WO2013095045A1 - 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재 - Google Patents

탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재 Download PDF

Info

Publication number
WO2013095045A1
WO2013095045A1 PCT/KR2012/011271 KR2012011271W WO2013095045A1 WO 2013095045 A1 WO2013095045 A1 WO 2013095045A1 KR 2012011271 W KR2012011271 W KR 2012011271W WO 2013095045 A1 WO2013095045 A1 WO 2013095045A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary structure
carbon
cns
nanostructure
diameter
Prior art date
Application number
PCT/KR2012/011271
Other languages
English (en)
French (fr)
Inventor
김성진
김진도
강경연
윤재근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201280030717.XA priority Critical patent/CN103619755B/zh
Priority to US13/824,925 priority patent/US9512006B2/en
Priority to JP2014548674A priority patent/JP5903727B2/ja
Priority to EP12860897.3A priority patent/EP2796408B1/en
Publication of WO2013095045A1 publication Critical patent/WO2013095045A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/001Devices without movable or flexible elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to new types of carbon nanostructure secondary structures, aggregates thereof and composites comprising them.
  • Carbon nanostructures refers to nanoscale carbon structures having various shapes such as nanotubes, fullerenes, nanocones, nanohorns, and nanorods, and have various excellent properties. Is high.
  • carbon nanotubes is a material in which the carbon atoms arranged in a hexagonal tube form a tube, the diameter is about 1 to 100 nm.
  • Carbon nanotubes exhibit non-conductor, conductor or semiconducting properties according to their unique chirality, and the carbon atoms are connected by strong covalent bonds, so that their tensile strength is approximately 100 times greater than steel, and they have excellent flexibility and elasticity. It is also chemically stable.
  • Types of carbon nanotubes include single-walled carbon nanotubes (SWCNTs) in one layer and about 1 nm in diameter, and double-walled carbon nanotubes in two layers and about 1.4 to 3 nm in diameter. (double-walled carbon nanotubes, DWCNTs), and multi-walled carbon nanotubes (MWCNTs) composed of three or more layers and having a diameter of about 5 to 100 nm.
  • SWCNTs single-walled carbon nanotubes
  • DWCNTs double-walled carbon nanotubes
  • MWCNTs multi-walled carbon nanotubes
  • carbon nanotubes Due to its characteristics such as chemical stability, excellent flexibility and elasticity, carbon nanotubes are commercialized and applied in various fields such as aerospace, fuel cells, composites, biotechnology, medicine, electrical and electronics, and semiconductors. It is becoming. However, the primary structure of carbon nanotubes has a limit to directly control the diameter and length of the carbon nanotubes to actual specifications for industrial applications. Constraints follow.
  • FIG. 2 [(a) Jia, Y .; He, L .; Kong, L .; Liu, J .; Guo, Z .; Meng, F .; Luo, T .; Li, M .; Liu, J. Carbon , 2009 , 47 , 1652; (b) Zhang, X .; Cao, A .; Li, Y .; Xu, C .; Liang, J .; Wu, D .; Wei, B. Chem. Phys.
  • Hollow structures have many advantages in nanochemistry. Therefore, if the hollow structure can be formed using a carbon nanostructure having excellent chemical stability, elasticity, and flexibility, its utilization will be even higher.
  • the present invention provides a secondary structure of a new type of carbon nanostructure (CNS), aggregates thereof, and the like, which can be more effectively applied to energy materials, functional composites, batteries, and semiconductors, which require more various diameters and lengths. We want to provide a composite.
  • CNS carbon nanostructure
  • the present invention provides a secondary structure of the carbon nanostructure formed by gathering a plurality of carbon nanostructures to form a tube shape in whole or in part to achieve the technical problem as described above.
  • the secondary structure of the carbon nanostructure may be a structure in which a plurality of carbon nanostructures are tangled with each other.
  • the tube shape of the secondary structure of the carbon nanosphere structure can be made effective diameter when the contrast ratio of the electron microscope photograph taken in the tube diameter direction is 90%.
  • the contrast ratio can be obtained by using digital image processing using Matlab.
  • the carbon nanostructure may be carbon nanotubes, carbon nanorods, carbon nanohairs, or carbon nanofibers, and among them, carbon nanotubes are particularly preferred.
  • the carbon nanostructure may be 0.1 to 200 nm in diameter, 1 ⁇ m to 10 mm in length.
  • the secondary structure of the carbon nanosphere structure may have a tube shape having an effective inner diameter of 0.1 to 30 ⁇ m, an outer diameter of 1 to 100 ⁇ m, and a length of 5 to 10000 ⁇ m.
  • the carbon nanotubes single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), multi-walled carbon nanotubes (MWCNT) or a mixture thereof may be made.
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • the carbon nanotubes, the double-walled carbon nanotubes (DWCNT) may be included in less than 10% by weight.
  • the present invention provides an aggregate of the secondary structure in which the secondary structure is assembled to form a three-dimensional shape.
  • the present invention also provides a composite material comprising the secondary structure or the aggregate of the secondary structure.
  • a carbon nanostructure secondary structure comprising reacting a reaction gas containing a carbon source in the presence of a supported catalyst obtained by supporting a catalyst metal on a milled support and then grinding and calcining Provide a method.
  • the diameter (d 50 ) of the milled support may be 0.1 to 1.5 ⁇ m
  • the milled support may be an aluminum-based support.
  • the catalyst metal may include cobalt (Co) and molybdenum (Mo).
  • CNS secondary structures and aggregates formed by gathering them according to the present invention are new types of conventional ones, and these secondary structures may exhibit new characteristics, and may be used for energy materials, functional composites, medicines, batteries, and semiconductors. It can be applied to various fields.
  • Figure 2 is a SEM photograph of the CNT secondary structure prepared according to the prior art.
  • FIG. 3 is a schematic diagram of an enlarged schematic diagram of a CNS secondary structure aggregate and a CNS secondary structure included in the same according to an embodiment of the present invention.
  • FIG. 4 is a SEM photograph of the CNS secondary structure in which the central portion 301 and the outer portion 302 of the CNS secondary structure according to the embodiment of the present invention are displayed.
  • Figure 5 is a SEM picture of one side of the CNS secondary structure according to an embodiment of the present invention.
  • FIG. 6 is an image photograph illustrating a method of measuring an effective inner diameter of a CNS secondary structure using a MATLAB-IPT.
  • FIG. 7 is a SEM photograph of a CNT secondary structure aggregate prepared according to Example 1.
  • FIG. 8 are SEM images of CNT secondary structure aggregates prepared according to Examples 2 and 3.
  • FIG. 8 are SEM images of CNT secondary structure aggregates prepared according to Examples 2 and 3.
  • FIG. 11 are SEM images of CNT secondary structure aggregates prepared according to Comparative Examples 1 and 2.
  • FIG. 11 are SEM images of CNT secondary structure aggregates prepared according to Comparative Examples 1 and 2.
  • 12A is an initial SEM image of growth of the secondary structure assembly according to Example 1 of the present invention.
  • FIG. 12B is an enlarged SEM photograph of part A (CNT secondary structure) of FIG. 14A.
  • FIG. 12C is an enlarged SEM photograph of part B (one side of the CNT secondary structure) of FIG. 14B.
  • FIG. 13A is an SEM image of an incompletely grown CNT secondary structure found between CNT secondary structures according to Example 2 of the present invention.
  • FIG. 13B is an enlarged SEM photograph of part A of FIG. 15A.
  • FIG. 13C is an enlarged SEM photograph of part B of FIG. 15B.
  • the CNS secondary structure according to the present invention is a structure having a plurality of CNS entities gathered in a tube shape in whole or in part.
  • tube shape' refers to a shape having a longer center than the diameter of the secondary structure, although the center of the CNS object is located at a lower density than the outer part, so that the center appears to be empty (hollow or pore).
  • tube diameter means “outer diameter of the tube” unless stated otherwise.
  • the cross section of the tubular shape may, of course, comprise a hollow or pore formed as well as an oval or a somewhat crushed shape, which hollow or pore may be recognized as round or oval by one skilled in the art. It may include a form.
  • the hollow or pores are formed because the distribution density of the carbon nanostructure is significantly lower than the outer portion, so it is difficult to have clear boundaries.
  • the diameter when the hollow or pore shape of the tube cross section is viewed as the circle of the corresponding area is defined as the 'effective diameter' of the tube.
  • the effective inner diameter may be a diameter when the contrast ratio of the electron micrograph is a predetermined level, for example, a diameter when the contrast ratio of the electron microscope photograph is formed in the tube-shaped cross section of the secondary structure of the carbon nanostructure as an effective inner diameter.
  • the CNS secondary structure may be thickened or thinned along the direction in which the CNS constituting the CNS grows from the supported catalyst, that is, in the longitudinal direction, and thus, the diameter of the central portion and the outer portion thereof may become thicker or thinner along the longitudinal direction. Can be.
  • CNS secondary structure assembly according to another embodiment of the present invention (bundle) is formed by entangled with each other to form a three-dimensional shape CNS secondary structures having a tube shape in whole or in part.
  • the overall shape of the CNS secondary structure aggregate is various, specific examples may be, but are not limited to, spherical, ellipsoidal, cylindrical, conical or truncated.
  • the thickness of the thickest portion of this CNS secondary structure assembly may be from several micrometers ( ⁇ m) to thousands of micrometers, for example from 2 to 2000 ⁇ m.
  • the length of the CNS secondary structure aggregate may be from about several micrometers to several thousand micrometers, except for the supported catalyst, based on the direction in which the CNS secondary structure aggregate grows, for example, 5 to 1000 ⁇ m. .
  • Composite according to another embodiment of the present invention may be a dispersion of CNS secondary structure or CNS secondary structure aggregate on the matrix.
  • the composite material may be obtained by melt kneading a polymer polymer and a CNS secondary structure, and dispersing the CNS secondary structure particles on the polymer polymer matrix.
  • the raw material of the matrix is not particularly limited, but may be a polymer polymer, a metal, a ceramic, or a mixture thereof.
  • FIG. 3 is a diagram schematically illustrating a CNS secondary structure and an aggregate thereof formed according to an embodiment of the present invention.
  • reference numeral 100 denotes a supported catalyst used for synthesizing the CNS
  • reference numeral 200 denotes a CNS secondary structure aggregate
  • reference numeral 300 denotes a CNS secondary structure
  • reference numeral 400 refers to the CNS.
  • the CNS secondary structure assembly 200 or the CNS secondary structure 300 formed according to an embodiment of the present invention may exist together with the supported catalyst 100, although not shown in the drawings. However, it will be appreciated by those skilled in the art that the catalyst may be present separately from the supported catalyst 100 by post-treatment or the like.
  • the CNS secondary structure assembly 200 includes a plurality of CNS secondary structures 300 that are densely gathered, and some CNS secondary structures may be randomly entangled.
  • the CNS secondary structure assembly may be composed of a new type of hollow CNS secondary structures according to the present invention, or in the hollow CNS secondary structures according to the present invention, some conventional hollow All of the filled CNS secondary structure may be included together.
  • the CNS secondary structure aggregate of the present invention, the hollow CNS secondary structure according to the present invention based on the number of all the CNS secondary structure in the CNS secondary structure assembly may include 10% or more, or may contain 30% or more. Or 50% or more, or 80% or more.
  • the CNS secondary structure 300 constituting the CNS secondary structure assembly 200 is formed by randomly gathering or tangling a plurality of CNS 400 grown together in the supported catalyst 100 (tangled structure).
  • the tubular shape is formed to grow to one side.
  • the CNS secondary structure 300 has one end 311 connected to the supported catalyst 100 and a length from the one end 311 to the other end 312.
