WO2013082794A1 - 光源及其应用的投影系统 - Google Patents

光源及其应用的投影系统 Download PDF

Info

Publication number
WO2013082794A1
WO2013082794A1 PCT/CN2011/083729 CN2011083729W WO2013082794A1 WO 2013082794 A1 WO2013082794 A1 WO 2013082794A1 CN 2011083729 W CN2011083729 W CN 2011083729W WO 2013082794 A1 WO2013082794 A1 WO 2013082794A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
solid
array
wavelength conversion
Prior art date
Application number
PCT/CN2011/083729
Other languages
English (en)
French (fr)
Inventor
李屹
杨毅
詹胜雄
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to PCT/CN2011/083729 priority Critical patent/WO2013082794A1/zh
Publication of WO2013082794A1 publication Critical patent/WO2013082794A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to the field of projection technology, and more particularly to a projection system for a light source and its application. Background technique
  • Solid state light emitting devices such as solid state semiconductor light emitting devices, especially light emitting diodes
  • FIG. 1 is a schematic structural view of a projector light source in the prior art.
  • the projector light source includes: a solid-state light source array 1, a collimating lens array 2, a focusing lens 3, a wavelength converting device 4 carrying a wavelength converting material, a collecting lens 5, and a square bar 6.
  • the fixed light source array 1 emits excitation light
  • the collimator lens array 2 collimates the excitation light from the solid-state light source array 1 into near-parallel light, which is further concentrated by the focusing lens 3 to the wavelength conversion material on the wavelength conversion device 4.
  • a projected spot as represented by J is formed.
  • the wavelength converting material 4 absorbs the excitation light to generate excited light, which is collected by the collecting lens 5 and then incident on the square bar 6.
  • the square bar 6 combines and shapes the incident spot to obtain an exit spot of a specific shape as a projection spot.
  • the spot shape of the prior art solid state light source array is uncontrollable, generally circular or elliptical.
  • the output light spot of the projector source is preferably a rectangle of the same ratio.
  • the circular or elliptical incident spot is usually shaped into the rectangular exit spot by the square bar.
  • Figure 2 is the square bar of Figure 1.
  • FIG. 3 is a schematic diagram showing the relationship between the light conversion efficiency of the experimentally measured phosphor and the power density of the excitation light. As shown in Fig. 3, as the optical power density increases, the light conversion efficiency of the phosphor decreases significantly.
  • Embodiments of the present invention provide a light source and a projection system therefor, which can reduce optical power density on a wavelength conversion material.
  • An embodiment of the present invention provides a light source, including:
  • the solid state light source array is composed of a plurality of solid state light emitting devices for emitting excitation light; and a wavelength conversion device carrying a wavelength conversion material for absorbing excitation light and generating excited light;
  • the shaping device is located between the solid-state light source array and the color wheel, and is used for shaping the excitation light emitted by the solid-state light source array, so that the light spot emitted from the excitation light emitted by the solid-state light source array onto the wavelength conversion material has a specific shape.
  • Embodiments of the present invention also provide a projection system including the above light source.
  • the embodiments of the present invention include the following beneficial effects:
  • the shape of the unshaped excitation light spot projected onto the wavelength conversion material needs to be inscribed in a shape matching the display area; in the embodiment of the present invention, since the excitation light is projected to Before the wavelength conversion material, the excitation light is shaped into a specific shape, so that the shape of the spot projected onto the wavelength conversion material can be closer to or even equal to
  • the shape matching the display area is larger than the area of the spot in the prior art which can only be inscribed in the shape matching the display area, so that the optical power density is lower under the same optical power, and the wavelength conversion is improved.
  • the light conversion efficiency of the material extends the life of the wavelength conversion device.
  • FIG. 1 is a schematic structural view of a projector light source in the prior art
  • FIG. 2 is a schematic view showing the relationship between the incident spot of the square bar 6 and the exit spot of FIG. 1;
  • FIG. 3 is a schematic diagram showing the relationship between the optical conversion efficiency of the experimentally measured phosphor and the power density of the excitation light;
  • FIG. 4 is a schematic structural view of an embodiment of a light source according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention
  • FIG. 7 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention
  • FIG. 8 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention
  • FIG. 9 is another embodiment of a light source according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention
  • Figure 13 is a schematic cross-sectional view of the fixing device 242 of Figure 11 taken along line AA
  • Figure 14a is a schematic view of the spot when the defocusing is 0 in the embodiment shown in Figure 11;
  • Figure 14b is a schematic view of a light spot when the defocus is 0.2 mm in the embodiment shown in Figure 11;
  • Figure 15 is a schematic view showing another embodiment of the light source in the embodiment of the present invention;
  • Figure 16 is another embodiment of the light source in the embodiment of the present invention. Schematic diagram of the structure of the embodiment. detailed description
  • FIG. 4 is a schematic structural diagram of an embodiment of a light source according to an embodiment of the present invention.
  • the light source includes a solid state light source array 10, a shaping device 20, and a wavelength conversion device 30.
  • the solid state light source array 10 is composed of a plurality of solid state light emitting devices 11 for emitting excitation light.
  • the wavelength conversion device 30 carries the excitation light from the solid state light source array and is produced. A wavelength converting material that is excited by light.
  • the shaping device 20 is located between the solid-state light source array 10 and the wavelength conversion device 30, and is used for shaping the excitation light emitted by the solid-state light source array 10, and projecting the shaped excitation light onto the wavelength conversion device 30 to make the solid state
  • the spot of the excitation light emitted by the light source array 10 projected onto the wavelength converting material has a specific shape.
  • the solid state light emitting device 11 may be an LED or a laser diode, and the spot shape of the light from each of the solid state light emitting devices 11 may be circular or elliptical.
  • the wavelength converting material includes a phosphor, a luminescent dye or a nano luminescent material.
  • the specific shape in this embodiment is a shape of a predetermined area similar to the display area in the projection system, for example, a 4:3 aspect ratio and a rectangular shape having a predetermined area.
  • the shaping device may be a diffractive optical element, a compound eye lens pair, a square rod or the like, and is not limited herein.
  • an excitation light spot shape (elliptical shape as shown in FIG. 2) projected onto the wavelength conversion material into a shape matching the display area; Since the excitation light is shaped into a specific shape (a rectangle matching the display area as shown in FIG. 2) before being projected onto the wavelength conversion material, and then projected onto the wavelength conversion material, it is projected onto the wavelength conversion material.
  • the spot shape can be closer to or even equal to the shape matching the display area, so that the spot area of the shape that is best only inscribed in the matching with the display area is larger than in the prior art, so that the optical power is under the same optical power.
  • the lower density increases the light conversion efficiency of the wavelength conversion material and prolongs the service life of the wavelength conversion device.
  • FIG. 5 is a schematic structural diagram of another embodiment of a light source according to an embodiment of the present invention. As shown in FIG. 5, on the basis of the embodiment shown in FIG.
  • a hooking device 40 is added between the solid-state light source array 10 and the shaping device 20 for projecting excitation light onto the wavelength conversion material.
  • the excitation light is light-hooked to make the light distribution of the spot on which the excitation light is projected onto the wavelength conversion material more uniform, thereby reducing the optical power density at the center of the spot, thereby further improving the light conversion efficiency of the wavelength conversion material.
  • the light hooking device 40 can also be located.
  • the shaping device 20 and the wavelength conversion device 30; or the shaping device 20 may be integrally formed, that is, the shaping device 20 is combined into an element capable of performing a light-hooking process and a shaping process, such as a diffractive optical element, a fly-eye lens pair, and a square Awesome.
  • FIG. 6 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention.
  • the difference between the embodiment shown in Fig. 6 and the embodiment shown in Fig. 5 mainly includes: the shaping device and the light homogenizing device are combined into the diffractive optical element 21.
  • a Diffractive Optical Element is a special type of optical component, typically a computer-generated holographic device that illuminates light by controlling the shape, depth, and distribution of the microstructure of its surface, such as the order of wavelength of light. Diffraction occurs when the element is penetrated, resulting in a phase change of the wavefront.
  • the diffractive optical element generally includes a plurality of diffraction units.
  • each diffraction unit Since the shape and depth of each diffraction unit are different, by selecting diffraction elements of different shapes and combinations thereof, the wavefronts generated by the respective diffraction units can be superimposed, thereby generating the required The spatial light intensity distribution of transmitted light.
  • U.S. Patent No. 7,251,412 B2 discloses a backlight module using DOE. DOE components of different designs can have different hooking and shaping effects.
  • the diffractive optical element 21 performs shaping processing and homogenizing processing on the excitation light emitted from the solid-state light source array 10, so that the light spot emitted from the excitation light emitted from the solid-state light source array 10 onto the wavelength conversion material has a specific shape and light distribution. Both are hooked.
