WO2013089090A1 - Led電球用放熱部及びその製造方法 - Google Patents

Led電球用放熱部及びその製造方法 Download PDF

Info

Publication number
WO2013089090A1
WO2013089090A1 PCT/JP2012/082044 JP2012082044W WO2013089090A1 WO 2013089090 A1 WO2013089090 A1 WO 2013089090A1 JP 2012082044 W JP2012082044 W JP 2012082044W WO 2013089090 A1 WO2013089090 A1 WO 2013089090A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
aluminum plate
led
molded product
cylindrical
Prior art date
Application number
PCT/JP2012/082044
Other languages
English (en)
French (fr)
Inventor
成富 正徳
Original Assignee
大成プラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大成プラス株式会社 filed Critical 大成プラス株式会社
Publication of WO2013089090A1 publication Critical patent/WO2013089090A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a heat radiating part for an LED bulb using an LED (Light Emitting Diode) as a light emitting element and a method for manufacturing the same.
  • LED Light Emitting Diode
  • Patent Document 1 discloses an LED bulb heat dissipation part obtained by drawing and knurling an aluminum blank. Not limited to this example, the LED bulb heat radiating section is usually manufactured by drawing, stretching, or die casting.
  • the present invention has been made to solve the above-described problems, and achieves the following object.
  • the objective of this invention is providing the thermal radiation part for LED bulbs which can be manufactured by a simple and low-cost method.
  • the heat radiation part for LED bulbs of the present invention 1 A cylindrical LED bulb heat dissipation part (1, 1b), It is configured by combining a plurality of aluminum plates (plate members 110, 150), Each aluminum plate is joined to another aluminum plate via a resin molded product (30, 30b).
  • the heat radiation part for LED bulbs of the present invention 2 A tubular LED bulb heat dissipation part (1a), It is composed of one aluminum plate material (plate-like member 120) that is bent into a cylindrical shape, The both ends (engagement part 123) of the said aluminum plate material are mutually joined via the resin molded product (35).
  • the heat radiation part for LED bulbs of the present invention 3 is It is the heat radiation part for LED bulbs of the present invention 1 or 2 (1, 1b),
  • the resin molded product is a glove fixing part (40) for fixing a translucent glove (50) covering an LED.
  • the heat radiation part for LED bulbs of the present invention 4 is It is the heat radiation part (1b) for LED bulbs of the present invention 1 or 2,
  • the resin molded product is a base fixing portion (180) for fixing the base (60).
  • the heat radiation part for LED bulbs of the present invention 5 It is the heat radiation part for LED bulbs (1, 1a, 1b) of the present invention 1 or 2,
  • the surface of the aluminum plate (plate members 110, 120, 150) is covered with ultra fine irregularities with a period of 20 to 80 nm, or ultra fine concaves or convexes with a diameter of 20 to 80 nm
  • the said resin molded product is comprised by the resin composition containing 1 or more types selected from polybutylene terephthalate, polyphenylene sulfide, and a polyamide resin, It is characterized by the above-mentioned.
  • the manufacturing method of the heat radiation part for LED bulbs of this invention 6 is as follows. A plurality of aluminum plate materials are immersed in a water-soluble amine compound aqueous solution, and the surface is covered with ultrafine irregularities having a period of 20 to 80 nm, or ultrafine concaves or convexes having a diameter of 20 to 80 nm, and the amine is formed on the surface.
  • An etching process for adsorbing a chemical compound Combining a plurality of aluminum plates that have undergone the etching process, inserting them into a mold for injection molding as a cylinder, and at least one selected from polybutylene terephthalate, polyphenylene sulfide, and polyamide resin on the surface of the plurality of aluminum plates
  • the manufacturing method of the heat radiation part for LED bulbs of this invention 7 is One aluminum plate material that has been bent into a cylindrical shape is immersed in an aqueous solution of a water-soluble amine compound, and the surface thereof is ultrafine irregularities with a period of 20 to 80 nm, or ultrafine recesses or ultrafine protrusions with a diameter of 20 to 80 nm.
  • FIG. 1 is a diagram showing a processing step of an aluminum blank.
  • FIG. 2 is a diagram showing a processing step of an aluminum blank.
  • Drawing 3 is a figure showing the process of manufacturing the heat sink for LED bulbs using a plurality of aluminum board materials.
  • FIG. 4 is a cross-sectional view showing a process of joining a plurality of aluminum plate members by injection joining.
  • FIG. 5 is a view showing the LED bulb heat dissipation portion according to the first embodiment.
  • FIG. 6 is a cross-sectional view of the LED bulb heat dissipation portion according to the first embodiment.
  • FIG. 7 is a diagram showing a process of fixing a translucent glove to the LED bulb heat dissipation part.
  • FIG. 8 is a diagram showing a process of manufacturing a heat radiating part for an LED bulb using one aluminum plate material.
  • FIG. 9 is a diagram illustrating a process of joining both end portions of one aluminum plate member with a resin molded product.
  • FIG. 10 is a diagram illustrating an LED bulb heat dissipation portion according to the second embodiment.
  • FIG. 11 is a diagram showing a processing step of an aluminum blank.
  • FIG. 12 is a diagram illustrating a process of manufacturing a heat radiating part for an LED bulb using a plurality of aluminum plate materials.
  • FIG. 13 is a cross-sectional view showing a process of joining a plurality of aluminum plate members by injection joining.
  • FIG. 14 is a diagram illustrating a process of fixing the base to the LED bulb heat dissipation portion.
  • FIG. 1A shows a flat aluminum blank material (hereinafter referred to as “blank material”) 100.
  • the blank material 100 for example, a commercially available aluminum plate made of A1050 or A5052 can be used.
  • the blank material 100 is subjected to die press molding to form a fan portion 112 having a concavo-convex shape including a convex portion 112a and a concave portion 112b as shown in FIG.
  • the mold press molding performed here is not drawing or stretch molding using punches and dies, but, as shown in FIG. 2, a lower mold 3 and an upper mold 4 obtained by processing a hard metal such as steel.
  • the blank material 100 is sandwiched between the upper mold 4 and the upper mold 4 is pushed to the deepest position of the lower mold 3 to be plastically deformed into a desired shape.
  • the lower mold has a recess 3b that is recessed downward from the upper surface 3a
  • the upper mold 4 has a protrusion 4b that protrudes downward from the lower surface 4a. Yes.
  • FIG. 2A the lower mold has a recess 3b that is recessed downward from the upper surface 3a
  • the upper mold 4 has a protrusion 4b that protrudes downward from the lower surface 4a. Yes.
  • the blank material 100 is sandwiched between the convex portions 4b and the concave portions 3b, and the convex portions 4b are pushed to the deepest position of the concave portions 3b, as shown in FIG. 2 (c).
  • the fan 112 having the concave portions 112b and the convex portions 112a alternately arranged in a fan shape is formed.
  • the concavo-convex shape is formed by die press molding.
  • the concavo-convex shape may be formed by knurling.
  • a knurling process may be performed by a cutting knurling tool, or a knurling process by stamping and rolling may be performed.
  • the outer peripheral surface A knurled process may be applied to form a concavo-convex shape.
  • corrugated shape in the range used as the outer peripheral surface of the cylindrical body shown above is not an essential process.
  • the blank member 100 is trimmed by a trim die without performing die press molding or the like, and a plate-like member having no uneven shape (for example, a rectangular shape)
  • a plate-like member made up of the portion 111 and a fan portion that does not have a concavo-convex shape may be used to create a heat sink for an LED bulb.
  • the plate material formed with the fan part 112 by the above-described die press molding is trimmed with a trim die (not shown) to obtain the plate-like member 110 composed of the fan part 112 and the flat rectangular part 111 connected to the fan part 112. .
  • the rectangular part 111 is located in the center part of a fan, and is a part which comprises the cylindrical part 10 in the thermal radiation part 1 for LED bulbs.
  • the fan part 112 is a part which comprises the taper part 20 in the thermal radiation part 1 for LED bulbs.
  • V-bending is performed to incline the rectangular portion 111 by a predetermined angle from the root (boundary portion with the fan portion 112) to the convex portion 112a side of the fan portion 112. 2) Further, an R-bending process is performed so that the rectangular portion 111 subjected to the V-bending process has a semicylindrical shape.
  • the entire plate-like member 110 including the fan part 112 is made into a semi-cylindrical part.
  • the order of the V bending process and the R bending process may be reversed.
  • two semi-cylindrical plate-like members 110 are used, A cylindrical body is formed by bringing both end portions of the two members into close contact with each other.
  • a thermoplastic resin for injection molding is injected into a region including the joint portion (boundary line between the plate-like members 110 and 110) on the inner peripheral surface of the cylindrical body configured as described above, and is shown in FIG. As described above, the plate-like members 110 and 110 are joined and integrated by the resin molded products 30 and 30.
  • the present inventors firmly joined the surfaces of the resin molded product 30 and the plate-like member 110 by NMT (Nano molding technology) described later.
  • NMT Nemo molding technology
  • the globe fixing portion 40 is also molded on the outer peripheral surface of the cylindrical body.