  • a plurality of CNS 400, approximately 5 to 10000 ⁇ m, are randomly gathered or entangled.
  • FIG. 3 shows an enlarged view of the CNS secondary structure 300 constituting the CNS secondary structure assembly 200. Looking at this, it can be seen that the CNS secondary structure 300 is composed of an empty central portion 301 and a tubular outer portion 302 surrounding the central portion 301.
  • FIG. 4 is an SEM photograph of the CNS secondary structure in which the central portion 301 and the outer portion 302 of the CNS secondary structure according to the embodiment of the present invention are displayed.
  • FIG. 5 is a partially enlarged photograph of FIG. 4.
  • the central portion 301 of the CNS secondary structure 300 is a portion in which the distribution density of the CNS 400 present therein is relatively lower than the distribution density of the CNS present in the outer portion 302.
  • the CNS distribution density of the central portion 301 may be approximately 1/3 or less, 1/4 or less, or 1/5 or less than the CNS distribution density of the outer portion 302.
  • the low density of CNS distribution in the central part can be considered to be substantially empty.
  • the fact that the space corresponding to the center is substantially empty may mean that the space is 70% or more empty even if the CNS 400 is substantially present.
  • the dark portion of the SEM image is the central portion 301, and the dark portion of the central portion appears because there are few CNS entities present therein.
  • the area occupied by the CNS entities in the central part 301 corresponds to less than 30% of the central part 301 area.
  • that the space corresponding to the center is substantially empty may mean that the space is at least 80% or at least 90% empty even if the CNS is present.
  • the secondary structure has a tubular shape in whole or in part.
  • the diameter of this cylindrical pore i.e., the inner diameter or the effective inner diameter (a) of the tubular shape, is approximately 0.1 to 30 ⁇ m, or 0.5 to 9 ⁇ m, or 0.5 to 3 ⁇ m, or 0.5 to 2 ⁇ m, or 0.5 to 1.5 ⁇ m. Can be.
  • the effective inner diameter a may be measured using a Matlab-Image Processing Toolbox (Rafael C. Gonzalez, et al.). Translated by Hyun Hyun Joong. "Digital Image Processing Using MATLAB,” McGraw Hill, 2012, page 509).
  • the electron microscope photograph as shown in FIG. 6 (a) is a virtual correspondence structure having an ideal circular shape that is easy to mathematically interpret through the data input switching process of the image process, and more clearly monochrome contrast ratio. Is converted to the state given by (b).
  • the spatial division function of the image processing software is used to define a circle with an arbitrary radius at the center of the black part of the picture, digitize the picture by the number of black and white pixels, and measure the ratio.
  • a specific value of the contrast ratio may be determined as the effective inner diameter of the CNS secondary structure (for example, contrast ratio 90). 3.4 ⁇ m).
  • the CNS secondary structure according to the present invention is a novel secondary structure that has not existed in the past in that it has a tube shape which can have an effective inner diameter.
  • the length of the CNS secondary structure may be, for example, 5-10000 ⁇ m, or 15-1000 ⁇ m, or 20-500 ⁇ m.
  • the diameter of the CNS secondary structure ie, the tubular outer diameter (reference “b” in FIG. 3) is approximately 1 to 100 ⁇ m, or 1 to 30 ⁇ m, or 1 to 10 ⁇ m, Or 2 to 9 ⁇ m, or 3 to 8 ⁇ m.
  • the outer diameter refers to the diameter of the outermost circle of the tube shape.
  • the thickness of the outer portion of the CNS secondary structure is approximately 0.5 to 99.5 ⁇ m, or 0.5 to 29.5 ⁇ m, or 0.5 to 9.5 ⁇ m, or 1 to 8 ⁇ m.
  • the CNS distribution density at the outer portion and the central portion of the CNS secondary structure may be measured by the area occupied by the CNS object per unit area in the plane perpendicular to the longitudinal direction of the CNS secondary structure, that is, in the radial direction of the tubular shape.
  • the unit area may be, for example, 10 nm 2 .
  • the CNS distribution density can be determined by using the Matlab-Image Processing Toolbox and the Curve Fitting Toolbox to adjust the contrast ratio of the SEM photographs in a direction of constant incremental diameter from the interior center point of the assembly.
  • the change in the first derivative of the change in the radial progression of the contrast ratio can be measured by converting the density function for one side of the aggregate [Rafael C. Gonzalez, et al. Translated by Hyun Hyun Joong. “Digital Image Processing Using MATLAB”, McGraw Hill Korea, 2012, page 509).
  • reference numeral 400 denotes an enlarged SEM image of a part of the surface of the CNS secondary structure 300. Looking at this, it is understood that the CNS 400 is closely intertwined to form the CNS secondary structure 300. Can be.
  • the CNS is preferably CNT, and the CNTs may be single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), multi-walled carbon nanotubes (MWCNTs), or mixtures thereof. Nanotubes (MWCNT).
  • the length of the CNS 400 may be, for example, 1 ⁇ m to 10 mm, or 1 ⁇ m to 1 mm, and the diameter of the CNS 400 may be 0.1 to 200 nm, or 2 to 100 nm. Can be.
  • the CNS 400 may be a CNS including 10 wt% or less of single wall carbon nanotubes (SWCNT), or 0.000001 to 10 wt% of single wall carbon nanotubes (SWCNT). It may be a CNS.
  • the CNS 400 may be CNT including 10 wt% or less of double wall carbon nanotubes (DWCNTs), or 0.0000001 to 10 wt% of double wall carbon nanotubes (DWCNTs). It may be a CNS.
  • the distribution density of the CNS is greatly changed in the contact area between the central portion and the outer portion, the distribution density of the CNS protruding irregularly on the main cylindrical shape of the CNS secondary structure is not considered.
  • the portion where the distribution density of the CNS changes the most from the center to the outer edge of the secondary structure of the CNS may be a surface where the central portion and the outer portion contact each other.
  • the CNS secondary structure according to the present invention may be prepared by reacting a reaction gas containing a carbon source in the presence of a supported catalyst obtained by supporting a catalytic metal on a milled support and then grinding and calcining.
  • the support may be milled, preferably an aluminum-based support, and may be prepared by chemical vapor deposition (CVD) using a catalyst for producing CNS obtained by calcining the active metal.
  • CVD chemical vapor deposition
  • the support on which the active metal is supported may be milled.
  • Milling process may be a ball milling process, may be carried out at 100 rpm or more conditions, or may be carried out at 100 to 1000 rpm conditions, or may be carried out at 150 to 500 rpm conditions have.
  • the support may be milled AlO (OH), Al (OH) 3 or Al 2 O 3 .
  • the milled AlO (OH), Al (OH) 3 and Al 2 O 3 have a particle size (d 50 ) of 0.1 to 1.5 ⁇ m, more preferably 0.15 to 0.6 ⁇ m, most preferably 0.2 to 0.4 May be ⁇ m.
  • the CNS secondary structure according to the present invention may be produced in a high content.
  • the particle size (d 50 ) of AlO (OH) before milling may be 1 to 100 ⁇ m, more preferably 3 to 60 ⁇ m.
  • the surface area of AlO (OH) before this milling treatment may be 10 to 1000 m 2 / g, or 50 to 600 m 2 / g.
  • the pore volume of AlO (OH) before this milling process may be 0.1-2 mL / g, or 0.2-1.5 mL / g.
  • the particle size d 50 of Al (OH) 3 before the milling is 10 to 80 ⁇ m or 20 to 60 ⁇ m as a specific example.
  • the particle size (d 50 ) of Al 2 O 3 before the milling process is 10 to 100 ⁇ m, or 20 to 80 ⁇ m specifically.
  • Mo metal and Co metal may be used, but are not limited thereto.
  • the Mo metal and the Co metal have a molar ratio (Mo / Co) of greater than 0 and less than 1, preferably 1/20 to 1 / 2.5, more preferably 1/10 to 1 / 2.5, most preferably 1 It may be / 6 to 1/4, the difference in the distribution density of the central portion and the outer portion of the CNS secondary structure to be manufactured within this range, it is possible to form a CNS secondary structure having a clear pore formation in the central portion.
  • a CNS secondary structure having a desired length can be obtained.
  • the firing temperature according to an embodiment of the present invention may be more than 200 °C to less than 800 °C, or 400 to 675 °C, or 550 to 650 °C, or 600 to 650 °C, within the range the pores CNS secondary structure of the present invention can be produced with a high content.
  • the new type of CNS secondary structure aggregate according to the present invention is formed by protruding the catalyst particles into the outer space, so that the post-treatment process such as the process of cutting out the CNS secondary structure is easy, and the polymer composite and solution dispersed product There is an effect excellent in dispersibility in the production of.
  • CNT carbon nanotubes
  • CNS carbon nanostructure
  • Al (O-sec-Bu) 3 50 g was mixed with 25 ml of EtOH and stirred at 120 ° C. for 30 minutes, and 15 ml of distilled water was added thereto and cooled to room temperature. The cooled product was filtered through a glass filter to obtain a precipitate, which was washed several times with acetone and then dried at 120 ° C. for 3 hours to prepare AlO (OH).
  • the prepared AlO (OH) was ball-milled at 200 to 250 rpm using zirconia balls, respectively.
  • the particle size (d 50 ) of the milled AlO (OH) support was 0.3 ⁇ m.
  • the reaction yield was calculated by the following equation.
  • Reaction yield (%) [(total weight after reaction-catalyst weight used) / catalyst weight used] ⁇ 100
  • the prepared CNT secondary structure aggregate is composed of a plurality of CNT secondary structures, and each CNT secondary structure may be confirmed to have a tubular shape consisting of a central portion and a periphery surrounding the pores. there was.
  • Al (OH) 3 and gamma-Al 2 O 3 heat-treated at 400 ° C. were ball-milled at 200 to 250 rpm using zirconia balls, respectively.
  • the particle size (d 50 ) of the milled Al (OH) 3 support and gamma-Al 2 O 3 was 0.250 ⁇ m and 0.265 ⁇ m, respectively.
  • Example 2 1.1 g and in the same manner as in Example 1, except that the milled Al (OH) 3 and gamma-Al 2 O 3 were used instead of AlO (OH), respectively (Examples 2 and 3 in the order). 1.2 g of supported catalyst was prepared.
  • CNTs were synthesized in the same manner as in Example 1 to prepare a CNT secondary structure aggregate with a reaction yield of 2280% and 2450%, respectively.
  • FIG. 8 SEM images of the prepared CNS secondary structure aggregates were attached to FIG. 8.
  • a CNT secondary structure assembly prepared using Al (OH) 3 or gamma-Al 2 O 3 ball milled with a support has a new pore centered on the CNT secondary structure. It can be seen that the new type bundles consist of CNT secondary structures.
  • Synthesis was carried out in the same manner as in Example 1, except that the supported catalyst was fired at 300, 400, 500, 550, 625, 650, 675, 700, and 750 ° C., respectively, to obtain 1664%, 1921%, 2245%, CNT secondary structure aggregates were prepared with reaction yields of 2074%, 2015%, 2065%, 2100%, 2300% and 2464%.
  • the CNT secondary structure (Examples 1 to 16) of the present invention unlike the conventional CNT secondary structures (Comparative Examples 1 and 2) it can be seen that the new form with the center empty. there was.
  • Example 1 1.2 ⁇ m 2.5 to 4 ⁇ m 30 to 60 ⁇ m
  • Example 7 1.1 ⁇ m 2.3 to 3.5 ⁇ m 20 to 40 ⁇ m
  • Example 8 1.3 ⁇ m 2.5 to 3.7 ⁇ m 20 to 40 ⁇ m
  • the length and diameter (outer diameter) of the CNT secondary structure aggregate and the CNT secondary structure were measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM apparatus used was FESEM (HITACHI S-4800), and the SEM observation conditions were acceleration voltage of 5 mA, emission current of 10 mA, working distance of 8 mm, and Detector SE.
  • the inner diameter of the CNT secondary structure is defined using a Matlab-Image Processing Toolbox, using a spatial division function of the image processing software to define a circle with an arbitrary radius in the center of the black part of the picture.
  • the picture was digitized with the number of black and white pixels, the contrast ratio was measured, and the diameter when the contrast ratio was 90% was obtained.
  • the particle size (d 50 ) of the support was measured using a particle size analyzer (Microtrac, Bluewave) Fluid (Water, 40%), and ultrasonication (40 watt, 3min).
  • CNS secondary structures and aggregates formed by gathering them according to the present invention are new types of conventional ones, and these secondary structures may exhibit new characteristics, and may be used for energy materials, functional composites, medicines, batteries, and semiconductors. It can be applied to various fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 새로운 형태의 탄소나노구조체 2차구조물, 이의 집합체 및 이들을 포함하는 복합재에 관한 것으로서, 본 발명에 따른 2차구조물은 복수개의 탄소나노구조체(carbon nanostructures, CNS)가 전체 또는 부분적으로 튜브 형상을 이루도록 집합되어 형성된 것을 특징으로 한다. 본 발명에 따른 신규 2차구조물, 이의 집합체 및 이를 포함하는 복합재는 에너지 소재, 기능성 복합재, 전지, 반도체 분야 등에 활용도가 높다.