  • the diffractive optical element 21 in this embodiment may include a plurality of diffractive units corresponding to the solid state light emitting device 11 (the diffractive unit may be one-to-one or one-to-one with the solid-state light-emitting device), and each diffractive unit has at least one solid-state illumination
  • the excitation light emitted by the device 11 is subjected to shaping processing and hook-up processing to obtain a sub-beam having a specific shape of the hook-out spot.
  • each sub-beam can be combined into a beam and projected onto the wavelength converting material, so that the combined spot of the beam projected onto the wavelength converting material has the specific shape described above.
  • the present embodiment can employ a diffractive optical element that shapes an incident spot of any shape into a rectangular shape and a uniform hook of a predetermined area having a specific shape of 4:3 aspect ratio.
  • an array of diffractive optical elements composed of a plurality of diffractive optical elements can be employed to appropriately reduce the cost of the light source of the present invention.
  • the diffractive optical element can be replaced by a pair of fly-eye lens pairs. Similar effect.
  • the fly-eye lens pair may include a plurality of lens unit pairs corresponding to the solid-state light-emitting device, each lens unit shaping and light-treating the excitation light emitted by the at least one solid-state light-emitting device to obtain a sub-beam having a specific shape of the exit spot. And combining the sub-beams into a beam and projecting onto the wavelength converting material, so that the combined spot of the beam projected onto the wavelength converting material has the specific shape described above.
  • the parameters (for example, the size) of the lens unit constituting the two-eye fly-eye lens may be the same or different, that is, the lens unit between the two-eye fly-eye lenses may have a corresponding relationship or a one-to-many correspondence.
  • the plurality of lens units in the first fly-eye lens can cut the incident light into a plurality of blocks, and then form a plurality of uniform hook beams having a specific shape through the action of the plurality of lens units in the second split-eye lens.
  • each sub-beam can be combined into a beam and projected onto the wavelength conversion material, so that the combined light beam is projected onto the wavelength conversion material. Hook and have the above specific shape. Since the singulation and the separate imaging are superimposed, the original light energy is redistributed, and the process of multiple image superpositions ensures the uniformity of the spot projected onto the material of the wavelength device.
  • FIG. 7 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention.
  • the light homogenizing device still includes the diffractive optical element 21, but unlike the embodiment shown in Fig. 7, in the present embodiment, the diffractive optical element 21 does not project the respective sub-beams onto the wavelength converting material. That is, the shaping device in this embodiment includes the diffractive optical element 21 and the light combining means 50a.
  • the diffractive optical element 21 includes a plurality of diffraction units corresponding to the light-emitting device, each of which diffracts the excitation light emitted by the at least one solid-state light-emitting device and performs a light-harvesting process to obtain a sub-beam having a specific shape of the hook-out spot.
  • the light combining means 50a combines the sub-beams emitted from the diffractive optical element into a single beam and projects it onto the wavelength converting material so that the combined spot of the beam projected onto the wavelength converting material is uniform and has a specific shape.
  • the light combining means 50a may be realized by a collecting lens, a collecting lens group or a Fresnel lens for collecting and projecting the respective sub-beams originating from the diffractive optical element 21 to the wavelength converting material.
  • this embodiment also adds a collimating lens array to the embodiment shown in FIG. 6.
  • Column 60 is located between solid state light source array 10 and diffractive optical element 21.
  • the collimating lens array 60 is composed of a plurality of collimating lenses 61 corresponding to the solid state light emitting device 11, each of which is aligned with a solid state light emitting device 11.
  • the collimating lens array 60 and the solid state light source array 10 are arranged in parallel with the diffractive optical element 21, and the near parallel light emitted by the collimating lens array 60 is perpendicular to the diffractive optical element 21 to excite the excitation light from the solid state light emitting device.
  • the near-parallel light is straight and projected onto the diffractive optical element 21 to match the specifications of the selected diffractive optical element.
  • the diffractive optical element of the embodiment shown in Fig. 7 can also be replaced with a pair of fly-eye lenses.
  • the light combining means 50a combines the light from each of the sub-beams emitted from the fly-eye lens into a beam of light and projects it onto the wavelength converting material.
  • FIG. 8 is a schematic structural view of another embodiment of a light source in an embodiment of the present invention. As shown in FIG. 8, the difference between this embodiment and the embodiment shown in FIG.
  • the collimating lens The array 60 is located between the solid-state light source array 10 and the square bar 22, and is arranged centripetally with the solid-state light source array 10 on an arc surface centered on the center of the incident end of the square bar 22; the light combining device 50a is an imaging lens or an imaging lens group. The uniform hook beam from the square rod is projected into the wavelength conversion material by imaging.
  • the collimating lens array 60 is composed of a plurality of collimating lenses 61 corresponding to the solid state light emitting device 11, and each of the collimating lenses 61 is aligned with a solid state light emitting device 11 to emit excitation light from the solid state light emitting device. Collimated into near parallel light and projected onto the incident end of the square bar 22. Also, due to the above-described centripetal arrangement, the excitation light from each of the solid-state light-emitting devices will be concentrated to the incident end of the square bar 22.
  • the function of the square bar 22 is to superimpose the incident light therein by continuous reflection, thereby forming a uniform light distribution at the exit, thereby achieving uniformization of the excitation light emitted from the solid-state light source array 10; and simultaneously forming the shape of the exit end of the counterpart bar 22 Control, the beam can be shaped, for example, the square end of the square rod 22 is made into a square having a predetermined area, and the shape of the outgoing beam of the square rod 22 is the square.
  • the shaping device further includes a light combining device 50a. The excitation light that is shaped and hooked by the square bar 22 is projected onto the wavelength conversion material through the light combining device 50a, so that the spot of the excitation light projected onto the wavelength conversion material is uniform.
  • the ratio of the entrance end dimension of the square rod 22 to the exit end dimension ranges from 1.5:1 to 4:1, and the rod 22 has a better hooking effect under such conditions.
  • the ratio of the incident end dimension of the square rod 22 to the exit end dimension is 2:1, and the optimized ratio of the incident end dimension of the square rod 22 to the length of the square rod 22 is 1:8, the square rod uniformizing effect is better.
  • the light collection efficiency of this embodiment can reach 90% or more.
  • the exit end of the square rod When the exit end of the square rod is large in size and exceeds the size of the exit spot limited by the light source of the present invention, or the light emitted from the exit end of the square rod has a large exit angle (for example, but not limited to, more than 30 degrees),
  • the beam is projected onto the wavelength converting material at an appropriate angle of incidence and spot size, and a uniform beam from the exit end of the square bar 22 can be imagewise projected onto the wavelength converting material by means of a light combining device 50a. It can be understood that, in this embodiment, by controlling the size of the exit end of the square bar 22 and the distance between the square bar 22 and the wavelength conversion device 30, the excitation light emitted from the square bar 22 can be directly projected to the wavelength conversion material.
  • the upper spot is hooked and has a specific shape.
  • the shaping device and the hooking device are combined into a square bar 22, and there is no need to have a light combining device 50a.
  • the square bar 22 shapes the excitation light emitted by the solid state light source array 10 and The light homogenizing process causes the spot of the excitation light emitted from the solid-state light source array 10 to be projected onto the wavelength conversion material to have a specific shape, so that the light combining device 50a in this embodiment can be omitted.
  • the solid-state light source array 10 and the collimating lens array 60 may be arranged as in the embodiment shown in Fig. 7, as long as the excitation light from the solid-state light source array 10 can be projected to the incident end of the square rod 22.
  • the collimating lens array 60 functions to collimate the excitation light from the solid state light emitting device into near parallel light (for example, but not limited to a light beam having a divergence angle of less than 15 degrees) to improve Light utilization.
  • the collimator lens array 60 can also be omitted.
  • FIG. 9 is a schematic structural diagram of another embodiment of a light source according to an embodiment of the present invention.
  • the light homogenizing device includes a square bar 22
  • the square bar 22 performs a light-clearing process on the excitation light emitted by the solid-state light source array 10
  • the shaping device includes the same.
  • the square rod 22 and the light combining device 50a, the square rod 22 and the light combining device 50a shape the excitation light emitted by the solid-state light source array 10, and the light spot emitted from the excitation light emitted from the solid-state light source array 10 onto the wavelength conversion material has Specific shape.
  • the difference between the examples includes: the size of the incident end of the square rod 22 is the same as the size of the exit end; the solid-state light source array 10 and the collimating lens array 60 are arranged as in the embodiment shown in FIG. 7; and also include a collimating lens
  • the light combining means 50b between the array 60 and the square bar converges the excitation light emitted from the collimator lens array 60 to the incident end of the square bar 22 by the light combining means 50b.
  • FIG. 10 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention.
