WO2013097479A1 - 匀光元件及光源系统 - Google Patents

匀光元件及光源系统 Download PDF

Info

Publication number
WO2013097479A1
WO2013097479A1 PCT/CN2012/080717 CN2012080717W WO2013097479A1 WO 2013097479 A1 WO2013097479 A1 WO 2013097479A1 CN 2012080717 W CN2012080717 W CN 2012080717W WO 2013097479 A1 WO2013097479 A1 WO 2013097479A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
curved surface
incident
point
free
Prior art date
Application number
PCT/CN2012/080717
Other languages
English (en)
French (fr)
Inventor
曹亮亮
杨毅
胡飞
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2013097479A1 publication Critical patent/WO2013097479A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • G02B27/0983Reflective elements being curved

Definitions

  • the invention relates to the field of illumination and display, and in particular to a light-collecting element and a light source system. Background technique
  • Light sources such as semiconductor lasers and LEDs are widely used in the fields of illumination, projection, optical illumination, and optical storage. In these applications, the light source needs to form a illuminance distribution of a certain size and regular shape on the target plane, such as a uniform distribution of rectangles.
  • the light distribution of the commonly used light source is not ideal.
  • the light distribution of the semiconductor laser in the cross section is generally elliptical Gaussian, and the light distribution on the long axis and the short axis is as shown in Fig. 1, and the light distribution of the light emitting diode in the cross section.
  • it is a bell shape, and the light distribution on the cross section is as shown in Fig. 2.
  • a parallel beam of size D is incident on a pair of fly-eye lenses including two fly-eye lenses, and the fly-eye lens pair utilizes the microlenses 11 therein. 12
  • the beam is divided into several sub-beams, each of which is processed by a pair of microlenses 11, 12 to form a rectangular light distribution, and since the sub-beam area is small, the light distribution in the rectangle is close to the uniform hook.
  • the normal lens 13 with a focal length F the sub-beams are superimposed on the target plane, so that uniform illumination is obtained in the rectangle of size S.
  • This method requires high processing precision, and the light between the microlenses 11 and 12 will be Certain crosstalk causes side lobe flares on the target plane.
  • the joint between the microlenses in each fly-eye lens affects the light emission, which causes a decrease in light utilization efficiency.
  • the main technical problem to be solved by the present invention is to provide a light-collecting element and a light source system, which can avoid the problem of reduced light utilization efficiency caused by crosstalk or the like.
  • the invention provides a light-storing element for shaping incident light generated by a light source, the incident light forming a first spot on a plane perpendicular to a central axis of the light source, and the illuminance distribution of the first spot is weakened from the center outward.
  • the hook light element comprises a free curved surface, and the free curved surface is located at the light source A standard surface deformation of a predetermined position in the direction of the central axis is obtained, and the standard curved surface is a curved surface that can shape the incident light into parallel light;
  • the absolute difference between the incident angle of the incident ray on the free curved surface and the incident angle of the incident ray on the standard curved surface The value is monotonically increasing, and the rate of change of the absolute value of the difference between the incident angle of the incident ray on the free-form surface and the incident angle of the incident ray on the standard curved surface is decreased so that the outgoing ray of the free-form surface is within a predetermined solid angle
  • the incident light has a more uniform light intensity distribution.
  • the invention also provides a light-storing element for shaping incident light generated by a light source, the incident light forming a first spot on a plane perpendicular to a central axis of the light source, and the illuminance distribution of the first spot is weakened from the center outward
  • the shimming element includes a free curved surface obtained by deforming a standard curved surface at a predetermined position in a direction of a central axis of the light source, the standard curved surface being a curved surface that can converge the incident light at a center point of the predetermined area.
  • the incident angle of the incident ray on the free-form surface is the same as the difference between the incident angle of the incident ray on the standard curved surface, and the value
  • the absolute value is monotonically increasing, and the rate of change of the absolute value of the difference between the incident angle of the incident ray on the free-form surface and the incident angle of the incident ray on the standard curved surface is decreased, so that the outgoing ray of the free-form surface is in a predetermined region.
  • the incident light has a more uniform illumination distribution.
  • the present invention also provides a light source system comprising the above-described light hooking element.
  • the present invention includes the following beneficial effects:
  • the free curved surface is obtained by deforming according to the deformation law in the above technical solution on the basis of the standard curved surface, and the free curved surface can form the illuminance distribution of the first spot from the central outwardly weakened incident light to have a more uniform shape.
  • the light intensity or illuminance distribution of the hook Compared with the prior art, the free-form surface of the present invention does not need to be composed of a plurality of microlenses, so that the problem of reduced light utilization rate caused by the above-mentioned crosstalk or the like can be avoided, and the structure is simple, and the light utilization efficiency is high. - . BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 is a light distribution of a semiconductor laser on a major axis and a minor axis on a target plane;
  • 2 is a light distribution of a light emitting diode on a major axis and a minor axis on a target plane;
  • 3 is a light path diagram of a prior art fly-eye lens;
  • Figure 5 is a light path diagram of one embodiment of the light-emitting element of the present invention
  • Figure 6 is an optical path diagram of another embodiment of the light-storing element of the present invention
  • Figure 7 is another embodiment of the light-storing element of the present invention.
  • 8 is an optical path diagram of another embodiment of the light-emitting element of the present invention
  • FIG. 9 is an optical path diagram of another embodiment of the light-storing element of the present invention
  • FIG. 10 is another embodiment of the light-storing element of the present invention.
  • 1 is an optical path diagram of another embodiment of the light-emitting element of the present invention
  • FIG. 12 is an optical path diagram of an embodiment of the light source system of the present invention
  • FIG. 13 is a light source system of the present invention.
  • Figure 14 is an optical path diagram of another embodiment of the light source system of the present invention
  • Figure 15 is an optical path diagram of another embodiment of the light source system of the present invention
  • Figure 16 is a light source of the present invention
  • Figure 16 is an optical path diagram of another embodiment of the light source system of the present invention
  • Figure 18 is an optical path diagram of another embodiment of the light source system of the present invention
  • Figure 19 is an optical path diagram of another embodiment of the light source system of the present invention
  • Optical path diagram of another embodiment of the light source system
  • Figure 20 is the present
  • Figure 21 is an optical path diagram of another embodiment of the light source system of the present invention
  • Figure 22 is an optical path diagram of another embodiment of the light source system of the present invention
  • Figure 23 is an optical path diagram of another embodiment of the light source system of the present invention
  • FIG. 24 is a light path diagram of another embodiment of the light source system of the present invention
  • Fig. 25 is an optical path diagram of another embodiment of the light source system of the present invention
  • -27 is an optical path diagram of another embodiment of the light source system of the present invention
  • FIG. 28 is an optical path diagram of another embodiment of the light source system of the present invention
  • FIG. 29 is an optical path diagram of another embodiment of the light source system of the present invention.
  • Figure 30 is a light path diagram of another embodiment of the light source system of the present invention
  • Figure 31 is a schematic view of a rectangular solid angle of the present invention.
  • Rectangular solid angle As shown in Fig. 31, there is a point O on the vertical line of the center point of the rectangle ABCD, and the solid angle of the rectangle ABCD to the point O is a rectangular solid angle;
  • the large angle of the rectangular solid angle as shown in Fig. 31, the angle between the midpoint connecting the wide AB and the midpoint of the wide CD to the point O is formed;
  • Illuminance luminous flux per unit area
  • Light intensity The luminous flux in the solid angle of the unit.
  • Figure 5a is an optical path diagram of one embodiment of the light-shaping element of the present invention
  • Figure 5b is a schematic analysis of the free-form surface 34 of the embodiment of Figure 5a.
  • the light homogenizing element includes a free curved surface 33 (or 34) for shaping the incident light generated by the light source 31.
  • the light source 31 can be a point source, that is, incident light incident on the free-form surface 33 (or 34) is directly generated by the point source.
  • the incident light generated by the light source 31 forms a first spot on a plane perpendicular to the central axis of the light source 31, and the illuminance distribution of the first spot is weakened from the center outward.
  • the illuminance distribution of the first spot may be an elliptical Gaussian distribution or a Lambertian distribution.
  • the free-form surface 33 (or 34) is obtained by deformation of a standard curved surface 32 at a predetermined position in the direction of the central axis of the light source 31, which is a curved surface that can shape the incident light generated by the light source 31 into parallel light.
  • the farther the predetermined position is from the light source the larger the size of the free-form surface is, and the manufacturing cost is higher.
  • the closer the predetermined position is to the light source the smaller the size of the free-form surface is, and the more difficult the manufacturing is, so the predetermined position can be set according to actual needs.
  • the freeform surface 33 (or 34) and the standard curved surface 32 are both transmissive surfaces.
  • the incident light generated by the light source 31 is shaped into an elliptical surface of parallel light.
  • the present embodiment is defined as follows: in addition to the central axis direction of the light source 31, along the lateral direction from the central axis to the central axis (including the direction from a to b, or from a to c) Direction), the incident angle of the incident light generated by the light source 31 on the free curved surface 33 and the incident angle of the incident light on the standard curved surface 32 are the same (specifically, both maintain a positive sign), and the incident light generated by the light source 31
  • the incident angle on the freeform surface 33 and the absolute value of the difference in incident angle of the incident ray on the standard curved surface 32 monotonically increase, and the incident angle of the incident ray on the free curved surface 33 and the incident ray on the standard curved surface 32
  • the rate of change of the absolute value of the difference in the angle of incidence is decremented to make the freeform surface
  • the exiting light of 33 has a more uniform light intensity distribution than the incident light produced by the light source 31 within a predetermined solid angle.
  • the difference between the incident angle of the incident ray generated by the light source 31 on the free curved surface 33 and the incident angle of the incident ray on the standard curved surface 32 is The 1 to 10 degrees increase continuously, and the rate of the increase gradually decreases.
  • the present embodiment is defined as follows: in addition to the central axis direction of the light source 31, along the lateral direction from the central axis to the central axis (including the direction from d to e, or from d to f)
  • the difference of the incident angles on the square curved surface 32 is kept the same (specifically, both are negative), the incident angle of the incident light generated by the light source 31 on the free curved surface 34 and the incident angle of the incident light on the standard curved surface 32
  • the absolute value of the difference is monotonically increasing, and the rate of change of the absolute value of the difference between the incident angle of the incident ray on the free-form surface 34 and the incident angle of the incident ray on the standard curved surface 32 is decreased to cause the exit of the free-form surface 34.
  • the light has a more uniform light intensity distribution in the predetermined solid angle than the incident light generated by the light source 31.
  • the incident light generated by the light source 31 is self-determined. - 10 degrees continuous decrement, and the rate of decrement gradually decreases.
  • the predetermined solid angle can be set according to different needs.
  • the predetermined solid angle may be a cone angle within 45 degrees or a cone angle within 30 degrees.
  • the predetermined solid angle may be a tapered cone angle having a rectangular bottom surface or a tapered cone angle having a regular hexagonal surface.
  • the outgoing light of the free-form surface 33 (or 34) has a more uniform light intensity distribution than the incident light generated by the light source 31 in a predetermined solid angle, and refers to light of the outgoing light of the free curved surface 33 (or 34) within a predetermined solid angle.
  • the intensity uniformity of the incident light rays generated by the light source 31 within a predetermined solid angle is higher than that of the light source 31.
  • the uniformity of the light intensity within the predetermined solid angle may be expressed in various ways, for example, may be a ratio of the minimum value of the light intensity within the predetermined solid angle to the average value of the light intensity within the predetermined solid angle; or the light within the solid angle may be predetermined The ratio of the strong maximum value to the average value of the light intensity within the predetermined solid angle; or the ratio of the average value of the light intensity within the predetermined solid angle to the difference between the maximum light intensity within the predetermined solid angle and the minimum light intensity; Do not list one by one.
  • the standard curved surface 32 forms the incident light from the light source 31 into parallel light, that is, all of the outgoing light of the standard curved surface 32 is distributed within a solid angle of 0 degrees. Therefore, the freeform surface 34 Changing the incident angle of the incident ray will cause the corresponding outgoing ray to deviate from 0 degrees; the amount of change in the incident angle (absolute value) is increased from the central axial side of the light source, for example, the amount of change is 20 degrees and 30 degrees, respectively, from the source The central axial side, the deviation of the outgoing ray of the free curved surface 34 from 0 degrees is also increased, so that the outgoing light of the free curved surface 34 can be distributed within a predetermined solid angle; when the light intensity of the incident light generated by the light source 31 is distributed from the central axis When decreasing toward the side, the uniformity of the light intensity distribution of the outgoing light of the free curved surface 34 within a predetermined solid angle can be improved by decreasing the
  • the two-dimensional case in which the solid angle is reduced to an angle, and at the same time, the angle change amount of the outgoing light of the free curved surface 34 can be approximated as the change amount of the incident light incident angle of the free curved surface 34.
  • the incident light generated by the light source is distributed within 0-40 degrees, and the predetermined angle of the outgoing light of the free curved surface 34 is within 0-30 degrees. Since the incident light of the light source has a large intensity at the central axis of the light source, for example, the luminous flux of the incident light within 0-20 degrees is twice the luminous flux within 20-40 degrees.
  • the incident light corresponding to the incident light within 0-20 degrees should be distributed within 0-20 degrees, that is, the corresponding incident light of 20 degrees
  • the light should be 20 degrees away from the central axis, and the outgoing light corresponding to the incident light within 20-40 degrees should be distributed within 20-30 degrees, that is, the outgoing light of the incident light of 40 degrees is 30 degrees away from the central axis. Therefore, the incident angle of 20 degrees of incident light varies by 20, and the incident angle of change of incident light of 0 degrees is 0, and the average rate of change of the incident angle of incident light in 0-20 degrees is about (20).
  • the incident angle of 40 degrees of incident light varies by 30, and the incident angle of 20-40 degrees of incident light changes by 20, and the incident angle of 20-40 degrees of incident light changes.
  • the degree of decline of the above-mentioned rate of change is different, and the uniformity of the light intensity distribution of the outgoing light of the free curve is different in a predetermined solid angle, and those skilled in the art can simulate by different requirements for uniformity.
  • Experiments and the like determine the degree of decline in the rate of change. It is worth noting that when the degree of change of the rate of change is too large, the outgoing light of the free-form surface 34 is strong in a large angle range, the light intensity is small in a small angle range, and the light intensity distribution of the incident light generated by the light source is caused. More uneven, so the degree of decline of the above rate of change needs to be controlled within a certain range. Of course, this can be easily determined by a skilled person in the field by simulation experiments. The principle that the free surface 33 achieves higher light intensity uniformity is the same as that of the freeform surface 34, and is not analyzed here.