Description

탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재
본 발명은 새로운 형태의 탄소나노구조체 2차구조물, 이의 집합체 및 이들을 포함하는 복합재에 관한 것이다.
탄소나노구조체(carbon nanostructures, CNS)는 나노튜브, 풀러렌, 나노콘, 나노호른, 나노로드 등 다양한 형상을 갖는 나노크기의 탄소구조체를 지칭하며, 여러 가지 우수한 성질을 보유하기 때문에 다양한 기술분야에서 활용도가 높다.
그 중에서도 특히 탄소나노튜브(carbon nanotube, CNT)는 6각형으로 배열된 탄소원자들이 튜브 형태를 이루고 있는 물질로, 직경이 대략 1 내지 100 nm이다. 탄소나노튜브는 특유의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철보다 대략 100 배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가진다.
탄소나노튜브의 종류에는, 한 겹으로 구성되고 직경이 약 1 nm인 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT), 두 겹으로 구성되고 직경이 약 1.4 내지 3 nm인 이중벽 탄소나노튜브(double-walled carbon nanotube, DWCNT) 및 셋 이상의 복수의 겹으로 구성되고 직경이 약 5 내지 100 nm인 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT)가 있다.
화학적 안정성, 우수한 유연성과 탄성 등과 같은 특징으로 인해, 탄소나노튜브는 다양한 분야, 예를 들어, 우주항공, 연료전지, 복합재료, 생명공학, 의약, 전기전자, 반도체 등에서 그 제품화 및 응용 연구가 진행되고 있다. 하지만, 탄소나노튜브의 1차 구조는 그 직경이나 길이를 산업적인 응용이 가능한 실제의 규격에 이르도록 직접적으로 조절하는데 한계가 있어, 탄소나노튜브의 뛰어난 물성에도 불구하고 산업상 응용이나 적용에 많은 제약이 따른다.
종래 탄소나노튜브와 같은 탄소나노구조체의 구조보강재, 화학적 기능체 역할을 보다 다양하게 하기 위하여 탄소나노구조체의 1차 구조체를 평판형에 집합적으로 형성시킨 후 별도의 방사과정을 거쳐 물리적으로 키우는 방법이 사용되었다[Zhang, X.; Li, Q.; Tu, Y.; Li, Y.; Coulter, J. Y.; Zheng, L.; Zhao, Y.; Jia, Q.; Peterson, D. E.; Zhu, Y. Small, 2007, 3, 244]. 그러나 이러한 기존의 방법은 평판형 성장 후에 2차적인 방사공정이 필요하므로 생산성이 매우 낮다. 이러한 공정에 의해 생산된 탄소나노튜브얀은 도 1에 도시한 바와 같은 평판형으로 성장된 다층구조를 갖는다[Adv. Mater. Vol. 22, 2010, pages 692-696(2009.11.24.)]
이외에도 다양한 구조 및 크기의 탄소나노튜브 집합체를 제조하는 방법이 보고되었는데, 이러한 방법들에 의해 제조된 구조물은 도 2와 같다[(a) Jia, Y.; He, L.; Kong, L.; Liu, J.; Guo, Z.; Meng, F.; Luo, T.; Li, M.; Liu, J. Carbon, 2009, 47, 1652; (b) Zhang, X.; Cao, A.; Li, Y.; Xu, C.; Liang, J.; Wu, D.; Wei, B. Chem. Phys. Lett., 2002, 351, 183; (c) Kathyayini, H.; Willems, I.; Fonseca, A.; Nagy, J.B.; Nagaraju, N. Cat. Commun., 2006, 7, 140; (d) Li, Y.; Zhang, X.B.; Tao, X.Y.; Xu, J.M.; Huang, W.Z.; Luo, J.H.; Luo, Z.Q.; Li, T.; Liu, F.; Bao, Y.; Geise, H.J. Carbon, 2005, 43, 295]. 도 2에 구조물들은 개개의 형상과 크기는 다소 상이하지만, 중공형이 아니고 속이 꽉 차 있다는 점에서 공통점이 있다.
나노화학에 있어서 중공형 구조는 많은 잇점을 갖는다. 따라서 화학적 안정성, 탄성, 유연성이 뛰어난 탄소나노구조체를 이용하여 중공형 구조물을 형성할 수 있다면 그 활용도가 더욱더 높아질 것이다.
따라서 본 발명은 보다 다양한 직경, 길이 등의 규격이 요구되는 에너지 소재, 기능성 복합재, 전지, 반도체 등에 보다 효과적으로 적용될 수 있는 새로운 형태의 탄소나노구조체(CNS)의 2차구조물, 이의 집합체 및 이들을 포함하는 복합재를 제공하고자 한다.
본 발명은 전술한 바와 같은 기술적 과제를 달성하기 위하여, 복수개의 탄소나노구조체가 전체 또는 부분적으로 튜브 형상을 이루도록 집합되어 형성된 탄소나노구조체의 2차구조물을 제공한다.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노구조체의 2차구조물은 복수개의 탄소나노구조체가 서로 엉켜 형성된 구조물(tangled structure)일 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노구구조체의 2차구조물이 갖는 튜브 형상은 튜브직경방향으로 촬영한 전자현미경사진의 명암비가 90%일 때의 직경을 유효내경으로 할 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 명암비는 매틀랩(MATLAB)을 이용한 디지털 영상처리를 이용하여 구할 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노구조체가 탄소나노튜브, 탄소나노로드, 탄소나노헤어 또는 탄소나노파이버일 수 있고, 이 중에서도 특히 탄소나노튜브 인 것이 바람직하다.
본 발명의 바람직 한 실시예에 따르면, 상기 탄소나노구조체는 직경 0.1 내지 200 nm, 길이 1 ㎛ 내지 10 mm 일 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노구구조체의 2차구조물은 유효내경 0.1 내지 30 ㎛, 외경 1 내지 100㎛, 길이 5 내지 10000 ㎛의 튜브 형상일 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노튜브는, 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT) 또는 이들의 혼합으로 이루어질 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 탄소나노튜브는, 이중벽 탄소나노튜브(DWCNT)가 10 중량% 이하로 포함될 수 있다.
또한 본 발명은 상기 2차구조물이 집합되어 3차원 형상을 이루고 있는 2차구조물의 집합체를 제공한다.
또한 본 발명은 상기 2차구조물 또는 상기 2차구조물의 집합체를 포함하는 복합재를 제공한다.
본 발명의 또다른 실시예에 따르면, 밀링가공된 지지체에 촉매금속을 담지한 후 분쇄 및 소성하여 얻은 담지촉매 존재하에 탄소원을 포함하는 반응가스를 반응시키는 것을 포함하는 탄소나노구조체 2차구조물의 제조방법을 제공한다.
본 발명의 바람직한 실시예에 따르면, 상기 밀링가공된 지지체의 입경(d50)은 0.1 내지 1.5 ㎛ 일 수 있고,
본 발명의 바람직한 실시예에 따르면, 상기 밀링가공된 지지체는 알루미늄계 지지체일 수 있다.
본 발명의 바람직한 실시예에 따르면, 상기 촉매금속은 코발트(Co)와 몰리브덴(Mo)을 포함할 수 있다.
본 발명에 따른 CNS 2차구조물 및 이들이 모여 형성된 집합체는 종래에 없던 새로운 형태의 것들로, 이러한 2차 구조는 새로운 특성을 나타낼 수 있으며, 이를 이용하여 에너지 소재, 기능성 복합재, 의약, 전지, 반도체 등 다양한 분야에 적용될 수 있다.
도 1은 종래기술에 따라 제조된 CNT 얀의 SEM 사진들이다.
도 2는 종래기술에 따라 제조된 CNT 2차구조물의 SEM 사진들이다.
도 3은 본 발명의 일 실시예에 따른 CNS 2차구조물 집합체의 모식도와 이에 포함된 CNS 2차구조물을 확대한 모식도이다.
도 4는 본 발명의 일 실시예에 따른 CNS 2차구조물의 중심부(301)와 외곽부(302)가 표시된 CNS 2차구조물의 SEM 사진이다.
도 5는 본 발명의 일 실시예에 따른 CNS 2차구조물의 일 측면의 SEM 사진이다.
도 6은 매틀랩(MATLAB)-IPT를 이용하여 CNS 2차구조물의 유효내경을 측정하는 방법을 설명하기 위한 이미지사진이다.
도 7은 실시예 1에 따라서 제조된 CNT 2차구조물 집합체의 SEM 사진이다.
도 8은 실시예 2 및 3에 따라서 제조된 CNT 2차구조물 집합체의 SEM 사진들이다.
도 9는 실시예 4 내지 12에 따라서 제조된 CNT 2차구조물 집합체의 SEM 사진들이다.
도 10은 실시예 13 내지 16에 따라서 제조된 CNT 2차구조물 집합체의 SEM 사진들이다.
도 11은 비교예 1 및 2에 따라서 제조된 CNT 2차구조물 집합체의 SEM 사진들이다.
