WO2013088836A1 - 反射防止部材 - Google Patents
反射防止部材 Download PDFInfo
- Publication number
- WO2013088836A1 WO2013088836A1 PCT/JP2012/076779 JP2012076779W WO2013088836A1 WO 2013088836 A1 WO2013088836 A1 WO 2013088836A1 JP 2012076779 W JP2012076779 W JP 2012076779W WO 2013088836 A1 WO2013088836 A1 WO 2013088836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- refractive index
- range
- thickness
- antireflection member
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
Definitions
- the present invention relates to an antireflection member used for a touch panel, a liquid crystal display, and the like.
- a method of laminating three layers of a medium refractive index layer, a high refractive index layer, and a low refractive index layer is known in order to achieve lower reflection by a wet method.
- the present invention has been made in view of the above points, and an object of the present invention is to provide an antireflection member that achieves both low reflectance characteristics and neutral color.
- the antireflection member according to the first aspect of the present invention comprises a polyester base material, a first layer, a second layer, and a third layer, and these elements are laminated in the order described above.
- the refractive index of the first layer is in the range of 1.52 to 1.65
- the refractive index of the second layer is in the range of 1.67 or more and 1.80 or less
- the thickness thereof is in the range of 100 nm or more and 180 nm or less
- the third layer has a refractive index in the range of 1.30 to 1.45 and a thickness in the range of 70 nm to 130 nm.
- the thickness of the first layer is in the range of 0.5 ⁇ m to 10.0 ⁇ m.
- the transmitted color of the standard C light source has a C * 1976 L * a * b * color space in which a * is in the range of ⁇ 0.5 to 0.0, and the b * is in the range of 0.2 to 0.8.
- reflected color by the standard Illuminant C, CIE 1976L * a * b * color space by a * is -8.0 to 9.0 range, the b * is in the range of -9.0 to 3.0 .
- the thickness of the second layer is in the range of 100 nm to 160 nm
- the thickness of the third layer is in the range of 70 nm to 110 nm.
- the antireflection member according to the fifth aspect of the present invention is formed by laminating a first layer, a second layer, and a third layer in this order on the surface of a polyester film, and the first layer has a refractive index of 1.
- the second layer is formed in a range of 52 to 1.65 and a thickness of 1.0 ⁇ m to 10.0 ⁇ m, and the second layer has a refractive index in a range of 1.67 to 1.80 and a thickness.
- the third layer is formed in a range of a refractive index of 1.30 or more and 1.45 or less and a thickness of 70 nm or more and 110 nm or less.
- the thickness of the first layer is in the range of 1.0 ⁇ m to 10.0 ⁇ m.
- the transmitted color by the standard C light source is within a range of a * of ⁇ 0.5 or more and 0.0 or less, and b * of 0.2 or more.
- the color reflected by the standard C light source has a * in the range of 0.0 to 9.0 and b * is in the range of ⁇ 9.0 or more. A range of 0.0 or less is preferable.
- the transmitted color of the standard C light source has an a * of ⁇ 0.5 based on the CIE 1976 L * a * b * color space.
- the b * is in a range of 0.2 to 0.8
- the reflection color by the standard Illuminant C, CIE 1976L * a * b * a * is 0.0 or more due to the color space
- the range is 9.0 or less
- b * is the range of -9.0 or more and 0.0 or less.
- the thickness of the second layer is in the range of 130 nm to 180 nm
- the thickness of the third layer is in the range of 80 nm to 130 nm.
- the transmission color by the standard Illuminant C, CIE 1976L * a * b * color space by a * -0.5 or 0.0 or less range the b * is in a range of 0.2 to 0.8
- the reflection color by the standard Illuminant C, CIE 1976L * a * b * according to the color space a * is -8.0 to 2.0
- the b * is in the range from -6.0 to 3.0.
- the minimum reflectance is 0.5% or less
- the average luminous reflectance is 0.7% or less
- the total light transmittance is 94% or more.
- the minimum reflectance is 0.5% or less, and the average luminous reflectance is 0.7. %, Its total light transmittance is 94% or more.
- the first layer contains a cured product of a first ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof
- the second layer contains a cured product of a second ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof
- the third layer is composed of at least one cured product of alkoxysilane and a partially hydrolyzed polymer thereof and silica.
- the ratio of the alkoxysilane and the partially hydrolyzed polymer thereof in the first ultraviolet curable resin to the first layer is 3 It is at least mass%.
- the ratio of the alkoxysilane and the partially hydrolyzed polymer thereof in the second ultraviolet curable resin to the second layer Is 3 mass% or more.
- the third layer is preferably made of a polymer of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton, and preferably contains hollow silica particles.
- the third layer comprises a polymer of a mixture of alkoxysilane and an alkoxysilane having a fluorocarbon skeleton, and hollow silica particles. Containing.
- an anti-blocking layer is laminated on the surface of the substrate opposite to the first layer.
- the anti-blocking member is laminated on the surface of the substrate opposite to the first layer. It further comprises a layer.
- the present invention achieves both the low reflectance characteristic of the antireflection member and the neutral color.
- the antireflection member A includes a base material 4, a first layer (hard coat layer) 1, a second layer (high refractive index layer) 2, and a third layer (low (Refractive index layer) 3.
- the base material 4, the first layer 1, the second layer 2, and the third layer 3 are laminated in this order. That is, the first layer 1 is laminated on the first main surface (one surface) of the substrate 4, the second layer 2 is laminated on the main surface of the first layer 1 opposite to the substrate 4, The third layer 3 is laminated on the main surface (one surface) opposite to the first layer 1 of the two layers 2. All the elements of the base material 4, the first layer 1, the second layer 2, and the third layer 3 have light transmittance, and the antireflection member A has light transmittance as a whole.
- the refractive index of the first layer 1 is in the range of 1.52 to 1.65.
- the refractive index of the second layer 2 is in the range of 1.67 to 1.80 and the thickness is in the range of 100 nm to 180 nm.
- the refractive index of the third layer 3 is in the range of 1.30 to 1.45 and the thickness is in the range of 70 nm to 130 nm.
- the wavelength dependency of the reflectance of the antireflection member is reduced, and the reflected color from the antireflection member is reduced.
- the color of the antireflection member A can be reduced.
- the thickness of the first layer 1 is preferably in the range of 0.5 ⁇ m to 10.0 ⁇ m. In this case, the mechanical strength of the antireflection member A is improved.
- the transmission color (the color of the transmitted light), CIE 1976L * a * b * a * -0.5 or more due to the color space 0 It is preferable that the range is 0.0 or less and b * is in the range of 0.2 to 0.8. Further, in a case where light is incident in the standard C light source defined by CIE in the reflection preventing member A, the reflection color (color of the reflected light), is a * according to CIE 1976L * a * b * color space -8.0 It is preferable that the range is 9.0 or less and b * is ⁇ 9.0 or more and 3.0 or less.
- the thickness of the second layer 2 is in the range of 100 nm to 160 nm and the thickness of the third layer 3 is in the range of 70 nm to 110 nm.
- the reflected color from the antireflection member A becomes a color closer to white.
- the thickness of the first layer 1 is in the range of 1.0 ⁇ m to 10.0 ⁇ m. In this case, the mechanical strength of the antireflection member A is sufficiently improved.
- the thickness of the second layer 2 is set in the range of 100 nm to 160 nm and the thickness of the third layer 3 is set in the range of 70 nm to 110 nm
- the standard defined by the CIE for the antireflection member A is used.
- the reflection color (color of the reflected light), CIE 1976L * a * b * a * is 0.0 or more due to the color space It is preferable that the range is 9.0 or less and b * is in the range of ⁇ 9.0 or more and 0.0 or less. In this case, the reflected light from the antireflection member A becomes a color that is closer to white in particular, and the visibility is not easily lowered.
- the thickness of the second layer 2 is in the range of 130 nm to 180 nm and the thickness of the third layer 3 is in the range of 80 nm to 130 nm.
- the color of the reflected light is close to white but slightly bluish.
- the color of light formed by overlapping the reflected light from the antireflection member A and the reflected light from the ITO film is very close to white.
- the antireflection member A is suitable for use in combination with an ITO film that is widely used as a transparent electrode.
- the color of reflected light from the ITO film may be inconspicuous from the outside. it can.
- an application used in combination with the ITO film for example, an application applied to the image display device 6 described later can be given.
- the antireflection member A has a standard C light source defined by CIE. in the case where light is incident, the transmission color (the color of the transmitted light), CIE 1976L * a * b * according to the color space a * -0.5 or 0.0 following ranges, b * is 0.2 or more A range of 0.8 or less is preferable.
- the reflection color (color of the reflected light), it is a * according to CIE 1976L * a * b * color space -8. It is preferable that the range is from 0 to 2.0, and b * is in the range from -6.0 to 3.0. In this case, the light formed by overlapping the reflected light from the antireflection member A and the reflected light from the ITO film becomes a color closer to white, and visibility is not easily lowered.
- the minimum reflectance of the antireflection member A is 0.5% or less, the average luminous reflectance thereof is 0.7% or less, and the total light transmittance thereof is 94% or more.
- the antireflection member A exhibits excellent light transmittance, transparency, and low reflectivity, and exhibits excellent performance for preventing reflection.
- the material of the first layer 1, the second layer 2, and the third layer 3 is not particularly limited.
- the first layer 1 is an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof.
- cured material of 1st ultraviolet curable resin containing at least 1 type is included.
- the second layer 2 contains a cured product of a second ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof.
- the 3rd layer 3 consists of at least 1 type of hardened
- the hardness of the third layer 3 becomes very high, thereby improving the mechanical strength of the antireflection member A. Thereby, the scratch resistance of the antireflection member A is increased.
- the 1st layer 1, the 2nd layer 2, and the 3rd layer 3 all contain the hardened
- both the first layer 1 and the second layer 2 contain a cured product of an ultraviolet curable resin containing an alkoxysilane-based compound having a reactive organic functional group, the reactive organic functional group reacts.
- the adhesiveness of the 1st layer 1 and the 2nd layer 2 further improves.
- the 1st layer 1 contains the hardened
- the ratio of the alkoxysilane in the 1st ultraviolet curable resin and its partial hydrolysis polymer with respect to the 1st layer 1 is 3 mass%. The above is preferable. In this case, the scratch resistance of the antireflection member A is further improved, and the adhesion between the layers is further improved.
- the ratio of the alkoxysilane and the partially hydrolyzed polymer thereof in the second ultraviolet curable resin to the second layer 2 is 3 It is preferable that it is at least mass%. Also in this case, the scratch resistance of the antireflection member A is further improved, and the adhesion between the layers is further improved.
- the third layer 3 is a polymer of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton. And hollow silica particles.
- the material of the first layer 1 and the second layer 2 in this case is not particularly limited. In this example, it is easy to lower the refractive index of the third layer 3, and the antifouling property and chemical resistance of the third layer 3 are improved.
- the antireflection member A may further include an antiblocking layer 5.
- the anti-blocking layer 5 is laminated on the surface of the substrate opposite to the first layer 1. In this case, generation
- the base material 4 is made of polyester.
- the base material 4 is formed from a polyester film.
- polyester films biaxially stretched films such as polyethylene terephthalate (PET) and polyethylene naphthalate have excellent mechanical properties, heat resistance, chemical resistance, etc., so magnetic tape, ferromagnetic thin film tape, and packaging It is suitable as a material such as a film, a film for electronic parts, an electrical insulating film, a film for laminating, a film to be attached to the surface of a display, a protective film for various members, and the like.
- PET polyethylene terephthalate
- polyethylene naphthalate have excellent mechanical properties, heat resistance, chemical resistance, etc., so magnetic tape, ferromagnetic thin film tape, and packaging It is suitable as a material such as a film, a film for electronic parts, an electrical insulating film, a film for laminating, a film to be attached to the surface of a display, a protective film for various members, and the like.
- a base film such as a prism lens sheet, a touch panel, or a backlight, which is a member of a liquid crystal display device, a base film for an antireflection member A for a television, and an antireflection member A used for a front optical filter for a plasma television. It is suitable as a near-infrared cut film, a base film for an electromagnetic wave shielding film, and the like.
- polyesters examples include aromatic dicarboxylic acid components such as terephthalic acid, isophthalic acid, 2,6-naphthalene dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, ethylene glycol, 1,4-butanediol, 1,4- Aromatic polyesters produced by reaction with glycol components such as cyclohexanedimethanol and 1,6-hexanediol are preferred, and polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate and the like are particularly preferred. Further, the polyester may be a copolyester such as the plurality of components exemplified above.
- the base material 4 may contain organic or inorganic particles. In this case, the winding property and transportability of the base material 4 are improved. Examples of such particles include calcium carbonate particles, calcium oxide particles, aluminum oxide particles, kaolin, silicon oxide particles, zinc oxide particles, crosslinked acrylic resin particles, crosslinked polystyrene resin particles, urea resin particles, melamine resin particles, and crosslinked silicone resin particles. Etc.
- the substrate 4 may also contain a colorant, an antistatic agent, an ultraviolet absorber, an antioxidant, a lubricant, a catalyst, other resins, and the like as long as the transparency is not impaired.
- the haze of the base material 4 is preferably 3% or less. In this case, the visibility of an image through the antireflection member A is improved, and the antireflection member A is particularly suitable as a film for optical applications. Become. More preferably, the haze is 1.5% or less.
- the thickness of the substrate 4 is not particularly limited, but is preferably in the range of 25 ⁇ m to 200 ⁇ m.
- the antireflection member A can be made thinner and lighter, and the occurrence of interference on both surfaces (front and back) of the antireflection member A is suppressed. Thermal contraction when the material 4 is heated is suppressed, and problems such as deterioration of workability due to thermal contraction of the base material 4 are suppressed.
- the surface reflectance of the substrate 4 is preferably in the range of 4% to 6%. When the surface reflectance of the substrate 4 is within this range, the occurrence of interference on both surfaces (front and back) of the substrate 4 is suppressed, and it becomes easy to ensure low reflectance characteristics.
- the surface of the base material 4 is subjected to an easy adhesion treatment.
- the easy adhesion treatment include dry treatment such as plasma treatment and corona treatment, chemical treatment such as alkali treatment, and coating treatment for forming an easy adhesion layer.
- the easy adhesion treatment is performed. Applied.
- an easy-adhesion layer is interposed between the substrate 4 and the first layer 1. Furthermore, the easy adhesion treatment can be used to improve the adhesion between the substrate 4 and the first layer 1. Although there is no restriction
- the refractive index of the easy-adhesion layer is set to the refractive index of the substrate 4 and the refractive index of the first layer 1 It is desirable that the distance is close, and it is particularly preferable that the range is 1.58 to 1.75.
- the optical film thickness of the easy adhesion layer is preferably in the range of 120 to 160 nm. In this case, while ensuring the high adhesiveness between the base material 4 and the 1st layer 1, the increase in the reflectance by the presence of an easily bonding layer and generation
- the first layer 1 is preferably formed as a hard coat layer having a higher hardness than the substrate 4. Thereby, the mechanical strength of the antireflection member A is improved.
- the pencil hardness of the first layer 1 is preferably H or higher, more preferably 2H or higher.
- the refractive index of the first layer 1 needs to be 1.52 or more and 1.65 or less. When the refractive index of the first layer 1 is within this range, the occurrence of interference unevenness between the first layer 1 and the substrate 4 is suppressed.
- the thickness of the first layer 1 is not particularly limited. Moreover, in one aspect in this embodiment, the thickness of the 1st layer 1 needs to be the range of 1.0 micrometer or more and 10.0 micrometers or less. When the thickness of the first layer 1 is within this range, the mechanical strength of the antireflection member A is sufficiently improved.
- the thickness of the first layer 1 may be in the range of 0.5 ⁇ m to 10.0 ⁇ m. When the thickness of the first layer 1 is within this range, the mechanical strength of the antireflection member A is improved.
- the first layer 1 is preferably formed from a reactive curable resin composition.
- the first layer 1 is preferably formed from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition.
- Thermosetting resin composition contains thermosetting resin such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, amino alkyd resin, silicon resin, polysiloxane resin, etc. To do.
- a crosslinking agent, a polymerization initiator, a curing agent, a curing accelerator, a solvent and the like may be used together with the thermosetting resin as necessary.
- Such a thermosetting resin composition is applied on, for example, the substrate 4 (or the surface when an easy-adhesion layer is provided), and then the thermosetting resin composition is heated and thermoset, One layer 1 can be formed.
- the ionizing radiation curable resin composition preferably contains a resin having an acrylate functional group.
- the resin having an acrylate functional group include oligomers such as (meth) acrylates of a relatively low molecular weight polyfunctional compound, prepolymers, and the like.
- the polyfunctional compound include polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and polyhydric alcohols.
- the ionizing radiation curable resin composition preferably further contains a reactive diluent.
