7Aおよび図7Bを参照して説明する。
 図7Aは、ある電池間接続点(地絡箇所)43において地絡が発生しており、かつ、昇圧部11の出力が昇圧電位(昇圧あり)である場合に、第1の電池パック252-1(第1の地絡検知装置10-1)内に形成される閉ループ回路C1を表す説明図である。図7Bは、ある電池間接続点(地絡箇所)43において地絡が発生しており、かつ、昇圧部11の出力が高電位(昇圧なし)である場合に、第1の電池パック252-1(第1の地絡検知装置10-1)内に形成される閉ループ回路C2を表す説明図である。
 はじめに、地絡抵抗43に係る抵抗値R2 の算出手順について説明する。
 いま、ある電池間接続点(地絡箇所)43において地絡が発生しており、かつ、昇圧部11の出力が昇圧電位(昇圧あり)であるとする。この場合、第1の電池パック252-1(第1の地絡検知装置10-1)内には、図7Aに示すように、電池モジュール314、第1の接続点13、ヒューズ17、第2の接続点15、昇圧部11、第3の接続点19、保護抵抗25、第1抵抗間接続点29、地絡検知抵抗27、接地端子23、接地端子23間を結ぶ仮想導線24、接地端子23、および、地絡抵抗45をそれぞれ介して、地絡箇所である電池間接続点43に至る閉ループ回路C1が形成される。
 この閉ループ回路C1において、起電力としての総電圧はE0 -E1 +E2 で表され、総抵抗はR0 +R1 +R2 で表される。したがって、閉ループ回路C1に流れる電流I1 は、次の(式1)で記述することができる。
 I1 = (E0 -E1 +E2 ) / (R0 +R1 +R2 )       (式1)
 ここで、地絡検知抵抗R1 に着目すると、電圧センサ31によって、昇圧部11のオン時における第1抵抗間接続点29の電位である地絡検知電圧V1 を検出することができる。このため、閉ループ回路C1に流れる電流I1 を、地絡検知抵抗R1 に流れる電流I1 として、次の(式2)で記述することができる。
 I1 = V1 / R1                  (式2)
 前記の(式1)および(式2)から、次の(式3)および(式4)をそれぞれ導くことができる。
 (E0 -E1 +E2 ) / (R0 +R1 +R2 ) = V1 /R1    (式3)
 E0 -E1 +E2 = (R0 +R1 +R2 ) × V1 / R1    (式4)
 次に、ある電池間接続点(地絡箇所)43において地絡が発生している状態で、昇圧部11の出力が高電位(昇圧なし)に切り替えられたとする。この場合、第1の電池パック252-1(第1の地絡検知装置10-1)内には、図7Bに示すように、電池モジュール314、第1の接続点13、ヒューズ17、第2の接続点15、第3の接続点19、保護抵抗25、第1抵抗間接続点29、地絡検知抵抗27、接地端子23、接地端子23間を結ぶ仮想導線24、接地端子23、および、地絡抵抗45をそれぞれ介して、地絡箇所である電池間接続点43に至る閉ループ回路C2が形成される。
 この閉ループ回路C2において、起電力としての総電圧はE0 -E1 で表され、総抵抗はの閉ループ回路C1と同様のR0 +R1 +R2 で表される。したがって、閉ループ回路C2に流れる電流I2 は、次の(式5)で記述することができる。
 I2 = (E0 -E1 ) / (R0 +R1 +R2 )         (式5)
 ここで、地絡検知抵抗R1 に着目すると、電圧センサ31によって、昇圧部11のオフ時における第1抵抗間接続点29の電位である地絡検知電圧V2 を検出することができる。このため、閉ループ回路C2に流れる電流I2 を、地絡検知抵抗R1 に流れる電流I2 として、次の(式6)で記述することができる。
 I2 = V2 / R1                  (式6)
 前記の(式5)および(式6)から、次の(式7)および(式8)を順次導くことができる。
 (E0 -E1) / (R0 +R1 +R2 ) = V2 /R1       (式7)
 E0 -E1 = (R0 +R1 +R2 ) × V2 / R1       (式8)
 次に、前記の(式4)から(式8)を引き算すると、次の(式9)および(式10)を順次導くことができる。
 E2 = (R0 +R1 +R2 ) × (V1 / R1 -V2 / R1 )   (式9)
 R2 = (E2 / (V1 -V2 ) -1) × R1 -R0        (式10)
 ここで、(式10)の右辺に現れるR1 ,R0 ,V1 ,V2 ,E2 はいずれも既知であるから、(式10)の右辺にそれぞれの値を代入することにより、地絡抵抗43に係る抵抗値R2 を求めることができる。