도 12a는 본 발명의 실시예 1에 따른 2차구조물 집합체의 성장 초기 SEM 사진이다.
도 12b는 도 14a의 A 부분(CNT 2차구조물)을 확대한 SEM 사진이다.
도 12c는 도 14b의 B 부분(CNT 2차구조물의 일측면)을 확대한 SEM 사진이다.
도 13a는 본 발명의 실시예 2에 따른 CNT 2차구조물들 사이에서 발견된 불완전하게 성장한 한 CNT 2차구조물의 SEM 사진이다.
도 13b는 도 15a의 A 부분을 확대한 SEM 사진이다.
도 13c는 도 15b의 B 부분을 확대한 SEM 사진이다.
<부호의 설명>
100 담지촉매 표면
200 CNS 2차구조물 집합체
301 2차구조물의 중심부
302 2차구조물의 외곽부
311 CNS 2차구조물의 촉매표면과 접촉하는 일단부
312 CNS 2차구조물의 밖으로 향한 다른 단부
300 CNS 2차구조물
400 CNS
이하 본 발명에 따른 CNS 2차구조물, 이들의 집합체 및 CNS 2차구조물 혹은 CNS 2차구조물의 집합체를 포함하는 복합재에 대해서 상세하게 설명한다.
본 발명에 따른 CNS 2차구조물은 복수개의 CNS 개체들이 모여 전체 또는 부분적으로 튜브 형상을 갖는 구조물이다.
여기에서 ‘튜브 형상’이라 함은 외곽부보다 중심부에 위치하는 CNS 개체들의 밀도가 낮아서 중심이 비어있는 것처럼 보이되(중공형 또는 포어), 2차구조물의 직경보다 길이가 긴 형상을 의미한다. 여기에서, ‘튜브의 직경’은 달리 언급이 없는 한 ‘튜브의 외경’을 의미한다.
튜브 형상의 횡단면은 원형인 것은 물론이거니와 타원형 또는 이들의 다소 찌그러진 모양으로 형성된 중공 또는 포어를 포함할 수 있으며, 이 중공 또는 포어는 본 기술분야에서 통상의 기술자에게 원형이나 타원형으로 인식될 수 있는 모든 형태를 포함할 수 있다. 상기 중공 또는 포어는 탄소나노구조체의 분포밀도가 외곽부보다 현저히 낮기 때문에 형성된 것이어서 명확한 경계를 갖는다고 보기 어렵다.
따라서 본 발명에서는, 튜브 횡단면의 중공 또는 포어의 형태를 상응하는 면적의 원형으로 보았을 때의 직경을 튜브의‘유효내경’으로 정의한다. 상기 유효내경은 탄소나노구조체의 2차구조물이 이루는 튜브 형상의 횡단면을 전자현미경사진의 명암비가 소정 수준일 때의 직경, 예를 들면 90%일 때의 직경을 유효내경으로 할 수 있다.
한편, CNS 2차구조물은 이를 구성하는 CNS가 담지촉매로부터 성장한 방향, 즉, 길이방향을 따라 두꺼워지거나 혹은 얇아질 수 있고, 이에 따라 그 중심부와 외곽부의 직경 또한 그 길이방향을 따라 두꺼워지거나 얇아질 수 있다.
본 발명의 다른 실시예에 따른 CNS 2차구조물 집합체(bundle)는 전체 또는 부분적으로 튜브형상을 갖는 CNS 2차구조물들이 모여 서로 엉켜 3차원 형상을 이룸으로써 형성된다. 이 CNS 2차구조물 집합체의 전체적인 모양은 다양한데, 구체적인 예들로 구형, 타원체형, 원기둥형, 원뿔형 또는 원뿔대형 등일 수 있으나 이들로 한정되는 것은 아니다.
이 CNS 2차구조물 집합체의 가장 두꺼운 부분의 두께는 대략 수 마이크로미터(㎛)에서 수천 마이크로미터가 될 수 있으며, 예를 들어 2 내지 2000 ㎛일 수 있다. 또한, 이 CNS 2차구조물 집합체의 길이는, CNS 2차구조물 집합체가 성장한 방향을 기준으로, 담지촉매를 제외하는 경우 대략 수 마이크로미터에서 수천 마이크로미터일 수 있으며, 예를 들어 5 내지 1000 ㎛이다.
본 발명의 또다른 실시예에 따른 복합재는 매트릭스 상에 CNS 2차구조물 혹은 CNS 2차구조물 집합체가 분산된 것일 수 있다. 예를 들어, 복합재는 고분자 중합체와 CNS 2차구조물을 용융혼련하여, 고분자 중합체 매트릭스 상에 CNS 2차구조물 입자가 분산되어 이루어진 것일 수 있다. 매트릭스의 원료로는 특별히 제한되는 것은 아니나, 고분자 중합체, 금속, 세라믹 또는 이들의 혼합 등일 수 있다.
이하에서는, 도 3, 4 및 5를 참조하여 CNS 2차구조물, CNS 2차구조물 집합체에 대해 상세히 설명하기로 한다.
도 3은 본 발명의 일 실시예에 따라 형성된 CNS 2차구조물 및 그 집합체를 모식적으로 도시한 도면이다. 도 3에서 참조부호 100으로 표시한 것은, CNS의 합성에 사용된 담지촉매를 가리키며, 참조부호 200은 CNS 2차구조물 집합체를 지칭하고, 참조부호 300은 CNS 2차구조물을 지칭하며, 참조부호 400은 CNS를 칭한다.
본 발명의 일 실시예에 따라 형성된 CNS 2차구조물 집합체(200) 혹은 CNS 2차구조물(300)은 도 3에 도시한 바와 같이, 담지촉매(100)와 함께 존재할 수도 있고, 비록 도면에 도시하지는 않았지만, 후처리 등에 의해 담지촉매(100)와 분리되어 개별적으로 존재할 수 있음은 본 기술분야에서 통상의 지식을 지닌 자는 알 수 있을 것이다.
도 3에 도시한 바와 같이, CNS 2차구조물 집합체(200)는 복수개의 CNS 2차구조물(300)이 조밀하게 모여 이루어지며, 일부 CNS 2차구조물은 랜덤하게 엉켜 있을 수 있다.
본 발명의 일 실시예에서 CNS 2차구조물 집합체는 본 발명에 따른 새로운 형태의 중공형 CNS 2차구조물들이 모여서 구성될 수 있고, 혹은 본 발명에 따른 중공형 CNS 2차구조물에, 일부 종래의 속이 모두 채워진 CNS 2차구조물이 함께 포함되어 구성될 수도 있다.
본 발명의 CNS 2차구조물 집합체는, CNS 2차구조물 집합체 내의 모든 CNS 2차구조물 개수를 기준으로 본 발명에 따른 중공형 CNS 2차구조물이 10 % 이상 포함될 수 있고, 혹은 30 % 이상 포함될 수 있으며, 혹은 50 % 이상, 혹은 80 % 이상 포함되도록 구성될 수 있다.
도 3에서 CNS 2차구조물 집합체(200)를 구성하는 CNS 2차구조물(300)은, 담지촉매(100)에서 함께 성장한 다수 개의 CNS(400)가 랜덤하게 모이거나 엉키어서 이루어진 것(tangled structure)으로, 대략적으로 한쪽 측면으로 길게 성장한 튜브형의 모양을 형성하고 있다. 보다 구체적으로 설명하면, 도 3에 도시한 바와 같이, CNS 2차구조물(300)은 일단(311)이 담지촉매(100)에 연결되고 그 일단(311)으로부터 나머지 일단(312)까지의 길이가 대략 5 내지 10000 ㎛인, 다수 개의 CNS(400)가 랜덤하게 모이거나 엉키어서 이루어진 것이다.
도 3에서 원으로 표시한 것은 CNS 2차구조물 집합체(200)를 구성하고 있는 CNS 2차구조물(300)을 확대하여 보여주는 것이다. 이를 살펴보면, CNS 2차구조물(300)이 비어있는 중심부(301)와 이 중심부(301)를 감싸고 있는 튜브형의 외곽부(302)로 구성됨을 알 수 있다.
도 4는 본 발명의 일 실시예에 따른 CNS 2차구조물의 중심부(301)와 외곽부(302)가 표시된 CNS 2차구조물의 SEM 사진이고, 도 5는 도 4의 부분확대사진이다. 본 발명의 일 실시예에서 CNS 2차구조물(300)의 중심부(301)란, 그 속에 존재하는 CNS(400)의 분포밀도가 외곽부(302)에 존재하는 CNS의 분포밀도 보다 상대적으로 낮은 부분을 말할 수 있다. 예를 들어, 중심부(301)의 CNS 분포밀도는 외곽부(302)의 CNS 분포밀도보다 대략적으로 1/3 이하이거나 혹은 1/4 이하 혹은 1/5 이하 일 수 있다.
중심부의 CNS 분포밀도가 낮다는 것은 중심부가 실질적으로 비어 있다는 것으로 볼 수 있다. 구체적으로 말해서, 중심부에 해당하는 공간이 실질적으로 비어 있다는 것은 실질적으로 CNS(400)가 존재한다고 하더라도 해당 공간이 70 % 이상 비어 있는 것을 의미할 수 있다. 예를 들어, 도 4 및 5를 살펴보면, SEM 사진상 어둡게 나타난 부분이 중심부(301)이며, 중심부가 어둡게 나타나는 것은 그 속에 존재하는 CNS 개체들이 적기 때문이다. 대략적으로 CNS 개체들이 중심부(301)에서 차지하는 면적은 중심부(301) 면적의 30 % 미만에 해당된다. 또한, 일 실시예에서 중심부에 해당하는 공간이 실질적으로 비어 있다는 것은 실질적으로 CNS가 존재한다고 하더라도 해당 공간이 80 % 이상, 혹은 90 % 이상 비어 있는 것을 의미할 수 있다.
이렇게 다른 부분에 비해 CNS(400)가 존재하지 않거나, 존재한다고 하더라도 그 분포가 미미한 부분이 CNS 2차구조물(300)의 중심부(301)를 구성하며, 이는 대략적으로 원통형 중공 또는 포어로 이루어져 있기 때문에, 2차구조물은 전체 또는 부분적으로 튜브형상을 갖는다. 이 원통형 포어의 직경, 즉 튜브형상의 내경 또는 유효내경(a)은 대략 0.1 내지 30 ㎛이고, 혹은 0.5 내지 9 ㎛이며, 혹은 0.5 내지 3 ㎛이고, 혹은 0.5 내지 2 ㎛이며, 혹은 0.5 내지 1.5 ㎛일 수 있다.