- reactive diluents include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, trimethylolpropane tri (meth) acrylate, and hexanediol (meth) acrylate.
- Tripropylene glycol di (meth) acrylate Tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di
- the polyfunctional monomer of (meth) acrylate is mentioned.
- the photocurable resin composition When the ionizing radiation curable resin composition is a photocurable resin composition such as an ultraviolet curable resin composition, the photocurable resin composition preferably contains a photopolymerization initiator.
- the photopolymerization initiator include acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones, and the like.
- the photocurable resin composition may contain a photosensitizer in addition to the photopolymerization initiator or in place of the photopolymerization initiator. Examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, and thioxanthone.
- Such a photocurable resin composition is applied onto, for example, the substrate 4, and then the photocurable resin composition is irradiated with light such as ultraviolet rays to be photocured, whereby the first layer 1 is formed. obtain.
- the refractive index of the first layer 1 can be easily adjusted by the composition of the resin composition for forming the first layer 1. It is also preferable that the refractive index of the first layer 1 is adjusted by the first layer 1 containing particles for adjusting the refractive index and the ratio thereof being adjusted.
- the particle diameter of the particles for adjusting the refractive index is preferably sufficiently small, that is, the particles for adjusting the refractive index are preferably so-called ultrafine particles. In this case, the light transmittance of the first layer 1 is sufficiently maintained. Become.
- the particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm to 200 nm.
- the particle diameter of the particles for adjusting the refractive index is the diameter of a circle (area equivalent circle) having the same area as the projected area calculated from the electron micrograph image of the particles.
- the refractive index adjusting particles are preferably particles having a relatively high refractive index, and particularly preferably particles having a refractive index of 1.6 or more. These particles are preferably metal or metal oxide particles.
- the content of the particles for adjusting the refractive index in the first layer 1 is appropriately adjusted so that the refractive index of the first layer 1 has an appropriate value, but particularly for adjusting the refractive index in the first layer 1. It is preferable to adjust so that the ratio of the particles is 5% by volume or more and 70% by volume or less.
- the particles for adjusting the refractive index include particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony.
- Specific examples of the oxide include ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index 1.95), Sb 2 O 5 (refractive index 1.
- the first layer 1 has antistatic performance. In this case, charging of the antireflection member A is suppressed, and adhesion of dust to the antireflection member A is suppressed.
- the first layer 1 preferably contains conductive particles.
- the conductive particles may simultaneously function as refractive index adjusting particles.
- the conductive particles are preferably nanoparticles, and particularly preferably ultrafine particles having a particle size of 0.5 nm to 200 nm.
- the particle diameter of the conductive particles is also the diameter of an area equivalent circle. Examples of the material of the conductive particles include appropriate metals and metal oxides having conductivity, and specifically include oxides of one or more metals selected from indium, zinc, tin, and antimony.
- the sheet resistance of the first layer 1 is 10 15 ⁇ / ⁇ or less by containing conductive particles.
- the content of the conductive particles in the first layer 1 is appropriately adjusted so that the antistatic performance of the first layer 1 is at an appropriate level. In particular, the ratio of the conductive particles in the first layer 1 is 5 It is preferable to adjust so that it may become mass% or more and 70 mass% or less.
- the first layer 1 may contain a cured product of a first ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof.
- a first ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof.
- the ultraviolet curable resin composition contains a first ultraviolet curable resin.
- Examples of the reactive organic functional group in the alkoxysilane having a reactive organic functional group include an acryloyl group, a methacryloyl group, a glycidyl group, and an isocyanate group.
- Examples of the alkoxysilane having a reactive organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- Examples include acryloxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-isocyanatopropyltriethoxysilane.
- the ratio of the alkoxysilane and the partially hydrolyzed polymer thereof in the first ultraviolet curable resin to the first layer 1 Is preferably 3% by mass or more. This proportion is preferably in the range of 5 to 10% by mass. In this case, the scratch resistance of the antireflection member A is further improved, and the adhesion between the layers is further improved.
- the second layer 2 is formed as a high refractive index layer having a higher refractive index than the third layer 3.
- the refractive index of the second layer 2 is in the range of 1.67 to 1.80, and the thickness (actual film thickness) is in the range of 100 nm to 160 nm.
- the refractive index and thickness of the second layer 2 are within the above ranges, the light reflectivity of the antireflection member A is suppressed, and the color of the reflected light from the antireflection member A is adjusted to an appropriate color.
- the refractive index of the second layer 2 is larger than the above range, the light reflectivity of the antireflection member A is further reduced, but the color of the reflected light becomes too strong, which is not preferable. Further, when the thickness of the second layer 2 is larger than the above range, the color of the reflected light from the antireflection member A becomes bluish, and when this thickness is further increased, the reflectance of the antireflection member A is remarkably increased. Since it increases, it is not preferable. On the other hand, if the thickness of the second layer 2 is smaller than the above range, the reflected color becomes a purple-ish color, which is not preferable.
- the thickness of the second layer 2 is preferably in the range of 100 nm to 160 nm as described above. More preferably, the thickness is in the range of more than 130 nm and 160 or less.
- the thickness of the second layer 2 is preferably in the range of 130 nm to 180 nm. More preferably, the thickness is in the range of more than 160 nm and 180 nm or less.
- the second layer 2 is preferably formed from a reactive curable resin composition, for example, preferably from at least one of a thermosetting resin composition and an ionizing radiation curable resin composition.
- Thermosetting resin composition contains thermosetting resin such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, amino alkyd resin, silicon resin, polysiloxane resin, etc. To do.
- a crosslinking agent, a polymerization initiator, a curing agent, a curing accelerator, a solvent and the like may be used together with the thermosetting resin as necessary.
- the ionizing radiation curable resin composition preferably contains a resin having an acrylate functional group.
- the resin having an acrylate functional group include oligomers such as (meth) acrylates of a relatively low molecular weight polyfunctional compound, prepolymers, and the like.
- the polyfunctional compound include polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and polyhydric alcohols.
- the ionizing radiation curable resin composition preferably further contains a reactive diluent.
- reactive diluents include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, trimethylolpropane tri (meth) acrylate, and hexanediol (meth) acrylate.
- Tripropylene glycol di (meth) acrylate Tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di
- the polyfunctional monomer of (meth) acrylate is mentioned.
- the photocurable resin composition When the ionizing radiation curable resin composition is a photocurable resin composition such as an ultraviolet curable resin composition, the photocurable resin composition preferably contains a photopolymerization initiator.
- the photopolymerization initiator include acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones, and the like.
- the photocurable resin composition may contain a photosensitizer in addition to the photopolymerization initiator or in place of the photopolymerization initiator. Examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, and thioxanthone.
- the refractive index of the second layer 2 can be easily adjusted by the composition of the resin composition for forming the second layer 2. It is also preferable that the refractive index of the second layer 2 is adjusted by the second layer 2 containing particles for adjusting the refractive index and the ratio thereof being adjusted.
- the particle diameter of the refractive index adjusting particles is preferably sufficiently small, that is, the refractive index adjusting particles are preferably so-called ultrafine particles. In this case, the light transmittance of the second layer 2 is sufficiently maintained. Become.
- the particle size of the particles for adjusting the refractive index is particularly preferably in the range of 0.5 nm to 200 nm.
- the particle diameter of the particles for adjusting the refractive index is the diameter of a circle (area equivalent circle) having the same area as the projected area calculated from the electron micrograph image of the particles.
- the particles for refractive index adjustment are preferably particles having a relatively high refractive index, and particularly preferably particles having a refractive index of 1.6 or more. These particles are preferably metal or metal oxide particles.
- the content of the particles for adjusting the refractive index in the second layer 2 is appropriately adjusted so that the refractive index of the second layer 2 has an appropriate value. It is preferable to adjust so that the ratio of the particles is 5% by volume or more and 70% by volume or less.
- the particles for adjusting the refractive index include particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony.
- the oxide include ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index 1.95), Sb 2 O 5 (refractive index 1. 71), SnO 2 (refractive index 1.8-2.0), ITO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), La 2 O 3 (refractive index 1.95), ZrO 2 (refractive index 2.05), Al 2 O 3 (refractive index 1.63) and the like can be mentioned.
- the second layer 2 includes particles containing one or more oxides selected from titanium, aluminum, cerium, yttrium, zirconium, niobium, and antimony, and at least one of methacryl functional silane and acrylic functional silane. It is also preferable to contain one. In this case, the adhesion between the second layer 2 and the third layer 3 is improved.
- the methacryl functional silane include 3-methacryloxypropyltrimethoxysilane and 3-methacryloxypropylmethyldimethoxysilane.
- the acrylic functional silane include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropylmethyldimethoxysilane.
- the content of the methacryl functional silane and the acrylic functional silane in the second layer 2 is not particularly limited, the ratio of the total amount of the methacryl functional silane and the acrylic functional silane in the second layer 2 is 5% by mass or more and 30% by mass. % Or less is preferable.
- the proportion is 5% by mass or more, the adhesion between the second layer 2 and the third layer 3 is sufficiently high, and when the proportion is 30% by mass or less, the crosslinking density in the second layer 2 is sufficient. And the hardness of the second layer 2 becomes sufficiently high.
- the main surface of the second layer 2 opposite to the first layer 1 is preferably subjected to a surface treatment before the third layer 3 is formed.
- a surface treatment include physical surface treatment such as plasma treatment, corona discharge treatment and flame treatment, and chemical surface treatment with a coupling agent, acid and alkali.
- the second layer 2 may contain a cured product of a second ultraviolet curable resin containing at least one of an alkoxysilane having a reactive organic functional group and a partially hydrolyzed polymer thereof.
- the ultraviolet curable resin composition preferably contains a second ultraviolet curable resin.
- Examples of the reactive organic functional group in the alkoxysilane having a reactive organic functional group include an acryloyl group, a methacryloyl group, a glycidyl group, and an isocyanate group.
- Examples of the alkoxysilane having a reactive organic functional group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- Examples include acryloxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, and 3-isocyanatopropyltriethoxysilane.
- the ratio of the alkoxysilane and the partially hydrolyzed polymer thereof in the second ultraviolet curable resin to the second layer 2 Is preferably 3% by mass or more. This proportion is preferably in the range of 5 to 10% by mass. In this case, the scratch resistance of the antireflection member A is further improved, and the adhesion between the layers is further improved.
- the refractive index of the third layer 3 is lower than any of the refractive indexes of the substrate 4, the first layer 1, and the second layer 2.
- the refractive index of the third layer 3 is in the range of 1.30 to 1.45, and the thickness (actual film thickness) is in the range of 70 nm to 110 nm.
- the refractive index of the third layer 3 is in the above range, the reflectance of the antireflection member A is reduced by the interference action between the first layer 1 and the second layer 2, and the thickness of the third layer 3 is further reduced. Is in the above range, the color of the reflected light from the antireflection member A is appropriately adjusted.
- the thickness of the third layer 3 is in the range of 70 nm or more and 130 nm or less, the color of the reflected light is sufficiently close to white.
- the thickness of the third layer 3 is preferably in the range of 70 nm to 110 nm as described above. More preferably, the thickness is in the range of 70 nm to less than 80 nm.
- the color of the light formed by overlapping the reflected light from the antireflection member A and the reflected light from the ITO film is made close to white.
- the thickness of the third layer 3 is preferably in the range of 80 nm to 130 nm. More preferably, the thickness is in the range of 110 nm to 130 nm.
- the third layer 3 is formed of, for example, a composition containing a binder material and particles for adjusting the refractive index used as necessary.
- the refractive index of the third layer 3 is appropriately adjusted depending on the combination of the both, the blending ratio, and the like.
- a polymer having a main chain of at least one of silicon alkoxide resin, saturated hydrocarbon and polyether for example, UV curable resin composition, thermosetting resin composition, etc.
- fluorine atom in the polymer chain And a resin containing a unit containing.
- examples include oligomers and polymers that are hydrolyzed condensates.
- Specific examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, and tetra-tert-butoxy.
- a reactive organosilicon compound having a plurality of groups (polymerizable double bond groups and the like) that undergoes reactive crosslinking by heat or ionizing radiation may be used.
- the molecular weight of the organosilicon compound is preferably 5000 or less.
- Such reactive organosilicon compounds are obtained by reacting one terminal vinyl functional polysilane, both terminal vinyl functional polysilane, one terminal vinyl functional polysiloxane, both terminal vinyl functional polysiloxane, and these compounds. Examples include vinyl functional polysilanes and vinyl functional polysiloxanes.
- examples of the reactive organosilicon compound include (meth) acryloxysilane compounds such as 3- (meth) acryloxypropyltrimethoxysilane and 3- (meth) acryloxypropylmethyldimethoxysilane.
- the particles for adjusting the refractive index it is preferable to use particles having a relatively low refractive index.
- the material for adjusting the refractive index include silica, magnesium fluoride, lithium fluoride, aluminum fluoride, calcium fluoride, sodium fluoride, and the like.
- the refractive index adjusting particles include hollow particles.
- a hollow particle is a particle having a cavity surrounded by an outer shell.
- the refractive index of the hollow particles is preferably 1.20 to 1.45.
- the particles for adjusting the refractive index are preferably subjected to a surface treatment for improving the wettability with the binder material, if necessary.
- the particle diameter of the refractive index adjusting particles is preferably sufficiently small, that is, the refractive index adjusting particles are preferably so-called ultrafine particles. In this case, the light transmittance of the third layer 3 is sufficiently maintained. become.
- the particle size of the refractive index adjusting particles is particularly preferably in the range of 0.5 nm to 200 nm.
- the particle diameter of the particles for adjusting the refractive index is the diameter of a circle (area equivalent circle) having the same area as the projected area calculated from the electron micrograph image of the particles.
- the content of the refractive index adjusting particles in the third layer 3 is appropriately adjusted so that the refractive index value of the third layer 3 is an appropriate value. It is preferable to adjust the proportion of the particles for use to 20 to 99% by volume.
- the composition may further contain a water and oil repellent material.
- a water and oil repellent material In this case, antifouling property can be imparted to the third layer 3.
- a general wax-based material or the like can be used.
- a fluorine-containing compound when used, the removability of the third layer 3 such as dirt and fingerprints is particularly improved, and the frictional resistance of the surface of the third layer 3 is reduced, so that the wear resistance of the third layer 3 is improved. improves.
- a preferred embodiment of the third layer 3 is exemplified by a polymer made of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton, and containing hollow silica particles.
- the effects of ensuring a low refractive index, imparting an antifouling function, and imparting chemical resistance are preferred.
- the alkoxysilane include polymethoxysilane.
- the alkoxysilane having a fluorocarbon skeleton include trimethoxysilyldodecafluorohexane.
- a mixture of an alkoxysilane and an alkoxysilane having a fluorocarbon skeleton can be prepared by mixing 5 to 1900 parts by mass of an alkoxysilane having a fluorocarbon skeleton with respect to 100 parts by mass of the alkoxysilane.
- a polymer of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton can be produced by a polymerization method such as a sol-gel method.
- the molecular weight of the polymer of the mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton is preferably 500 to 3000.
- the hollow silica particles preferably have a refractive index of 1.20 to 1.45 and a particle size in the range of 0.5 nm to 200 nm, as described above.
- the third layer 3 preferably contains 5 to 233 parts by mass of hollow silica particles with respect to 100 parts by mass of a polymer of a mixture of alkoxysilane and alkoxysilane having a fluorocarbon skeleton.
- the composition as described above is applied on the second layer 2, and this composition is further subjected to treatments such as heating, humidification, ultraviolet irradiation, and electron beam irradiation according to the properties of the binder material. It can be formed by being cured.
- the anti-blocking layer 5 is preferably laminated on the surface of the substrate 4 opposite to the first main surface. That is, the antiblocking layer 5 is preferably laminated on the surface opposite to the surface on which the first layer 1 of the substrate 4 is laminated.
- the anti-blocking layer 5 is formed in order to suppress the occurrence of blocking or improve the slipperiness when the antireflection member A is rolled up to be overlapped.
- the anti-blocking layer 5 can also be used for improving the adhesion when the antireflection member A is bonded and fixed to some member (for example, an adhesive layer or an acrylic resin film).
- the refractive index of the antiblocking layer 5 depends on the refractive index of the substrate 4 and the antireflection member A. Is preferably a value between the refractive index of the member to be fixed and the optical film thickness of the anti-blocking layer 5 is preferably 110 to 170 nm. For this purpose, the refractive index of the anti-blocking layer 5 is preferably 1.45 to 1.65.
- the base material 4 is a PET film having a refractive index of 1.69
- the antireflection member A is an adhesive layer having a refractive index of 1.45 to 1.65 or an acrylic resin film having a refractive index of 1.45 to 1.65.
- the anti-blocking layer 5 has a refractive index of 1.62 and an optical film thickness of 140 nm.