  • the globe fixing portion 40 is also firmly joined to the surface of the plate-like member 110 by NMT.
  • the globe fixing part 40 is a ring-shaped resin molded product surrounding the outer peripheral surface of the cylindrical body. Since the inner peripheral surface of the ring is formed of a body that is in close contact with the outer peripheral surfaces of both plate-like members 110, the two plate-like members 110 are integrated with each other through the globe fixing portion 40.
  • NMT is a technology developed by the present inventors, and is a known technology as shown in Patent Documents 2 and 3.
  • NMT is a joining technique between aluminum and a resin composition. After a predetermined surface treatment is applied to aluminum, it is inserted into an injection mold, and a molten engineering resin is injected into the mold. Thus, the resin part is molded and at the same time, the molded product and aluminum are joined (hereinafter abbreviated as “injection joining”).
  • the aluminum surface is covered with ultra fine irregularities having a period of 20 to 80 nm (preferably 20 to 50 nm), or ultra fine recesses or ultra fine protrusions having a diameter of 20 to 80 nm (preferably a diameter of 20 to 50 nm). thing.
  • ultra fine irregularities having an RSm of 20 nm to 80 nm.
  • RSm is the average length of contour curve elements defined in Japanese Industrial Standards (JIS B 0601: 2001, ISO 4287: 1997)
  • Rz is Japanese Industrial Standards (JIS B 0601: 2001, ISO 4287: 1997) Is the maximum height specified.
  • the surface layer of aluminum is a thin layer of aluminum oxide, and the thickness is preferably 3 nm or more.
  • Ammonia, hydrazine, or a water-soluble amine compound is chemically adsorbed on the aluminum surface before injection joining.
  • the main component is a hard crystalline thermoplastic resin that can react with a broadly defined amine compound such as ammonia, hydrazine, or water-soluble amines at 150 to 200 ° C.
  • a resin composition containing polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyamide resin or the like as a main component is a resin composition containing polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyamide resin or the like as a main component.
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • polyamide resin polyamide resin
  • a shaped aluminum part (for example, the plate-like member 110 having a semi-cylindrical shape in the present embodiment) is put into a degreasing tank to perform a degreasing operation.
  • the surface layer is dissolved by immersing in a caustic soda aqueous solution having a concentration of several percent, and the dirt that cannot be removed by the degreasing operation is removed together with the aluminum surface layer.
  • it is immersed in an aqueous nitric acid solution having a concentration of several percent to neutralize and remove sodium ions and the like adhering to the surface in the previous operation.
  • the operation up to this point is an operation for making the surface of the aluminum part a clean surface that is structurally and chemically stable. If the aluminum parts are clean and free from dirt and corrosion, these pretreatment operations can be omitted.
  • NMT The important processes in NMT are as follows.
  • an aluminum part is immersed in an aqueous solution of a water-soluble amine compound under suitable conditions, and the surface of the part is etched to form ultrafine irregularities with a period of 20 to 80 nm, and the amine compound is chemisorbed simultaneously.
  • ultra-fine etching in which an aluminum part is immersed in an aqueous hydrazine solution with a concentration of 1 to several percent at 45 to 65 ° C. for 1 to several minutes, ultra fine irregularities with a period of 20 to 40 nm are formed on the aluminum surface. It is formed.
  • the aluminum parts are thoroughly washed with ion-exchanged water and dried at 50 to 70 ° C., so that they are suitable for injection joining in which chemical adsorption of hydrazine is observed.
  • the following surface treatment was performed on the plate-like member 110 made of A5052 having a semi-cylindrical shape.
  • an aqueous solution containing 7.5% of an aluminum degreasing agent “NE-6” liquid temperature 60 ° C.
  • NE-6 liquid temperature 60 ° C.
  • a degreasing tank containing this degreasing solution was prepared. It was immersed and washed with water.
  • an aqueous solution (40 ° C.) containing hydrochloric acid 1% was prepared in another tank, and this tank was used as a preliminary pickling tank. The plate member 110 was immersed in this preliminary pickling tank for 1 minute and washed with ion-exchanged water.
  • an aqueous solution containing 1.5% of caustic soda (liquid temperature 40 ° C.) was prepared in another tank, and the soot was used as an etching tank.
  • the plate member 110 was immersed in this etching tank for 1 minute and washed with ion exchange water.
  • a 3% concentration aqueous nitric acid solution (40 ° C.) was prepared in another tank, and this soot was used as a neutralization tank.
  • the plate member 110 was immersed in this neutralization tank for 1 minute and washed with ion exchange water.
  • an aqueous solution (60 ° C.) containing 3.5% of hydrated hydrazine was prepared in another bowl, and this was used as an NMT treatment tank.
  • the said plate-shaped member 110 was immersed in the NMT processing tank for 1 minute, and was washed with ion-exchange water. Next, it was placed in a hot air dryer at 67 ° C. for 15 minutes and dried. The obtained plate-like member 110 was tightly wrapped with aluminum foil, further sealed in a plastic bag, and stored.
  • the surface of the plate-like member 110 subjected to the above treatment was observed with an electron microscope, the surface was covered with innumerable ultrafine recesses, and the diameter of the recesses was 20 to 40 nm. In addition, the presence of nitrogen could be confirmed by XPS observation.
  • the plate-like members 110 subjected to such surface treatment are paired to form a cylindrical body, and the cylindrical body is inserted into the injection mold 5 as shown in FIG. 4 to perform injection joining.
  • the injection mold 5 in this embodiment is composed of a first lower mold 6a, a second lower mold 6b, and an upper mold 7 having a convex portion 7a as shown in FIG. 4 (a).
  • the two semi-cylindrical plate-like members 110 subjected to the surface treatment are inserted into recesses formed by combining the first lower mold 6a and the second lower mold 6b. .
  • two semi-cylindrical plate-like members 110 are paired to constitute a cylindrical body.
  • the convex portion 7a is inserted into the concave portion, and the upper mold 7 is placed on the top surfaces of the first lower mold 6a and the second lower mold 6b. Accordingly, as shown in FIG. 4A, the first lower mold 6a and the second lower mold 6b, the upper mold 7, and the two plate-like members inserted into the injection mold 5 110 forms a cavity 6c. As shown in FIG. 4A, the formed cavity 6c has an elongated columnar shape along the boundary line of the inner peripheral surface of the plate-like member 110 that is a cylindrical body, and a portion that becomes the maximum diameter of the cylindrical body.
  • the ring shape surrounding the outer peripheral surface of the plate-like members 110 and 110 shown in the drawing has a combined shape.
  • the first lower mold 6a, the second lower mold 6b, and the upper mold 7 are separated from each other in the vertical direction, and the first lower mold 6a and the second lower mold 6b are separated from each other in the left and right directions.
  • a cylindrical LED bulb heat radiation portion 1 having both ends opened is obtained.
  • the LED bulb heat dissipation portion 1 covers two plate-like members 110 that have been bent into a semi-cylindrical shape and a joining line on the inner peripheral surface side of both the plate-like members 110. It consists of a resin molded product 30 joined to the peripheral surface and a ring-shaped glove fixing part 40 surrounding the outer peripheral surface of both plate-like members 110 and joined to the outer peripheral surface of both plate-like members 110.
  • the resin composition constituting the resin molded product 30 is cured in a state where the resin composition penetrates into the ultrafine recesses having a diameter of 20 nm to 40 nm formed on the inner peripheral surfaces of the two plate-like members 110, thereby It is joined.
  • the resin composition constituting the globe fixing portion 40 is cured in a state where the resin composition penetrates into an ultrafine concave portion having a diameter of 20 nm to 40 nm formed on the outer peripheral surface of the both plate-like members 110, whereby the both plate-like members 110.
  • the two plate-like members 110 are joined by the resin molded product 30 and the globe fixing portion 40, but the two plate-like members 110 are only attached by either one of the resin molded product 30 or the globe fixing portion 40. You may make it join.
  • FIG. 5 (a) is a plan view of the heat radiating part 1 for LED bulbs obtained by injection joining
  • FIG. 5 (b) is a front view
  • FIG. 5 (c) is a bottom view.
  • the LED bulb heat dissipating part 1 is a cylindrical body having openings at both ends, and the diameter (hereinafter referred to as “large opening”) of one end (the lower end in FIG. 5B) where the globe fixing part 40 is provided. Is larger than the diameter of the opening (hereinafter referred to as “small opening”) at the other end (the upper end in FIG. 5B).
  • the cylindrical body is a taper in which a cylindrical portion 10 in which two rectangular portions 111 that are R-bent processed in a semi-cylindrical shape are paired and two fan portions 112 that are R-shaped in a semi-cylindrical shape are paired.
  • the taper portion 20 has a predetermined taper angle that decreases in diameter from one end to the other end.
  • FIG. 6 is a cross-sectional view of the LED bulb heat radiating section 1 along AA.
  • a resin molded product 30 is molded along the joining line from one end of the inner peripheral surface to the other end.