  • the free curved surface is obtained by deforming according to the deformation law in the above technical solution on the basis of the standard curved surface, and the free curved surface can form the illuminance distribution of the first spot from the central outwardly weakened incident light.
  • the intensity distribution of the hooks Compared with the prior art, the free-form surface of the present invention does not need to be composed of a plurality of microlenses, so that the problem of reduced light utilization caused by crosstalk or the like described above can be avoided, and the structure is simple and the light utilization efficiency is high.
  • FIG. 6 is a light path diagram of another embodiment of the light-emitting element of the present invention.
  • the light-emitting element of the present invention includes a free-form surface 53 (or 54) for shaping the incident light generated by the light source 51, the incident light being at the central axis of the light source 51.
  • a first spot is formed on a vertical plane, and the illuminance distribution of the first spot is weakened outward from the center.
  • the free-form surface 53 (or 54) is obtained by deformation of a standard curved surface 52 at a predetermined position in the direction of the central axis of the light source 51.
  • the standard curved surface 52 and the free curved surface 53 are both reflective surfaces.
  • the standard curved surface 52 is a paraboloid that can shape the incident light generated by the light source 51 into parallel light.
  • the incident light rays generated by the light source 31 are free along the direction from the central axis to the side of the light source 31, whether from the direction of a to b or the direction of a to c.
  • the difference between the incident angle on the curved surface 33 and the incident angle of the incident ray on the standard curved surface 32 is maintained as a positive sign; along the direction from the central axis of the light source 31 to the side, whether from the direction of d to e, From the direction of d to f, the difference between the incident angle of the incident light generated by the light source 31 on the free curved surface 34 and the incident angle of the incident light on the standard curved surface 32 is maintained at a negative sign.
  • the incident angle of the incident light rays generated by the light source 51 on the free curved surface 53 is along the direction from the central axis to the side of the light source 51, that is, the direction from a to b and the direction from a to c.
  • the difference in incident angle of the incident ray on the standard curved surface 52 respectively maintains a negative sign and a positive sign; along the direction from the central axis of the light source 51 to the side, that is, from the direction of d to e and from the direction of d to f
  • the difference between the incident angle of the incident ray generated by the light source 51 on the free curved surface 54 and the incident angle of the incident ray on the standard curved surface 52 respectively maintains a positive sign and a negative sign.
  • the difference between the incident angle of the incident ray generated by the light source 51 on the free curved surface 53 and the incident angle of the incident ray on the standard curved surface 52 is from -1 to -10 degrees. Decrement, and the rate of decrement gradually decreases; along the direction from a to c, the incident angle of the incident light ray generated by the light source 51 on the free curved surface 53 is different from the incident angle of the incident ray on the standard curved surface 52 The value is continuously incremented from 1 degree to 10 degrees, and the rate of the increment is gradually decreased; along the direction from d to e, the incident angle of the incident light generated by the light source 51 on the free curved surface 54 and the incident light are on the standard curved surface 52.
  • the difference in incident angles is continuously increased from 1 degree to 10 degrees, and the rate of the increment is gradually decreased; along the direction from d to f, the incident angle of the incident light generated by the light source 51 on the free curved surface 54 is The difference in incident angle of the incident ray on the standard curved surface 52 is continuously decreased from -1 to -10 degrees, and the rate of the decrease gradually decreases.
  • Figure 7 is a light path diagram of another embodiment of the light-shaping element of the present invention.
  • the light-emitting element of the present invention includes a free-form surface 72 (or 73) for shaping incident light generated by a light source (not shown), the incident light being in the light source
  • a first spot is formed on a plane perpendicular to the central axis, and the illuminance distribution of the first spot is weakened outward from the center.
  • the free curved surface 72 (or 73) is obtained by deformation of a standard curved surface 71 at a predetermined position in the direction of the central axis of the light source.
  • the incident light of the free curved surface 72 (or 73) is a parallel light; the standard curved surface 71 is a reflective plane that can fold the incident light.
  • Figure 8 is a light path diagram of another embodiment of the light-emitting element of the present invention.
  • This embodiment includes a freeform surface 91 which is a concrete representation of the freeform surface in the embodiment of Fig. 5a or Fig. 6.
  • the light source system includes a point source O and a free curved surface 91.
  • the set of outgoing rays of the freeform surface 91 is 92.
  • the distance from the point-to-point source 0 on the freeform surface 91 is solved numerically by the following formula:
  • ( ) is the intensity distribution of the incident ray generated by the point source O
  • m is the unit vector of the point from the point source O to the free-form surface 91, and is the point on the point source 0 to the free-form surface 91 in the m-direction
  • the distance can be used to express the freeform surface 91, w .
  • P For a selected direction, P.
  • the distance from the point source to the point on the freeform surface 91, /( ⁇ )) is the intensity distribution of the exiting ray of the freeform surface 91 within a predetermined solid angle
  • "' is the refractive index of the medium where the incident ray is located”
  • 2 is The refractive index of the medium where the outgoing light of the free-form surface 91 is located
  • e e
  • H represents the first basic type of the surface
  • the predetermined solid angle is a predetermined rectangular solid angle, which is a uniform light intensity distribution of the outgoing light of the free curved surface within the predetermined rectangular solid angle to accommodate a rectangular display screen widely used in the field of display.
  • the large angle and the small angle of the predetermined rectangular solid angle are both greater than or equal to 0.01 degrees and less than or equal to 3 degrees.
  • the predetermined solid angle may also be other types of solid angles, for example, a solid angle of a regular triangle, a regular hexagon or an elliptical cone.
  • m It is preferably the central axis direction of the point source to facilitate calculation.
  • P. It is preferably 2 mm or more and 50 mm or less.
  • the intensity distribution of the incident light generated by the point source O can be various.
  • (0, ) is the coordinate of the point corresponding to the unit vector m in the spherical coordinates whose origin is the point source O and the central axis direction of the point source O is the polar axis, and is the plane where the major axis and the polar axis of the elliptical Gaussian are located.
  • the internal light intensity is reduced to
  • the angle of exp (- ⁇ ), ⁇ is the optical intensity of the elliptical Gaussian short axis and the polar axis in which the intensity decreases to /.
  • the hooking light element is a free-form surface which can achieve a high light intensity uniformity.
  • the hook light-emitting element is a free-form surface which can achieve a high uniformity of illumination.
  • FIG. 9 is a light path diagram of another embodiment of the light-shaping element of the present invention.
  • the light homogenizing element includes a free curved surface 43 for shaping the incident light generated by the light source 41.
  • the light source 41 may be a point light source, that is, incident light rays incident on the free curved surface 43 are directly generated by the point light source.
  • the incident light generated by the light source 41 forms a first spot on a plane perpendicular to the central axis of the light source 41, and the illuminance distribution of the first spot is weakened outward from the center.
  • the illuminance distribution of the first spot may be an elliptical Gaussian distribution or a Lambertian distribution.
  • the free curved surface 43 is obtained by deformation of a standard curved surface 42 at a predetermined position in the direction of the central axis of the light source 41.
  • the difference between this embodiment and the embodiment shown in FIG. 5 includes the following two points:
  • the standard curved surface 42 is a curved surface that can converge the incident light of the light source 41 at a center point of a predetermined area, specifically a Cartesian elliptical surface.
  • the predetermined area may be set according to actual needs, and may have various types, such as a rectangular area of a specific size and shape, an elliptical area, a triangular area, or a regular hexagonal area.
  • the incident light generated by the light source 41 is on the free curved surface
  • the difference between the incident angle on the 43 and the incident angle of the incident ray on the standard curved surface 42 is the same (specifically, the negative sign is maintained), the incident angle of the incident ray generated by the light source 41 on the free curved surface 43 and the incident ray.
  • the absolute value of the difference in incident angle on the standard curved surface 42 is monotonically increasing, and the rate of change of the absolute value of the difference between the incident angle of the incident ray on the free curved surface 43 and the incident angle of the incident ray on the standard curved surface 42 Decreasing, so that the outgoing ray of the free-form surface 43 has a more uniform illuminance distribution in the predetermined region than the incident ray generated by the light source 41. That is, in the present embodiment, the free-form surface 43 is for achieving a more uniform illuminance distribution, rather than a light intensity distribution.
  • the outgoing ray of the free curved surface 43 has a more uniform illuminance distribution in the predetermined region than the incident ray generated by the light source 41, and means that the illuminance uniformity of the outgoing ray of the free curved surface 43 in the predetermined region is larger than the incident ray generated by the light source 41 in the predetermined region.
  • the illumination within the uniformity is higher.
  • the illuminance uniformity in the predetermined area may be expressed in various manners, for example, may be a ratio of the illuminance minimum value in the predetermined area to the illuminance average value in the predetermined area; or the illuminance maximum value in the predetermined area may be within the predetermined area
  • the ratio of the average value of the illuminance may also be the ratio of the average value of the illuminance in the predetermined area and the difference between the maximum value of the illuminance in the predetermined area and the minimum value of the illuminance;
  • the principle of achieving a higher illuminance uniformity for the freeform surface 43 is the same as that of the freeform surface 34, and no further analysis is performed here.
  • the standard curved surface 42 can also be deformed to obtain the same value of the incident angle on the other free curved surface 42 (specifically, both maintain a positive sign), and the free curved surface is similar to FIG.
  • the freeform surface 34 in the illustrated embodiment is similar to FIG. The freeform surface 34 in the illustrated embodiment.
  • the free curved surface is obtained by deforming according to the deformation law in the above technical solution on the basis of the standard curved surface, and the free curved surface can form the illuminance distribution of the first spot from the central outwardly weakened incident light.
  • the free-form surface of the present invention does not need to be composed of a plurality of microlenses, so that the problem of reduced light utilization caused by the above crosstalk or the like can be avoided.
  • the utility model has the advantages of simple structure and high light utilization efficiency.
  • Fig. 10 is a light path diagram of another embodiment of the light homogenizing element of the present invention.
  • the light homogenizing element includes a free curved surface 63 (or 64) for shaping the incident light generated by the light source 61, the incident light being in a plane perpendicular to the central axis of the light source 61.
  • a first spot is formed on the first spot, and the illuminance distribution of the first spot is weakened outward from the center.
  • the free-form surface 63 (or 64) is obtained by deformation of a standard curved surface 62 at a predetermined position in the direction of the central axis of the light source 61.
  • the free curved surface 63 (or 64 ) and the standard curved surface 52 are reflective surfaces, and the standard curved surface 52 is configured to concentrate incident light into a predetermined area.
  • the elliptical surface of the center point is that: in this embodiment, the free curved surface 63 (or 64 ) and the standard curved surface 52 are reflective surfaces, and the standard curved surface 52 is configured to concentrate incident light into a predetermined area.
  • the incident light rays generated by the light source 61 are in a direction from the central axis of the light source 61 to the two side edges, that is, a direction from the central axis to the right side, and a direction from the central axis to the left side.
  • the difference between the incident angle on the freeform surface 63 and the incident angle of the incident ray on the standard curved surface 62 is maintained at a negative sign and a positive sign, respectively.
  • the incident light rays generated by the light source 61 are on the free curved surface 64 along the direction from the central axis of the light source 61 to the two side edges, that is, the direction from the central axis to the right side, and the direction from the central axis to the left side.
  • the difference between the incident angle and the incident angle of the incident ray on the standard curved surface 62 maintains a positive sign and a negative sign, respectively.
  • FIG. 11 is a light path diagram of another embodiment of the light-emitting element of the present invention.
  • the light-emitting element includes a free-form surface 82 (or 83) for shaping incident light generated by a light source (not shown), and the incident light is at a central axis of the light source 81.
  • a first spot is formed on a vertical plane, and the illuminance distribution of the first spot is weakened outward from the center.
  • the free-form surface 82 (or 83) is obtained by deformation of a standard curved surface 81 at a predetermined position in the direction of the central axis of the light source.
  • the incident light of the free curved surface 82 is a parallel light
  • the standard curved surface 81 is a center point where the incident light can be concentrated at a predetermined area. Parabolic.
  • the incident light rays generated by the light source are free along the direction from the central axis of the light source to the two sides, that is, the direction from the central axis to the right side, and the direction from the central axis to the left side.
  • the difference between the incident angle on the curved surface 82 and the incident angle of the incident ray on the standard curved surface 81 is maintained at a negative sign and a positive sign, respectively.
  • the incident angle of the incident light generated by the light source on the free curved surface 83 along the direction from the central axis of the light source to the two sides, that is, the direction from the central axis to the right side, and the direction from the central axis to the left side.
  • the free-form surface in the embodiment shown in FIG. 9 and FIG. 10 can also adopt the specific expression form of the embodiment shown in FIG. As shown in FIG. 8, when the embodiment shown in FIG. 8 is a specific representation of the embodiment shown in FIG. 9 and FIG. 10, the distance from the point-to-point source O on the free-form surface 91 is obtained by numerical solution by the following formula:
  • is the intensity distribution of the incident ray generated by the point source O
  • m is the point vector from the point source (to the point on the free-form surface 91, the point on the point in the m direction from the point source O to the free-form surface 91
  • the distance can be used to express the free-form surface 91, m .
  • P is the distance from the point on the free-form surface 91 in the direction of w , the outgoing light of the m , , ⁇ free-form surface 91 is scheduled
  • the illuminance distribution in the region "' is the refractive index of the medium where the incident ray is located, " 2 is the refractive index of the medium where the outgoing ray of the free-form surface 91 is located, ' represents the first basic type of the surface, d ': dl dt ti and tj respectively Is the two parameters in the parametric equation of the surface.
  • the freeform surface 91 is a reflective surface
  • "1 - "2.
  • the predetermined area can be set according to actual needs, and there can be various types.
  • the predetermined area is a predetermined rectangular area, which is a uniform illuminance distribution of the exiting ray of the free-form surface in the predetermined rectangular area to accommodate a rectangular display screen widely used in the field of display.
  • the distance between the predetermined rectangular area and the light source O is greater than 10 mm and less than 500 mm, and the length and width of the predetermined rectangular area are both greater than or equal to 1 mm and less than or equal to 5 mm.
  • w It is preferably the central axis direction of the point source to facilitate calculation.
  • P It is preferably 2 mm or more and 50 mm or less.
  • the intensity distribution of the incident light generated by the point source O can be various.
  • the light intensity in the direction of the central axis of the point source O, ((9, ) is the coordinate of the point corresponding to the unit vector m in the spherical coordinate with the point source 0 as the origin and the central axis direction of the point source O as the polar axis, ⁇ is the long axis and the polar axis of the elliptical Gaussian