  • the difference between the embodiment and the embodiment shown in FIG. 9 includes: the size of the incident end of the square bar 22 is smaller than the size of the exit end; the excitation light emitted by the square bar 22 is directly projected onto the wavelength conversion material. That is, there is no light combining device 50a between the square bar 22 and the wavelength conversion device 30.
  • the square rod 22 performs shaping processing and homogenizing treatment on the excitation light emitted from the solid-state light source array, so that the light spot emitted from the excitation light emitted from the solid-state light source array onto the wavelength conversion material has a specific shape.
  • the divergence angle of the outgoing light of the square bar 22 must be smaller than the angle of divergence of the incident light according to the principle of the optical expansion amount. Since the angle of the exiting light is relatively small, the outgoing light of the square rod 22 can be directly projected onto the wavelength converting material without causing excessive spot deformation.
  • the ratio of the size of the exit end of the square bar in this embodiment to the size of the incident end is in the range of 1.2:1 to 2:1. It can be understood that, similar to the embodiment shown in Fig. 8, the collimating lens array 60 and the light combining device 50b in this embodiment can be omitted.
  • FIG. 11 is a schematic structural diagram of another embodiment of a light source according to an embodiment of the present invention.
  • the present embodiment includes a solid-state light source array 10, a square rod array 23, a lens array 70, a light combining device 50a, and a wavelength conversion device 30.
  • the square rod array 23 is composed of a plurality of square rods corresponding to the solid state light emitting device 11, each of which rods the excitation light emitted from a solid state light emitting device 11 and is homogenized to obtain a sub beam having an exiting spot of a specific shape.
  • the lens array 70 includes a plurality of lenses corresponding to the square bars, each lens collecting the sub-beams emerging from the corresponding square bars and projecting them to the light combining means 50a.
  • the light combining means 50a combines the sub-beams emitted from the square bar array 23 into a single beam, and the spot which the combined beam is projected onto the wavelength converting material has a specific shape.
  • the light homogenizing device includes a plurality of squares corresponding to the solid state light emitting device 11 A square rod array 23 composed of rods, the shaping device comprises the square rod array 23 and the light combining device 50a, each square rod shaping and exciting the excitation light emitted by the at least one solid state light emitting device to obtain a specific shape
  • the sub-beams of the spot, the light combining means 50a combines the sub-beams emitted from the square bar array 23 into a single beam, so that the combined spot of the beam projected onto the wavelength converting material is uniform and has the above specific shape.
  • the lens array 70 can be omitted and the outgoing light of each of the bars can be directly projected to the light combining device 50a.
  • the incident end of each of the rods may also be an excitation light collected from two or more solid state light emitting devices.
  • At least one astigmatism sheet may be further disposed on the incident end of each of the rods for amplifying the divergence angle of the excitation light incident on the incident end of the square rod. In turn, the uniformity effect of the square rod is enhanced.
  • FIG. 12 is a schematic structural view of another embodiment of a light source according to an embodiment of the present invention
  • FIG. 13 is a cross-sectional view of the fixing device 242 of FIG. 12 taken along line A-A.
  • the light-shaping device in this embodiment includes a plurality of optical waveguides 241 corresponding to the solid-state light-emitting device 11, and each optical waveguide 241 is opposite.
  • the excitation light emitted by the at least one solid-state light-emitting device 11 is light-hooked;
  • the shaping device includes a fixing device 242 that fixedly arranges the outlets of the optical waveguides 241 to combine the outlets of all the optical waveguides into a specific shape;
  • Device 50a projects light from fixture 242 onto the wavelength converting material in an imagewise manner.
  • the present embodiment further includes a focus coupling lens array 80 formed by a focus coupling lens corresponding to each optical waveguide, instead of the collimating lens array 60 in the embodiment shown in FIG. 7, each focusing coupling lens is from at least one The light of the solid-state light-emitting device 11 is guided to the optical waveguide 241 corresponding to the lens.
  • the uniformity of light is achieved by the propagation in the optical waveguide 241, so that a uniform spot is obtained at the exit of the optical waveguide 241, and the shape of the spot is the same as the shape of the core of the optical waveguide 241. That is, each of the optical waveguides 241 performs shaping processing and hooking processing on the excitation light emitted from the at least one solid-state light-emitting device to obtain a sub-beam having a uniform exiting spot having the same cross-sectional shape as the core layer of the optical waveguide 241. As shown in FIG.
  • the fixing device 242 The outlets of the optical waveguides 241 are fixedly arranged to combine the outlets of all the optical waveguides 241 into a specific shape, and the light emitted from the fixing device 242 is projected onto the wavelength conversion material by the light combining means 50a, so that the excitation light emitted from the solid-state light source array 10 is emitted.
  • the spot projected onto the wavelength converting material has a particular shape.
  • the shape of the transverse interface of the core layer of the optical waveguide 241 in this embodiment is a rectangle or a regular polygon (such as a square or a regular hexagon), and the outer protective layer of the optical waveguide 241 is as small as possible so that each optical fiber is realized. Slot stitching is optimal.
  • the cross section of the core layer of the existing optical waveguide is the easiest to process in a circular shape.
  • the present embodiment can be performed as an example of an optical waveguide having a core diameter of 50 ⁇ m and a total diameter of 100 ⁇ m as shown in FIG. Arrange, assemble the approximate shape of the spot shape (eg, rectangle) required.
  • the light emitted from the fixing device 242 is projected onto the wavelength converting material by the light combining means 50a, which is particularly suitable when the combined size of the optical waveguide 241 is large and the cross-sectional area shown in Fig. 13 is large. It can be understood that when the optical waveguide 241 is combined in a small scale so that the area of the light beam emitted from the fixing device 242 is small, the light emitted from the fixing device 242 can be directly projected onto the wavelength converting material without the light combining means 50a.
  • Figure 14a is a schematic view of a spot when the defocus is 0 in the embodiment of Figure 12
  • Figure 14b is a schematic view of the spot when the defocus is 0.2 mm in the embodiment of Figure 12.
  • the half angle of the light emitted from the light wave is about 25 degrees
  • the light intensity distribution at the exit of each optical waveguide is as shown in FIG. 14a without using the light combining device 50a.
  • the light on the device 242 is fixed.
  • the exit of the waveguide is disposed at a distance (for example, 0.2 mm) from the wavelength converting material to achieve the purpose of defocusing into a uniform spot, such that the spot directly projected from the fixing device 242 onto the wavelength converting material will have a spot as shown in FIG. 14b.
  • the intensity distribution shows that the spot is a nearly rectangular spot.
  • the wavelength conversion device may be transmissive or reflective.
  • FIG. 15 is a schematic structural diagram of another embodiment of a light source according to an embodiment of the present invention. As shown in FIG. 15, the embodiment is different from the embodiment shown in FIG. 7 in that it further includes a light collecting device 90 on the side of the wavelength converting device 30 facing away from the light combining device 50a for collecting the wavelength converting material. The generated excited light, and the remaining excitation light that is not absorbed by the wavelength converting material.
  • the wavelength conversion device 30 is transmissive, that is, the excitation light is from the wavelength conversion device 30. The first side is incident, and the excited light is emitted from the second side of the wavelength conversion device 30.
  • Figure 16 is a block diagram showing another embodiment of a light source in an embodiment of the present invention.
  • the embodiment further includes an optical path separating device, such as a spectral filter 91, and the spectral filter 91 is located at the light combining device 50a and the wavelength. Between the conversion devices 30.
  • the spectral filter 91 transmits the excitation light and reflects the excited light generated by the wavelength conversion material.
  • the light L1 is the excitation light of the incident spectral filter
  • the light L2 is the excited light generated by the wavelength conversion material.
  • L1 and light L2 are on the same side of the wavelength conversion device 30.
  • the wavelength conversion device 30 is of a reflective type, i.e., the excitation light is incident from the first side of the wavelength conversion device 30, and the excitation light is also emitted from the first side of the wavelength conversion device.
  • the wavelength conversion device 30 is not limited to a fixed device, and the wavelength conversion device 30 can also be moved (rotated or moved) with respect to the excitation light to further protect the wavelength conversion by rotating the wavelength conversion material.
  • the wavelength conversion device 30 may further comprise at least two partitions having different wavelength converting materials, in which case the rotating illumination may also achieve the purpose of changing the color of the excited light emitted by the light source.
  • the embodiment of the invention further provides a projection system, which may include the light source described in the above embodiments.
  • a projection system which may include the light source described in the above embodiments.
  • Other components in the projection system other than the light source are well known and will not be described herein.
  • the shape of the spot projected onto the wavelength conversion material may be closer to or even equal to the shape matching the display area, thereby
  • the spot area which is only inscribed in the shape matching the display area is large, so that the optical power density is low under the same optical power condition, the light conversion efficiency of the wavelength conversion material is improved, and the wavelength is extended. The life of the conversion unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

提供了一种光源及其应用的投影系统,该光源包括固态光源阵列(10),由复数个固态发光器件(11)组成,用于发出激发光;波长转换装置(30),承载有吸收激发光并产生受激发光的波长转换材料;整形装置(20),位于固态光源阵列(10)与波长转换装置(30)之间,用于对激发光进行整形处理,使激发光投射到波长转换材料上的光斑具有特定形状。这种光源能够降低波长转换材料上的光功率密度,提高波长转换材料的光转换效率。

Description

光源及其应用的投影系统
技术械
本发明涉及投影技术领域, 特别是涉及一种光源及其应用的投影系 统。 背景技术
以固态发光器件, 例如固态半导体发光器件, 尤其是发光二极管
( LED, Light Emitting Diode ) 为光源的投影机已经得到越来越广泛的 使用。 顺应于对光源光输出功率的要求越来越高, 基于光波长转换的投 影机光源因其较强的实用性脱颖而出, 该方案将源自于一组固态光源的 高功率光投射到波长转换材料上来激发产生具有预定主波长的高功率 输出光。 请参阅图 1 , 图 1是现有技术中投影机光源的结构示意图。 如 图 1所示, 投影机光源包括: 固态光源阵列 1、 准直透镜阵列 2、 聚焦 透镜 3、 承载波长转换材料的波长转换装置 4、 收集透镜 5以及方棒 6。 固定光源阵列 1发出激发光, 准直透镜阵列 2把来自固态光源阵列 1的 激发光准直成近平行光, 该近平行光进一步通过聚焦透镜 3汇聚到波长 转换装置 4上的波长转换材料的某一点, 形成如 J所代表的投射光斑。 波长转换材料 4吸收激发光产生受激发光, 该受激发光经收集透镜 5收 集后入射到方棒 6, 方棒 6将入射光斑均勾化并整形得到特定形状的出 射光斑以作为投影光斑。 现有技术中的固态光源阵列的光斑形状不可控, 一般为圓形或橢圓 形。 对于一些特殊场合, 比如显示区域为长方形 (例如但不限于长宽比 4: 3 ) 的投影机应用领域, 投影机光源的输出光斑最好呈相同比例的长 方形。 事实上采用现有技术中的固定光源阵列时, 考虑到其光斑形状与 显示区域的形状不匹配的问题, 通常采用上述方棒将圓形或橢圓形的入 射光斑整形为上述长方形的出射光斑。 请参阅图 2, 图 2是图 1中方棒 6的入射光斑与出射光斑的形状关系的示意图。 如图 2所示, 中间的橢 圓代表方棒的入射光斑, 长方形代表方棒的出射光斑, 即与显示区域匹 配的投影机的投影光斑, 为了保证光利用效率的同时降低光功率密度, 势必要使橢圓光斑内接于长方形光斑。 请参阅图 3, 图 3是实验测量的荧光粉的光转化效率与激发光的功 率密度的关系示意图。 如图 3所示, 随着光功率密度的上升, 荧光粉的 光转化效率呈明显的下降。 通过对现有技术的研究, 本发明的发明人发 现: 由于固态光源往往采用大功率 LED, 甚至是具有高功率密度的激光 二极管, 或随着固态光源阵列规模的扩大, 汇聚到图 1所示 J点上的激 发光功率往往会过高而导致波长转换材料(例如荧光粉)温度上升, 从 而造成波长转换材料的光转换效率下降, 缩短波长转换装置的使用寿 命。 发明内容
本发明实施例提供一种光源及其应用的投影系统, 能够降低波长转 换材料上的光功率密度。
本发明实施例提供了一种光源, 包括:
固态光源阵列, 由复数个固态发光器件组成, 用于发出激发光; 波长转换装置, 承载有吸收激发光并产生受激发光的波长转换材 料;
整形装置, 位于固态光源阵列与色轮之间, 用于对该固态光源阵列 发出的激发光进行整形处理, 使固态光源阵列发出的激发光投射到波长 转换材料上的光斑具有特定形状。
本发明实施例还提供了一种投影系统, 包括上述光源。
与现有技术相比, 本发明实施例包括如下有益效果:
现有技术中为了降低光功率密度, 需要将投射到波长转换材料上的 未经整形的激发光光斑形状内接于与显示区域匹配的形状; 而本发明实 施例中, 由于在激发光投射到波长转换材料之前, 先将激发光整形为特 定形状, 因此投射到波长转换材料上的光斑形状可以更为接近甚至等于 与显示区域匹配的形状, 从而比现有技术中最好只能内接于与显示区域 匹配的形状的光斑面积更大, 使得在相同光功率的条件下光功率密度较 低, 提高了波长转换材料的光转换效率, 延长了波长转换装置的使用寿 命。 附图说明
图 1是现有技术中投影机光源的结构示意图;
图 2是图 1中方棒 6的入射光斑与出射光斑的形状关系的示意图; 图 3是实验测量的荧光粉的光转化效率与激发光的功率密度的关系 示意图;
图 4是本发明实施例中光源的一个实施例的结构示意图; 图 5是本发明实施例中光源的另一实施例的结构示意图; 图 6是本发明实施例中光源的另一实施例的结构示意图; 图 7是本发明实施例中光源的另一实施例的结构示意图; 图 8是本发明实施例中光源的另一实施例的结构示意图; 图 9是本发明实施例中光源的另一实施例的结构示意图; 图 10是本发明实施例中光源的另一实施例的结构示意图; 图 11是本发明实施例中光源的另一实施例的结构示意图; 图 12是本发明实施例中光源的另一实施例的结构示意图; 图 13是图 11中固定器件 242沿 A-A线的横截面示意图; 图 14a是图 11所示实施例中离焦为 0时的光斑示意图;
图 14b是图 11所示实施例中离焦为 0.2毫米时的光斑示意图; 图 15是本发明实施例中光源的另一实施例的结构示意图; 图 16是本发明实施例中光源的另一实施例的结构示意图。 具体实施方式
请参见图 4, 图 4是本发明实施例中光源的一个实施例的结构示意 图。 如图 4所示, 光源包括固态光源阵列 10、 整形装置 20以及波长转 换装置 30。 固态光源阵列 10由复数个固态发光器件 11组成, 用于发出 激发光。 波长转换装置 30承载有吸收来自固态光源阵列的激发光并产 生受激发光的波长转换材料。 整形装置 20位于固态光源阵列 10与波长 转换装置 30之间, 用于对该固态光源阵列 10发出的激发光进行整形处 理, 并将整形处理后的激发光投射到波长转换装置 30上, 使固态光源 阵列 10发出的激发光投射到波长转换材料上的光斑具有特定形状。
固态发光器件 11可以是 LED, 或是激光二极管, 来自各固态发光 器件 11 的光的光斑形状可以为圓形或橢圓形。 波长转换材料包括荧光 粉、 发光染料或纳米发光材料。 本实施例中的特定形状为与投影系统中 显示区域相似的预定面积的形状, 例如 4:3长宽比例且具预定面积的矩 形。 整形装置可以为衍射光学元件、 复眼透镜对、 方棒等整形元件, 此 处不进行限定。
现有技术中为了降低光功率密度, 需要将投射到波长转换材料未经 整形的激发光光斑形状(如图 2所示的橢圓形) 内接于与显示区域匹配 的形状; 而本实施例中, 由于在激发光投射到波长转换材料之前, 先将 激发光整形为特定形状(如图 2所示的与显示区域匹配的长方形), 再 投射到波长转换材料, 因此投射到波长转换材料上的光斑形状可以更为 接近甚至等于与显示区域匹配的形状, 从而比现有技术中最好只能内接 于与显示区域匹配的形状的光斑面积更大, 使得在相同光功率的条件下 光功率密度较低, 提高了波长转换材料的光转换效率, 延长了波长转换 装置的使用寿命。
当固态发光器件采用激光二极管时, 由于激光的发射角度 4艮小, 导 致其投射到波长转换材料上的光斑的光分布^艮不均勾, 光斑中心的光强 很强且远高于边缘光强, 使得光斑中心的光功率密度过高。 为解决光分 布不均的问题, 本发明实施例还提供光源的另一实施例。 请参阅图 5 , 图 5是本发明实施例中光源的另一实施例的结构示意图。 如图 5所示, 本实施例在图 4所示实施例的基础上, 增加了一勾光装置 40, 位于固态 光源阵列 10与整形装置 20之间, 用于在激发光投射到波长转换材料之 前, 对该激发光进行勾光处理, 使激发光投射到波长转换材料上的光斑 的光分布更加均匀, 降低了光斑中心的光功率密度, 从而进一步提高了 波长转换材料的光转换效率。 可以理解的是, 勾光装置 40也可以位于 整形装置 20与波长转换装置 30之间; 也可以与整形装置 20—体成型, 即与整形装置 20合为一能进行勾光处理与整形处理的元件, 如衍射光 学元件、 复眼透镜对、 方棒等。
请参阅图 6, 图 6是本发明实施例中光源的另一实施例的结构示意 图。 图 6所示实施例与图 5所示实施例的区别之处主要包括: 整形装置 与匀光装置合为衍射光学元件 21。 衍射光学元件 (DOE, Diffractive Optical Element ) 为一种特殊的光学元件, 一般是由计算机计算产生的 全息器件, 通过控制其表面的微结构 (例如光波长数量级) 的形状、 深 度和分布, 使光线在穿透该元件时发生衍射, 产生波面的相位变化。 衍 射光学元件通常包括复数个衍射单元, 由于每个衍射单元的形态和深度 不同, 通过选定不同形状的衍射单元及其组合, 可以使各衍射单元所产 生的波面相叠加, 进而产生所需要的透射光之空间光强分布。 例如, 美 国专利 US7,251,412B2公开过一种使用 DOE的背光源模块。 不同设计 的 DOE元件可以具有不同的勾光和整形效果。
在本实施例中, 衍射光学元件 21对固态光源阵列 10发出的激发光 进行整形处理和匀光处理, 使固态光源阵列 10发出的激发光投射到波 长转换材料上的光斑具有特定形状且光分布均勾。 本实施例中的衍射光 学元件 21可以包括与固态发光器件 11对应的复数个衍射单元(衍射单 元可以与固态发光器件一对一, 也可以一对多), 每一衍射单元对至少 一固态发光器件 11 发出的激发光进行整形处理和勾光处理得到具有特 定形状的均勾出射光斑的子光束。 通过设计各个衍射单元的微观形貌, 可以使各子光束组合为一束光束并投射到波长转换材料, 使组合得到的 该光束投射到波长转换材料上的光斑均勾且具有上述特定形状。 例如, 本实施例可以采用一种把任何形状的入射光斑整形成一个特定形状为 4:3长宽比例的具有预定面积的矩形且均勾的输出光斑的衍射光学元件。
此外, 当固态发光器件在固态光源阵列中分布较为疏散时, 可以采 用由复数个衍射光学元件组成的衍射光学元件阵列, 以适当降低本发明 光源的成本。
在本实施例中, 将衍射光学元件替换成一对复眼透镜对也可以起到 相似的效果。 复眼透镜对可以包括与固态发光器件对应的复数个透镜单 元对, 每一透镜单元对对至少一固态发光器件发出的激发光进行整形处 理和勾光处理得到具有特定形状的出射光斑的子光束, 并且将各子光束 组合为一束光束并投射到波长转换材料上, 使组合得到的该光束投射到 波长转换材料上的光斑均勾且具有上述特定形状。 构成两片复眼透镜的 透镜单元的参数(例如尺寸)可以一样, 也可以不一样, 也就是说, 该 两片复眼透镜间的透镜单元可以呈——对应的关系或一对多的对应关 系。 第一片复眼透镜中的复数个透镜单元可以将入射光切分成多块, 再 经过第二片复眼透镜中复数个透镜单元的作用形成多个具有特定形状 的均勾子光束。 通过设计第二片复眼透镜中各个透镜单元的参数(如曲 率), 可以使各子光束组合为一束光束并投射到波长转换材料, 使组合 得到的该光束投射到波长转换材料上的光斑均勾且具有上述特定形状。 由于经过切分和分别的成像后再叠加, 原本的光能量被重新分布, 而多 个像叠加的过程保证了投射到波长装置材料上的光斑的均匀性。
请参阅图 7 , 图 7是本发明实施例中光源的另一实施例的结构示意 图。 本实施例中, 匀光装置依然是包括衍射光学元件 21 , 但与图 7所示 实施例不同的是, 本实施例中, 衍射光学元件 21 不对各子光束进行组 投射到波长转换材料上。 也就是说, 本实施例中的整形装置包括衍射光 学元件 21与合光装置 50a。 衍射光学元件 21包括与发光器件对应的复 数个衍射单元, 每一衍射单元对至少一固态发光器件发出的激发光进行 整形处理和勾光处理得到具有特定形状的均勾出射光斑的子光束。 合光 装置 50a将衍射光学元件出射的各子光束组合为一束光束并投射到波长 转换材料, 使组合得到的该光束投射到波长转换材料上的光斑均匀且具 有特定形状。
本实施例中, 合光装置 50a可以由聚光透镜、 聚光透镜组或菲涅尔 透镜来实现, 用来将源自衍射光学元件 21 的各子光束汇聚并投射往波 长转换材料。
此外, 本实施例还在图 6所示实施例的基础上增加了一准直透镜阵 列 60, 位于固态光源阵列 10与衍射光学元件 21之间。 准直透镜阵列 60由与固态发光器件 11对应的复数个准直透镜 61组成,每一准直透镜 61对准一固态发光器件 11。 准直透镜阵列 60与固态光源阵列 10排布 呈平行于衍射光学元件 21 , 且该准直透镜阵列 60发出的近平行光垂直 于衍射光学元件 21 , 以将来自该固态发光器件的激发光准直成近平行光 并投射到衍射光学元件 21 , 匹配所选定的衍射光学元件之规格。
可以理解的是, 与图 6所示实施例相同, 图 7所示实施例中的衍射 光学元件也可以用复眼透镜对来代替。 合光装置 50a组合来自复眼透镜 对发出的各子光束光为一束光束, 并投射于波长转换材料上。
除了衍射光学元件与复眼透镜对之外, 还可以用方棒来实现对光的 整形与均勾化, 以下对此进行详细说明。 请参阅图 8, 图 8是本发明实 施例中光源的另一实施例的结构示意图。 如图 8所示, 本实施例与图 7 所示实施例的不同之处包括: 用方棒 22代替了衍射光学元件 21 , 且该 方棒的入射端的尺寸大于其出射端的尺寸; 准直透镜阵列 60位于固态 光源阵列 10与方棒 22之间, 与固态光源阵列 10向心排列在以方棒 22 的入射端的中心为圓心的弧面上; 合光装置 50a为成像透镜或成像透镜 组, 以成像方式把来自方棒的均勾光束投射往波长转换材料。
本实施例中, 准直透镜阵列 60由与固态发光器件 11对应的复数个 准直透镜 61组成, 每一准直透镜 61对准一固态发光器件 11 , 以将来自 该固态发光器件的激发光准直成近平行光并投射到方棒 22 的入射端。 并且, 由于上述向心排列, 来自各固态发光器件的激发光将聚集到方棒 22的入射端。方棒 22的作用是使入射光在其中通过不断的反射相叠加, 从而在出口形成均匀的光分布, 实现对固态光源阵列 10发出的激发光 进行匀光处理; 同时对方棒 22 出射端的形状进行控制, 则可对光束起 到整形的作用, 例如, 将方棒 22 出射端制成具有预定面积的正方形, 则方棒 22 的出射光束形状为该正方形。 本实施例中, 整形装置还包括 合光装置 50a, 经方棒 22整形及勾光的激发光经合光装置 50a投射到波 长转换材料上, 使该激发光投射到波长转换材料上的光斑均匀且具有特 定形状。 优选地, 方棒 22的入射端尺寸与出射端尺寸的比例范围为 1.5:1 ~ 4:1 , 在这种条件下方棒 22具有较好的勾光效果。 尤其是当方棒 22的入 射端尺寸与出射端尺寸的比例为 2:1 ,且方棒 22的入射端尺寸与方棒 22 长度的优化比值为 1:8时方棒匀光效果更佳。以正方形出射光斑为例(即 方棒的出射端形状为正方形), 本实施例的光收集效率可以达到 90 %以 上。
当方棒的出射端尺寸较大而超出了本发明光源所限制的出射光斑 尺寸时, 或由该方棒出射端射出的光具有较大出射角 (例如但不限于超 过 30度) 时, 为了使光束以适当的入射角和光斑尺寸投射到波长转换 材料上,可以采用合光装置 50a以成像方式把来自方棒 22出射端的均匀 光束投射往波长转换材料。 可以理解的是, 本实施例中, 通过控制方棒 22出射端尺寸的大小、 以及方棒 22与波长转换装置 30之间的距离, 可 以使方棒 22 出射的激发光直接投射到波长转换材料上的光斑均勾且具 有特定形状, 此时整形装置与勾光装置合为方棒 22, 而不需要有合光装 置 50a, 该方棒 22对固态光源阵列 10发出的激发光进行整形处理和匀 光处理, 使固态光源阵列 10发出的激发光投射到波长转换材料上的光 斑具有特定形状, 因此本实施例中合光装置 50a是可以省略的。
此外, 固态光源阵列 10与准直透镜阵列 60也可以如图 7所示实施 例一样排布, 只要能将固态光源阵列 10发出的激发光投射到方棒 22的 入射端即可。 可以理解的是, 在本实施例中, 准直透镜阵列 60 的作用 是为了将来自固态发光器件的激发光准直成近平行光(例如但不限于发 散角小于 15度的光束), 以提高光利用率。 在对光利用率要求不高的情 况下, 准直透镜阵列 60也是可以省略的。
请参阅图 9, 图 9是本发明实施例中光源的另一实施例的结构示意 图。 如图 9所示, 本实施例与图 8所示实施例相同的是, 匀光装置包括 方棒 22, 该方棒 22对固态光源阵列 10发出的激发光进行勾光处理, 整 形装置包括该方棒 22与合光装置 50a, 该方棒 22与合光装置 50a对该 固态光源阵列 10发出的激发光进行整形处理, 使固态光源阵列 10发出 的激发光投射到波长转换材料上的光斑具有特定形状。 与图 7所示实施 例的区别之处包括: 方棒 22 的入射端的尺寸与出射端的尺寸相同; 固 态光源阵列 10与准直透镜阵列 60为如图 7所示实施例一样排布; 同时 还包括一位于准直透镜阵列 60与方棒之间的合光装置 50b,通过该合光 装置 50b将准直透镜阵列 60发出的激发光汇聚到方棒 22的入射端。
请参阅图 10, 图 10为本发明实施例中光源的另一实施例的结构示 意图。 如图 10所示, 本实施例与图 9所示实施例的区别之处包括: 方 棒 22的入射端的尺寸小于其出射端的尺寸; 方棒 22出射的激发光直接 投射到波长转换材料上, 即方棒 22与波长转换装置 30之间无合光装置 50a。 本实施例中, 方棒 22对固态光源阵列发出的激发光进行了整形处 理和匀光处理, 使固态光源阵列发出的激发光投射到波长转换材料上的 光斑具有特定形状。
本实施例中, 由于方棒 22 的出射端尺寸大于入射端尺寸, 根据光 学扩展量不变原理, 方棒 22 的出射光发散角度一定小于其入射光发散 角度。 由于出射光角度比较小, 方棒 22 的出射光可以直接投射到波长 转换材料而不会引起过大的光斑形变。 优选地, 本实施例中的方棒的出 射端尺寸与入射端尺寸的比例范围为 1.2:1 ~ 2: 1。 可以理解的是, 同于 图 8所示实施例, 本实施例中的准直透镜阵列 60与合光装置 50b是可 以省略的。
还可以采用方棒阵列来实现上述方棒的功能, 请参阅图 11 , 图 11 为本发明实施例中光源的另一实施例的结构示意图。 如图 11 所示, 本 实施例包括固态光源阵列 10、 方棒阵列 23、透镜阵列 70、合光装置 50a 与波长转换装置 30。方棒阵列 23由与固态发光器件 11对应的复数个方 棒组成, 每一方棒对一固态发光器件 11 发出的激发光进行整形处理和 匀光处理得到具有特定形状的出射光斑的子光束。 透镜阵列 70 包括与 方棒对应的复数个透镜, 各透镜收集来自对应方棒出射的子光束并投射 往合光装置 50a。合光装置 50a将方棒阵列 23出射的各子光束组合为一 束光束, 使组合得到的该光束投射到波长转换材料上的光斑具有特定形 状。
本实施例中, 匀光装置包括由与固态发光器件 11 对应的复数个方 棒组成的方棒阵列 23 ,整形装置包括该方棒阵列 23及合光装置 50a,每 一方棒对至少一固态发光器件发出的激发光进行整形处理和勾光处理 得到具有特定形状的均勾出射光斑的子光束, 合光装置 50a将方棒阵列 23出射的各子光束组合为一束光束,使组合得到的该光束投射到波长转 换材料上的光斑均匀且具有上述特定形状。
本实施例中, 在各方棒的出射光角度较小的情况下, 可以省略掉透 镜阵列 70而将各方棒的出射光直接投射往合光装置 50a。考虑到方棒的 形状及其入射端尺寸, 每一方棒的入射端还可以是收集来自两个或两个 以上固态发光器件的激发光。
在图 8至图 11所示各实施例中, 还可以包括至少一散光片 (图未 示), 设置于各方棒的入射端, 用于放大入射于方棒入射端的激发光的 发散角度, 进而增强方棒的匀光效果。
本发明还采用光波导来实现勾光处理。 请参阅图 12与图 13 , 图 12 是本发明实施例中光源的另一实施例的结构示意图, 图 13是图 12中固 定器件 242沿 A-A线的横截面示意图。 如图 12所示, 本实施例与图 7 所示实施例的区别之处包括: 本实施例中的匀光装置包括与固态发光器 件 11对应的复数根光波导 241 ,每一光波导 241对至少一固态发光器件 11发出的激发光进行勾光处理; 整形装置包括一固定器件 242, 该固定 器件 242把各光波导 241的出口固定排列以将所有光波导的出口组合成 特定形状; 合光装置 50a以成像方式将固定器件 242的光投射到波长转 换材料上。 此外, 本实施例中还包括与各光波导对应的聚焦耦合透镜构 成的聚焦耦合透镜阵列 80, 替代了图 7 所示实施例中的准直透镜阵列 60, 每一聚焦耦合透镜把来自至少一固态发光器件 11 的光导入与该透 镜对应的光波导 241。
本实施例中, 通过在光波导 241中的传播实现光的均勾化, 以在该 光波导 241的出口得到一个均勾的光斑, 且该光斑形状与光波导 241的 芯层形状相同。 也就是说, 每一光波导 241对至少一固态发光器件发出 的激发光进行整形处理和勾光处理, 得到具有与光波导 241芯层的横截 面形状相同的均匀出射光斑的子光束。 如图 13所示, 固定器件 242把 各光波导 241的出口固定排列以将所有光波导 241的出口组合成特定形 状,再由合光装置 50a将固定器件 242发出的光投射到波长转换材料上, 使固态光源阵列 10发出的激发光投射到波长转换材料上的光斑具有特 定形状。
优选地, 本实施例中的光波导 241芯层的横界面的形状为长方形或 正多边形 (如正方形、 正六边形), 光波导 241 的外保护层越小越好, 以使各光纤实现无缝隙拼接为最佳。 但现有光波导的芯层截面以圓形最 易于加工, 考虑到实现成本, 本实施例可以以现有芯径为 50um、 总直 径为 lOOum的光波导为例进行如图 13所示的紧密排列, 组合成所需要 的光斑形状(例如矩形) 的近似形状。
本实施例中, 通过合光装置 50a将固定器件 242发出的光投射到波 长转换材料上, 这尤其适用于光波导 241 的组合规模较大导致图 13所 示的横截面积较大时。 可以理解的是, 当光波导 241组合规模较小, 使 得固定器件 242发出的光束面积较小时, 也可以不经合光装置 50a, 而 直接将固定器件 242发出的光投射到波长转换材料上。
请参阅图 14a及图 14b, 图 14a是图 12所示实施例中离焦为 0时的 光斑示意图, 图 14b是图 12所示实施例中离焦为 0.2毫米时的光斑示意 图。 假设光波导出射光的发光半角约为 25 度, 在不采用合光装置 50a 的情况下, 各光波导出口处的光强分布如图 14a所示, 本实施例为此将 固定器件 242上各光波导的出口设置成距波长转换材料一定距离 (例如 0.2mm ) , 来达到离焦扩散成均匀光斑的目的, 这样从固定器件 242直接 投射到波长转换材料上的光斑将具有如图 14b所示的光强分布, 可见该 光斑为近矩形的均勾光斑。
上述各实施例中, 波长转换装置可以为透射式或反射式。 请参阅图 15 , 图 15是本发明实施例中光源的另一实施例的结构示意图。 如图 15 所示, 本实施例与图 7所示实施例的区别之处在于: 还包括光收集装置 90,位于波长转换装置 30的背离合光装置 50a的一侧,用于收集波长转 换材料产生的受激发光, 以及未被波长转换材料吸收的剩余激发光。 本 实施例中, 波长转换装置 30为透射式, 即激发光从波长转换装置 30的 第一侧入射, 受激发光从波长转换装置 30的第二侧发出。
请参阅图 16, 图 16是本发明实施例中光源的另一实施例的结构示 意图。 如图 16所示, 本实施例与图 15所示实施例的区别之处在于: 本 实施例还包括光路分离装置, 例如分光滤光片 91 , 分光滤光片 91位于 合光装置 50a与波长转换装置 30之间。 分光滤光片 91透射激发光且反 射波长转换材料产生的受激发光, 如图 16所示, 光线 L1为入射分光滤 光片的激发光, 光线 L2为波长转换材料产生的受激发光, 光线 L1与光 线 L2处于波长转换装置 30的同侧。 波长转换材料产生的受激发光被分 光滤光片反射后被光收集装置 90收集。 本实施例中, 波长转换装置 30 为反射式, 即激发光从波长转换装置 30 的第一侧入射, 受激发光也从 波长转换装置的第一侧发出。
上述各实施例中, 波长转换装置 30 不限定为一固定装置, 该波长 转换装置 30还可以相对于激发光呈运动 (转动或移动)状态, 以便通 过轮换照射波长转换材料来进一步达到保护波长转换材料的目的。 波长 转换装置 30还可以进一步包括至少两个具有不同波长转换材料的分区, 在这种情况下, 轮换照射还可以达到变换光源出射的受激发光颜色的目 的。
本发明实施例还提供一种投影系统, 可以包括上述各实施例所述的 光源。投影系统中除了光源以外的其它部件为公知技术,此处不作赘述。
本实施例中, 由于在激发光投射到波长转换材料之前, 先将激发光 整形为特定形状, 因此投射到波长转换材料上的光斑形状可以更为接近 甚至等于与显示区域匹配的形状, 从而比现有技术中最好只能内接于与 显示区域匹配的形状的光斑面积较大, 使得在相同光功率的条件下光功 率密度较低, 提高了波长转换材料的光转换效率, 延长了波长转换装置 的使用寿命。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或 直接或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保 护范围内。

Claims

1、 一种光源, 其特征在于, 包括:
固态光源阵列, 由复数个固态发光器件组成, 用于发出激发光; 波长转换装置, 载有吸收所述激发光并产生受激发光的波长转换 材料;
整形装置, 位于所述固态光源阵列与波长转换装置之间, 用于对该 固态光源阵列发出的激发光进行整形处理, 使固态光源阵列发出的激发 光投射到所述波长转换材料上的光斑具有特定形状。
2、 根据权利要求 1所述的光源, 其特征在于, 还包括:
匀光装置, 用于在所述激发光投射到所述波长转换材料之前, 对该 激发光进行勾光处理。
3、 根据权利要求 2所述的光源, 其特征在于, 所述整形装置与匀 光装置合为衍射光学元件, 该衍射光学元件对所述固态光源阵列发出的 激发光进行所述整形处理和勾光处理。
4、 根据权利要求 2所述的光源, 其特征在于, 所述勾光装置包括 衍射光学元件, 所述整形装置包括该衍射光学元件与合光装置, 该衍射 光学元件包括与所述发光器件对应的复数个衍射单元, 每一衍射单元对 至少一所述固态发光器件发出的激发光进行整形处理和勾光处理得到 具有所述特定形状的均勾出射光斑的子光束, 所述合光装置将衍射光学 元件出射的各子光束组合为一束光束并投射到所述波长转换材料, 使组 合得到的该光束投射到所述波长转换材料上的光斑均勾且具有所述特 定形状。
5、 根据权利要求 2所述的光源, 其特征在于, 所述整形装置与匀 光装置合为复眼透镜对, 该复眼透镜对对所述固态光源阵列发出的激发 光进行所述整形处理和匀光处理。
6、 根据权利要求 2所述的光源, 其特征在于, 所述勾光装置包括 复眼透镜对, 所述整形装置包括该复眼透镜对与合光装置, 该复眼透镜 对包括与所述发光器件对应的复数个透镜单元对, 每一透镜单元对对至 少一所述固态发光器件发出的激发光进行整形处理和勾光处理得到具 有所述特定形状的均勾出射光斑的子光束, 所述合光装置将复眼透镜对 出射的各子光束组合为一束光束并投射到所述波长转换材料, 使组合得 到的该光束投射到所述波长转换材料上的光斑均勾且具有所述特定形 状。
7、 根据权利要求 2所述的光源, 其特征在于, 所述整形装置与匀 光装置合为方棒, 该方棒对所述固态光源阵列发出的激发光进行所述整 形处理和勾光处理。
8、 根据权利要求 7 所述的光源, 其特征在于, 所述方棒的入射端 的尺寸小于其出射端的尺寸。
9、 根据权利要求 2所述的光源, 其特征在于, 所述勾光装置包括 方棒, 该方棒对所述固态光源阵列发出的激发光进行所述勾光处理, 所 述整形装置包括该方棒与合光装置, 该方棒与合光装置对该固态光源阵 列发出的激发光进行所述整形处理。
10、 根据权利要求 7或 9所述的光源, 其特征在于, 还包括由与所 述发光器件对应的复数个准直透镜组成的准直透镜阵列, 每一准直透镜 对准一所述固态发光器件, 以将来自该固态发光器件的激发光准直成近 平行光并投射到所述方棒的入射端。
11、 根据权利要求 10 所述的光源, 其特征在于, 所述准直透镜阵 列与所述固态光源阵列向心排列在以所述方棒的入射端的中心为圓心 的弧面上。
12、 根据权利要求 11 所述的光源, 其特征在于, 所述方棒的入射 端的尺寸大于其出射端的尺寸。
13、 根据权利要求 7或 9所述的光源, 其特征在于, 还包括一位于 所述方棒与固态光源阵列之间的合光装置。
14、 根据权利要求 2所述的光源, 其特征在于, 所述勾光装置包括 由与所述发光器件对应的复数个方棒组成的方棒阵列, 所述整形装置包 括该方棒阵列及合光装置, 每一方棒对至少一所述固态发光器件发出的 激发光进行整形和匀光处理得到具有所述特定形状的均勾出射光斑的 子光束, 所述合光装置将方棒阵列出射的各子光束组合为一束光束, 使 组合得到的该光束投射到所述波长转换材料上的光斑均勾且具有所述 特定形状。
15、 根据权利要求 14所述的光源, 其特征在于, 还包括由与所述 发光器件对应的复数个透镜组成的透镜阵列, 位于所述方棒阵列与合光 装置之间, 每一透镜收集来自对应方棒出射的子光束并投射往该合光装 置。
16、 根据权利要求 7、 9或 14所述的光源, 其特征在于, 还包括至 少一散光片, 设置于所述方棒的入射端。
17、 根据权利要求 2所述的光源, 其特征在于, 所述勾光装置包括 与所述固态发光器件对应的复数根光波导, 所述整形装置包括该光波导 与固定器件, 每一光波导对至少一所述固态发光器件发出的激发光进行 整形处理和勾光处理, 得到具有与光波导芯层的横截面形状相同的均匀 出射光斑的子光束, 该固定器件把各光波导的出口固定排列以将所有光 波导的出口组合成所述特定形状。
18、 根据权利要求 17 中所述的光源, 其特征在于, 所述光波导芯 层的横截面呈长方形或正多边形。
19、 根据权利要求 1所述的光源, 其特征在于, 所述波长转换装置 允许相对于所述激发光呈运动状态。
20、 一种投影系统, 其特征在于, 包括如权利要求 1至 19中任一 项所述的光源。
PCT/CN2011/083729 2011-12-09 2011-12-09 光源及其应用的投影系统 WO2013082794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083729 WO2013082794A1 (zh) 2011-12-09 2011-12-09 光源及其应用的投影系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083729 WO2013082794A1 (zh) 2011-12-09 2011-12-09 光源及其应用的投影系统

Publications (1)

Publication Number Publication Date
WO2013082794A1 true WO2013082794A1 (zh) 2013-06-13

Family

ID=48573509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083729 WO2013082794A1 (zh) 2011-12-09 2011-12-09 光源及其应用的投影系统

Country Status (1)

Country Link
WO (1) WO2013082794A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1721978A (zh) * 2004-07-05 2006-01-18 三洋电机株式会社 照明装置以及投影式图像显示装置
US20060215285A1 (en) * 1999-12-30 2006-09-28 Dewald Duane S Rod integrators for light recycling
CN101581410A (zh) * 2008-05-15 2009-11-18 卡西欧计算机株式会社 光源装置及投影机
CN201885062U (zh) * 2010-10-08 2011-06-29 深圳市光峰光电技术有限公司 大功率固态光源及带该光源的手机
CN102200683A (zh) * 2010-03-24 2011-09-28 卡西欧计算机株式会社 光源单元以及投影仪
CN102375315A (zh) * 2010-08-16 2012-03-14 深圳市光峰光电技术有限公司 光源及其应用的投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060215285A1 (en) * 1999-12-30 2006-09-28 Dewald Duane S Rod integrators for light recycling
CN1721978A (zh) * 2004-07-05 2006-01-18 三洋电机株式会社 照明装置以及投影式图像显示装置
CN101581410A (zh) * 2008-05-15 2009-11-18 卡西欧计算机株式会社 光源装置及投影机
CN102200683A (zh) * 2010-03-24 2011-09-28 卡西欧计算机株式会社 光源单元以及投影仪
CN102375315A (zh) * 2010-08-16 2012-03-14 深圳市光峰光电技术有限公司 光源及其应用的投影系统
CN201885062U (zh) * 2010-10-08 2011-06-29 深圳市光峰光电技术有限公司 大功率固态光源及带该光源的手机

Similar Documents

Publication Publication Date Title
KR101774409B1 (ko) 레이저 광원, 파장 변환 광원, 합광 광원 및 프로젝션 시스템
JP6176642B2 (ja) 発光装置及び関連する光源システム
EP2988170B1 (en) Light-emitting device and projection system
WO2014117703A1 (zh) 激光光源、波长转换光源、合光光源和投影显示装置
JP6245994B2 (ja) レーザ光源装置及びプロジェクタ
JP2020061591A (ja) レーザモジュール
US11604401B2 (en) Light source device and projection apparatus
JP5805719B2 (ja) 光学システム
JP2011243717A5 (zh)
JP2014216361A (ja) レーザ装置および光ビームの波長結合方法
JP2009080468A (ja) レーザ光合成装置
JP5576886B2 (ja) レーザビームを均質化するための装置
JP5254364B2 (ja) ファイバ結合の最適化されたビームパラメータ積を備える、ダイオードレーザビームを形成するためのダイオードレーザ構造体
JP2016512614A (ja) レーザビームを均質化するための装置
CN106406001B (zh) 光源及其应用的投影系统
WO2013097479A1 (zh) 匀光元件及光源系统
CN111176059A (zh) 照明系统
TWI486700B (zh) 光源及其應用的投影系統
KR101444508B1 (ko) 광원 장치
WO2013082794A1 (zh) 光源及其应用的投影系统
WO2012129789A1 (zh) 光束整形方法和装置及激光显示光源模组和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.10.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11876910

Country of ref document: EP

Kind code of ref document: A1