  • the resin molded product 30 is bent along the taper angle formed by the tapered portion 20 and the cylindrical portion 10, covers the end of the plate-like member 110 that forms an opening at one end, and is integrated with the globe fixing portion 40.
  • the resin molded product 30 and the globe fixing portion 40 are integrally molded injection-molded products, and are obtained by one injection molding.
  • the resin molded product 30 and the globe fixing part 40 may be separated injection molded products.
  • the LED is fixed to the large opening side of the heat radiating part 1 for the LED bulb thus created through a mounting member (not shown).
  • the LED is covered with a globe 50 fixed to the large opening side.
  • the globe 50 has translucency, and is formed in a substantially hemispherical shape having an opening at the end 50a, for example, by a material such as transparent glass or synthetic resin.
  • FIG. 7 shows an end view including the top of the globe 50.
  • a thread 50 b is formed along the inner peripheral surface of the end 50 a of the globe 50.
  • the globe 50 When the globe 50 is fixed to the large opening side, the globe 50 is rotated in the circumferential direction, and the thread 50b formed on the inner peripheral surface of the end portion 50a and the outer peripheral surface of the LED bulb heat radiating portion 1 are formed.
  • the thread groove 40a is screwed together.
  • the LED is positioned at the opening of the globe 50 and is covered by the globe 50.
  • the glove fixing part 40 is injection-molded together, so that a mechanism and an adhesive for fixing the glove 40 become unnecessary, and the manufacturing cost is reduced. Can be reduced.
  • the end portions of the two plate-like members 110 are joined by injection joining.
  • the end portions of the two plate-like members 110 are subjected to bending processing or the like. Both ends may be fixed using a resin molded product prepared in advance.
  • the globe 50 is fixed by the thread groove 40a.
  • an insertion hole may be provided to fix the globe 50.
  • injection joining is performed so that the entire outer peripheral surface of the cylindrical portion 10 or the tapered portion 20 is covered with the resin composition, and a resin molded product that covers the entire outer peripheral surface of the cylindrical portion 10 or the tapered portion 20 is formed.
  • the resin composition for injection joining can be used as the coating material for the cylindrical portion 10 and the tapered portion 20.
  • FIG.10 (a) is a top view of the thermal radiation part 1a for LED bulbs concerning 2nd Embodiment
  • FIG.10 (b) is a front view
  • FIG.10 (c) is a bottom view.
  • the LED bulb heat dissipating part 1a according to the second embodiment is composed of one plate-like member 120 as shown in FIG.
  • a blank material 100 similar to that of the first embodiment is trimmed by a trim mold (not shown) to obtain a plate member 120 including a flat fan part 122 and a flat rectangular part 121 connected to the fan part 122.
  • corrugated shape is not provided in the fan part 122, but the whole surface of the plate-shaped member 120 is flat.
  • a U-shaped bending process is performed on both ends of the flat plate-shaped member 120 (the end where no opening is formed in a state where the O-bending process is performed) to provide a hook-shaped engagement portion 123.
  • the rectangular portion 121 is moved from the root (boundary portion with the fan portion 122) to the outer peripheral surface side of the fan portion 122 (when the LED bulb heat radiating portion 1a is completed, the tapered portion 21 is formed.
  • O-bending is performed so that the rectangular portion 121 subjected to the V-bending becomes a cylindrical shape.
  • the plate member 120 is formed into a cylindrical body having openings at both ends by such O bending.
  • the bottom surfaces 123a of the engaging portions 123 and 123 at both ends of the plate-like member 120 are brought into close contact with each other to form a T shape.
  • the resin molded product 35 having a T-shaped groove that has been created in advance by injection molding or the like and the plate-like member 120 that is a cylindrical body are assembled to complete the LED bulb heat dissipation portion 1 a. .
  • the LED bulb heat dissipating part 1a is a cylindrical body having openings at both ends, and the diameter of one end (the lower end in FIG. 10B) (hereinafter referred to as “large opening”) is the other end (FIG. 10). It is larger than the diameter of the opening (hereinafter referred to as “small opening”) in (b).
  • the said cylindrical body consists of the cylindrical part 11 in which the rectangular part 121 was O-bent processed cylindrically, and the taper part 21 in which the fan part 122 was O-bent processed cylindrically.
  • the taper portion 21 has a predetermined taper angle that decreases in diameter from one end to the other end.
  • the LED bulb heat dissipating part 1a among the end parts of one plate-like member 120 that is bent into a cylindrical shape 0, end parts that form openings at both ends The other ends are joined together to form a cylindrical body.
  • An engaging portion 125 that becomes a joint portion of the inner peripheral surface from the cylindrical portion 11 to the tapered portion 21 is fixed by an elongated columnar resin molded product 35.
  • the resin molded product 35 is bent along the taper angle formed by the tapered portion 21 and the cylindrical portion 11.
  • the resin molded product 35 is not limited to an injection molded product, and may be obtained by extrusion molding or pultrusion molding.
  • the resin composition constituting the resin molded product 35 includes a predetermined ratio of elastomer so as to be bent along the taper angle.
  • the end parts may be joined by injection joining as in the first embodiment, or an injection molded ring. You may make it make it join by a glove
  • FIGS. 11 to 13 are diagrams showing a manufacturing process of the LED bulb heat dissipating part 1b according to the third embodiment of the present invention.
  • the LED bulb heat dissipating part 1b according to the third embodiment includes a plurality of plate-like members 150, as in the first embodiment.
  • the plate-like member 150 is not formed with an uneven shape, and the entire surface of the plate-like member 150 is flat.
  • the LED bulb heat dissipation portion 1b according to the third embodiment is different from the LED bulb heat dissipation portions 1 and 1a according to the first embodiment and the second embodiment in order to fix the base 60 as shown in FIG.
  • the base fixing part 180 is provided.
  • the blank material 100 is trimmed by a trim mold (not shown), and is formed of a flat fan portion 113 and a flat rectangular portion 111 connected to the fan portion 113.
  • a shaped member 150 is obtained.
  • the rectangular part 111 is located in the center part of a fan, and is a part which comprises the cylindrical part 10 in the thermal radiation part 1b for LED bulbs.
  • the fan part 113 is a part which comprises the taper part 25 in the thermal radiation part 1b for LED bulbs.
  • the rectangular portion 111 is moved from the root (boundary portion with the fan portion 113) to the outer peripheral surface side of the fan portion 113 (when the LED bulb heat radiating portion 1b is completed, the tapered portion 25 is formed.
  • an R-bending process is performed so that the rectangular part 111 subjected to the V-bending process becomes a semi-cylindrical shape.
  • the order of the V bending process and the R bending process may be reversed.
  • the entire plate-like member 150 including the fan portion 113 is made a semi-cylindrical component.
  • FIG. 12B two semi-cylindrical plate-like members 150 are used, A cylindrical body is formed by bringing both end portions of the two members into close contact with each other.
  • thermoplastic resin for injection molding is injected into a region including a joint portion (boundary line between the plate-like members 150 and 150) on the inner peripheral surface of the cylindrical body configured as described above, and as in the first embodiment, As shown in FIG. 12C, the plate-like members 150 and 150 are joined and integrated by the resin molded products 30b and 30b. Furthermore, in 3rd Embodiment, in the case of injection joining, in addition to the glove
  • an injection mold 5 ′ includes a first lower mold 6a ′, a second lower mold 6b ′, and an upper mold 7 ′ having a convex portion 7a ′.
  • the above-described NMT surface treatment was performed in the recess formed by combining the first lower mold 6a ′ and the second lower mold 6b ′.
  • One half cylindrical plate-like member 150 is inserted.
  • two semi-cylindrical plate members 150 are paired to form a cylindrical body.
  • the convex portion 7a ' is inserted into the concave portion, and the upper mold 7' is placed on the top surfaces of the first lower mold 6a 'and the second lower mold 6b'.
  • a cavity 6 c ′ is formed by the two plate-like members 150.
  • the difference from the injection mold 5 in the first embodiment is that a ring-shaped cavity (a part of the cavity 6c ′) is formed along the inner peripheral surface of the portion (111, 111 in the figure) constituting the cylindrical portion 10. Is formed, and the cavity extends below a portion constituting the cylindrical portion 10.
  • a base fixing portion 180 is formed by the resin flowing into the ring-shaped cavity.
  • the cavity 6c ′ formed in the third embodiment is an outer peripheral surface of a portion (the upper ends of the plate-like members 150 and 150 shown in the figure) that becomes the maximum diameter of the cylindrical body.
  • a resin composition for example, the aforementioned PPS resin “SGX120”
  • the resin composition has a spool 8 a provided in the upper mold 7 ′. Via, it flows into the runner 8b formed by the top surfaces of the first lower mold 6a ′ and the second lower mold 6b ′ and the upper mold 7 ′, and reaches the gate 8c.
  • the resin composition supplied from the gate 8c is molded in the cavity.
  • a resin molded product 30b made of the above resin composition is obtained, and a glove fixing part 40 made of the same resin composition as in the first embodiment is obtained.
  • a base made of the same resin composition is obtained.