  • the intensity of the plane in which it is located is reduced to
  • Figure 12 is a light path diagram of one embodiment of a light source system of the present invention.
  • the light source system includes a light source 121, a light homogenizing element including a transmissive curved surface 122 and a transmissive curved surface 124, and an imaging lens 123.
  • the light source 121 is specifically a single point light source 121 which generates light rays which form a first spot on a plane which is perpendicular to the central axis of the light source 121, and the illuminance distribution of the first spot is weakened from the center outward.
  • the light intensity distribution of the light generated by the light source 121 may be an elliptical Gaussian light intensity distribution or a Lambertian light intensity distribution.
  • the light homogenizing element is a lens (not shown), and the transmissive curved surface 122 and the transmissive curved surface 124 are the two faces of the lens.
  • the transmission curved surface 124 is disposed perpendicular to the incident light direction so as not to change the incident light direction, and the transmission curved surface 122 is the free curved surface in the embodiment shown in FIG. 5.
  • the outgoing light of the transmission curved surface 122 has a more predetermined angle of solid than the incident light. The intensity distribution of the hooks.
  • the light beam irradiated on the transmission curved surface 122 by the light source 121 is shaped by the transmission curved surface 122, and the light intensity is uniformly distributed in a rectangular solid angle, and then passes through the imaging lens 123, and the light beam is in a predetermined rectangular area of the focal plane of the imaging lens 123.
  • a second spot 8 having a uniform illuminance distribution is formed therein.
  • Figure 13 is a light path diagram of another embodiment of the light source system of the present invention.
  • the difference between the embodiment and the embodiment shown in FIG. 12 is that: in this embodiment, a plurality of point light sources and hook light elements corresponding to the plurality of point light sources are respectively included, and each hook light
  • the component forms a corresponding point source to form a light intensity uniformly distributed in a predetermined rectangular solid angle and falls on different positions of the same imaging lens, and the light emitted by each of the light-emitting elements is formed at the same position on the focal plane of the imaging lens.
  • the second spot of the same rectangular uniform illumination distribution is a plurality of point light sources and hook light elements corresponding to the plurality of point light sources.
  • the embodiment includes three point light sources 141, 142, and 143, three light-shaping elements respectively corresponding to the three point light sources, and the three light-storing elements respectively include transmission curved surfaces 148 and 144 and a transmission curved surface 149. And 145, transmission surfaces 150 and 146.
  • the transmissive curved surfaces 148, 149, 150 are disposed perpendicular to the incident light direction.
  • the shapes of the transmissive curved surfaces 144, 145, and 146 at different positions are exactly the same, and each of the transmissive curved surfaces forms the incident light to form a light beam whose light intensity is uniformly distributed within a predetermined rectangular solid angle.
  • the outgoing light of the transmissive curved surfaces 144, 145, 146 at different positions passes through the imaging lens 147, forming a second spot of the same rectangular uniform illuminance distribution at the same position on the focal plane of the imaging lens 147.
  • Figure 14 is a light path diagram of another embodiment of the light source system of the present invention. As shown in FIG. 14, this embodiment includes a light source 131, a light-emitting element 132, and an imaging lens 133. The difference between this embodiment and the embodiment shown in FIG. 12 is that the light-shaping element in this embodiment is a reflective curved surface 13.2, and the reflective curved surface 132 is a free-form surface in the embodiment shown in FIG.
  • Figure 15 is a light path diagram of another embodiment of the light source system of the present invention.
  • the embodiment includes a plurality of point light sources and a uniform light element corresponding to the plurality of point light sources, and each of the light hook elements corresponds to the point light source.
  • the light is formed in a predetermined rectangular solid angle and the light intensity is uniformly distributed and falls on different positions of the same imaging lens, and the emitted light of each of the light homogenizing elements forms the same rectangular uniform illumination distribution at the same position of the focal plane of the imaging lens.
  • the present embodiment includes three point light sources 151, 152, 153, three light-shaping elements corresponding to the three point light sources, and the three light-storing elements respectively include reflective curved surfaces 154, 155, and 156.
  • the reflective surfaces 154, 155, 156 at different positions are identical in shape and oriented in the same direction, each shaping the incident light into a beam of light whose intensity is evenly distributed within a predetermined rectangular solid angle.
  • the outgoing light of the reflective curved surfaces 154, 155, 156 at different positions passes through the imaging lens 157, forming a second spot of the same rectangular uniform illuminance distribution at the same position on the focal plane of the imaging lens 157.
  • Figure 16 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes point light sources 161, 162, and reflective curved surfaces 163, 166 corresponding to the point light sources 161, 162, respectively, and the shapes of the reflective curved surfaces 163, 166 at different positions are identical.
  • the light source system further includes reflective planes 164, 165 and imaging lens 167.
  • the reflective surfaces 163 and 166 respectively shape the light generated by the point light sources 161, 162, and the reflection planes 164 and 165 respectively reflect the outgoing light of the curved surfaces 163 and 166 for optical path folding.
  • the outgoing light of the reflecting planes 164, 165 passes through the imaging lens 167, forming a second spot of the same rectangular uniform illuminance distribution at the same position of the focal plane of the imaging lens 167.
  • the reflective curved surfaces 163 and 166 are free curved surfaces in the embodiment shown in FIG. 6.
  • the directions of the point light sources 161, 162 are uniform, and thus have the advantage of being easy to mount.
  • the two reflective curved surfaces 163 and 166 are disposed opposite to each other, the reflective plane is disposed opposite to the corresponding reflective curved surface, and the two adjacent reflective surfaces 164 and 165 are seamlessly spliced such that the outgoing light of the reflective planes 164 and 165 partially overlaps or only The smaller spacing makes the light source system more compact and improves the utilization of the imaging lens 167.
  • a plurality of sets of light sources, reflective curved surfaces, and reflective planes may be disposed and arranged in a direction perpendicular to the cross-section as shown in FIG. 16 to increase the optical power density of the light source system.
  • Figure 17 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes point light sources 171, 172, reflection curved surfaces 173, 174 corresponding to the point light sources 171, 172, and an imaging lens 175, respectively.
  • the difference between the embodiment and the embodiment shown in FIG. 16 is that the point light sources 171 and 172 are disposed opposite to each other in the embodiment, and the reflective curved surfaces 173 and 174 are disposed opposite to each other and seamlessly spliced so that the reflective surfaces 173 and 174 are reflective.
  • the emitted light has a partial overlap or only a small interval, thereby making the light source system more compact and improving the utilization of the imaging lens 167.
  • a plurality of sets of light sources and reflective curved surfaces may be disposed and arranged in a direction perpendicular to the cross-section as shown in Fig. 17 to increase the optical power density of the light source system.
  • Figure 18 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a plurality of point light sources 211, 212, and 213, and a plurality of reflective curved surfaces 214, 215, and 216 corresponding to the plurality of point light sources 211, 212, and 213, respectively.
  • the reflective surfaces 214, 215, 216 are all free-form surfaces in the embodiment shown in FIG.
  • the point light sources 211, 212, 213, the reflective curved surfaces 214, 215, 216 and the ruthenium planes 217, 218, 219 are all oriented in unison, thus having the advantage of being easy to install.
  • the emitted light rays of the reflective curved surfaces 214, 215, and 216 are respectively changed by the reflecting planes 217, 218, and 219 to be moved upward, so that the outgoing light of each of the reflective curved surfaces 214, 215, and 216 is not blocked from each other, and can be easily fabricated.
  • Figure 19 is a light path diagram of another embodiment of the light source system of the present invention. As shown in Fig. 19, this embodiment is based on the embodiment shown in Fig. 18, plus reflection planes 227, 228 arranged in a gradient to compress the size of the outgoing beam of the light source system.
  • Figures 20-21 are optical path diagrams of another embodiment of the light source system of the present invention.
  • 20 is a side view
  • FIG. 21 is a top view, as shown in FIGS. 20-21
  • a plurality of reflective curved surfaces 237, 238, 238, 239, 2411, 241', 242, 243, 243 are identical, and the emitted light is A uniform light intensity distribution in a predetermined rectangular solid angle, and the outgoing light rays of the respective reflective curved surfaces are the same in the focal plane of the imaging lens 231
  • a second spot of the same rectangular uniformity distribution is formed at the position.
  • the reflective curved surfaces 237, 238, 238, 239, 2411, 241 ', 242, 243 > 243 are arranged in a gradient or staggered manner in both the side view and the top view, thereby compressing the size of the outgoing light beam of the light source system in both dimensions. .
  • the distance between the point sources is increased, which is advantageous for heat dissipation.
  • the dotted line and the solid line represent the reflective surface and the light source in different planes, respectively.
  • the reflective curved surfaces 237, 238, 238, 239, 2411, 241', 242, 243 >243' are free-form surfaces in the embodiment shown in FIG. 6.
  • Figure 22 is a light path diagram of another embodiment of the light source system of the present invention.
  • a light source (not shown) provides a collimated beam
  • a plurality of reflective curved surfaces 201, 202, 203 are free-form surfaces in the embodiment shown in Fig. 7, and have the same shape.
  • the outgoing light of the reflective curved surfaces 201, 202, 203 passes through an imaging lens 204 and forms a second spot of the same rectangular uniform illumination distribution at the same position on the focal plane of the imaging lens 204.
  • the reflective curved surfaces 201, 202, 203 are arranged in a gradient such that the outgoing beam of the light source system has a smaller size.
  • Figure 23 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a point light source 91, a light-emitting element composed of a transmission curved surface 92 and a transmission curved surface 93, and the light generated by the point light source 91 is directly emitted to the transmission curved surface 93.
  • the light-emitting element is a lens (not shown), the transmission curved surface 92 and the transmission curved surface 93 are two faces of the lens, and the transmission curved surface 93 is disposed perpendicular to the incident light direction, so that the direction of the light is not changed, and the transmission curved surface 92 is FIG.
  • the freeform surface in the illustrated embodiment The light beam irradiated onto the light-emitting element by the light source 91 is shaped by the transmission curved surface 92 to form a second spot S of uniform illumination distribution in a predetermined rectangular area of the target plane.
  • Figure 24 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system of this embodiment includes a point source 101 and a reflective curved surface 102, and the reflective curved surface is a free curved surface in the embodiment shown in FIG.
  • the difference between this embodiment and the embodiment shown in Fig. 23 is that the light-emitting element in this embodiment is a reflective curved surface 102.
  • Figure 25 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a plurality of point light sources 111, _112, 113 arranged in an array, and a plurality of light concentrating elements respectively corresponding to the point light sources 1 1 1 , 112 , 1 13 .
  • the plurality of light homogenizing elements are all lenses, and each lens is composed of transmission curved surfaces 114 and 117, transmission curved surfaces 115 and 18, and transmission curved surfaces 116 and 119, respectively.
  • the transmissive curved surfaces 117, 118, 119 respectively receive the light generated by the corresponding point source and are disposed perpendicular to the direction of the incident light, thereby not changing the direction of the incident light.
  • the transmission curved surfaces 114, 115, 116 are all free-form surfaces in the embodiment shown in FIG.
  • the spot light source illuminates the corresponding light beam on the corresponding light-emitting element through the transmission surface 1 14 , 1 15 , 1 16 shaping, the transmissive curved surfaces 1 14 , 1 15 , 116 of different positions are different in shape, so that the outgoing light of the transmissive curved surfaces 1 14 , 1 15 , 116 forms the same rectangle at the same position on the target plane A second spot of uniform illumination distribution.
  • Figure 26 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a plurality of point light sources 181, 182, 183, and a reflection curved surface 184 which is a free curved surface in the embodiment shown in Fig. 11.
  • the light source system further includes a plurality of collimating elements 185, 186, 187 corresponding to the plurality of point sources 181, 182, 183, respectively.
  • the light emitted from the plurality of point light sources 181, 182, and 183 passes through the collimating elements 185, 186, and 187, respectively, and is emitted as a plurality of parallel lights.
  • Each bundle of parallel light is shaped by a reflective surface 184 and together on the target plane to form a second spot of rectangular uniform illumination distribution.
  • the optical path reflected by the reflective surface 184 may be in the same plane as the major or minor axis of the ellipse formed by the point source light distribution.
  • the reflected light path of the reflective curved surface 184 is in the same plane as the short axis of the ellipse.
  • Figure 27 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a light source that provides a plurality of collimated beams, and a plurality of different reflective curved surfaces 191, 192, 193 corresponding to the plurality of collimated beams, respectively.
  • the reflective surfaces 191, 192, and 193 are all free-form surfaces in the embodiment shown in FIG.
  • Each of the reflecting surfaces forms a spot of the same rectangular uniform illuminance distribution at the same position of the target plane, and the spots are superimposed on each other.
  • the reflective surfaces 191, 192, 193 are arranged in a gradient such that the exit beam of the source system has a smaller size.
  • Figure 28 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a point light source 251 and a lens 252.
  • the lens 252 is composed of a curved surface 254 and a curved surface 253, and the light generated by the light source 251 is directed toward the curved surface 253.
  • the curved surface 254 may be any surface, and the curved surface 253 may be any of the above-described transmissive curved surfaces having a light shaping function, such as the free curved surface in the embodiment shown in FIG. 5 or 9.
  • Figure 29 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a point light source 261 and a lens 262.
  • the lens 262 is composed of curved surfaces 263, 264 which are disposed perpendicular to the incident light direction so as not to change the incident light direction, and the curved surface 264 may be any of the above-described transmissive curved surfaces having a light shaping function, such as FIG. Or the freeform surface in the embodiment shown in FIG.
  • the point source 261 is located outside the lens 262, and the light generated by the point source exits toward the curved surface 263 and is shaped by the curved surface 264.
  • Figure 30 is a light path diagram of another embodiment of the light source system of the present invention.
  • the light source system includes a point light source 271 and a lens 272.
  • the lens 272 is composed of curved surfaces 273, 274, which may be any of the above-described transmissive curved surfaces having a light shaping function, such as the free curved surface in the embodiment shown in Fig. 5 or Fig. 9, and the curved surface 273 is set to be incident with light.
  • the direction is vertical so that the direction of the incident light is not changed.
  • the point source 271 is located outside of the lens 272, and the light generated by the point source is directed toward the curved surface 273 and shaped by the curved surface 273, and the shaped light is transmitted through the curved surface 274.
  • the output light distribution of the entire lens 272 is actually the output light distribution of the curved surface 273.
  • the free curved surface is obtained by deforming according to the deformation law in the above technical solution on the basis of the standard curved surface, and the free curved surface is capable of absorbing the illuminance distribution of the first spot from the central outwardly weakened incident light.
  • the formation has a more uniform light intensity or illuminance distribution.
  • the free-form surface of the present invention does not need to be composed of a plurality of microlenses, so that the problem of reduced light utilization caused by the above crosstalk or the like can be avoided, and the structure is simple and the light utilization efficiency is high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种匀光元件,用于对光源(61)产生的入射光线整形,其包括一自由曲面(63,64)。自由曲面由位于光源的中心轴方向的预定位置的一标准曲面(62)变形获得,除中心轴方向外,沿着从中心轴至中心轴的侧向的方向,入射光线在自由曲面(63,64)上的入射角度与入射光线在标准曲面(62)上的入射角度的差值保持同号,入射光线在自由曲面(63,64)上的入射角度与入射光线在标准曲面(62)上的入射角度的差值的绝对值单调递增,且入射光线在自由曲面(63,64)上的入射角度与入射光线在标准曲面(62)上的入射角度的差值的变化率递减,以使自由曲面(63,64)的出射光线在预定立体角内比入射光线具有更均匀的光强分布。另有一种光源系统,包括上述匀光元件。