 次に、地絡箇所の相対電位E1 の算出手順について説明する。
 前記の(式4)および(式8)をそれぞれ変形すると、次の(式11)および(式12)をそれぞれ導くことができる。
 (E0 -E1 +E2 ) / (V1 /R1 ) = R0 +R1 +R2    (式11)
 (E0 -E1 ) / (V2 / R1 ) = R0 +R1 +R2      (式12)
 前記の(式11)から(式12)を引き算すると、次の(式13)~(式15)を順次導くことができる。
 (E0 -E1 +E2 ) / (V1 /R1 ) - (E0 -E1 ) / (V2 / R1 ) = 0   (式13)
 (E0 +E2 ) × V2 -E0 × V1 + (V1 -V2 )×E1 = 0      (式14)
 E1 = E0 -E2 × V2 / (V1 -V2 )              (式15)
 ここで、式(15)の右辺に現れるV1 ,V2 ,E0 ,E2 はいずれも既知であるから、式(15)の右辺にそれぞれの値を代入することにより、地絡箇所の相対電位E1 を求めることができる。
 地絡抵抗43に係る抵抗値R2 は、地絡が生じていない通常状態では、メガオーム単位の値である。ところが、地絡が生じている異常状態では、地絡の程度に応じて、その値は減少してくる。そこで、地絡抵抗43に係る抵抗値R2 を評価することを通じて、地絡箇所(電池間接続点)43における地絡の程度が、軽度のものか、中位のものか、または、重度のものかを認識することができる。
 また、地絡箇所の相対電位E1は、地絡が生じていない通常状態ではゼロである。ところが、地絡が生じている異常状態では、電池モジュール314における地絡箇所の位置に応じて、その値は変動する。そこで、複数の電池間接続点がそれぞれ属する電位幅を予め規定しておき、地絡箇所の相対電位E1 が、どの電位幅に係る電池間接続点に対応するかを調べることによって、電池モジュール314における地絡箇所の位置を一意に特定することができる。
 具体的には、例えば、ひとつの電池セル310の蓄電電圧が3Vであるとする。このとき、最低電位の電池間接続点(L1)の電位幅は2.7V~3.3V、同最低電位の電池間接続点(L1)に対して高電位側に隣接する電池間接続点(L2)の電位幅は5.7V~6.3V、同電池間接続点(L2)に対して高電位側に隣接する電池間接続点(L3)の電位幅は8.7V~9.3V、などといったように、複数の電池間接続点(L1~L3)がそれぞれ属する電位幅を予め規定しておく。こうした複数の電池間接続点(L1~L3)がそれぞれ属する電位幅のデータは、電池セル監視部(CCU)332に記憶管理されている。
 かかるケースにおいて、地絡箇所の相対電位E1 が、仮に6.1Vであったとする。地絡箇所の相対電位E1(6.1V)は、電池間接続点(L2)に係る電位幅(5.7V~6.3V)に属している。したがって、地絡検知部41は、地絡箇所の相対電位E1 と、電池セル監視部(CCU)332に記憶管理されている、複数の電池間接続点(L1~L3)がそれぞれ属する電位幅のデータとに基づいて、電池モジュール314における地絡箇所の位置が、最低電位の電池間接続点(L1)に対して高電位側に隣接する電池間接続点(L2)であることを一意に特定することができる。
[本発明の第1実施形態に係る電池システム(第1の電池パック252-1)、および第1の地絡検知装置10-1の作用効果]
 本発明の第1実施形態に係る電池システムに相当する第1の電池パック252-1、および第1の地絡検知装置10-1では、図4に示すように、一対の非接地端子(正極端子352および負極端子353)間に複数の電池セル310を直列接続してなる直流電源部(電池モジュール314)と、複数の電池セル310のうち相互に隣り合う電池セル310間に係る電池間接続点311および接地点23の間にそれぞれあらわれる地絡抵抗45と、一対の非接地端子(正極端子352および負極端子353)のうち高電位の側(正極端子352)に設けられて当該高電位を昇圧した昇圧電位を出力する昇圧部11と、昇圧部11の出力側(第3の接続点19)および接地点23の間に直列に設けられる保護抵抗25および地絡検知抵抗27と、保護抵抗25および地絡検知抵抗27間に係る抵抗間接続点29の電位と、予め定められるしきい値の電位Vref との比較結果に基づいて、直流電源部(電池モジュール314)における地絡の有無を検知する地絡検知部41と、を有する構成を採用することとした。
 本発明の第1実施形態に係る電池システムに相当する第1の電池パック252-1、および第1の地絡検知装置10-1によれば、直流電源部(電池モジュール314)の高電位(E0 )を昇圧した昇圧電位(E0 +E2 )を、地絡検知用基準電位として採用したので、いわゆる不感体(地絡検知不能電位)を生じさせることなく、単一種類の地絡検知用基準電位を用いて、実時間で地絡の有無を簡素な構成をもって精度よく検知することができる。
 また、地絡検知部41は、保護抵抗25および地絡検知抵抗27間に係る抵抗間接続点29の電位がしきい値の電位Vrefを超えた場合に、直流電源部(電池モジュール314)に地絡が生じた旨を検知する、構成を採用している。
 このように構成すれば、保護抵抗25および地絡検知抵抗27間に係る抵抗間接続点29の電位がしきい値の電位Vrefを超えたか否かを判定することを通じて、実時間で地絡の有無を簡素な構成をもって精度よく検知することができる。
 また、昇圧部11は、高電位(E0 )、または、昇圧電位(E0 +E2 )のいずれか一方を切り替えて出力する機能を有し、地絡検知部41は、昇圧部11の出力が昇圧電位の場合の抵抗間接続点29の電位と、昇圧部11の出力が高電位の場合の抵抗間接続点29の電位とを用いて、直流電源部(電池モジュール314)における地絡の発生状態を検知する、構成を採用してもよい。
 このように構成すれば、前記の作用効果に加えて、直流電源部(電池モジュール314)における地絡の発生状態を検知することができるため、地絡の発生状態に係る詳細な情報を把握すると共に、把握した詳細な情報に基づいて、本発明に係る電池システム201から第1の電池パック252-1や第1の地絡検知装置10-1を電気的に切り離すなどの適切な処置を速やかに遂行することができる。
[本発明の第2実施形態に係る電池システム(第2の電池パック252-2)、および第2の地絡検知装置10-2の構成]
 本発明の第2実施形態に係る電池システム、および第2の地絡検知装置10-2の構成について、図8を参照して説明する。図8は、本発明の第1実施形態に係る電池システムに相当する第2の電池パック252-2、および第1の地絡検知装置10-2の回路構成図である。
 第1の電池パック252-1、および第1の地絡検知装置10-1と、第2の電池パック252-2、および第2の地絡検知装置10-2とは、昇圧部11に代えて降圧部51を採用した点を除き、その他の構成は原則として共通である。そこで、前記両者の相違点について説明することで、本発明の第2実施形態に係る電池システム(第2の電池パック252-2)、および第2の地絡検知装置10-2の説明に代える。
 第1の電池パック252-1、および第1の地絡検知装置10-1では、直流電源部(電池モジュール314)の高電位(E0 )を昇圧部11によって昇圧した昇圧電位(E0 +E2 )を、地絡検知用基準電位として採用しているのに対し、第2の電池パック252-2、および第2の地絡検知装置10-2では、直流電源部(電池モジュール314)の低電位(例えば、0V)を降圧部51によって降圧した降圧電位を、地絡検知用基準電位として採用している。降圧部51としては、例えば絶縁型DC-DCコンバータなどを適宜用いればよい。
 降圧部51における降圧分の電位は、例えば、直流電源部(電池モジュール314)の電圧容量が480Vである場合、昇圧部11のケースと同様に、その5%(24V)~20%(96V)の範囲内で設定するのが好ましい。その理由は、昇圧部11のケースと同じである。
 この降圧部51の採用に伴って、第2の電池パック252-2、および第2の地絡検知装置10-2では、第1の電池パック252-1、および第1の地絡検知装置10-1と比べて、電圧の正負の関係が逆転している。具体的には、第2の電池パック252-2、および第2の地絡検知装置10-2では、降圧部51に対して並列に設けられるダイオード21は、第1の電池パック252-1、および第1の地絡検知装置10-1での向きとは逆に、カソード端子を第3の接続点19に接続する一方、アノード端子を第2の接続点15に接続するように配設されている。
[本発明の第2実施形態に係る電池システム(第2の電池パック252-2)、および第2の地絡検知装置10-2の作用効果]