  • the fixing part 180 is obtained. As shown in FIG. 14, a thread groove 40 a is formed in the globe fixing portion 40. Further, as shown in FIG. 14, a screw groove 180 a is also formed in the base fixing portion 180.
  • the first lower mold 6a ′, the second lower mold 6b ′, and the upper mold 7 ′ are separated vertically, and the first lower mold 6a ′ and the second lower mold 6b ′ are separated left and right.
  • the cylindrical LED bulb thermal radiation part 1b which the both ends opened is obtained.
  • the LED bulb heat-radiating part 1b covers the two plate-like members 150 that have been bent into a semi-cylindrical shape and the joining line on the inner peripheral surface side of the tapered part 25, and is joined to the inner peripheral surface of the tapered part 25.
  • the resin molded product 30b, the ring-shaped glove fixing part 40 that surrounds the outer peripheral surfaces of both plate-like members 150 and is joined to the outer peripheral surfaces of both plate-like members 150, and the entire inner peripheral surface of the cylindrical portion 110 It comprises a ring-shaped base fixing part 180 that covers (including the joining line) and extends from the cylindrical part 110 to the outside (upward in FIG. 14).
  • a screw groove 180a is formed on the outer periphery of the portion extending from the cylindrical portion 110 of the base fixing portion 180 by injection molding.
  • the resin composition constituting the resin molded product 30b is bonded to the two plate-like members 150 by curing in a state where the resin composition 30b penetrates into an ultrafine recess having a diameter of 20 nm to 40 nm formed on the inner peripheral surface of the tapered portion 25. ing.
  • the resin composition constituting the globe fixing portion 40 is cured in a state where the resin composition penetrates into the ultrafine recesses having a diameter of 20 nm to 40 nm formed on the outer peripheral surfaces of the both plate-like members 150, whereby the both plate-like members 150. Are joined.
  • the resin composition constituting the base fixing part 180 is cured in a state in which it enters into an ultrafine concave part having a diameter of 20 nm to 40 nm formed on the inner peripheral surface of the cylindrical part 10, so that both plate-like members 150 are formed. It is joined.
  • the resin molded product 30b, the globe fixing part 40, and the base fixing part 180 are integrally formed injection-molded articles, and are obtained by one injection molding.
  • the resin molded product 30b, the globe fixing portion 40, and the base fixing portion 180 may be injection molded products separated from each other.
  • the structure of the LED bulb heat dissipation part 1b according to the third embodiment obtained in this manner is the same as that of the first embodiment except that the fan 113 is not provided with irregularities and the base fixing part 180 is provided. It is the same as that of the heat sink 1 for LED bulbs.
  • the two plate-like members 150 are joined by the resin molded product 30b, the globe fixing portion 40, and the base fixing portion 180, but the two plate-like members 150 are joined by any of these. You may do it.
  • the base 60 is fixed to the ring-shaped base fixing part 180 forming the small opening of the LED bulb heat radiation part 1b.
  • the base 60 is rotated in the circumferential direction, and a screw thread formed on the inner peripheral surface of the base 60 and a screw groove 180a formed on the outer peripheral surface of the base fixing portion 180 Screw together.
  • the globe 40 and the base 60 are fixed by injection molding the globe fixing part 40 and the base fixing part 180 together. This eliminates the need for a mechanism and an adhesive, and reduces the manufacturing cost.
  • injection joining is performed so that the entire outer peripheral surface of the cylindrical portion 10 or the tapered portion 25 is covered with the resin composition, and a resin molded product that covers the entire outer peripheral surface of the cylindrical portion 10 or the tapered portion 25 is formed.
  • the resin composition for injection joining can be used as the coating material for the cylindrical portion 10 and the tapered portion 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 ブランク材に対して金型プレス成形を施し、凹凸形状を形成した後にトリミングして板状部材を得る。板状部材に曲げ加工を施して半筒状とし、水溶性アミン系化合物水溶液に浸漬して、表面を直径20~80nmの超微細凹部で覆う。表面処理した2つの半筒状の板状部材を組み合わせて筒状とし、射出形成用金型にインサートする。両板状部材の表面にPPS樹脂を射出し、射出成形を行うと共に樹脂成形品によって両板状部材を接合させる。このような簡易且つ低コストな方法によってLED電球用放熱部が製造される。

Description

LED電球用放熱部及びその製造方法
 本発明は、発光素子としてLED(Light Emitting Diode)を用いたLED電球用放熱部とその製造方法に関する。
 近年、白熱電球等と比較して長寿命であり、高いエネルギー効率を有するLEDを光源とするLED電球の開発が行われている。そのLED電球の開発において、LED発光時における放熱性の向上が重要な問題となっており、特に放熱部に関しては放熱性能を向上させるための様々な技術が提案されている。例えば特許文献1には、アルミニウム製ブランク材に絞り成形とローレット加工を施すことによって得られるLED電球用放熱部が開示されている。この例に限らず、LED電球用放熱部は通常、絞り成形若しくは張り出し成形、又はダイカスト成形によって製造されるものである。