- the range which contains acrylate or urethane acrylate in 95 mass% or more and 80 mass% or less, and also the silica particle with an average particle diameter of 250 nm is 5 mass% or more and 20 mass% or less. It is preferable to contain.
- Antireflection member A In the antireflection member A according to the present embodiment, the light reflected by the first layer 1, the second layer 2, and the third layer 3 interferes with each other and cancels out, so that the overall reflection at the antireflection member A is reduced. The light intensity is significantly reduced.
- Conventional antireflection films have a wavelength dependency of reflectance.
- the reflectance at a wavelength near 550 nm which has the highest sensitivity of the human eye, is low.
- the reflectance of light having a wavelength of 400 to 500 nm (blue) or 600 to 800 nm (red) is relatively high, the reflected color is strongly purple.
- the wavelength dependency of the reflectance in the antireflection member A is reduced, and the reflected color is made whiter than before. Close colors can be achieved and low reflectance can be realized.
- the color of the reflected light from the antireflection member A (reflection color) ) of, CIE 1976L * a * b * color space by a * is 0.0 to 9.0 range
- b * is preferably made in the range of -9.0 or 0.0 or less.
- the reflected light has a color close to white and visibility is not deteriorated.
- the thickness of the third layer 3 is set in the range of 70 nm to 110 nm, or the thickness of the second layer 2 is greater than 130 nm and less than 160 nm.
- the transmitted color a * is ⁇ 0.5 or more and 0.0 or less as described above.
- B * is in the range of 0.2 to 0.8
- the reflected color a * is in the range of 0.0 to 9.0
- b * is in the range of ⁇ 9.0 to 0.0. It is preferable.
- the reflected light has a color that is particularly close to white.
- b * is in the range of 0.2 or more and 0.8 or less
- the a * of the reflected color is in the range of -8.0 or more and 9.0 or less
- b * is It may be in the range of ⁇ 9.0 to 3.0. Even in this case, the reflected light is sufficiently close to white.
- the thickness of the third layer 3 is set in the range of 80 nm to 130 nm, or the thickness of the second layer 2 is greater than 160 nm and 180 nm or less
- the transmitted color a * is in the range of ⁇ 0.5 or more and 0.0 or less
- b * is in the range of 0.2 to 0.8
- the reflected color a * is in the range of ⁇ 8.0 to 2.0
- b * is in the range of ⁇ 6.0 to 3.0. Is preferred.
- the color of the light formed by overlapping the reflected light from the antireflection member and the reflected light from the ITO film is very close to white.
- the total light transmittance according to JIS K7361-1 is 94% or more, the haze according to JIS K7136 is 0.9% or less, and the minimum reflectance is 0.5%. It is also preferable that the average luminous reflectance is 0.7% or less.
- the antireflection member A exhibits excellent light transmittance, transparency, and low reflectivity, and exhibits excellent performance for preventing reflection.
- the minimum reflectance means the reflectance at the wavelength of light (minimum reflectance wavelength) at which the reflectance is minimized among the reflectances of monochromatic light in the wavelength region of 380 to 800 nm of the antireflection member A. .
- the average luminous reflectance is a value obtained by calibrating the reflectance for each wavelength in the wavelength range of 380 to 800 nm with the relative luminous sensitivity and taking the average.
- such a high-performance antireflection member A can be obtained.
- the refractive index and thickness of each of the first layer 1, the second layer 2, and the third layer 3 within the above-mentioned preferable ranges, the high total light transmittance as described above can be realized.
- the particle diameter of this inorganic particle in case the 2nd layer 2 contains an inorganic particle, and this when the 3rd layer 3 contains an inorganic particle The particle diameter of the inorganic particles is preferably 0.5 ⁇ m or less, and the haze of the substrate 4 is preferably 1.0% or less.
- the haze of the base material 4 should just be 1.0% or less in the state in which this base material 4 comprises the antireflection member A.
- the haze of the base material 4 is lowered to 1.0% or less, for example, about 0.6% by forming the first layer 1.
- the refractive index and thickness of each of the first layer 1, the second layer 2, and the third layer 3 are designed in the above-described preferable range, so that the low minimum reflectance as described above can be realized.
- the present invention achieves both low reflectance characteristics and neutral color. That is, it is known that a conventional general low-reflectivity antireflection member (antireflection film) has a strong reflected color and a poor color.
- a low reflectance and a neutral color can be realized by three layers of the first layer 1, the second layer 2, and the third layer 3.
- a demerit such as a significant increase in manufacturing cost, which is not preferable in practice.
- the “neutral color” means that the color tone hardly changes before and after reflection when the light reflects the antireflection member A.
- FIG. 2 shows a schematic configuration of an example of the image display device 6 including the antireflection member A according to the present embodiment.
- the image display device 6 is an image display device with a touch panel that includes an image display device 7 such as a liquid crystal display device and a touch panel 8.
- the touch panel 8 has a configuration in which ITO transparent electrodes 9 and transparent adhesive sheet layers (OCA layers) 10 are alternately stacked. This schematically shows the structure of the touch panel 8. .
- a protective layer 11 made of a glass plate or a hard resin film is formed on the outermost layer of the touch panel 8.
- the antireflection member A according to this embodiment is fixed on the surface of the image display device 6 facing the image display device 7 of the touch panel 8, and the outer surface of the antireflection member A and the image display device 7 are fixed by the adhesive tape 12.
- the main surface of the antireflection member A opposite to the first layer 1 of the substrate 4 faces the touch panel 8, and the main surface of the third layer 3 opposite to the second layer 2 is the image display device 7. It arrange
- the light emitted from the image display device 7 toward the touch panel 8 is efficiently incident into the touch panel 8 by the action of the antireflection member A and is reflected by the touch panel 8. Less. For this reason, an image or video displayed on the image display device 7 can be clearly seen from the outside through the touch panel 8.
- the reflected light from the antireflection member A has a hue close to white as compared with the case of a conventional antireflection film, the visibility of an image displayed on the image display device 6 does not deteriorate.
- the visibility of the image displayed on the image display device 6 is also improved. Get higher.
- the visibility of an image or the like displayed on the image display device 6 is greatly affected by the reflection of light on the surface of the antireflection member A facing the image display device 7.
- the reflected light emitted from the image display device 7 to the outside is reduced, whereby the visibility of the image displayed on the image display device 6 is increased.
- the image display device 6 is formed by bonding the touch panel 8 and the image display device 7 through the air layer 13. Therefore, the reflection of light at the interface between the air layer 13 and the touch panel 8 can be prevented by sticking the antireflection member A to the lower surface of the touch panel 8.
- the antireflection member A of the present invention can be mainly used for insertion into the image display device 6 such as the lower surface of the touch panel 8.
- a method of filling the space between the touch panel 8 and the image display device 7 with a transparent adhesive tape or the like to eliminate the air layer is also conceivable, but bubbles are likely to enter during manufacture, and are not practically used on a large screen of 7 inches or more. .
- FIG. 2 by applying the antireflection member A to the lower surface of the touch panel 8, a low reflectance equivalent to the method of eliminating the air layer with a transparent adhesive tape or the like can be realized.
- Example 1 As the substrate, a polyester film having a thickness of 100 ⁇ m (Cosmo Shine (registered trademark) “A4300” manufactured by Toyobo Co., Ltd., easy adhesion treatment (both sides), surface reflectance 5.1%) was used.
- a polyester film having a thickness of 100 ⁇ m Cosmo Shine (registered trademark) “A4300” manufactured by Toyobo Co., Ltd., easy adhesion treatment (both sides), surface reflectance 5.1%) was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film on which easy adhesion treatment was performed.
- an acrylic ultraviolet curable resin (“Seika Beam PET-HC301” manufactured by Dainichi Seika Kogyo Co., Ltd., active ingredient (solid content) 60 mass%) is diluted to 30 mass% with a toluene solvent.
- a hard coat material for a hard coat layer was obtained. The hard coat material was applied onto the polyester film 1 with a wire bar coater # 10, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ). The refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.), with respect to the total amount of the acrylic ultraviolet curable resin and the high refractive index particles,
- the active ingredient (solid content: 60% by mass) is 60% by mass
- titanium oxide particles (“760T” manufactured by Teica Co., Ltd., dispersion solvent: toluene, solid content: 48% by mass) as high refractive index particles are 40% by mass.
- the resulting mixture was diluted with a toluene solvent to a solid content of 5% by mass to obtain a high refractive index layer material.
- a high refractive index material was applied on the hard coat layer with a wire bar coater # 4, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- “CS60-IPA” manufactured by the company, solvent dispersion sol, solid content 20%) 3.2% by mass
- 0.1N nitric acid 4.6% by mass
- isopropyl alcohol 89.6% by mass and 2-butoxyethanol 2
- a low refractive layer material was obtained by mixing 0.0 mass%.
- This low refractive index layer material is applied with a wire bar coater # 4 to form a coating film having a thickness of 100 nm, and further left to dry at 120 ° C. for 1 minute, and then the coating film is kept at 120 ° C. for 5 minutes in an oxygen atmosphere. And heat treated.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 2 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film on which easy adhesion treatment was performed.
- the acrylic ultraviolet curable resin (“Seika Beam PET-HC301” manufactured by Dainichi Seika Kogyo Co., Ltd.)
- the active ingredient (solid) is used with respect to the total amount of the acrylic ultraviolet curable resin and the silica particles.
- 60% by weight and 50% by weight of silica particles (“IPA-ST” manufactured by Nissan Chemical Industries, Ltd., active ingredient (solid content) 30% by weight) are mixed to 50% by weight, and an isopropyl alcohol solvent is mixed.
- IPA-ST manufactured by Nissan Chemical Industries, Ltd., active ingredient (solid content) 30% by weight
- the hard coat material was applied onto the polyester film 1 with a wire bar coater # 10, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 3 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film on which easy adhesion treatment was performed.
- the acrylic ultraviolet curable resin (“Seika Beam PET-HC301” manufactured by Dainichi Seika Kogyo Co., Ltd., active ingredients (based on the total amount of acrylic ultraviolet curable resin and titanium oxide particles) ( The solid content (60% by mass) was mixed to 85% by mass, and titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) were mixed to 15% by mass. It diluted so that it might become solid content concentration 30 mass%, and the hard-coat material for hard-coat layers was obtained.
- the hard coat material was applied onto the polyester film 1 with a wire bar coater # 10, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 4 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.) is effective against the total amount of the acrylic ultraviolet curable resin and the titanium oxide particles.
- the component solid content: 60% by mass
- titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content: 48% by mass) as high refractive index particles are 30% by mass.
- diluted to 5% by mass with a toluene solvent to obtain a high refractive index layer material.
- a high refractive index material was applied on the hard coat layer with a wire bar coater # 4, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 5 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.) is effective against the total amount of the acrylic ultraviolet curable resin and the titanium oxide particles.
- Component solid content: 60% by mass
- titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content: 48% by mass) as high refractive index particles are 70% by mass.
- diluted to 5% by mass with a toluene solvent to obtain a high refractive index layer material.
- a high refractive index material was applied on the hard coat layer with a wire bar coater # 4, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 6 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the high refractive index layer was formed in the same manner as in Example 1 except that the thickness was 100 nm.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 7 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the high refractive index layer was formed in the same manner as in Example 1 except that the thickness was 160 nm.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 8 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- a low refractive index layer material is applied with a wire bar coater # 4 to form a coating film having a thickness of 100 nm, and further left to dry at 120 ° C. for 1 minute, and then the coating film is kept at 120 ° C. for 5 minutes in an oxygen atmosphere. Heat treated.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 9 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the low refractive index layer 1.4% by mass of hydrolyzable alkoxysilane (“MS56S” manufactured by Mitsubishi Chemical Corporation) and hollow silica fine particle sol (JGC Catalysts and Chemicals Co., Ltd.) with respect to the total amount of the low refractive layer material.
- MS56S hydrolyzable alkoxysilane
- JGC Catalysts and Chemicals Co., Ltd. hollow silica fine particle sol
- a low refractive layer material was obtained by mixing 2.0% by mass.
- a low refractive index layer material is applied with a wire bar coater # 4 to form a coating film having a thickness of 100 nm, and further left to dry at 120 ° C. for 1 minute, and then the coating film is kept at 120 ° C. for 5 minutes in an oxygen atmosphere. Heat treated.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 10 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the low refractive index layer was formed in the same manner as in Example 1 except that the thickness was set to 70 nm.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 11 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the low refractive index layer was formed in the same manner as in Example 1 except that the thickness was 110 nm.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 12 As the substrate, the same polyester film as in Example 1 was used.
- An anti-blocking layer was formed on one side of the polyester film that had been subjected to an easy adhesion treatment.
- an acrylic ultraviolet curable resin manufactured by Dainichi Seika Kogyo Co., Ltd., product number PET-HC301, solid content 60% by mass
- silica particles manufactured by CIK Nanotech Co., Ltd., product number SIRMIBK15WT% -H24, The average particle diameter is 50 nm) and the proportion of silica particles (in terms of solid content) is 15% by mass with respect to the total amount of the acrylic ultraviolet curable resin and the silica particles, and these are mixed, An ultraviolet curable resin composition was obtained.
- the resin composition was applied onto the substrate with a wire bar coater # 10, followed by drying by heating at 80 ° C. for 5 minutes, followed by curing by irradiating with ultraviolet rays at 500 mJ / cm 2 .
- a hard coat layer was formed as a first layer on one side (one side on which the anti-blocking layer was not formed) of the polyester film on which easy adhesion treatment was performed.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the formation of the high refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which an antiblocking layer, a substrate, a hard coat layer, a high refractive index layer, and a low refractive index layer are laminated in this order was obtained.
- Example 13 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film on which easy adhesion treatment was performed.
- 97 parts by mass of acrylic ultraviolet curable resin (“Seika Beam PET-HC301” manufactured by Dainichi Seika Kogyo Co., Ltd., active ingredient (solid content) 60% by mass), methacryloxysilane (Shin-Etsu)
- a hard coat material for a hard coat layer was obtained by blending 3 parts by mass of 3-methacryloxypropyltrimethoxysilane, product number KBM-503) manufactured by Chemical Industry Co., Ltd.
- the hard coat material was applied onto the polyester film 1 with a wire bar coater # 10, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- 60 parts by mass of an acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd., active ingredient (solid content) 60% by mass)
- high refractive index 40 parts by mass of titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) as particles
- methacryloxysilane manufactured by Shin-Etsu Chemical Co., Ltd., 3-methacryloxypropyltrimethoxysilane
- Product number KBM-503 was blended in an amount of 3 parts by mass to obtain a high refractive index layer material.
- a high refractive index material was applied on the hard coat layer with a wire bar coater # 4, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- “CS60-IPA” manufactured by the company, solvent dispersion sol, solid content 20%) 3.2% by mass
- 0.1N nitric acid 4.6% by mass
- isopropyl alcohol 89.6% by mass and 2-butoxyethanol 2
- a low refractive layer material was obtained by mixing 0.0 mass%.
- a low refractive index layer material is applied with a wire bar coater # 4 to form a coating film having a thickness of 100 nm, and further left to dry at 120 ° C. for 1 minute, and then the coating film is kept at 120 ° C. for 5 minutes in an oxygen atmosphere. Heat treated.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 13 the thicknesses of the first layer, the second layer, and the third layer were formed as shown in the table below.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 17 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the substrate that had been subjected to easy adhesion treatment.
- an acrylic ultraviolet curable resin (“Seika Beam PET-HC301” manufactured by Dainichi Seika Kogyo Co., Ltd., active ingredient (solid content) 60 mass%) is diluted to 30 mass% with a toluene solvent, A hard coat material for a hard coat layer was obtained.
- the hard coat material was applied onto the polyester film 1 with a wire bar coater # 10, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer and a low refractive index layer were formed by the same method as in Example 13.
- the refractive index and thickness of the high refractive index layer and the low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 18 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed on one side of the substrate that had been subjected to easy adhesion treatment by the same method as in Examples 13 to 16.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed on the hard coat layer by the same method as in Example 1.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed in the same manner as in Examples 13 to 16.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 19 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer and a high refractive index layer were sequentially formed by the same method as in Examples 13 to 16 on one surface of the base material on which easy adhesion treatment was performed.
- the refractive index and thickness of the hard coat layer and the high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- a low refractive index layer 57 parts by mass of fluorine-containing acrylate (“LINC-3A” manufactured by Kyoeisha Chemical Co., Ltd., active ingredient (solid content) 100% by mass), hollow silica fine particle sol (JGC Catalysts & Chemicals Co., Ltd.) 40 parts by mass of “CS60-IPA”, solvent dispersion sol, solid content 20%), 3 parts by mass of photopolymerization initiator (“IRGACURE 184” manufactured by BASF Corp., active ingredient (solid content) 100% by mass)
- IRGACURE 184 photopolymerization initiator
- This low refractive index layer material was applied by a wire bar coater # 4 to form a coating film, and further left to dry at 120 ° C. for 1 minute, and then the coating film was heat-treated at 120 ° C. for 5 minutes in an oxygen atmosphere. .
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- each of the first layer, the second layer, and the third layer is adjusted by adjusting the mixing ratio of the components in the material for forming each of the first layer, the second layer, and the third layer.
- the refractive index was adjusted as shown in the table below.
- the thicknesses of the first layer, the second layer, and the third layer were adjusted as shown in the table below.
- an anti-blocking layer was formed in the same manner as in Example 12.
- an antireflection member having a structure in which an antiblocking layer, a substrate, a hard coat layer, a high refractive index layer, and a low refractive index layer are laminated in this order was obtained.
- Example 1 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the high refractive index layer was formed in the same manner as in Example 1 except that the thickness was 83 nm.
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the low refractive index layer was formed in the same manner as in Example 1 except that the thickness was 100 nm.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 2 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.), with respect to the total amount of the acrylic ultraviolet curable resin and the high refractive index particles, 75% by mass of the active ingredient (solid content 60% by mass), and 25% by mass of titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content 48% by mass) as high refractive index particles. And diluted with a toluene solvent to a solid content of 5% by mass to obtain a high refractive index layer material.
- a high refractive index material was applied on the hard coat layer with a wire bar coater # 4, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 3 As the substrate, the same polyester film as in Example 1 was used.
- a hard coat layer was formed as a first layer on one surface of the polyester film that had been subjected to an easy adhesion treatment.
- the hard coat layer was formed in the same manner as in Example 1.
- the refractive index and thickness of this hard coat layer are shown in the table below.
- a high refractive index layer was formed as a second layer on the hard coat layer.
- the acrylic ultraviolet curable resin (“Seika Beam MD-2 Clear” manufactured by Dainichi Seika Kogyo Co., Ltd.), with respect to the total amount of the acrylic ultraviolet curable resin and the high refractive index particles,
- the active ingredient (solid content: 60% by mass) is 22% by mass
- the titanium oxide particles (“760T” manufactured by Teika Co., Ltd., dispersion solvent: toluene, solid content: 48% by mass) are 78% by mass as high refractive index particles.
- a high refractive index material was applied on the hard coat layer with a wire bar coater # 4, dried at 80 ° C. for 5 minutes, and then cured by UV irradiation (500 mJ / cm 2 ).
- the refractive index and thickness of this high refractive index layer are shown in the following table.
- a low refractive index layer was formed as a third layer on the high refractive index layer.
- the formation of the low refractive index layer was performed in the same manner as in Example 1.
- the refractive index and thickness of this low refractive index layer are shown in the following table.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Example 13 Comparative Examples 4 and 5
- the thicknesses of the first layer, the second layer, and the third layer were formed as shown in the table below.
- an antireflection member having a structure in which the base material, the hard coat layer, the high refractive index layer, and the low refractive index layer are laminated in this order was obtained.
- Total light transmittance measurement The total light transmittance of each antireflection member was measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., model number NDH2000).
- the color of light is more neutral as the value of the color difference is smaller.
- composition “A” of the low refractive index layer means that hydrolyzable alkoxysilane and hollow silica particles are blended in the low refractive index layer material
- composition “B” Means that a fluorine-containing acrylate and hollow silica particles are blended in the low refractive index layer material.
- Examples 1 to 34 have a lower minimum reflectance and average luminous reflectance and lower reflection characteristics than Comparative Examples 1 to 3. In addition, Examples 1 to 34 have a neutral color with less variation in transmitted colors a * and b * and reflected colors a * and b * than in Comparative Examples 1 to 5.
- Example 1 has less change in reflectance with respect to wavelength than Comparative Example 1. That is, in the long wavelength region (wavelength region longer than about 600 nm) and the short wavelength region (wavelength region shorter than about 500 nm), the example has a lower reflectance than the comparative example. On the other hand, in the middle wavelength region (wavelength region between about 500 to 600 nm), the example has a slightly higher reflectance than the comparative example. For this reason, from the short wavelength region to the long wavelength region, the reflectance of the example changes less than the reflectance of the comparative example, and as a result, the reflected color can be neutralized.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
本発明の課題は、低反射率特性とニュートラルな色目とを両立した反射防止部材を提供することである。本発明に係る反射防止部材は、ポリエステル製の基材、第一層、第二層、及び第三層を備える。これらの要素が前記の順番に積層している。前記第一層の屈折率が1.52以上1.65以下の範囲である。前記第二層の屈折率が1.67以上1.80以下の範囲、かつその厚みが100nm以上180nm以下の範囲である。前記第三層の屈折率が1.30以上1.45以下の範囲、かつその厚みが70nm以上130nm以下の範囲である。
Description
本発明は、タッチパネルや液晶ディスプレイなどに用いられる反射防止部材に関するものである。
近年、タッチパネル、液晶ディスプレイなどの普及に伴い、映り込み抑制などのための反射防止部材(反射防止フィルム)が注目されている。
従来、屈折率の異なる複数の層が積層された構造を有する種々の反射防止部材が提供されている(例えば、特許文献1参照)。
上記のような反射防止部材において、ウェット方式でより低反射化を図るためには、中屈折率層、高屈折率層、低屈折率層の三層を積層する方法が知られている。
しかし、このような三層の反射防止部材では、反射率が低くなるものの、短波長側の光(青色、波長λ=400~500nm)、長波長側の光(赤色、λ=600~800nm)の反射率が、中波長領域の光(黄色、λ=500~600nm)よりも相対的に高くなってしまうため、紫色の反射色が強く着色し、外観上の問題となることが多かった。
本発明は上記の点に鑑みてなされたものであり、低反射率特性とニュートラルな色目とを両立した反射防止部材を提供することを目的とするものである。
本発明の第1の態様に係る反射防止部材は、ポリエステル製の基材、第一層、第二層、及び第三層を備え、これらの要素が前記の順番に積層しており、
前記第一層の屈折率が1.52以上1.65以下の範囲であり、
前記第二層の屈折率が1.67以上1.80以下の範囲、かつその厚みが100nm以上180nm以下の範囲であり、
前記第三層の屈折率が1.30以上1.45以下の範囲、かつその厚みが70nm以上130nm以下の範囲である。
前記第一層の屈折率が1.52以上1.65以下の範囲であり、
前記第二層の屈折率が1.67以上1.80以下の範囲、かつその厚みが100nm以上180nm以下の範囲であり、
前記第三層の屈折率が1.30以上1.45以下の範囲、かつその厚みが70nm以上130nm以下の範囲である。
本発明の第2の態様に係る反射防止部材では、前記第一層の厚みが0.5μm以上10.0μm以下の範囲である。
本発明の第3の態様に係る反射防止部材では、第1又は第2の態様において、
標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が-8.0以上9.0以下の範囲、そのb*が-9.0以上3.0以下の範囲である。
標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が-8.0以上9.0以下の範囲、そのb*が-9.0以上3.0以下の範囲である。
本発明の第4の態様に係る反射防止部材では、第1乃至第3のいずれか一の態様において、
前記第二層の厚みが100nm以上160nm以下の範囲であり、
前記第三層の厚みが70nm以上110nm以下の範囲である。
前記第二層の厚みが100nm以上160nm以下の範囲であり、
前記第三層の厚みが70nm以上110nm以下の範囲である。
本発明の第5の態様に係る反射防止部材は、ポリエステルフィルムの表面に第一層、第二層及び第三層がこの順に積層されて形成され、前記第一層は、屈折率が1.52以上1.65以下の範囲で、かつ厚みが1.0μm以上10.0μm以下の範囲に形成され、前記第二層は、屈折率が1.67以上1.80以下の範囲で、かつ厚みが100nm以上160nm以下の範囲に形成され、前記第三層は、屈折率が1.30以上1.45以下の範囲で、かつ厚みが70nm以上110nm以下の範囲に形成されて成ることを特徴とするものである。
すなわち、本発明の第5の態様に係る反射防止部材では、第4の態様において、前記第一層の厚みが1.0μm以上10.0μm以下の範囲である。
また、本発明にあっては、CIE 1976L*a*b*色空間において標準C光源による透過色は、a*が-0.5以上0.0以下の範囲で、b*が0.2以上0.8以下の範囲であり、CIE 1976L*a*b*色空間において標準C光源による反射色は、a*が0.0以上9.0以下の範囲で、b*が-9.0以上0.0以下の範囲であることが好ましい。
すなわち、本発明の第6の態様に係る反射防止部材では、第4又は第5の態様において、標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が0.0以上9.0以下の範囲、そのb*が-9.0以上0.0以下の範囲である。
本発明の第7の態様に係る反射防止部材では、第1乃至第3のいずれか一の態様において、
前記第二層の厚みが130nm以上180nm以下の範囲であり、
前記第三層の厚みが80nm以上130nm以下の範囲である。
前記第二層の厚みが130nm以上180nm以下の範囲であり、
前記第三層の厚みが80nm以上130nm以下の範囲である。
本発明の第8の態様に係る反射防止部材では、第7の態様において、標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が-8.0以上2.0以下の範囲、そのb*が-6.0以上3.0以下の範囲である。
本発明にあっては、最小反射率が0.5%以下、平均視感反射率が0.7%以下、全光線透過率が94%以上であることが好ましい。
すなわち、本発明の第9の態様に係る反射防止部材では、第1乃至第8のいずれか一の態様において、その最小反射率が0.5%以下、その平均視感反射率が0.7%以下、その全光線透過率が94%以上である。
本発明の第10の態様に係る発明では、第1乃至第9のいずれか一の態様において、
前記第一層が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第一の紫外線硬化型樹脂の硬化物を含有し、
前記第二層が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第二の紫外線硬化型樹脂の硬化物を含有し、
前記第三層が、アルコキシシラン及びその部分加水分解重合物のうち少なくとも一種の硬化物と、シリカとから成る。
前記第一層が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第一の紫外線硬化型樹脂の硬化物を含有し、
前記第二層が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第二の紫外線硬化型樹脂の硬化物を含有し、
前記第三層が、アルコキシシラン及びその部分加水分解重合物のうち少なくとも一種の硬化物と、シリカとから成る。
本発明の第11の態様に係る反射防止部材では、第10の態様において、前記第一層に対する、前記第一の紫外線硬化型樹脂における前記アルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上である。
本発明の第12の態様に係る反射防止部材では、第10又は第11の態様において、前記第二層に対する、前記第二の紫外線硬化型樹脂における前記アルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上である。
また、本発明にあっては、前記第三層は、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体からなり、中空シリカ粒子を含有することが好ましい。
すなわち、本発明の第13の態様では、第1乃至第9のいずれか一の態様において、前記第三層は、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体と、中空シリカ粒子とを含有する。
また、本発明にあっては、前記基材の前記第一層とは反対側の表面にアンチブロッキング層が積層されているのが好ましい。
すなわち、本発明の第14の態様に係る反射防止部材は、第1乃至第13のいずれか一の態様において、前記基材の前記第一層とは反対側の表面に積層されているアンチブロッキング層を更に備える。
本発明は、反射防止部材の低反射率特性とニュートラルな色目とを両立したものである。
以下、本発明を実施するための形態を説明する。
本実施形態では、反射防止部材Aは、図1に示されるように、基材4、第一層(ハードコート層)1、第二層(高屈折率層)2、及び第三層(低屈折率層)3を備える。基材4、第一層1、第二層2、及び第三層3は、この順番に積層している。すなわち、基材4の第一の主面(片面)上に第一層1が積層し、第一層1の基材4とは反対側の主面上に第二層2が積層し、第二層2の第一層1とは反対側の主面(片面)上に第三層3が積層している。基材4、第一層1、第二層2、及び第三層3のうちのいずれの要素も光透過性を有し、反射防止部材Aが全体として光透過性を有する。
本実施形態では、第一層1の屈折率が1.52以上1.65以下の範囲である。また、第二層2の屈折率が1.67以上1.80以下の範囲、かつその厚みが100nm以上180nm以下の範囲である。更に、第三層3の屈折率が1.30以上1.45以下の範囲、かつその厚みが70nm以上130nm以下の範囲である。
このように第一層1、第二層2及び第三層3の屈折率及び厚みが設定されることで、反射防止部材の反射率の波長依存性を小さくし、反射防止部材からの反射色を白色に近い色にすることができ、かつ反射防止部材Aの低反射率化を実現できる。
第一層1の厚みは、0.5μm以上10.0μm以下の範囲であることが好ましい。この場合、反射防止部材Aの機械的強度が向上する。
この反射防止部材AにCIEで規定される標準C光源の光を入射した場合、透過色(透過光の色)の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となることが、好ましい。また、この反射防止部材AにCIEで規定される標準C光源の光を入射した場合、反射色(反射光の色)の、CIE 1976L*a*b*色空間によるa*が-8.0以上9.0以下の範囲、b*が-9.0以上3.0以下の範囲となることが、好ましい。
本実施形態において、前記第二層2の厚みが100nm以上160nm以下の範囲であり、且つ前記第三層3の厚みが70nm以上110nm以下の範囲であることが、好ましい。この場合、反射防止部材Aからの反射色が、白色により近い色になる。第一層1の厚みが1.0μm以上10.0μm以下の範囲であれば、更に好ましい。この場合、反射防止部材Aの機械的強度が充分に向上する。
また、前記第二層2の厚みが100nm以上160nm以下の範囲、前記第三層3の厚みが70nm以上110nm以下の範囲に設定される場合には、反射防止部材AにCIEで規定される標準C光源の光を入射した場合、透過色(透過光の色)の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となることが、好ましい。また、この反射防止部材AにCIEで規定される標準C光源の光を入射した場合、反射色(反射光の色)の、CIE 1976L*a*b*色空間によるa*が0.0以上9.0以下の範囲、b*が-9.0以上0.0以下の範囲となることが、好ましい。この場合、反射防止部材Aからの反射光が特に白色により近い色となり、視認性が低下しにくくなる。
本実施形態において、第二層2の厚みが130nm以上180nm以下の範囲であり、且つ第三層3の厚みが80nm以上130nm以下の範囲であることも、好ましい。この場合、反射光の色は、白色に近い色であるが、やや青みを帯びている。この反射防止部材Aからの反射光と、ITO膜からの反射光とが重なって成る光の色は、白色に非常に近い色となる。このため、反射防止部材Aは、透明電極として広く使用されているITO膜と併用される用途に、好適なものとなり、この場合、ITO膜からの反射光の色を外部から目立たなくすることができる。ITO膜と併用される用途としては、例えば後述する画像表示機器6に適用する用途が、挙げられる。
また、第二層2の厚みが130nm以上180nm以下の範囲、第三層3の厚みが80nm以上130nm以下の範囲に設定される場合には、反射防止部材AにCIEで規定される標準C光源の光を入射した場合の、透過色(透過光の色)の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となることが、好ましい。また、この反射防止部材AにCIEで規定される標準C光源の光を入射した場合の、反射色(反射光の色)の、CIE 1976L*a*b*色空間によるa*が-8.0以上2.0以下の範囲、b*が-6.0以上3.0以下の範囲となることが好ましい。この場合、反射防止部材Aからの反射光とITO膜からの反射光とが重なって成る光が白色により近い色となり、視認性が低下しにくくなる。
反射防止部材Aの最小反射率が0.5%以下であり、その平均視感反射率が0.7%以下であり、更にその全光線透過率が94%以上であることも、好ましい、この場合、反射防止部材Aは優れた光透過性、透明性、低反射性を発揮し、反射防止のための優れた性能を発揮する。
第一層1、第二層2、及び第三層3の材質は、特に制限されない。第一層1、第二層2、及び第三層3の材質の、好ましい組み合わせの第一の例では、第一層1が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第一の紫外線硬化型樹脂の硬化物を含有する。更に、本例では、第二層2が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第二の紫外線硬化型樹脂の硬化物を含有する。また、本例では、第三層3が、アルコキシシラン及びその部分加水分解重合物のうち少なくとも一種の硬化物と、シリカとから成る。この場合、第三層3の硬度が非常に高くなり、これにより反射防止部材Aの機械的強度が向上する。それにより、反射防止部材Aの耐擦傷性が高くなる。また、第一層1、第二層2及び第三層3が、いずれもアルコキシシラン系の化合物を含む組成物の硬化物を含有するために、各層間の密着性が向上する。特に、第一層1と第二層2とは、共に、反応性有機官能基を有するアルコキシシラン系の化合物を含む紫外線硬化型樹脂の硬化物を含有するため、反応性有機官能基が反応することで、第一層1と第二層2との密着性が更に向上する。また、第一層1が紫外線硬化型樹脂の硬化物を含み、且つ充分に大きい厚みを有するため、反射防止部材Aの硬度が向上する。
第一層1が第一の紫外線硬化型樹脂の硬化物を含有する場合、第一層1に対する、第一の紫外線硬化型樹脂におけるアルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上であることが、好ましい。この場合、反射防止部材Aの耐擦傷性が更に向上し、また層間の密着性も更に向上する。
また、第二層2が第二の紫外線硬化型樹脂の硬化物を含有する場合、第二層2に対する、第二の紫外線硬化型樹脂におけるアルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上であることが、好ましい。この場合も、反射防止部材Aの耐擦傷性が更に向上し、また層間の密着性も更に向上する。
第一層1、第二層2、及び第三層3の材質の、好ましい組み合わせの第二の例では、第三層3が、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体と、中空シリカ粒子とを含有する。この場合の第一層1及び第二層2の材質は特に制限されない。本例では、第三層3の低屈折率化が容易となり、更に、第三層3の防汚性及び耐薬品性が向上する。
また、反射防止部材Aは、アンチブロッキング層5を更に備えてもよい。アンチブロッキング層5は、基材の第一層1とは反対側の表面に積層される。この場合、反射防止部材Aがロール状に巻き回されるなどして重ねられる場合の、ブロッキングの発生が抑制される。また、反射防止部材Aが重ねられる場合の反射防止部材Aの表面の滑性が向上する。
以下、反射防止部材Aの構成要素について、更に詳しく説明する。
[基材4について]
基材4は、ポリエステル製である。例えば、基材4はポリエステルフィルムから形成される。ポリエステルフィルムのうち、特に、ポリエチレンテレフタレート(PET)やポリエチレンナフタレートの2軸延伸フィルムは、優れた機械的特性、耐熱性、耐薬品性等を有するため、磁気テープ、強磁性薄膜テープ、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、ラミネート用フィルム、ディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として好適である。特に、ディスプレイ用途に関しては液晶表示装置の部材であるプリズムレンズシート、タッチパネル、バックライト等のベースフィルムや、テレビの反射防止部材Aのベースフィルム、プラズマテレビの前面光学フィルターに用いられる反射防止部材A、近赤外線カットフィルム、電磁波シールドフィルムのベースフィルム等として好適である。
基材4は、ポリエステル製である。例えば、基材4はポリエステルフィルムから形成される。ポリエステルフィルムのうち、特に、ポリエチレンテレフタレート(PET)やポリエチレンナフタレートの2軸延伸フィルムは、優れた機械的特性、耐熱性、耐薬品性等を有するため、磁気テープ、強磁性薄膜テープ、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、ラミネート用フィルム、ディスプレイ等の表面に貼るフィルム、各種部材の保護用フィルム等の素材として好適である。特に、ディスプレイ用途に関しては液晶表示装置の部材であるプリズムレンズシート、タッチパネル、バックライト等のベースフィルムや、テレビの反射防止部材Aのベースフィルム、プラズマテレビの前面光学フィルターに用いられる反射防止部材A、近赤外線カットフィルム、電磁波シールドフィルムのベースフィルム等として好適である。
ポリエステルとして、例えば、テレフタル酸、イソフタル酸、2,6-ナフタリンジカルボン酸、4,4′-ジフェニルジカルボン酸等の芳香族ジカルボン酸成分と、エチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等のグリコール成分とが反応することで生成する芳香族ポリエステルが好ましく、特に、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタリンジカルボキシレートなどが好ましい。またポリエステルは、前記例示した複数の成分等の共重合ポリエステルであってもよい。
基材4は有機または無機の粒子を含有してもよい。この場合、基材4の巻き取り性、搬送性等が向上する。このような粒子として、炭酸カルシウム粒子、酸化カルシウム粒子、酸化アルミニウム粒子、カオリン、酸化珪素粒子、酸化亜鉛粒子、架橋アクリル樹脂粒子、架橋ポリスチレン樹脂粒子、尿素樹脂粒子、メラミン樹脂粒子、架橋シリコーン樹脂粒子等が挙げられる。基材4は、着色剤、帯電防止剤、紫外線吸収剤、酸化防止剤、潤滑剤、触媒、他の樹脂等も、透明性を損なわない範囲で含有してもよい。
基材4のヘイズは3%以下であることが好ましく、この場合、反射防止部材Aを通した映像等の視認性が向上し、反射防止部材Aが光学的用途のフィルムとして特に適したものとなる。ヘイズが1.5%以下であれば更に好ましい。
基材4の厚みは特に制限されないが、25μm以上200μm以下の範囲であることが好ましい。特に基材4の厚みが25μm以上100μm以下であると、反射防止部材Aの薄型化、軽量化が可能となり、また反射防止部材Aの両表面(表裏)における干渉の発生が抑制され、更に基材4が加熱される際の熱収縮が抑制されて基材4の熱収縮による加工性の悪化等の不具合が抑制される。
基材4の表面反射率は4%以上6%以下の範囲であることが好ましい。基材4の表面反射率がこの範囲であると、基材4の両表面(表裏)における干渉の発生が抑制されて低反射率特性を確保しやすくなるものである。
本実施形態において、基材4の表面には易接着処理が施されていることが好ましい。易接着処理としては、プラズマ処理、コロナ処理等のドライ処理、アルカリ処理等の化学処理、易接着層を形成するコーティング処理等があげられる。易接着処理は、反射防止部材Aの材料である基材4の単独膜がロール状に巻き回されるなどして重ねられる場合のブロッキングの発生を抑制したり滑性を向上したりするために施される。上記の易接着処理の中でも、基材4の表面(第一の主面上)に易接着層を積層することが好ましい。この場合、基材4と第一層1との間に易接着層が介在していることが好ましい。更に易接着処理は、基材4と第一層1との間の接着性向上のためにも利用され得る。易接着層の材質に制限はないが、特に、ポリエステル系樹脂、アクリル系樹脂等から形成されることが好ましい。易接着層の表面での界面反射によって反射防止部材Aの反射率が増大することを抑制するためには、易接着層の屈折率が基材4の屈折率及び第一層1の屈折率に近いことが望ましく、特に、1.58~1.75の範囲であることが好ましい。易接着層の光学膜厚が120~160nmの範囲であることが好ましい。この場合、基材4と第一層1との間の高い密着性を確保しつつ、易接着層が存在することによる反射率の増大や干渉ムラの発生が抑制される。
[第一層1について]
第一層1は、基材4よりも高い硬度を有するハードコート層として形成されるのが好ましい。これにより反射防止部材Aの機械的強度が向上する。第一層1の鉛筆硬度はH以上であることが好ましく、2H以上であれば更に好ましい。
第一層1は、基材4よりも高い硬度を有するハードコート層として形成されるのが好ましい。これにより反射防止部材Aの機械的強度が向上する。第一層1の鉛筆硬度はH以上であることが好ましく、2H以上であれば更に好ましい。
第一層1の屈折率は、1.52以上1.65以下である必要がある。第一層1の屈折率がこの範囲であることで、第一層1と基材4との間における干渉ムラの発生が抑制される。第一層1の厚みは、特に制限されない。また、本実施形態における一つの態様においては、第一層1の厚みは、1.0μm以上10.0μm以下の範囲である必要がある。第一層1の厚みがこの範囲であれば、反射防止部材Aの機械的強度が充分に向上する。また、第一層1の厚みは、0.5μm以上10.0μm以下の範囲であってもよい。第一層1の厚みがこの範囲であれば、反射防止部材Aの機械的強度が向上する。
第一層1は、反応性硬化型樹脂組成物から形成されることが好ましく、例えば熱硬化型樹脂組成物と電離放射線硬化型樹脂組成物の少なくとも一方から形成されることが好ましい。熱硬化型樹脂組成物は、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等の熱硬化性樹脂を含有する。熱硬化性樹脂と共に、必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤等が使用されてもよい。このような熱硬化型樹脂組成物が例えば基材4(易接着層が有る場合はその表面)上に塗布され、続いてこの熱硬化型樹脂組成物が加熱されて熱硬化することで、第一層1が形成され得る。
電離放射線硬化型樹脂組成物は、アクリレート系の官能基を有する樹脂を含むことが好ましい。アクリレート系の官能基を有する樹脂としては、例えば比較的低分子量の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマーなどが挙げられる。前記の多官能化合物としては、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等が挙げられる。電離放射線硬化型樹脂組成物は更に反応性希釈剤を含有することも好ましい。反応性希釈剤としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びにトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートの多官能モノマーが挙げられる。
電離放射線硬化型樹脂組成物が紫外線硬化型樹脂組成物などの光硬化型樹脂組成物である場合には、光硬化型樹脂組成物が光重合開始剤を含有することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、チオキサントン類などが挙げられる。光硬化型樹脂組成物が光重合開始剤に加えて、或いは光重合開始剤に代えて、光増感剤を含有してもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、チオキサントンなどが挙げられる。このような光硬化型樹脂組成物が例えば基材4上に塗布され、続いてこの光硬化型樹脂組成物に紫外線などの光が照射されて光硬化することで、第一層1が形成され得る。
第一層1の屈折率は、第一層1を形成するための樹脂組成物の組成によって容易に調整され得る。第一層1が屈折率調整用の粒子を含有すると共にその割合が調整されることで、第一層1の屈折率が調整されることも好ましい。
屈折率調整用の粒子の粒径は十分に小さいこと、すなわち屈折率調整用の粒子がいわゆる超微粒子であるが好ましく、この場合、第一層1の光透過性が十分に維持されるようになる。屈折率調整用の粒子の粒径は特に、0.5nm以上200nm以下の範囲であることが好ましい。この屈折率調整用の粒子の粒径とは、粒子の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。屈折率調整用の粒子は、比較的屈折率の高い粒子であることが好ましく、特に屈折率が1.6以上の粒子であることが好ましい。この粒子は、金属や金属酸化物の粒子であることが好ましい。
第一層1中の屈折率調整用の粒子の含有量は、第一層1の屈折率が適切な値となるように適宜調整されるが、特に第一層1中の屈折率調整用の粒子の割合が5体積%以上70体積%以下となるように調整されることが好ましい。屈折率調整用の粒子の具体例としては、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、アンチモンから選ばれる一種あるいは二種以上の酸化物を含有する粒子が挙げられる。酸化物の具体例としては、ZnO(屈折率1.90)、TiO2(屈折率2.3~2.7)、CeO2(屈折率1.95)、Sb2O5(屈折率1.71)、SnO2(屈折率1.8~2.0)、ITO(屈折率1.95)、Y2O3(屈折率1.87)、La2O3(屈折率1.95)、ZrO2(屈折率2.05)、Al2O3(屈折率1.63)等が挙げられる。
第一層1には帯電防止性能が付与されていることも好ましい。この場合、反射防止部材Aの帯電が抑制され、また反射防止部材Aへ埃の付着が抑制される。そのためには、第一層1が導電性粒子を含有することが好ましい。導電性粒子は同時に屈折率調整用の粒子としても機能してもよい。導電性粒子はナノ粒子であることが好ましく、特に粒径が0.5nm以上200nm以下の超微粒子であることが好ましい。導電性粒子の粒径も面積相当円の径である。導電性粒子の材質としては導電性を有する適宜の金属、金属酸化物等が挙げられ、具体的にはインジウム、亜鉛、錫、アンチモンから選ばれる一種又は二種以上の金属の酸化物が挙げられ、更に具体的には酸化インジウム(ITO)、酸化錫(SnO2)、アンチモン/錫酸化物(ATO)、鉛/チタン酸化物(PTO)、アンチモン酸化物(Sb2O5)等が挙げられる。第一層1に十分な帯電防止性能が付与されるためには、導電性粒子を含有することで第一層1のシート抵抗が1015Ω/□以下となることが好ましい。第一層1のシート抵抗は小さいほど帯電防止性が向上するので、下限は特に設定されないが、シート抵抗を小さくするのには限界があるため、第一層1のシート抵抗の実質的な下限は106Ω/□である。第一層1中の導電性粒子の含有量は、第一層1の帯電防止性能が適切な程度となるように適宜調整されるが、特に第一層1中の導電性粒子の割合が5質量%以上70質量%以下となるように調整されることが好ましい。
既述の通り、第一層1が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第一の紫外線硬化型樹脂の硬化物を含有してもよい。そのためには、例えば、紫外線硬化型樹脂組成物から第一層1が形成される場合に、この紫外線硬化型樹脂組成物が、第一の紫外線硬化型樹脂を含有することが、好ましい。
反応性有機官能基を有するアルコキシシランにおける反応性有機官能基としては、アクリロイル基、メタクリロイル基、グリシジル基、イソシアネート基等が、挙げられる。反応性有機官能基を有するアルコキシシランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
既述の通り、第一層1が第一の紫外線硬化型樹脂の硬化物を含有する場合、第一層1に対する、第一の紫外線硬化型樹脂におけるアルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上であることが、好ましい。この割合は、更に5~10質量%の範囲であることが好ましい。この場合、反射防止部材Aの耐擦傷性が更に向上し、また層間の密着性も更に向上する。
[第二層2について]
第二層2は第三層3よりも屈折率の高い高屈折率層として形成される。第二層2の屈折率は1.67以上1.80以下の範囲であり、かつ厚み(実膜厚)は100nm以上160nm以下の範囲である。第二層2の屈折率及び厚みが前記のような範囲であることで反射防止部材Aの光反射性が抑制され、且つこの反射防止部材Aからの反射光の色が適度な色目に調整される。この第二層2の屈折率が前記範囲より大きくなると反射防止部材Aの光反射性は更に低減するものの、反射光の色が強くなりすぎてしまい、好ましくない。また、第二層2の厚みが前記範囲より大きくなると、反射防止部材Aからの反射光の色が青みを帯びるようになってしまい、この厚みがさらに大きくなると反射防止部材Aの反射率が著しく増大してしまうため、好ましくない。また、第二層2の厚みが前記範囲より小さくなると反射色が強い紫色をおびた色になってしまうため、好ましくない。
第二層2は第三層3よりも屈折率の高い高屈折率層として形成される。第二層2の屈折率は1.67以上1.80以下の範囲であり、かつ厚み(実膜厚)は100nm以上160nm以下の範囲である。第二層2の屈折率及び厚みが前記のような範囲であることで反射防止部材Aの光反射性が抑制され、且つこの反射防止部材Aからの反射光の色が適度な色目に調整される。この第二層2の屈折率が前記範囲より大きくなると反射防止部材Aの光反射性は更に低減するものの、反射光の色が強くなりすぎてしまい、好ましくない。また、第二層2の厚みが前記範囲より大きくなると、反射防止部材Aからの反射光の色が青みを帯びるようになってしまい、この厚みがさらに大きくなると反射防止部材Aの反射率が著しく増大してしまうため、好ましくない。また、第二層2の厚みが前記範囲より小さくなると反射色が強い紫色をおびた色になってしまうため、好ましくない。
上記の通り、第二層2の厚みが大きくなると、反射光の光が青みを帯びてくる傾向が生じるが、第二層2の厚みが100nm以上180nm以下の範囲であれば、反射光の色は白色に充分に近い色となる。但し、反射光の色を特に白色に近づけるためには、この第二層2の厚みが上記のように100nm以上160nm以下の範囲であることが好ましい。この厚みが130nmより大きく160以下の範囲であれば更に好ましい。
また、既述の通り、反射防止部材AがITO膜と併用される場合において、反射防止部材Aからの反射光とITO膜からの反射光とが重なって成る光の色を白色に近づけるためには、第二層2の厚みが130nm以上180nm以下の範囲であることが好ましい。この厚みが160nmより大きく180nm以下の範囲であれば更に好ましい。
第二層2は、反応性硬化型樹脂組成物から形成されることが好ましく、例えば熱硬化型樹脂組成物と電離放射線硬化型樹脂組成物の少なくとも一方から形成されることが好ましい。熱硬化型樹脂組成物は、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等の熱硬化性樹脂を含有する。熱硬化性樹脂と共に、必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤等が使用されてもよい。
電離放射線硬化型樹脂組成物は、アクリレート系の官能基を有する樹脂を含むことが好ましい。アクリレート系の官能基を有する樹脂としては、例えば比較的低分子量の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマーなどが挙げられる。前記の多官能化合物としては、ポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等が挙げられる。電離放射線硬化型樹脂組成物は更に反応性希釈剤を含有することも好ましい。反応性希釈剤としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びにトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートの多官能モノマーが挙げられる。
電離放射線硬化型樹脂組成物が紫外線硬化型樹脂組成物などの光硬化型樹脂組成物である場合には、光硬化型樹脂組成物が光重合開始剤を含有することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、チオキサントン類などが挙げられる。光硬化型樹脂組成物が光重合開始剤に加えて、或いは光重合開始剤に代えて、光増感剤を含有してもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、チオキサントンなどが挙げられる。
第二層2の屈折率は、第二層2を形成するための樹脂組成物の組成によって容易に調整され得る。第二層2が屈折率調整用の粒子を含有すると共にその割合が調整されることで、第二層2の屈折率が調整されることも好ましい。
屈折率調整用の粒子の粒径は十分に小さいこと、すなわち屈折率調整用の粒子がいわゆる超微粒子であるが好ましく、この場合、第二層2の光透過性が十分に維持されるようになる。屈折率調整用の粒子の粒径は特に、0.5nm以上200nm以下の範囲であることが好ましい。この屈折率調整用の粒子の粒径とは、粒子の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。
屈折率調整用の粒子は、比較的屈折率の高い粒子であることが好ましく、特に屈折率が1.6以上の粒子であることが好ましい。この粒子は、金属や金属酸化物の粒子であることが好ましい。
第二層2中の屈折率調整用の粒子の含有量は、第二層2の屈折率が適切な値となるように適宜調整されるが、特に第二層2中の屈折率調整用の粒子の割合が5体積%以上70体積%以下となるように調整されることが好ましい。
屈折率調整用の粒子の具体例としては、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、アンチモンから選ばれる一種あるいは二種以上の酸化物を含有する粒子が挙げられる。酸化物の具体例としては、ZnO(屈折率1.90)、TiO2(屈折率2.3~2.7)、CeO2(屈折率1.95)、Sb2O5(屈折率1.71)、SnO2(屈折率1.8~2.0)、ITO(屈折率1.95)、Y2O3(屈折率1.87)、La2O3(屈折率1.95)、ZrO2(屈折率2.05)、Al2O3(屈折率1.63)等が挙げられる。
第二層2は、チタン、アルミニウム、セリウム、イットリウム、ジルコニウム、ニオブ、アンチモンから選ばれる一種あるいは二種以上の酸化物を含有する粒子と共に、メタクリル官能性シランと、アクリル官能性シランとのうち少なくとも一方を含有することも好ましい。この場合、第二層2と第三層3との密着性が向上する。メタクリル官能性シランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等が挙げられる。アクリル官能性シランとしては3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン等が挙げられる。
第二層2中のメタクリル官能性シランとアクリル官能性シランの含有量は特に制限されないが、第二層2中のメタクリル官能性シランとアクリル官能性シランの総量の割合が5質量%以上30質量%以下の範囲であることが好ましい。前記割合が5質量%以上であると第二層2と第三層3との密着性が十分に高くなり、また前記割合が30質量%以下であると第二層2中の架橋密度が十分に向上して第二層2の硬度が十分に高くなる。
第二層2の、第一層1とは反対側の主面には、第三層3が形成される前に表面処理が施されることが好ましい。この場合、第二層2と第三層3との間の濡れ性、密着性等の向上が可能となる。表面処理の方法としては、プラズマ処理、コロナ放電処理、フレーム処理などの物理的表面処理、カップリング剤、酸、アルカリによる化学的表面処理などが挙げられる。
既述の通り、第二層2が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第二の紫外線硬化型樹脂の硬化物を含有してもよい。そのためには、例えば、紫外線硬化型樹脂組成物から第二層2が形成される場合に、この紫外線硬化型樹脂組成物が、第二の紫外線硬化型樹脂を含有することが、好ましい。
反応性有機官能基を有するアルコキシシランにおける反応性有機官能基としては、アクリロイル基、メタクリロイル基、グリシジル基、イソシアネート基等が挙げられる。反応性有機官能基を有するアルコキシシランとしては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
既述の通り、第二層2が第二の紫外線硬化型樹脂の硬化物を含有する場合、第二層2に対する、第二の紫外線硬化型樹脂におけるアルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上であることが、好ましい。この割合は、更に5~10質量%の範囲であることが好ましい。この場合、反射防止部材Aの耐擦傷性が更に向上し、また層間の密着性も更に向上する。
[第三層3について]
第三層3の屈折率は、基材4、第一層1及び第二層2のいずれの屈折率よりも低いものである。第三層3の屈折率は1.30以上1.45以下の範囲であり、その厚み(実膜厚)は70nm以上110nm以下の範囲である。
第三層3の屈折率は、基材4、第一層1及び第二層2のいずれの屈折率よりも低いものである。第三層3の屈折率は1.30以上1.45以下の範囲であり、その厚み(実膜厚)は70nm以上110nm以下の範囲である。
第三層3の屈折率が前記のような範囲であることで、第一層1と第二層2との干渉作用により反射防止部材Aの反射率が低減し、更に第三層3の厚みが前記のような範囲にあることで、反射防止部材Aからの反射光の色が適度に調整される。
第三層3の厚みが70nm以上130nm以下の範囲であれば、反射光の色は白色に充分に近い色となる。但し、反射光の色を特に白色に近づけるためには、この第三層3の厚みが上記のように70nm以上110nm以下の範囲であることが好ましい。この厚みが70nm以上80nm未満の範囲であれば更に好ましい。
また、既述の通り、反射防止部材AがITO膜と併用される場合において、反射防止部材Aからの反射光とITO膜からの反射光とが重なって成る光の色を白色に近づけるためには、第三層3の厚みが80nm以上130nm以下の範囲であることが好ましい。この厚みが110nmより大きく130nm以下の範囲であれば更に好ましい。
第三層3は、例えばバインダー材料及び必要に応じて使用される屈折率調整用の粒子を含有する組成物から形成される。バインダー材料と屈折率調整用の粒子とが併用される場合、両者の組み合わせ、配合比等により第三層3の屈折率が適宜調整される。
バインダー材料としては、シリコンアルコキシド系樹脂、飽和炭化水素及びポリエーテルの少なくともいずれかを主鎖とするポリマー(例えばUV硬化型樹脂組成物、熱硬化型樹脂組成物等)、ポリマー鎖中にフッ素原子を含む単位を含む樹脂などが挙げられる。
シリコンアルコキシド系樹脂としては、RmSi(OR´)nで表されるシリコンアルコキシド(R、R´は炭素数1~10のアルキル基、m+n=4、m及びnはそれぞれ整数。)の部分加水分解縮合物であるオリゴマー及びポリマーが、挙げられる。シリコンアルコキシドとしては、具体的にはテトラメトキシシラン、テトラエトキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラペンタエトキシシラン、テトラペンタ-iso-プロポキシシラン、テトラペンタ-n-プロポキシシラン、テトラペンタ-n-ブトキシシラン、テトラペンタ-sec-ブトキシシラン、テトラペンタ-tert-ブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルエトキシシラン、ジメチルメトキシシラン、ジメチルプロポキシシラン、ジメチルブトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ヘキシルトリメトキシシラン等が例示される。
バインダー材料として、熱又は電離放射線によって反応架橋する複数の基(重合性二重結合基等)を有する反応性有機珪素化合物が用いられてもよい。この有機珪素化合物の分子量は5000以下であることが好ましい。このような反応性有機珪素化合物としては、片末端ビニル官能性ポリシラン、両末端ビニル官能性ポリシラン、片末端ビニル官能ポリシロキサン、両末端ビニル官能性ポリシロキサン、並びにこれらの化合物を反応させて得られるビニル官能性ポリシラン及びビニル官能性ポリシロキサン等が挙げられる。これら以外にも、反応性有機珪素化合物としては、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシラン化合物が挙げられる。
屈折率調整用の粒子としては、比較的低屈折率の粒子が使用されることが好ましい。屈折率調整用の粒子の材質としては、シリカ、フッ化マグネシウム、フッ化リチウム、フッ化アルミニウム、フッ化カルシウム、フッ化ナトリウム等が挙げられる。屈折率調整用の粒子が中空粒子を含むことが好ましい。中空粒子とは外殻によって包囲された空洞を有する粒子である。中空粒子の屈折率は1.20~1.45であることが好ましい。
屈折率調整用の粒子には、必要に応じて、バインダー材料との濡れ性を向上するための表面処理が施されていることが好ましい。
屈折率調整用の粒子の粒径は十分に小さいこと、すなわち屈折率調整用の粒子がいわゆる超微粒子であることが好ましく、この場合、第三層3の光透過性が十分に維持されるようになる。屈折率調整用の粒子の粒径は特に、0.5nm~200nmの範囲であることが好ましい。この屈折率調整用の粒子の粒径とは、粒子の電子顕微鏡写真画像から算出される投影面積と同一の面積を有する円(面積相当円)の径のことである。
第三層3中の屈折率調整用の粒子の含有量は、第三層3の屈折率の値が適切な値となるように適宜調整されるが、特に第三層3中の屈折率調整用の粒子の割合が20~99体積%となるように調整されることが好ましい。
組成物は、更に撥水、撥油性材料を含有してもよい。この場合、第三層3に防汚性が付与され得る。撥水、撥油性材料としては、一般的なワックス系の材料等が使用され得る。特に含フッ素化合物が使用されると、第三層3の汚れ、指紋等の除去性が特に向上すると共に、第三層3の表面の摩擦抵抗が低減して第三層3の耐摩耗性が向上する。
第三層3として好ましい態様は、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体からなり、かつ中空シリカ粒子を含有するものを例示することができる。この場合、低屈折率の確保や防汚性機能付与、耐薬品性付与という効果が得られて好ましい。上記のアルコキシシランとしては、ポリメトキシシランなどを例示することができる。また、フルオロカーボン骨格を有するアルコキシシランとしては、トリメトキシシリルドデカフルオロヘキサンなどを例示することができる。アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物は、アルコキシシラン100質量部に対してフルオロカーボン骨格を有するアルコキシシランを5~1900質量部の割合で混合することにより調製することができる。また、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体は、例えば、ゾルゲル法などの重合法により生成することができる。アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体の分子量は、500~3000であることが好ましい。また、中空シリカ粒子は上記と同様に、屈折率が1.20~1.45であることが好ましく、粒径が0.5nm~200nmの範囲であることが好ましい。また、第三層3には、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体100質量部に対して、中空シリカ粒子を5~233質量部の割合で含有されることが好ましい。
第三層3は、上記のような組成物が第二層2の上に塗布され、更にこの組成物がバインダー材料の性状に応じて加熱、加湿、紫外線照射、電子線照射等の処理が施されることで硬化することにより、形成され得る。
[アンチブロッキング層5について]
基材4の第一の主面と反対側の表面にアンチブロッキング層5が積層していることが好ましい。すなわち、アンチブロッキング層5は、基材4の第一層1を積層した表面とは反対側の表面に積層されているのが好ましい。アンチブロッキング層5は、反射防止部材Aがロール状に巻き回されるなどして重ねられる場合のブロッキングの発生を抑制したり滑性を向上したりするために形成される。更にアンチブロッキング層5は、反射防止部材Aが何らかの部材(例えば粘着性の層やアクリル系樹脂製の膜など)に接着されて固定される場合の接着性向上のためにも利用され得る。
基材4の第一の主面と反対側の表面にアンチブロッキング層5が積層していることが好ましい。すなわち、アンチブロッキング層5は、基材4の第一層1を積層した表面とは反対側の表面に積層されているのが好ましい。アンチブロッキング層5は、反射防止部材Aがロール状に巻き回されるなどして重ねられる場合のブロッキングの発生を抑制したり滑性を向上したりするために形成される。更にアンチブロッキング層5は、反射防止部材Aが何らかの部材(例えば粘着性の層やアクリル系樹脂製の膜など)に接着されて固定される場合の接着性向上のためにも利用され得る。
アンチブロッキング層5の表面での界面反射によって反射防止部材Aの反射率が増大することを抑制するためには、アンチブロッキング層5の屈折率が、基材4の屈折率と、反射防止部材Aが固定される部材の屈折率との間の値であることが望ましく、更にアンチブロッキング層5の光学膜厚が110~170nmであることが好ましい。このためには、アンチブロッキング層5の屈折率は1.45~1.65であることが好ましい。例えば、基材4が屈折率1.69のPETフィルムであり、反射防止部材Aが屈折率1.45~1.65の粘着層や屈折率1.45~1.65のアクリル系樹脂膜に接着される場合には、アンチブロッキング層5の屈折率が1.62、光学膜厚が140nmであることが好ましい。
アンチブロッキング層5の材質に制限はないが、アクリレートまたはウレタンアクリレートを95質量%以上80質量%以下の範囲で含有し、更に平均粒子径250nmのシリカ粒子を5質量%以上20質量%以下の範囲で含有することが好ましい。
[反射防止部材Aについて]
本実施形態による反射防止部材Aでは、第一層1、第二層2、及び第三層3でそれぞれ反射した光が互いに干渉して打ち消しあうことで、反射防止部材Aでの全体的な反射光の強度が著しく低減する。
本実施形態による反射防止部材Aでは、第一層1、第二層2、及び第三層3でそれぞれ反射した光が互いに干渉して打ち消しあうことで、反射防止部材Aでの全体的な反射光の強度が著しく低減する。
従来の反射防止フィルムには、反射率の波長依存性がある。一般的には、反射防止部材で光が反射される場合、人間の目の感度が最も高い550nm付近の波長の反射率が低いことが好ましいとされる。この場合400~500nm(青色)や、600~800nm(赤色)の波長の光の反射率が相対的に高くなるために反射色が強い紫色を帯びてしまう。
本実施形態では、第二層2、及び第三層3の屈折率、膜厚を最適化することにより、反射防止部材Aにおける反射率の波長依存性を小さくし、反射色を従来より白色に近い色にすることができ、かつ低反射率を実現できる。
本実施形態による反射防止部材Aに、CIEが規定する標準C光源からの光が入射する場合には、反射防止部材Aを透過する透過光の色(透過色)の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となることが好ましい。この場合、反射防止部材Aを透過する透過光の色が無色に近い色となる。更に、本実施形態による反射防止部材Aに、CIEが規定する標準C光源からの光が、第三層3の面から入射する場合には、反射防止部材Aからの反射光の色(反射色)の、CIE 1976L*a*b*色空間によるa*が0.0以上9.0以下の範囲、b*が-9.0以上0.0以下の範囲となることが好ましい。この場合、反射光が白色に近い色となり、視認性を低下させることがない。
特に、第二層2の厚みが100nm以上160nm以下の範囲、第三層3の厚みが70nm以上110nm以下の範囲に設定される場合、或いは第二層2の厚みが130nmより大きく160nm以下の範囲、第三層3の厚みが70μm以上80μm未満の範囲に設定される場合に、このように厚みが設定された結果、上記のように透過色のa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となり、反射色a*が0.0以上9.0以下の範囲、b*が-9.0以上0.0以下の範囲となることが好ましい。この場合、反射光が特に白色に近い色となる。
また、第二層2の厚みが100nm以上180nm以下の範囲、第三層3の厚みが70nm以上130nm以下の範囲に設定される場合に、このように厚みが設定された結果、透過色のa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となり、反射色のa*が-8.0以上9.0以下の範囲、b*が-9.0以上3.0以下の範囲となってもよい。この場合でも、反射光が充分に白色に近い色となる。
また、第二層2の厚みが130nm以上180nmの範囲、第三層3の厚みが80nm以上130nm以下の範囲に設定される場合、或いは第二層2の厚みが160nmより大きく180nm以下の範囲、第三層3の厚みが110nmより大きく130nm以下の範囲に設定される場合には、このように厚みが設定された結果、透過色のa*が-0.5以上0.0以下の範囲、b*が0.2以上0.8以下の範囲となり、反射色のa*が-8.0以上2.0以下の範囲、b*が-6.0以上3.0以下の範囲となることが、好ましい。この場合、反射防止部材からの反射光と、ITO膜からの反射光とが重なって成る光の色が、白色に非常に近い色となる。
本実施形態による反射防止部材Aの、JIS K7361-1による全光線透過率が94%以上であること、JIS K7136によるヘイズが0.9%以下であること、及び最小反射率が0.5%以下であること、平均視感反射率が0.7%以下であることも、好ましい。この場合、反射防止部材Aは優れた光透過性、透明性、低反射性を発揮し、反射防止のための優れた性能を発揮する。最小反射率とは、反射防止部材Aの380~800nmの波長域での単色光の反射率のうち、反射率が最小になる光の波長(最小反射率波長)での反射率のことをいう。また、平均視感反射率とは、380~800nmの波長域における各波長ごとの反射率を比視感度により校正し、平均をとった値である。
本実施形態ではこのような高性能の反射防止部材Aを得ることが可能である。第一層1、第二層2、及び第三層3の各々の屈折率及び厚みが、上記の好ましい範囲に設計されることで、前記のような高い全光線透過率が実現され得る。また、ヘイズが0.9%以下であることを実現するためには、第二層2が無機粒子を含む場合のこの無機粒子の粒子径、及び第三層3が無機粒子を含む場合のこの無機粒子の粒子径が、0.5μm以下であることが好ましく、並びに基材4のヘイズが1.0%以下であることが好ましい。尚、基材4のヘイズは、この基材4が反射防止部材Aを構成している状態で1.0%以下であればよい。例えば基材4の表面上にオリゴマー粒子が付着しているなどの理由で基材4単独ではそのヘイズが1.0%程度或いはそれよりも高くなっても、この基材4の表面上に第一層1が形成されることで基材4のヘイズが1.0%以下、例えば0.6%程度まで低くなるのであれば、好ましい。また第一層1、第二層2、及び第三層3の各々の屈折率及び厚みが、上記の好ましい範囲に設計されることで、前記のような低い最小反射率が実現され得る。
本発明は、低反射率特性とニュートラルな色目とを両立したものである。すなわち、従来からある一般的な低反射率の反射防止部材(反射防止フィルム)は、反射色が強くなり色目が悪くなることが知られている。しかし、本発明は、第一層1と第二層2と第三層3の3層で低反射率かつニュートラル色(白色)を実現することができる。尚、低反射率かつニュートラル色を実現する方法として、更に多層化する方法もあるが、製造コストが大幅に増大するなどのデメリットもあるため、実用上好ましくない。
尚、「ニュートラルな色目」とは、光が反射防止部材Aを反射する場合の反射前後の光の色に、色調の変化が生じにくいことを意味している。
[画像表示機器6について]
本実施形態による反射防止部材Aは、上述のとおり、画像表示機器における反射防止用途に好ましく適用され得る。本実施形態による反射防止部材Aを備える画像表示機器6の例の概略構成を、図2に示す。
本実施形態による反射防止部材Aは、上述のとおり、画像表示機器における反射防止用途に好ましく適用され得る。本実施形態による反射防止部材Aを備える画像表示機器6の例の概略構成を、図2に示す。
この画像表示機器6は、液晶表示装置などの画像表示装置7とタッチパネル8とを備えるタッチパネル付き画像表示装置である。図2において、タッチパネル8はITO透明電極9と透明粘着シート層(OCA層)10とが交互に積層した構成を有しているが、これはタッチパネル8の構造を概略的に示したものである。タッチパネル8の最外層にはガラス板や硬質樹脂フィルムなどからなる保護層11が形成されている。
この画像表示機器6におけるタッチパネル8の画像表示装置7と対向する面上に本実施形態による反射防止部材Aが固定され、この反射防止部材Aの外面と画像表示装置7とが粘着テープ12により固定されている。反射防止部材Aは、基材4の第一層1とは反対側の主面がタッチパネル8に対向し、第三層3の第二層2とは反対側の主面が画像表示装置7と対向するように、配置される。
このように構成される画像表示機器6では、画像表示装置7からタッチパネル8へ向けて照射される光は、反射防止部材Aの作用によってタッチパネル8内へ効率良く入射し、タッチパネル8で反射する光が少なくなる。このため、画像表示装置7で表示される画像や映像が、タッチパネル8を通して外部から明瞭に視認されるようになる。
反射防止部材Aによる反射光は、従来の反射防止フィルムの場合に比べて色相が白色に近いため、画像表示機器6で表示される画像等の視認性を低下することがない。
また、外部から画像表示機器6へ向けて白色光などの光が照射され、この光が画像表示機器6内で反射される場合にも、画像表示機器6で表示される画像等の視認性が高くなる。この場合、画像表示機器6で表示される画像等の視認性は、反射防止部材Aにおける画像表示装置7と対向する面での光の反射によって大きく影響を受けるが、上記の場合と同様の機序によって画像表示装置7から外部へ出射する反射光が低減され、これにより画像表示機器6で表示される画像等の視認性が高くなる。
図2に示すように、画像表示機器6は、タッチパネル8と画像表示装置7とが空気層13を介して貼り合わされることにより形成される。そこで、タッチパネル8の下面に反射防止部材Aを貼ることで、空気層13とタッチパネル8との界面での光の反射を防止することができる。このように本発明の反射防止部材Aはタッチパネル8の下面などの画像表示機器6の内部に挿入する用途で主に使用することができる。尚、透明粘着テープ等でタッチパネル8と画像表示装置7との間を埋めて空気層を無くする方法も考えられるが、製造時に気泡が入りやすく、7インチ以上の大画面では実用化されていない。図2のように、反射防止部材Aをタッチパネル8の下面に貼ることで、透明粘着テープ等で空気層を無くする方法と同等の低い反射率が実現できる。
以下、本発明を実施例によって具体的に説明する。
(実施例1)
基材としては、厚み100μmのポリエステルフィルム(東洋紡績株式会社製のコスモシャイン(登録商標)「A4300」、易接着処理(両面)、表面反射率5.1%)を用いた。
基材としては、厚み100μmのポリエステルフィルム(東洋紡績株式会社製のコスモシャイン(登録商標)「A4300」、易接着処理(両面)、表面反射率5.1%)を用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームPET-HC301」、有効成分(固形分)60質量%)をトルエン溶媒で30質量%に希釈し、ハードコート層用のハードコート材料を得た。ハードコート材料をワイヤーバーコーター#10番でポリエステルフィルム1の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と高屈折率粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)を60質量%に、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を40質量%となるように混合し、トルエン溶媒で固形分5質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#4番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、低屈折層材料の全量に対して、加水分解性アルコキシシラン(三菱化学株式会社製「MS56S」)を0.6質量%、中空シリカ微粒子ゾル(日揮触媒化成株式会社製「CS60-IPA」、溶媒分散ゾル、固形分20%)を3.2質量%、0.1N硝酸を4.6質量%、イソプロピルアルコールを89.6質量%、2-ブトキシエタノールを2.0質量%混合して低屈折層材料を得た。
この低屈折率層材料をワイヤーバーコーター#4により塗布して厚み100nmのコーティング膜を形成し、さらに120℃で1分間放置して乾燥した後、コーティング膜を120℃で5分間、酸素雰囲気下で熱処理した。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例2)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、アクリル系紫外線硬化型樹脂とシリカ粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームPET-HC301」、有効成分(固形分)60質量%)を50質量%、シリカ粒子(日産化学工業株式会社製「IPA-ST」、有効成分(固形分)30質量%)を50質量%となるように混合し、イソプロピルアルコール溶媒で固形分濃度30%となるように希釈し、ハードコート層用のハードコート材料を得た。ハードコート材料をワイヤーバーコーター#10番でポリエステルフィルム1の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例3)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、アクリル系紫外線硬化型樹脂と酸化チタン粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームPET-HC301」、有効成分(固形分)60質量%)を85質量%、酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を15質量%となるように混合し、トルエン溶媒で固形分濃度30質量%となるように希釈し、ハードコート層用のハードコート材料を得た。ハードコート材料をワイヤーバーコーター#10番でポリエステルフィルム1の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例4)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と酸化チタン粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)を70質量%、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を30質量%となるように混合し、トルエン溶媒で固形分5質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#4番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例5)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と酸化チタン粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)を30質量%、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を70質量%となるように混合し、トルエン溶媒で固形分5質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#4番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例6)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、厚みを100nmとした以外は、実施例1と同様に作成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例7)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、厚みを160nmとした以外は、実施例1と同様に作成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例8)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、低屈折率層材料の全量に対して、加水分解性アルコキシシリルテトラフルオロカーボン(モメンティブ株式会社製「XC95-810」)を0.4質量%、中空シリカ微粒子ゾル(日揮触媒化成株式会社製「CS60-IPA」、イソプロピルアルコール溶媒分散ゾル、固形分20質量%)を3.4質量%、0.1N硝酸を4.6質量%、イソプロピルアルコールを89.6質量%、2-ブトキシエタノール2.0質量%混合して低屈折層材料を得た。低屈折率層材料をワイヤーバーコーター#4により塗布して厚み100nmのコーティング膜を形成し、さらに120℃で1分間放置して乾燥した後、コーティング膜を120℃で5分間、酸素雰囲気下で熱処理した。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例9)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、低屈折層材料の全量に対して、加水分解性アルコキシシラン(三菱化学株式会社製「MS56S」)を1.4質量%、中空シリカ微粒子ゾル(日揮触媒化成株式会社製「CS60-IPA」、溶媒分散ゾル、固形分20質量%)を2.4質量%、0.1N硝酸を4.6質量%、イソプロピルアルコールを89.6質量%、2-ブトキシエタノールを2.0質量%混合して低屈折層材料を得た。低屈折率層材料をワイヤーバーコーター#4により塗布して厚み100nmのコーティング膜を形成し、さらに120℃で1分間放置して乾燥した後、コーティング膜を120℃で5分間、酸素雰囲気下で熱処理した。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例10)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、厚みを70nmとした以外は、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例11)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、厚みを110nmとした以外は、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例12)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、アンチブロッキング層を形成した。アンチブロッキング層の形成にあたっては、アクリル系紫外線硬化型樹脂(大日精化工業株式会社製、品番PET-HC301、固形分60質量%)とシリカ粒子(CIKナノテック株式会社製、品番SIRMIBK15WT%-H24、平均粒子径50nm)とを、シリカ粒子の割合(固形分換算)がアクリル系紫外線硬化型樹脂とシリカ粒子の合計量に対して15質量%となるように配合し、これらを混合することで、紫外線硬化型の樹脂組成物を得た。
基材上に樹脂組成物をワイヤーバーコーター#10番で塗布し、続いて80℃で5分間加熱することにより乾燥させ、続いて紫外線を500mJ/cm2の条件で照射し硬化させた。
このポリエステルフィルムの易接着処理がされた片面(アンチブロッキング層を形成していない方の片面)上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、アンチブロッキング層、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例13)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームPET-HC301」、有効成分(固形分)60質量%)を97質量部、メタクリロキシシラン(信越化学工業株式会社製、3-メタクリロキシプロピルトリメトキシシラン、品番KBM-503)を3質量部配合することで、ハードコート層用のハードコート材料を得た。ハードコート材料をワイヤーバーコーター#10番でポリエステルフィルム1の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)を60質量部、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を40質量部、メタクリロキシシラン(信越化学工業株式会社製、3-メタクリロキシプロピルトリメトキシシラン、品番KBM-503)を3質量部配合することで、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#4番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、低屈折層材料の全量に対して、加水分解性アルコキシシラン(三菱化学株式会社製「MS56S」)を0.6質量%、中空シリカ微粒子ゾル(日揮触媒化成株式会社製「CS60-IPA」、溶媒分散ゾル、固形分20%)を3.2質量%、0.1N硝酸を4.6質量%、イソプロピルアルコールを89.6質量%、2-ブトキシエタノールを2.0質量%混合して低屈折層材料を得た。低屈折率層材料をワイヤーバーコーター#4により塗布して厚み100nmのコーティング膜を形成し、さらに120℃で1分間放置して乾燥した後、コーティング膜を120℃で5分間、酸素雰囲気下で熱処理した。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例14~16)
実施例13において、第一層、第二層及び第三層の厚みを後掲の表に示すように形成した。これにより、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
実施例13において、第一層、第二層及び第三層の厚みを後掲の表に示すように形成した。これにより、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例17)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
この基材の易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたって、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームPET-HC301」、有効成分(固形分)60質量%)をトルエン溶媒で30質量%に希釈し、ハードコート層用のハードコート材料を得た。ハードコート材料をワイヤーバーコーター#10番でポリエステルフィルム1の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、実施例13の場合と同じ手法により、高屈折率層及び低屈折率層を形成した。この高屈折率層及び低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例18)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
この基材の易接着処理がされた片面上に、実施例13~16と同じ手法でハードコート層を形成した。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に、実施例1と同じ手法で高屈折率層を形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、実施例13~16と同じ手法で低屈折率層を形成した。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例19)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
この基材の易接着処理がされた片面上に、実施例13~16と同じ手法でハードコート層及び高屈折率層を順次形成した。このハードコート層及び高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、含フッ素アクリレート(共栄社化学(株)製「LINC-3A」、有効成分(固形分)100質量%)を57質量部、中空シリカ微粒子ゾル(日揮触媒化成株式会社製「CS60-IPA」、溶媒分散ゾル、固形分20%)を40質量部、光重合開始剤(BASF(株)製「IRGACURE184」、有効成分(固形分)100質量%)を3質量部配合することで、低屈折率層材料を得た。
この低屈折率層材料をワイヤーバーコーター#4により塗布してコーティング膜を形成し、さらに120℃で1分間放置して乾燥した後、コーティング膜を120℃で5分間、酸素雰囲気下で熱処理した。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(実施例20~34)
実施例13において、第一層、第二層及び第三層の各々を形成するための材料中の成分の配合割合を調整することで、第一層、第二層及び第三層の各々の屈折率を、後掲の表に示すように調整した。また、第一層、第二層及び第三層の各々の厚みを、後掲の表に示すように調整した。
実施例13において、第一層、第二層及び第三層の各々を形成するための材料中の成分の配合割合を調整することで、第一層、第二層及び第三層の各々の屈折率を、後掲の表に示すように調整した。また、第一層、第二層及び第三層の各々の厚みを、後掲の表に示すように調整した。
また、実施例12の場合と同様にアンチブロッキング層を形成した。
以上により、アンチブロッキング層、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(比較例1)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、厚みを83nmとした以外は、実施例1と同様に行った。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、厚みを100nmとした以外は、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(比較例2)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と高屈折率粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)を75質量%、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を25質量%となるように混合し、トルエン溶媒で固形分5質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#4番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(比較例3)
基材としては実施例1と同様のポリエステルフィルムを用いた。
基材としては実施例1と同様のポリエステルフィルムを用いた。
このポリエステルフィルムの易接着処理がされた片面上に、第一層としてハードコート層を形成した。ハードコート層の形成にあたっては、実施例1と同様に行った。このハードコート層の屈折率と厚みとを後掲の表に示す。
続いて、ハードコート層の上に第二層として高屈折率層を形成した。高屈折率層の形成にあたっては、アクリル系紫外線硬化型樹脂と高屈折率粒子の合計量に対して、アクリル系紫外線硬化型樹脂(大日精化工業(株)製「セイカビームMD-2クリヤー」、有効成分(固形分)60質量%)を22質量%、高屈折率粒子として酸化チタン粒子(テイカ(株)製「760T」、分散溶剤:トルエン、固形分48質量%)を78質量%となるように混合し、トルエン溶媒で固形分5質量%に希釈し、高屈折率層材料を得た。高屈折率材料をワイヤーバーコーター#4番でハードコート層の上に塗布し、80℃で5分間乾燥させた後、UV照射(500mJ/cm2)により硬化させて形成した。この高屈折率層の屈折率と厚みとを後掲の表に示す。
続いて、高屈折率層の上に第三層として低屈折率層を形成した。低屈折率層の形成にあたっては、実施例1と同様に行った。この低屈折率層の屈折率と厚みとを後掲の表に示す。
以上により、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
(比較例4、5)
実施例13において、第一層、第二層及び第三層の厚みを後掲の表に示すように形成した。これにより、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
実施例13において、第一層、第二層及び第三層の厚みを後掲の表に示すように形成した。これにより、基材、ハードコート層、高屈折率層、及び低屈折率層が、この順番に積層している構造を有する反射防止部材を得た。
上記の各実施例及び各比較例の反射防止部材について、以下の項目について評価した。
[ヘイズ測定]
各反射防止部材のヘイズを、ヘイズメータ(日本電色工業株式会社製、型番NDH2000)を使用して測定した。
各反射防止部材のヘイズを、ヘイズメータ(日本電色工業株式会社製、型番NDH2000)を使用して測定した。
[全光線透過率測定]
各反射防止部材の全光線透過率を、ヘイズメータ(日本電色工業株式会社製、型番NDH2000)を使用して測定した。
各反射防止部材の全光線透過率を、ヘイズメータ(日本電色工業株式会社製、型番NDH2000)を使用して測定した。
[最小反射率測定]
分光光度計(株式会社日立ハイテクノロジーズ製、型番U-4100)を使用して、各反射防止部材の380~800nmの波長域での光の反射率を測定した。これに基づいて反射率が最小になる光の波長(最小反射率波長)、及び最小反射率波長での光の反射率を導出した。
分光光度計(株式会社日立ハイテクノロジーズ製、型番U-4100)を使用して、各反射防止部材の380~800nmの波長域での光の反射率を測定した。これに基づいて反射率が最小になる光の波長(最小反射率波長)、及び最小反射率波長での光の反射率を導出した。
[平均視感反射率]
各反射防止部材の裏面を黒塗りした上で、測定装置として分光光度計(株式会社日立ハイテクノロジーズ製、型番U-4100)を用い、光源としてC光源を用い、JIS R3106に基づいて5°の正反射での分光反射率を測定した。これにより得られた結果から、平均視感反射率を導出した。
各反射防止部材の裏面を黒塗りした上で、測定装置として分光光度計(株式会社日立ハイテクノロジーズ製、型番U-4100)を用い、光源としてC光源を用い、JIS R3106に基づいて5°の正反射での分光反射率を測定した。これにより得られた結果から、平均視感反射率を導出した。
[透過色評価]
各反射防止部材に、CIEが規定する標準C光源からの光を低屈折率層側から入射し、反射防止部材を透過した透過光の色のCIE 1976L*a*b*色空間によるa*及びb*を、コニカミノルタ株式会社製分光測色計、型番CM3600Dで測定した。
各反射防止部材に、CIEが規定する標準C光源からの光を低屈折率層側から入射し、反射防止部材を透過した透過光の色のCIE 1976L*a*b*色空間によるa*及びb*を、コニカミノルタ株式会社製分光測色計、型番CM3600Dで測定した。
[反射色評価]
各反射防止部材に、CIEが規定する標準C光源からの光を低屈折率層側から入射した。この場合の反射防止部材からの10°視野での、反射光の色のCIE 1976L*a*b*色空間によるL*、a*及びb*を、コニカミノルタ株式会社製分光測色計、型番CM3600Dで測定した。
各反射防止部材に、CIEが規定する標準C光源からの光を低屈折率層側から入射した。この場合の反射防止部材からの10°視野での、反射光の色のCIE 1976L*a*b*色空間によるL*、a*及びb*を、コニカミノルタ株式会社製分光測色計、型番CM3600Dで測定した。
また、これにより導出されたL*、a*及びb*に基づき、色差(=((L*)2+(a*)2+(b*)2)1/2)を、算出した。
尚、この色差の値が小さいほど、光の色目が、よりニュートラルであると評価することができる。
[反射色評価(ITO膜併用)]
厚み20nmのITO膜と、これに重ねられている厚み188μmのPET製フィルムとからなるITOフィルムを用意した。このITOフィルムを、アクリル系粘着剤により各反射防止部材の基材上に貼り合わせた。
厚み20nmのITO膜と、これに重ねられている厚み188μmのPET製フィルムとからなるITOフィルムを用意した。このITOフィルムを、アクリル系粘着剤により各反射防止部材の基材上に貼り合わせた。
このITO膜が重ねられた反射防止部材に、CIEが規定する標準C光源からの光を低屈折率層側から入射した。この場合の反射防止部材からの10°視野での、反射光の色のCIE 1976L*a*b*色空間によるL*、a*及びb*を、コニカミノルタ株式会社製分光測色計、型番CM3600Dで測定した。
また、これにより導出されたL*、a*及びb*に基づき、色差(=((L*)2+(a*)2+(b*)2)1/2)を、算出した。
[耐擦傷性評価]
表面性試験機(Type14FW、新東科学株式会社製)を用いて、反射防止部材の低屈折率層上にスチールウール#0000を250gの荷重で押し当てながら、このスチールウール#0000で低屈折率層の表面を10回擦った。続いて、低屈折率層の表面についた傷の有無を目視で観察した。その結果、著しい傷が認められる場合を“A”、著しい傷が認められない場合を“B”と、評価した。
表面性試験機(Type14FW、新東科学株式会社製)を用いて、反射防止部材の低屈折率層上にスチールウール#0000を250gの荷重で押し当てながら、このスチールウール#0000で低屈折率層の表面を10回擦った。続いて、低屈折率層の表面についた傷の有無を目視で観察した。その結果、著しい傷が認められる場合を“A”、著しい傷が認められない場合を“B”と、評価した。
[耐久性試験後密着性評価]
各反射防止部材を温度85℃湿度85%の恒温恒湿槽に72時間配置した。続いて、各反射防止部材に対して、JIS D0202:1988に準拠した碁盤目テープ剥離試験を行った。粘着テープとしてニチバン株式会社製のセロハンテープCT24を用いた。この試験の結果、剥離が生じなかった場合を“A”、剥離が生じた場合を“B”と、評価した。
各反射防止部材を温度85℃湿度85%の恒温恒湿槽に72時間配置した。続いて、各反射防止部材に対して、JIS D0202:1988に準拠した碁盤目テープ剥離試験を行った。粘着テープとしてニチバン株式会社製のセロハンテープCT24を用いた。この試験の結果、剥離が生じなかった場合を“A”、剥離が生じた場合を“B”と、評価した。
以上の結果を後掲の表に示す。
尚、後掲の表において、低屈折率層の組成“A”とは、低屈折率層材料に加水分解性アルコキシシランと中空シリカ粒子とが配合されていることを意味し、組成“B”とは、低屈折率層材料に含フッ素アクリレートと中空シリカ粒子とが配合されていることを意味する。
前掲の表から明らかなように、実施例1~34は比較例1~3に比べて、最小反射率や平均視感反射率が小さく、低反射特性を有するものである。また、実施例1~34は比較例1~5に比べて、透過色のa*及びb*や反射色のa*及びb*のばらつきが小さく、ニュートラルな色目を有するものである。
このうち、実施例1~13並びに15~28では、反射防止部材単独における反射光の色が、特にニュートラルな色目を有していた。
また、実施例1~5、7~9、11~21、並びに29~34では、反射防止部材とITO膜とを重ねた場合に、反射光の色が、特にニュートラルな色目を有していた。
図3に示すように、実施例1は比較例1に比べて、波長に対する反射率の変化が少ない。すなわち、長波長領域(約600nmより長い波長領域)及び短波長領域(約500nmより短い波長領域)において、実施例は比較例よりも反射率が小さくなる。一方、中波長領域(約500~600nmの間の波長領域)においては、実施例は比較例よりも反射率が若干大きくなる。このため、短波長領域から長波長領域にわたって、実施例の反射率は比較例の反射率よりも変化が小さく、この結果、反射色のニュートラル化を図ることができるものである。
A 反射防止部材
1 第一層
2 第二層
3 第三層
4 基材
5 アンチブロッキング層
1 第一層
2 第二層
3 第三層
4 基材
5 アンチブロッキング層
Claims (14)
- ポリエステル製の基材、第一層、第二層、及び第三層を備え、これらの要素が前記の順番に積層しており、
前記第一層の屈折率が1.52以上1.65以下の範囲であり、
前記第二層の屈折率が1.67以上1.80以下の範囲、かつその厚みが100nm以上180nm以下の範囲であり、
前記第三層の屈折率が1.30以上1.45以下の範囲、かつその厚みが70nm以上130nm以下の範囲である反射防止部材。 - 前記第一層の厚みが0.5μm以上10.0μm以下の範囲である請求項1に記載の反射防止部材。
- 標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が-8.0以上9.0以下の範囲、そのb*が-9.0以上3.0以下の範囲である請求項1に記載の反射防止部材。
- 前記第二層の厚みが100nm以上160nm以下の範囲であり、
前記第三層の厚みが70nm以上110nm以下の範囲である請求項1に記載の反射防止部材。 - 前記第一層の厚みが1.0μm以上10.0μm以下の範囲である請求項4に記載の反射防止部材。
- 標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が0.0以上9.0以下の範囲、そのb*が-9.0以上0.0以下の範囲である請求項4に記載の反射防止部材。
- 前記第二層の厚みが130nm以上180nm以下の範囲であり、
前記第三層の厚みが80nm以上130nm以下の範囲である請求項1に記載の反射防止部材。 - 標準C光源による透過色の、CIE 1976L*a*b*色空間によるa*が-0.5以上0.0以下の範囲、そのb*が0.2以上0.8以下の範囲であり、標準C光源による反射色の、CIE 1976L*a*b*色空間によるa*が-8.0以上2.0以下の範囲、そのb*が-6.0以上3.0以下の範囲である請求項7に記載の反射防止部材。
- 最小反射率が0.5%以下、平均視感反射率が0.7%以下、全光線透過率が94%以上である請求項1に記載の反射防止部材。
- 前記第一層が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第一の紫外線硬化型樹脂の硬化物を含有し、
前記第二層が、反応性有機官能基を有するアルコキシシラン及びその部分加水分解重合物のうち少なくとも一種を含む第二の紫外線硬化型樹脂の硬化物を含有し、
前記第三層が、アルコキシシラン及びその部分加水分解重合物のうち少なくとも一種の硬化物と、シリカとから成る請求項1に記載の反射防止部材。 - 前記第一層に対する、前記第一の紫外線硬化型樹脂における前記アルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上である請求項10に記載の反射防止部材。
- 前記第二層に対する、前記第二の紫外線硬化型樹脂における前記アルコキシシラン及びその部分加水分解重合物の割合が、3質量%以上である請求項10に記載の反射防止部材。
- 前記第三層は、アルコキシシランとフルオロカーボン骨格を有するアルコキシシランとの混合物の重合体と、中空シリカ粒子とを含有する請求項1に記載の反射防止部材。
- 前記基材の前記第一層とは反対側の表面に積層されているアンチブロッキング層を更に備える請求項1に記載の反射防止部材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101147460A TW201339626A (zh) | 2011-12-16 | 2012-12-14 | 抗反射構件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-275429 | 2011-12-16 | ||
JP2011275429 | 2011-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013088836A1 true WO2013088836A1 (ja) | 2013-06-20 |
Family
ID=48612293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076779 WO2013088836A1 (ja) | 2011-12-16 | 2012-10-17 | 反射防止部材 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2013088836A1 (ja) |
TW (1) | TW201339626A (ja) |
WO (1) | WO2013088836A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015219508A (ja) * | 2014-05-21 | 2015-12-07 | 大日本印刷株式会社 | 光学積層体、光学積層体の製造方法、画像表示装置及び画像表示装置の干渉縞改善方法 |
JP2017027241A (ja) * | 2015-07-17 | 2017-02-02 | 株式会社トッパンTomoegawaオプティカルフィルム | 透明積層フィルム、透明導電フィルム、タッチパネル及び表示装置 |
JP2018165837A (ja) * | 2018-07-10 | 2018-10-25 | 大日本印刷株式会社 | 光学積層体、光学積層体の製造方法、画像表示装置及び画像表示装置の干渉縞改善方法 |
JP6470860B1 (ja) * | 2018-03-15 | 2019-02-13 | マクセルホールディングス株式会社 | コーティング組成物、導電性膜及び液晶表示パネル |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000347003A (ja) * | 1999-06-02 | 2000-12-15 | Dainippon Printing Co Ltd | 光学フィルム |
JP2003154615A (ja) * | 2001-11-21 | 2003-05-27 | Konica Corp | 機能性薄膜を有するポリエステルフィルム及び機能性薄膜の形成方法、機能性薄膜積層体、光学フィルム及び画像表示素子 |
JP2004118094A (ja) * | 2002-09-27 | 2004-04-15 | Hitachi Maxell Ltd | 反射防止フィルムとその製造方法、およびこれを用いた反射防止パネル |
JP2005301004A (ja) * | 2004-04-13 | 2005-10-27 | Seiichi Suzuki | 反射防止フィルム |
JP2006231316A (ja) * | 2004-11-15 | 2006-09-07 | Jsr Corp | 積層体の製造方法 |
JP2007293313A (ja) * | 2006-03-30 | 2007-11-08 | Fujifilm Corp | 塗布組成物、光学フィルム、偏光板、画像表示装置、及び光学フィルムの製造方法 |
JP2008096701A (ja) * | 2006-10-12 | 2008-04-24 | Seiko Epson Corp | 光学物品 |
JP2008262187A (ja) * | 2007-03-20 | 2008-10-30 | Fujifilm Corp | 反射防止フィルム、偏光板、および画像表示装置 |
JP2009014886A (ja) * | 2007-07-03 | 2009-01-22 | Fujifilm Corp | 偏光板保護フィルム、並びにそれを用いた偏光板及び液晶表示装置 |
JP2011237802A (ja) * | 2003-08-28 | 2011-11-24 | Dainippon Printing Co Ltd | 反射防止積層体の製造方法 |
-
2012
- 2012-10-17 WO PCT/JP2012/076779 patent/WO2013088836A1/ja active Application Filing
- 2012-10-17 JP JP2013549153A patent/JPWO2013088836A1/ja active Pending
- 2012-12-14 TW TW101147460A patent/TW201339626A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000347003A (ja) * | 1999-06-02 | 2000-12-15 | Dainippon Printing Co Ltd | 光学フィルム |
JP2003154615A (ja) * | 2001-11-21 | 2003-05-27 | Konica Corp | 機能性薄膜を有するポリエステルフィルム及び機能性薄膜の形成方法、機能性薄膜積層体、光学フィルム及び画像表示素子 |
JP2004118094A (ja) * | 2002-09-27 | 2004-04-15 | Hitachi Maxell Ltd | 反射防止フィルムとその製造方法、およびこれを用いた反射防止パネル |
JP2011237802A (ja) * | 2003-08-28 | 2011-11-24 | Dainippon Printing Co Ltd | 反射防止積層体の製造方法 |
JP2005301004A (ja) * | 2004-04-13 | 2005-10-27 | Seiichi Suzuki | 反射防止フィルム |
JP2006231316A (ja) * | 2004-11-15 | 2006-09-07 | Jsr Corp | 積層体の製造方法 |
JP2007293313A (ja) * | 2006-03-30 | 2007-11-08 | Fujifilm Corp | 塗布組成物、光学フィルム、偏光板、画像表示装置、及び光学フィルムの製造方法 |
JP2008096701A (ja) * | 2006-10-12 | 2008-04-24 | Seiko Epson Corp | 光学物品 |
JP2008262187A (ja) * | 2007-03-20 | 2008-10-30 | Fujifilm Corp | 反射防止フィルム、偏光板、および画像表示装置 |
JP2009014886A (ja) * | 2007-07-03 | 2009-01-22 | Fujifilm Corp | 偏光板保護フィルム、並びにそれを用いた偏光板及び液晶表示装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015219508A (ja) * | 2014-05-21 | 2015-12-07 | 大日本印刷株式会社 | 光学積層体、光学積層体の製造方法、画像表示装置及び画像表示装置の干渉縞改善方法 |
JP2017027241A (ja) * | 2015-07-17 | 2017-02-02 | 株式会社トッパンTomoegawaオプティカルフィルム | 透明積層フィルム、透明導電フィルム、タッチパネル及び表示装置 |
JP6470860B1 (ja) * | 2018-03-15 | 2019-02-13 | マクセルホールディングス株式会社 | コーティング組成物、導電性膜及び液晶表示パネル |
WO2019176140A1 (ja) * | 2018-03-15 | 2019-09-19 | マクセルホールディングス株式会社 | コーティング組成物、導電性膜及び液晶表示パネル |
JP2019157026A (ja) * | 2018-03-15 | 2019-09-19 | マクセルホールディングス株式会社 | コーティング組成物、導電性膜及び液晶表示パネル |
JP2018165837A (ja) * | 2018-07-10 | 2018-10-25 | 大日本印刷株式会社 | 光学積層体、光学積層体の製造方法、画像表示装置及び画像表示装置の干渉縞改善方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013088836A1 (ja) | 2015-04-27 |
TW201339626A (zh) | 2013-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5372417B2 (ja) | 反射防止フィルム | |
JP5044099B2 (ja) | 反射防止フィルム及びその製造方法 | |
TWI460742B (zh) | 透明導電膜 | |
JP6427968B2 (ja) | 反射防止フィルム及びディスプレイ | |
JP2011203745A (ja) | 反射防止積層体 | |
JP2005099778A (ja) | 反射防止積層体 | |
KR20110037881A (ko) | 투명 도전성 필름 | |
TW201323916A (zh) | 光學薄膜、偏光板及圖像顯示裝置 | |
JP5861089B2 (ja) | 反射防止部材及び画像表示機器 | |
JP2007316213A (ja) | 反射防止膜及びそれを用いた光学部品 | |
JP4712236B2 (ja) | 反射防止膜、反射防止フィルム、画像表示装置、及び、それらの製造方法 | |
KR100858049B1 (ko) | 무색의 반사색상을 갖고 내스크래치성이 우수한 저반사필름 | |
JP4895160B2 (ja) | 光学積層体 | |
WO2016152691A1 (ja) | 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法 | |
WO2013088836A1 (ja) | 反射防止部材 | |
JP3953829B2 (ja) | 表面が強化された反射防止層、反射防止材、および反射防止体 | |
JP4496726B2 (ja) | 減反射材料用低屈折率層、それを備えた減反射材料及びその用途 | |
JP5123507B2 (ja) | 反射防止フィルム | |
JP5426852B2 (ja) | 反射防止フィルム | |
JP2010032734A (ja) | 反射防止フィルム | |
JP2013109169A (ja) | 反射防止部材 | |
WO2021153423A1 (ja) | 防眩フィルム及び防眩性且つ低反射性を有するフィルム | |
JP5350609B2 (ja) | コーティング組成物及び反射防止フィルム | |
JP2013174787A (ja) | 光学部材 | |
JP2008185956A (ja) | 反射防止膜および反射防止膜付き透明基材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12857325 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013549153 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12857325 Country of ref document: EP Kind code of ref document: A1 |