 本発明の第2実施形態に係る電池システムに相当する第2の電池パック252-2、および第2の地絡検知装置10-2では、図8に示すように、一対の非接地端子(正極端子352および負極端子353)間に複数の電池セル310を直列接続してなる直流電源部(電池モジュール314)と、複数の電池セル310のうち相互に隣り合う電池セル310間に係る電池間接続点311および接地点23の間にそれぞれあらわれる地絡抵抗45と、一対の非接地端子(正極端子352および負極端子353)のうち低電位の側(負極端子353)に設けられて当該低電位を降圧した降圧電位を出力する降圧部51と、降圧部51の出力側(第3の接続点19)および接地点23の間に直列に設けられる保護抵抗25および地絡検知抵抗27と、保護抵抗25および地絡検知抵抗27間に係る抵抗間接続点29の電位と、予め定められるしきい値の電位Vref との比較結果に基づいて、直流電源部(電池モジュール314)における地絡の有無を検知する地絡検知部41と、を有する構成を採用することとした。
 なお、本第2実施形態の場合も、基本的な考え方を第1実施形態と同じとして、図8に示す第1の接続点13で地絡が生じた場合を想定して、しきい値の電位Vref を適宜設定すればよい。
 本発明の第2実施形態に係る電池システムに相当する第2の電池パック252-2、および第2の地絡検知装置10-2によれば、直流電源部(電池モジュール314)の低電位を降圧した降圧電位を、地絡検知用基準電位として採用したので、いわゆる不感体(地絡検知不能電位)を生じさせることなく、単一種類の地絡検知用基準電位を用いて、実時間で地絡の有無を簡素な構成をもって精度よく検知することができる。
 また、地絡検知部41は、保護抵抗25および地絡検知抵抗27間に係る抵抗間接続点29の電位がしきい値の電位Vrefを下回るように超えた場合に、直流電源部(電池モジュール314)に地絡が生じた旨を検知する、構成を採用している。
 このように構成すれば、保護抵抗25および地絡検知抵抗27間に係る抵抗間接続点29の電位がしきい値の電位Vrefを下回るように超えたか否かを判定することを通じて、実時間で地絡の有無を簡素な構成をもって精度よく検知することができる。
 また、降圧部51は、低電位、または、降圧電位のいずれか一方を切り替えて出力する機能を有し、地絡検知部41は、降圧部51の出力が降圧電位の場合の抵抗間接続点29の電位と、降圧部51の出力が低電位の場合の抵抗間接続点29の電位とを用いて、直流電源部(電池モジュール314)における地絡の発生状態を検知する、構成を採用してもよい。
 このように構成すれば、前記の作用効果に加えて、直流電源部(電池モジュール314)における地絡の発生状態を検知することができるため、地絡の発生状態に係る詳細な情報を把握すると共に、把握した詳細な情報に基づいて、本発明に係る電池システム201から第1の電池パック252-1や第1の地絡検知装置10-1を電気的に切り離すなどの適切な処置を速やかに遂行することができる。
[その他の実施形態]
 以上説明した複数の実施形態は、本発明の具現化例を示したものである。したがって、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨またはその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
 例えば、本発明の第1または第2実施形態に係る電池システムの説明において、第1または第2の電池パック252-1,252-2のいずれか一方で地絡の発生が検知された場合、地絡の発生検知がなされた該当する電池パックを、本発明に係る電池システム201から電気的に切り離す例をあげて説明したが、本発明はこの例に限定されない。
 第1または第2実施形態に係る電池システムのいずれか一方または両者で地絡の発生が検知された場合、地絡の発生検知がなされた該当する電池パックを、本発明に係る電池システム201から電気的に切り離すと共に、その旨を警告または報知する構成を採用してもよい。
 また、本発明の第1または第2の地絡検知装置10-1,10-2の説明において、第1または第2の地絡検知装置10-1,10-2のいずれか一方で地絡の発生が検知された場合、地絡の発生検知がなされた該当する地絡検知装置を、本発明に係る電池システム201から電気的に切り離す例をあげて説明したが、本発明はこの例に限定されない。
 第1または第2の地絡検知装置10-1,10-2のいずれか一方または両者で地絡の発生が検知された場合、地絡の発生検知がなされた該当する地絡検知装置を、本発明に係る電池システム201から電気的に切り離すと共に、その旨を警告または報知する構成を採用してもよい。
 10-1  第1の地絡検知装置(地絡検知装置)
 10-2  第2の地絡検知装置(地絡検知装置)
 11  昇圧部
 13  第1の接続点
 15  第2の接続点
 17  ヒューズ
 19  第3の接続点
 21  ダイオード
 23  接地点
 25  保護抵抗
 27  地絡検知抵抗
 29  第1抵抗間接続点(抵抗間接続点)
 31  電圧センサ
 33  コンパレータ
 35  第1抵抗
 37  第2抵抗
 39  第2抵抗間接続点
 41  地絡検知部
 43  地絡発生箇所(電池間接続点)
 45  地絡抵抗
 51  降圧部
 201  本発明に係る電池システム
 252-1  第1の電池パック(本発明の第1実施形態に係る電池システム)
 252-2  第2の電池パック(本発明の第2実施形態に係る電池システム)
 226  統合制御装置(IBCU)
 264  電池制御装置(BCU)
 270  システム制御装置(BSCU)
 310  電池セル
 311  電池間接続点
 314  電池モジュール
 332  電池セル監視部(CCU)
 352  正極端子(非接地端子のうち高電位の側)
 353  負極端子(非接地端子のうち低電位の側)

Claims (10)

  1.  一対の非接地端子間に複数の電池を直列接続してなる直流電源部と、
     前記複数の電池のうち相互に隣り合う電池間に係る電池間接続点および接地点の間にそれぞれあらわれる地絡抵抗と、
     前記一対の非接地端子のうち高電位の側に設けられて当該高電位を昇圧した昇圧電位を出力する昇圧部と、
     前記昇圧部の出力側および前記接地点の間に直列に設けられる保護抵抗および地絡検知抵抗と、
     前記保護抵抗および前記地絡検知抵抗間に係る抵抗間接続点の電位と、予め定められるしきい値の電位との比較結果に基づいて、前記直流電源部における地絡の有無を検知する地絡検知部と、
     を有することを特徴とする電池システム。
  2.  一対の非接地端子間に複数の電池を直列接続してなる直流電源部と、
     前記複数の電池のうち相互に隣り合う電池間に係る電池間接続点および接地点の間にそれぞれあらわれる地絡抵抗と、
     前記一対の非接地端子のうち低電位の側に設けられて当該低電位を降圧した降圧電位を出力する降圧部と、
     前記降圧部の出力側および前記接地点の間に直列に設けられる保護抵抗および地絡検知抵抗と、
     前記保護抵抗および前記地絡検知抵抗間に係る抵抗間接続点の電位と、予め定められるしきい値の電位との比較結果に基づいて、前記直流電源部における地絡の有無を検知する地絡検知部と、
     を有することを特徴とする電池システム。
  3.  請求項1または2に記載の電池システムであって、
     前記地絡検知部は、前記抵抗間接続点の電位が前記しきい値の電位を超えた場合に、前記直流電源部に地絡が生じた旨を検知する、
     ことを特徴とする電池システム。
  4.  請求項1に記載の電池システムであって、
     前記昇圧部は、前記高電位、または、前記昇圧電位のいずれか一方を切り替えて出力する機能を有し、
     前記地絡検知部は、前記昇圧部の出力が前記昇圧電位の場合の前記抵抗間接続点の電位と、前記昇圧部の出力が前記高電位の場合の前記抵抗間接続点の電位とを用いて、前記直流電源部における地絡の発生状態を検知する、
     ことを特徴とする電池システム。
  5.  請求項2に記載の電池システムであって、
     前記降圧部は、前記高電位、または、前記降圧電位のいずれか一方を切り替えて出力する機能を有し、
     前記地絡検知部は、前記降圧部の出力が前記低電位の場合の前記抵抗間接続点の電位と、前記降圧部の出力が前記降圧電位の場合の前記抵抗間接続点の電位とを用いて、前記直流電源部における地絡の発生状態を検知する、
     ことを特徴とする電池システム。
  6.  一対の非接地端子間に複数の電池を直列接続してなる直流電源部と、
     前記複数の電池のうち相互に隣り合う電池間に係る電池間接続点および接地点の間にそれぞれあらわれる地絡抵抗と、
     前記一対の非接地端子のうち高電位の側に設けられて当該高電位を昇圧した昇圧電位を出力する昇圧部と、
     前記昇圧部の出力側および前記接地点の間に直列に設けられる保護抵抗および地絡検知抵抗と、
     前記保護抵抗および前記地絡検知抵抗間に係る抵抗間接続点の電位と、予め定められるしきい値の電位との比較結果に基づいて、前記直流電源部における地絡の有無を検知する地絡検知部と、
     を有することを特徴とする地絡検知装置。
  7.  一対の非接地端子間に複数の電池を直列接続してなる直流電源部と、
     前記複数の電池のうち相互に隣り合う電池間に係る電池間接続点および接地点の間にそれぞれあらわれる地絡抵抗と、
     前記一対の非接地端子のうち低電位の側に設けられて当該低電位を降圧した降圧電位を出力する降圧部と、
     前記降圧部の出力側および前記接地点の間に直列に設けられる保護抵抗および地絡検知抵抗と、
     前記保護抵抗および前記地絡検知抵抗間に係る抵抗間接続点の電位と、予め定められるしきい値の電位との比較結果に基づいて、前記直流電源部における地絡の有無を検知する地絡検知部と、
     を有することを特徴とする地絡検知装置。
  8.  請求項6または7に記載の地絡検知装置であって、
     前記地絡検知部は、前記抵抗間接続点の電位が前記しきい値の電位 を超えた場合に、前記直流電源部に地絡が生じた旨を検知する、
     ことを特徴とする地絡検知装置。
  9.  請求項6に記載の地絡検知装置であって、
     前記昇圧部は、前記高電位、または、前記昇圧電位のいずれか一方を切り替えて出力する機能を有し、
     前記地絡検知部は、前記昇圧部の出力が前記昇圧電位の場合の前記抵抗間接続点の電位と、前記昇圧部の出力が前記高電位の場合の前記抵抗間接続点の電位とを用いて、前記直流電源部における地絡の発生状態を検知する、
     ことを特徴とする地絡検知装置。
  10.  請求項7に記載の地絡検知装置であって、
     前記降圧部は、前記高電位、または、前記降圧電位のいずれか一方を切り替えて出力する機能を有し、
     前記地絡検知部は、前記降圧部の出力が前記低電位の場合の前記抵抗間接続点の電位と、前記降圧部の出力が前記降圧電位の場合の前記抵抗間接続点の電位とを用いて、前記直流電源部における地絡の発生状態を検知する、
     ことを特徴とする地絡検知装置。
PCT/JP2011/080173 2011-12-27 2011-12-27 電池システム、および地絡検知装置 WO2013098932A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2011800402521A CN103282786A (zh) 2011-12-27 2011-12-27 电池系统和接地检测装置
US13/817,661 US20140301000A1 (en) 2011-12-27 2011-12-27 Battery System and Ground Fault Detecting Device
PCT/JP2011/080173 WO2013098932A1 (ja) 2011-12-27 2011-12-27 電池システム、および地絡検知装置
EP11870828.8A EP2808687A1 (en) 2011-12-27 2011-12-27 Battery system, and ground-fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080173 WO2013098932A1 (ja) 2011-12-27 2011-12-27 電池システム、および地絡検知装置

Publications (1)

Publication Number Publication Date
WO2013098932A1 true WO2013098932A1 (ja) 2013-07-04

Family

ID=48696502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080173 WO2013098932A1 (ja) 2011-12-27 2011-12-27 電池システム、および地絡検知装置

Country Status (4)

Country Link
US (1) US20140301000A1 (ja)
EP (1) EP2808687A1 (ja)
CN (1) CN103282786A (ja)
WO (1) WO2013098932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750000A (zh) * 2015-03-23 2015-07-01 奇瑞汽车股份有限公司 一种用于电动汽车的高压电回路控制装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746141B1 (ko) 2015-03-10 2017-06-13 주식회사 엘지화학 절연저항측정 장치 및 방법
JP6481938B2 (ja) * 2015-03-19 2019-03-13 パナソニックIpマネジメント株式会社 蓄電システム
CN106468732A (zh) * 2015-08-21 2017-03-01 环鸿电子(昆山)有限公司 一种接地安全控制点的监测方法
JP6811019B2 (ja) * 2016-03-10 2021-01-13 ニシム電子工業株式会社 二次電池システム
WO2018110134A1 (ja) * 2016-12-16 2018-06-21 日立オートモティブシステムズ株式会社 車載制御装置
WO2019011848A1 (en) * 2017-07-10 2019-01-17 Abb Schweiz Ag FAULT DETECTION OF GROUNDING A POWER BATTERY WITHOUT BREAK
JP6930370B2 (ja) * 2017-10-30 2021-09-01 オムロン株式会社 地絡検出装置
GB2571299B (en) 2018-02-23 2020-09-02 Siemens Ag Ground fault detection
US11018384B2 (en) * 2018-07-27 2021-05-25 Nxp B.V. Dual-cell supervisor circuit for high-voltage automotive battery packs
CN111257792B (zh) * 2018-11-30 2022-06-07 中兴通讯股份有限公司 有源器件的检测和保护电路、供电电路及供电方法
US11916242B2 (en) * 2019-10-11 2024-02-27 Briggs & Stratton, Llc Commercial flexible battery pack with secondary output control
JP2021114847A (ja) * 2020-01-20 2021-08-05 株式会社今仙電機製作所 車両用電源装置
DE102020209397A1 (de) * 2020-07-24 2022-01-27 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Erfassung von elektrischen Fehlerzuständen eines Wechselakkupacks sowie System zur Durchführung des Verfahrens
US11637421B2 (en) * 2021-07-09 2023-04-25 Transportation Ip Holdings, Llc Ground impedance and fault detection system and method
CN114265382A (zh) * 2021-11-12 2022-04-01 潍柴动力股份有限公司 Ecu刷写故障处理方法、装置、电子设备及存储介质
CN115061049B (zh) * 2022-08-08 2022-11-01 山东卓朗检测股份有限公司 一种数据中心ups电池故障快速检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564783U (ja) * 1992-02-06 1993-08-27 川重防災工業株式会社 地絡検出装置
JPH06153303A (ja) * 1992-11-09 1994-05-31 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2000197201A (ja) * 1998-12-28 2000-07-14 Denso Corp 電気自動車の地絡検出回路
JP2003169401A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 漏電検出回路を備える電動車両の電源装置
JP2005189005A (ja) 2003-12-24 2005-07-14 Honda Motor Co Ltd 地絡検知装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785627B2 (ja) * 2006-06-08 2011-10-05 三洋電機株式会社 電動車両用漏電検出回路および電動車両用漏電検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564783U (ja) * 1992-02-06 1993-08-27 川重防災工業株式会社 地絡検出装置
JPH06153303A (ja) * 1992-11-09 1994-05-31 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2000197201A (ja) * 1998-12-28 2000-07-14 Denso Corp 電気自動車の地絡検出回路
JP2003169401A (ja) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 漏電検出回路を備える電動車両の電源装置
JP2005189005A (ja) 2003-12-24 2005-07-14 Honda Motor Co Ltd 地絡検知装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750000A (zh) * 2015-03-23 2015-07-01 奇瑞汽车股份有限公司 一种用于电动汽车的高压电回路控制装置

Also Published As

Publication number Publication date
US20140301000A1 (en) 2014-10-09
EP2808687A1 (en) 2014-12-03
CN103282786A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
WO2013098932A1 (ja) 電池システム、および地絡検知装置
US9112247B2 (en) Battery system
EP2626712B1 (en) Failure detecting apparatus
US10622685B2 (en) Problem detection apparatus
US9829529B2 (en) Power supply apparatus
US9917461B2 (en) Battery unit, overcurrent control method, and computer program for the same
WO2017175535A1 (ja) 地絡検出装置およびその制御方法、制御プログラム
CN103124092A (zh) 充电系统及电动车辆
US20200144845A1 (en) Energy storage systems and methods for fault mitigation
JP2013206643A (ja) 電池システムのリレー溶着検知装置、及びこれを用いた電池システム
KR20140140355A (ko) 배터리 관리 시스템 및 그 구동 방법
US20170141598A1 (en) Electric battery comprising an electronic management system
JP2023504310A (ja) 制御装置、エネルギー変換システム、エネルギー変換方法、及び記憶媒体
CN111384763A (zh) 一种电能变换与控制装置以及具有该装置的储能系统
KR20190013651A (ko) 배터리 셀 관리 시스템
JP2015097444A (ja) 電圧制御装置、電圧制御方法、及び電圧制御システム
JP6155854B2 (ja) 電池システム
JPWO2013098932A1 (ja) 電池システム、および地絡検知装置
WO2019150777A1 (ja) 監視装置および判定方法
JP2015027123A (ja) パワーコンディショナおよび電力供給システム
US20220360161A1 (en) Electrical assembly
JP7196716B2 (ja) 短絡監視装置、短絡監視方法、およびプログラム
CN211456785U (zh) 主备电供电电路
US20230296679A1 (en) Battery state detection device and battery protection device
US20230400516A1 (en) Detection Method and Apparatus for Battery System

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012552599

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011870828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817661

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE