WO2013088762A1 - 受光素子、その製造方法、光学装置 - Google Patents

受光素子、その製造方法、光学装置 Download PDF

Info

Publication number
WO2013088762A1
WO2013088762A1 PCT/JP2012/064864 JP2012064864W WO2013088762A1 WO 2013088762 A1 WO2013088762 A1 WO 2013088762A1 JP 2012064864 W JP2012064864 W JP 2012064864W WO 2013088762 A1 WO2013088762 A1 WO 2013088762A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
layer
film
pixel electrode
region
Prior art date
Application number
PCT/JP2012/064864
Other languages
English (en)
French (fr)
Inventor
猪口 康博
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US14/365,515 priority Critical patent/US20140319464A1/en
Publication of WO2013088762A1 publication Critical patent/WO2013088762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a light receiving element, a manufacturing method thereof, and an optical device, and more specifically to a light receiving element having high sensitivity in the near infrared to far infrared region, a manufacturing method thereof, and an optical device.
  • a type 2 multiple quantum well (MQW) structure of a III-V compound semiconductor As a light receiving element in the near-infrared region to the far-infrared region, a type 2 multiple quantum well (MQW) structure of a III-V compound semiconductor has become the mainstream of the technology.
  • MQW multiple quantum well
  • a reverse bias voltage is applied to the pn junction or pin junction, so that electrons flow to the n-side electrode, usually the ground electrode side, and holes are read to the p-side electrode, usually the pixel electrode side.
  • the pixel is a two-dimensional array
  • light reception is performed in the light receiving layer close to the incident surface, so that holes that are heavier than electrons enter the MQW to the pixel electrode. It moves over a long distance in the uneven potential. For this reason, many holes are lost in the middle and cannot reach the pixel electrode. Accordingly, the light receiving sensitivity is lowered.
  • an electron transition occurs between adjacent layers.
  • the light receiving sensitivity is originally low, the light receiving sensitivity is further lowered by the disappearance of such holes.
  • an antireflection film or the like is disposed on the light incident surface, but a great improvement cannot be obtained to solve the problem.
  • an image sensor has been proposed in which microlenses are arranged for each light receiving element. For example, a resin layer that forms the base of a lens is formed on the sensor, and a resin microlens is formed on the sensor so that fine irregularities are formed on the surface, thereby suppressing reflection and increasing the light collection efficiency. Proposals have also been made (Patent Document 1).
  • the light receiving element of the present invention is a light receiving element formed on a semiconductor substrate and provided with pixels.
  • the light receiving element includes a light receiving layer for receiving light, a contact layer located on the light receiving layer, and a pixel electrode that is in ohmic contact with the contact layer.
  • the back surface of the semiconductor substrate is a light incident surface, and a reaction preventing film for preventing a chemical reaction between the contact layer and the pixel electrode is interposed in a limited region between the contact layer and the pixel electrode. It is characterized by.
  • reaction preventing film is premised on the fact that this light-receiving element is transparent to light in a wavelength range that is a light-receiving target.
  • this light-receiving element is transparent to light in a wavelength range that is a light-receiving target.
  • the pixel electrode when the pixel electrode is brought into ohmic contact with the contact layer, if the heat treatment is performed in a state in which the pixel electrode is in contact, the pixel electrode chemically reacts with the contact layer and exhibits an uneven shape.
  • the electrode exhibits an uneven shape that is far from the smooth metal surface unique to the metal, so that ohmic contact can be realized.
  • the reflected light cannot be used for light reception due to irregular reflection or the like.
  • the limited region means that the remaining region after the region in which ohmic contact is ensured, that is, the entire region where the pixel electrode overlaps the contact layer is not included.
  • the reaction preventing film does not need to completely prevent the chemical reaction between the pixel electrode and the contact layer, and may be of a level that suppresses the chemical reaction. In short, it suffices if the light can be reflected back to the light receiving layer by several percent.
  • the pixel electrode is positioned on the upper surface of the epitaxial layer (a surface farther from the epitaxial layer when viewed from the semiconductor substrate), and may be referred to as an upper electrode when the semiconductor substrate is viewed as the lower side.
  • the light receiving element may be a light receiving element having a single pixel or a light receiving element array in which a plurality of pixels are arranged one-dimensionally or two-dimensionally.
  • the pixel electrode region is located on the entire circumference surrounding the pixel electrode region in contact with the reaction preventing film, or on the surrounding portion.
  • the area of the ohmic contact is taken as the periphery, and the area of the area can be easily increased, so that the electric resistance can be lowered.
  • the reflected light is returned to the light receiving layer while reducing the waste rate.
  • the light receiving element of the present invention has a protective film covering at least the contact layer around the pixel electrode, and the reaction preventing film has a thickness covering at least the contact layer around the pixel electrode. It can be made thinner than the thickness of the protective film.
  • the reaction preventing film is often formed of the same or similar material as the protective film (passivation film).
  • the protective film needs to be thicker than a predetermined thickness in order to block moisture and the like, whereas the reaction preventing film only needs to be able to prevent a chemical reaction only during the heat treatment time. By reducing the thickness of the reaction preventing layer, the length of the portion of the pixel electrode that is widened to come into contact with the contact layer can be reduced, so that it is easy to ensure the minimum contact with the contact layer.
  • the reaction preventing film may be at least one of a silicon nitride (SiN) film, a silicon oxynitride (SiON) film, and a silicon oxide (SiO 2 ) film.
  • SiN silicon nitride
  • SiON silicon oxynitride
  • SiO 2 silicon oxide
  • the above materials are also used for a protective film (passivation film), but by interposing between the pixel electrode and the contact layer, the chemical reaction between them can be prevented or suppressed. Since the pixel electrode is not in contact with the contact layer and in contact with the reaction preventing film during the heat treatment for realizing ohmic contact, it can maintain a smooth or nearly smooth metal surface.
  • the material of the reaction preventing film is transparent to light in the near infrared to far infrared region.
  • the light receiving element of the present invention can have a pn junction in the light receiving layer, or an insertion layer having a bottom of the conductive band higher than that of the light receiving layer in the light receiving layer.
  • the light receiving layer may have a type 2 multiple quantum well (MQW) structure.
  • MQW multiple quantum well
  • when light is received electrons transition beyond the Fermi level from a valence band of a layer having a high band forming a pair to a conduction band of a lower band. At this time, electron-hole pairs are generated. The energy difference at the time of transition becomes smaller than the transition from the valence band to the conduction band in the layer, and light can be received on the long wavelength side, that is, in the near infrared to far infrared region.
  • Type 2 MQW can expand the sensitivity to the long wavelength side in this way, but since it is a transition to the adjacent layer, the sensitivity is originally low and has a disadvantage.
  • the above-mentioned reaction prevention layer By arranging the above-mentioned reaction prevention layer, not only the outgoing light but also the bounced light (rebound) after reflection is given an opportunity to receive light, and the low sensitivity is large for the type 2 MQW of the crying place. You can make a contribution.
  • An optical device includes any one of the light receiving elements described above. Accordingly, it is possible to provide an optical device having high light receiving sensitivity, particularly high sensitivity in the near infrared to far infrared region.
  • the light receiving element manufacturing method of the present invention manufactures a light receiving element that is formed on a semiconductor substrate and includes pixels.
  • This manufacturing method includes a step of forming a light receiving layer on a semiconductor substrate, a step of forming a contact layer on the light receiving layer, a surface of the pixel, and a contact layer in a region where the pixel electrode is provided, A step of providing a reaction preventing film in a limited manner, a step of depositing a pixel electrode layer covering the contact layer beyond the region of the reaction preventing film while including the reaction preventing film, and a region where the electrode layer and the contact layer are in contact with each other And a heat treatment step so as to make a chemical reaction and ohmic contact.
  • a reaction preventing film can be interposed in a restricted region between the contact layer and the pixel electrode without adding a special large process and using a normal material.
  • the limited provision of the reaction preventing film is the same as the “limited region” already described, and the remaining region after securing the ohmic contact region, that is, the entire region where the pixel electrode overlaps the contact layer This means that it is provided in a region that is not.
  • reaction preventive film Before providing the reaction preventive film, form a protective film that covers the contact layer in the area other than the area where the pixel electrode is provided, then cover the entire surface with the antireflection film layer, and then use the resist pattern as a mask.
  • the reaction preventing film can be formed in a limited manner by etching, and then an electrode layer covering the reaction preventing film and the contact layer can be deposited.
  • a selective diffusion mask pattern is formed after first forming a contact layer and before forming a reaction preventing film.
  • impurities are selectively diffused from the opening of the selective diffusion mask pattern while heating.
  • the reaction preventing film is provided in a limited manner, first, the whole of the reaction preventing film is covered, and then the resist pattern is formed so that the region where the reaction preventing film is formed is covered with the resist pattern covering portion. To do.
  • the reaction prevention film can be formed in a limited manner by removing portions other than the resist pattern covering portion by etching.
  • the material for forming the selective diffusion mask pattern is changed into a material that is difficult to be etched by heating during selective diffusion.
  • the selective diffusion mask pattern is hardly etched. For this reason, when an unnecessary part is removed by etching with respect to the reaction preventing layer, only the reaction preventing layer covering the selective diffusion mask pattern can be easily removed. As a result, the reaction preventing layer can be formed in a limited manner relatively easily.
  • the selective diffusion mask pattern is left as it is and used as a protective film (passivation film).
  • a groove is provided so as to surround a region where a pixel electrode is formed by etching after forming a contact layer and before forming a reaction prevention film, thereby forming a mesa structure.
  • a contact layer in a region other than the region where the pixel electrode is provided, and a protective film that covers the walls of the groove of the mesa structure are formed.
  • the reaction prevention film can be formed in a limited manner by removing portions other than the resist pattern covering portion by etching.
  • the present invention it is possible to obtain a light receiving element having high sensitivity, a method for manufacturing the same, and an optical apparatus with almost no increase in cost for increasing sensitivity.
  • FIG. 2 is a partial enlarged view of a structure of a contact layer / reaction prevention film / pixel electrode, showing the light receiving element in the first embodiment of the present invention. It is a figure which shows the energy band of type 2 MQW of the light receiving element of FIG.
  • A shows a manufacturing method
  • A is a stage in which Zn is selectively diffused from the opening of the selective diffusion mask pattern 36
  • B is a stage in which a layer 8a of the reaction preventing film is deposited
  • C is a stage in which the reaction preventing film 8 is formed by selective etching
  • D is a diagram showing a stage in which a metal layer of the pixel electrode 11 is deposited and heat treatment is performed to achieve ohmic contact
  • E is a stage in which the ground electrode 12 and the antireflection film 35 are formed on the back surface of the substrate. It is a top view of the back surface of the pixel electrode of the light receiving element of FIG. FIG.
  • FIG. 5 is a diagram showing a light receiving element according to a second embodiment of the present invention, in which both the lower layer 3c of the light receiving layer 3 and the buffer layer 2 are present.
  • FIG. 5 is a diagram illustrating a light receiving element according to a second embodiment of the present invention, in which only the lower layer 3c of the light receiving layer 3 is provided and the buffer layer 2 is not provided. It is a figure which shows the light receiving element in Embodiment 3 of this invention, and shows the case where both the lower layer 3c and buffer layer 2 of a light receiving layer exist. It is a figure which shows the light receiving element in Embodiment 3 of this invention, and shows the case where there exists only the lower layer 3c of a light receiving layer, and there is no buffer layer 2.
  • FIG. 5 is a diagram showing a light receiving element according to a second embodiment of the present invention, in which both the lower layer 3c of the light receiving layer 3 and the buffer layer 2 are present.
  • FIG. 5 is a diagram illustrating a light receiving element
  • FIG. 1A and 1B show a light receiving element 10 according to an embodiment of the present invention
  • FIG. 1A is a cross-sectional view of the light receiving element 10
  • FIG. 1B is a contact layer 5 / reaction prevention film 8 / pixel electrode 11 / selective diffusion mask pattern.
  • 36 is an enlarged view of a portion where 36 intersects.
  • the InP substrate 1 is formed with an epitaxial multilayer structure including a buffer layer 2 / type 2 (GaAsSb / InGaAs) MQW light-receiving layer 3 / diffusion concentration distribution adjusting layer 4 / InP contact layer 5.
  • the light receiving element 10 in the present embodiment is a planar pin photodiode, and a p-type region 6 is formed by Zn, which is a p-type impurity selectively diffused from the opening of the selective diffusion mask pattern 36, and the front thereof is formed. A pn junction 15 is formed.
  • the mask pattern 36 used for the selective diffusion is left as it is to be a protective film.
  • the pixel electrode 11 is in ohmic contact with the p-type region 6 of the contact layer 5.
  • the paired ground electrodes 12 are in ohmic contact with the back surface of the n-type InP substrate 1.
  • the light incident surface is the back surface of the InP substrate 1, and an antireflection (AR) film 35 is disposed on the back surface.
  • AR antireflection
  • a feature of the present invention is that the reaction preventing film 8 is disposed in a limited region between the contact layer 5 and the pixel electrode 11 while the pixel electrode 11 is in ohmic contact with the p-type region 6 of the contact layer 5.
  • the ohmic contact between the pixel electrode 11 and the p-type region 6 of the contact layer 5 is realized by the interface between the two. This interface is formed by heat treatment (for example, 340 ° C. ⁇ 1 minute in a nitrogen atmosphere) for realizing ohmic contact after the pixel electrode 11 is formed of AuZn or TiPt.
  • FIG. 1B also shows the back surface K of the pixel electrode 11. Since the reaction preventing film 8 is disposed on the back surface K, the pixel electrode 11 contacts the reaction preventing film 8 instead of the p-type region 6 of the contact layer 5.
  • the reaction preventing film 8 is formed of at least one of a silicon nitride (SiN) film, a silicon oxynitride (SiON) film, and a silicon oxide (SiO 2 ) film. Almost no chemical reaction with PtTi or the like. Or a chemical reaction is suppressed and unevenness is suppressed. For this reason, the back surface K of the pixel electrode 11 can hold a smooth or nearly smooth metal surface K. The smooth metal surface K serves as a reflection surface for light.
  • the SiN film, SiON film or SiO 2 film is transparent to light in the near infrared to far infrared region. The light incident on the back surface of the InP substrate 1 that is the light incident surface is first received in the light receiving layer 3.
  • the intensity of the light is reduced by the amount received by the light receiving layer 3, light that is not received at a relatively large rate remains, passes through the diffusion concentration distribution adjusting layer 4 from the light receiving layer 3 as it is, and passes through the contact layer 5 from the above transparent layer.
  • the light passes through the reaction preventing film 8 and reaches the metal surface K. Since the metal surface K functions as a reflection surface, the reached light is reflected by the metal surface K and returned to the light receiving layer 3. For this reason, it passes through the light receiving layer 3 not only in the forward path but also in the return path after reflection. The opportunity to receive light on this return path is the same as that on the outbound path.
  • the present invention by making a certain ratio (limited region) of the region of the pixel electrode 11 to be a smooth metal surface K, this metal surface K is used as a reflection surface, and it passes by only one way of the forward path. Instead, the light receiving layer 3 can obtain a light receiving opportunity even in the return path after reflection. As a result, the light receiving sensitivity can be improved.
  • the reflective surface or metal surface K on the back surface of the pixel electrode 11 is preferably provided in a region including the center of the pixel electrode 11, and the uneven region J for ensuring ohmic contact is preferably provided in the peripheral portion of the pixel electrode 11.
  • the metal surface K is located at the center thereof, so that the ratio of wasted reflected light passes through the light receiving layer 3. be able to.
  • the peripheral portion of the pixel electrode 11 is long and easily takes an area, it is easy to lower the electrical resistance.
  • the SiN film or the like, which is the material of the reaction preventing film 8 is an inexpensive material that is used on a daily basis, and the formation of the reaction preventing film 8 or the formation of the metal surface K will be described later in the manufacturing method. As such, no major process changes or additions are required. For this reason, the sensitivity can be easily improved under good economic efficiency.
  • the light-receiving layer 3 of the light-receiving element 10 in this embodiment is composed of type 2 (GaAsSb / InGaAs) MQW, how important the reflection surface made of the metal surface K is described. To do.
  • the light incident on the light receiving element 10 is absorbed by the light receiving layer 3 to generate electron-hole pairs and output as a current.
  • the light receiving layer 3 is composed of type 2 MQW, for example, the above (GaAsSb / InGaAs) MQW, the light absorption probability based on the type 2 transition is low as described above.
  • the number of MQW pairs needs to be 200 or more. However, if the light-receiving layer 3 is thick or the number of MQW pairs is increased, the crystal quality tends to be lowered, and high-quality epitaxial growth becomes difficult. As shown in FIG. 2, when the light-receiving layer 3 is composed of MQW, it is necessary to overcome the unevenness of MQW energy before electrons and holes generated by light absorption reach the respective electrodes. As the number of MQW pairs increases, the unevenness of energy that must be overcome increases and disappears halfway and does not contribute to sensitivity.
  • the smooth metal surface formed on the back surface of the pixel electrode 11 where the light that has passed without being absorbed is positioned so as to face the light incident surface.
  • the light is reflected by K and returned to the light receiving layer 3.
  • the reflected light is returned to the light receiving layer 3 and the light receiving opportunity can be obtained again.
  • the sensitivity can be increased by obtaining a light receiving opportunity not only in one-way traffic but also in the return route.
  • FIG. 3A shows a p-type impurity in which Zn, which is a p-type impurity, is selectively diffused from the opening of the selective diffusion mask pattern 36 in order to form a pn junction or the like in the manufacture of the planar pin photodiode shown in FIG. It is a figure which shows the step which formed the area
  • the selective diffusion mask pattern 36 is formed with a thickness of about 100 nm by SiN or the like by a plasma CVD (Chemical Vapor Deposition) method or the like.
  • the above pn junction should be interpreted broadly as follows.
  • the impurity concentration in the region opposite to the side where the impurity element is introduced by selective diffusion is an impurity region (referred to as i region) that is low enough to be regarded as an intrinsic semiconductor.
  • i region impurity region
  • a junction formed between the impurity region and the i region is also included. That is, the pn junction may be a pi junction or an ni junction, and further includes a case where the p concentration or the n concentration in the pi junction or ni junction is very low.
  • the light receiving layer 3 is of type 2 (GaAsSb / InGaAs) MQW and has a thickness of GaAsSb 5 nm and InGaAs 5 nm.
  • the total number of pairs is 145 pairs, and the number of pairs can be made smaller than the conventional number of pairs (200 pairs or more) as described above.
  • the crystal quality can be improved, and the proportion of holes that disappear can be reduced.
  • the sensitivity can be improved as a whole while reducing the thickness optimization condition.
  • an SiN anti-reaction film layer 8a having a thickness of about 20 nm is deposited by plasma CVD or the like.
  • the reaction preventing film is made of the same material as that of the selective diffusion mask pattern 36, but its thickness is as thin as about 1/5.
  • a resist pattern coating portion (not shown) is arranged so as to overlap the region of the reaction preventing film, and a portion that becomes the reaction preventing film 8 is selectively etched as shown in FIG. Remove the residue so that it remains.
  • heating at 480 to 520 ° C. for 30 to 40 minutes is essential.
  • SiN (selective diffusion mask pattern 36) that has undergone heating to the extent of this selective diffusion is less likely to be etched. Therefore, by etching with buffered hydrofluoric acid, the selective diffusion mask pattern 36 is not etched, and only the SiN layer reaction preventing film layer 8a deposited after the selective diffusion heat treatment is etched.
  • a reaction preventing film 8 is formed on the surface of the p-type region 6 of the contact layer 5.
  • AuZn is deposited by electron beam evaporation, and then heat treatment at 390 ° C. for 1 minute in a nitrogen atmosphere to achieve ohmic contact. Apply.
  • the pixel electrode 11 forms a metal surface K on the back surface in contact with the reaction preventing film 8 and becomes a reflective surface.
  • a chemical reaction proceeds to form an uneven region J, thereby realizing ohmic contact.
  • an AR film 35 made of SiON or the like is disposed on the back surface of the InP substrate 1 serving as a light incident surface by a plasma CVD method. Further, a ground electrode 12 that is an n-side electrode that is paired with the pixel electrode 11 that is a p-side electrode is formed by vapor-depositing AuGeNi on the periphery of the back surface of the InP substrate 1. Thereafter, in order to realize ohmic contact with the ground electrode 12, a heat treatment is performed at 340 ° C. for 1 minute. The selective diffusion mask pattern 36 is left as it is and used as a protective film or a passivation film.
  • the uneven region J on the back surface of the pixel electrode 11 also affects the thermal history of the heat treatment performed for realizing the ohmic contact of the ground electrode 12.
  • the pixel electrode 11 is a heat treatment at 390 ° C. and is approximately 50 ° C. higher than the heat treatment for the ground electrode 12, the uneven region J is almost formed by the heat treatment for the pixel electrode 11.
  • the back surface of the pixel electrode 11 is formed with a concavo-convex region J that achieves ohmic contact at the periphery, and a smooth or nearly smooth metal surface K at the central portion surrounded by it.
  • FIGS. 5A and 5B are diagrams showing the light receiving element 10 according to Embodiment 2 of the present invention.
  • a reaction preventing film 8 is provided below the pixel electrode 11. While realizing the ohmic contact in the uneven region J, it is common to the first embodiment in that the sensitivity is improved by using a smooth or nearly smooth metal surface K as a reflection surface. As a result, the number of pairs for optimizing the sensitivity improvement can be selected while the number of pairs of the type 2 (GaAsSb / InGaAs) MQW light receiving layer 3 is relatively small.
  • the light receiving element 10 is not a planar type but has a mesa structure, and the structure of the light receiving layer is different. In the mesa structure, if the pn junction is exposed on the mesa wall surface, it causes a leakage current. Therefore, it is important to cover the contact layer 5 around the wall surface and the pixel electrode 11 with the passivation film 37.
  • the structure of the light receiving layer in the present embodiment is as follows.
  • InGaAs or InP is used as the buffer layer 2 having a thickness of 0.5 ⁇ m.
  • FIG. 5A shows a case where both the lower layer 3c of the light-receiving layer and the buffer layer 2 are present.
  • FIG. 5B shows a case where only the lower layer 3c of the light receiving layer is provided and the buffer layer 2 is not provided.
  • FIG. 5A there is a case where the lower layer 3c of the light receiving layer is not provided, and the light receiving layer 3 includes only the middle layer 3b and the upper layer 3a.
  • Light receiving layer middle layer 3b (i-type): (GaAsSb (5 nm) / InGaAs (5 nm)) MQW, 90 pairs Light-receiving layer upper layer 3a (p + type): (GaAsSb (5 nm) / InGaAs (5 nm)) MQW, 25 Pair ⁇ contact layer 5>: (p + type): InGaAs or InP, both thickness is 0.6 ⁇ m ⁇ Ground electrode 12>: Since the semiconductor substrate 1 is an Fe-doped semi-insulating InP substrate, the ground electrode 12 that is an n-side electrode is provided on the n + -type buffer layer 2 or the lower layer 3c of the light receiving layer and has an ohmic contact.
  • ⁇ Passivation film 37> SiO 2 with a thickness of 0.3 ⁇ m. It is formed by a plasma CVD method.
  • the AR film 35 is made of SiON.
  • the material of the pixel electrode 11 and the ground electrode 12 is the same as that in the first embodiment.
  • the mesa structure can shorten the distance between the pixel electrode 11 and the light receiving layer 3 than the planar type that separates the pixels by selective diffusion. For this reason, the mesa structure is preferable in that the reflected light can be used with little waste.
  • Embodiment 3 are diagrams showing the light receiving element 10 according to Embodiment 3 of the present invention.
  • Embodiments 1 and 2 in that the reaction preventing film 8 is provided below the pixel electrode 11 and the ohmic contact is realized in the concavo-convex region J, and the sensitivity is improved by using a smooth or nearly smooth metal surface K as a reflection surface.
  • the light receiving element 10 is not a planar type but has a mesa structure, and is common to the second embodiment.
  • the material of the MQW constituting the light receiving layer 3 is different.
  • the structure of the light receiving layer in the present embodiment is as follows.
  • FIG. 6A shows a case where both the light receiving layer lower layer 3c and the buffer layer 2 are present.
  • FIG. 6B shows a case where only the lower layer 3c of the light receiving layer is provided and the buffer layer 2 is not provided.
  • FIG. 6A there is a case where there is no lower layer 3c of the light receiving layer, and the light receiving layer 3 is composed of only the middle layer 3b of the light receiving layer and the upper layer 3a of the light receiving layer.
  • Light receiving layer middle layer 3b (i-type): (InAs (3.6 nm) / GaSb (2.1 nm)) MQW, 190 pairs Light-receiving layer upper layer 3a (n + type): (InAs (3.6 nm) / GaSb ( 2.1 nm)) MQW, 30 pairs ⁇ contact layer 5>: (n + type): InAs layer, thickness 0.02 ⁇ m ⁇ Pixel electrode 11>: After vapor deposition of Ti / Pt, a heat treatment is performed at 200 ° C. for 1 minute to achieve ohmic contact in the uneven region J at the peripheral edge.
  • the pixel electrode 11 is an n-side electrode.
  • the ground electrode 12 which is a p-side electrode, is provided on the p + -type buffer layer 2 or the lower layer 3c of the light receiving layer to realize ohmic contact. After evaporating Ti / Pt, heat treatment is performed at 200 ° C. for 1 minute to achieve ohmic contact.
  • the AR film provided on the back surface of the substrate 1 is formed of DLC (Diamond Like Carbon).
  • a GaSb substrate 1 is used, and a type 2 (GaSb / InAs) MQW is used as the light receiving layer 3.
  • Type 2 (GaSb / InAs) MQW has sensitivity on the longer wavelength side than Type 2 (GaAsSb / InGaAs) of the first and second embodiments, and can receive light in the mid-infrared region. In this case, high sensitivity to light in the mid-infrared region can be ensured by the metal surface K caused by the reaction preventing film 8 provided under the pixel electrode 11 described in detail in the first embodiment.
  • FIG. 7A, 7B, and 7C show the optical device 50 according to Embodiment 4 of the present invention.
  • FIG. 7A is a cross-sectional view
  • FIG. 7B is a partially enlarged view
  • FIG. 7C is the back surface of the pixel electrode 11 in the light receiving element 10.
  • FIG. 10 of the present embodiment a plurality of pixels P are arranged in an array. Thus, even when the plurality of pixels P are arranged (one-dimensional or two-dimensional), the reflection effect by the metal surface K is reliably exhibited in the light receiving element 10.
  • Embodiments 1 to 3 illustrate an example in which one pixel is used, in Embodiments 1 to 3 described above, a plurality of pixels may be interpreted as shown in FIG. 7A. .
  • the optical device 50 includes a light receiving element 10 and a readout circuit (ROIC: Read Out IC) 70.
  • the pixel electrode 11 is connected to the readout electrode 71 of the readout circuit 70 with the bump 19 / bump 79 interposed therebetween.
  • the epitaxial layer structure of the light receiving element 10 is the same as that of the light receiving element 10 of the first embodiment shown in FIG. 1, and the back surface of the InP substrate 1 is the light incident surface.
  • a reaction preventing film 8 is disposed in a limited region between the pixel electrode 11 and the p-type region 6 of the contact layer 5, and a smooth or nearly smooth metal surface K is formed.
  • An uneven region J is located circumferentially so as to surround the metal surface K.
  • FIG. 7C is a plan view showing the back surface of the pixel electrode 11 when the pixels P are two-dimensionally arranged.
  • a light receiving layer having a so-called nBn structure having an insertion layer having a bottom of the conductive band higher than that of the light receiving layer in the light receiving layer may be used. That is, even if the light receiving layer has an nBn structure, the effects of the metal surface K and the uneven region J in the present invention can be exhibited without any problem. Therefore, a light receiving element including a light receiving layer having an nBn structure is included. Further, although the light receiving layer is exemplified only for type 2 MQW, it is not limited to MQW, and is effective for a single light receiving layer.
  • the light receiving element or the like of the present invention by providing the reaction preventing film in a limited region under the pixel electrode, it is possible to improve the sensitivity due to the reflecting surface while ensuring ohmic contact of the pixel electrode.
  • the manufacturing method for forming this structure does not require any major process changes, and the materials used are also existing materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

受光素子10は、半導体基板1の上に位置して、受光するための受光層3と、受光層3の上に位置するコンタクト層5と、コンタクト層にオーミック接触する画素電極11とを備え、半導体基板の裏面が光入射面であり、コンタクト層と画素電極との化学反応を防止するための反応防止膜8が、該コンタクト層と該画素電極との間の限定領域に介在していることを特徴とする。

Description

受光素子、その製造方法、光学装置
 本発明は、受光素子、その製造方法、および光学装置に関し、より具体的には、近赤外~遠赤外域に高い感度を有する受光素子、その製造方法、および光学装置に関するものである。
 近赤外域~遠赤外域の受光素子として、III-V族化合物半導体のタイプ2の多重量子井戸構造(MQW:Multi Quantum Well)が技術の主流となってきている。たとえばタイプ2(InGaAs/GaAsSb)MQWの場合、受光の際に、バンドエネルギが高いGaAsSbの価電子帯からフェルミレベルを超えてInGaAsの伝導帯へと電子が遷移する。この結果、受光により、当該GaAsSbの価電子帯にできる正孔と、隣のInGaAsの伝導帯の電子とで、トータルとして電子-正孔対が生成する。受光時、pn接合またはpin接合に逆バイアス電圧を印加しているので、電子はn側電極、通常、グランド電極側へと流れ、正孔はp側電極、通常、画素電極側へと読み出される。画素が二次元アレイの場合、通常用いられるエピタキシャル層実装で基板の裏面入射の場合、受光は、入射面に近い受光層で行われるので、電子に比べて重い正孔が、画素電極へとMQWの凹凸ポテンシャル中を長い距離にわたって移動することになる。このため正孔は途中で消滅して画素電極にたどり着けないものが多く生じる。この分、受光感度は低下する。もともとタイプ2MQWでは隣同士の層で電子の遷移が生じるので、もともと受光感度は低いのに、このような正孔の消滅によってさらに受光感度は低くなる。
 上記の低感度を改善するため、光入射面に反射防止膜などを配置するが、問題を解消するほど大きな改善は得られない。また、イメージセンサでは、光の利用効率を高めるために、すなわち受光感度を高めるために、受光素子ごとにマイクロレンズを配列する構造が提案されている。たとえばセンサ上にレンズの下地となる樹脂層を形成し、その上に樹脂製マイクロレンズを、その表面に微細な凹凸が生じるように形成することで反射を抑制して集光効率を高める方法の提案もなされている(特許文献1)。
特開2009-116056号公報
 しかしながら、樹脂層を下地としたマイクロレンズアレイでは、樹脂による光吸収が生じて所定域の受光感度を劣化させる問題がある。また、マイクロレンズの形成自体、型を要し、製造コスト増大をもたらす。
 本発明は、感度上昇のためのコスト増大がほとんどない、高い感度を有する、受光素子、その製造方法および光学装置を提供することを目的とする。
 本発明の受光素子は、半導体基板に形成され、画素を備える受光素子である。この受光素子は、半導体基板の上に位置して、受光するための受光層と、受光層の上に位置するコンタクト層と、コンタクト層にオーミック接触する画素電極とを備える。そして半導体基板の裏面が光入射面であり、コンタクト層と画素電極との化学反応を防止するための反応防止膜が、該コンタクト層と該画素電極との間の限定領域に介在していることを特徴とする。
 上記の反応防止膜は、この受光素子が受光対象とする波長域の光に対して透明なものとするのが前提である。一般に、画素電極を、コンタクト層とオーミック接触させるとき、両者を接触した状態で熱処理すると、画素電極はコンタクト層と化学反応して凹凸形状を呈する。電極は、金属に特有の平滑な金属面とはかけ離れた凹凸形状を呈することで、オーミック接触を実現することができる。この結果、半導体基板裏面から入射された光は、このオーミック接触している面に到達しても乱反射などして反射光を受光に利用することはできない。これに対して、本発明において反応防止膜が介在する電極の領域では、コンタクト層との化学反応が防止されるので、平滑な、または平滑に近い金属面が保たれる。このため、反応防止膜を経て電極の裏面に到達した光は、この電極裏面を反射面として反射して、受光層へと戻される。この結果、反射後の復路において、光は受光層によって再び受光機会を与えられることになり、受光感度を向上することができる。
 ここで、限定領域は、オーミック接触する領域を確保したあとの残りの領域、すなわち画素電極がコンタクト層と重なる全領域ではない、ことを意味する。
 なお、反応防止膜は、画素電極とコンタクト層との化学反応を完全に防止する必要はなく、化学反応を抑制する程度のものであってもよい。要は、光を、何割かでも反射して受光層に戻すことができればよい。また、画素電極は、エピタキシャル層の上面(半導体基板から見てエピタキシャル層より遠くの面)に位置し、半導体基板を下部側とみて上部電極と言ってもよい。また、上記の受光素子は、画素が一つの受光素子でもよいし、複数の画素が、一次元または二次元に配列された受光素子アレイであってもよい。
 本発明の受光素子は、画素電極の領域が、反応防止膜と接触している当該画素電極の領域を取り囲む周囲の全周、または当該周囲の部分、に位置するのがよい。
 これによって、画素電極の中央付近を反射面として用いながら、オーミック接触する領域をその周囲として、領域の面積を大きくしやすいため電気抵抗を下げることができる。また画素電極の中央付近を反射面とすることで、反射光は無駄になる割合を減らしながら受光層へと戻される。
 本発明の受光素子は、前記画素電極のまわりにおいて少なくとも前記コンタクト層を被覆している保護膜を有し、反応防止膜は、その厚みが、画素電極のまわりにおいて少なくともコンタクト層を被覆している保護膜、の厚みよりも薄いものとできる。
 反応防止膜は、保護膜(パッシベーション膜)と同じか同類の材料で形成される場合が多い。保護膜は湿気などを遮断するため所定以上の厚みが必要であるのに対して、反応防止膜は化学反応を熱処理の時間のみ防止できればよいので、薄くするのがよい。反応防止層を薄くすることで、画素電極がコンタクト層に接触するために広げる部分の長さを狭くできるので、コンタクト層との最低限の接触を確保しやすくなる。
 本発明の受光素子は、反応防止膜を、窒化珪素(SiN)膜、酸窒化珪素(SiON)膜、および酸化珪素(SiO)膜、のうちの少なくとも一つとするのがよい。
 上記の材料は、保護膜(パッシベーション膜)にも使用されるが、画素電極とコンタクト層との間に介在することで、両者の化学反応を防止または抑制することができる。画素電極は、オーミック接触実現のための熱処理のとき、コンタクト層とは接触せず、反応防止膜に接触しているので、平滑または平滑に近い金属面を保つことができる。上記反応防止膜の材料は、近赤外~遠赤外域の光に対して透明である。光入射面である半導体基板の裏面から入射した光は、受光層を通る際に受光されるものは受光され、受光されなかった光はコンタクト層から反応防止膜を透過して画素電極に到達する。上述のように、画素電極(裏面)は平滑な金属面を保っているので、反射面として機能して、上記の到達した光を反射して、受光層へと戻して、受光機会を高めることができる。反応防止膜の材料は、この分野で日常的に使用されているため、容易に形成することができる。
 本発明の受光素子は、受光層内にpn接合を有するか、または、受光層内に当該受光層の導電帯の底より高い導電帯の底をもつ挿入層を有する、ことができる。
 これによって、pinフォトダイオードについても、またnBn構造の受光層をもつ素子についても、反応防止膜を配置することで受光感度を向上させることができる。
 本発明の受光素子は、受光層が、タイプ2の多重量子井戸構造(MQW:Multi Quantum Well)を有することができる。
 タイプ2MQWでは、受光のとき、ペアを組む、高いバンドを有する層の価電子帯から低いバンドのほうの伝導帯へとフェルミレベルを超えて電子が遷移する。このとき電子正孔対を生成する。遷移の際のエネルギ差は、その層内での価電子帯から伝導帯への遷移よりも小さくなり、長波長側、すなわち近赤外~遠赤外域での受光が可能になる。タイプ2MQWは、このように長波長側に感度を拡大することができるが、隣の層への遷移なので、元来、感度は低く、短所となっている。上述の反応防止層を配置することで、往きの光だけでなく反射したあとのかえり(復)の光も受光機会を与えられることになり、感度が低いことが泣き所のタイプ2MQWに対して大きな貢献をすることができる。
 本発明の光学装置は、上記のいずれかの受光素子を備えることを特徴とする。
 これによって、高い受光感度、とくに近赤外~遠赤外域において高い感度をもつ光学装置を提供することができる。
 本発明の受光素子の製造方法は、半導体基板に形成され、画素を備える受光素子を製造する。この製造方法は、半導体基板の上に、受光層を形成する工程と、受光層の上にコンタクト層を形成する工程と、画素の表面となり、画素電極が設けられる領域のコンタクト層に接して、反応防止膜を限定的に設ける工程と、反応防止膜を含みながら該反応防止膜の領域を超えてコンタクト層を被覆する画素電極層を堆積する工程と、電極層とコンタクト層とが接する領域において化学反応してオーミック接触するように、熱処理する工程とを備えることを特徴とする。
 上記の方法によって、特別大きな工程を付加することなく、また使用する材料も通常のものを用いて、コンタクト層と画素電極との間の制限領域に反応防止膜を介在させることができる。ここで、反応防止膜を限定的に設けるとは、既に説明した「限定領域」と同じ趣旨であり、オーミック接触する領域を確保したあとの残りの領域、すなわち画素電極がコンタクト層と重なる全領域ではない領域、に設けることを意味する。
 反応防止膜を設ける前に画素電極が設けられる領域以外の領域のコンタクト層を被覆する保護膜を形成し、次いで、反射防止膜の層で全表面を被覆し、そのあとレジストパターンをマスクにしてエッチングによって反応防止膜を限定的に形成し、その後、反応防止膜およびコンタクト層を被覆する電極層を堆積することができる。
 上記の方法によって、画素電極のオーミック接触の確保、および画素電極の裏面の平滑な金属面の保持、の両方を、大きな工程付加を行うことなく、また通常の材料を用いて簡単に実現することができる。
 プレーナ型の受光素子を製造する場合において、まずコンタクト層を形成したあと、反応防止膜を形成する前に、選択拡散マスクパターンを形成する。次いで、加熱をしながら不純物を該選択拡散マスクパターンの開口部から選択拡散する。その後で、反応防止膜を限定的に設けるとき、まず反応防止膜の層で全体を被覆したのち、レジストパターンを反応防止膜が形成される領域を該レジストパターンの被覆部が被覆するように形成する。次いでエッチングによってレジストパターンの被覆部以外の部分を除去することで、該反応防止膜を限定的に形成することができる。
 上記の選択拡散マスクパターンを形成する材料は、通常の場合、選択拡散の際の加熱によってエッチングされにくい材質に変質する。すなわち選択拡散を加熱しながら行うことで、その選択拡散マスクパターンはエッチングされにくくなっている。このため、反応防止層に対するエッチングにより不要部を除去するとき、選択拡散マスクパターンを被覆している反応防止層のみを容易に除去することができる。この結果、比較的簡単に反応防止層を限定的に形成することができる。なお、上記の選択拡散マスクパターンは、そのまま残されて保護膜(パッシベーション膜)として用いられる。
 メサ構造を有する受光素子を製造する場合において、コンタクト層を形成したあと、反応防止膜を形成する前に、エッチングによって画素電極が形成される領域を取り囲むように溝を設けてメサ構造を形成する。次に画素電極が設けられる領域以外の領域のコンタクト層、およびメサ構造の溝の壁を被覆する保護膜を形成する。その後で、反応防止膜を限定的に設けるとき、まず反応防止膜の層で全体を被覆したのち、レジストパターンを反応防止膜が形成される領域を該レジストパターンの被覆部が被覆するように形成する。次いでエッチングによってレジストパターンの被覆部以外の部分を除去することで、該反応防止膜を限定的に形成することができる。 
 本発明によれば、感度上昇のためのコスト増大がほとんどない、高い感度を有する受光素子、その製造方法および光学装置を得ることができる。
本発明の実施の形態1における受光素子を示し、断面図である。 本発明の実施の形態1における受光素子を示し、コンタクト層/反応防止膜/画素電極の構造の部分拡大図、である。 図1の受光素子のタイプ2MQWのエネルギバンドを示す図である。 製造方法を示し、Aは選択拡散マスクパターン36の開口部からZnを選択拡散した段階、Bは反応防止膜の層8aを堆積した段階、Cは選択エッチングにより反応防止膜8を形成した段階、Dは画素電極11の金属層を堆積し、オーミック接触を実現するための熱処理を施した段階、Eは基板裏面にグランド電極12と反射防止膜35を形成した段階、を示す図である。 図1の受光素子の画素電極の裏面の平面図である。 本発明の実施の形態2における受光素子を示し、受光層3の下層3cおよびバッファ層2がともにある場合、を示す図である。 本発明の実施の形態2における受光素子を示し、受光層3の下層3cのみがあり、バッファ層2がない場合、を示す図である。 本発明の実施の形態3における受光素子を示し、受光層の下層3cおよびバッファ層2がともにある場合、を示す図である。 本発明の実施の形態3における受光素子を示し、受光層の下層3cのみがあり、バッファ層2がない場合、を示す図である。 本発明の実施の形態4における受光素子および光学装置を示し、断面図である。 本発明の実施の形態4における受光素子および光学装置を示し、部分拡大図、である。 本発明の実施の形態4における受光素子および光学装置を示し、画素電極の裏面の平面図、である。
 1 基板、2 バッファ層、3 受光層、3a 受光層の上層、3b 受光層の中層、3c 受光層の下層、4 拡散濃度分布調整層、5 コンタクト層、6 p型領域、8 反応防止膜、8a 反応防止膜の層、10 受光素子、11 画素電極、12 グランド電極、15 pn接合、19 バンプ、35 反射防止膜、36 選択拡散マスクパターン、37 パッシベーション膜、50 光学装置、70 読み出し回路、71 読み出し電極、79 バンプ、J 凹凸領域、K 金属面(裏面)、P 画素。
(実施の形態1)
 図1Aおよび図1Bは、本発明の実施の形態における受光素子10を示し、図1Aは受光素子10の断面図、図1Bはコンタクト層5/反応防止膜8/画素電極11/選択拡散マスクパターン36、が交差する部分の拡大図である。InPの基板1には、バッファ層2/タイプ2(GaAsSb/InGaAs)MQWの受光層3/拡散濃度分布調整層4/InPコンタクト層5、からなるエピタキシャル積層体が形成されている。本実施の形態における受光素子10は、プレーナ型pinフォトダイオードであり、選択拡散マスクパターン36の開口部から選択拡散されたp型不純物であるZnによって、p型領域6が形成され、そのフロントにpn接合15が形成されている。選択拡散に用いられたマスクパターン36は、そのまま残されて保護膜となっている。画素電極11はコンタクト層5のp型領域6にオーミック接触している。また、対をなすグランド電極12はn型InPの基板1の裏面にオーミック接触している。光入射面はInPの基板1の裏面であり、その裏面に反射防止(AR:Anti Reflection)膜35が配置されている。
 <本発明のポイント>
 本発明の特徴は、画素電極11をコンタクト層5のp型領域6にオーミック接触させながら、コンタクト層5と画素電極11との間の限定領域に、反応防止膜8を配置した点にある。図1Bに示すように、画素電極11とコンタクト層5のp型領域6とのオーミック接触は、両者の界面によって実現される。この界面は、画素電極11をAuZnまたはTiPtなどで形成したあと、オーミック接触を実現するための熱処理(たとえば窒素雰囲気中で340℃×1分間)によって形成される。界面では、熱処理によって、化学反応が進行し、p型領域6内にアンカー状もしくは樹枝状に突起が出て、いちじるしい凹凸面を呈する。逆にこのような凹凸面ができることで、はじめてオーミック接触が実現する。このようなアンカー状突起または樹枝状突起などが形成された激しい凹凸領域Jは、粗面となり、光を反射する反射面として機能することはない。
 図1Bには、画素電極11の裏面Kもあわせて示されている。裏面Kは、反応防止膜8が配置されることで、画素電極11が、コンタクト層5のp型領域6ではなく反応防止膜8に接触する。反応防止膜8は、窒化珪素(SiN)膜、酸窒化珪素(SiON)膜、および酸化珪素(SiO)膜、のうちの少なくとも一つで形成されていて、画素電極11を構成するAuZnやPtTiなどとはほとんど化学反応しない。または化学反応を抑えて、凹凸を抑制する。このため、画素電極11の裏面Kは、平滑な、または平滑に近い金属面Kを保持することができる。この平滑な金属面Kは、光に対して反射面として働く。また、上記のSiN膜、SiON膜もしくはSiO膜は、近赤外~遠赤外域の光に対して透明である。
 光入射面であるInP基板1の裏面に入射された光は、受光層3中で、まず受光される。受光層3で受光された分、光の強度は低下するが、比較的大きな割合で受光されない光が残り、そのまま受光層3から拡散濃度分布調整層4を通り抜けてコンタクト層5から、上記した透明な反応防止膜8を透過して金属面Kに到達する。金属面Kは反射面として機能するので、到達した光は金属面Kで反射して、受光層3へと戻される。このため往路だけでなく、反射後の復路において受光層3を通る。この復路においても受光される機会は往路と同じ割合である。したがって、本発明では、画素電極11の領域の一定割合(限定領域)を平滑な金属面Kとすることで、この金属面Kを反射面として利用して、往路だけの一方通行で通り過ぎてしまうのではなく、反射後の復路においても受光層3で受光機会を得ることができる。この結果、受光感度を向上させることができる。
 上記の画素電極11の裏面における反射面または金属面Kは、画素電極11の中央を含む領域に設けて、オーミック接触を確保する凹凸領域Jは、画素電極11の周縁部に設けるのがよい。画素電極11は、平面的に見て画素領域の中心に配置されるので、金属面Kがその中央に位置することで、反射された光が無駄になる割合を低くして受光層3を通ることができる。その上で、画素電極11の周縁部は長さがあり面積を取りやすいので電気抵抗を下げることが容易となる。
 上記の反応防止膜8の材料である、SiN膜などは日常的に使用される安価な材料であり、かつ反応防止膜8の形成もしくは金属面Kの形成には、このあと製造方法において説明するように、大きな工程変更または追加は必要ない。このため、良好な経済性の下、簡単に感度を向上させることができる。
 つぎに、本実施の形態での受光素子10の受光層3が、タイプ2(GaAsSb/InGaAs)MQWで構成される場合、上記の金属面Kからなる反射面がどれほど重要か、その位置付けについて説明する。
 受光素子10に入射した光は、受光層3で吸収されて電子正孔対を生成して電流として出力される。感度を上げるには、吸収の機会を増やすために受光層3の厚みを厚くする必要がある。とくに受光層3がタイプ2MQW、たとえば上記の(GaAsSb/InGaAs)MQWで構成されている場合、タイプ2の遷移に基づく光吸収確率は、上記のように低いため、高感度を得るためには、MQWのペア数を200ペア以上にする必要がある。しかし、受光層3を厚く、またはMQWのペア数を多くすると結晶品質が低下しやすくなり、高品質のエピタキシャル成長が難しくなる。また、図2に示すように、受光層3がMQWで構成される場合、光吸収によって生成した電子および正孔がそれぞれの電極に到達するまでにMQWのエネルギの凹凸を乗り越えなければならない。MQWのペア数が増えると乗り越えなければならないエネルギの凹凸が増え、途中で消滅して感度に寄与しなくなる。
 この点を、図2により詳しく説明する。InPの基板1の裏面から入射した光は、受光層3で吸収されて、電子(図2でマイナス符合)と正孔(図2でプラス符合)とを生成する。InPの基板1に近い部分で生成した正孔は画素電極(p側電極)11に到達するまでにMQWのバンドエネルギの凹凸を乗り越えなければならず、途中で消滅するものが多くある。特に正孔は電子に比べて有効質量が大きいのでMQWを抜け出せない割合が大きい。途中での消滅を防ぐにはMQWのペア数は少ないほど有利であるが、ペア数が少ないと受光層3での受光そのものが減るので感度が低下する。
 そこで、本実施の形態では、受光層3の厚みがある程度薄くても、吸収されずに通過した光を、光入射面と対向するように位置する画素電極11の裏面に形成した平滑な金属面Kで反射させて受光層3に戻すようにする。これによって、反射した光は、受光層3へと戻され、再び受光機会を得ることができる。すなわち往路の一方通行だけでなく、さらに復路において受光機会を得ることで感度を高めることができる。
 つぎに図3のA~図3のEにより製造方法について説明する。図3のAは、図1Aに示すプレーナ型pinフォトダイオードの製造において、pn接合などを形成するために、選択拡散マスクパターン36の開口部からp型不純物であるZnを選択拡散してp型領域6を形成した段階を示す図である。選択拡散マスクパターン36は、SiNなどにより厚み100nm程度に、プラズマCVD(Chemical Vapor Deposition)法などで形成される。
 なお、上記のpn接合は、次のように、広く解釈されるべきである。受光層3内において、不純物元素が選択拡散で導入される側と反対の面側の領域の不純物濃度が、真性半導体とみなせるほど低い不純物領域(i領域と呼ばれる)であり、上記拡散導入された不純物領域と当該i領域との間に形成される接合をも含むものである。すなわち上記のpn接合は、pi接合またはni接合などであってもよく、さらに、これらpi接合またはni接合におけるp濃度またはn濃度が非常に低い場合も含むものである。
 受光層3は、タイプ2(GaAsSb/InGaAs)MQWであり、厚みは、GaAsSb5nm、InGaAs5nmである。ペアの総数は145ペアであり、上述のように従来のペア数(200ペア以上)よりもペア数を少なくすることができる。この結果、結晶品質を良好にでき、さらに消滅する正孔の割合を小さくすることができる。この結果、厚みの最適化条件を薄いほうにしながら、全体として感度を高めることができる。また、製造時に、工数を減らすなどのメリットを得ることができる。
 次に、図3のBに示すように、プラズマCVD法などで厚み20nm程度のSiN層の反応防止膜の層8aを堆積する。反応防止膜は選択拡散マスクパターン36と同じ材料であるが、厚みはその1/5程度と薄い。反応防止膜8を形成するために、図示しないレジストパターン被覆部を反応防止膜の領域に重なるように配置して、図3のCに示すように選択エッチングにより、反応防止膜8となる部分を残すように、残余を除去する。Znの選択拡散には480℃から520℃で30分から40分間の加熱が必須である。この選択拡散における程度の加熱を経たSiN(選択拡散マスクパターン36)はエッチングされにくくなる。このため、バッファードフッ酸によりエッチングすることで、選択拡散マスクパターン36はエッチングされず、選択拡散の熱処理のあとに堆積したSiN層の反応防止膜の層8aのみがエッチングされる。この段階で、コンタクト層5のp型領域6の表面に反応防止膜8が形成される。
 次いで、画素電極11を形成するために、図3のDに示すように、AuZnを電子ビーム蒸着によって蒸着し、そのあと、オーミック接触を実現するために窒素雰囲気中で390℃×1分間の熱処理を施す。この熱処理によって、画素電極11は、反応防止膜8と接する裏面では金属面Kが形成されて反射面となる。また、画素電極11がコンタクト層5のp型領域6と接する領域では、化学反応が進行して凹凸領域Jが形成されて、オーミック接触を実現する。このあと、図3のEに示すように、光入射面となるInPの基板1の裏面に、SiONなどからなるAR膜35をプラズマCVD法により配置する。さらに、p側電極である画素電極11と対をなすn側電極であるグランド電極12を、InPの基板1裏面の周縁部にAuGeNiを蒸着することで形成する。このあと、グランド電極12のオーミック接触を実現ずるために、340℃×1分間の熱処理を施す。選択拡散マスクパターン36は、このままの状態で残して、保護膜またはパッシベーション膜として利用する。
 なお、画素電極11の裏面における凹凸領域Jは、厳密には、グランド電極12のオーミック接触実現のために行う熱処理の熱履歴も影響する。しかし、画素電極11では、390℃の熱処理であり、グランド電極12に対する熱処理よりも約50℃高いので、凹凸領域Jはほとんど画素電極11に対する熱処理によって形成される。
 上記の製造により、図4に示すように、画素電極11の裏面には、周縁部はオーミック接触を実現する凹凸領域J、それに囲まれる中央部は平滑または平滑に近い金属面K、が形成される。
(実施の形態2)
 図5Aおよび図5Bは、本発明の実施の形態2における受光素子10を示す図である。画素電極11の下部に反応防止膜8を有している。凹凸領域Jでオーミック接触を実現しながら、平滑または平滑に近い金属面Kを反射面として感度を向上させる点で、実施の形態1と共通する。この結果、比較的、タイプ2(GaAsSb/InGaAs)MQWの受光層3のペア数を比較的少なくしながら、感度向上の最適化のペア数を選ぶことができる。
 本実施の形態では、受光素子10はプレーナ型ではなく、メサ構造を有し、さらに受光層の構成が異なっている。メサ構造では、メサ壁面にpn接合が露出するとリーク電流の原因となるので、パッシベーション膜37で壁面および画素電極11の周りのコンタクト層5を被覆することが重要である。
 本実施の形態における受光層の構造はつぎのとおりである。
<半導体基板1>:Feドープ半絶縁性InP基板
<バッファ層2>(n型):バッファ層2は、受光層の下層3cがある場合は、あってもよいし、又は、なくてもよい。バッファ層2を設ける場合は、InGaAsまたはInP、いずれも厚みは0.5μmからなるバッファ層2とする。
<受光層3>:受光層の下層3c(n型):(GaAsSb(5nm)/InGaAs(5nm))MQW、30ペア
 図5Aは、受光層の下層3cおよびバッファ層2がともにある場合を示し、また図5Bは受光層の下層3cのみがあり、バッファ層2がない場合を示す。図5Aにおいて、受光層の下層3cがなくて、受光層3は中層3bと上層3aだけで構成される場合もある。
  受光層の中層3b(i型):(GaAsSb(5nm)/InGaAs(5nm))MQW、90ペア
  受光層の上層3a(p型):(GaAsSb(5nm)/InGaAs(5nm))MQW、25ペア
<コンタクト層5>:(p型):InGaAsまたはInP、いずれも厚み0.6μm
<グランド電極12>:半導体基板1をFeドープ半絶縁性InP基板としたので、n側電極であるグランド電極12は、n型バッファ層2または受光層の下層3cに設けられ、オーミック接触を実現している。
<パッシベーション膜37>:SiOで厚みは0.3μm。プラズマCVD法により形成する。
 AR膜35はSiONで形成されている。画素電極11およびグランド電極12の材料は、実施の形態1と同じである。
 画素電極11と受光層3との距離は短いほど、画素電極11で反射した光が無駄を少なくして受光層3へと戻されやすい。メサ構造のほうが、選択拡散で画素間を分離するプレーナ型よりも、画素電極11と受光層3との距離を短くできる。このため、反射した光を、無駄を少なく使用できるという点でメサ構造のほうが好ましい。
(実施の形態3)
 図6Aおよび図6Bは、本発明の実施の形態3における受光素子10を示す図である。画素電極11の下部に反応防止膜8を有し、凹凸領域Jでオーミック接触を実現しながら、平滑または平滑に近い金属面Kを反射面として感度を向上させる点で、実施の形態1および2と共通する。また、本実施の形態では、受光素子10はプレーナ型ではなく、メサ構造を有する点で実施の形態2と共通する。本実施の形態では受光層3を構成するMQWの材料が異なっている。
本実施の形態における受光層の構造はつぎのとおりである。
<半導体基板1>:ノンドープGaSb基板(p型)
 とくに不純物をドープしないがp型となる。
<バッファ層2>(p型):バッファ層2は、受光層の下層3cがある場合は、あってもよいし、又は、なくてもよい。バッファ層2を設ける場合は、GaSb層、いずれも厚み0.5μmからなるバッファ層2とする。
<受光層3>:
  受光層の下層3c(p型):(InAs(3.6nm)/GaSb(2.1nm))MQW、30ペア
 図6Aは、受光層の下層3cおよびバッファ層2がともにある場合を示し、また図6Bは受光層の下層3cのみがあり、バッファ層2がない場合を示す。図6Aにおいて、受光層の下層3cがなくて、受光層3は受光層の中層3bと受光層の上層3aだけで構成される場合もある。
  受光層の中層3b(i型):(InAs(3.6nm)/GaSb(2.1nm))MQW、190ペア
  受光層の上層3a(n型):(InAs(3.6nm)/GaSb(2.1nm))MQW、30ペア
<コンタクト層5>:(n型):InAs層、厚み0.02μm
<画素電極11>:Ti/Ptを蒸着したあと、200℃×1分間の熱処理を施して、周縁部の凹凸領域Jにおいてオーミック接触を実現する。画素電極11はn側電極である。
<グランド電極12>:p側電極であるグランド電極12は、p型バッファ層2または受光層の下層3cに設けられ、オーミック接触を実現している。Ti/Ptを蒸着したあと、200℃×1分間の熱処理を施して、オーミック接触を実現する。
 基板1の裏面に設けられたAR膜はDLC(Diamond Like Carbon)で形成されている。
 本実施の形態では、GaSbの基板1を用い、タイプ2(GaSb/InAs)MQWを受光層3とする。タイプ2(GaSb/InAs)MQWは、実施の形態1および2のタイプ2(GaAsSb/InGaAs)よりも長波長側に感度をもち、中赤外域の光を受光することができる。この場合、実施の形態1において詳細に説明した画素電極11の下に設けた反応防止膜8に起因する金属面Kにより、中赤外域の光に対して高い感度を確保することができる。
(実施の形態4)
 図7A、図7Bおよび図7Cは、本発明の実施の形態4における光学装置50を示し、図7Aは断面図、図7Bは部分拡大図、図7Cは受光素子10における画素電極11の裏面の平面図、である。本実施の形態の受光素子10では、画素Pが複数、アレイ状に配置されている。このように複数の画素Pが配列(一次元または二次元)されている場合でも、上記の金属面Kによる反射の作用は、受光素子10において確実に発揮される。
 実施の形態1~3は、画素が一つの例の場合を図示したが、上記実施の形態1~3において画素が、図7Aに示すように、複数、配列されていると解釈してもよい。
 光学装置50は、受光素子10と読み出し回路(ROIC:Read Out IC)70とから構成される。画素Pごとに画素電極11は、バンプ19/バンプ79、を介在させて、読み出し回路70の読み出し電極71に接続されている。受光素子10におけるエピタキシャル層構造は、図1に示す実施の形態1の受光素子10と同じであり、また、InPの基板1の裏面を光入射面としている。
 図7Bに示すように、画素電極11とコンタクト層5のp型領域6との間の限定領域に反応防止膜8が配置され、平滑な、または平滑に近い金属面Kが形成されている。この金属面Kを取り囲むように円周状に凹凸領域Jが位置している。凹凸領域Jによって画素電極11のコンタクト層5へのオーミック接触を実現しながら、金属面Kにより、受光層3を一度通ってきた光を反射して受光層3へと戻すことで受光機会を与えて感度を高めることができる。
 図7Cは、画素Pが二次元配列した場合の画素電極11の裏面を示す平面図である。簡単な製造工程の変更によって、画素Pごとに感度を向上させる金属面K、および画素Pごとにオーミック接触を実現する凹凸領域Jを形成することができる。オーミック接触を実現する凹凸領域Jを確実に確保することがポイントになるが、画素Pピッチ30μm程度であれば現状の寸法精度上、確実に所定の面積の凹凸領域Jを形成することができる。
(その他の実施の形態)
 受光素子は、pinフォトダイオードのみを示したが、受光層内に当該受光層の導電帯の底より高い導電帯の底をもつ挿入層を有する、いわゆるnBn構造の受光層であってもよい。すなわちnBn構造の受光層を有していても、本発明における金属面Kおよび凹凸領域Jの効果は問題なく発揮することができる。したがってnBn構造の受光層を備える受光素子を含む。
 また、受光層はタイプ2MQWのみを例示したが、MQWに限定されず、単一層の受光層に対しても有効である。
 上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 本発明の受光素子等によれば、反応防止膜を画素電極の下の限定領域に配置することで、該画素電極のオーミック接触を確保しながら反射面による感度向上を得ることができる。この構造を形成する製造方法はとくに大掛かりな工程変更は必要なく、また使用する材料も既存の材料である。上記の反射面による感度向上により、たとえば受光層をタイプ2MQWで構成した場合、従来の最適ペア数より少ないペア数によって、より高い受光感度を得るとともに、結晶品質の向上によって暗電流等も減らすことができる。

Claims (11)

  1.  半導体基板に形成され、画素を備える受光素子であって、
     前記半導体基板の上に位置して、受光するための受光層と、
     前記受光層の上に位置するコンタクト層と、
     前記コンタクト層にオーミック接触する画素電極とを備え、
     前記半導体基板の裏面が光入射面であり、
     前記コンタクト層と前記画素電極との化学反応を防止するための反応防止膜が、該コンタクト層と該画素電極との間の限定領域に介在していることを特徴とする、受光素子。
  2.  前記画素電極の領域が、前記反応防止膜と接触している当該画素電極の領域を取り囲む周囲の全周、または当該周囲の部分、に位置することを特徴とする、請求項1に記載の受光素子。
  3.  前記画素電極のまわりにおいて少なくとも前記コンタクト層を被覆している保護膜を有し、
     前記反応防止膜は、その厚みが、前記保護膜、の厚みよりも薄いことを特徴とする、請求項1または2に記載の受光素子。
  4.  前記反応防止膜が、窒化珪素(SiN)膜、酸窒化珪素(SiON)膜、および酸化珪素(SiO)膜、のうちの少なくとも一つであることを特徴とする、請求項1~3のいずれか1項に記載の受光素子。
  5.  前記受光層内にpn接合を有するか、または、前記受光層内に当該受光層の導電帯の底より高い導電帯の底をもつ挿入層を有する、ことを特徴とする、請求項1~4のいずれか1項に記載の受光素子。
  6.  前記受光層が、タイプ2の多重量子井戸構造(MQW:Multi Quantum Well)を有することを特徴とする、請求項1~5のいずれか1項に記載の受光素子。
  7.  請求項1~6のいずれか1項に記載の受光素子を備えることを特徴とする光学装置。
  8.  半導体基板に形成され、画素を備える受光素子を製造する方法であって、
     前記半導体基板の上に、受光層を形成する工程と、
     前記受光層の上にコンタクト層を形成する工程と、
     前記画素の表面となり、画素電極が設けられる領域の前記コンタクト層に接して、反応防止膜を限定的に設ける工程と、
     前記反応防止膜を含みながら該反応防止膜の領域を超えて前記コンタクト層を被覆する画素電極層を堆積する工程と、
     前記電極層と前記コンタクト層とが接する領域において化学反応してオーミック接触するように、熱処理する工程とを備えることを特徴とする、受光素子の製造方法。
  9.  前記反応防止膜を設ける前に、少なくとも前記画素電極が設けられる領域以外の領域の前記コンタクト層、を被覆する保護膜を形成し、次いで、前記反射防止膜の層で全表面を被覆し、そのあとレジストパターンをマスクにしてエッチングによって前記反応防止膜を限定的に形成し、その後、前記反応防止膜および前記コンタクト層を被覆する電極層を堆積することを特徴とする、請求項8に記載の受光素子の製造方法。
  10.  プレーナ型の受光素子を製造する場合において、前記コンタクト層を形成したあと、前記反応防止膜を形成する前に、選択拡散マスクパターンを形成し、次いで、加熱をしながら不純物を該選択拡散マスクパターンの開口部から選択拡散し、その後で、前記反応防止膜を限定的に設けるとき、まず反応防止膜の層で全体を被覆したのち、レジストパターンを前記反応防止膜が形成される領域を該レジストパターンの被覆部が被覆するように形成して、次いでエッチングによって前記レジストパターンの被覆部以外の部分を除去することで、該反応防止膜を限定的に形成することを特徴とする、請求項8または9に記載の受光素子の製造方法。
  11.  メサ構造を有する受光素子を製造する場合において、前記コンタクト層を形成したあと、前記反応防止膜を形成する前に、エッチングによって前記画素電極が形成される領域を取り囲むように溝を設けてメサ構造を形成し、前記画素電極が設けられる領域以外の領域の前記コンタクト層、および前記メサ構造の溝の壁を被覆する保護膜を形成して、その後で、前記反応防止膜を限定的に設けるとき、まず反応防止膜の層で全体を被覆したのち、レジストパターンを前記反応防止膜が形成される領域を該レジストパターンの被覆部が被覆するように形成して、次いでエッチングによって前記レジストパターンの被覆部以外の部分を除去することで、該反応防止膜を限定的に形成することを特徴とする、請求項8または9に記載の受光素子の製造方法。
PCT/JP2012/064864 2011-12-14 2012-06-11 受光素子、その製造方法、光学装置 WO2013088762A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/365,515 US20140319464A1 (en) 2011-12-14 2012-06-11 Light receiving element and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011273572A JP2013125847A (ja) 2011-12-14 2011-12-14 受光素子、その製造方法、光学装置
JP2011-273572 2011-12-14

Publications (1)

Publication Number Publication Date
WO2013088762A1 true WO2013088762A1 (ja) 2013-06-20

Family

ID=48612228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064864 WO2013088762A1 (ja) 2011-12-14 2012-06-11 受光素子、その製造方法、光学装置

Country Status (3)

Country Link
US (1) US20140319464A1 (ja)
JP (1) JP2013125847A (ja)
WO (1) WO2013088762A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153717B2 (en) * 2013-08-09 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Backside illuminated photo-sensitive device with gradated buffer layer
JP6265032B2 (ja) * 2014-04-28 2018-01-24 住友電気工業株式会社 半導体受光素子
JP2015216172A (ja) * 2014-05-08 2015-12-03 住友電気工業株式会社 アレイ型受光素子
JP2015230950A (ja) * 2014-06-04 2015-12-21 住友電気工業株式会社 アレイ型受光素子
JP6477036B2 (ja) * 2015-03-05 2019-03-06 住友電気工業株式会社 半導体積層体および半導体装置
JP6972831B2 (ja) * 2017-09-21 2021-11-24 富士通株式会社 赤外線検出器、撮像装置及び撮像システム
US10461118B2 (en) 2017-12-15 2019-10-29 Atomera Incorporated Method for making CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10355151B2 (en) 2017-12-15 2019-07-16 Atomera Incorporated CMOS image sensor including photodiodes with overlying superlattices to reduce crosstalk
US10304881B1 (en) 2017-12-15 2019-05-28 Atomera Incorporated CMOS image sensor with buried superlattice layer to reduce crosstalk
US10276625B1 (en) 2017-12-15 2019-04-30 Atomera Incorporated CMOS image sensor including superlattice to enhance infrared light absorption
US10361243B2 (en) * 2017-12-15 2019-07-23 Atomera Incorporated Method for making CMOS image sensor including superlattice to enhance infrared light absorption
US10396223B2 (en) 2017-12-15 2019-08-27 Atomera Incorporated Method for making CMOS image sensor with buried superlattice layer to reduce crosstalk
JP7089930B2 (ja) * 2018-04-16 2022-06-23 浜松ホトニクス株式会社 半導体光検出素子
JP7034816B2 (ja) * 2018-04-16 2022-03-14 浜松ホトニクス株式会社 裏面入射型半導体光検出素子
JP7115111B2 (ja) * 2018-07-26 2022-08-09 富士通株式会社 赤外線検出器、これを用いた撮像装置、及び赤外線検出器の製造方法
US11411039B2 (en) * 2020-05-19 2022-08-09 Applied Materials, Inc. Stacked pixel structure formed using epitaxy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296676A (ja) * 1988-05-24 1989-11-30 Nec Corp 半導体受光装置
JPH05102513A (ja) * 1991-10-04 1993-04-23 Nikko Kyodo Co Ltd 半導体受光素子
JPH05218488A (ja) * 1992-02-03 1993-08-27 Nippon Telegr & Teleph Corp <Ntt> 半導体受光素子
JP2002252366A (ja) * 2000-12-19 2002-09-06 Fujitsu Quantum Devices Ltd 半導体受光装置
JP2002289906A (ja) * 2001-03-23 2002-10-04 Hitachi Ltd 半導体受光素子、半導体受光装置及び半導体装置
WO2009014076A1 (ja) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. 受光デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294878A (ja) * 2006-03-31 2007-11-08 Fujifilm Corp 半導体層とその成膜方法、半導体発光素子、及び半導体発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296676A (ja) * 1988-05-24 1989-11-30 Nec Corp 半導体受光装置
JPH05102513A (ja) * 1991-10-04 1993-04-23 Nikko Kyodo Co Ltd 半導体受光素子
JPH05218488A (ja) * 1992-02-03 1993-08-27 Nippon Telegr & Teleph Corp <Ntt> 半導体受光素子
JP2002252366A (ja) * 2000-12-19 2002-09-06 Fujitsu Quantum Devices Ltd 半導体受光装置
JP2002289906A (ja) * 2001-03-23 2002-10-04 Hitachi Ltd 半導体受光素子、半導体受光装置及び半導体装置
WO2009014076A1 (ja) * 2007-07-23 2009-01-29 Sumitomo Electric Industries, Ltd. 受光デバイス

Also Published As

Publication number Publication date
JP2013125847A (ja) 2013-06-24
US20140319464A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013088762A1 (ja) 受光素子、その製造方法、光学装置
US8629485B2 (en) Semiconductor photodetection element
TWI476906B (zh) Photodiode and photodiode array
US9419159B2 (en) Semiconductor light-detecting element
JP6080092B2 (ja) 受光素子、半導体エピタキシャルウエハ、検出装置および受光素子の製造方法
US10714531B2 (en) Infrared detector devices and focal plane arrays having a transparent common ground structure and methods of fabricating the same
JP5568979B2 (ja) 検出装置、受光素子アレイ、および検出装置の製造方法
JP6176585B2 (ja) 受光素子、およびその製造方法
EP3084843B1 (fr) Elément de détection quantique à faible bruit et procédé de fabrication d&#39;un tel élément de photodétection
WO2012073539A1 (ja) 受光素子、検出装置、半導体エピタキシャルウエハ、およびこれらの製造方法
US10312390B2 (en) Light receiving device and method of producing light receiving device
US20200313022A1 (en) Single photon detector and manufacturing method thereof
JP2012191130A (ja) 受光デバイス、半導体エピタキシャルウエハ、これらの製造方法、および検出装置
JP2012244124A (ja) 受光素子アレイ、その製造方法および検出装置
JP3828982B2 (ja) 半導体受光素子
US20120299141A1 (en) Avalanche photodiode and avalanche photodiode array
KR20160134483A (ko) 태양 전지 및 이의 제조 방법
JP2014003069A (ja) 受光素子、その製造方法、および光学装置
JP2013201219A (ja) 受光素子、その製造方法、および検出装置
WO2017051005A1 (fr) Photodétecteur comprenant un empilement de couches superposées
CN115172394A (zh) 一种半导体器件及其制作方法
JP2009283603A (ja) 検出装置、受光素子アレイおよびその製造方法
US8530994B2 (en) Method for producing solid state imaging device and solid-state imaging device
JP5437486B2 (ja) 光電変換素子
WO2011152460A1 (ja) 光電変換素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14365515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856629

Country of ref document: EP

Kind code of ref document: A1