본 발명의 일 실시예에 따르면, 유효내경(a)은 매틀랩-이미지 프로세싱 툴박스(Matlab-Image Processing Toolbox)를 이용하여 측정할 수 있다[Rafael C. Gonzalez, et al 지음. 유현중 옮김. "MATLAB을 이용한 디지털 영상처리", McGraw-Hill Korea, 2012, 페이지 509)].
도 6을 참조하여 보다 구체적으로 설명하면, 도 6(a)와 같은 전자현미경 사진을 이미지프로세스의 데이터입력 전환 과정을 통해 수학적인 해석이 용이한 이상적인 원형을 가진 가상의 대응 구조체로서 더욱 명확한 흑백명암비가 부여된 상태로 (b) 와 같이 변환한다. 이미지 프로세스 소프트웨어의 공간분할 기능함수를 이용하여 사진의 흑색부의 중심에서 임의의 반경을 가지는 원을 정의하고 사진을 흑백픽셀의 수로써 디지털화한후 그 비를 측정한다.
예를 들어, 위와 같은 방법으로 구한 원 반경에 따른 흑백픽셀수(명암비)가 하기 표 1과 같다면, 명암비의 특정값을 CNS 2차구조물의 유효내경으로 정할 수 있다(예를 들어, 명암비 90%인 3.4㎛).
표 1
반경(㎛) 흑백픽셀수(명암비)
0 98.9
0.5 96.6
1 94.8
1.5 93.2
2 6.4
2.5 1.9
3 1.1
이와 같이 본 발명에 따른 CNS 2차구조물은 유효내경을 가질 수 있는 튜브형상이라는 점에서 종래에는 없었던 신규한 2차구조물이다.
일 실시예에서, CNS 2차구조물의 길이는 예를 들어, 5 내지 10000 ㎛일 수 있고, 혹은 15 내지 1000 ㎛이며, 혹은 20 내지 500 ㎛일 수 있다.
또한, 일 실시예에서 CNS 2차구조물의 직경, 즉 튜브형상의 외경(도 3의 참조부호 “b”)은 대략적으로 1 내지 100 ㎛이며, 혹은 1 내지 30 ㎛이고, 혹은 1 내지 10 ㎛이며, 혹은 2 내지 9 ㎛이며, 혹은 3 내지 8 ㎛일 수 있다. 외경은 튜브 형상의 최외곽을 이루는 원의 직경을 의미한다.
본 발명의 일 실시예에 따르면, CNS 2차구조물 외곽부의 두께, 즉, CNS 2차구조물의 외경에서 내경을 제외한 크기는, 대략적으로 0.5 내지 99.5 ㎛이고, 혹은 0.5 내지 29.5 ㎛이며, 혹은 0.5 내지 9.5 ㎛이며, 혹은 1 내지 8 ㎛일 수 있다.
상기 CNS 2차구조물의 외곽부와 중심부에서의 CNS 분포밀도는, CNS 2차구조물의 길이 방향에 수직한 면, 즉 튜브형상의 직경방향으로 단위 면적당 CNS 개체가 점유하는 면적으로 측정할 수도 있다. 단위면적은, 예를 들어, 10 ㎚2일 수 있다.
또 다른 방법으로, CNS 분포밀도는 매틀랩-이미지 프로세싱 툴박스(Matlab-Image Processing Toolbox) 및 커브 피팅 툴박스(Curve Fitting Toolbox)를 이용하여 집합체의 내부 중심점으로부터 축차적으로 일정한 직경 증가 방향으로 SEM 사진의 명암비를 측정하여 명암비의 직경 방향 진행에 따른 변화의 1차 도함수의 변화를 집합체의 일측면에 대한 밀도함수로 변환하여 측정할 수 있다 [Rafael C. Gonzalez, et al 지음. 유현중 옮김. “MATLAB을 이용한 디지털 영상처리”, McGraw-Hill Korea, 2012, 페이지 509)].
도 3에서 참조부호 400으로 표시한 것은, CNS 2차구조물(300) 표면의 일부를 확대한 SEM 사진으로, 이를 살펴보면, CNS(400)가 촘촘히 엉켜서 CNS 2차구조물(300)을 이루고 있음을 알 수 있다. 이 CNS는 바람직하게는 CNT이며, CNT는 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT) 또는 이들의 혼합일 수 있고, 구체적인 일례로 다중벽 탄소나노튜브(MWCNT)일 수 있다.
일 실시예에서, CNS(400)의 길이는, 예를 들어, 1 ㎛ 내지 10 mm, 혹은 1 ㎛ 내지 1 mm일 수 있고, CNS(400)의 직경은 0.1 내지 200 nm, 혹은 2 내지 100 nm일 수 있다.
본 발명의 일 실시예에서 CNS(400)는 단일벽 탄소나노튜브(SWCNT)가 10 중량% 이하로 포함된 CNS일 수 있고, 혹은 단일벽 탄소나노튜브(SWCNT)가 0.000001 내지 10 중량%로 포함된 CNS일 수 있다.
본 발명의 또 다른 실시예에서 CNS(400)는 이중벽 탄소나노튜브(DWCNT)가 10 중량% 이하로 포함된 CNT일 수 있고, 혹은 이중벽 탄소나노튜브(DWCNT)가 0.0000001 내지 10 중량%로 포함된 CNS일 수 있다.
본 발명의 다른 실시예에 따르면, 중심부와 외곽부는 그 접하고 있는 면에서 CNS의 분포밀도가 크게 변하므로, CNS 2차구조물의 주 원통형상에서 불규칙적으로 돌출한 CNS에 대한 분포밀도를 고려하지 않는 조건으로, CNS 2차구조물의 중심에서 외곽까지에 있어서 CNS의 분포밀도가 가장 크게 변하는 부분이 중심부와 외곽부가 접하는 면일 수 있다.
이하에 본 발명에 따른 CNS 2차구조물 및 그 집합체를 제조하는 방법을 상세하게 설명한다. 이하의 기재에서 본 기술분야에서 통상의 지식을 지닌 자에게 자명한 사항이나 자명한 기술은 생략하기로 한다.
본 발명에 따른 CNS 2차구조물은 밀링가공된 지지체에 촉매금속을 담지한 후 분쇄 및 소성하여 얻은 담지촉매 존재하에 탄소원을 포함하는 반응가스를 반응시켜 제조할 수 있다.
본 발명의 일 실시예에 따르면, 밀링 가공 처리된 지지체, 바람직하게는 알루미늄계 지지체에 활성금속을 담지하고, 이를 소성하여 얻은 CNS 제조용 촉매를 사용하여 화학기상증착법(CVD)으로 제조할 수 있다.
상술한 바와 같은 중심부에 중공(또는 포어)이 형성된 튜브형상의 CNS 2차구조물 또는 이들로 구성된 CNS 2차구조물 집합체를 제조하기 위해, 활성금속이 담지되는 지지체를 밀링 가공처리할 수 있다.
본 발명의 일 실시예에 따른 밀링 가공은 볼 밀링 가공일 수 있고, 100 rpm 이상의 조건에서 실시될 수 있으며, 혹은 100 내지 1000 rpm 조건에서 실시될 수 있고, 혹은 150 내지 500 rpm 조건에서 실시될 수 있다.
본 발명의 바람직한 실시예에 따르면 지지체는, 밀링 가공 처리된 AlO(OH), Al(OH)3또는 Al2O3일 수 있다. 밀링 가공 처리된 AlO(OH), Al(OH)3및 Al2O3는 입자크기(d50)가 0.1 내지 1.5 ㎛이고, 더욱 바람직하게는 0.15 내지 0.6 ㎛이며, 가장 바람직하게는 0.2 내지 0.4 ㎛일 수 있다. 상기 범위 내에서 본 발명에 따른 CNS 2차구조물이 높은 함량으로 생성될 수 있다.
상기 밀링 가공 처리 전 AlO(OH)의 입자크기(d50)는 구체적인 예로 1 내지 100 ㎛이고, 더욱 바람직하게는 3 내지 60 ㎛일 수 있다. 또한, 이 밀링 가공 처리 전 AlO(OH)의 표면적(surface area)은 10 내지 1000 m2/g이고, 혹은 50 내지 600 m2/g일 수 있다. 그리고, 이 밀링 가공 처리 전 AlO(OH)의 포어 부피(pore volume)는 0.1 내지 2 mL/g이고, 혹은 0.2 내지 1.5 mL/g일 수 있다.
상기 밀링 가공 처리 전 Al(OH)3의 입자크기(d50)는 구체적인 예로 10 내지 80 ㎛이고, 혹은 20 내지 60 ㎛이다. 또한, 상기 밀링 가공 처리 전 Al2O3의 입자크기(d50)는 구체적인 예로 10 내지 100 ㎛이고, 혹은 20 내지 80 ㎛이다.
본 발명의 일 실시예에 따른 촉매 금속으로는 Mo 금속과 Co 금속을 사용할 수 있지만 이들로 한정되는 것은 아니다.
Mo 금속과 Co 금속은 그 몰비(Mo/Co)가 0 보다 크고 1 보다 작거나, 바람직하게는 1/20 내지 1/2.5, 더욱 바람직하게는 1/10 내지 1/2.5, 가장 바람직하게는 1/6 내지 1/4 일 수 있으며, 이 범위 내에서 제조되는 CNS 2차구조물의 중심부와 외곽부의 분포밀도 차이가 커, 중심부에 포어 형성이 뚜렷한 CNS 2차구조물을 구성할 수 있다. Mo 금속과 Co 금속의 몰비(Mo/Co)를 조절하면 원하는 길이의 CNS 2차구조물을 얻을 수 있다.
본 발명의 일 실시예에 따른 소성 온도는 200 ℃ 초과 내지 800 ℃ 미만일 수 있고, 혹은 400 내지 675 ℃이며, 혹은 550 내지 650 ℃이고, 혹은 600 내지 650 ℃인데, 이 범위 내에서 중심부인 포어를 가진 본 발명의 CNS 2차구조물이 높은 함량으로 생성될 수 있다.
덧붙여, 본 발명에 따른 새로운 형태의 CNS 2차구조물 집합체는 촉매 입자가 외부 공간으로 돌출되어 형성되어서, CNS 2차구조물을 잘라내는 공정 등과 같은 후처리 과정이 용이하고, 고분자 복합체 및 용액 분산형 제품의 제조시 분산성이 뛰어난 효과가 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 본 기술분야에서 통상의 지식을 가진 자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예
이하 실시예는 탄소나노구조체(CNS)로서 탄소나노튜브(CNT)를 제조한 경우를 예로 들어 설명한다.
[실시예 1]
<AlO(OH)의 합성>
Al(O-sec-Bu)350g을 EtOH 25 ml와 혼합하여 120 ℃ 하에서 30 분 동안 교반한 다음, 증류수 15 ml를 투입하고 상온까지 냉각시켰다. 냉각된 생성물을 글라스 필터(glass filter)로 여과하여 침전물을 수득하였고, 이를 아세톤으로 수차례 씻어준 다음, 120 ℃에서 3 시간 동안 건조시켜 AlO(OH)를 제조하였다.
<지지체의 제조>
제조된 AlO(OH)를 각각 지르코니아 볼을 이용하여 200 내지 250 rpm 하에서 볼 밀링(ball-milling)하였다. 밀링 가공된 AlO(OH) 지지체의 입자크기(d50)는 0.3 ㎛이었다.
<AlO(OH)로부터 담지촉매의 제조>
Co(NO3)2·6H2O870mg및 (NH4)6Mo7O24120mg을 증류수 50 mL에 완전히 용해시키고, 여기에 밀링 가공된 AlO(OH) 1.0 g을 더한 다음, 60 ℃, 85 밀리바(mb) 하에서 30 분 동안 혼합한 후, 10 mb 하에서 30 분 동안 혼합하여 고상의 담지촉매 전구체를 수득하였다. 수득된 담지촉매 전구체를 120 ℃에서 1시간 동안 건조시킨 후, 분쇄한 다음, 600 ℃에서 4 시간 동안 소성시켜 1.12 g의 담지촉매를 제조하였다.
<CNT 2차구조물의 합성>
제조된 담지촉매 2 mg을 실험실 규모의 고정층 장치 내 55 mm의 내경을 가진 석영관의 중간부에 장착한 후, 질소 분위기에서 700 ℃까지 승온하여 유지시키고, 질소(N2),수소(H2)및 에틸렌(C2H4)가스를 부피 혼합비 1:1:1로 흘리면서 1시간 동안 합성하여 2254 %의 반응수율로 CNT 2차구조물 및 이들로 구성된 CNT 2차구조물 집합체를 제조하였다.
상기 반응수율은 하기 수학식 1로 계산되었다.
[수학식 1]
반응수율(%)=[(반응 후 총 중량-사용한 촉매 중량)/사용한 촉매 중량]×100
상기와 같이 제조된 CNT 2차구조물 집합체의 SEM 사진은 도 7에 도시하였다. 도 7에 나타낸 바와 같이, 제조된 CNT 2차구조물 집합체는 다수 개의 CNT 2차구조물로 이루어져 있고, 개개의 CNT 2차구조물은, 포어(pore)인 중심부와 이를 감싸는 외곽부로 구성된 튜브형상임을 확인할 수 있었다.
[실시예 2 및 3]
<지지체의 제조>
400 ℃에서 열처리된 Al(OH)3및 gamma-Al2O3를 각각 지르코니아 볼을 이용하여 200 내지 250 rpm에서 볼 밀링(ball-milling)하였다. 밀링 가공된 Al(OH)3지지체와 gamma-Al2O3의 입자크기(d50)는 각각 0.250 ㎛, 0.265 ㎛ 이었다.
<담지촉매의 제조>
AlO(OH) 대신 상기 밀링 가공된 Al(OH)3및 gamma-Al2O3를 각각 사용한 것(순서대로 실시예 2 및 3)을 제외하고는 상기 실시예 1과 동일한 방법으로 각각 1.1 g 및 1.2 g의 담지촉매를 제조하였다.
<CNT 2차구조물의 합성>
담지촉매만 달리할 뿐, 상기 실시예 1과 동일한 방법으로 CNT를 합성하여 각각 2280 % 및 2450 %의 반응수율로 CNT 2차구조물 집합체를 제조하였다.
각각 제조된 CNS 2차구조물 집합체 SEM 사진은 도 8에 첨부하였다. 도 8에 나타낸 바와 같이, 지지체로 볼 밀링한 Al(OH)3또는 gamma-Al2O3를 사용하여 제조된 CNT 2차구조물 집합체는 그 CNT 2차구조물에 중심부인 포어(pore)가 형성된 새로운 형태의 CNT 2차구조물들로 구성된 집합체(new type bundles)임을 확인할 수 있었다.
[실시예 4 내지 12]
각각 300, 400, 500, 550, 625, 650, 675, 700 및 750 ℃에서 소성된 담지촉매를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 합성하여 각각 1664 %, 1921 %, 2245 %, 2074 %, 2015 %, 2065 %, 2100 %, 2300 % 및 2464 %의 반응수율로 CNT 2차구조물 집합체를 제조하였다.
각각 제조된 CNS 2차구조물 다발의 SEM 사진을 도 9에 도시하였다.
도 9에 나타낸 바와 같이, 제조된 CNT 2차구조물 집합체는 모두 중심부인 포어(pore)가 형성된 새로운 형태의 CNT 2차구조물들로 구성된 집합체(new type bundles)임을 확인할 수 있었다.
[실시예 13 내지 16]
담지된 Mo 금속과 Co 금속의 몰비(Mo/Co)가 각각 1/20, 1/10, 1/5 및 1/2.5인 담지촉매를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 합성하여 각각 357 %, 790 %, 2029 % 및 1444 %의 반응수율로 CNT 2차구조물 집합체를 제조하였다.
각각 제조된 CNT 2차구조물 집합체의 SEM 사진은 도 10에 첨부하였다.
도 10에 나타낸 바와 같이, 제조된 CNT 2차구조물 집합체는 모두 중심부인 포어(pore)가 형성된 새로운 형태의 CNT 2차구조물들로 구성된 집합체(new type bundles)임을 확인할 수 있었다. 특히, 담지촉매의 Mo/Co 값이 증가할수록 제조되는 CNT 2차구조물의 중심부인 포어가 점차 뚜렷해지다가, Mo/Co 값이 1/5인 담지촉매를 사용한 경우(실시예 15)에 제조되는 CNT 2차구조물의 중심부인 포어가 가장 뚜렷하게 나타남을 확인할 수 있었다.
[비교예 1 및 2]
각각 볼 밀링하지 않은 Al(OH)3및 gamma-Al2O3를 사용한 것을 제외하고는 상기 실시예 2와 동일한 방법으로 합성하여 각각 1463 % 및 480 %의 반응수율로 CNT 2차구조물 집합체를 제조하였다. 각각 제조된 CNT 2차구조물 집합체의 SEM 사진은 도 11에 첨부하였다.
도 11에 나타낸 바와 같이, Al(OH)3를 촉매 지지체로 사용하여 제조된 CNT 2차구조물 집합체의 경우(비교예 1) 비교적 작은 다발은 관찰되나, CNT 2차구조물의 중심부가 채워져 있는 종래의 형태이고, gamma-Al2O3를 촉매 지지체로 사용하여 제조된 CNT 2차구조물 집합체의 경우(비교예 2) 다발이 적게 생성되었으며, 이 집합체도 역시 CNT 2차구조물의 내부가 모두 채워져 있는 종래의 형태(thick bundles)임을 확인할 수 있었다.
도 4 내지 도 10에 나타낸 바와 같이, 본 발명의 CNT 2차구조물(실시예 1 내지 16)은 종래의 CNT 2차구조물(비교예 1 및 2)과는 달리 중심부가 비어 있는 새로운 형태임을 확인할 수 있었다.
실시예 1, 7 및 8의 CNT 2차구조물에 대하여 MATLAB-IPT에 의한 명암비 90%로 측정한 내경, SEM 관찰에 의한 외경 및 길이는 다음과 같았다.
표 2
구분 유효내경 외경 길이
실시예 1 1.2㎛ 2.5 ~ 4 ㎛ 30 ~ 60 ㎛
실시예 7 1.1㎛ 2.3 ~ 3.5 ㎛ 20 ~ 40 ㎛
실시예 8 1.3㎛ 2.5 ~ 3.7 ㎛ 20 ~ 40 ㎛
CNT 2차구조물의 초기 성장 관찰
도 12a 내지 12c에 나타낸 바와 같이, 실시예 1에 따른 CNT 2차구조물에 있어서, 완전한 성장을 하기 이전의 성장 초기에 있는, 길이가 10 ㎛ 이하인 CNT 2차구조물에 있어서도, 중심부에 해당하는 포어가 형성됨을 확인할 수 있었다. 이로부터 새로운 형태의 CNT 2차구조물은 중심부에 해당하는 포어가 2차구조물의 한쪽 단부로부터 다른쪽 단부까지 전 구간에 걸쳐 비어 있음을 알 수 있다.
또한, 도 13a 내지 13c에 나타낸 중심부인 포어를 외곽부가 완전하게 감싸지 못하고 불완전하게 성장한 CNT 2차구조물의 형태로부터, 본 발명에 따른 CNT 2차구조물의 중심부가 외부에서 보이는 부분만이 아닌 2차구조물 전 구간에 걸쳐 비어 있거나 CNT의 분포밀도가 크게 낮음을 알 수 있다.
[시험방법]
1) CNT 2차구조물 집합체나 CNT 2차구조물의 길이나 직경(외경) 등은 SEM(Scanning Electron Microscope)을 이용하여 측정하였다. 사용된 SEM 장치는 FESEM (HITACHI S-4800)이고, SEM 관찰 조건은 가속전압 5 ㎸, Emission current 10 ㎂, Working distance 8 ㎜, Detector SE이었다.
2) CNT 2차구조물의 내경은 매틀랩-이미지 프로세싱 툴박스(Matlab-Image Processing Toolbox)를 이용하여, 이미지 프로세스 소프트웨어의 공간분할 기능함수를 이용하여 사진의 흑색부의 중심에서 임의의 반경을 가지는 원을 정의하고 사진을 흑백픽셀의 수로써 디지털화한후 명암비를 측정하고, 명암비 90% 일 때의 직경을 구하였다.
3) 지지체의 입경(particle size, d50)은 입도 분석기(Microtrac, Bluewave) Fluid(Water, 40%), 초음파처리(40 watt, 3min)를 이용하여 측정하였다.
본 발명에 따른 CNS 2차구조물 및 이들이 모여 형성된 집합체는 종래에 없던 새로운 형태의 것들로, 이러한 2차 구조는 새로운 특성을 나타낼 수 있으며, 이를 이용하여 에너지 소재, 기능성 복합재, 의약, 전지, 반도체 등 다양한 분야에 적용될 수 있다.

