WO2013098531A1 - Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps - Google Patents

Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps Download PDF

Info

Publication number
WO2013098531A1
WO2013098531A1 PCT/FR2012/053092 FR2012053092W WO2013098531A1 WO 2013098531 A1 WO2013098531 A1 WO 2013098531A1 FR 2012053092 W FR2012053092 W FR 2012053092W WO 2013098531 A1 WO2013098531 A1 WO 2013098531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating
article according
interference coating
article
Prior art date
Application number
PCT/FR2012/053092
Other languages
English (en)
Inventor
Ludvik Martinu
Jolanta SAPIEHA
Oleg Zabeida
Sébastien CHIAROTTO
Karin Scherer
Original Assignee
Corporation De L'ecole Polytechnique De Montreal
Essilor International (Compagnie Generale D'optique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corporation De L'ecole Polytechnique De Montreal, Essilor International (Compagnie Generale D'optique) filed Critical Corporation De L'ecole Polytechnique De Montreal
Priority to BR112014016069-4A priority Critical patent/BR112014016069B1/pt
Priority to KR1020147017963A priority patent/KR102168691B1/ko
Priority to CN201280065037.1A priority patent/CN104054009B/zh
Priority to EP12819118.6A priority patent/EP2798383B1/fr
Priority to CA2862139A priority patent/CA2862139C/fr
Priority to US14/369,009 priority patent/US20140354945A1/en
Priority to JP2014549526A priority patent/JP6760713B2/ja
Publication of WO2013098531A1 publication Critical patent/WO2013098531A1/fr
Priority to US16/283,343 priority patent/US20190302313A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the present invention generally relates to an article, preferably an optical article, in particular an ophthalmic lens, having an interference coating, preferably an antireflection coating, whose optical properties are stable over time, and which has in particular in addition to improved thermomechanical properties, as well as a method of preparing such an article.
  • ophthalmic lenses whether mineral or organic, so as to prevent the formation of annoying reflections annoying for the wearer of the lens and its interlocutors.
  • the lens is then provided with a mono- or multilayer antireflection coating, generally made of mineral material.
  • target performance is generally chosen, which is the effectiveness of the antireflection coating defined by the reflection coefficients R m and R v , and its residual reflection color, essentially characterized by the angle h hue and chroma C * .
  • the optical properties of the layers of the antireflection coating and more generally the optical properties of the layers of the interferential coatings, in particular those of the silica layers, evolve over time, so that its characteristics of efficiency but especially aesthetics can differ between the moment when the coating is formed on the article and the moment when it is sold, if the glass has been kept in stock, and / or during the use of the article by the wearer, after the sale.
  • One way to solve the first problem is to estimate the evolution over time of the antireflection coating and produce an antireflection coating different from that desired but which will evolve over time towards the target values during storage.
  • the problem is solved by depositing as an outer layer of the interferential coating a low refractive index layer formed by ion beam deposition, of a layer obtained exclusively from precursor materials of organic nature and in the form of gas.
  • US Pat. No. 6,919,134 describes an optical article comprising an antireflection coating comprising at least one so-called “hybrid” layer obtained by co-evaporation of an organic compound and an inorganic compound, which gives it better adhesion and better strength. thermal and better resistance to abrasion.
  • the antireflection coating preferably comprises two "hybrid" layers in internal and external position. These layers are generally deposited by ion-assisted co-evaporation typically of silica and a modified silicone oil.
  • JP 2007-078780 discloses a spectacle lens comprising a multilayer antireflection coating, the outer layer of which is a layer of low refractive index called "organic". This layer is deposited by liquid means (by centrifugation or soaking), while the inorganic layers of the antireflection coating are deposited by vacuum deposition under ionic assistance.
  • the patent application indicates that such antireflection stack has better heat resistance than an antireflection coating composed exclusively of inorganic layers.
  • Said "organic” layer preferably comprises a mixture of silica particles and an organosilane binder such as ⁇ -glycidoxypropyltrimethoxysilane.
  • the application JP 05-323103 describes the incorporation of a fluorinated organic compound in the last layer of a multilayer optical stack, comprising layers of SiO 2 and TiO 2 , with a view to rendering it hydrophobic and thus minimizing the change in its optical characteristics caused by the absorption of water.
  • the fluorinated layer is obtained by vapor deposition of the material constituting the layer in an atmosphere composed of the fluorinated precursor, which may be tetrafluoroethylene or a fluoroalkyl silane.
  • the main objective of the invention is the preparation of interferential coatings, in particular antireflection coatings, the optical properties of which, in particular chroma (the carriers being more sensitive to this parameter), are more stable over time than the known interference coatings.
  • Such interference coatings would have the target characteristics as soon as the deposition of the different layers of the stack is complete, which would guarantee their performance and simplify quality control. This technical problem is not addressed in the previously cited patents or patent applications.
  • the glass when cutting and mounting a glass at the optician, the glass undergoes mechanical deformations that can cause cracks in mineral interferential coatings, especially when the operation is not conducted carefully. Similarly, temperature stresses (heating of the frame) can cause cracks in the interference coating. Depending on the number and size of the cracks, these can interfere with the view for the wearer and prevent the marketing of the glass.
  • Another objective of the invention is to obtain interferential coatings having improved thermomechanical properties, while retaining good adhesion properties.
  • the invention relates to articles having an improved critical temperature, that is to say having a good resistance to cracking when they are subjected to a rise in temperature.
  • Another object of the invention is to provide a method of manufacturing a simple interference coating, easy to implement and reproducible.
  • this layer is formed by deposition under a beam of ions, of activated species, in gaseous form, obtained exclusively from precursor materials of organic nature.
  • an article comprising a substrate having at least one main surface coated with a multilayer interference coating, said coating comprising a layer A having a refractive index less than or equal to 1, 55, which constitutes:
  • o is an intermediate layer, directly in contact with the outer layer of the interference coating, this outer layer of the interferential coating being in this second case a layer B having a refractive index less than or equal to 1, 55, and said layer A has been obtained by deposition, under an ion beam, of activated species derived from at least one compound C, in gaseous form containing in its structure at least one silicon atom, at least one carbon atom, at least one atom of hydrogen and, optionally, at least one nitrogen atom and / or at least one oxygen atom, the deposition of said layer A taking place in the presence of nitrogen and / or oxygen when the compound A does not contain nitrogen and / or oxygen; and layer A not having formed from inorganic precursor compounds.
  • the invention also relates to a method of manufacturing such an article, comprising at least the following steps:
  • a multilayer interference coating comprising a layer A having a refractive index less than or equal to 1.55, which constitutes:
  • o is an intermediate layer, directly in contact with the outer layer of the interference coating, this outer layer of the interferential coating being a layer B having a refractive index of less than or equal to 1, 55,
  • FIG. 1 is a schematic representation of the deformation experienced by the glass and the manner in which this deformation D is measured during the curvature resistance test described. partly experimental.
  • the term "depositing a layer or coating on the article” means that a layer or coating is deposited on the exposed surface (exposed ) of the outer coating of the article, that is to say its coating furthest from the substrate.
  • a coating that is "on” a substrate or that has been “deposited” on a substrate is defined as a coating that (i) is positioned above the substrate, (ii) is not necessarily in contact with the substrate, that is, one or more intermediate coatings may be disposed between the substrate and the coating in question, and (iii) does not necessarily cover the substrate completely (although it preferably covers it).
  • a layer 1 is located under a layer 2"
  • it will be understood that the layer 2 is further away from the substrate than the layer 1.
  • the article prepared according to the invention comprises a substrate, preferably transparent, having main front and rear faces, at least one of said main faces comprising an interference coating, preferably the two main faces.
  • rear face (generally concave) of the substrate is meant the face which, when using the article, is closest to the eye of the wearer.
  • front face (generally convex) of the substrate means the face which, when using the article, is furthest from the eye of the wearer.
  • the article according to the invention can be any article, such as a screen, a glazing, protective glasses that can be used in particular in a working environment, or a mirror, it is preferably an optical article, better an optical lens, and more preferably an ophthalmic lens, for spectacles, or an optical or ophthalmic lens blank such as a semi-finished optical lens, in particular a spectacle lens.
  • the lens may be a polarized, colored lens or a photochromic lens.
  • the ophthalmic lens according to the invention has a high transmission.
  • the interference coating according to the invention may be formed on at least one of the main faces of a bare substrate, that is to say uncoated, or on at least one of the main faces of a substrate already coated with one or more functional coatings.
  • the substrate of the article according to the invention is preferably an organic glass, for example a thermoplastic or thermosetting plastic material.
  • This substrate may be chosen from the substrates cited in application WO 2008/062142, for example a substrate obtained by (co) polymerization of diethylene glycol bis allyl carbonate, a poly (thio) urethane substrate or a bis (polycarbonate) substrate ( phenol A) (thermoplastic) PC.
  • the surface of said substrate, optionally coated, is subjected to a physical or chemical activation treatment. , intended to increase the adhesion of the interference coating.
  • This pre-treatment is generally conducted under vacuum. It can be a bombardment with energy and / or reactive species, for example an ion beam ("Ion Pre-Cleaning" or "IPC") or an electron beam, a discharge treatment corona, by effluvage, a UV treatment, or vacuum plasma treatment, usually an oxygen or argon plasma. It can also be an acidic or basic surface treatment and / or by solvents (water or organic solvent). Many of these treatments can be combined. Thanks to these cleaning treatments, the cleanliness and reactivity of the surface of the substrate are optimized.
  • energetic species and / or reactive is meant in particular ionic species having an energy ranging from 1 to 300 eV, preferably from 1 to 150 eV, better from 10 to 150 eV, and more preferably from 40 to 150 eV.
  • the energetic species can be chemical species such as ions, radicals, or species such as photons or electrons.
  • the preferred pretreatment of the surface of the substrate is an ion bombardment treatment carried out by means of an ion gun, the ions being particles consisting of gas atoms from which one or more electrons (s) have been extracted.
  • Argon (Ar + ions), but also oxygen, or mixtures thereof, are preferably used as argonized gases under an acceleration voltage generally ranging from 50 to 200 V, a current density generally between 10 and 100 ⁇ / cm 2 on the activated surface, and generally under a residual pressure in the vacuum chamber which can vary from 8.10 -5 mbar to 2.10 -4 mbar.
  • the article according to the invention comprises an interference coating, preferably formed on an anti-abrasion coating.
  • the preferred abrasion-resistant coatings are coatings based on epoxysilane hydrolysates comprising at least two hydrolyzable groups, preferably at least three linked to the silicon atom.
  • the preferred hydrolysable groups are alkoxysilane groups.
  • the interference coating may be any interferential coating conventionally used in the field of optics, in particular ophthalmic optics, except that it comprises a layer A formed by deposition under an ion beam of activated species. derived from an organic derivative of silicon, in gaseous form.
  • the interference coating may be, without limitation, an antireflection coating, a reflective coating (mirror), an infrared filter or an ultraviolet filter, preferably an antireflection coating.
  • An antireflective coating is defined as a coating deposited on the surface of an article that improves the anti-reflective properties of the final article. It reduces the reflection of light at the article-air interface over a relatively large portion of the visible spectrum.
  • interference coatings typically comprise a monolayer or multilayer stack of dielectric materials. They are preferably multilayer coatings, including high refractive index layers (H1) and low refractive index layers (B1).
  • a layer of the interference coating is said layer of high refractive index when its refractive index is greater than 1, 55, preferably greater than or equal to 1, 6, better still greater than or equal to 1, 8 and even more. better than or equal to 2.0.
  • a layer of an interference coating is called a low refractive index layer when its refractive index is less than or equal to 1.55, preferably less than or equal to 1.50, better still less than or equal to 1.45.
  • the refractive indexes referred to in the present invention are expressed at 25% for a wavelength of 630 nm.
  • the H1 layers are conventional high refractive index layers well known in the art. They generally comprise one or more mineral oxides such as, without limitation, zirconia (ZrO 2 ), titanium oxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ), neodymium oxide (Nd 2 0 5 ), hafnium oxide (HfO 2 ), praseodymium oxide (Pr 2 O 3 ), praseodymium titanate (PrTiO 3 ), La 3 O 3 , Nb 2 O 5 , Y 2 0 3 , indium oxide In 2 0 3 , or tin oxide SnO 2 .
  • Preferred materials are Ti0 2, Ta 2 0 5, PrTi0 3, Zr0 2, Sn0 2, ln 2 0 3 and mixtures thereof.
  • Bl layers are also well known and may include, without limitation,
  • the interference coating of the invention does not include any layer comprising a mixture of silica and alumina.
  • the layers H1 have a physical thickness varying from 10 to 120 nm
  • the layers B1 have a physical thickness varying from 10 to 100 nm.
  • the total thickness of the interference coating is less than 1 micrometer, better still less than or equal to 800 nm and better still less than or equal to 500 nm.
  • the total thickness of the interference coating is generally greater than 100 nm, preferably greater than 150 nm.
  • the interference coating which is preferably an antireflection coating, comprises at least two layers of low refractive index (B1) and at least two layers of high refractive index (H1).
  • the total number of layers of the interference coating is less than or equal to 8, better still less than or equal to 6.
  • the layers H1 and B1 are alternated in the interference coating, although they may be alternated according to one embodiment of the invention. Two or more layers H1 may be deposited one on top of the other, just as two or more layers B1 (or more) can be deposited one on top of the other.
  • the interference coating comprises an underlayer.
  • it generally constitutes the first layer of this interferential coating in the order of deposition of the layers, that is to say the layer of the interferential coating which is in contact with the underlying coating (which is generally an anti-corrosion coating). abrasion and / or anti-scratch) or of the substrate, when the interference coating is directly deposited on the substrate.
  • Sub-layer of the interference coating means a coating of relatively large thickness, used for the purpose of improving the resistance to abrasion and / or scratching of said coating and / or promoting its adhesion to the substrate or coating underlying.
  • the underlayer according to the invention may be chosen from the sub-layers described in application WO 2010/109154.
  • the underlayer has a thickness of 100 to 200 nm. It is preferably of exclusively inorganic nature and preferably consists of SiO 2 silica.
  • the article of the invention can be made antistatic by incorporating into the interference coating at least one electrically conductive layer.
  • antistatic is meant the property of not retaining and / or developing an appreciable electrostatic charge.
  • An article is generally considered to have acceptable antistatic properties when it does not attract and fix dust and small particles after one of its surfaces has been rubbed with a suitable cloth.
  • the electrically conductive layer may be located at different locations of the interference coating, provided that its anti-reflective properties are not disturbed. It may for example be deposited on the underlayer of the interference coating, if it is present. It is preferably located between two dielectric layers of the interference coating, and / or under a layer of low refractive index of the interference coating.
  • the electrically conductive layer must be sufficiently thin so as not to alter the transparency of the interference coating. Generally, its thickness varies from 0.1 to 150 nm, better from 0.1 to 50 nm, depending on its nature. A thickness of less than 0.1 nm generally does not provide sufficient electrical conductivity, whereas a thickness greater than 150 nm generally does not provide the required transparency and low absorption characteristics.
  • the electrically conductive layer is preferably made from an electrically conductive and highly transparent material. In this case, its thickness preferably varies from 0.1 to 30 nm, better still from 1 to 20 nm and more preferably from 2 to 15 nm.
  • the electrically conductive layer preferably comprises a metal oxide selected from indium oxide, tin oxide, zinc oxide and mixtures thereof. Tin-indium oxide (In 2 0 3 : Sn, indium oxide doped with tin) and indium oxide (In 2 0 3 ), as well as tin oxide Sn 2 are preferred.
  • the electrically conductive and optically transparent layer is a layer of tin-indium oxide, denoted ITO layer.
  • the electrically conductive layer contributes to obtaining anti-reflective properties and constitutes a high refractive index layer in the interference coating. This is the case of layers made from an electrically conductive and highly transparent material such as ITO layers.
  • the electrically conductive layer may also be a layer of a noble metal (Ag, Au, Pt, etc.) of very small thickness, typically less than 1 nm thick, better still less than 0.5 nm.
  • the various layers of the interferential coating (of which the optional antistatic layer is part) other than the layer A are preferably deposited by vacuum deposition according to one of the following techniques: i) by evaporation, possibly assisted by ion beam; ii) ion beam sputtering; iii) sputtering; iv) plasma enhanced chemical vapor deposition.
  • each of the layers of the interference coating is carried out by evaporation under vacuum.
  • the layers A and B of the interference coating (the layer B being optional) will now be described. They are low refractive index layers within the meaning of the invention, since their refractive index is ⁇ 1.55.
  • the refractive index of layer A is greater than or equal to 1.45, better still greater than 1.47, better still greater than or equal to 1.48 and ideally greater than 1.48. or equal to 1, 49.
  • the deposition of the layer A is obtained by deposition, under an ion beam, of activated species derived from at least one compound C, in gaseous form, containing in its structure at least one silicon atom, at least one atom of carbon, at least one hydrogen atom and optionally at least one nitrogen atom and / or at least one oxygen atom, the deposition of said layer A taking place in the presence of nitrogen and / or oxygen when compound A does not contain nitrogen and / or oxygen.
  • the deposition is carried out in a vacuum chamber, comprising an ion gun directed towards the substrates to be coated, which emits towards them a beam of positive ions generated in a plasma within the ion gun.
  • the ions originating from the ion gun are particles consisting of gas atoms from which one or more electrons (s) have been extracted, and formed from a rare gas, oxygen or a mixture of two or more of these gases.
  • a gaseous precursor, the compound C is introduced into the vacuum chamber, preferably in the direction of the ion beam and is activated under the effect of the ion gun.
  • the inventors believe that the plasma of the ion gun projects into an area located at a distance in front of the barrel, without however reaching the substrates to be coated and that an activation / dissociation precursor compound C occurs preferentially in this zone, and generally in the vicinity of the ion gun and to a lesser extent in the ion gun.
  • ion beam deposition This deposit technique using an ion gun and a gaseous precursor, sometimes referred to as "ion beam deposition", is described in particular in patent US5508368. According to the invention, preferably, the only place in the chamber where a plasma is generated is the ion gun.
  • the ions can be subject, if necessary, to a neutralization before the exit of the ion gun. In this case, the bombing will still be considered ionic.
  • the ion bombardment causes atomic rearrangement and densification in the layer being deposited, which allows it to be compacted while it is being formed.
  • the surface to be treated is preferably bombarded with ions, with a current density generally between 20 and 1000 ⁇ / cm 2 , preferably between 30 and 500 ⁇ / cm 2. preferably between 30 and 200 ⁇ / cm 2 on the activated surface and generally under a residual pressure in the vacuum chamber which may vary from 6.10 -5 mbar to 2.10 -4 mbar, preferably from 8.10 -5 mbar to 2.10 -4 mbar.
  • An argon and / or oxygen ion beam is preferably used:
  • the molar ratio Ar / O 2 is preferably ⁇ 1, better ⁇ 0.75 and even better ⁇ 0.5 This ratio can be controlled by adjusting the gas flow rates in the ion gun
  • the argon flow rate preferably varies from 0 to 30 sccm
  • the flow rate of oxygen 0 2 preferably varies from 5 to 30 sccm, and is even larger than the flow rate of the precursor compound of the layer A is high.
  • the ions of the ion beam preferably originating from an ion gun used during the deposition of the layer A, preferably have an energy ranging from 75 to 150 eV, preferably from 80 to 140 eV, better still from 90 to 110 eV. eV.
  • the activated species formed are typically radicals or ions.
  • this is distinguished from a deposition by means of a plasma (for example by PECVD) in that it involves a bombardment by means of an ion beam of the layer A during training, preferably emitted by an ion gun.
  • a plasma for example by PECVD
  • the deposition of the layer is performed without the assistance of a plasma at the substrates.
  • layers of the interference coating may be deposited under an ion beam.
  • the evaporation of the precursor materials of the layer A, conducted under vacuum, can be carried out using a Joule effect heat source.
  • the precursor material of layer A comprises at least one compound C, which is of organic nature, containing in its structure at least one silicon atom and at least one carbon atom, at least one hydrogen atom and optionally at least one nitrogen atom and / or at least one oxygen atom.
  • the compound C comprises at least one nitrogen atom and / or at least one oxygen atom, preferably at least one oxygen atom.
  • concentration of each chemical element in layer A can be determined using RBS (Rutherford Backscattering Spectrometry), and ERDA (Elastic Recoil Detection Analysis).
  • the atomic percentage of carbon atoms in layer A preferably varies from 10 to 25%, more preferably from 15 to 25%.
  • the atomic percentage of hydrogen atoms in layer A preferably varies from 10 to 40%, more preferably from 10 to 20%.
  • the atomic percentage of silicon atoms in layer A preferably varies from 5 to 30%, more preferably from 15 to 25%.
  • the atomic percentage of oxygen atoms in layer A preferably varies from 20 to 60%, more preferably from 35 to 45%.
  • Non-limiting examples of organic precursor compounds of the layer A, cyclic or non-cyclic are the following compounds: octamethylcyclotetrasiloxane (OMCTS), decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, hexamethylcyclotrisiloxane, hexamethyldisiloxane (HMDSO), octamethyltrisiloxane, decamethyltetrasiloxane, tetraethoxysilane, vinyltrimethylsilane, hexamethyldisilazane, hexamethyldisilane, hexamethylcyclotrisilazane, vinylmethyldiethoxysilane, divinyltetramethyldisiloxane, tetramethyldisiloxane, a tetraalkylsilane such as tetramethyl silane,
  • the precursor compound of the layer A comprises at least one silicon atom carrying at least one alkyl group, preferably C1-C4, better still two identical or different alkyl groups, preferably C1-C4, for example the methyl group.
  • the preferred layer A precursor compounds include an Si-O-Si group, more preferably a group:
  • R 1 to R 4 independently denote alkyl groups, preferably C 1 -C 4 groups, for example methyl group.
  • the silicon atom or atoms of the precursor compound of layer A do not comprise any hydrolysable group.
  • hydrolyzable groups are chloro, bromo, alkoxy, acyloxy.
  • the groups comprising an Si-O-Si link are not considered to be "hydrolysable groups" within the meaning of the invention.
  • the silicon atom (s) of the precursor compound of the layer A are preferably only linked to alkyl groups and / or groups comprising a -O-Si or -NH-
  • the preferred layer A precursor compounds are OMCTS and HMDSO.
  • the precursor compound of the layer A is preferably introduced into the vacuum chamber in which the preparation of the articles according to the invention in gaseous form is carried out, by controlling its flow rate. This means that it is preferably not vaporized inside the vacuum chamber.
  • the precursor compound supply of the layer A is at a distance from the exit of the ion gun, preferably ranging from 30 to 50 cm.
  • layer A does not comprise a fluorinated compound.
  • it is not formed from inorganic (inorganic) precursor compounds, in particular, it is not formed from metal oxide precursors. It is thus particularly distinguished from the "hybrid" layers described in US application 6,919,134.
  • layer A does not contain a separate phase of metal oxides, better does not contain inorganic compounds.
  • the metalloid oxides are considered to be metal oxides.
  • the process for forming the interference coating according to the invention is therefore much simpler and less expensive than the processes for co-evaporation of an organic compound and an inorganic compound, such as that described in US Pat. No. 6,919,134.
  • the co-evaporation processes are very difficult to implement, and difficult to control because of reproducibility problems.
  • the respective amounts of organic and inorganic compounds present in the deposited layer vary greatly from one manipulation to another.
  • the layer A is formed by vacuum deposition, it does not include silane hydrolyzate and is therefore distinguished from sol-gel coatings obtained by liquid.
  • Said layer A constitutes either the outer layer of the interference coating, that is to say the layer of the interference coating furthest from the substrate in the stacking order, or the layer directly in contact with the outer layer of the interference coating. , this outer layer of the interference coating being a layer B having a refractive index less than or equal to 1, 55.
  • the layer A constitutes the penultimate layer of the interference coating in the stacking order.
  • the layer B contains at least 50% by weight of silica, relative to the total weight of the layer B, better 75% or more and even better 90% or more, ideally 100%.
  • the layer B constitutes a layer based on silica. It is preferably deposited by evaporation under vacuum.
  • the layer B is preferably deposited without treatment with activated species, in particular without ionic assistance.
  • the layer A preferably has a thickness ranging from 20 to 150 nm, better still from 25 to 120 nm.
  • the layer A preferably has a thickness ranging from 60 to 100 nm.
  • the layer A preferably has a thickness ranging from 20 to 100 nm, better still from 25 to 90 nm.
  • the layer B when present, preferably has a thickness of 2 to 60 nm, more preferably 5 to 50 nm.
  • the sum of the thicknesses of the layers A and B varies from 20 to 150 nm, better still from 25 to 120 nm, and more preferably from 60 to 100 nm.
  • all the layers of low refractive index of the interference coating according to the invention are of inorganic nature with the exception of the layer A (that is, that other layers of low refractive index of the interferential coating preferably do not contain any organic compound).
  • all the layers of the interference coating according to the invention are of inorganic nature, with the exception of the layer A, which means that the layer A is preferably the only layer of organic nature of the interference coating of the invention. (The other layers of the interferential coating preferably do not contain any organic compound).
  • the stress of layer A is zero or negative. In the latter case, the layer is in compression.
  • This compressive stress preferably varies from 0 to -500 MPa, more preferably from -20 to -500 MPa, more preferably from -50 to -500 MPa.
  • the optimum compressive stress ranges from -150 to -400 MPa and more preferably from -200 to -400 MPa. It is measured at 20% and 50% relative humidity as described below. It is the filing conditions of the invention that make it possible to achieve this constraint.
  • the principle of stress measurement is based on the monitoring of the deformation of a thin substrate. By knowing the geometry and the mechanical properties of the substrate, its deformation and the thickness of the deposited layer, the stresses are calculated using the Stoney formula.
  • the stress o tot is obtained by measuring the curvature of polished substrates practically plane in silicon (100) or in mineral glass before and after deposition of a monolayer according to the invention, or of a complete AR stack on one face of the substrate having a very slight concavity then calculating the constraint value from the Stoney formula:
  • d f is the thickness of the film (m)
  • E s is the Young's modulus of the substrate (Pa)
  • v s is the Poisson's ratio of the substrate
  • R 1 is the measured radius of curvature of the substrate before deposition
  • R 2 is the measured radius of curvature of the substrate coated with the film after deposition.
  • Curvature is measured using a Tencor FLX 2900 (Flexus).
  • a Class Nia laser with 4 milliwatts (mW) power at 670 nm is used for the measurement.
  • the device allows measurement of internal stresses as a function of time or temperature (maximum temperature of 900 Q C).
  • Thickness of Si substrate 300 microns.
  • Thickness of the deposited film (measurement by ellipsometry): 200-500 nm.
  • the measurements are made at room temperature in the air.
  • the coating will be deposited on the same suitable substrate, and the procedure is the same.
  • the stress of the interference coating according to the invention generally varies from 0 to -400 MPa, preferably from -50 to -300 MPa, more preferably from -80 to -250 MPa, and more preferably from -100 to -200 MPa.
  • the layers A of the invention have elongations at break greater than those of the inorganic layers, and can therefore undergo deformations without cracking. Therefore, the article according to the invention has an increased resistance to curvature, as demonstrated in the experimental part.
  • the critical temperature of a coated article according to the invention is preferably greater than or equal to 80 ° C, better still greater than or equal to 90 ° C and more preferably greater than or equal to 100 ° C.
  • This high critical temperature is due to the presence of the layer A in the interference coating, as demonstrated in the experimental part.
  • the inventors believe that, in addition to the nature of the layer, the use of layers A, by making it possible to increase the compressive stress of the entire stack, improves the critical temperature of the article.
  • the critical temperature of an article or a coating is defined as that from which the appearance of cracks in the stack present on the surface of the substrate is observed, which reflects a degradation of the interference coating.
  • the interference coating of the invention can in particular be applied to a single face of a semi-finished lens, generally its front face, the other face of this lens still to be machined and processed.
  • the interference coating of the front face will not be degraded by the temperature increase generated by the treatments that will undergo the back face during the hardening of the coatings that will have been deposited on this rear face or any other action likely to increase the temperature of the The lens.
  • the interference coating of the invention comprises, in the order of deposition on the surface of the optionally coated substrate, a layer of Zr0 2 , generally 10 to 40 nm thick and preferably 15 to 35 nm, a layer of Si0 2, generally from 10 to 40 nm thick and preferably 15 to 35 nm, a layer of Zr0 2 or Ti0 2, generally from 40 to 150 nm thick, preferably from 50 to 120 nm, an ITO layer, generally 1 to 15 nm thick and preferably 2 to 10 nm, and is a layer A according to the invention, generally from 50 to 150 nm thick and preferably 60 to 100 nm, a layer A according to the invention coated with a layer B according to the invention (in this second case, the sum of the thicknesses of the layers A and B is generally 50 at 150 nm and preferably from 60 to 100 nm).
  • the average reflection factor in the visible range (400-700 nm) of an article coated with an interference coating according to the invention is less than 2.5% per side, better still less than 2% per side and even better less than 1% per face of the article.
  • the article comprises a substrate whose two main surfaces are coated with an interference coating according to the invention and has a total value of R m (cumulative reflection due to both faces) of less than 1%. .
  • the means for achieving such values of R m are known to those skilled in the art.
  • the light reflection factor R v of an interference coating according to the invention is less than 2.5% per side, preferably less than 2% per side, better than 1% per face of the article, better ⁇ 0 , 75%, better still ⁇ 0.5%.
  • the "average reflection factor” R m (average of the spectral reflection over the entire visible spectrum between 400 and 700 nm) and the light reflection factor R v are as defined in the ISO 13666 standard. : 1998, and measured in accordance with ISO 8980-4.
  • the colorimetric coefficients of the article of the invention in the CIE L * a * b * colorimetric system are calculated between 380 and 780 nm taking into account the illuminant D 65 and the observer (angle of incidence: 10 °). It is possible to prepare interferential coatings without limitation as to their hue angle. However, the hue angle h preferably ranges from 120 to 150 °, which produces a coating having green residual reflection, and the chroma C * is preferably less than 15, more preferably less than 10.
  • optical properties of the articles of the invention are stable over time.
  • their chroma C * does not vary by more than 1, better by more than 0.5 over a period of 3 months after their preparation, that is to say at the moment of their exit from the enclosure.
  • the main surface of the substrate is coated with one or more functional coatings prior to the deposition of the coating having on its surface silanol groups.
  • These functional coatings conventionally used in optics may be, without limitation, a primer layer improving the impact resistance and / or the adhesion of the subsequent layers in the final product, an abrasion-resistant and / or anti-scratch coating, a coating polarized, a photochromic coating or a colored coating, in particular a primer layer coated with an anti-abrasion and / or anti-scratch layer.
  • the article according to the invention may also comprise coatings formed on the interferential coating capable of modifying its surface properties, such as a hydrophobic and / or oleophobic coating (anti-fouling top coat) or an anti-fog coating. These coatings are preferably deposited on the outer layer of the interference coating. Their thickness is generally less than or equal to 10 nm, preferably from 1 to 10 nm, better from 1 to 5 nm. They are respectively described in the applications WO 2009/047426 and WO 201 1/080472.
  • the hydrophobic and / or oleophobic coating is preferably a fluorosilane or fluorosilazane type coating. It can be obtained by depositing a fluorosilane or fluorosilazane precursor, preferably comprising at least two hydrolyzable groups per molecule.
  • the precursor fluorosilanes preferentially contain fluoropolyether groups and better still perfluoropolyether groups.
  • the hydrophobic and / or oleophobic outer coating has a surface energy equal to or less than 14 mJ / m 2 , preferably equal to or less than 13 mJ / m 2 , more preferably equal to or less than 12 mJ / m 2 .
  • the surface energy is calculated according to the Owens-Wendt method described in the reference: "Estimation of the surface force energy of polymers" Owens DK, Wendt RG (1969), J. Appl. Polym. Sci., 13, 1741-1747.
  • compositions for preparing hydrophobic and / or oleophobic coatings are KY130 ® composition of the Shinetsu company or composition OPTOOL DSX ®, marketed by Daikin Industries ..
  • an article according to the invention comprises a substrate successively coated with a layer of adhesion and / or shockproof primer, with an anti-abrasion and / or anti-scratch coating, with an interference coating according to the invention.
  • an interference coating optionally antistatic, and a hydrophobic and / or oleophobic coating.
  • the layers of the antireflection coating were deposited without heating the substrates by vacuum evaporation, possibly, when specified, assisted by oxygen ion beam and possibly argon during the deposition (evaporation source: electron gun).
  • the vacuum deposition frame is a Leybold LAB 1 100 + machine equipped with an electron gun for the evaporation of precursor materials, a thermal evaporator, a ion gun KRI EH 1000 F (from Kaufman & Robinson Inc.) for the preliminary phase of preparation of the substrate surface by argon ions (IPC), as well as for the deposition of layer A or layers under assistance ionic system (IAD), and a liquid introduction system, used when the precursor compound of layer A is a liquid under normal conditions of temperature and pressure (case of OMCTS).
  • This system comprises a reservoir for the liquid precursor compound of the layer A, a liquid flow meter and a vaporizer which is in the machine, and which is brought to a temperature of 80-200 ° C during its use, depending on the flow rate of the gaseous precursor, which preferably varies from 0.1 to 0.8 g / min (the temperature is 180 ° C. for a flow rate of 0.3 g / min).
  • the precursor vapor exits a copper pipe inside the machine at a distance of about 50 cm from the ion gun. An oxygen flow is introduced inside the ion gun.
  • the layers A according to the invention are formed by evaporation under ionic bombardment of octamethylcyclotetrasiloxane, supplied by ABCR.
  • the layers B according to the invention when present, are formed by evaporation of silica supplied by the company Optron, Inc.
  • the thickness of the deposited layers was monitored in real time using a quartz microbalance. Unless otherwise indicated, the thicknesses mentioned are physical thicknesses. Several samples of each glass were prepared. 2. Modes of operation
  • the process for preparing optical articles according to the invention comprises introducing the substrate coated with the primer coating and the anti-abrasion coating defined above into the vacuum deposition chamber, a primary pumping step, and then secondary pumping during 400 s to obtain a secondary vacuum ( ⁇ 2, 10 ⁇ 5 mbar, pressure read on a gauge Bayard-Alpert), a step of preheating the vaporizer at the chosen temperature ( ⁇ 5 min), a step of activation of the substrate surface by an argon ion beam (IPC: 1 minute, 100 V, 1 A, the ion gun being stopped at the end of this step), then the deposition of the layers by evaporation following inorganics using the electron gun until the desired thickness is obtained for each layer:
  • a secondary vacuum ⁇ 2, 10 ⁇ 5 mbar, pressure read on a gauge Bayard-Alpert
  • IPC argon ion beam
  • the deposition of the layer A on the ITO layer is then carried out as follows.
  • the ion gun is then started with argon, oxygen is added to the ion gun, with a programmed flow rate, the desired anode current is programmed (3 A) and the OMCTS compound is introduced into the ion gun. enclosure (liquid flow programmed at 0.3 g / min).
  • the OMCTS feed is stopped once the desired thickness is obtained, and then the ion gun is turned off.
  • a layer of antifouling coating (top coat) (Optool DSX TM from Daikin) of the order of 5 nm is deposited directly on a layer A of 80 nm thick, which constitutes the outer layer of the antireflection coating.
  • a 5-40 nm thick layer of silica (layer B) is deposited on a layer A 40-75 nm thick (similarly the 1 st silica layer of the antireflection coating already deposited without ion assistance), the sum of the thicknesses of the layers a and B being equal to 80 nm, then a layer of antifouling coating (top coat) (Optool DSX TM society Daikin) of the order of 5 nm is deposited on this silica layer.
  • top coat Optool DSX TM society Daikin
  • Comparative Example 1 differs from the stacks of Embodiments 1 and 2 described above in that layer A or layer A + layer B is replaced by a silica layer of the same thickness (80 nm).
  • Comparative Example 2 differs from Examples 1 and 3 to 7 in that the outer layer of the antireflection coating was formed by co-evaporation of OMCTS (programmed liquid flow at 0.1 g / min) and silica (at power fixed, electron gun operated with an ion-assisted 60 mA emission current.
  • OMCTS programmed liquid flow at 0.1 g / min
  • silica at power fixed, electron gun operated with an ion-assisted 60 mA emission current.
  • This outer layer of the antireflection coating which is obtained from an organic substance and an inorganic substance, is therefore prepared in accordance with the teaching of U.S. Patent 6,919,134.
  • the abrasion resistance was evaluated by determining the BAYER ASTM (Bayer sand) values on the substrates coated with the antireflection coating and the antifouling coating according to the methods described in the application WO 2008/00101 1 (ASTM standard F 735.81). .
  • BAYER ASTM Bayer sand
  • ASTM standard F 735.81 The higher the value obtained in the BAYER test, the higher the resistance to abrasion.
  • Bayer ASTM Bayer ASTM (Bayer Sand) is rated good when it is greater than or equal to 3.4 and less than 4.5 and excellent for values of 4.5 and above.
  • the qualitative test known as the "n ⁇ 10 shots” test makes it possible to evaluate the adhesion properties of a film deposited on a substrate, in particular the adhesion of an antireflection coating to an ophthalmic lens substrate. It was made on the concave face of the lenses by following the procedure described in the international application WO 2010/1 09154.
  • the critical temperature of the article is measured as indicated in WO 2008/001 01 1. It is measured one week after the preparation of this article.
  • the corrosion resistance is evaluated by means of an immersion test in saline water (200 g / l) at 50 ° C. The glass is immersed for 20 minutes, and then, after wiping, the visual appearance of the coating is evaluated. In particular, it takes into account possible delamination defects, as well as color changes of the antireflection.
  • the note 1 corresponds to a slight change of color, and the note 2 means that no change is detectable.
  • the curvature resistance test evaluates the ability of an article having a curvature to undergo mechanical deformation.
  • the test is carried out on an initially spherical glass which has been overflowed in the shape of a rectangle of dimension 50x25 mm.
  • the solicitation mode of this test is representative of the solicitation at the optician for mounting the glass, that is to say the "compression" of the glass for insertion into a metal frame.
  • This test uses an Instron bench to apply controlled deformation to the glass, light-emitting diodes (LEDs) to illuminate the glass, a camera and image analysis software.
  • the coated glass is compressed by the Instron bench, by applying forces exerted along the axis of the main length of the overflow glass until cracks perpendicular to the direction of movement in the antireflection coating are detected by analysis of the image in transmission.
  • the result of the test is the critical strain D in mm that the glass can undergo before the appearance of cracks, shown in FIG. This test is performed one month after the preparation of the glasses. The higher the value of the deformation, the better the resistance to mechanical deformation applied.
  • the interferential coatings according to the invention have critical deformation values ranging from 0.7 to 1.2 mm, better still from 0.8 mm to 1.2 mm and more preferably from 0.9 to 1. , 2 mm.
  • Table 1 below shows the optical performance of different antireflection coatings (the time t designating the moment when the preparation of the article has been completed).
  • Example layer A (canon
  • Example 4 has the following atomic contents: 22% silicon, 40.8% oxygen, 20.5% carbon and 16.7% hydrogen.
  • the outer layer of the antireflection coating of Comparative Example 2 obtained by co-evaporation of silica and OMCTS, has the following atomic contents: 28.2% silicon, 61.5% oxygen, 3% carbon and 1 0.3% hydrogen.
  • the articles according to the invention have a significantly improved critical temperature and a significant improvement in curvature deformation that the article can undergo before the appearance of cracks. These improvements are directly attributable to the presence of a layer A in the antireflection stack, as shown by comparing the examples according to the invention to Comparative Example 1.
  • Corrosion resistance is generally improved by the presence of a layer
  • n x 10 shots The lenses of all the examples and comparative examples pass the test commonly called "n x 10 shots". This shows that the different layers of the antireflection coating according to the invention have good adhesion properties, in particular at the interface with the substrate.
  • embodiment 2 makes it possible to obtain an article having an anti-fouling coating which is significantly more efficient than that of Embodiment 1 (Examples 3-7), which can be observed by realizing the ink test ("Magic Ink”) described in the application WO 2004/1 1 1691, while retaining good mechanical properties.

Abstract

L'invention concerne un article comprenant un substrat ayant au moins une surface principale revêtue d'un revêtement interférentiel multicouche, ledit revêtement comprenant une couche A ayant un indice de réfraction inférieur ou égal à 1,55, caractérisé en ce que : - ladite couche A constitue : o soit la couche externe du revêtement interférentiel, o soit une couche intermédiaire, directement en contact avec la couche externe du revêtement interférentiel, cette couche externe du revêtement interférentiel étant une couche B ayant un indice de réfraction inférieur ou égal à 1,55, - et ladite couche A a été obtenue par dépôt, sous faisceau d'ions, d'espèces activées issues d'au moins un composé C, sous forme gazeuse contenant dans sa structure au moins un atome de silicium, au moins un atome de carbone, au moins un atome d'hydrogène et, optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène, le dépôt de la dite couche A s'effectuant en présence d'azote et/ou d'oxygène lorsque le composé A ne contient pas d'azote et/ou d'oxygène et - ladite couche A n'est pas formée à partir de composés précurseurs inorganiques.

Description

ARTICLE REVETU D'UN REVETEMENT INTERFERENTIEL AYANT DES PROPRIETES
STABLES DANS LE TEMPS
La présente invention concerne d'une manière générale un article, de préférence un article d'optique, notamment une lentille ophtalmique, possédant un revêtement interférentiel, de préférence un revêtement antireflet, dont les propriétés optiques sont stables dans le temps, et qui possède en outre des propriétés thermomécaniques améliorées, ainsi qu'un procédé de préparation d'un tel article.
Il est connu de traiter les verres ophtalmiques, qu'ils soient minéraux ou organiques, de façon à empêcher la formation de reflets parasites gênants pour le porteur de la lentille et ses interlocuteurs. La lentille est alors pourvue d'un revêtement antireflet mono- ou multicouche, généralement en matière minérale.
Lors de la préparation d'un revêtement antireflet, des performances cibles sont généralement choisies, qui sont l'efficacité du revêtement antireflet définie par les coefficients de réflexion Rm et Rv, et sa couleur de reflet résiduelle, essentiellement caractérisée par l'angle de teinte h et la chroma C*. Ces deux derniers paramètres garantissent le côté esthétique du traitement antireflet pour le porteur et son entourage.
Or, les propriétés optiques des couches du revêtement antireflet, et plus généralement les propriétés optiques des couches des revêtements interférentiels, en particulier celles des couches de silice, évoluent dans le temps, si bien que ses caractéristiques d'efficacité mais surtout d'esthétique peuvent différer entre le moment où le revêtement est formé sur l'article et le moment où celui-ci est vendu, si le verre a été conservé en stock, et/ou pendant l'utilisation de l'article par le porteur, postérieurement à la vente.
Un moyen pour résoudre le premier problème consiste à estimer l'évolution dans le temps du revêtement antireflet et produire un revêtement antireflet différent de celui souhaité mais qui va évoluer dans le temps vers les valeurs cibles, pendant son stockage.
Cependant, l'évolution dans le temps étant empirique et pas toujours modélisable, le problème de vendre des lentilles traitées avec des revêtements antireflet ayant les performances cibles demeure.
Par ailleurs, pour les verres de prescription, vendus au porteur dans les jours suivants leur fabrication, le problème de la modification des propriétés optiques lors de l'utilisation par le porteur est toujours à résoudre.
II est donc souhaitable de concevoir de nouveaux revêtements interférentiels, en particulier antireflet, qui seraient moins sensibles à l'évolution dans le temps de leurs propriétés optiques, tout en conservant sensiblement ou en améliorant les autres propriétés du revêtement interférentiel, tels que les propriétés mécaniques, l'adhérence.
Selon l'invention, le problème est résolu en déposant comme couche externe du revêtement interférentiel une couche de bas indice de réfraction formée par dépôt sous faisceau d'ions,d'une couche obtenue exclusivement à partir de matériaux précurseurs de nature organique et sous forme gazeuse. Le brevet US 6,919,134 décrit un article d'optique comportant un revêtement antireflet comprenant au moins une couche dite "hybride" obtenues par co-évaporation d'un composé organique et d'un composé inorganique, qui lui confère une meilleure adhésion, une meilleure résistance thermique et une meilleure résistance à l'abrasion. Le revêtement antireflet comprend de préférence deux couches "hybrides" en position interne et externe. Ces couches sont généralement déposées par co-évaporation sous assistance ionique typiquement de silice et d'une huile de silicone modifiée.
La demande JP 2007-078780 décrit un verre de lunettes comportant un revêtement antireflet multicouche, dont la couche externe est une couche de bas indice de réfraction dite "organique". Cette couche est déposée par voie liquide (par centrifugation ou trempage), alors que les couches inorganiques du revêtement antireflet sont déposées par dépôt sous vide sous assistance ionique. La demande de brevet indique qu'un tel empilement antireflet possède une meilleure résistance thermique qu'un revêtement antireflet composé exclusivement de couches inorganiques. Ladite couche "organique" comprend de préférence un mélange de particules de silice et d'un liant organosilane tel que le γ-glycidoxypropyltriméthoxysilane.
La demande JP 05-323103 décrit l'incorporation d'un composé organique fluoré dans la dernière couche d'un empilement optique multicouche, comprenant des couches de Si02 et de Ti02, en vue de la rendre hydrophobe et ainsi minimiser le changement de ses caractéristiques optiques provoqué par l'absorption d'eau. La couche fluorée est obtenue par dépôt en phase vapeur du matériau constitutif de la couche dans une atmosphère composée du précurseur fluoré, qui peut être le tétrafluoroéthylène ou un fluoroalkyl silane.
L'objectif principal de l'invention est la préparation de revêtements interférentiels, en particulier antireflet, dont les propriétés optiques, en particulier la chroma (les porteurs étant plus sensibles à ce paramètre), sont plus stables dans le temps que les revêtements interférentiels connus. De tels revêtements interférentiels posséderaient les caractéristiques cibles dès la fin du dépôt des différentes couches de l'empilement, ce qui permettrait de garantir leur performance et simplifier le contrôle qualité. Ce problème technique n'est pas abordé dans les brevets ou demande de brevet précédemment cités.
Par ailleurs, lors du taillage et du montage d'un verre chez l'opticien, le verre subit des déformations mécaniques qui peuvent provoquer des fissures dans les revêtements interférentiels minéraux, en particulier lorsque l'opération n'est pas conduite avec soin. De façon similaire, des sollicitations en température (chauffage de la monture) peuvent provoquer des fissures dans le revêtement interférentiel. Selon le nombre et la taille des fissures, celles-ci peuvent gêner la vue pour le porteur et empêcher la commercialisation du verre.
Ainsi, un autre objectif de l'invention est l'obtention de revêtements interférentiels ayant des propriétés thermomécaniques améliorées, tout en conservant de bonnes propriétés d'adhérence. L'invention vise en particulier des articles possédant une température critique améliorée, c'est à dire, présentant une bonne résistance à la craquelure lorsqu'ils sont soumis à une élévation de température. Un autre objectif de l'invention est de disposer d'un procédé de fabrication d'un revêtement interférentiel simple, facile à mettre en œuvre et reproductible.
Les inventeurs ont découvert qu'une modification de la nature de la couche externe du revêtement interférentiel, qui est généralement une couche de bas indice de réfraction, typiquement une couche de silice, permettait de remplir les objectifs fixés. Selon l'invention, cette couche est formée par dépôt sous un faisceau d'ions, d'espèces activées, sous forme gazeuse, obtenues exclusivement à partir de matériaux précurseurs de nature organique.
Les buts fixés sont donc atteints selon l'invention par un article comprenant un substrat ayant au moins une surface principale revêtue d'un revêtement interférentiel multicouche, ledit revêtement comprenant une couche A ayant un indice de réfraction inférieur ou égal à 1 ,55, qui constitue :
o soit la couche externe du revêtement interférentiel,
o soit une couche intermédiaire, directement en contact avec la couche externe du revêtement interférentiel, cette couche externe du revêtement interférentiel étant dans ce second cas une couche B ayant un indice de réfraction inférieur ou égal à 1 ,55, et ladite couche A a été obtenue par dépôt, sous faisceau d'ions, d'espèces activées issues d'au moins un composé C, sous forme gazeuse contenant dans sa structure au moins un atome de silicium, au moins un atome de carbone, au moins un atome d'hydrogène et, optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène, le dépôt de la dite couche A s'effectuant en présence d'azote et/ou d'oxygène lorsque le composé A ne contient pas d'azote et/ou d'oxygène; et la couche A n'ayant pas été formée à partir de composés précurseurs inorganiques.
L'invention concerne également un procédé de fabrication d'un tel article, comprenant au moins les étapes suivantes :
- fournir un article comprenant un substrat ayant au moins une surface principale,
- déposer sur ladite surface principale du substrat un revêtement interférentiel multicouche, ledit revêtement comprenant une couche A ayant un indice de réfraction inférieur ou égal à 1 ,55, qui constitue :
o soit la couche externe du revêtement interférentiel,
o soit une couche intermédiaire, directement en contact avec la couche externe du revêtement interférentiel, cette couche externe du revêtement interférentiel étant une couche B ayant un indice de réfraction inférieur ou égal à 1 ,55,
- récupérer un article comprenant un substrat ayant une surface principale revêtue dudit revêtement interférentiel qui comporte ladite couche A, celle-ci ayant été obtenue par dépôt, sous faisceau d'ions, d'espèces activées issues d'au moins un composé C, sous forme gazeuse contenant dans sa structure au moins un atome de silicium, au moins un atome de carbone, au moins un atome d'hydrogène et, optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène, le dépôt de la dite couche A s'effectuant en présence d'azote et/ou d'oxygène lorsque le composé A ne contient pas d'azote et/ou d'oxygène, la couche A n'étant pas formée à partir de composés précurseurs inorganiques. L'invention sera décrite plus en détail en référence au dessin annexé, dans lequel la figure 1 est une représentation schématique de la déformation subie par le verre et de la façon dont est mesurée cette déformation D au cours du test de résistance à la courbure décrit en partie expérimentale.
Dans la présente demande, lorsqu'un article comprend un ou plusieurs revêtements à sa surface, l'expression "déposer une couche ou un revêtement sur l'article" signifie qu'une couche ou un revêtement est déposé sur la surface à découvert (exposée) du revêtement externe de l'article, c'est-à-dire son revêtement le plus éloigné du substrat.
Un revêtement qui est "sur" un substrat ou qui a été déposé "sur" un substrat est défini comme un revêtement qui (i) est positionné au-dessus du substrat, (ii) n'est pas nécessairement en contact avec le substrat, c'est-à-dire qu'un ou plusieurs revêtements intermédiaires peuvent être disposés entre le substrat et le revêtement en question, et (iii) ne recouvre pas nécessairement le substrat complètement (bien que préférentiellement, il le recouvre). Lorsque "une couche 1 est localisée sous une couche 2", on comprendra que la couche 2 est plus éloignée du substrat que la couche 1 .
L'article préparé selon l'invention comprend un substrat, de préférence transparent, ayant des faces principales avant et arrière, l'une au moins desdites faces principales comportant un revêtement interférentiel, de préférence les deux faces principales.
Par face arrière (généralement concave) du substrat, on entend la face qui, lors de l'utilisation de l'article, est la plus proche de l'œil du porteur. Inversement, par face avant (généralement convexe) du substrat, on entend la face qui, lors de l'utilisation de l'article, est la plus éloignée de l'œil du porteur.
Bien que l'article selon l'invention puisse être un article quelconque, tel qu'un écran, un vitrage, des lunettes de protection utilisables notamment en environnement de travail, ou un miroir, il est de préférence un article d'optique, mieux une lentille optique, et encore mieux une lentille ophtalmique, pour lunettes, ou une ébauche de lentille optique ou ophtalmique telle qu'une lentille optique semi-finie, en particulier un verre de lunettes. La lentille peut être une lentille polarisée, colorée ou une lentille photochrome. Préférentiellement, la lentille ophtalmique selon l'invention présente une transmission élevée.
Le revêtement interférentiel selon l'invention peut être formé sur au moins l'une des faces principales d'un substrat nu, c'est-à-dire non revêtu, ou sur au moins l'une des faces principales d'un substrat déjà revêtu d'un ou plusieurs revêtements fonctionnels.
Le substrat de l'article selon l'invention est de préférence un verre organique, par exemple en matière plastique thermoplastique ou thermodurcissable. Ce substrat peut être choisi parmi les substrats cités dans la demande WO 2008/062142, par exemple un substrat obtenu par (co)polymérisation du bis allyl carbonate du diéthylèneglycol, un substrat en poly(thio)uréthane ou un substrat en polycarbonate de bis(phénol A) (thermoplastique) PC.
Avant le dépôt du revêtement interférentiel sur le substrat éventuellement revêtu, par exemple d'un revêtement anti-abrasion et/ou anti-rayures, il est courant de soumettre la surface dudit substrat, éventuellement revêtue, à un traitement d'activation physique ou chimique, destiné à augmenter l'adhésion du revêtement interférentiel. Ce prétraitement est généralement conduit sous vide. Il peut s'agir d'un bombardement avec des espèces énergétiques et/ou réactives, par exemple un faisceau d'ions ("Ion Pre-Cleaning" ou "IPC") ou un faisceau d'électrons, d'un traitement par décharge corona, par effluvage, d'un traitement UV, ou d'un traitement par plasma sous vide, généralement un plasma d'oxygène ou d'argon. Il peut également s'agir d'un traitement de surface acide ou basique et/ou par solvants (eau ou solvant organique). Plusieurs de ces traitements peuvent être combinés. Grâce à ces traitements de nettoyage, la propreté et la réactivité de la surface du substrat sont optimisées.
Par espèces énergétiques (et/ou réactives), on entend notamment des espèces ioniques ayant une énergie allant de 1 à 300 eV, préférentiellement de 1 à 150 eV, mieux de 10 à 150 eV, et mieux encore de 40 à 150 eV. Les espèces énergétiques peuvent être des espèces chimiques telles que des ions, des radicaux, ou des espèces telles que des photons ou des électrons.
Le prétraitement préféré de la surface du substrat est un traitement par bombardement ionique, effectué au moyen d'un canon à ions, les ions étant des particules constituées d'atomes de gaz dont on a extrait un ou plusieurs électron(s). On utilise de préférence en tant que gaz ionisé l'argon (ions Ar+), mais également l'oxygène, ou leurs mélanges, sous une tension d'accélération allant généralement de 50 à 200 V, une densité de courant généralement comprise entre 10 et 100 μΑ/cm2 sur la surface activée, et généralement sous une pression résiduelle dans l'enceinte à vide pouvant varier de 8.10"5 mbar à 2.10"4 mbar.
L'article selon l'invention comporte un revêtement interférentiel, formé de préférence sur un revêtement anti-abrasion. Les revêtements anti-abrasion préférés sont des revêtements à base d'hydrolysats d'époxysilane comportant au moins deux groupements hydrolysables, de préférence au moins trois liés à l'atome de silicium.
Les groupements hydrolysables préférés sont des groupements alkoxysilane.
Le revêtement interférentiel peut être tout revêtement interférentiel classiquement utilisé dans le domaine de l'optique, en particulier de l'optique ophtalmique, excepté le fait qu'il comporte une couche A formée par dépôt, sous un faisceau d'ions d'espèces activées issues d'un dérivé organique du silicium, sous forme gazeuse. Le revêtement interférentiel peut être, sans limitation, un revêtement antireflet, un revêtement réfléchissant (miroir), un filtre infrarouge ou un filtre ultraviolet, de préférence un revêtement antireflet.
Un revêtement antireflet se définit comme un revêtement, déposé à la surface d'un article, qui améliore les propriétés anti-réfléchissantes de l'article final. Il permet de réduire la réflexion de la lumière à l'interface article-air sur une portion relativement large du spectre visible.
Comme cela est bien connu, les revêtements interférentiels, de préférence les revêtements antireflet, comprennent classiquement un empilement monocouche ou multicouche de matériaux diélectriques. Ce sont de préférence des revêtements multicouche, comprenant des couches de haut indice de réfraction (Hl) et des couches de bas indice de réfraction (Bl). Dans la présente demande, une couche du revêtement interférentiel est dite couche de haut indice de réfraction lorsque son indice de réfraction est supérieur à 1 ,55, de préférence supérieur ou égal à 1 ,6, mieux supérieur ou égal à 1 ,8 et encore mieux supérieur ou égal à 2,0. Une couche d'un revêtement interférentiel est dite couche de bas indice de réfraction lorsque son indice de réfraction est inférieur ou égal à 1 ,55, de préférence inférieur ou égal à 1 ,50, mieux inférieur ou égal à 1 ,45. Sauf indication contraire, les indices de réfraction auxquels il est fait référence dans la présente invention sont exprimés à 25 'Ό pour une longueur d'onde de 630 nm.
Les couches Hl sont des couches de haut indice de réfraction classiques, bien connues dans la technique. Elles comprennent généralement un ou plusieurs oxydes minéraux tels que, sans limitation, la zircone (Zr02), l'oxyde de titane (Ti02), le pentoxyde de tantale (Ta205), l'oxyde de néodyme (Nd205), l'oxyde d'hafnium (Hf02), l'oxyde de praséodyme (Pr203), le titanate de praséodyme (PrTi03), La203, Nb205, Y203, l'oxyde d'indium ln203, ou l'oxyde d'étain Sn02. Les matériaux préférés sont Ti02, Ta205, PrTi03, Zr02, Sn02 , ln203 et leurs mélanges.
Les couches Bl sont également bien connues et peuvent comprendre, sans limitation,
Si02, MgF2, ZrF4, de l'alumine (Al203) en faible proportion, AIF3, et leurs mélanges, de préférence Si02. On peut également utiliser des couches SiOF (Si02 dopée au fluor). Idéalement, le revêtement interférentiel de l'invention ne comprend aucune couche comprenant un mélange de silice et d'alumine.
Généralement, les couches Hl ont une épaisseur physique variant de 10 à 120 nm, et les couches Bl ont une épaisseur physique variant de 10 à 100 nm.
Préférentiellement, l'épaisseur totale du revêtement interférentiel est inférieure à 1 micromètre, mieux inférieure ou égale à 800 nm et mieux encore inférieure ou égale à 500 nm. L'épaisseur totale du revêtement interférentiel est généralement supérieure à 100 nm, de préférence supérieure à 150 nm.
De préférence encore, le revêtement interférentiel, qui est de préférence un revêtement antireflet, comprend au moins deux couches de bas indice de réfraction (Bl) et au moins deux couches de haut indice de réfraction (Hl). Préférentiellement, le nombre total de couches du revêtement interférentiel est inférieur ou égal à 8, mieux inférieur ou égal à 6.
II n'est pas nécessaire que les couches Hl et Bl soient alternées dans le revêtement interférentiel, bien qu'elles puissent l'être selon un mode de réalisation de l'invention. Deux couches Hl (ou plus) peuvent être déposées l'une sur l'autre, tout comme deux couches Bl (ou plus) peuvent être déposées l'une sur l'autre.
Selon un mode de réalisation de l'invention, le revêtement interférentiel comprend une sous-couche. Elle constitue dans ce cas généralement la première couche de ce revêtement interférentiel dans l'ordre de dépôt des couches, c'est-à-dire la couche du revêtement interférentiel qui est au contact du revêtement sous-jacent (qui est généralement un revêtement anti-abrasion et/ou anti-rayures) ou du substrat, lorsque le revêtement interférentiel est directement déposé sur le substrat. Par sous-couche du revêtement interférentiel, on entend un revêtement d'épaisseur relativement importante, utilisé dans le but d'améliorer la résistance à l'abrasion et/ou aux rayures dudit revêtement et/ou de promouvoir son adhésion au substrat ou au revêtement sous- jacent. La sous-couche selon l'invention peut être choisie parmi les sous-couches décrites dans la demande WO 2010/109154.
Préférentiellement, la sous-couche a une épaisseur de 100 à 200 nm. Elle est préférentiellement de nature exclusivement minérale et est préférentiellement constituée de silice Si02.
L'article de l'invention peut être rendu antistatique grâce à l'incorporation, dans le revêtement interférentiel, d'au moins une couche électriquement conductrice. Par "antistatique", on entend la propriété de ne pas retenir et/ou développer une charge électrostatique appréciable. Un article est généralement considéré comme ayant des propriétés antistatiques acceptables lorsqu'il n'attire et ne fixe pas la poussière et les petites particules après que l'une de ses surfaces a été frottée au moyen d'un chiffon approprié.
La couche électriquement conductrice peut être localisée à différents endroits du revêtement interférentiel, pourvu que ses propriétés anti-réfléchissantes ne soient pas perturbées. Elle peut par exemple être déposée sur la sous-couche du revêtement interférentiel, si elle est présente. Elle est de préférence localisée entre deux couches diélectriques du revêtement interférentiel, et/ou sous une couche de bas indice de réfraction du revêtement interférentiel.
La couche électriquement conductrice doit être suffisamment fine pour ne pas altérer la transparence du revêtement interférentiel. Généralement, son épaisseur varie de 0,1 à 150 nm, mieux de 0,1 à 50 nm, selon sa nature. Une épaisseur inférieure à 0,1 nm ne permet généralement pas d'obtenir une conductivité électrique suffisante, alors qu'une épaisseur supérieure à 150 nm ne permet généralement pas d'obtenir les caractéristiques de transparence et de faible absorption requises.
La couche électriquement conductrice est de préférence fabriquée à partir d'un matériau électriquement conducteur et hautement transparent. Dans ce cas, son épaisseur varie de préférence de 0,1 à 30 nm, mieux de 1 à 20 nm et encore mieux de 2 à 15 nm. La couche électriquement conductrice comprend de préférence un oxyde métallique choisi parmi les oxydes d'indium, d'étain, de zinc et leurs mélanges. L'oxyde d'étain-indium (ln203:Sn, oxyde d'indium dopé à l'étain) et l'oxyde d'indium (ln203), ainsi que l'oxyde d'étain Sn02 sont préférés. Selon un mode de réalisation optimal, la couche électriquement conductrice et optiquement transparente est une couche d'oxyde d'étain-indium, notée couche d'ITO.
Généralement, la couche électriquement conductrice contribue à l'obtention de propriétés anti-réfléchissantes et constitue une couche de haut indice de réfraction dans le revêtement interférentiel. C'est le cas de couches fabriquées à partir d'un matériau électriquement conducteur et hautement transparent telles que les couches d'ITO. La couche électriquement conductrice peut également être une couche d'un métal noble (Ag, Au, Pt etc.) de très faible épaisseur, typiquement de moins de 1 nm d'épaisseur, mieux de moins de 0,5 nm.
Les différentes couches du revêtement interférentiel (dont fait partie la couche antistatique optionnelle) autres que la couche A sont préférentiellement déposées par dépôt sous vide selon l'une des techniques suivantes : i) par évaporation, éventuellement assistée par faisceau ionique ; ii) par pulvérisation par faisceau d'ion ; iii) par pulvérisation cathodique ; iv) par dépôt chimique en phase vapeur assisté par plasma. Ces différentes techniques sont décrites dans les ouvrages "Thin Film Processes" and "Thin Film Processes II," Vossen & Kern, Ed., Académie Press, 1978 et 1991 respectivement. Une technique particulièrement recommandée est la technique d'évaporation sous vide.
De préférence, le dépôt de chacune des couches du revêtement interférentiel est réalisé par évaporation sous vide.
Les couches A et B du revêtement interférentiel (la couche B étant optionnelle) vont maintenant être décrites. Ce sont des couches de bas indice de réfraction au sens de l'invention, puisque leur indice de réfraction est < 1 ,55. De préférence, selon des modes de réalisation de l'invention, l'indice de réfraction de la couche A est supérieur ou égal à 1 ,45, mieux supérieur à 1 ,47, mieux encore supérieur ou égal à 1 ,48 et idéalement supérieur ou égal à 1 ,49.
Le dépôt de la couche A est obtenue par dépôt, sous faisceau d'ions, d'espèces activées issues d'au moins un composé C, sous forme gazeuse, contenant dans sa structure au moins un atome de silicium, au moins un atome de carbone, au moins un atome d'hydrogène et, optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène, le dépôt de la dite couche A s'effectuant en présence d'azote et/ou d'oxygène lorsque le composé A ne contient pas d'azote et/ou d'oxygène.
De préférence, le dépôt est effectué dans une enceinte à vide, comportant un canon à ions dirigé vers les substrats à revêtir, qui émet vers ceux-ci un faisceau d'ions positifs générés dans un plasma au sein du canon à ions. Préférentiellement les ions issus du canon à ions sont des particules constituées d'atomes de gaz dont on a extrait un ou plusieurs électron(s), et formés à partir d'un gaz rare, d'oxygène ou d'un mélange de deux ou plus de ces gaz.
Un précurseur gazeux, le composé C est introduit dans l'enceinte à vide, de préférence en direction du faisceau d'ions et est activé sous l'effet du canon à ions.
Sans vouloir être limité par une quelconque théorie, les inventeurs pensent que le plasma du canon à ions se projette dans une zone située à une certaine distance à l'avant du canon, sans toutefois atteindre les substrats à revêtir et qu'une activation /dissociation du composé précurseur C se produit préférentiellement dans cette zone, et d'une manière générale à proximité du canon à ions et dans une moindre mesure dans le canon à ions.
Cette technique du dépôt utilisant un canon à ions et un précurseur gazeux, parfois désignée par « ion beam déposition » est décrite notamment dans le brevet US5508368. Selon l'invention, de façon préférentielle, le seul endroit de l'enceinte où un plasma est généré est le canon à ions.
Les ions peuvent faire l'objet, le cas échéant, d'une neutralisation avant la sortie du canon à ions. Dans ce cas, le bombardement sera toujours considérés comme ionique. Le bombardement ionique provoque un réarrangement atomique et une densification dans la couche en cours de dépôt, ce qui permet de la tasser pendant qu'elle est en train d'être formée.
Lors de la mise en œuvre du procédé selon l'invention, la surface à traiter est préférentiellement bombardée par des ions, d'une densité de courant généralement comprise entre 20 et 1000 μΑ/cm2 , préférentiellement entre 30 et 500 μΑ/cm2, mieux entre 30 et 200 μΑ/cm2 sur la surface activée et généralement sous une pression résiduelle dans l'enceinte à vide pouvant varier de 6.10"5 mbar à 2.10 4 mbar, préférentiellement de 8.10"5 mbar à 2.10"4 mbar. On utilise de préférence un faisceau d'ions argon et/ou oxygène. Lorsqu'un mélange d'argon et d'oxygène est employé, le ratio molaire Ar / 02 est de préférence < 1 , mieux < 0,75 et encore mieux < 0,5. Ce ratio peut être contrôlé en ajustant les débits de gaz dans le canon à ions. Le débit d'argon varie de préférence de 0 à 30 sccm. Le débit d'oxygène 02 varie de préférence de 5 à 30 sccm, et est d'autant plus grand que le débit de composé précurseur de la couche A est élevé.
Les ions du faisceau d'ions, préférentiellement issus d'un canon à ions utilisés au cours du dépôt de la couche A ont de préférence une énergie allant de 75 à 150 eV, préférentiellement de 80 à 140 eV, mieux de 90 à 1 10 eV.
Les espèces activées formées sont typiquement des radicaux ou des ions.
Selon la technique de l'invention, celle-ci se distingue d'un dépôt au moyen d'un plasma (par exemple par PECVD) en ce qu'elle implique un bombardement au moyen d'un faisceau d'ions de la couche A en cours de formation, émis de préférence par un canon à ions.
En plus du bombardement ionique lors du dépôt, il est possible d'effectuer un traitement plasma concomitamment ou non au dépôt sous faisceau d'ions de la couche A.
De préférence, le dépôt de la couche est effectué sans l'assistance d'un plasma au niveau des substrats.
Outre la couche A, d'autres couches du revêtement interférentiel peuvent être déposés sous faisceau d'ions.
L'évaporation des matériaux précurseurs de la couche A, conduite sous vide, peut être réalisée en utilisant une source thermique à effet Joule.
Le matériau précurseur de la couche A comprend au moins un composé C, qui est de nature organique, contenant dans sa structure au moins un atome de silicium et au moins un atome de carbone, au moins un atome d'hydrogène et optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène.
De préférence, le composé C comprend au moins un atome d'azote et/ou au moins un atome d'oxygène, de préférence au moins un atome d'oxygène. La concentration de chaque élément chimique dans la couche A (Si, O, C, H) peut être déterminée en utilisant la technique RBS (Rutherford Backscattering Spectrometry), et ERDA (Elastic Recoil Détection Analysis) .
Le pourcentage atomique en atomes de carbone dans la couche A varie de préférence de 10 à 25 %, mieux de 15 à 25 %. Le pourcentage atomique en atomes d'hydrogène dans la couche A varie de préférence de 10 à 40 %, mieux de 10 à 20 %. Le pourcentage atomique en atomes de silicium dans la couche A varie de préférence de 5 à 30 %, mieux de 15 à 25 %. Le pourcentage atomique en atomes d'oxygène dans la couche A varie de préférence de 20 à 60 %, mieux de 35 à 45 %.
Des exemples non-limitatifs de composés organiques précurseurs de la couche A, cycliques ou non cycliques, sont les composés suivants : l'octaméthylcyclotétrasiloxane (OMCTS), le décaméthylcyclopentasiloxane, le dodécaméthylcyclohexasiloxane, l'hexaméthyl cyclotrisiloxane, l'hexaméthyldisiloxane (HMDSO), l'octaméthyltrisiloxane, le décaméthyltétrasiloxane, le tétraéthoxysilane, le vinyltriméthylsilane, l'hexaméthyldisilazane, l'hexaméthyldisilane, l'hexaméthylcyclotrisilazane, le vinylméthyldiéthoxysilane, le divinyltétraméthyldisiloxane, le tétraméthyldisiloxane., un tétraalkylsilane tel que le tétraméthyl silane
De préférence, le composé précurseur de la couche A comporte au moins un atome de silicium porteur d'au moins un groupe alkyle, de préférence en C1 -C4, mieux deux groupes alkyle identiques ou différents, de préférence en C1 -C4, par exemple le groupe méthyle.
Les composés précurseurs de la couche A préférés comportent un groupe Si-O-Si, mieux, un groupe :
R3 R1
4 I I 2
R— Si-O-Si- R
où R1 à R4 désignent indépendamment des groupes alkyle, de préférence en C1 -C4, par exemple le groupe méthyle.
De préférence, le ou les atomes de silicium du composé précurseur de la couche A ne comportent aucun groupe hydrolysable. Des exemples non limitatifs de groupes hydrolysables sont les groupes chloro, bromo, alcoxy, acyloxy. Les groupes comportant un chaînon Si-O-Si ne sont pas considérés comme étant des "groupes hydrolysables" au sens de l'invention.
Le ou les atomes de silicium du composé précurseur de la couche A sont de préférence uniquement liés à des groupes alkyle et/ou des groupes comportant un chaînon -O-Si ou -NH-
Si de façon à former un groupe Si-O-Si ou Si-NH-Si.
Les composés précurseurs de la couche A préférés sont l'OMCTS et le HMDSO. Le composé précurseur de la couche A est de préférence introduit dans l'enceinte à vide dans laquelle est réalisée la préparation des articles selon l'invention sous forme gazeuse, en contrôlant son débit. Ceci signifie qu'il n'est de préférence pas vaporisé à l'intérieur de l'enceinte à vide. L'alimentation en composé précurseur de la couche A se situe à une distance de la sortie du canon à ions variant de préférence de 30 à 50 cm. De préférence, la couche A ne comprend pas de composé fluoré. Selon l'invention, elle n'est pas formée à partir de composés précurseurs inorganiques (minéraux), en particulier, elle n'est pas formée à partir de précurseurs de nature oxyde métallique. Elle se distingue donc particulièrement des couches "hybrides" décrites dans la demande US 6,919,134. De préférence, la couche A ne contient pas une phase distincte d'oxydes métalliques, mieux ne contient pas de composés inorganiques. Dans la présente demande, les oxydes de métalloïdes sont considérés comme étant des oxydes métalliques.
Le procédé permettant de former le revêtement interférentiel selon l'invention est donc beaucoup plus simple et moins coûteux que les procédés de co-évaporation d'un composé organique et d'un composé inorganique, comme par exemple celui décrit dans la demande US 6,919,134. En pratique, les procédés de co-évaporation sont très difficiles à mettre en œuvre, et difficiles à contrôler en raison de problèmes de reproductibilité. Les quantités respectives de composés organiques et inorganiques présents dans la couche déposée varient en effet beaucoup d'une manipulation à l'autre.
La couche A étant formée par dépôt sous vide, elle ne comprend pas d'hydrolysat de silane et se distingue donc des revêtements sol-gel obtenus par voie liquide.
Ladite couche A constitue soit la couche externe du revêtement interférentiel, c'est-à- dire la couche du revêtement interférentiel la plus éloignée du substrat dans l'ordre d'empilement, soit la couche directement en contact avec la couche externe du revêtement interférentiel, cette couche externe du revêtement interférentiel étant une couche B ayant un indice de réfraction inférieur ou égal à 1 ,55. Dans ce second cas, qui constitue le mode de réalisation préféré, la couche A constitue l'avant dernière couche du revêtement interférentiel dans l'ordre d'empilement.
De préférence, la couche B contient au moins 50 % en masse de silice, par rapport à la masse totale de la couche B, mieux 75 % ou plus et encore mieux 90 % ou plus, idéalement 100 %. Selon un mode de réalisation préféré, la couche B constitue une couche à base de silice. Elle est de préférence déposée par évaporation sous vide.
La couche B est déposée de préférence sans traitement par des espèces activées, en particulier sans assistance ionique.
La couche A possède de préférence une épaisseur allant de 20 à 150 nm, mieux de 25 à 120 nm. Lorsqu'elle constitue la couche externe du revêtement interférentiel, la couche A a préférentiellement une épaisseur allant de 60 à 100 nm. Lorsqu'elle constitue la couche directement en contact avec la couche externe B du revêtement interférentiel, la couche A a préférentiellement une épaisseur allant de 20 à 100 nm, mieux de 25 à 90 nm.
La couche B, lorsqu'elle est présente, possède de préférence une épaisseur allant de 2 à 60 nm, mieux de 5 à 50 nm. De préférence, lorsque la couche B est présente, la somme des épaisseurs des couches A et B, varie de 20 à 150 nm, mieux de 25 à 120 nm, et encore mieux de 60 à 100 nm.
De préférence, toutes les couches de bas indice de réfraction du revêtement interférentiel selon l'invention sont de nature inorganique à l'exception de la couche A (c'est à dire que les autres couches de bas indice de réfraction du revêtement interférentiel ne contiennent de préférence pas de composé organique).
De préférence, toutes les couches du revêtement interférentiel selon l'invention sont de nature inorganique, à l'exception de la couche A, ce qui signifie que la couche A constitue de préférence la seule couche de nature organique du revêtement interférentiel de l'invention (les autres couches du revêtement interférentiel ne contenant de préférence pas de composé organique).
Une autre propriété à prendre en compte lors de la conception d'un revêtement interférentiel sont les contraintes mécaniques. La contrainte de la couche A est nulle ou négative. Dans ce dernier cas, la couche se trouve en compression. Cette contrainte en compression varie de préférence de 0 à -500 MPa, mieux de -20 à -500 MPa, encore mieux de - 50 à - 500 MPa. La contrainte en compression optimale varie de - 150 à - 400 MPa et mieux de - 200 à - 400 MPa. Elle est mesurée à la température de 20 ^ et sous 50 % d'humidité relative de la façon décrite ci-dessous. Ce sont les conditions de dépôt de l'invention qui permettent de parvenir à cette contrainte.
Le principe de la mesure de contraintes est basé sur le suivi de la déformation d'un substrat mince. En connaissant la géométrie et les propriétés mécaniques du substrat, sa déformation et l'épaisseur de la couche déposée, on calcule les contraintes à l'aide de la formule de Stoney. La contrainte otot est obtenue en mesurant la courbure de substrats polis pratiquement plan en silicium (100) ou en verre minéral avant et après dépôt d'une monocouche selon l'invention, ou d'un empilement AR complet sur une face du substrat présentant une très légère concavité puis en calculant la valeur de contrainte à partir de la formule de Stoney:
1 Es ds 2
σ = (1 )
6 R {l - vs )d f dans laquelle -,— est le module élastique biaxial du substrat, ds est l'épaisseur du substrat
(m), df est l'épaisseur du film (m), Es est le module d'Young du substrat (Pa), vs est le coefficient de Poisson du substrat,
et
Figure imgf000014_0001
(2) dans laquelle Ri est le rayon de courbure mesuré du substrat avant dépôt,
R2 est le rayon de courbure mesuré du substrat revêtu du film après dépôt.
La courbure est mesurée au moyen d'un appareil FLX 2900 (Flexus) de Tencor. Un laser de Class Nia de puissance 4 milliwatts (mW) à 670 nm est utilisé pour la mesure. L'appareil permet la mesure de contraintes internes en fonction du temps ou de la température (température maximum de 900QC).
Les paramètres suivants sont utilisés pour calculer la contrainte: Module élastique biaxial du Si: 180 GPa.
Epaisseur du substrat en Si: 300 microns.
Longueur de balayage (Scan): 40 mm.
Epaisseur du film déposé (mesure par ellipsométrie) : 200-500 nm.
Les mesures sont faites à température ambiante à l'air.
Pour déterminer la contrainte d'un revêtement interférentiel, on déposera le revêtement sur un même substrat adapté, et on procède de la même façon.
La contrainte du revêtement interférentiel selon l'invention varie en général de 0 à -400 MPa, de préférence de - 50 à - 300 MPa, mieux de - 80 à - 250 MPa, et encore mieux de - 100 à - 200 MPa.
Les couches A de l'invention possèdent des allongements à la rupture supérieurs à ceux des couches inorganiques, et peuvent donc subir des déformations sans se fissurer. De ce fait, l'article selon l'invention possède une résistance accrue à la courbure, comme cela est démontré dans la partie expérimentale.
La température critique d'un article revêtu selon l'invention est de préférence supérieure ou égale à 80 °C, mieux supérieure ou égale à 90 °C et encore mieux supérieure ou égale à l OO 'C. Cette température critique élevée est due à la présence de la couche A dans le revêtement interférentiel, comme démontré dans la partie expérimentale. Sans vouloir donner d'interprétation limitative à l'invention, les inventeurs pensent que, outre la nature de la couche, l'utilisation de couches A, en permettant d'augmenter la contrainte en compression de l'ensemble de l'empilement, améliore la température critique de l'article.
Dans la présente demande, la température critique d'un article ou d'un revêtement est définie comme étant celle à partir de laquelle on observe l'apparition de craquelures dans l'empilement présent à la surface du substrat, ce qui traduit une dégradation du revêtement interférentiel.
Grâce à ses propriétés thermomécaniques améliorées, le revêtement interférentiel de l'invention peut notamment être appliqué sur une seule face d'une lentille semi-finie, généralement sa face avant, l'autre face de cette lentille devant encore être usinée et traitée. Le revêtement interférentiel de la face avant ne sera pas dégradé par l'accroissement de température générée par les traitements que subira la face arrière lors du durcissement des revêtements qui auront été déposés sur cette face arrière ou toute autre action susceptible d'augmenter la température de la lentille.
Selon un mode de réalisation préféré, le revêtement interférentiel de l'invention comprend, dans l'ordre de dépôt sur la surface du substrat éventuellement revêtu, une couche de Zr02, généralement de 10 à 40 nm d'épaisseur et préférentiellement de 15 à 35 nm, une couche de Si02, généralement de 10 à 40 nm d'épaisseur et préférentiellement de 15 à 35 nm, une couche de Zr02 ou de Ti02, généralement de 40 à 150 nm d'épaisseur, préférentiellement de 50 à 120 nm, une couche d'ITO, généralement de 1 à 15 nm d'épaisseur et préférentiellement de 2 à 10 nm, et soit une couche A selon l'invention, généralement de 50 à 150 nm d'épaisseur et préférentiellement de 60 à 100 nm, soit une couche A selon l'invention revêtue d'une couche B selon l'invention (dans ce second cas, la somme des épaisseurs des couches A et B va généralement de 50 à 150 nm et préférentiellement de 60 à 100 nm).
De préférence, le facteur moyen de réflexion dans le domaine visible (400-700 nm) d'un article revêtu d'un revêtement interférentiel selon l'invention, noté Rm, est inférieur à 2,5 % par face, mieux inférieur à 2 % par face et encore mieux inférieur à 1 % par face de l'article. Dans un mode de réalisation optimal, l'article comprend un substrat dont les deux surfaces principales sont revêtues d'un revêtement interférentiel selon l'invention et présente une valeur de Rm totale (cumul de réflexion due aux deux faces) inférieure à 1 %. Les moyens pour parvenir à de telles valeurs de Rm sont connus de l'homme du métier.
Le facteur de réflexion lumineux Rv d'un revêtement interférentiel selon l'invention est inférieur à 2,5 % par face, de préférence inférieur à 2 % par face, mieux inférieur à 1 % par face de l'article, mieux < 0,75 %, mieux encore < 0,5 %.
Dans la présente demande, le "facteur moyen de réflexion" Rm (moyenne de la réflexion spectrale sur l'ensemble du spectre visible entre 400 et 700 nm) et le facteur de réflexion lumineux Rv sont tels que définis dans la norme ISO 13666:1998, et mesurés conformément à la norme ISO 8980-4.
Les coefficients colorimétriques de l'article de l'invention dans le système colorimétrique CIE L*a*b* sont calculés entre 380 et 780 nm en tenant compte de l'illuminant D 65 et de l'observateur (angle d'incidence : 10°). Il est possible de préparer des revêtements interférentiels sans limitation quant à leur angle de teinte. Cependant, l'angle de teinte h varie de préférence de 120 à 150 °, ce qui produit un revêtement ayant une réflexion résiduelle de couleur verte, et la chroma C* est de préférence inférieure à 15, mieux inférieure à 10.
Les propriétés optiques des articles de l'invention sont stables dans le temps. De préférence, leur chroma C* ne varie pas de plus de1 , mieux de plus de 0,5 sur une période de 3 mois après leur préparation, c'est-à-dire au moment de leur sortie de l'enceinte.
Dans certaines applications, il est préférable que la surface principale du substrat soit revêtue d'un ou plusieurs revêtements fonctionnels préalablement au dépôt du revêtement comportant à sa surface des groupes silanols. Ces revêtements fonctionnels classiquement utilisés en optique peuvent être, sans limitation, une couche de primaire améliorant la résistance au choc et/ou l'adhésion des couches ultérieures dans le produit final, un revêtement anti-abrasion et/ou anti-rayures, un revêtement polarisé, un revêtement photochrome ou un revêtement coloré, en particulier une couche de primaire revêtue d'une couche anti-abrasion et/ou anti-rayures. Ces deux derniers revêtements sont décrits plus en détail dans les demandes WO 2008/015364 et WO 2010/109154.
L'article selon l'invention peut également comporter des revêtements formés sur le revêtement interférentiel, capables de modifier ses propriétés de surface, tels qu'un revêtement hydrophobe et/ou oléophobe (top coat antisalissure) ou un revêtement antibuée. Ces revêtements sont de préférence déposés sur la couche externe du revêtement interférentiel. Leur épaisseur est en général inférieure ou égale à 10 nm, de préférence de 1 à 10 nm, mieux de 1 à 5 nm. Ils sont respectivement décrits dans les demandes WO 2009/047426 et WO 201 1/080472.
Le revêtement hydrophobe et/ou oléophobe est de préférence un revêtement de type fluorosilane ou fluorosilazane. Il peut être obtenu par dépôt d'un fluorosilane ou fluorosilazane précurseur, comprenant de préférence au moins deux groupes hydrolysables par molécule. Les fluorosilanes précurseurs contiennent préférentiellement des groupements fluoropolyéthers et mieux des groupements perfluoropolyéthers.
De préférence, le revêtement externe hydrophobe et/ou oléophobe a une énergie de surface égale ou inférieure à 14 mJ/m2, de préférence égale ou inférieure à 13 mJ/m2, mieux égale ou inférieure à 12 mJ/m2. L'énergie de surface est calculée selon la méthode Owens- Wendt décrite dans la référence: « Estimation of the surface force energy of polymers » Owens D. K., Wendt R. G. (1969), J. Appl. Polym. Sci., 13, 1741 -1747.
Des composés utilisables pour obtenir de tels revêtements sont décrits dans les brevets JP2005187936 et US6183872.
Des compositions commerciales permettant de préparer des revêtements hydrophobes et/ou oléophobes sont la composition KY130® de la société Shinetsu ou la composition OPTOOL DSX®, commercialisée par DAIKIN INDUSTRIES..
Typiquement, un article selon l'invention comprend un substrat successivement revêtu d'une couche de primaire d'adhésion et/ou antichoc, d'un revêtement anti-abrasion et/ou anti- rayure, d'un revêtement interférentiel selon l'invention, optionnellement antistatique, et d'un revêtement hydrophobe et/ou oléophobe.
L'invention est illustrée, de façon non limitative, par les exemples suivants. Sauf indication contraire, les indices de réfraction sont donnés pour une longueur d'onde de 630 nm et T = 20-25°C.
EXEMPLES
1 . Procédures générales Les articles employés dans les exemples comprennent un substrat de lentille ORMA®
ESSILOR de 65 mm de diamètre, de puissance -2,00 dioptries et d'épaisseur 1 ,2 mm, revêtu sur sa face concave du revêtement de primaire antichoc et du revêtement anti-abrasion et anti-rayures (hard coat) divulgués dans la partie expérimentale de la demande WO 2010/109154, d'un revêtement antireflet et du revêtement antisalissure divulgué dans la partie expérimentale de la demande WO 2010/109154.
Les couches du revêtement antireflet ont été déposées sans chauffage des substrats par évaporation sous vide, éventuellement, lorsque précisé, assistée par faisceau d'ions oxygène et éventuellement argon pendant le dépôt (source d'évaporation : canon à électrons).
Le bâti de dépôt sous vide est une machine Leybold LAB 1 100 + équipée d'un canon à électrons pour l'évaporation des matériaux précurseurs, d'un évaporateur thermique, d'un canon à ions KRI EH 1000 F (de la société Kaufman & Robinson Inc.) pour la phase préliminaire de préparation de la surface du substrat par des ions argon (IPC), ainsi que pour le dépôts de la couche A ou de couches sous assistance ionique (IAD), et d'un système d'introduction de liquide, utilisé lorsque le composé précurseur de la couche A est un liquide dans les conditions normales de température et de pression (cas de l'OMCTS). Ce système comprend un réservoir pour le composé précurseur liquide de la couche A, un débitmètre liquide et un vaporiseur qui se trouve dans la machine, et qui est porté à une température de 80-200 °C lors de son utilisation, selon le débit du précurseur gazeux, qui varie de préférence de 0,1 à 0,8 g/min (la température est de 180^ pour un débit de 0,3 g/min). La vapeur de précurseur sort d'un tuyau en cuivre à l'intérieur de la machine, à une distance d'environ 50 cm du canon à ions. Un débit d'oxygène est introduit à l'intérieur du canon à ions.
Les couches A selon l'invention sont formées par évaporation sous bombardement ionique d'octaméthylcyclotétrasiloxane, fourni par la société ABCR.
Les couches B selon l'invention, lorsqu'elles sont présentes, sont formées par évaporation de silice fournie par la société Optron, Inc.
L'épaisseur des couches déposées a été contrôlée en temps réel au moyen d'une microbalance à quartz. Sauf indication contraire, les épaisseurs mentionnées sont des épaisseurs physiques. Plusieurs échantillons de chaque verre ont été préparés. 2. Modes opératoires
Le procédé de préparation des articles d'optique selon l'invention comprend l'introduction du substrat revêtu du revêtement de primaire et du revêtement anti-abrasion définis ci-dessus dans l'enceinte de dépôt sous vide, une étape de pompage primaire, puis de pompage secondaire pendant 400 s permettant l'obtention d'un vide secondaire (~2. 10~5 mbar, pression lue sur une jauge Bayard-Alpert), une étape de préchauffage du vaporiseur à la température choisie (~ 5 min), une étape d'activation de la surface du substrat par un faisceau d'ions argon (IPC : 1 minute, 100 V, 1 A, le canon à ions étant arrêté à la fin de cette étape), puis le dépôt par évaporation des couches inorganiques suivantes à l'aide du canon à électrons jusqu'à l'obtention de l'épaisseur désirée pour chaque couche :
une couche de Zr02 de 20 nm d'épaisseur,
une couche de Si02 de 25 nm d'épaisseur,
une couche de Zr02 de 80 nm d'épaisseur,
une couche électriquement conductrice d'ITO déposée sous assistance d'ions oxygène de 6 nm d'épaisseur,
Le dépôt de la couche A sur la couche d'ITO est ensuite réalisé de la façon suivante. Le canon à ions est alors démarré avec de l'argon, de l'oxygène est ajouté dans le canon à ions, avec un débit programmé, le courant d'anode souhaité est programmé (3 A) et le composé OMCTS est introduit dans l'enceinte (débit liquide programmé à 0,3 g/min). L'alimentation en OMCTS est arrêtée une fois l'épaisseur souhaitée obtenue, puis le canon à ions est éteint.
Dans les exemples 1 et 3 à 7 (mode de réalisation 1 ), une couche de revêtement antisalissure (top coat) (Optool DSX™ de la société Daikin) de l'ordre de 5 nm est déposée directement sur une couche A de 80 nm d'épaisseur, qui constitue la couche externe du revêtement antireflet.
Dans les exemples 2 et 8 à 13 (mode de réalisation 2), une couche de silice de 5-40 nm d'épaisseur (couche B) est déposée sur une couche A de 40-75 nm d'épaisseur (de la même façon que la 1 ere couche de silice du revêtement antireflet déjà déposée, sans assistance ionique), la somme des épaisseurs des couches A et B étant égale à 80 nm, puis une couche de revêtement antisalissure (top coat) (Optool DSX™ de la société Daikin) de l'ordre de 5 nm est déposée sur cette couche de silice.
Enfin, une étape de ventilation est réalisée.
L'exemple comparatif 1 diffère des empilements des modes de réalisation 1 et 2 décrits ci-dessus en ce que la couche A ou l'ensemble couche A + couche B est remplacé par une couche de silice de même épaisseur (80 nm).
L'exemple comparatif 2 diffère des exemples 1 et 3 à 7 en ce que la couche externe du revêtement antireflet a été formée par co-évaporation d'OMCTS (débit liquide programmé à 0, 1 g/min) et de silice (à puissance fixe, canon à électrons opéré avec un courant d'émission de 60 mA sous assistance ionique. Cette couche externe du revêtement antireflet, qui est obtenue à partir d'une substance organique et une substance inorganique, est donc préparée conformément à l'enseignement du brevet US 6,919, 134.
3. Caractérisations
Les mesures colorimétriques de l'angle de teinte h* et de la Chroma C* ont été effectuées avec un spectrophotomètre Zeiss calculées dans le système CIE (L*, a*, b*).
La résistance à l'abrasion a été évaluée par détermination des valeurs BAYER ASTM (Bayer sable) sur les substrats revêtus du revêtement antireflet et du revêtement anti-salissure selon les méthodes décrites dans la demande WO 2008/00101 1 (norme ASTM F 735.81 ). Plus la valeur obtenue au test BAYER est élevée, plus la résistance à l'abrasion est élevée. Ainsi, la valeur de Bayer ASTM (Bayer sable) est qualifiée de bonne lorsqu'elle est supérieure ou égale à 3,4 et inférieure à 4,5 et d'excellente pour des valeurs de 4,5 et plus.
Le test qualitatif connu sous le nom de test "n x 10 coups" permet d'évaluer les propriétés d'adhésion d'un film déposé sur un substrat, notamment l'adhésion d'un revêtement antireflet à un substrat de lentille ophtalmique. Il a été réalisé sur la face concave des lentilles en suivant la procédure décrite dans la demande internationale WO 2010/1 09154.
La température critique de l'article est mesurée de la façon indiquée dans la demande WO 2008/001 01 1 . Elle est mesurée une semaine après la préparation de cet article. La résistance à la corrosion est évaluée à l'aide d'un test d'immersion dans de l'eau salée (200g/l) à 50 'C. Le verre est immergé pendant 20 min, et ensuite, après essuyage, on évalue l'aspect visuel du revêtement. Notamment, on prend en compte des défauts éventuels de délamination, ainsi que des changements de couleur de l'antireflet. La note 1 correspond à un léger changement de couleur, et la note 2 signifie qu' aucun changement n'est détectable.
Le test de résistance à la courbure permet d'évaluer la capacité d'un article possédant une courbure à subir une déformation mécanique.
Le test s'effectue sur un verre initialement sphérique qui a été débordé à la forme d'un rectangle de dimension 50x25 mm.
Le mode de sollicitation de ce test est représentatif de la sollicitation chez l'opticien pour le montage du verre, c'est-à-dire la "compression" du verre pour l'insérer dans une monture métallique. Ce test utilise un banc Instron pour appliquer au verre une déformation de façon contrôlée, des diodes électroluminescentes (LED) pour illuminer le verre, une caméra et un logiciel d'analyse d'images. Le verre revêtu est comprimé par le banc Instron, par application de forces exercées suivant l'axe de la longueur principale du verre débordé jusqu'à l'apparition de fissures perpendiculaires au sens de déplacement dans le revêtement antireflet, détectées par analyse de l'image en transmission. Le résultat du test est la déformation critique D en mm que peut subir le verre avant l'apparition de fissures, représenté sur la figure 1 . Ce test est réalisé un mois après la préparation des verres. Plus la valeur de la déformation est élevée, meilleure est la résistance à la déformation mécanique appliquée.
D'une manière générale, les revêtements interférentiels selon l'invention ont des valeurs de déformation critique variant de 0, 7 à 1 , 2 mm, mieux de 0,8 mm à 1 , 2 mm et encore mieux de 0, 9 à 1 , 2 mm.
4. Résultats
Le tableau 1 ci-dessous présente les performances optiques de différents revêtements antireflet (l'instant t désignant le moment où la préparation de l'article a été achevée).
Tableau 1
Figure imgf000021_0001
Instant t = moment où la préparation de l'article est achevée, à sa sortie de l'enceinte de dépôt. Les articles selon l'invention présentent une meilleure stabilité optique, en particulier la chroma est beaucoup plus stable dans le temps. L'article de l'exemple comparatif 1 subit une diminution de chroma au cours du temps supérieure à 2, ce qui est inacceptable. Le tableau 2 ci-dessous indique les épaisseurs des couches A et B pour chacun des exemples 3 à 13, les conditions de dépôt de la couche A (débits respectifs d'argon et d'02 dans le canon à ions) ainsi que les résultats des tests auxquels ont été soumis les articles préparés.
Tableau 2
Test de
résistance
Débit
Epaisseur Indice de à la
Epaisseur Ar/02
couche B réfraction Bayer Température courbure, Résistance à
Exemple couche A (canon
(Si02) couche A sable critique (Ό) déformation la corrosion (nm) à ions)
(nm) à 630 nm en mm
(sccm)
avant
craquelure
3 80 0 0/14 1,54 5,6 110 0,85 1
4 80 0 0/20 1,53 6,9 103 0,95 1 à2
5 80 0 0/25 1,50 6,5 83 0,72 1
6 80 0 5/20 5,6 100 1
7 80 0 10/20 5,0 85 1 à2
8 75 5 0/20 4,7 100 0,9 1
9 40 40 0/20 4,8 88 0,94
10 55 25 0/20 5,4 95 1 à2
11 25 55 0/20 4,3 80 1
12 55 25 0/25 4,7 80 1
13 40 40 0/25 4,5 75 1
Comp 1 0 80 — 4,6 60-70 0,5 à 0,6 1
Délamination
Comp 2 80 (co-évaporation) 0/20 1,48 6,0 70 0,65
partielle La couche A de l'exemple 4 possède les teneurs atomiques suivantes : 22 % de silicium, 40,8 % d'oxygène, 20,5 % de carbone et 16,7 % d'hydrogène. La couche externe du revêtement antireflet de l'exemple comparatif 2, obtenue par co-évaporation de silice et d'OMCTS, possède les teneurs atomiques suivantes : 28,2 % de silicium, 61 ,5 % d'oxygène, 3 % de carbone et 1 0,3 % d'hydrogène.
Les articles selon l'invention présentent une température critique nettement améliorée et une amélioration significative de la déformation en courbure que peut subir l'article avant l'apparition de fissures. Ces améliorations sont directement attribuables à la présence d'une couche A dans l'empilement antireflet, comme le montre la comparaison des exemples selon l'invention à l'exemple comparatif 1 .
La résistance à la corrosion est généralement améliorée par la présence d'une couche
A.
Les lentilles de tous les exemples et exemples comparatifs passent avec succès le test communément appelé "n x 10 coups". Ceci montre que les différentes couches du revêtement antireflet selon l'invention présentent de bonnes propriétés d'adhésion, en particulier à l'interface avec le substrat.
Les inventeurs ont constaté que le mode de réalisation 2 (exemples 8-13) permet de parvenir à un article possédant un revêtement antisalissure nettement plus performant que celui du mode de réalisation 1 (exemples 3-7), ce qui peut être constaté en réalisant le test d'encre ("Magic Ink") décrit dans la demande WO 2004/1 1 1 691 , tout en conservant de bonnes propriétés mécaniques.
Il a également été remarqué que l'utilisation d'un ajout d'ions argon en plus des ions oxygène dans le faisceau d'ions améliorait l'aspect cosmétique des verres, en prévenant l'apparition au cours du temps de défauts de surface, visibles notamment à la lampe à arc.

Claims

Revendications
1 . Article comprenant un substrat ayant au moins une surface principale revêtue d'un revêtement interférentiel multicouche, ledit revêtement comprenant une couche A ayant un indice de réfraction inférieur ou égal à 1 ,55, caractérisé en ce que :
- ladite couche A constitue :
o soit la couche externe du revêtement interférentiel,
o soit une couche intermédiaire, directement en contact avec la couche externe du revêtement interférentiel, cette couche externe du revêtement interférentiel étant une couche B ayant un indice de réfraction inférieur ou égal à 1 ,55,
- et ladite couche A a été obtenue par dépôt, sous faisceau d'ions, d'espèces activées issues d'au moins un composé C, sous forme gazeuse contenant dans sa structure au moins un atome de silicium, au moins un atome de carbone, au moins un atome d'hydrogène et, optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène, le dépôt de la dite couche A s'effectuant en présence d'azote et/ou d'oxygène lorsque le composé A ne contient pas d'azote et/ou d'oxygène et
- ladite couche A n'est pas formée à partir de composés précurseurs inorganiques.
2. Article selon la revendication 1 , caractérisé en ce que le faisceau d'ions est émis par un canon à ions.
3. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé C comporte au moins un atome de silicium porteur d'au moins un groupe alkyle.
4. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé C comporte au moins un groupe de formule :
R3 R1
4 I I 2
R— Si-O-Si- R
où R1 à R4 désignent indépendamment des groupes alkyle.
5. Article selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le composé C est choisi parmi l'octaméthylcyclotétrasiloxane et l'hexaméthyldisiloxane.
6. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou les atomes de silicium du composé C ne comportent aucun groupe hydrolysable.
7. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche A ne contient pas une phase distincte d'oxydes métalliques.
8. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il possède une couche B déposée sur la couche A, la couche B comprenant au moins 50 % en masse de silice, par rapport à la masse totale de la couche B, mieux 75 % ou plus, encore mieux 90 % ou plus, idéalement 100 %.
9. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche A a une épaisseur allant de 20 à 150 nm, mieux de 25 à 120 nm.
10. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche B a une épaisseur allant de 2 à 60 nm, mieux de 5 à 50 nm.
1 1 . Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement interférentiel comporte des couches de bas indice de réfraction et que toutes ces couches de bas indice de réfraction sont de nature inorganique à l'exception de la couche A.
12. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que toutes les couches du revêtement interférentiel sont de nature inorganique, à l'exception de la couche A.
13. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est une lentille optique, de préférence une lentille ophtalmique.
14. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement interférentiel est un revêtement antireflet.
15. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la contrainte de la couche A varie de 0 à -500 MPa.
16. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que la contrainte du revêtement interférentiel varie de 0 à -400 MPa.
17. Procédé de fabrication d'un article selon l'une quelconque des revendications précédentes, comprenant au moins les étapes suivantes :
- fournir un article comprenant un substrat ayant au moins une surface principale,
- déposer sur ladite surface principale du substrat un revêtement interférentiel multicouche, ledit revêtement comprenant une couche A ayant un indice de réfraction inférieur ou égal à 1 ,55, qui constitue :
o soit la couche externe du revêtement interférentiel,
o soit une couche intermédiaire, directement en contact avec la couche externe du revêtement interférentiel, cette couche externe du revêtement interférentiel étant une couche B ayant un indice de réfraction inférieur ou égal à 1 ,55,
- récupérer un article comprenant un substrat ayant une surface principale revêtue dudit revêtement interférentiel qui comporte ladite couche A, caractérisé en ce que ladite couche A a été obtenue par dépôt, sous faisceau d'ions, d'espèces activées issues d'au moins un composé C, sous forme gazeuse contenant dans sa structure au moins un atome de silicium, au moins un atome de carbone, au moins un atome d'hydrogène et, optionnellement au moins un atome d'azote et/ou au moins un atome d'oxygène, le dépôt de la dite couche A s'effectuant en présence d'azote et/ou d'oxygène lorsque le composé A ne contient pas d'azote et/ou d'oxygène, et en ce que la couche A n'est pas formée à partir de composés précurseurs inorganiques.
PCT/FR2012/053092 2011-12-28 2012-12-27 Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps WO2013098531A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112014016069-4A BR112014016069B1 (pt) 2011-12-28 2012-12-27 Artigo compreendendo um substrato apresentando pelo menos uma superfície principal revestida com um revestimento interferencial multicamada, e, processo de fabricação de um artigo
KR1020147017963A KR102168691B1 (ko) 2011-12-28 2012-12-27 시간에 따라 안정한 특성들을 갖는 간섭 코팅으로 코팅된 물품 및 이의 제조 방법
CN201280065037.1A CN104054009B (zh) 2011-12-28 2012-12-27 用具有随时间稳定特性的干涉涂层涂布的物品
EP12819118.6A EP2798383B1 (fr) 2011-12-28 2012-12-27 Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps
CA2862139A CA2862139C (fr) 2011-12-28 2012-12-27 Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps
US14/369,009 US20140354945A1 (en) 2011-12-28 2012-12-27 Article coated with an interference coating having properties that are stable over time
JP2014549526A JP6760713B2 (ja) 2011-12-28 2012-12-27 経時的に安定している性質を有する干渉コーティングでコートされた物品
US16/283,343 US20190302313A1 (en) 2011-12-28 2019-02-22 Article coated with an interference coating having properties that are stable over time

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1162492A FR2985255B1 (fr) 2011-12-28 2011-12-28 Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps.
FR1162492 2011-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/369,009 A-371-Of-International US20140354945A1 (en) 2011-12-28 2012-12-27 Article coated with an interference coating having properties that are stable over time
US16/283,343 Continuation US20190302313A1 (en) 2011-12-28 2019-02-22 Article coated with an interference coating having properties that are stable over time

Publications (1)

Publication Number Publication Date
WO2013098531A1 true WO2013098531A1 (fr) 2013-07-04

Family

ID=47628335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/053092 WO2013098531A1 (fr) 2011-12-28 2012-12-27 Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps

Country Status (8)

Country Link
US (2) US20140354945A1 (fr)
EP (1) EP2798383B1 (fr)
JP (3) JP6760713B2 (fr)
KR (1) KR102168691B1 (fr)
CN (1) CN104054009B (fr)
CA (1) CA2862139C (fr)
FR (1) FR2985255B1 (fr)
WO (1) WO2013098531A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199103A1 (fr) * 2013-06-14 2014-12-18 Essilor International (Compagnie Generale D'optique) Article revêtu d'une couche de nature silico-organique améliorant les performances d'un revêtement externe
WO2015166144A1 (fr) 2014-04-28 2015-11-05 Corporation De L'ecole Polytechnique De Montreal Article à propriétés thermomécaniques optimisées comportant une couche de nature titano-organique
WO2017021669A1 (fr) * 2015-08-05 2017-02-09 Essilor International (Compagnie Générale d'Optique) Article à propriétés d'adhérence optimisées comportant une couche de nature silico-organique
WO2017077357A1 (fr) 2015-11-06 2017-05-11 Essilor International (Compagnie Générale d'Optique) Article optique protégeant de la lumière bleue
EP3185050A1 (fr) 2015-12-23 2017-06-28 Essilor International (Compagnie Générale D'Optique) Article d'optique comportant un revêtement interférentiel multicouche obtenu à partir d'un précurseur organique ou d'un mélange de précurseurs organiques
FR3051000A1 (fr) * 2016-05-09 2017-11-10 Corp De L'ecole Polytechnique De Montreal Article comportant une couche de nature organique-inorganique de bas indice de refraction obtenue par depot a angle oblique
EP3301488A1 (fr) 2016-09-29 2018-04-04 Essilor International Lentille optique comprenant un revêtement antireflet à efficacité multiangulaire
EP3306354A1 (fr) 2016-10-07 2018-04-11 Corporation de L'Ecole Polytechnique de Montreal Article comprenant un revêtement nanolaminé
EP3327091A1 (fr) 2016-11-23 2018-05-30 Essilor International Composition époxy fonctionnelle protégeant des colorants de la photodégradation et revêtements durcis préparés à partir de celle-ci
EP3327096A1 (fr) 2016-11-23 2018-05-30 Essilor International Composition époxyde hybride fonctionnelle et revêtements thermodurcissables transparents insensibles à la corrosion et préparés à partir de ladite composition
EP3327488A1 (fr) 2016-11-23 2018-05-30 Essilor International Article d'optique comportant un colorant résistant à la photodégradation
EP3382429A1 (fr) 2017-03-28 2018-10-03 Essilor International Article optique comprenant un revêtement résistant à l'abrasion et/ou aux rayures et présentant une faible sensibilité aux fissures
US20190100455A1 (en) * 2015-08-05 2019-04-04 Essilor International Item Having Improved Thermomechanical Properties, Comprising an Organic-Inorganic Layer
EP3489270A1 (fr) 2017-11-28 2019-05-29 Essilor International (Compagnie Generale D'optique) Composition époxyde hybride fonctionnelle et revêtements thermodurcissables transparents résistants à l'abrasion et préparés à partir de ladite composition
WO2020016775A1 (fr) 2018-07-16 2020-01-23 Skin Rejuventation Technologies (Pty) Ltd Procédé et système de recommandations cosmétiques
EP3632950A1 (fr) 2018-10-05 2020-04-08 Essilor International Composition époxyde hybride fonctionnelle stable au stockage et revêtements thermodurcissables transparents et préparés à partir de ladite composition
WO2020127564A2 (fr) 2018-12-18 2020-06-25 Essilor International Article optique comportant un revêtement réfléchissant présentant une résistance élevée à l'abrasion
US10732324B2 (en) 2015-08-05 2020-08-04 Essilor International Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
EP3693766A1 (fr) 2019-02-05 2020-08-12 Corporation de L'Ecole Polytechnique de Montreal Article revêtu d'une couche à faible indice de réfraction basé sur des composés d'organosilicium fluorés
EP3919943A1 (fr) 2020-06-03 2021-12-08 Essilor International Composition de revêtement durcissable
WO2023208941A1 (fr) 2022-04-26 2023-11-02 Essilor International Article optique photochromique ayant un revêtement miroir
WO2024074975A1 (fr) 2022-10-04 2024-04-11 Incos Srl Procédé de fabrication de produits de soins de la peau sur mesure et produits de soins de la peau ainsi obtenus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2902816A4 (fr) 2012-09-28 2016-05-25 Hoya Corp Verre de lunettes
FR3007678B1 (fr) * 2013-06-28 2015-07-31 Essilor Int Procede de fabrication d'une lentille ophtalmique comportant une etape de marquage laser pour realiser des gravures permanentes sur une surface de ladite lentille ophtalmique
FR3045672B1 (fr) * 2015-12-18 2018-03-16 Corporation De L'ecole Polytechnique De Montreal Article comprenant une couche organique-inorganique de bas indice de refraction
FR3054043B1 (fr) * 2016-07-18 2018-07-27 Essilor Int Procede de marquage permanent visible d'article optique et article optique marque
EP3287818B1 (fr) 2016-08-23 2020-11-11 Corporation de L'Ecole Polytechnique de Montreal Lentille ophtalmique présentant une résistance accrue à un environnement chaud et humide
EP3693765B1 (fr) * 2019-02-05 2023-04-19 Essilor International Article revêtu ayant un revêtement antireflet présentant des propriétés optiques améliorées
US20230176253A1 (en) 2020-04-09 2023-06-08 Essilor International Optical article with antibacterial function
JP2023092764A (ja) * 2021-12-22 2023-07-04 ホヤ レンズ タイランド リミテッド 光学部材の製造方法、光学部材及び眼鏡

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323103A (ja) 1992-05-25 1993-12-07 Matsushita Electric Works Ltd 光学素子
EP0588087A2 (fr) * 1992-08-20 1994-03-23 Sony Corporation Méthode de détermination des caractéristiques optiques optimales d'une couche anti-réflective utilisée dans une méthode de formation d'un motif de résine
US5508368A (en) 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
US5679413A (en) * 1994-03-03 1997-10-21 Monsanto Company Highly abrasion-resistant, flexible coatings for soft substrates
US6183872B1 (en) 1995-08-11 2001-02-06 Daikin Industries, Ltd. Silicon-containing organic fluoropolymers and use of the same
US20040157061A1 (en) * 1996-12-18 2004-08-12 Dai Nippon Printing Co., Ltd. Antireflection film made of a CVD SiO2 film containing a fluoro and/or alkyl modifier
WO2004111691A1 (fr) 2003-06-13 2004-12-23 Essilor International (Compagnie Generale D'optique) Processus de remplacement d'une couche de revetement initial de surface de lentille optique revetue par le depot sur celle-ci d'une couche de revetement differente
JP2005187936A (ja) 2003-12-02 2005-07-14 Seiko Epson Corp 薄膜の製造方法、光学部品の製造方法および成膜装置
US6919134B2 (en) 2001-10-25 2005-07-19 Hoya Corporation Optical element having antireflection film
US20070059942A1 (en) * 2005-09-09 2007-03-15 Chi Lin Technology Co., Ltd. Plasma cvd process for manufacturing multilayer anti-reflection coatings
JP2007078780A (ja) 2005-09-12 2007-03-29 Seiko Epson Corp 光学物品およびその製造方法
WO2008001011A2 (fr) 2006-06-28 2008-01-03 Essilor International (Compagnie Generale D'optique) Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication
US20080020319A1 (en) * 2006-07-18 2008-01-24 Applied Materials, Inc. Graded ARC for high na and immersion lithography
WO2008015364A1 (fr) 2006-07-31 2008-02-07 Essilor International (Compagnie Generale D'optique) Article d'optique a proprietes antistatiques et anti-abrasion, et procede de fabrication
WO2008062142A1 (fr) 2006-11-23 2008-05-29 Essilor International (Compagnie Generale D'optique) Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication
WO2009047426A2 (fr) 2007-09-14 2009-04-16 Essilor International (Compagnie Generale D'optique) Procede de preparation de la surface d'une lentille comportant un revetement anti-salissures en vue de son debordage
WO2010109154A1 (fr) 2009-03-27 2010-09-30 Essilor International (Compagnie Generale D'optique) Article d'optique revêtu d'un revêtement antireflet ou réfléchissant comprenant une couche électriquement conductrice à base d'oxyde d'étain et procédé de fabrication
WO2011080472A2 (fr) 2009-12-31 2011-07-07 Essilor International (Compagnie Generale D'optique) Article d'optique comportant un revetement antibuee temporaire ayant une durabilite amelioree

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080455A (en) * 1988-05-17 1992-01-14 William James King Ion beam sputter processing
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5135808A (en) * 1990-09-27 1992-08-04 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5190807A (en) * 1990-10-18 1993-03-02 Diamonex, Incorporated Abrasion wear resistant polymeric substrate product
JP4402412B2 (ja) * 2003-09-25 2010-01-20 大日本印刷株式会社 積層材およびそれを使用した包装用袋
JP4593949B2 (ja) * 2004-03-23 2010-12-08 Hoya株式会社 光学部材の製造方法
WO2005093465A1 (fr) * 2004-03-29 2005-10-06 Hoya Corporation Membre optique comprenant un film antireflet
JP4989846B2 (ja) 2004-08-27 2012-08-01 Hoya株式会社 光学部材及びその製造方法
JP4604634B2 (ja) * 2004-09-30 2011-01-05 株式会社ジェイテクト 転がり軸受装置とその製造方法
ATE494400T1 (de) * 2004-11-05 2011-01-15 Satisloh Ag Verfahren zum aufbringen optischer beschichtungen
CN101253426B (zh) * 2005-09-01 2010-11-03 住友电气工业株式会社 透明薄膜、光学装置及其制造方法
JP2007078711A (ja) * 2005-09-09 2007-03-29 Asahi Kasei Corp 反射防止膜
JP2007256654A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 無機反射防止層付き製品およびその製造方法
EP2155477B1 (fr) * 2007-05-18 2021-05-05 Essilor International Compositions de revêtement durcissables formant sur des articles un revêtement antistatique, transparent, et résistant à l'abrasion
DE112009002023T5 (de) * 2008-08-19 2011-06-30 Lintec Corp. Geformter Gegenstand, Verfahren zur Herstellung desselben, elektronisches Vorrichtungsteil und elektronische Vorrichtung
US20130058024A1 (en) * 2010-03-29 2013-03-07 Lintec Corporation Formed article, method for producing the same, electronic device member, and electronic device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323103A (ja) 1992-05-25 1993-12-07 Matsushita Electric Works Ltd 光学素子
EP0588087A2 (fr) * 1992-08-20 1994-03-23 Sony Corporation Méthode de détermination des caractéristiques optiques optimales d'une couche anti-réflective utilisée dans une méthode de formation d'un motif de résine
US5508368A (en) 1994-03-03 1996-04-16 Diamonex, Incorporated Ion beam process for deposition of highly abrasion-resistant coatings
US5679413A (en) * 1994-03-03 1997-10-21 Monsanto Company Highly abrasion-resistant, flexible coatings for soft substrates
US6183872B1 (en) 1995-08-11 2001-02-06 Daikin Industries, Ltd. Silicon-containing organic fluoropolymers and use of the same
US20040157061A1 (en) * 1996-12-18 2004-08-12 Dai Nippon Printing Co., Ltd. Antireflection film made of a CVD SiO2 film containing a fluoro and/or alkyl modifier
US6919134B2 (en) 2001-10-25 2005-07-19 Hoya Corporation Optical element having antireflection film
WO2004111691A1 (fr) 2003-06-13 2004-12-23 Essilor International (Compagnie Generale D'optique) Processus de remplacement d'une couche de revetement initial de surface de lentille optique revetue par le depot sur celle-ci d'une couche de revetement differente
JP2005187936A (ja) 2003-12-02 2005-07-14 Seiko Epson Corp 薄膜の製造方法、光学部品の製造方法および成膜装置
US20070059942A1 (en) * 2005-09-09 2007-03-15 Chi Lin Technology Co., Ltd. Plasma cvd process for manufacturing multilayer anti-reflection coatings
JP2007078780A (ja) 2005-09-12 2007-03-29 Seiko Epson Corp 光学物品およびその製造方法
WO2008001011A2 (fr) 2006-06-28 2008-01-03 Essilor International (Compagnie Generale D'optique) Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication
US20080020319A1 (en) * 2006-07-18 2008-01-24 Applied Materials, Inc. Graded ARC for high na and immersion lithography
WO2008015364A1 (fr) 2006-07-31 2008-02-07 Essilor International (Compagnie Generale D'optique) Article d'optique a proprietes antistatiques et anti-abrasion, et procede de fabrication
WO2008062142A1 (fr) 2006-11-23 2008-05-29 Essilor International (Compagnie Generale D'optique) Article d'optique comportant un revetement anti-abrasion et anti-rayures bicouche, et procede de fabrication
WO2009047426A2 (fr) 2007-09-14 2009-04-16 Essilor International (Compagnie Generale D'optique) Procede de preparation de la surface d'une lentille comportant un revetement anti-salissures en vue de son debordage
WO2010109154A1 (fr) 2009-03-27 2010-09-30 Essilor International (Compagnie Generale D'optique) Article d'optique revêtu d'un revêtement antireflet ou réfléchissant comprenant une couche électriquement conductrice à base d'oxyde d'étain et procédé de fabrication
WO2011080472A2 (fr) 2009-12-31 2011-07-07 Essilor International (Compagnie Generale D'optique) Article d'optique comportant un revetement antibuee temporaire ayant une durabilite amelioree

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OWENS D. K.; WENDT R. G.: "Estimation of the surface force energy of polymers", J. APPL. POLYM. SCI., vol. 13, 1969, pages 1741 - 1747
VOSSEN & KERN,: "Thin Film Processes", 1978, ACADEMIC PRESS

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401536B2 (en) 2013-06-14 2019-09-03 Essilor International Item coated with a silicon/organic layer improving the performances of an outer coating
FR3007024A1 (fr) * 2013-06-14 2014-12-19 Essilor Int Article revetu d'une couche de nature silico-organique ameliorant les performances d'un revetement externe
WO2014199103A1 (fr) * 2013-06-14 2014-12-18 Essilor International (Compagnie Generale D'optique) Article revêtu d'une couche de nature silico-organique améliorant les performances d'un revêtement externe
US10585211B2 (en) 2014-04-28 2020-03-10 Corporation De L'ecole Polytechnique De Montreal Article having optimised thermomechanical properties, comprising a layer of titano-organic nature
WO2015166144A1 (fr) 2014-04-28 2015-11-05 Corporation De L'ecole Polytechnique De Montreal Article à propriétés thermomécaniques optimisées comportant une couche de nature titano-organique
US11707921B2 (en) 2015-08-05 2023-07-25 Essilor International Item having improved thermomechanical properties, comprising an organic-inorganic layer
US10732324B2 (en) 2015-08-05 2020-08-04 Essilor International Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
CN107923995B (zh) * 2015-08-05 2020-01-17 依视路国际公司 具有优化的粘合特性并且包括硅有机层的物品
WO2017021669A1 (fr) * 2015-08-05 2017-02-09 Essilor International (Compagnie Générale d'Optique) Article à propriétés d'adhérence optimisées comportant une couche de nature silico-organique
US20190100455A1 (en) * 2015-08-05 2019-04-04 Essilor International Item Having Improved Thermomechanical Properties, Comprising an Organic-Inorganic Layer
CN107923995A (zh) * 2015-08-05 2018-04-17 依视路国际公司 具有优化的粘合特性并且包括硅有机层的物品
WO2017077357A1 (fr) 2015-11-06 2017-05-11 Essilor International (Compagnie Générale d'Optique) Article optique protégeant de la lumière bleue
US10845625B2 (en) 2015-11-06 2020-11-24 Essilor International Optical article protecting from blue light
EP3185050A1 (fr) 2015-12-23 2017-06-28 Essilor International (Compagnie Générale D'Optique) Article d'optique comportant un revêtement interférentiel multicouche obtenu à partir d'un précurseur organique ou d'un mélange de précurseurs organiques
FR3051000A1 (fr) * 2016-05-09 2017-11-10 Corp De L'ecole Polytechnique De Montreal Article comportant une couche de nature organique-inorganique de bas indice de refraction obtenue par depot a angle oblique
WO2017194871A1 (fr) * 2016-05-09 2017-11-16 Corporation De L'ecole Polytechnique De Montreal Article comportant une couche de nature organique-inorganique de bas indice de réfraction obtenue par dépôt à angle oblique
US11573431B1 (en) 2016-09-29 2023-02-07 Essilor International Optical lens comprising an antireflective coating with multiangular efficiency
WO2018059752A1 (fr) 2016-09-29 2018-04-05 Essilor International Lentille optique comprenant un revêtement antireflet à efficacité multiangulaire
EP3301488A1 (fr) 2016-09-29 2018-04-04 Essilor International Lentille optique comprenant un revêtement antireflet à efficacité multiangulaire
WO2018065595A1 (fr) 2016-10-07 2018-04-12 Corporation De L'ecole Polytechnique De Montreal Article comportant un revêtement nanostratifié
EP3306354A1 (fr) 2016-10-07 2018-04-11 Corporation de L'Ecole Polytechnique de Montreal Article comprenant un revêtement nanolaminé
EP3327488A1 (fr) 2016-11-23 2018-05-30 Essilor International Article d'optique comportant un colorant résistant à la photodégradation
WO2018095671A1 (fr) 2016-11-23 2018-05-31 Essilor International Article optique comprenant un colorant résistant à la photo-dégradation
WO2018095680A1 (fr) 2016-11-23 2018-05-31 Essilor International Composition fonctionnelle d'époxy hybride thermodurcissable et revêtements thermodurcissables résistant aux produits caustiques préparés avec celle-ci
WO2018095679A1 (fr) 2016-11-23 2018-05-31 Essilor International Composition fonctionnelle d'époxy protégeant les colorants contre la photodégradation et revêtements durcis préparés avec celle-ci
EP3327096A1 (fr) 2016-11-23 2018-05-30 Essilor International Composition époxyde hybride fonctionnelle et revêtements thermodurcissables transparents insensibles à la corrosion et préparés à partir de ladite composition
EP3327091A1 (fr) 2016-11-23 2018-05-30 Essilor International Composition époxy fonctionnelle protégeant des colorants de la photodégradation et revêtements durcis préparés à partir de celle-ci
WO2018178106A1 (fr) 2017-03-28 2018-10-04 Essilor International Article optique comprenant un revêtement résistant à l'abrasion et/ou aux rayures ayant une faible sensibilité aux fissures
EP3382429A1 (fr) 2017-03-28 2018-10-03 Essilor International Article optique comprenant un revêtement résistant à l'abrasion et/ou aux rayures et présentant une faible sensibilité aux fissures
EP3489270A1 (fr) 2017-11-28 2019-05-29 Essilor International (Compagnie Generale D'optique) Composition époxyde hybride fonctionnelle et revêtements thermodurcissables transparents résistants à l'abrasion et préparés à partir de ladite composition
WO2019106031A1 (fr) 2017-11-28 2019-06-06 Essilor International Composition fonctionnelle époxy hybride thermodurcissable et revêtements résistants à l'abrasion thermodurcis transparents préparés à partir de celle-ci
WO2020016775A1 (fr) 2018-07-16 2020-01-23 Skin Rejuventation Technologies (Pty) Ltd Procédé et système de recommandations cosmétiques
EP3632950A1 (fr) 2018-10-05 2020-04-08 Essilor International Composition époxyde hybride fonctionnelle stable au stockage et revêtements thermodurcissables transparents et préparés à partir de ladite composition
WO2020070279A1 (fr) 2018-10-05 2020-04-09 Essilor International Composition fonctionnelle époxy hybride thermodurcissable stable au stockage et revêtements transparents thermodurcis préparés à partir de celle-ci
WO2020127564A2 (fr) 2018-12-18 2020-06-25 Essilor International Article optique comportant un revêtement réfléchissant présentant une résistance élevée à l'abrasion
EP3693766A1 (fr) 2019-02-05 2020-08-12 Corporation de L'Ecole Polytechnique de Montreal Article revêtu d'une couche à faible indice de réfraction basé sur des composés d'organosilicium fluorés
WO2020161128A1 (fr) 2019-02-05 2020-08-13 Corporation De L'ecole Polytechnique De Montreal Article revêtu d'une couche à faible indice de réfraction à base de composés organosiliciques fluorés
EP3919943A1 (fr) 2020-06-03 2021-12-08 Essilor International Composition de revêtement durcissable
WO2021245198A1 (fr) 2020-06-03 2021-12-09 Essilor International Composition de revêtement durcissable
WO2023208941A1 (fr) 2022-04-26 2023-11-02 Essilor International Article optique photochromique ayant un revêtement miroir
WO2024074975A1 (fr) 2022-10-04 2024-04-11 Incos Srl Procédé de fabrication de produits de soins de la peau sur mesure et produits de soins de la peau ainsi obtenus

Also Published As

Publication number Publication date
US20190302313A1 (en) 2019-10-03
CA2862139A1 (fr) 2013-07-04
BR112014016069A8 (pt) 2017-07-04
FR2985255B1 (fr) 2015-08-07
US20140354945A1 (en) 2014-12-04
CA2862139C (fr) 2023-03-07
JP2019070809A (ja) 2019-05-09
KR102168691B1 (ko) 2020-10-22
JP2015508510A (ja) 2015-03-19
JP6926054B2 (ja) 2021-08-25
EP2798383A1 (fr) 2014-11-05
EP2798383B1 (fr) 2023-08-23
CN104054009B (zh) 2016-08-24
FR2985255A1 (fr) 2013-07-05
JP2021099508A (ja) 2021-07-01
JP6760713B2 (ja) 2020-09-23
CN104054009A (zh) 2014-09-17
KR20140110888A (ko) 2014-09-17
BR112014016069A2 (pt) 2017-06-13

Similar Documents

Publication Publication Date Title
EP2798383B1 (fr) Article revetu d&#39;un revetement interferentiel ayant des proprietes stables dans le temps
EP3008023B1 (fr) Article revêtu d&#39;une couche de nature silico-organique améliorant les performances d&#39;un revêtement externe
EP3332273B1 (fr) Article à propriétés d&#39;adhérence optimisées comportant une couche de nature silico-organique
FR2943798A1 (fr) Article d&#39;optique revetu d&#39;un revetement antireflet ou reflechissant comprenant une couche electriquement conductrice a base d&#39;oxyde d&#39;etain et procede de fabrication
EP2167997A1 (fr) Article d&#39;optique revetu d&#39;un revetement antireflet comprenant une sous-couche partiellement formee sous assistance ionique et procede de fabrication
EP2033021A2 (fr) Article d&#39;optique revetu d&#39;une sous-couche et d&#39;un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication
CA2947115C (fr) Article a proprietes thermomecaniques optimisees comportant une couche de nature titano-organique
WO2017194871A1 (fr) Article comportant une couche de nature organique-inorganique de bas indice de réfraction obtenue par dépôt à angle oblique
EP3390682B1 (fr) Article comprenant une couche organique-inorganique de bas indice de réfraction
WO2017021670A1 (fr) Article à propriétés thermomécaniques améliorées comportant une couche de nature organique-inorganique
WO2017021668A1 (fr) Procédé de lamination d&#39;un revêtement interférentiel comportant une couche de nature organique-inorganique et article ainsi obtenu
KR102315194B1 (ko) 외부 코팅의 성능을 개선시키는 실리콘/유기층으로 코팅된 물품
CN113439222B (zh) 涂覆有基于氟化有机硅化合物的低折射率层的制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369009

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2862139

Country of ref document: CA

Ref document number: 2014549526

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147017963

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012819118

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014016069

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014016069

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627