特開2011-134676号公報 WO 03/064150 A1 WO 2004/041532 A1
 しかしながら絞り成形や張り出し成形では、限界絞り比や限界成形高さを考慮してポンチ形状とストロークの最適化を行わなければならず、成形荷重やポンチの速度、しわ押さえ力等の調整も必要となってくる。また、特許文献1の例のように、目的物の形状によっては複数のポンチを使用して多段成形を行わなければならない場合がある。これらの要因から装置構造や制御方法が複雑化し、製造コストの増大を招くという問題がある。一方、ダイカスト成形は上記絞り成形や張り出し成形よりも更に製造コストが増大するという問題がある。
 本発明は、前記した課題を解決するためになされたもので、下記の目的を達成する。本発明の目的は、簡易且つ低コストな方法によって製造可能なLED電球用放熱部を提供することにある。
 本発明は、前記目的を達成するために次の手段をとる。なお後述する発明を実施するための最良の形態の説明及び図面で使用した符号を参考のために括弧書きで付記するが、本発明の構成要素は該付記したものには限定されない。
 本発明1のLED電球用放熱部は、
 筒状のLED電球用放熱部(1,1b)であって、
 複数のアルミニウム板材(板状部材110,150)を組み合わせることにより構成され、
 各アルミニウム板材が、樹脂成形品(30,30b)を介して他のアルミニウム板材と接合されていることを特徴とする。
 本発明2のLED電球用放熱部は、
 筒状のLED電球用放熱部(1a)であって、
 筒状に曲げ加工が施された1のアルミニウム板材(板状部材120)により構成され、
 当該アルミニウム板材の両端部(係合部123)が、樹脂成形品(35)を介して相互に接合されていることを特徴とする。
 本発明3のLED電球用放熱部は、
 本発明1又は2のLED電球用放熱部(1,1b)であって、
 前記樹脂成形品は、LEDを覆う透光性のグローブ(50)を固定するためのグローブ固定部(40)であることを特徴とする。
 本発明4のLED電球用放熱部は、
 本発明1又は2のLED電球用放熱部(1b)であって、
 前記樹脂成形品は、口金(60)を固定するための口金固定部(180)であることを特徴とする。
 本発明5のLED電球用放熱部は、
 本発明1又は2のLED電球用放熱部(1,1a,1b)であって、
 前記アルミニウム板材(板状部材110,120,150)の表面は、20~80nm周期の超微細凹凸、又は直径20~80nmの超微細凹部若しくは超微細凸部で覆われており、
 前記樹脂成形品は、ポリブチレンテレフタレート、ポリフェニレンサルファイド、及びポリアミド樹脂から選択される1種以上を含む樹脂組成物により構成されていることを特徴とする。
 本発明6のLED電球用放熱部の製造方法は、
 複数のアルミニウム板材を水溶性アミン系化合物水溶液に浸漬し、その表面を20~80nm周期の超微細凹凸、又は直径20~80nmの超微細凹部若しくは超微細凸部で覆い、且つその表面に前記アミン系化合物を吸着させるエッチング工程と、
 前記エッチング工程を経た複数のアルミニウム板材を組み合わせ、筒状として射出形成用金型にインサートし、これら複数のアルミニウム板材の表面にポリブチレンテレフタレート、ポリフェニレンサルファイド、及びポリアミド樹脂から選択される1種以上を含む樹脂組成物を射出して、射出成形を行うと共に、当該樹脂組成物を介して前記複数のアルミニウム板材を接合させる射出接合工程と、
 を含むことを特徴とする。
 本発明7のLED電球用放熱部の製造方法は、
 筒状に曲げ加工が施された1のアルミニウム板材を水溶性アミン系化合物水溶液に浸漬し、その表面を20~80nm周期の超微細凹凸、又は直径20~80nmの超微細凹部若しくは超微細凸部で覆い、且つその表面に前記アミン系化合物を吸着させるエッチング工程と、
 前記エッチング工程を経たアルミニウム板材を射出形成用金型にインサートし、そのアルミニウム板材の表面にポリブチレンテレフタレート、ポリフェニレンサルファイド、及びポリアミド樹脂から選択される1種以上を含む樹脂組成物を射出して、射出成形を行うと共に、当該樹脂組成物を介して前記アルミニウム板材の両端部を相互に接合させる射出接合工程と、
 を含むことを特徴とする。
 本発明によれば、簡易且つ低コストな方法によってLED電球用放熱部を製造することができる。
図1は、アルミニウム製ブランク材の加工工程を示す図である。 図2は、アルミニウム製ブランク材の加工工程を示す図である。 図3は、複数のアルミニウム板材を使用してLED電球用放熱部を製造する工程を示す図である。 図4は、複数のアルミニウム板材を射出接合によって接合させる工程を示す断面図である。 図5は、第1実施形態に係るLED電球用放熱部を示す図である。 図6は、第1実施形態に係るLED電球用放熱部の断面図である。 図7は、LED電球用放熱部に透光性のグローブを固定する工程を示す図である。 図8は、1のアルミニウム板材を使用してLED電球用放熱部を製造する工程を示す図である。 図9は、1のアルミニウム板材の両端部を樹脂成形品によって接合させる工程を示す図である。 図10は、第2実施形態に係るLED電球用放熱部を示す図である。 図11は、アルミニウム製ブランク材の加工工程を示す図である。 図12は、複数のアルミニウム板材を使用してLED電球用放熱部を製造する工程を示す図である。 図13は、複数のアルミニウム板材を射出接合によって接合させる工程を示す断面図である。 図14は、LED電球用放熱部に口金を固定する工程を示す図である。
 以下、本発明の実施の形態に係るLED電球について、図面を参照しながら説明する。
[第1実施形態に係るLED電球用放熱部]
 図1から図3は、本発明の第1実施形態に係るLED電球用放熱部1の製造工程を示す図である。図1(a)には、平板状のアルミニウム製ブランク材(以下「ブランク材」と称す)100を示す。ブランク材100として、例えばA1050やA5052製の市販のアルミニウム板材を使用することができる。このブランク材100に対して、金型プレス成形を施して図1(b)に示すような凸部112a及び凹部112bからなる凹凸形状を有する扇部112を成形する。
 ここで実行する金型プレス成形は、ポンチ及びダイスを使用する絞り成形や張り出し成形ではなく、図2に示すように、鋼鉄等の硬質の金属を加工した下金型3と上金型4との間にブランク材100を挟圧して、上金型4を下金型3の最深位置まで押し込んで所望の形状に塑性変形させるものである。図2(a)に示すように、下金型には上面3aから下方に窪んだ凹部3bが形成されていて、上金型4には下面4aから下方に突出した凸部4bが形成されている。図2(b)に示すように、これら凸部4bと凹部3bとの間にブランク材100を挟んで、凸部4bを凹部3bの最深位置まで押し込むことで、図2(c)に示すように凹部112bと凸部112aが扇状に交互に並んだ扇部112が成形される。
 なお、本実施形態では、金型プレス成形によって凹凸形状を形成しているが、特許文献1に示すように、ローレット加工によって凹凸形状を形成するようにしても良い。切削式ローレット工具によりローレット加工を行うようにしても良く、型押転造によるローレット加工を行うようにしても良い。また、ブランク材100に対して凹凸形状を形成する加工を行わずにトリミングを行い、トリミングによって得られた凹凸形状を有しない板状部材に対して後述する曲げ加工を施した後、その外周面にローレット加工を施して凹凸形状を形成するようにしても良い。
 なお、上記に示した筒状体の外周面となる範囲に凹凸形状を設ける工程は、必須の工程ではない。後述する第2実施形態や第3実施形態に示すように、ブランク材100に対して金型プレス成形等を施さずにトリム型によってトリミングを行い、凹凸形状を有しない板状部材(例えば、長方形部111と凹凸形状を有しない扇部とからなる板状部材)を使用して、LED電球用放熱部を作成するようにしても良い。
 上記の金型プレス成形によって扇部112を成形した板材を、トリム型(図示せず)によってトリミングして、扇部112及び扇部112と連なる平坦な長方形部111からなる板状部材110を得る。長方形部111は扇の中心部分に位置しており、LED電球用放熱部1において円筒部10を構成する部分である。扇部112は、LED電球用放熱部1においてテーパ部20を構成する部分である。
 次に図3(a)に示すように、(1)長方形部111を、根元(扇部112との境界部)から扇部112の凸部112a側に所定角度傾けるV曲げ加工を施し、(2)さらに、V曲げ加工を施した長方形部111が半円筒状となるようにR曲げ加工を施す。これらの曲げ加工によって、扇部112を含む板状部材110全体を半筒状の部品とする。なお、V曲げ加工とR曲げ加工の順序は逆であっても良い。半筒状とした板状部材110に対して後述するNMT用の表面処理を施した後、図3(b)に示すように、半筒状とした板状部材110を2つ使用し、各々の両端部を向かい合わせて密着させることにより筒状体を構成する。このようにして構成される筒状体の内周面の接合部分(板状部材110,110の境界線)を含む領域に射出成形用の熱可塑性樹脂を射出し、図3(c)に示すように、樹脂成形品30,30によって板状部材110,110を接合させて一体化する。
 ここで、何ら表面処理を施していないアルミニウム板材表面に熱可塑性樹脂を射出したとしても、樹脂成形品とアルミニウム板材表面とが容易に接合しないことは明かである。本発明者らは、後述するNMT(Nano molding technology)によって、樹脂成形品30と板状部材110の表面を強固に接合させた。さらに本実施形態では、樹脂成形品30を成形する際に、筒状体の外周面に、グローブ固定部40も併せて成形した。このグローブ固定部40も、NMTによって板状部材110の表面と強固に接合されている。グローブ固定部40は、筒状体の外周面を囲うリング状の樹脂成形品である。リングの内周面が、両板状部材110の外周面と密着する状体で成形されているため、このグローブ固定部40を介して2つの板状部材110が一体化されている。
 (NMTの概要)
 NMTは本発明者らが開発した技術であり、特許文献2及び3に示すように公知の技術である。NMTとは、アルミニウムと樹脂組成物との接合技術であり、アルミニウムに対して所定の表面処理を施した後、射出成形用金型内にインサートし、当該金型内に溶融したエンジニアリング樹脂を射出して樹脂部分を成形すると同時に、その成形品とアルミニウムとを接合する方法(以下、略称して「射出接合」という。)である。
 NMTの要件として、アルミニウムに2の条件、樹脂組成物に1の条件がある。アルミニウムの2条件を以下に示す。
 (1)アルミニウム表面が20~80nm周期(好ましくは20~50nm周期)の超微細凹凸、又は直径20~80nm(好ましくは直径20~50nm)の超微細凹部又は超微細凸部で覆われていること。指標としては、RSmが20nm~80nmである超微細凹凸で覆われていると良い。また、Rzが20~80nmの超微細凹部又は超微細凸部で覆われていても良い。さらに、RSmが20nm~80nmであり、且つRzが20~80nmの超微細凹凸で覆われていても良い。RSmは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される輪郭曲線要素の平均長さであり、Rzは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される最大高さである。ここで、アルミニウムの表層は酸化アルミニウムの薄層であり、その厚さは3nm以上であると良い。
 (2)射出接合前のアルミニウム表面に、アンモニア、ヒドラジン、又は水溶性アミン化合物が化学吸着していること。
 一方、樹脂組成物の条件は以下の通りである。
 (3)硬質の結晶性熱可塑性樹脂であって、150~200℃でアンモニア、ヒドラジン、又は水溶性アミン類等の広義のアミン系化合物と反応し得る樹脂を主成分とすること。具体的には、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、又はポリアミド樹脂等が主成分として含まれている樹脂組成物であること。例えば、市販のPPS樹脂「SGX120」(株式会社 東ソー製)を好適に使用できる。
 NMTにおけるアルミニウムの表面処理法は特許文献2、3に開示されているが、その概要を記載する。形状化したアルミニウム部品(例えば本実施形態における半筒状とした板状部材110)を脱脂槽に投入して脱脂操作をする。次いで数%濃度の苛性ソーダ水溶液に浸漬して表層を溶かし、脱脂操作で落とし切れなかった汚れをアルミニウム表層ごと落とす。次いで数%濃度の硝酸水溶液に浸漬して、前操作で表面に付着したナトリウムイオン等を中和し除去する。ここまでの操作はアルミニウム部品の表面を構造的、化学的に安定した綺麗な表面にする操作である。もし汚れや腐食箇所の全くない綺麗なアルミニウム部品であれば、これら前処理操作は省くことができる。
 NMTにおける重要な処理は以下に示すものである。NMTでは水溶性アミン系化合物の水溶液にアルミニウム部品を適当な条件で浸漬し、部品表面をエッチングして20~80nm周期の超微細凹凸を形成し、同時にそのアミン系化合物を化学吸着させる。例えば、アルミニウム部品を、45~65℃にした1~数%濃度の水和ヒドラジン水溶液に1分~数分浸漬する超微細エッチングを行うことで、20~40nm周期の超微細凹凸がアルミニウム表面に形成される。超微細エッチング後、アルミニウム部品をイオン交換水でよく水洗し、50~70℃で乾燥すると、ヒドラジンの化学吸着が認められる射出接合に適したものとなる。これが「NMT」の表面処理法である。
 (射出接合による放熱部1の作成)
 図3(d)に示すように半筒状としたA5052製の板状部材110に対して、以下の表面処理を施した。まず、アルミ用脱脂剤「NE-6」を7.5%含む水溶液(液温60℃)を脱脂液とし、この脱脂液を入れた脱脂槽を用意し、これに板状部材110を5分浸漬し、水洗した。次いで別の槽に塩酸1%を含む水溶液(40℃)を用意し、この槽を予備酸洗槽とした。この予備酸洗槽に前記板状部材110を1分浸漬しイオン交換水で水洗した。
 次いで別の槽に苛性ソーダを1.5%含む水溶液(液温40℃)を用意し、この漕をエッチング槽とした。このエッチング槽に前記板状部材110を1分浸漬し、イオン交換水で水洗した。次いで別の槽に3%濃度の硝酸水溶液(40℃)を用意し、この漕を中和槽とした。この中和槽に前記板状部材110を1分浸漬し、イオン交換水で水洗した。次いで別の漕に水和ヒドラジン3.5%を含む水溶液(60℃)を用意し、これをNMT処理槽とした。そしてNMT処理槽に前記板状部材110を1分浸漬し、イオン交換水で水洗した。次いで67℃とした温風乾燥機内に15分置いて乾燥した。得られた板状部材110はアルミ箔でしっかり包み、更にポリ袋に入れて封じ、保管した。
 上記処理を行った板状部材110の表面を電子顕微鏡観察で観察したところ、表面は無数の超微細凹部で覆われており、その凹部の直径は20~40nmであった。また、XPSによる観察では窒素の存在が確認できた。このような表面処理を施した板状部材110を対にして筒状体とし、当該筒状体を図4に示すように射出成形用金型5にインサートして、射出接合を行う。
 本実施形態における射出成形用金型5は、図4(a)に示すように第1下金型6a及び第2下金型6b、並びに凸部7aを有する上金型7から構成される。射出接合を行うときには、第1下金型6aと第2下金型6bとを組み合わせることで形成される凹部内に、上記表面処理を施した2つの半筒状の板状部材110をインサートする。このとき、上記凹部内では、2つの半筒状の板状部材110が対となって筒状体を構成している。
 次に凸部7aを上記凹部内に挿入し、上金型7を第1下金型6aと第2下金型6bの天面に載置する。これにより、図4(a)に示すように、第1下金型6a及び第2下金型6bと、上金型7と、射出成形用金型5内にインサートされた2つの板状部材110によってキャビティ6cが形成される。図4(a)に示すように、形成されるキャビティ6cは、筒状体とした板状部材110の内周面の境界線に沿った細長い柱形状と、筒状体の最大径となる部分(図中に示される板状部材110,110の上端)の外周面を囲むリング形状が結合した形状を有している。
 この状態で、注入口から樹脂組成物(例えば前述したPPS樹脂「SGX120」)を注入すると、図4(b)に示すように、樹脂組成物は上金型7に設けられたスプール8aを経由し、第1下金型6a及び第2下金型6bの天面と、上金型7によって形成されるランナ8bに流入して、ゲート8cに到達する。そのゲート8cから供給された樹脂組成物は、上記キャビティ内で成形される。これによって上記樹脂組成物からなる樹脂成形品30が得られると共に、同じ樹脂組成物からなるグローブ固定部40が得られる。このグローブ固定部40には、後述する図5に示すように、ねじ溝40aが形成されている。
 第1下金型6a及び第2下金型6bと、上金型7とを上下に分離し、第1下金型6aと第2下金型6bとを左右に分離することで、図3(c)及び図5に示すように両端が開口した筒状のLED電球用放熱部1が得られる。LED電球用放熱部1は、半筒状にR曲げ加工が施された2つの板状部材110と、両板状部材110の内周面側の接合線を覆い、両板状部材110の内周面と接合している樹脂成形品30と、両板状部材110の外周面を囲み、両板状部材110の外周面と接合しているリング状のグローブ固定部40からなる。
 樹脂成形品30を構成する樹脂組成物は、両板状部材110の内周面に形成されている直径20nm~40nmの超微細凹部に侵入した状態で硬化することにより、両板状部材110を接合している。また、グローブ固定部40を構成する樹脂組成物は、両板状部材110の外周面に形成されている直径20nm~40nmの超微細凹部に侵入した状態で硬化することにより、両板状部材110を接合している。本実施形態では、樹脂成形品30及びグローブ固定部40によって2つの板状部材110を接合させているが、樹脂成形品30又はグローブ固定部40のいずれか一方のみによって2つの板状部材110を接合させるようにしても良い。
 図5(a)は、射出接合によって得られたLED電球用放熱部1の平面図であり、図5(b)は正面図であり、図5(c)は底面図である。LED電球用放熱部1は、両端に開口を有する筒状体であり、グローブ固定部40が設けられる一端(図5(b)における下端)の開口(以下「大開口」と称する。)の径は、他端(図5(b)における上端)の開口(以下「小開口」と称する。)の径よりも大きい。当該筒状体は、半円筒状にR曲げ加工された2つの長方形部111が対となった円筒部10と、半筒状にR曲げ加工された2つの扇部112が対となったテーパ部20とからなる。テーパ部20は一端から他端に向けて径小となる所定のテーパ角を有している。
 図5(a)~(c)に示すように、LED電球用放熱部1では、半筒状にR曲げ加工された2つの板状部材110の端部のうち、両端の開口を形成する端部以外の端部を相互に接合させて筒状体としている。その円筒部10からテーパ部20にかけての内周面の接合部分(他端から一端にかけての2つの板状部材110の境界線)を細長い柱形状の樹脂成形品30で覆い、テーパ部20の外周面の端部領域(大開口付近の領域であり、図5(b)に示す例では2つの板状部材110の下端付近)をリング状のグローブ固定部40で覆っている。
 図6は、LED電球用放熱部1のA-A断面図である。内周面の一端から他端にかけて、接合線に沿って樹脂成形品30が成形されている。樹脂成形品30は、テーパ部20と円筒部10が成すテーパ角に沿って折れ曲がっていて、一端の開口を形成する板状部材110の端部を覆い、グローブ固定部40と一体となっている。このように、本実施形態では、樹脂成形品30とグローブ固定部40とは一体に成形された射出成形物であり、1回の射出成形によって得られるものである。なお、樹脂成形品30とグローブ固定部40は分離した射出成形物であっても良い。
 このようにして作成されたLED電球用放熱部1の大開口側には、図示しない載置部材等を介してLEDが固定される。このLEDは、図7に示すように、大開口側に固定されるグローブ50によって覆われる。グローブ50は、透光性を有しており、例えば透明のガラスや合成樹脂などの材質により、端部50aに開口を有する略半球状に形成されている。図7には、グローブ50の頂部を含む端面図が示されている。グローブ50の端部50aの内周面に沿って、ねじ山50bが形成されている。グローブ50を大開口側に固定するときには、グローブ50を円周方向に回転させ、端部50aの内周面に形成されたねじ山50bと、LED電球用放熱部1の外周面に形成されたねじ溝40aとを螺合させる。これによりLEDは、グローブ50の開口に位置して、グローブ50により覆われる。
 このように、板状部材110を射出成形する際に、併せてグローブ固定部40を射出成形しておくようにすることで、グローブ40を固定するための機構や接着剤が不要となり、製造コストの低減を図ることができる。なお、本第1実施形態では、2つの板状部材110の端部を射出接合によって接合したが、第2実施形態に示すように、2つの板状部材110の端部に曲げ加工等を施し、両端部を、予め作成した樹脂成形品を用いて固定するようにしても良い。なお、本実施形態では、ねじ溝40aによってグローブ50を固定するようにしているが、例えば挿入孔を設けてグローブ50を固定するようにしても良い。
 また、円筒部10やテーパ部20の外周面全体が樹脂組成物で覆われるように射出接合を行い、円筒部10やテーパ部20の外周面全体を覆う樹脂成形品を形成するようにしても良い。すなわち、射出接合用の樹脂組成物を円筒部10やテーパ部20の塗料として用いることも可能である。このような形態とすることで、円筒部10やテーパ部20の表面保護または着色と、2つの板状部材110の接合とを1回の射出接合により達成することが可能となる。なお、このような形態とする場合に、円筒部10やテーパ部20の外周面全体を覆う樹脂成形品とグローブ固定部40とが一体化されるようにしても良い。
[第2実施形態に係るLED電球用放熱部]
 図8及び図9は、本発明の第2実施形態に係るLED電球用放熱部1aの製造工程を示す図である。また、図10(a)は、第2実施形態に係るLED電球用放熱部1aの平面図であり、図10(b)は正面図であり、図10(c)は底面図である。第2実施形態に係るLED電球用放熱部1aは、図8(a)に示すように、1の板状部材120により構成される。第1実施形態と同様のブランク材100をトリム型(図示せず)によってトリミングして、平坦な扇部122及び扇部122と連なる平坦な長方形部121からなる板状部材120を得る。第2実施形態では扇部122に凹凸形状を設けておらず、板状部材120の全面がフラットである。なお、扇部122に第1実施形態と同様の凹凸形状を設けるようにしても良い。
 次にフラット状の板状部材120の両端部(O曲げ加工を施した状態で開口を形成しない端部)に対して、コの字曲げ加工を施して、フック状の係合部123を設ける。次に図8(a)に示すように、(1)長方形部121を、根元(扇部122との境界部)から扇部122の外周面側(LED電球用放熱部1a完成時にテーパ部21の外周面となる側)に所定角度傾けるV曲げ加工を施し、(2)さらに、V曲げ加工を施した長方形部121が円筒状となるようにO曲げ加工を施す。これらの曲げ加工によって、扇部122を含む板状部材120全体を筒状の部品とする。
 このようなO曲げ加工によって、板状部材120を両端に開口を有する筒状体とする。このO曲げ加工のときに、図8(b)(c)に示すように板状部材120の両端の係合部123,123の底面123a同士を密着させてT字状とする。次いで図9に示すように、予め射出成形等によって作成したT字状の溝を有する樹脂成形品35と、筒状体とした板状部材120とを組み立ててLED電球用放熱部1aを完成させる。
 樹脂成形品35の一端を筒状体の一方の開口から差し込み、対としたT字状の係合部123,123と樹脂成形品35の溝と係合させる。両者を係合させた状態で樹脂成形品35の一端を筒状体の他方の開口まで摺動させることで、図10に示すLED電球用放熱部1aが完成する。LED電球用放熱部1aは、両端に開口を有する筒状体であり、一端(図10(b)における下端)の開口(以下「大開口」と称する。)の径は、他端(図10(b)における上端)の開口(以下「小開口」と称する。)の径よりも大きい。当該筒状体は、長方形部121が円筒状にO曲げ加工された円筒部11と、扇部122が筒状にO曲げ加工されたテーパ部21とからなる。テーパ部21は一端から他端に向けて径小となる所定のテーパ角を有している。
 図10(a)~(c)に示すように、LED電球用放熱部1aでは、筒状に0曲げ加工された1の板状部材120の端部のうち、両端の開口を形成する端部以外の端部を相互に接合させて筒状体としている。その円筒部11からテーパ部21にかけての内周面の接合部となる係合部125を細長い柱形状の樹脂成形品35によって固定している。樹脂成形品35は、テーパ部21と円筒部11が成すテーパ角に沿って折れ曲がっていている。第2実施形態において、樹脂成形品35は、射出成形物に限らず、押出成形や引抜成形により得られたものであっても良い。また、樹脂成形品35を構成する樹脂組成物には、上記テーパ角に沿って折れ曲がるように所定比率のエラストマーが含まれるようにすると良い。
 この第2実施形態に示したように、1の板状部材からLED電球用放熱部を作成することも可能である。なお、1の板状部材によってLED電球用放熱部を構成するようにした場合でも、第1実施形態と同様に、端部同士を射出接合によって接合させるようにしても良く、射出成形されたリング状のグローブ固定部によって接合させるようにしても良い。また、第1実施形態と同様に、扇部122に凹凸形状を設けるようにしても良い。
[第3実施形態に係るLED電球用放熱部]
 図11~図13は、本発明の第3実施形態に係るLED電球用放熱部1bの製造工程を示す図である。第3実施形態に係るLED電球用放熱部1bは、第1実施形態と同様に、複数の板状部材150によって構成される。ただし、第1実施形態と異なり板状部材150には凹凸形状が形成されておらず、板状部材150の全面がフラットである。また、第3実施形態に係るLED電球用放熱部1bは、第1実施形態及び第2実施形態に係るLED電球用放熱部1,1aと異なり、図14に示すように口金60を固定するための口金固定部180を備える。
 図11(a)及び(b)に示すように、ブランク材100を、トリム型(図示せず)によってトリミングして、平坦な扇部113及び扇部113と連なる平坦な長方形部111からなる板状部材150を得る。長方形部111は扇の中心部分に位置しており、LED電球用放熱部1bにおいて円筒部10を構成する部分である。扇部113は、LED電球用放熱部1bにおいてテーパ部25を構成する部分である。
 次に図12(a)に示すように、(1)長方形部111を、根元(扇部113との境界部)から扇部113の外周面側(LED電球用放熱部1b完成時にテーパ部25の外周面となる側)に所定角度傾けるV曲げ加工を施し、(2)さらに、V曲げ加工を施した長方形部111が半円筒状となるようにR曲げ加工を施す。なお、V曲げ加工とR曲げ加工の順序は逆であっても良い。これらの曲げ加工によって、扇部113を含む板状部材150全体を半筒状の部品とする。半筒状とした板状部材150に対して前述したNMT用の表面処理を施した後、図12(b)に示すように、半筒状とした板状部材150を2つ使用し、各々の両端部を向かい合わせて密着させることにより筒状体を構成する。
 このようにして構成される筒状体の内周面の接合部分(板状部材150,150の境界線)を含む領域に射出成形用の熱可塑性樹脂を射出し、第1実施形態と同様、図12(c)に示すように樹脂成形品30b,30bによって板状部材150,150を接合させて一体化する。さらに、第3実施形態においては射出接合の際に、グローブ固定部40に加え、口金60を固定するための口金固定部180を射出成形している。
 本実施形態における射出成形用金型5’は、図13(a)に示すように第1下金型6a’及び第2下金型6b’、並びに凸部7a’を有する上金型7’から構成される。第1実施形態と同様、射出接合を行うときには、第1下金型6a’と第2下金型6b’とを組み合わせることで形成される凹部内に、前述したNMT用表面処理を施した2つの半筒状の板状部材150をインサートする。このとき、上記凹部内では、2つの半筒状の板状部材150が対となって筒状体を構成している。
 次に凸部7a’を上記凹部内に挿入し、上金型7’を第1下金型6a’と第2下金型6b’の天面に載置する。これにより、図13(a)に示すように、第1下金型6a’及び第2下金型6b’と、上金型7’と、射出成形用金型5’内にインサートされた2つの板状部材150によってキャビティ6c’が形成される。第1実施形態における射出成形用金型5と異なる点は、円筒部10を構成する部分(図中の111,111)の内周面に沿ってリング形状のキャビティ(キャビティ6c’の一部)が構成されていて、そのキャビティは円筒部10を構成する部分の下方に延出しているという点である。このリング形状のキャビティに流入した樹脂によって口金固定部180が形成される。
 図13(a)に示すように、第3実施形態において形成されるキャビティ6c’は、筒状体の最大径となる部分(図中に示される板状部材150,150の上端)の外周面を囲むリング形状と、テーパ部25を構成する部分(図中の113,113)の内周面の境界線に沿った細長い柱形状と、円筒部10を構成する部分(図中の111,111)の内周面に沿っており、その下端よりも下方に演出したリング形状とが結合した形状を有している。
 この状態で、注入口から樹脂組成物(例えば前述したPPS樹脂「SGX120」)を注入すると、図13(b)に示すように、樹脂組成物は上金型7’に設けられたスプール8aを経由し、第1下金型6a’及び第2下金型6b’の天面と、上金型7’によって形成されるランナ8bに流入して、ゲート8cに到達する。そのゲート8cから供給された樹脂組成物は、上記キャビティ内で成形される。これによって上記樹脂組成物からなる樹脂成形品30bが得られると共に、第1実施形態と同様に同じ樹脂組成物からなるグローブ固定部40が得られ、さらに本実施形態では同じ樹脂組成物からなる口金固定部180が得られる。グローブ固定部40には、図14に示すように、ねじ溝40aが形成されている。また、口金固定部180にも、図14に示すように、ねじ溝180aが形成されている。
 第1下金型6a’及び第2下金型6b’と、上金型7’とを上下に分離し、第1下金型6a’と第2下金型6b’とを左右に分離することで、図12(c)及び図14に示すように両端が開口した筒状のLED電球用放熱部1bが得られる。LED電球用放熱部1bは、半筒状にR曲げ加工が施された2つの板状部材150と、テーパ部25の内周面側の接合線を覆い、テーパ部25の内周面と接合している樹脂成形品30bと、両板状部材150の外周面を囲み、両板状部材150の外周面と接合しているリング状のグローブ固定部40と、円筒部110の内周面全体(接合線を含む)を覆い、円筒部110から外部(図14では上方)に延出したリング状の口金固定部180からなる。口金固定部180の円筒部110から延出した部分の外周には、射出成形によって、ねじ溝180aが形成されている。
 樹脂成形品30bを構成する樹脂組成物は、テーパ部25の内周面に形成されている直径20nm~40nmの超微細凹部に侵入した状態で硬化することにより、両板状部材150を接合している。また、グローブ固定部40を構成する樹脂組成物は、両板状部材150の外周面に形成されている直径20nm~40nmの超微細凹部に侵入した状態で硬化することにより、両板状部材150を接合している。さらに、口金固定部180を構成する樹脂組成物は、円筒部10の内周面に形成されている直径20nm~40nmの超微細凹部に侵入した状態で硬化することにより、両板状部材150を接合している。本実施形態では、樹脂成形品30b、グローブ固定部40、及び口金固定部180は一体に成形された射出成形物であり、1回の射出成形によって得られるものである。なお、樹脂成形品30b、グローブ固定部40、及び口金固定部180は互いに分離した射出成形物であっても良い。
 このようにして得られた第3実施形態に係るLED電球用放熱部1bの構造は、扇部113に凹凸が形成されていない点と、口金固定部180を備える点以外は第1実施形態に係るLED電球用放熱部1と同様である。本実施形態では、樹脂成形品30b、グローブ固定部40、及び口金固定部180によって2つの板状部材150を接合させているが、これらのうちのいずれかによって2つの板状部材150を接合させるようにしても良い。
 このようにして作成されたLED電球用放熱部1bの小開口を形成するリング状の口金固定部180には、図14に示すように、口金60が固定される。口金60を小開口側に固定するときには、口金60を円周方向に回転させ、口金60の内周面に形成されたねじ山と、口金固定部180の外周面に形成されたねじ溝180aとを螺合させる。
 このように、2つの板状部材150を射出接合によって一体化する際に、併せてグローブ固定部40及び口金固定部180を射出成形しておくようにすることで、グローブ40及び口金60を固定するための機構や接着剤が不要となり、製造コストの低減を図ることができる。
 また、円筒部10やテーパ部25の外周面全体が樹脂組成物で覆われるように射出接合を行い、円筒部10やテーパ部25の外周面全体を覆う樹脂成形品を形成するようにしても良い。すなわち、射出接合用の樹脂組成物を円筒部10やテーパ部25の塗料として用いることも可能である。このような形態とすることで、円筒部10やテーパ部25の表面保護または着色と、2つの板状部材150の接合とを1回の射出接合により達成することが可能となる。なお、このような形態とする場合に、円筒部10やテーパ部25の外周面全体を覆う樹脂成形品と、グローブ固定部40や口金固定部180が一体化されるようにしても良い。
 1…LED電球用放熱部
10…円筒部
20…テーパ部
30…樹脂成形品
40…グローブ固定部
50…グローブ
110…板状部材
111…長方形部
112…扇部

Claims (7)

  1.  筒状のLED電球用放熱部であって、
     複数のアルミニウム板材を組み合わせることにより構成され、
     各アルミニウム板材が、樹脂成形品を介して他のアルミニウム板材と接合されていることを特徴とするLED電球用放熱部。
  2.  筒状のLED電球用放熱部であって、
     筒状に曲げ加工が施された1のアルミニウム板材により構成され、
     当該アルミニウム板材の両端部が、樹脂成形品を介して相互に接合されていることを特徴とするLED電球用放熱部。
  3.  請求項1又は2に記載したLED電球用放熱部であって、
     前記樹脂成形品は、LEDを覆う透光性のグローブを固定するためのグローブ固定部であることを特徴とするLED電球用放熱部。
  4.  請求項1又は2に記載したLED電球用放熱部であって、
     前記樹脂成形品は、口金を固定するための口金固定部であることを特徴とするLED電球用放熱部。
  5.  請求項1又は2に記載したLED電球用放熱部であって、
     前記アルミニウム板材の表面は、20~80nm周期の超微細凹凸、又は直径20~80nmの超微細凹部若しくは超微細凸部で覆われており、
     前記樹脂成形品は、ポリブチレンテレフタレート、ポリフェニレンサルファイド、及びポリアミド樹脂から選択される1種以上を含む樹脂組成物により構成されていることを特徴とするLED電球用放熱部。
  6.  複数のアルミニウム板材を水溶性アミン系化合物水溶液に浸漬し、その表面を20~80nm周期の超微細凹凸、又は直径20~80nmの超微細凹部若しくは超微細凸部で覆い、且つその表面に前記アミン系化合物を吸着させるエッチング工程と、
     前記エッチング工程を経た複数のアルミニウム板材を組み合わせ、筒状として射出形成用金型にインサートし、これら複数のアルミニウム板材の表面にポリブチレンテレフタレート、ポリフェニレンサルファイド、及びポリアミド樹脂から選択される1種以上を含む樹脂組成物を射出して、射出成形を行うと共に、当該樹脂組成物を介して前記複数のアルミニウム板材を接合させる射出接合工程と、
     を含むことを特徴とするLED電球用放熱部の製造方法。
  7.  筒状に曲げ加工が施された1のアルミニウム板材を水溶性アミン系化合物水溶液に浸漬し、その表面を20~80nm周期の超微細凹凸、又は直径20~80nmの超微細凹部若しくは超微細凸部で覆い、且つその表面に前記アミン系化合物を吸着させるエッチング工程と、
     前記エッチング工程を経たアルミニウム板材を射出形成用金型にインサートし、そのアルミニウム板材の表面にポリブチレンテレフタレート、ポリフェニレンサルファイド、及びポリアミド樹脂から選択される1種以上を含む樹脂組成物を射出して、射出成形を行うと共に、当該樹脂組成物を介して前記アルミニウム板材の両端部を相互に接合させる射出接合工程と、
     を含むことを特徴とするLED電球用放熱部の製造方法。
PCT/JP2012/082044 2011-12-16 2012-12-11 Led電球用放熱部及びその製造方法 WO2013089090A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011276333 2011-12-16
JP2011-276333 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013089090A1 true WO2013089090A1 (ja) 2013-06-20

Family

ID=48612537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082044 WO2013089090A1 (ja) 2011-12-16 2012-12-11 Led電球用放熱部及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2013089090A1 (ja)
WO (1) WO2013089090A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041470A3 (en) * 2012-09-11 2014-05-22 Koninklijke Philips N.V. Heat sink structure and method of manufacturing the same
CN111685716A (zh) * 2020-07-24 2020-09-22 湖南省华芯医疗器械有限公司 一种内窥镜前端组件、内窥镜及生产模具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041532A1 (ja) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂の複合体とその製造方法
JP2009241952A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd 容器及びその製造方法
WO2011070854A1 (ja) * 2009-12-07 2011-06-16 シャープ株式会社 照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063187B2 (ja) * 2007-05-23 2012-10-31 シャープ株式会社 照明装置
EP2543919B1 (en) * 2010-03-04 2014-07-30 Panasonic Corporation Led light source lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041532A1 (ja) * 2002-11-08 2004-05-21 Taisei Plas Co., Ltd. アルミニウム合金と樹脂の複合体とその製造方法
JP2009241952A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd 容器及びその製造方法
WO2011070854A1 (ja) * 2009-12-07 2011-06-16 シャープ株式会社 照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041470A3 (en) * 2012-09-11 2014-05-22 Koninklijke Philips N.V. Heat sink structure and method of manufacturing the same
CN111685716A (zh) * 2020-07-24 2020-09-22 湖南省华芯医疗器械有限公司 一种内窥镜前端组件、内窥镜及生产模具

Also Published As

Publication number Publication date
JPWO2013089090A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
KR101512888B1 (ko) 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법
US9889625B2 (en) Composite of metal and resin
CN103158227B (zh) 复合体及其制作方法
JP4633181B2 (ja) 射出成形用金型及び複合品の製造方法
JP6503936B2 (ja) 金属樹脂複合成形体及びその製造方法
US9770753B2 (en) Surface roughening apparatus for metal stock and surface roughening method for metal stock
JP5669495B2 (ja) 樹脂封止金属部品、それに用いるリードフレーム、及び金属部品の製造方法
WO2013089090A1 (ja) Led電球用放熱部及びその製造方法
US9635712B2 (en) Near-infrared condensing heating unit, near-infrared condensing heater using the same, and method for forming panel using the same
CN104562023A (zh) 树脂与异质材料的复合体的制造方法
JP2007083687A (ja) 射出成形回路部品の製造方法とそれに用いる金型
JP2013069514A (ja) Led電球及びled電球用ケース
JP2008126499A (ja) 射出成形体の製造方法および製造用の金型
JP6214757B2 (ja) 電子部品の製造方法
KR101912763B1 (ko) 제품의 표면 각인 방법 및 이를 이용하여 제조되는 제품
JP2005305875A5 (ja)
JP4644839B2 (ja) コンデンサ及びその製造方法
KR101912762B1 (ko) 제품의 표면 각인 방법 및 이를 이용하여 제조되는 제품
JP7182675B1 (ja) 金属樹脂複合体
CN103807829A (zh) Led灯管制作方法
US20220371287A1 (en) Method for manufacturing a composite structure
JP2017109383A (ja) 複合成形部材、複合成形部材の製造方法、および電子部品
JP2010074917A (ja) プロテクタおよびその製造方法
JP6423604B2 (ja) ヒートシンク及び電子部品
JP5273528B2 (ja) 合成樹脂製容器及びその成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549268

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12858303

Country of ref document: EP

Kind code of ref document: A1