Description

说 明 书 匀光元件及光源系统 技术领域
本发明涉及照明及显示领域, 特别是涉及一种匀光元件及光源系统。 背景技术
半导体激光、 LED 等光源在照明、 投影、 光学照排、 光存储等领域中应用 广泛。 在这些应用中, 需要将光源在目标平面上尽量形成一个一定尺寸、 具有 规则形状的照度分布, 如矩形均匀分布。
而常用的光源的光分布都不够理想, 比如半导体激光在截面上的光分布一 般为椭圓高斯, 其长轴和短轴上的光分布如图 1 所示, 发光二极管在截面上的 光分布一般为钟形, 在截面上的光分布如图 2所示。
有文献提出基于复眼透镜的方法 (论文 Laser Beam Shaping Techniques)„ 如 下图 3所示: 尺寸为 D的平行光束入射到包括两个复眼透镜的复眼透镜对, 复 眼透镜对利用其中的微透镜 11、 12 将光束分为若干个子光束, 每个子光束用一 对微透镜 11、 12分别处理, 形成矩形光分布, 并且由于子光束面积很小, 这个 矩形内的光分布接近均勾。 最后再经过一个焦距为 F的正常透镜 13 , 子光束在 目标平面上叠加, 从而在尺寸为 S 的矩形内得到均匀照度。 这种方法对加工精 度要求很高, 并且微透镜 11、 12之间的光会有一定的串扰, 造成目标平面上出 现旁瓣光斑, 另外每个复眼透镜中的各微透镜之间的衔接部分会影响光的出射, 这些都造成光利用率的降低。 发明内容
本发明主要解决的技术问 ¾是提供一种匀光元件及光源系统, 能够避免上 述串扰等造成的光利用率降低的问题。
本发明提供一种勾光元件, 用于对光源产生的入射光线整形, 该入射光线 在与该光源的中心轴垂直的平面上形成第一光斑, 第一光斑的照度分布由中央 向外减弱, 其特征在于, 勾光元件包括一自由曲面, 该自由曲面由位于光源的 中心轴方向的预定位置的一标准曲面变形获^寻, 该标准曲面为可对入射光线整 形为平行光的曲面;
除中心轴方向外, 沿着从该中心轴至中心轴的侧向的方向, 入射光线在自 入射光线在自由曲面上的入射角度与该入射光线在标准曲面上的入射角度的差 值的绝对值单调递增, 且该入射光线在自由曲面上的入射角度与该入射光线在 标准曲面上的入射角度的差值的绝对值的变化率递减, 以使自由曲面的出射光 线在预定立体角内比入射光线具有更均勾的光强分布。
本发明还提供一种勾光元件, 用于对光源产生的入射光线整形, 该入射光 线在与该光源的中心轴垂直的平面上形成第一光斑, 第一光斑的照度分布由中 央向外减弱, 其特征在于, 匀光元件包括一自由曲面, 该自由曲面由位于光源 的中心轴方向的预定位置的一标准曲面变形获得, 该标准曲面为可将入射光线 汇聚于预定区域的中心点的曲面;
除中心轴方向外, 沿着从该中心轴至中心轴的侧向的方向, 入射光线在自 由曲面上的入射角度与该入射光线在标准曲面上的入射角度的差值保持同号, 值的绝对值单调递增, 且该入射光线在自由曲面上的入射角度与该入射光线在 标准曲面上的入射角度的差值的绝对值的变化率递减, 以使自由曲面的出射光 线在预定区域内比入射光线具有更均匀的照度分布。
本发明还提供一种光源系统, 该光源系统包括上述的勾光元件。
与现有技术相比, 本发明包括如下有益效果:
本发明中, 自由曲面通过在标准曲面的基础上, 采用上述技术方案中的变 形规律进行变形得到, 该自由曲面能够将第一光斑的照度分布由中央向外减弱 的入射光线整形成具有更均勾的光强或照度分布。 相对于现有技术, 本发明的 自由曲面无需多个微透镜组成, 因而可避免上述串扰等造成的光利用率降低的 问题, 具有结构筒单, 光利用率高的优点。 - . 附图说明
图 1是半导体激光在目标平面上的长轴和短轴上的光分布;
图 2是发光二极管在目标平面上的长轴和短轴上的光分布; 图 3是现有技术的复眼透镜的光路图;
图 4是现有技术的非球面透镜的光路图;
图 5是本发明的勾光元件的一个实施例的光路图; 图 6是本发明的勾光元件的另一实施例的光路图; 图 7是本发明的勾光元件的另一实施例的光路图; 图 8是本发明的勾光元件的另一实施例的光路图; 图 9是本发明的勾光元件的另一实施例的光路图; 图 10是本发明的勾光元件的另一实施例的光路图; 图 1 1是本发明的勾光元件的另一实施例的光路图; 图 12 是本发明的光源系统的一个实施例的光路图; 图 13是本发明的光源系统的另一实施例的光路图; 图 14是本发明的光源系统的另一实施例的光路图; 图 15是本发明的光源系统的另一实施例的光路图; 图 16是本发明的光源系统的另一实施例的光路图; 图 17是本发明的光源系统的另一实施例的光路图; 图 1 8是本发明的光源系统的另一实施例的光路图; 图 19是本发明的光源系统的另一实施例的光路图; 图 20是本发明的光源系统的另一实施例的光路图; 图 21是本发明的光源系统的另一实施例的光路图; 图 22是本发明的光源系统的另一实施例的光路图; 图 23 是本发明的光源系统的另一实施例的光路图; 图 24是本发明的光源系统的另一实施例的光路图; 图 25是本发明的光源系统的另一实施例的光路图; 图 26-27是本发明的光源系统的另一实施例的光路图; 图 28是本发明的光源系统的另一实施例的光路图; 图 29是本发明的光源系统的另一实施例的光路图; 图 30是本发明的光源系统的另一实施例的光路图; 图 3 1是本发明的矩形立体角的示意图。 具体实施方式 下面结合附图和实施例对本发明进行详细说明。
专业术语解释:
矩形立体角: 如图 31所示, 过矩形 ABCD中心点的垂线上有一点 O, 矩形 ABCD对点 O张成的立体角为一矩形立体角;
矩形立体角的大角: 如图 31所示, 连接宽 AB的中点和宽 CD的中点的线 段对点 O张成的角度;
矩形立体角的小角: 如图 31所示, 连接长 AD的中点和长 BC的中点的线 段对点 O张成的角度;
照度: 单位面积的光通量;
光强: 单位立体角内的光通量。
请参见图 5a与图 5b, 图 5a是本发明的匀光元件一个实施例的光路图, 图 5b是图 5a所示实施例中自由曲面 34的原理分析图。
如图 5a所示, 在本实施例中, 匀光元件包括一用于对光源 31 产生的入射 光线整形的自由曲面 33 (或 34 )。 光源 31可以为点光源, 即入射到自由曲面 33 (或 34 ) 的入射光线由点光源直接产生。 光源 31 产生的入射光线在与该光源 31 的中心轴垂直的一平面上形成第一光斑, 第一光斑的照度分布由中央向外减 弱。 第一光斑的照度分布可以为椭圓高斯分布或朗伯分布。
自由曲面 33 (或 34 ) 由位于光源 31 的中心轴方向的预定位置的一标准曲 面 32 变形获得, 该标准曲面为可对光源 31产生的入射光线整形为平行光的曲 面。 预定位置离光源越远, 自由曲面的尺寸越大, 制作成本较高; 预定位置离 光源越近, 自由曲面的尺寸越小, 制作难度越高, 因而预定位置可根据实际需 求进行 ¾:置。 自由曲面 33 (或 34 )和标准曲面 32均为透射曲面。 关于标准曲 面, 本实施例中具体为可对光源 31产生的入射光线整形为平行光的椭圓面。
针对自由曲面 33, 本实施例进行如下限定: 除了光源 31的中心轴方向外, 沿着从该中心轴至中心轴的侧向的方向(包括从 a至 b的方向、或从 a至 c的方 向), 光源 31产生的入射光线在自由曲面 33上的入射角度与该入射光线在标准 曲面 32上的入射角度的差值保持同号 (具体为均保持正号), 光源 31产生的入 射光线在自由曲面 33上的入射角度与该入射光线在标准曲面 32上的入射角度 的差值的绝对值单调递增, 且该入射光线在自由曲面 33上的入射角度与该入射 光线在标准曲面 32上的入射角度的差值的绝对值的变化率递减, 以使自由曲面 33的出射光线在预定立体角内比光源 31产生的入射光线具有更均勾的光强分布。 例如, 沿着从 a至 b的方向以及从 a至 c的方向, 光源 3 1产生的入射光线在自 由曲面 33上的入射角度与该入射光线在标准曲面 32上的入射角度的差值均由 1 度至 10度连续递增, 且该递增的速率逐渐减小。
针对自由曲面 34, 本实施例进行如下限定: 除了光源 31的中心轴方向外, 沿着从该中心轴至中心轴的侧向的方向(包括从 d至 e的方向、或从 d至 f的方 曲面 32上的入射角度的差值保持同号 (具体为均保持负号), 光源 3 1产生的入 射光线在自由曲面 34上的入射角度与该入射光线在标准曲面 32上的入射角度 的差值的绝对值单调递增, 且该入射光线在自由曲面 34上的入射角度与该入射 光线在标准曲面 32上的入射角度的差值的绝对值的变化率递减, 以使自由曲面 34的出射光线在预定立体角内比光源 31产生的入射光线具有更均勾的光强分布。 例如, 沿着从 d至 e的方向以及从 d至 f的方向, 光源 31产生的入射光线在自 度至 - 10度连续递减, 且该递减的速率逐渐减小。
预定立体角可以根据不同需求设置。 例如, 预定立体角可以为 45度以内的 锥角, 也可以 30度以内的锥角。 预定立体角可以为底面为矩形的锥形的锥角, 也可以为底面为正六边形的锥形的锥角。
自由曲面 33 (或 34 ) 的出射光线在预定立体角内比光源 31产生的入射光 线具有更均勾的光强分布, 是指自由曲面 33 (或 34 ) 的出射光线在预定立体角 内的光强均匀度比光源 31 产生的入射光线在预定立体角内的光强均匀度更高。 预定立体角内的光强均匀度可以采用多种方式表示, 例如, 可以为预定立体角 内的光强最小值与预定立体角内的光强平均值的比值; 也可以预定立体角内的 光强最大值与预定立体角内的光强平均值的比值; 也可以为预定立体角内的光 强平均值和预定立体角内的光强最大值与光强最小值之差的比值; 此处不作一 一列举。
为便于理解, 以下对本实施例中自由曲面 34实现较高的光强均匀度的原理 进行分析; 同时, 为便于描述, 以下将中心轴的侧向简称为侧边: ―
如图 5a和图 5b所示, 标准曲面 32将光源 31发出的入射光线整形成平行 光, 即标准曲面 32所有的出射光线分布在 0度立体角内。 因此, 自由曲面 34 改变入射光线的入射角, 将使相应出射光线偏离 0度; 入射角的改变量 (绝对 值) 从光源的中心轴向侧边递增, 例如改变量依次为 20度和 30度, 则从光源 的中心轴向侧边, 自由曲面 34的出射光线与 0度的偏离也递增, 因而可使自由 曲面 34的出射光线分布在预定立体角内; 当光源 31产生的入射光线的光强分 布从中心轴向侧边递减时, 可以通过使自由曲面 34对该入射光线入射角的改变 量的变化率递减, 提高自由曲面 34的出射光线在预定立体角内的光强分布的均 匀性。
例如, 为简化问题描述, 以二维情况进行解释, 此时立体角简化为角度, 同时, 可以将自由曲面 34的出射光线的角度改变量近似视为自由曲面 34的入 射光线入射角的改变量。 如图 5b所示, 光源产生的入射光线分布在 0-40度内, 自由曲面 34的出射光线的预定角度在 0-30度内。由于光源产生的入射光线在光 源的中心轴处的光强较大, 例如, 该入射光线在 0-20度内的光通量是 20-40度 内光通量的 2倍。为使自由曲面 34的出射光线在 0-30度内光强均匀,那么,0-20 度内的入射光线对应的出射光线应分布在 0-20度内,即 20度的入射光线对应的 出射光线应偏离中心轴方向 20度, 而 20-40度内的入射光线对应的出射光线应 分布在 20-30度内, 即 40度的入射光线的出射光线偏离中心轴 30度。 因此, 20 度的入射光线的入射角变化量为 20, 因 0度的入射光线的入射角变化量为 0 , 则 0-20度内入射光线的入射角变换量的平均变化率约为(20-0 ) / ( 20-0 ) =1 ; 40 度的入射光线的入射角变化量为 30,因 20度的入射光线的入射角变化量为 20, 则 20-40度入射光线的入射角变化量的平均变化率约为 ( 30-20/( 40-20)=0.5 , 是 0-20度内入射光线的入射角变换量的平均变化率的 1/2。 由此可见, 可以通过 使自由曲面 34对该入射光线入射角的改变量的变化率递减, 提高自由曲面 34 的出射光线在预定立体角内的光强分布的均匀性。
容易理解的是, 上述变化率递减程度不同, 自由曲 ¾ 34的出射光线在预定 立体角内的光强分布的均勾性也不同 , 本领域技术人员可以根据对均匀性的不 同要求, 通过仿真实验等确定该变化率的递减程度。 值得说明的是, 当变化率 递减程度过大时, 会导致自由曲面 34的出射光线在大角度范围内光强大, 小角 度范围内光强小, 并造成比光源产生的入射光线的光强分布更不均匀, 因而上 述变化率的递减程度需控制在一定范围内, 当然, 这点本领域技术人员也可以 很容易地通过仿真实验确定。 自由曲面 33 实现较高的光强均匀度的原理与自由曲面 34的相同, 此处不 再进行分析。
本实施例中, 自由曲面通过在标准曲面的基础上, 采用上述技术方案中的 变形规律进行变形得到, 该自由曲面能够将第一光斑的照度分布由中央向外减 弱的入射光线整形成具有更均勾的光强分布。 相对于现有技术, 本发明的自由 曲面无需多个微透镜组成, 因而可避免上述串扰等造成的光利用率降低的问题, 具有结构简单, 光利用率高的优点。
请参见图 6 , 图 6是本发明的勾光元件另一实施例的光路图。 如图 6所示, 在本实施例中, 本发明的勾光元件包括一用于对光源 51产生的入射光线整形的 自由曲面 53 (或 54 ), 该入射光线在与该光源 51的中心轴垂直的一平面上形成 第一光斑, 第一光斑的照度分布由中央向外减弱。 自由曲面 53 (或 54 ) 由位于 光源 5 1的中心轴方向的预定位置的一标准曲面 52变形获得。
本实施例与图 5a所示实施例的区别之处包括以下两点:
( 1 )本实施例中, 标准曲面 52与自由曲面 53 (或 54 ) 均为反射曲面。 具 体地, 标准曲面 52为可对光源 51产生的入射光线整形为平行光的抛物面。
( 2 ) 图 5a所示实施例中, 沿着从光源 31的中心轴至侧边的方向, 不管是 从 a至 b的方向, 还是从 a至 c的方向, 光源 31产生的入射光线在自由曲面 33 上的入射角度与该入射光线在标准曲面 32上的入射角度的差值均保持正号; 沿 着从光源 31的中心轴至侧边的方向, 不管是从 d至 e的方向, 还是从 d至 f的 方向, 光源 31 产生的入射光线在自由曲面 34上的入射角度与该入射光线在标 准曲面 32上的入射角度的差值均保持负号。 而本实施例中, 沿着从光源 51 的 中心轴至侧边的方向, 即从 a至 b的方向以及从 a至 c的方向, 光源 51产生的 入射光线在自由曲面 53上的入射角度与该入射光线在标准曲面 52上的入射角 度的差值分别保持负号与正号; 沿着从光源 51的中心轴至侧边的方向, 即从 d 至 e的方向以及从 d至 f的方向,光源 51产生的入射光线在自由曲面 54上的入 射角度与该入射光线在标准曲面 52上的入射角度的差值分别保持正号与负号。
例如, 沿着从 a至 b的方向, 光源 51产生的入射光线在自由曲面 53上的 入射角度与该入射光线在标准曲面 52上的入射角度的差值由 -1 .度至 - 10度连续 递减, 且该递减的速率逐渐减小; 沿着从 a至 c的方向, 光源 51产生的入射光 线在自由曲面 53上的入射角度与该入射光线在标准曲面 52上的入射角度的差 值由 1度至 10度连续递增, 且该递增的速率逐渐减小; 沿着从 d至 e的方向, 光源 51 产生的入射光线在自由曲面 54上的入射角度与该入射光线在标准曲面 52上的入射角度的差值由 1度至 10度连续递增, 且该递增的速率逐渐减小; 沿 着从 d至 f的方向,光源 51产生的入射光线在自由曲面 54上的入射角度与该入 射光线在标准曲面 52上的入射角度的差值由 -1度至 -10度连续递减, 且该递减 的速率逐渐减小。
请参见图 7,图 7是本发明的匀光元件的另一实施例的光路图。如图 7所示, 在本实施例中, 本发明的勾光元件包括一用于对光源 (图未示) 产生的入射光 线整形的自由曲面 72 (或 73 ), 该入射光线在与该光源的中心轴垂直的一平面 上形成第一光斑, 第一光斑的照度分布由中央向外减弱。 自由曲面 72 (或 73 ) 由位于光源的中心轴方向的预定位置的一标准曲面 71变形获得。
本实施例与图 6所示实施例的区别之处在于:本实施例中, 自由曲面 72 (或 73 )的入射光线为平行光线;标准曲面 71为可对入射光线进行折叠的反射平面。
请参见图 8, 图 8是本发明的勾光元件另一实施例的光路图。 本实施例包括 自由曲面 91 ,自由曲面 91是图 5a或图 6实施例中的自由曲面的具体表现形式。
如图 8所示, 在本实施例中, 光源系统包括点光源 O、 自由曲面 91。 自由 曲面 91的出射光线的集合为 92。 自由曲面 91上的点到点光源 0的距离由以下 公式通过数值方式求解获得:
Figure imgf000010_0001
其中, ( )为点光源 O产生的入射光线的光强分布, m为从点光源 O到自 由曲面 91上的点的单位向量, 为在 m方向上点光源 O到自由曲面 91上的 点的距离, 可用于表达自由曲面 91, w。为选取的某一方向, P。为在 w。方向上点 光源到自由曲面 91上的点的距离, /(^ ))为自由曲面 91 的出射光线在预定立 体角内的光强分布, "'为入射光线所在介质的折射率、 "2为自由曲面 91的出射 光线所在介质的折射率, e = e"H表示曲面的第一基本型, ev = ( )_' , 5' =^ / St' , \ = e °im0 ti与 tj分别为曲面的参数方程中的两个参数。 当自由曲面 91为反射 面时,
优选地, 预定立体角为预定矩形立体角, 为自由曲面的出射光线在 该预定矩形立体角内的均匀光强分布, 以适应目前显示领域中广泛使用的矩形 显示屏幕。 此时, 更优选地, 预定矩形立体角的大角和小角均大于等于 0.01度 且小于等于 3 度。 当然, 预定立体角也可以为其它类型的立体角, 例如底面为 正三角形、 正六边形或椭圓形的锥形的立体角。
此外, m。优选为点光源的中心轴方向, 以便于计算。 此时, P。优选大于等 于 2mm且小于等于 50 mm。
点光源 O产生的入射光线的光强分布可以有多种。 在本发明的一备选实施 例中, 点光源 入射光线的光强分布可为椭圆高斯形的光强分布, 即 i(m) = I0 exp ,其中 /。为点光源 O的中心轴方向的光强,
Figure imgf000011_0001
(0, )为以点光源 O为原点且以点光源 O的中心轴方向为极轴的球坐标中的单位 向量 m对应的点的坐标, 为椭圓高斯的长轴与极轴所在的平面内光强降低到
/。的 exp (-丄)时的角度, σ,,为椭圆高斯的短轴与极轴所在的平面内光强降低到 /。
2
eXp( 时的角度。 在本发明的另一备选实施例中, 点光源 O产生的入射光线 的光强分布为朗伯的光强分布, 即 (m) = /0 cos(6>), 其中 /。为点光源 O的中心轴 方向的光强, 6>为单位向量 m与中心轴方向的夹角。
上述实施例是对勾光元件为可实现光强均 度较高的自由曲面进行说明, 以下对勾光元件为可实现照度均匀度较高的自由曲面进行详细说明。
请参见图 9, 图 9是本发明的匀光元件另一实施例的光路图。 如图 9所示, 本实施例中,匀光元件包括一用于对光源 41产生的入射光线整形的自由曲面 43。 光源 41可以为点光源, 即入射到自由曲面 43的入射光线由点光源直接产生。 光源 41产生的入射光线在与该光源 41的中心轴垂直的一平面上形成第一光斑, 第一光斑的照度分布由中央向外减弱。 第一光斑的照度分布可以为椭圆高斯分 布或朗伯分布。 自由曲面 43 由位于光源 41 的中心轴方向的预定位置的一标准 曲面 42变形获得。 本实施例与图 5所示实施例的区别之处包括以下两点:
( 1 )本实施例中, 标准曲面 42为可将光源 41产生^入射光线汇聚于预定 区域的中心点的曲面, 具体为笛卡尔椭圆面。 预定区域可以根据实际需求进行 设置, 可以具有多种, 例如一特定尺寸和形状的矩形区域、 椭圓形区域、 三角 形区域或正六边形区域等。
( 2 ) 除了光源 41 的中心轴方向外, 沿着从该中心轴至侧边的方向 (包括 从 d至 e的方向、 或从 d至 f的方向), 光源 41产生的入射光线在自由曲面 43 上的入射角度与该入射光线在标准曲面 42上的入射角度的差值保持同号(具体 为均保持负号), 光源 41产生的入射光线在自由曲面 43上的入射角度与该入射 光线在标准曲面 42上的入射角度的差值的绝对值单调递增, 且该入射光线在自 由曲面 43上的入射角度与该入射光线在标准曲面 42上的入射角度的差值的绝 对值的变化率递减, 以使自由曲面 43的出射光线在预定区域内比光源 41产生 的入射光线具有更均匀的照度分布。 即本实施例中, 自由曲面 43是为了实现更 均匀的照度分布, 而非光强分布。
自由曲面 43 的出射光线在预定区域内比光源 41产生的入射光线具有更均 匀的照度分布, 是指自由曲面 43的出射光线在预定区域内的照度均匀度比光源 41 产生的入射光线在预定区域内的照度均匀度更高。 预定区域内的照度均匀度 可以采用多种方式表示, 例如, 可以为预定区域内的照度最小值与预定区域内 的照度平均值的比值; 也可以预定区域内的照度最大值与预定区域内的照度平 均值的比值; 也可以为预定区域内的照度平均值和预定区域内的照度最大值与 照度最小值之差的比值; 此处不作——列举。 自由曲面 43实现较高的照度均匀 度的原理与自由曲面 34的相同, 此处不再进行分析。
容易理解的是, 本实施例中也可以对标准曲面 42进行变形得到另一自由曲 面 42 上的入射角度的差值保持同号 (具体为均保持正号), 该自由曲面类似于 图 5所示实施例中的自由曲面 34。
本实施例中, 自由曲面通过在标准曲面的基础上, 采用上述技术方案中的 变形规律进行变形得到, 该自由曲面能够将第一光斑的照度分布由中央向外减 弱的入射光线整形成具有更均句的照度分布。 相对于现有技术, 本发明的自由 曲面无需多个微透镜组成, 因而可避免上述串扰等造成的光利用率降低的问题, 具有结构简单, 光利用率高的优点。
请参见图 10, 图 10是本发明的匀光元件另一实施例的光路图。 如图 10所 示, 本实施例中, 匀光元件包括一用于对光源 61产生的入射光线整形的自由曲 面 63 (或 64 ), 该入射光线在与该光源 61的中心轴垂直的一平面上形成第一光 斑, 第一光斑的照度分布由中央向外减弱。 自由曲面 63 (或 64 ) 由位于光源 61 的中心轴方向的预定位置的一标准曲面 62变形获得。
本实施例与图 9所示实施例的区别之处在于: 本实施例中, 自由曲面 63 (或 64 ) 和标准曲面 52均为反射曲面, 标准曲面 52为可将入射光线汇聚于预定区 域的中心点的椭圓面。
本实施例中, 沿着从光源 61的中心轴至两个侧边的方向, 即从中心轴至右 侧边的方向、 以及从中心轴至左侧边的方向, 光源 61产生的入射光线在自由曲 面 63上的入射角度与该入射光线在标准曲面 62上的入射角度的差值分别保持 负号与正号。 沿着从光源 61的中心轴至两个侧边的方向, 即从中心轴至右侧边 的方向、 以及从中心轴至左侧边的方向, 光源 61产生的入射光线在自由曲面 64 上的入射角度与该入射光线在标准曲面 62上的入射角度的差值分别保持正号与 负号。
请参见图 11, 图 11是本发明的勾光元件另一实施例的光路图。 如图 11所 示, 本实施例中, 勾光元件包括一用于对光源 (图未示) 产生的入射光线整形 的自由曲面 82 (或 83 ), 该入射光线在与该光源 81的中心轴垂直的一平面上形 成第一光斑, 第一光斑的照度分布由中央向外减弱。 自由曲面 82 (或 83 ) 由位 于光源的中心轴方向的预定位置的一标准曲面 81变形获得。
本实施例与图 10 所示实施例的区别之处在于: 本实施例中, 自由曲面 82 (或 83 )的入射光线为平行光线, 标准曲面 81为可将入射光线汇聚于预定区域 的中心点的抛物面。
本实施例中,. 沿着从光源的中心轴至两个侧边的方向, 即从中心轴至右侧 边的方向、 以及从中心轴至左侧边的方向, 光源产生的入射光线在自由曲面 82 上的入射角度与该入射光线在标准曲面 81上的入射角度的差值分别保持负号与 正号。 沿着从光源的中心轴至两个侧边的方向, 即从中心轴至右侧边的方向、 以及从中心轴至左侧边的方向, 光源产生的入射光线在自由曲面 83上的入射角 度与该入射光线在标准曲面 81上的入射角度的差值分别保持正号与负号。 此外, 与图 5a、 图 6所示实施例相同, 图 9、 图 10所示实施例中的自由曲 面也可以采用图 8所示实施例的具体表现形式。 如图 8所示, 当图 8所示实施 例为图 9、 图 10所示实施例的具体表现形式时, 自由曲面 91上的点到点光源 O 的距离由以下公式通过数值方式求解获得:
Figure imgf000014_0001
其中, ^)为点光源 O产生的入射光线的光强分布, m为从点光源( 到自 由曲面 91上的点的单位向量, 为在 m方向上点光源 O到自由曲面 91上的 点的距离, 可用于表达自由曲面 91 , m。为选取的某一方向, P。为在 w。方向上点 光源到自由曲面 91上的点的距离, m、、^自由曲面 91的出射光线在预定区 域内的照度分布, "'为入射光线所在介质的折射率、 "2为自由曲面 91 的出射光 线所在介质的折射率, '表示曲面的第一基本型, d ': d l dt ti与 tj分别为曲面的参数方程中的两个参数。 当自由曲面 91为反射 面时, "1 =- "2。
图 9 所示实施例中已提到, 预定区域可以根据实际需求进行设置, 可以具 有多种。 优选地, 预定区域为预定矩形区域, 为自由曲面的出射光线在 该预定矩形区域内的均匀照度分布, 以适应目前显示领域中广泛使用的矩形显 示屏幕。 此时, 更优选地, 预定矩形区域与光源 O 的距离大于 10mm 且小于 500mm, 该预定矩形区域的长和宽均大于等于 lmm且小于等于 5mm。
此外, w。优选为点光源的中心轴方向, 以便于计算。 此时, P。优选大于等 于 2mm且小于等于 50 mm。
点光源 O产生的入射光线的光强分布可以有多种。 在本发明的一备选实施 例中, 点光源 光强分布可为椭圓高斯形的光强分布, 即 i(m) = IQ exp ,其中 /。为点光源 O的中心轴方向的光强,
Figure imgf000014_0002
((9, )为以点光源 0为原点且以点光源 O的中心轴方向为极轴的球坐标中的单位 向量 m对应的点的坐标, σ,为椭圓高斯的长轴与极轴所在的平面内光强降低到
/。的 exp (- 时的角度, 为椭圆高斯的短轴与极轴所在的平面内光强降低到 I。 的 exp(- 时的角度。 在本发明的另一备选实施例中, 点光源 O产生的入射光线 的光强分布为朗伯的光强分布, 即 /(m) = /。 cos(6>) , 其中 /。为点光源 O的中心轴 方向的光强, 0为单位向量 m与中心轴方向的夹角。
以下将列举本发明的光源系统的各种实现形式。
请参见图 12 , 图 12是本发明的光源系统的一个实施例的光路图。 如图 12 所示, 在本实施例中, 光源系统包括一光源 121、 包括透射曲面 122与透射曲面 124的匀光元件、 以及成像透镜 123。
光源 121具体为单个点光源 121,其产生的光线在与该光源 121的中心轴垂 直的平面上形成第一光斑, 第一光斑的照度分布由中央向外减弱。 具体地, 光 源 121 产生的光线的光强分布可以为椭圆高斯形的光强分布, 也可以为朗伯的 光强分布。
匀光元件为一透镜(未标示), 透射曲面 122和透射曲面 124为该透镜的两 个面。 透射曲面 124设置为与入射光方向垂直, 以不改变入射光方向, 而透射 曲面 122为图 5所示实施例中的自由曲面, 透射曲面 122的出射光线在预定立 体角内比入射光线具有更均勾的光强分布。
优选地, 光源 121照射在透射曲面 122上的光束经透射曲面 122整形, 其 光强在一个矩形立体角内均勾分布, 然后经过成像透镜 123, 光束在成像透镜 123的焦平面的预定矩形区域内形成均勾照度分布的第二光斑8。
请参见图 13, 图 13是本发明的光源系统的另一实施例的光路图。 如图 13 所示, 本实施例与图 12所示实施例的区别之处在于: 本实施例中.包括多个点光 源以及与该多个点光源分别对应的勾光元件, 每个勾光元件将对应的点光源的 光整形成在预定矩形立体角内光强均匀分布并落在同个成像透镜的不同位置上, 各个勾光元件的出射光在成像透镜的焦平面的相同位置上形成相同的矩形均匀 照度分布的第二光斑。
具体地, 本实施例包括 3个点光源 141、 142、 143 , 与该 3个点光源分别对 应的 3个匀光元件, 3个匀光元件分别包括透射曲面 148与 144、 透射曲面 149 与 145、 透射曲面 150与 146。 其中透射曲面 148、 149、 150设置为与入射光方 向垂直。 不同位置的透射曲面 144、 145、 146 的形状完全相同, 各透射曲面将 入射光整形成在预定矩形立体角内光强均勾分布的光束。 不同位置的透射曲面 144、 145、 146的出射光经过成像透镜 147, 在成像透镜 147焦平面的相同位置 上形成相同的矩形均勾照度分布的第二光斑。
请参见图 14 , 图 14是本发明的光源系统的另一实施例的光路图。 如图 14 所示, 本实施例包括光源 131、 勾光元件 132及成像透镜 133。 本实施例与图 12 所示实施例的区别之处在于: 本实施例中的匀光元件为一反射曲面 13.2 , 反射曲 面 132为图 6所示实施例中的自由曲面。
请参见图 15 , 图 15是本发明的光源系统的另一实施例的光路图。 本实施例 与图 14所示实施例的区别之处在于: 本实施例中包括多个点光源以及与该多个 点光源分别对应的匀光元件, 每个勾光元件将对应的点光源的光整形成在预定 矩形立体角内光强均勾分布并落在同个成像透镜的不同位置上, 各个匀光元件 的出射光在成像透镜的焦平面的相同位置上形成相同的矩形均匀照度分布的第 二光斑
具体地, 本实施例包括 3个点光源 151、 152、 153 , 与该 3个点光源分别对 应的 3个匀光元件, 3个匀光元件分别包括反射曲面 154、 155、 156。 不同位置 的反射曲面 154、 155、 156 的形状完全相同, 且朝向相同, 各自将入射光整形 成在预定矩形立体角内光强均匀分布的光束。 不同位置的反射曲面 154、 155、 156的出射光经过成像透镜 157, 在成像透镜 157焦平面的相同位置上形成相同 的矩形均匀照度分布的第二光斑。
请参见图 16, 图 16是本发明的光源系统的另一实施例的光路图。 如图 16 所示, 在本实施例中, 光源系统包括点光源 161、 162、 分别与点光源 161、 162 对应的反射曲面 163、 166 , 不同位置的反射曲面 163、 166的形状完全相同。 光 源系统进一步包括反射平面 164、 165以及成像透镜 167 。 反射曲面 163和 166 分别对点光源 161、 162产生的光进行整形, 反射平面 164和 165分别反射曲面 163和 166的出射光进行光路折叠。 反射平面 164、 165的出射光经过成像透镜 167, 在成像透镜 167.的焦平面的相同位置上形成相同的矩形均匀照度分布的第 二光斑。 其中, 反射曲面 163、 166为图 6所示实施例中的自由曲面。
本实施例中, 点光源 161、 162的朝向一致, 因而具有便于安装的优点。 并 且, 两个反射曲面 163和 166相向设置,反射平面与对应的反射曲面相向设置, 两个相邻反射平面 164、 165无缝拼接, 使得反射平面 164、 165 的出射光有一 部分重叠或仅有较小的间隔, 从而使光源系统更加紧凑, 并提高成像透镜 167 的利用率。
此外, 还可设置多套光源、 反射曲面及反射平面并使该多套沿垂直于如图 16所示的截面方向进行排列, 以提高光源系统的光功率密度。
请参见图 17, 图 17是本发明的光源系统的另一实施例的光路图。 如图 17 所示, 在本实施例中, 光源系统包括点光源 171、 172、 分别与点光源 171、 172 对应的反射曲面 173、 174、 以及成像透镜 175 。 本实施例与图 16所示实施例 的区别之处在于: 本实施例中的点光源 171、 172相向设置, 反射曲面 173、 174 相互背向设置并无缝拼接, 使得反射曲面 173、 174的出射光有一部分重叠或仅 有较小的间隔, 从而使光源系统更加紧凑, 并提高成像透镜 167的利用率。
此外, 还可设置多套光源与反射曲面并使该多套沿垂直于如图 17所示的截 面方向进行排列, 以提高光源系统的光功率密度。
请参见图 18 , 图 18是本发明的光源系统的另一实施例的光路图。 如图 18 所示, 在本实施例中, 光源系统包括多个点光源 211、 212、 213 , 分别与多个点 光源 211、 212、 213对应的多个反射曲面 214、 215、 216, 以及分别与多个反射 曲面 214、 215、 216对应的反射平面 217、 218、 219。 反射曲面 214、 215、 216 均为图 6所示实施例中的自由曲面。点光源 211、 212、 213 ,反射曲面 214、 215、 216以及反†平面 217、 218、 219均朝向一致, 因而具有便于安装的优点。 反射 曲面 214、 215、 216的出射光线分别经反射平面 217、 218、 219改变光线方向 从而向上传 ·, 这样每个反射曲面 214、 215、 216 的出射光不受彼此遮挡, 可 以方便地制作成二维的阵列。
请参见图 19, 图 19是本发明的光源系统的另一实施例的光路图。 如图 19 所示, 本实施例在图 18所示实施例的基础上, 再加上按一定梯度排列的反射平 面 227、 228 , 以压缩光源系统的出射光束的尺寸。
请参见图 20-21, 图 20-21是本发明的光源系统的另一实施例的光路图。 其 中图 20为侧视图, 图 21为俯视图, 如图 20-21所示, 多个反射曲面 237、 238、 238,、 239、 241、 241 '、 242、 243、 243,相同, 其出射光线都在预定矩形立体角 内具有均匀光强分布, 各反射曲面的出射光线在成像透镜 231 的焦平面的相同 位置上形成相同的矩形均勾照度分布的第二光斑。 反射曲面 237、 238、 238,、 239、 241、 241 '、 242、 243 > 243,在侧视图和俯视图中均按一定梯度或交错排列, 从而在两个维度上均压缩光源系统出射光束的尺寸。 同时, 由于交错排列, 点 光源之间的距离增大, 有利于散热。 侧视图中, 虛线与实线分别表示在不同平 面内的反射曲面和光源。其中,反射曲面 237、 238、 238,、 239、 241、 241 '、 242、 243 > 243'为图 6所示实施例中的自由曲面。
请参见图 22 , 图 22 是本发明的光源系统的另一实施例的光路图。 如图 22 所示, 在本实施例中, 光源(图未示)提供准直光束, 多个反射曲面 201、 202、 203均为图 7所示实施例中的自由曲面, 且形状相同。 反射曲面 201、 202、 203 的出射光经一成像透镜 204,并在成像透镜 204焦平面的相同位置上形成相同的 矩形均 照度分布的第二光斑。 优选地, 反射曲面 201、 202、 203 按一定梯度 排列, 以使光源系统的出射光束具有较小的尺寸。
. 请参见图 23 , 图 23 是本发明的光源系统的另一实施例的光路图。 如图 23 所示, 在本实施例中, 光源系统包括点光源 91 , 由透射曲面 92和透射曲面 93 组成的勾光元件, 点光源 91 产生的光线直接出射到透射曲面 93上。 勾光元件 为一透镜(未标示), 透射曲面 92和透射曲面 93为该透镜的两个面, 透射曲面 93设置为与入射光方向垂直, 因此不改变光线的方向, 透射曲面 92为图 9所示 实施例中的自由曲面。 光源 91照射在勾光元件上的光束经透射曲面 92整形, 在目标平面的预定矩形区域内形成均匀照度分布的第二光斑 S。
请参见图 24, 图 24是本发明的光源系统的另一实施例的光路图。 如图 24 所示, 本实施例的光源系统包括点光源 101 与反射曲面 102 , 反射曲面为图 10 所示实施例中的自由曲面。 本实施例与图 23所示实施例的区别之处在于: 本实 施例中的勾光元件为反射曲面 102。
请参见图 25 , 图 25是本发明的光源系统的另一实施例的光路图。 如图 25 所示, 在本实施例中, 光源系统包括多个按阵列排列的点光源 111、_ 112、 113 , 以及分别与点光源 1 1 1、 112、 1 13对应的多个匀光元件。多个匀光元件均为.透镜, 每个透镜分别由透射曲面 114与 117、透射曲面 115与 1 18、透射曲面 116与 119 组成。 透射曲面 117、 118、 119分别接收对应点光源产生的光, 并设置为与入射 光方向垂直, 因而不改变入射光方向。 透射曲面 114、 115、 116均为图 9所示实 施例中的自由曲面。 备点光源照射在对应的勾光元件上的光束分别经透射曲面 1 14、 1 15、 1 16整形, 不同位置的透射曲面 1 14、 1 15、 116形状不同, 以使透射 曲面 1 14、 1 15、 116的出射光在目标平面的相同位置上形成相同的矩形均匀照度 分布的第二光斑。
请参见图 26, 图 26是本发明的光源系统的另一实施例的光路图。 如图 26 所示, 在本实施例中, 光源系统包括多个点光源 181、 182、 183 , 以及反射曲面 184, 该反射曲面 184为图 11 所示实施例中的自由曲面。 光源系统进一步包括 分别与多个点光源 181、 182、 183对应的多个准直元件 185、 186、 187。 多个点 光源 181、 182、 183发出的光分别经过准直元件 185、 186、 187后, 出射为多 束平行光。 各束平行光经反射曲面 184 整形并在目标平面上共同组成矩形均匀 照度分布的第二光斑。
在本实施例中, 当点光源的光分布为椭圆高斯分布时, 被反射曲面 184 反 射后的光路可以与点光源光分布形成的椭圓的长轴或短轴在同一个平面内。 优 选地, 反射曲面 184 反射后的光路与椭圓的短轴在同一个平面内, 此时由于反 射曲面 184 在这个平面内的入射光发散角较小, 其出射光与入射光更容易相分 离。
请参见图 27, 图 27是本发明的光源系统的另一实施例的光路图。 如图 27 所示, 光源系统包括提供多束准直光束的光源、 以及分别与多束准直光束对应 的多个不同的反射曲面 191、 192、 193。 其中, 反射曲面 191、 192、 193均为图 1 1 所示实施例中的自由曲面。 各反射曲面分别在目标平面的同一位置上形成相 同的矩形均匀照度分布的光斑, 各光斑相互叠加。 反射曲面 191、 192、 193 按 一定梯度排列, 从而使得光源系统的出射光束具有较小的尺寸。
请参见图 28 , 图 28是本发明的光源系统的另一实施例的光路图。 如图 28 所示, 在本实施例中, 光源系统包括点光源 251 与透镜 252。 透镜 252 由曲面 254与曲面 253组成, 光源 251产生的光朝向曲面 253出 †。 曲面 254可以为任 意面, 曲面 253 可以为上述的具有光线整形功能的透射曲面中的任何一个, 例 如图 5或图 9所示实施例中的自由曲面。
请参见图 29, 图 29是本发明的光源系统的另一实施例的光路图。 如图 29 所示, 在本实施例中, 光源系统包括点光源 261 与透镜 262。 透镜 262 由曲面 263、 264组成, 曲面 263设置为与入射光方向垂直, 因而不改变入射光方向, 而曲面 264可以为上述的具有光线整形功能的透射曲面中的任何一个,例如图 5 或图 9所示实施例中的自由曲面。 点光源 261位于透镜 262的外部, 点光源产 生的光朝向曲面 263出射, 再经曲面 264整形。
请参见图 30, 图 30是本发明的光源系统的另一实施例的光路图。 如图 30 所示, 在本实施例中, 光源系统包括点光源 271 与透镜 272。 透镜 272 由曲面 273、 274组成, 曲面 273可以为上述的具有光线整形功能的透射曲面中的任何 一个, 例如图 5或图 9所示实施例中的自由曲面, 而曲面 273设置为与入射光 方向垂直, 因而不改变入射光方向。 点光源 271位于透镜 272的外部, 点光源 产生的光朝向曲面 273出射并被曲面 273整形, 被整形的光再透射曲面 274。 这 样, 整个透镜 272的输出光分布实际上为曲面 273的输出光分布。
综上所述, 本发明中, 自由曲面通过在标准曲面的基础上, 采用上述技术 方案中的变形规律进行变形得到, 该自由曲面能够将第一光斑的照度分布由中 央向外减弱的入射光线整形成具有更均匀的光强或照度分布。 相对于现有技术, 本发明的自由曲面无需多个微透镜组成, 因而可避免上述串扰等造成的光利用 率降低的问题, 具有结构简单, 光利用率高的优点。 以上仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明 说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其他 相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1.一种勾光元件, 用于对光源产生的入射光线整形, 该入射光线在与该光 源的中心轴垂直的平面上形成第一光斑, 第一光斑的照度分布由中央向外减弱, 其特征在于, 所述句光元件包括一自由曲面, 该自由曲面由位于所述光源的中 心轴方向的预定位置的一标准曲面变形获得, 该标准曲面为可对所述入射光线 整形为平行光的曲面;
除所述中心轴方向外, 沿着从该中心轴至中心轴的侧向的方向, 所述入射
入射角度的差值的绝对值单调递增, 且该入射光线在自由曲面上的入射角度与 该入射光线在标准曲面上的入射角度的差值的绝对值的变化率递减, 以使自由 曲面的出射光线在预定立体角内比所述入射光线具有更均勾的光强分布。
2. 根据权利要求 1所述的匀光元件, 其特征在于, 所述自由曲面的入射光 线由点光源直接产生, 所述自由曲面和标准曲面均为透射曲面, 所述标准曲面 为可对所述入射光线整形为平行光的椭圓面。
3. 根据权利要求 1所述的勾光元件, 其特征在于, 所述自由曲面的入射光 线由点光源直接产生, 所述自由曲面和标准曲面均为反射曲面, 所述标准曲面 为可对所述入射光线整形为平行光的抛物面。
4. 根据权利要求 1所述的匀光元件, 其特征在于, 所述自由曲面的入射光 线为平行光线, 所述自由曲面为反射曲面, 所述标准曲面为反射平面。
5. 根据权利要求 2或 3所述的匀光元件, 其特征在于, 所述自由曲面上的 点到所述点光源的距离由以下公式通过数值方式求解获得:
Figure imgf000021_0001
其中, w)为所述点光源产生的入射光线的光强分布, m 为从所述点光源 到自由曲面上的点的单位向量, 为在 m方向上所述点光源到自由曲面上的 点的距离, w。为选取的某一方向, P。为在 w。方向上所述点光源到自由曲面上的 点的距离, 为所述自由曲面的出射光线在所述预定立体角内的光强分布, 为所述入射光线所在介质的折射率、 "2为所述自由曲面的出射光线所在介质的 折射率, e = 表示曲面的第一基本型,
与 tj分别为曲面的参数方程中的两个参数。
6. 根据权利要求 5所述的勾光元件, 其特征在于, 所述预定立体角为预定 矩形立体角。
7. 根据权利要求 6所述的匀光元件, 其特征在于, 所述预定矩形立体角的 大角和小角均大于等于 0.01度且小于等于 3度。
8. 根据权利要求 5所述的匀光元件, 其特征在于, w。为所述点光源的中心 轴方向, 且;0。大于等于 2mm且小于等于 50 mm。
9. 根据权利要求 5所述的匀光元件, 其特征在于, 所述点光源产生的入射 光 线 的 光 圓 高 斯 形 的 光 强 分 布 , 即 i(m) = I0 exp , 其中 /。为所述点光源的中心轴方向的光
Figure imgf000022_0001
强, 为以所述点光源为原点且以所述点光源的中心轴方向为极轴的球坐标 中的所述单位向量 m对应的点的坐标, 为椭圆高斯的长轴与极轴所在的平面 内光强降低到 /。的 exp (-丄)时的角度, 为椭圆高斯的短轴与极轴所在的平面内 光强降低到 /。的 exp(- )时的角度。
10. 根据权利要求 5所述的匀光元件, 其特征在于, 所述点光源产生的入射 光线的光强分布为朗伯的光强分布, 即 ( ) = /Q cos(6>) , 其中 /。为所述点光源的 中心轴方向的光强, 6>为所述单位向量 m与该中心轴方向的夹角。
11.一种勾光元件, 用于对光源产生的入射光线整形, 该入射光线在与该光 源的中心轴垂直的平面上形成第一光斑, 第一光斑的照度分布由中央向外减弱, 其特征在于, 所述勾光元件包括一自由曲面, 该自由曲面由位于所述光源的中 心轴方向的预定位置的一标准曲面变形获得, 该标准曲面为可将入射光线汇聚 于预定区域的中心点的曲面;
除所述中心轴方向外, 沿着从该中心轴至中心轴的側向的方向, 所述入射
入射角度的差值的绝对值单调递增, 且该入射光线在自由曲面上的入射角度与 该入射光线在标准曲面上的入射角度的差值的绝对值的变化率递减, 以使自由
12. 根据权利要求 11所述的匀光元件, 其特征在于, 所述自由曲面的入射 光线由点光源直接产生, 所述自由曲面和标准曲面均为透射曲面或反射曲面, 所述标准曲面为可将入射光线汇聚于预定区域的中心点的椭圆面。
13. 根据权利要求 1 1 所述的匀光元件, 其特征在于, 所述自由曲面的入射 光线为平行光线, 所述自由曲面和标准曲面均为反射曲面, 所述标准曲面为可 将入射光线汇聚于预定区域的中心点的抛物面。
14. 根据权利要求 12所述的匀光元件, 其特征在于, 所述自由曲面上的点 到所述点光源的距离由以下公式通过数值方式求解获得:
Figure imgf000023_0001
其中, )为所述点光源产生的入射光线的光强分布, m 为从所述点光源 到自由曲面上的点的单位向量, 为在 m方向上所述点光源到自由曲面上的 点的距离, w。为选取的某一方向, P。为在 w。方向上所述点光源到自由曲面上的 点的距离, 为所述自由曲面的出射光线在所述预定区域内的照度分布, 为所述入射光线所在介质的折射率、 "2为所述自由曲面的出射光线所在介质的 折射率, ^ ^ 表示曲面的第一基本型, e = ( )—' , 5i = d l dt' , W = e md^ t. 与 tj分别为曲面的参数方程中的两个参数。
15. 根据权利要求 14所述的匀光元件, 其特征在于, 所述预定区域为预定 矩形区域。
16. 根据权利要求 15所述的匀光元件, 其特征在于, 所述预定矩形区域与 所述点光源的距离大于 10mm且小于 500mm, 所述预定矩形区域的长和宽均大 于等于 lmm且小于等于 5mm„
17. 根据权利要求 14所述的匀光元件, 其特征在于, 所述点光源产生的入 射 光 线 的 光 强 分 布 为 椭 圓 高 斯 形 的 光 强 分 布 , 即 其中 /。为所述点光源的中心轴方向的光
Figure imgf000024_0001
强, φ,φ 为以所述点光源为原点且以所述点光源的中心轴方向为极轴的球坐标 中的所述单位向量 m对应的点的坐标, 为椭圆高斯的长轴与极轴所在的平面 内光强降低到 /。的 exp(- )时的角度, 为椭圆高斯的短轴与极轴所在的平面内 光强降低到 /。的 exp(- )时的角度。
18. 根据权利要求 14所述的匀光元件, 其特征在于, 所述点光源产生的入 射光线的光强分布为朗伯的光强分布, 即 z'( ) = /。cos(0), 其中 /。为所述点光源 的中心轴方向的光强, Θ为所述单位向量 m与该中心轴方向的夹角。
19. 根据权利要求 14所述的匀光元件, 其特征在于, 。为所述点光源的中 心轴方向, 且 。大于等于 2mm且小于等于 50 mm。
20.一种光源系统, 其特征在于, 所述光源系统包括权利要求 1至 19中任 一项所述的勾光元件。
PCT/CN2012/080717 2011-12-31 2012-08-29 匀光元件及光源系统 WO2013097479A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110459896.6A CN103185286B (zh) 2011-12-31 2011-12-31 匀光元件及光源系统
CN201110459896.6 2011-12-31

Publications (1)

Publication Number Publication Date
WO2013097479A1 true WO2013097479A1 (zh) 2013-07-04

Family

ID=48676612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080717 WO2013097479A1 (zh) 2011-12-31 2012-08-29 匀光元件及光源系统

Country Status (2)

Country Link
CN (2) CN105182546B (zh)
WO (1) WO2013097479A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119884A (zh) * 2017-06-23 2019-01-01 友嘉科技股份有限公司 半导体激光的封装结构
US10837619B2 (en) 2018-03-20 2020-11-17 Ledengin, Inc. Optical system for multi-emitter LED-based lighting devices
TWI705239B (zh) * 2019-07-19 2020-09-21 緯創資通股份有限公司 檢測光源模組與檢測裝置
CN113419409B (zh) * 2021-07-16 2022-09-20 中国科学院长春光学精密机械与物理研究所 一种自由曲面控制的方法及装置
CN114979820A (zh) * 2022-04-15 2022-08-30 深圳市安卫普科技有限公司 一种智能抄表装置、远程抄表方法及系统
CN115586593A (zh) * 2022-12-09 2023-01-10 北京灵犀微光科技有限公司 透镜及照明系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226558A (ja) * 2007-03-09 2008-09-25 Ichikoh Ind Ltd 車両用灯具
CN201269438Y (zh) * 2008-08-15 2009-07-08 杨毅博 Led照明光学系统及其灯具
US20100014295A1 (en) * 2008-06-30 2010-01-21 E-Pin Optical Industry Co., Ltd. Aspherical led angular lens for narrow distribution patterns and led assembly using the same
CN101639198A (zh) * 2009-08-24 2010-02-03 深圳市九拓光电有限公司 一种发光二极管透镜
CN101761868A (zh) * 2009-09-30 2010-06-30 海洋王照明科技股份有限公司 一种配光透镜及其led灯具
CN201521855U (zh) * 2009-11-10 2010-07-07 上海半导体照明工程技术研究中心 Led台灯照明光学系统
CN101832510A (zh) * 2010-05-19 2010-09-15 海洋王照明科技股份有限公司 泛光灯反射器、泛光灯及机动船
CN101858562A (zh) * 2010-04-16 2010-10-13 海洋王照明科技股份有限公司 近光灯反射器、近光灯及机动车
CN101915391A (zh) * 2010-08-10 2010-12-15 深圳万润科技股份有限公司 一种偏光led配光透镜及led路灯

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596865A3 (en) * 1990-12-17 1994-06-15 Stanley Electric Co Ltd Light irradiating apparatus having light emitting diode used as light source
CN101424752A (zh) * 2007-10-31 2009-05-06 富士迈半导体精密工业(上海)有限公司 光学透镜及光源模组
TWI376562B (en) * 2008-06-04 2012-11-11 Delta Electronics Inc Light transformation apparatus and light source apparatus comprising the same
CN201401722Y (zh) * 2009-03-12 2010-02-10 华南理工大学 一种led格栅灯及其使用的透镜
CN201487818U (zh) * 2009-09-04 2010-05-26 宁波安迪光电科技有限公司 二次光学透镜
CN202048400U (zh) * 2010-12-30 2011-11-23 上海无线电设备研究所 一种大功率led面光灯
CN202469879U (zh) * 2011-12-31 2012-10-03 广东德豪润达电气股份有限公司 一种灯壳及led灯具

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226558A (ja) * 2007-03-09 2008-09-25 Ichikoh Ind Ltd 車両用灯具
US20100014295A1 (en) * 2008-06-30 2010-01-21 E-Pin Optical Industry Co., Ltd. Aspherical led angular lens for narrow distribution patterns and led assembly using the same
CN201269438Y (zh) * 2008-08-15 2009-07-08 杨毅博 Led照明光学系统及其灯具
CN101639198A (zh) * 2009-08-24 2010-02-03 深圳市九拓光电有限公司 一种发光二极管透镜
CN101761868A (zh) * 2009-09-30 2010-06-30 海洋王照明科技股份有限公司 一种配光透镜及其led灯具
CN201521855U (zh) * 2009-11-10 2010-07-07 上海半导体照明工程技术研究中心 Led台灯照明光学系统
CN101858562A (zh) * 2010-04-16 2010-10-13 海洋王照明科技股份有限公司 近光灯反射器、近光灯及机动车
CN101832510A (zh) * 2010-05-19 2010-09-15 海洋王照明科技股份有限公司 泛光灯反射器、泛光灯及机动船
CN101915391A (zh) * 2010-08-10 2010-12-15 深圳万润科技股份有限公司 一种偏光led配光透镜及led路灯

Also Published As

Publication number Publication date
CN105182546A (zh) 2015-12-23
CN105182546B (zh) 2018-06-15
CN103185286B (zh) 2015-09-09
CN103185286A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
US20210389653A1 (en) Laser light source, wavelength conversion light source, light combining light source, and projection system
JP6671377B2 (ja) コリメータ及び小型レンズアレイを有する光学デバイス
WO2013097479A1 (zh) 匀光元件及光源系统
JP2016534513A (ja) 均一な照明を生成する光学系
WO2014117703A1 (zh) 激光光源、波长转换光源、合光光源和投影显示装置
JP2015501508A (ja) 光源システムおよびレーザ光源
US10437072B2 (en) Line beam forming device
US11460611B2 (en) Matrix optical system, light concentrating system, and compound eye lens
TW201541672A (zh) 光源模組
TW200925511A (en) TIR collimator with improved uniformity
CN111029906B (zh) 一种激光器的矫正系统、光源系统及投影装置
WO2021078290A1 (zh) 光源系统
TWI547667B (zh) 發光模組及發光裝置
TWI486700B (zh) 光源及其應用的投影系統
CN108152986A (zh) 一种激光准直透镜组
CN204028462U (zh) 激光单元及激光系统
TWI572952B (zh) 發光二極體元件及應用該發光二極體元件的背光模組
TWI270628B (en) Illumination device and assembly structure thereof
TWI491833B (zh) 車用照明裝置
JP3169586U (ja) 集光レンズモジュール
TWI721433B (zh) 發光裝置以及具有此發光裝置的曝光設備
TWI567330B (zh) 光學模組
JP3175090U (ja) レンズの配光制御構造
CN114280801A (zh) 基于自由曲面的均匀照明系统及其设计方法
WO2013082794A1 (zh) 光源及其应用的投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12863668

Country of ref document: EP

Kind code of ref document: A1