Claims (18)

  1. 복수개의 탄소나노구조체(carbon nanostructures, CNS)가 전체 또는 부분적으로 튜브 형상을 이루도록 집합되어 형성된 탄소나노구조체의 2차구조물.
  2. 제1항에 있어서,
    상기 탄소나노구조체의 2차구조물은 복수개의 탄소나노구조체가 서로 엉켜 형성된 구조물(tangled structure)인 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  3. 제1항에 있어서,
    상기 탄소나노구조체의 2차구조물이 갖는 튜브 형상은 튜브직경방향으로 촬영한 전자현미경사진의 명암비가 90%일 때의 직경을 유효내경으로 하는 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  4. 제1항에 있어서,
    상기 탄소나노구구조체의 2차구조물의 유효내경이 0.1 내지 30 ㎛인 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  5. 제1항에 있어서,
    상기 탄소나노구조체가 탄소나노튜브, 탄소나노로드, 탄소나노헤어 또는 탄소나노파이버인 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  6. 제1항에 있어서,
    상기 탄소나노구조체가 탄소나노튜브인 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  7. 제1항에 있어서,
    상기 탄소나노구조체는 직경 0.1 내지 200 nm, 길이 1 ㎛ 내지 10 mm인 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  8. 제1항에 있어서,
    상기 탄소나노구조체의 2차구조물은 외경 1 내지 100㎛, 길이 5 내지 10000 ㎛의 튜브 형상인 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  9. 제6항에 있어서,
    상기 탄소나노튜브는, 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT) 또는 이들의 혼합으로 이루어진 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  10. 제6항에 있어서,
    상기 탄소나노튜브는, 이중벽 탄소나노튜브(DWCNT)가 10 중량% 이하로 포함된 것을 특징으로 하는 탄소나노구조체의 2차구조물.
  11. 제1항 내지 제10항 중 어느 한 항의 상기 2차구조물이 집합되어 3차원 형상을 이루고 있는 탄소나노구조체 2차구조물의 집합체.
  12. 제11항에 있어서,
    상기 2차구조물 집합체의 3차원 형상은, 구형, 타원체형, 원기둥형, 원뿔형 또는 원뿔대형인 것을 특징으로 하는 탄소나노구조체 2차구조물의 집합체.
  13. 제1항 내지 제10항 중 어느 한 항의 탄소나노구조체 2차구조물을 포함하는 복합재.
  14. 제11항 또는 제12항의 탄소나노구조체 2차구조물 집합체를 포함하는 복합재.
  15. 밀링가공된 지지체에 촉매금속을 담지한 후 분쇄 및 소성하여 얻은 담지촉매 존재하에 탄소원을 포함하는 반응가스를 반응시키는 것을 포함하는 제1항 내지 제10항 중 어느 한 항의 탄소나노구조체 2차구조물의 제조방법.
  16. 제15항에 있어서, 상기 밀링가공된 지지체의 입경(d50)은 0.1 내지 1.5 ㎛인 것을 특징으로 하는 탄소나노구조체 2차구조물의 제조방법.
  17. 제15항에 있어서, 상기 밀링가공된 지지체는 알루미늄계 지지체인 것을 특징으로 하는 탄소나노구조체 2차구조물의 제조방법.
  18. 제15항에 있어서, 상기 촉매금속은 코발트(Co)와 몰리브덴(Mo)을 포함하는 것을 특징으로 하는 탄소나노구조체 2차구조물의 제조방법.
PCT/KR2012/011271 2011-12-21 2012-12-21 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재 WO2013095045A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280030717.XA CN103619755B (zh) 2011-12-21 2012-12-21 碳纳米结构体的新型二级结构物、其集合束及包含其的复合材料
US13/824,925 US9512006B2 (en) 2011-12-21 2012-12-21 Secondary structure of carbon nanostructure, bundle thereof and composite comprising same
JP2014548674A JP5903727B2 (ja) 2011-12-21 2012-12-21 カーボンナノ構造体の新規な二次構造物、この集合体及びこれを含む複合材
EP12860897.3A EP2796408B1 (en) 2011-12-21 2012-12-21 Novel secondary structure of carbon nanostructures, assembly thereof, and composite comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0139150 2011-12-21
KR20110139150 2011-12-21
KR10-2012-0143568 2012-12-11
KR1020120143568A KR101339589B1 (ko) 2011-12-21 2012-12-11 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재

Publications (1)

Publication Number Publication Date
WO2013095045A1 true WO2013095045A1 (ko) 2013-06-27

Family

ID=48986941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011271 WO2013095045A1 (ko) 2011-12-21 2012-12-21 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재

Country Status (6)

Country Link
US (1) US9512006B2 (ko)
EP (1) EP2796408B1 (ko)
JP (1) JP5903727B2 (ko)
KR (1) KR101339589B1 (ko)
CN (1) CN103619755B (ko)
WO (1) WO2013095045A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884384A (zh) * 2013-09-30 2015-09-02 Lg化学株式会社 用于生产碳纳米管的催化剂以及使用该催化剂生产的碳纳米管
US20150298974A1 (en) * 2013-09-30 2015-10-22 Lg Chem.Ltd. Method for controlling bulk density of carbon nanotube agglomerate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101673647B1 (ko) * 2013-05-27 2016-11-07 주식회사 엘지화학 탄소나노구조체 제조용 담지촉매, 이의 제조방법 및 이를 이용하여 탄소나노구조체의 2차구조물을 제조하는 방법
KR101535388B1 (ko) * 2013-07-19 2015-07-08 주식회사 엘지화학 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
US9931778B2 (en) 2014-09-18 2018-04-03 The Boeing Company Extruded deposition of fiber reinforced polymers
US10118375B2 (en) 2014-09-18 2018-11-06 The Boeing Company Extruded deposition of polymers having continuous carbon nanotube reinforcements
KR102195891B1 (ko) * 2015-05-29 2020-12-28 코오롱인더스트리 주식회사 연료 전지용 캐소드 촉매층, 이의 제조 방법 및 이를 포함하는 연료 전지용 막-전극 어셈블리
JP7177951B2 (ja) * 2019-03-22 2022-11-24 キャボット コーポレイション 電池用途向けのアノード電極組成物および水性分散液
WO2024123020A1 (ko) * 2022-12-05 2024-06-13 주식회사 엘지화학 인탱글형 탄소나노튜브 제조용 담지 촉매 및 이를 이용한 인탱글형 탄소나노튜브의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169072A (ja) * 2004-12-17 2006-06-29 Toyota Motor Corp 筒状炭素構造体及びその製造方法、並びに、ガス吸蔵材料、複合材料及びその強化方法、摺動材料、フィールドエミッション、表面分析装置、塗装材料
JP2008120658A (ja) * 2006-11-15 2008-05-29 Sonac Kk 多層カーボンナノチューブの集合構造
JP2009057249A (ja) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd 炭素構造体、複合部材およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378075B2 (en) * 2002-03-25 2008-05-27 Mitsubishi Gas Chemical Company, Inc. Aligned carbon nanotube films and a process for producing them
WO2003090255A2 (en) * 2002-04-18 2003-10-30 Northwestern University Encapsulation of nanotubes via self-assembled nanostructures
JP2004292227A (ja) * 2003-03-26 2004-10-21 Mitsubishi Electric Corp カーボンナノチューブの製造方法、およびそれを用いた冷陰極型画像表示装置とその製造方法
US7354877B2 (en) * 2003-10-29 2008-04-08 Lockheed Martin Corporation Carbon nanotube fabrics
JP4604563B2 (ja) * 2004-06-08 2011-01-05 住友電気工業株式会社 カーボンナノ構造体の製造方法
JP4930931B2 (ja) 2004-10-01 2012-05-16 独立行政法人物質・材料研究機構 C60フラーレンチューブとその製造方法
WO2006137893A2 (en) * 2004-10-01 2006-12-28 Board Of Regents Of The University Of Texas System Polymer-free carbon nanotube assemblies (fibers, ropes, ribbons, films)
EP1674154A1 (fr) * 2004-12-23 2006-06-28 Nanocyl S.A. Procédé de synthèse d'un catalyseur supporté pour la fabrication de nanotubes carbone
JP4846245B2 (ja) * 2005-02-17 2011-12-28 シャープ株式会社 空気清浄装置およびエアコン
US7959842B2 (en) * 2008-08-26 2011-06-14 Snu & R&Db Foundation Carbon nanotube structure
KR101007184B1 (ko) * 2008-10-17 2011-01-12 제일모직주식회사 탄소나노튜브 합성용 담지촉매, 그 제조방법 및 이를 이용한 탄소나노튜브
JP2011068509A (ja) * 2009-09-25 2011-04-07 Aisin Seiki Co Ltd カーボンナノチューブ複合体およびその製造方法
US8252713B1 (en) * 2010-11-10 2012-08-28 King Abdulaziz City Science And Technology Combination catalysts based on iron for the substantial synthesis of multi-walled carbon nanotubes by chemical vapor deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169072A (ja) * 2004-12-17 2006-06-29 Toyota Motor Corp 筒状炭素構造体及びその製造方法、並びに、ガス吸蔵材料、複合材料及びその強化方法、摺動材料、フィールドエミッション、表面分析装置、塗装材料
JP2008120658A (ja) * 2006-11-15 2008-05-29 Sonac Kk 多層カーボンナノチューブの集合構造
JP2009057249A (ja) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd 炭素構造体、複合部材およびその製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 22, 24 November 2009 (2009-11-24), pages 692 - 696
JIA, Y.; HE, L.; KONG, L.; LIU, J.; GUO, Z.; MENG, F.; LUO, T.; LI, M.; LIU, J., CARBON, vol. 47, 2009, pages 1652
KATHYAYINI, H.; WILLEMS, I.; FONSECA, A.; NAGY, J.B.; NAGARAJU, N., CAT. COMMUN., vol. 7, 2006, pages 140
LI J. ET AL.: "Highly-ordered Carbon Nanotube Arrays for Electronics Applications.", APPL. PHYS. LETT., vol. 75, July 1999 (1999-07-01), pages 367 - 369, XP000850812 *
LI, Y.; ZHANG, X.B.; TAO, X.Y.; XU, J.M.; HUANG, W.Z.; LUO, J.H.; LUO, Z.Q.; LI, T.; LIU, F.; BAO, Y., CARBON, vol. 43, 2005, pages 295
RAFAEL C. GONZALEZ ET AL.: "Digital Image Processing Using MATLAB", 2012, MCGRAW-HILL, pages: 509
RAFAEL C. GONZALEZ; YOO HYEON JOONG ET AL.: "Digital Image Processing Using MATLAB", 2012, MCGRAW-HILL, pages: 509
See also references of EP2796408A4 *
ZHANG, X.; CAO, A.; LI, Y.; XU, C.; LIANG, J.; WU, D.; WEI, B., CHEM. PHYS. LETT., vol. 351, 2002, pages 183
ZHANG, X.; LI, Q.; TU, Y.; LI, Y.; COULTER, J. Y.; ZHENG, L.; ZHAO, Y.; JIA, Q.; PETERSON, D. E.; ZHU, Y., SMALL, vol. 3, 2007, pages 244
ZHONG XIAO-HUA ET AL.: "Continuous Multilayered Carbon Nanotuve Yams.", ADV. MATER., vol. 22, November 2009 (2009-11-01), pages 692 - 696, XP055138353 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884384A (zh) * 2013-09-30 2015-09-02 Lg化学株式会社 用于生产碳纳米管的催化剂以及使用该催化剂生产的碳纳米管
US20150298974A1 (en) * 2013-09-30 2015-10-22 Lg Chem.Ltd. Method for controlling bulk density of carbon nanotube agglomerate
EP3053878A4 (en) * 2013-09-30 2017-03-08 LG Chem, Ltd. Catalyst for producing carbon nanotubes and carbon nanotubes produced using same
EP3053880A4 (en) * 2013-09-30 2017-08-02 LG Chem, Ltd. Method for controlling bulk density of carbon nanotube agglomerate
US9809458B2 (en) * 2013-09-30 2017-11-07 Lg Chem, Ltd. Method for controlling bulk density of carbon nanotube agglomerate
US9956546B2 (en) 2013-09-30 2018-05-01 Lg Chem, Ltd. Catalyst for producing carbon nanotubes and carbon nanotubes produced using same

Also Published As

Publication number Publication date
EP2796408B1 (en) 2017-03-29
KR20130072131A (ko) 2013-07-01
EP2796408A1 (en) 2014-10-29
EP2796408A4 (en) 2015-07-29
US9512006B2 (en) 2016-12-06
JP5903727B2 (ja) 2016-04-13
JP2015507597A (ja) 2015-03-12
KR101339589B1 (ko) 2013-12-10
CN103619755A (zh) 2014-03-05
US20140329085A1 (en) 2014-11-06
CN103619755B (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2013095045A1 (ko) 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재
WO2020096338A1 (ko) 탄소 담체 상에 담지된 단일원자 촉매의 제조방법
WO2015008988A1 (ko) 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015190774A1 (ko) 벌크밀도가 조절된 탄소나노튜브 응집체의 제조방법
WO2014204113A1 (ko) 탄소나노튜브섬유 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
Xie et al. Synthesis and characterization of aligned carbon nanotube arrays
WO2017039132A1 (ko) 카본나노튜브의 정제방법
WO2017126776A1 (ko) 카본나노튜브 펠렛 제조장치
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2017126777A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2017126775A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2016126133A1 (ko) 고밀도 번들형 카본나노튜브 및 그의 제조방법
EP3887307A1 (en) Process for preparing a carbon nanotube sheet comprising a uniaxially aligned yarn and carbon nanotube sheet prepared thereby
WO2016024658A1 (ko) 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법
WO2017018667A1 (ko) 열안정성이 개선된 카본나노튜브
WO2018143602A1 (ko) 탄소나노튜브 섬유의 제조방법 및 이로 제조된 탄소나노튜브 섬유
WO2016080801A1 (ko) 질화규소 나노섬유의 제조방법
WO2022124799A1 (ko) 탄소나노튜브 제조용 담지촉매
WO2017048053A1 (ko) 결정성이 개선된 카본나노튜브
Ge et al. Structure and performance of Si3N4/SiC/CNT composite fibres
WO2015047048A1 (ko) 탄소나노튜브 집합체의 벌크 밀도 조절 방법
Cheng et al. Graphene-coated pearl-chain-shaped SiC nanowires
WO2024123020A1 (ko) 인탱글형 탄소나노튜브 제조용 담지 촉매 및 이를 이용한 인탱글형 탄소나노튜브의 제조방법
WO2017052349A1 (ko) 탄소나노튜브 선택도를 조절할 수 있는 탄소나노튜브 제조방법, 이로부터 제조된 탄소나노튜브를 포함하는 복합재

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13824925

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548674

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012860897

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860897

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE