WO2013087241A1 - Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique - Google Patents

Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique Download PDF

Info

Publication number
WO2013087241A1
WO2013087241A1 PCT/EP2012/068923 EP2012068923W WO2013087241A1 WO 2013087241 A1 WO2013087241 A1 WO 2013087241A1 EP 2012068923 W EP2012068923 W EP 2012068923W WO 2013087241 A1 WO2013087241 A1 WO 2013087241A1
Authority
WO
WIPO (PCT)
Prior art keywords
atom
sol
formula
preparing
chosen
Prior art date
Application number
PCT/EP2012/068923
Other languages
English (en)
Inventor
Nicolas Richet
Thierry Chartier
Fabrice Rossignol
Aurélien VIVET
Pierre-Marie Geffroy
Original Assignee
L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Centre National De La Recherche Scientifique
Universite De Limoges
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude, Centre National De La Recherche Scientifique, Universite De Limoges filed Critical L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to RU2014128820A priority Critical patent/RU2608383C2/ru
Priority to JP2014546365A priority patent/JP2015504836A/ja
Priority to KR1020147019174A priority patent/KR20140104019A/ko
Priority to EP12766076.9A priority patent/EP2791078A1/fr
Priority to CN201280061184.1A priority patent/CN104136393A/zh
Priority to US14/364,389 priority patent/US20140335266A1/en
Priority to BR112014014370A priority patent/BR112014014370A2/pt
Publication of WO2013087241A1 publication Critical patent/WO2013087241A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4537Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension by the sol-gel process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5036Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to catalytic membrane reactors or CMRs.
  • a Membrane Catalytic Reactor is composed of a mixed conductive dense membrane (electronic and ionic) of oxygen anions. Under the action of an oxygen partial pressure gradient imposed on either side of the membrane, the oxygen anions O 2 " , coming from the air, pass through the membrane of the oxidizing surface towards the reducing surface, to react with methane on the latter
  • Figure 1 illustrates the set of elementary steps in the transport of oxygen through a membrane, which are six in number:
  • each of the steps described above can be a limiting step in the transport of oxygen through the membrane.
  • the limiting step is the exchange of surfaces, and more particularly to the reducing surface of the membrane
  • PM Geffroy et al. "Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La (i x ) Sr x Fe (i y ) Ga y 0 3 -d perovskite membranes ", Journal of Membrane Science, (2010) 354 (1-2) p.6-13; PM Geffroy et al., "Influence of oxygen surface exchanges on oxygen semi-permeation through the (i x ) Sr x Fe (i y ) Ga y o 3 -o dense membrane” Journal of Electrochemical Society, (201 1) , 158 (8), p.
  • the surface state of the membranes for the CMR application plays a major role in the performance of the process [PM Geffroy et al., "Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of the (i x ) Sr x Fe (i y.) Ga y 0 -d 3 perovskite membrane "Journal of membrane Science, (2010) 354 (1 -2) p.6-13; PM Geffroy et al., "Influence of oxygen surface exchanges on oxygen semi-permeation through the (1 x ) Sr x Fe ( 1y) Gay03-s dense membrane” Journal of Electrochemical Society, (201 1), 158 ( 8), p.
  • the cohesion of the entire layer is obtained by a modification of the grains of the powder, which is reflected more particularly by their magnification. There is therefore a decrease in the density of grain boundaries.
  • the current methods of synthesis of materials do not allow to obtain grains of very small diameter.
  • the tortuosity in the porosity increases; this therefore reduces the useful area on which surface exchange can take place.
  • One of the objects of the present invention is therefore to propose an operating protocol for obtaining a nano-structured architecture which, at high temperature, that is to say at a temperature above the crystallization temperature, is a ultra-divided perovskite composed of crystallites 10-100 nm in diameter.
  • the layer of material thus formed develops a large surface area and has a high density of grain boundaries. It also has an increased microstructural stability, whether grain size or grain boundary density, at high temperature (700 ° C to 1000 ° C) and over a long period (more than 2 000h ).
  • the methods generally used today to increase the exchange surface of the membranes are the deposition of a porous layer by screen printing, the use of a porous support where the porosity is created by the use of a porogenic agent and the use of mesoporous materials.
  • the screen printing ink is then deposited on the membrane using a squeegee that forces the ink to pass through the screen printing mask to print the desired patterns. The deposited thickness is between 20 ⁇ and ⁇ ⁇ .
  • Figure 2 is a photograph taken under a scanning electron microscope (SEM photo) of a porous surface deposited by screen printing on a support.
  • the subject of the present invention is therefore a process for preparing a perovskite phase sol with controlled stoichiometry having at least four cations and being stable over time. After dipping (dip coating in English), during the crystallization of this sol temperature, an ultra-divided or nano structured architecture layer composed of perovskite phase particles with a diameter of 10-100 nm is deposited on the surface of the membrane. .
  • An essential feature of this invention is the very large increase in grain boundaries at the membrane surface as well as the dramatic increase in the exchange surface area and oxygen flux through the membrane.
  • the subject of the invention is therefore a process for preparing a sol-gel of at least three metal salts Mi, M 2 and M 3 which are suitable for the preparation of a material of the type perovskite corresponding to the general formula (I):
  • x, y, u and ⁇ are such that the electrical neutrality of the crystal lattice is conserved, 0 ⁇ x ⁇ 0.9,
  • A represents an atom chosen from scandium, yttrium or in the families of lanthanides, actinides or alkaline earth metals;
  • a different from A represents an atom chosen from scandium, yttrium, aluminum, gallium, indium, thallium or in the families of lanthanides, actinides or alkaline earth metals;
  • B represents an atom chosen from transition metals
  • B ' different from B, represents an atom selected from transition metals, alkaline earth metals, aluminum, indium, gallium, germanium, antimony, bismuth, tin or lead;
  • B "different from B and B ', represents an atom selected from transition metals, alkaline earth metals, aluminum, indium, gallium, germanium, antimony, bismuth , tin, lead or zirconium;
  • said method comprising the following steps:
  • sol-gel of at least three metals Mi, M 2 , and M 3 suitable and intended for the preparation of a perovskite-type material is meant in particular a sol of three metals, a sol-gel of four metals or a sol-gel of five metals.
  • step a) of the process as defined above the anions of the water-soluble salts of said elements A, A ', B, B' and optionally B "are of valence lower than that of the cation corresponding.
  • the negative counterion is an anion of valence -1: according to this option, this anion is more particularly chosen from halide ions or the nitrate ion and preferably it is the nitrate ion.
  • the negative counterion is anion of valence -1 or valence -2: according to this option, this anion is more particularly chosen from halide ions, the nitrate ion or the sulfate ion, preferably it is the nitrate ion.
  • the negative counterion is anion of valence -1, valence -2 or valence -3, depending on this option, this anion is more particularly chosen from the halide ions, the nitrate ion, the sulfate ion or the phosphate ion, preferably it is the nitrate ion.
  • the water-soluble salts of said elements A, A ', B, B' and optionally B ", implemented in step a), are the nitrates of said elements.
  • B "(N se is) / Numbers of mole of water (N H 2o), is more particularly greater than or equal to 0.005 and less than or equal to 0.05.
  • hydro-alcoholic solution it is meant in the context of step b) of the process as defined above that the alcohol-water mixture contains at least about 70% by weight of alcohol and at most 30% by weight of alcohol. weight of water.
  • the alcohol used in step b) is ethanol.
  • step b) of process as defined above the molar ratio N (t ensioacti ) N ⁇ NH3) is greater than or equal to 10 "4 and less than or equal to 10 " 2
  • the nonionic surfactant used in step b) is chosen from block copolymers consisting of poly (alkyleneoxy) chains and more particularly from copolymers ( EO) n - (PO) m - (EO) n .
  • the nonionic surfactant used in step b) is a commercially available block copolymer (EO) 9 9 (PO) 7 o- (EO) 9 9 under the name PLURONIC TM F127
  • a and A ' are more particularly chosen from lanthanum (La), cerium (Ce), yttrium (Y), gadolinium (Gd), magnesium ( Mg), calcium (Ca), strontium (Sr) or barium (Ba).
  • A represents a lanthanum atom, a calcium atom or a barium atom.
  • a ' represents a strontium atom.
  • B and B ' are more particularly selected from iron (Fe), chromium (Cr), manganese (Mn), gallium (Ga), cobalt (Co) ), nickel (Ni) or titanium (Ti).
  • B represents an iron atom
  • B represents a zirconium atom.
  • u is more particularly equal to 0.
  • the subject of the invention is a process as defined above, for which the perovskite material of formula (I) is chosen from the following compounds:
  • the subject of the invention is also a process for preparing a substrate coated on at least one of its surfaces with a sol-gel film of a perovskite material, characterized in that it comprises:
  • step e) of dipping consists of immersing a substrate in the soil synthesized previously and removing it at a controlled and constant speed.
  • the movement of the substrate causes the liquid forming a surface layer.
  • This layer divides in two, the inner part moves with the substrate while the outer part falls into the container.
  • the progressive evaporation of the solvent leads to the formation of a film on the surface of the substrate.
  • e being the thickness of the deposit
  • being a deposition constant dependent on the viscosity, the density of the soil and the liquid-vapor surface tension and v being the drawing speed.
  • the drying step g) is generally carried out in the open air or in a controlled atmosphere for a few hours.
  • Perovskite material sintered with a density greater than 90%, preferably greater than 95% more particularly denotes a ceramic composition (CC) comprising for 100% by volume, at least 75% by volume and up to 100% by volume of an electronically mixed conductive compound and oxygen anions O 2 " (Ci) chosen from doped ceramic oxides of formula (II):
  • x, y, u and ⁇ are such that the electrical neutrality of the crystal lattice is preserved
  • C represents an atom chosen from scandium, yttrium or in the families of lanthanides, actinides or alkaline earth metals;
  • C different from C, represents an atom selected from scandium, yttrium, aluminum, gallium, indium, thallium or in families of lanthanides, actinides or alkaline earth metals;
  • D represents an atom chosen from transition metals
  • D represents an atom chosen from transition metals, alkaline earth metals, aluminum, indium, gallium, germanium, antimony, bismuth, tin or lead;
  • D - D "different from D and D ', represents an atom chosen from transition metals, metals of the alkaline-earth family, aluminum, indium, gallium, germanium, antimony, bismuth , tin, lead or zirconium;
  • said ceramic composition (CC) comprises, for 100% by volume, at least 90% by volume and more particularly at least 95% by volume and up to 100% by volume of compound (Ci) and optionally up to at 10% in volume, and more particularly up to 5% by volume of compound (C 2 ).
  • the sintering undergone by the material of formula (II) before its implementation in step e) is carried out under air at a temperature above 1,000 ° C., or even above 1200 ° C for about 10 hours to reach the desired relative density.
  • the subject of the invention is a method for preparing a ceramic membrane (CM) characterized in that said substrate coated with a sol-gel obtained by the process as defined above, undergoes a step h) calcination under air.
  • the calcination step h) is generally carried out in air at a temperature of approximately 1000 ° C. for at least 1 hour, the temperature rise rate being around 1 ° C. per minute. The calcination of the substrates under air thus makes it possible to eliminate the nitrates but also to decompose the surfactant and thus to release the porosity.
  • the subject of the invention is a process for preparing an ultra-divided powder of perovskite-type material corresponding to the general formula (I), characterized in that the sol resulting from stage c) of method as defined above, undergoes a step i) of atomization to form a sol-gel powder; said sol-gel powder being then subjected to the calcination step in air, to form said ultra-divided or nanostructured powder (i.e., a nanoscale size of 10 to 100 nm).
  • the invention finally relates to the use of the membrane as defined above to produce oxygen from air, by electrochemistry through
  • Nitrates of lanthanum, strontium, iron and gallium, precursors of perovskite are mixed in the stoichiometric proportions necessary for the formation of a perovskite of structure La 0 , 8 Sr 0 , 2 Fe 0 , 7Ga 0 , 3 0 3- ⁇ with a nonionic surfactant, in an ammonia / ethanol solution. Evaporation of the solvents (ethanol and water) allows the gel solids to crosslink around surfactant micelles by forming bonds between the hydroxyl groups of one salt and the metal of another salt.
  • the control of hydrolysis / condensation reactions related to electrostatic interactions between inorganic precursors and surfactant molecules allows cooperative assembly of the organic and inorganic phases, which generates micellar aggregates of controlled size surfactants within an inorganic matrix. .
  • the phenomenon of self-assembly is induced by progressive evaporation of the solvent from a reagent solution, when the micellar concentration becomes critical.
  • the starting point of the self-setting process is the hydroalcoholic solution of inorganic precursors (La, Sr, Fe and Ga) and nonionic surfactant.
  • the nonionic surfactant used in the process belongs to the family of block copolymers, copolymers which have two parts of different polarities: a hydrophobic body and hydrophilic ends.
  • These copolymers consist of poly (alkylene oxide) chains, such as copolymers of general formula (EO) n - (PO) m - (EO) n , consisting of the chain of poly (ethylene oxide) (EO), hydrophilic at the ends and in its central part the poly (propylene oxide) (PO), hydrophobic.
  • the polymer chains remain dispersed in solution at a concentration below the critical micelle concentration (CMC).
  • CMC is defined as the limiting concentration beyond which the phenomenon of self-arrangement of surfactant molecules in the solution occurs. Beyond this concentration, the chains of the surfactant tend to be grouped by hydrophilic / hydrophobic affinity. Thus, the hydrophobic bodies are grouped together and form spherical micelles. The ends of the polymer chains are pushed outwardly of the micelles, and associate during the evaporation of the volatile solvent (ethanol) with the ionic species in solution which also have hydrophilic affinities.
  • ethanol volatile solvent
  • the size of the micelles is fixed by the length of the hydrophobic chain.
  • a block copolymer of (EO) 9 9- (PO) 7 o- (EO) 9 9 type commercially available under the reference Pluronic TM F127, micelles with a diameter of between 6 nm and 10 nm can be produced. produced. This is an example but other surfactants can be used to cover a range of micelles of diameter between 3nm and 10nm.
  • the gels obtained after evaporation of the solvents are calcined in air.
  • the removal of the surfactant during the heat treatment makes it possible to generate a cohesive matrix having a homogeneous and structured porosity.
  • FIG. 4 illustrates the principle of self-assembly after soaking a substrate in a soil, said self-assembly being induced by evaporation, leading to the formation of a sol-gel which, after calcination, leads to an ultra-divided support of perovskite phase with controlled microstructure.
  • Is prepared 20 cm 3 of aqueous solution containing lanthanum nitrate, strontium, iron and gallium, perovskite precursors, are mixed in the stoichiometric proportions required for the formation of a perovskite structure
  • a sol is synthesized according to the procedure described in the following experimental part. This soil was made to obtain stoichiometry Stoichiometry was verified by ICP (Inductively Coupled Plasma Atomic Emission) Spectrometric Analysis (see Table 2 below)
  • the substrates used in our study are perovskite membranes sintered at 1350 ° C for 10 hours in air (relative density of membranes ⁇ 97%, measurements made by the method of Archimedes' thrust). These membranes have the same La, Sr, Fe and Ga stoichiometry as that of the soil previously produced.
  • the membrane is stoichiometry
  • the sample is then dried under free air for 6 hours before undergoing heat treatment under air to remove nitrates and surfactant.
  • the membrane covered with a thin film was calcined in air at 1000 ° C for 1 h, with a temperature rise rate of 1 ° C / min.
  • Figure 6 is a diffractogram of sol-gel powder calcined at 1000 ° C. It shows the complete crystallization of perovskite type (structure AB0 3 )
  • the SEM-FEG micrographs reveal the formation of an ultra-divided deposit on the surfaces of the membrane.
  • the deposit is however different according to the exposed surface reducing gas ( Figure 7) or oxidizing gas (Figure 8) after aging.
  • Figure 7 On the surface in contact with the reducing atmosphere (illustrated by the SEM-FEG micrographs of FIGS. 7A to 7C), it results from the drying and the calcination of the soil deposit a coating of the surface of the membrane by an ultra-divided deposit composed of particles of a size of the order of 50-1000 nm.
  • the density of grain boundaries at the surface of the membrane is greatly increased. Clusters of grains in the form of pads of average diameter of the order of 200-500 nm greatly increase the exchange surface with the gas.
  • the crystallization of the perovskite phase results in an ultra-divided and highly porous deposit with crystallized particles having facets in contact with one another. . These particles are of a size of the order of one hundred nanometers and display a narrow particle size distribution.
  • Oxygen semi-permeation performance of dipstrate-deposited membranes was measured.
  • Material 3 LSFG8273 screen-coated with a porous layer of
  • the deposition of a perovskite sol on the surface of a membrane greatly exceeds the best performances already obtained by depositing a screen-printed layer.
  • the soaking rate affects the thickness of the deposited layer.
  • a faster speed (10 mm / s) increases the thickness of the deposited layer and increases the exchange surface as well as the density of surface grain boundaries. Performance is further improved.
  • the following table lists the results obtained at 900 ° C.
  • Diaphragms J0 2 (mole m “1 " s "1 )
  • the deposition of perovskite sol prepared by the process according to the invention has the first advantage of developing a large specific surface area and a high density of grain boundaries. Furthermore, this deposit is stable under partial pressure gradient oxygen, a necessary condition for the use of a CMR for steam reforming methane but also to produce oxygen by separation of the air through said ceramic membrane.
  • the second advantage comes from the thickness of the deposit and the deposition process. Indeed, the deposit is of a thickness 100 times smaller than by screen printing (material gain) and because of soaking, all dense diaphragm support geometries can be used (tubes, flat plates).
  • the atomization technique makes it possible to transform a sol into a solid dry form (powder) by the use of a hot intermediate.
  • the principle is based on the spraying into fine droplets of the soil (3), in a vertical cylindrical chamber (4) in contact with a hot air stream (2) in order to evaporate the solvent in a controlled manner.
  • the resulting powder is entrained by the heat flow (5) to a cyclone (6) which will separate the air (7) from the powder (8).
  • the powder recovered after the atomization is calcined under the same conditions as the substrates prepared by dipping ("dip-coated").
  • the microstructure of this powder is identical to that obtained on the deposit, namely an ultra-divided and porous microstructure with a crystallite size of the order of 10-100 nm.
  • the spherical granules are hollow and the wall of the granules itself has a high porosity.
  • the use of this powder to make porous layers would provide a dual-scale porosity and have a matrix with a high density of grain boundaries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Procédé de préparation d'un sol-gel d'au moins quatre sels de métaux M1, M2, M3 et M4 aptes et destinés à la préparation d'un matériau de type pérovskite correspondant à la formule générale (I) : A(1-X) A'x B(1-y-U) B'y B"u Ο3-δ, (I), ledit procédé comprenant les étapes suivantes : - Une étape a) de préparation d'une solution aqueuse de sels hydrosolubles des dits éléments A, A' optionnellement A", B et B', dans les proportions stœchiométriques nécessaires à l'obtention du matériau tel que défini ci-dessus; - Une étape b) de préparation d'une solution hydro-alcoolique d'au moins agent tensioactif non-ionique dans un alcool choisi parmi le méthanol, l'éthanol, le propanol, le propanol, l'isopropanol ou le butanol, mélangé à une solution aqueuse d'ammoniac en une proportion suffisance pour assurer la solubilisation complète dudit agent tensioactif non- ionique dans ladite solution hydro-alcoolique, la concentration dudit agent tensioactif non- ionique dans ladite solution hydro-alcoolique étant inférieure à la concentration micellaire critique; - Une étape c) de mélange de ladite solution aqueuse préparée à l'étape a), avec ladite dispersion alcoolique préparée à l'étape b) pour former un sol; - Une étape d) de séchage dudit sol obtenu à l'étape c), par évaporation du solvant, pour obtenir un sol-gel. Mise en œuvre du procédé pour préparer une membrane céramique.

Description

Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique La présente invention concerne les réacteurs membranaires catalytiques ou CMR
(Catalytic Membrane Reactor en langue anglaise). Elle a pour premier objectif d'améliorer les performances en semi-perméation à l'oxygène des membranes céramiques mis en œuvre dans les réacteurs catalytiques membranaires.
Un Réacteur Catalytique Membranaire est composé d'une membrane dense conductrice mixte (électronique et ionique) des anions oxygènes. Sous l'action d'un gradient de pression partielle d'oxygène imposé de part et d'autre de la membrane, les anions oxygène O2", provenant de l'air, traversent la membrane de la surface oxydante vers la surface réductrice, pour venir réagir avec le méthane sur cette dernière. La Figure 1 illustre l'ensemble des étapes élémentaires dans le transport de l'oxygène à travers une membrane, qui sont au nombre de six :
- L'absorption de l'oxygène à la surface oxydante de la membrane ;
- La dissociation de l'oxygène et recombinaison en anions O2" ;
- La diffusion de l'oxygène à travers le volume de la membrane ;
- La recombinaison de l'oxygène ;
- La désorption de l'oxygène de la surface réductrice de la membrane ;
- La réaction de l'oxygène pur avec le méthane
Or, chacune des étapes décrites précédemment peut être une étape limitante dans le transport de l'oxygène à travers la membrane.
Il a été déterminé que dans le cas de membranes pérovskite, l'étape limitante est les échanges de surfaces, et plus particulièrement à la surface réductrice de la membrane [P. M. Geffroy et al., "Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La(i.X)SrxFe(i.y)Gay03-d pérovskite membranes", Journal of Membrane Science, (2010) 354(1 -2) p.6-13 ; P. M. Geffroy et al., « Influence of oxygen surface exchanges on oxygen semi-permeation through La(i.X)SrxFe(i.y)Gay03-ô dense membrane » Journal of Electrochemical Society, (201 1 ), 158 (8), p. B971 -B979;] Pour augmenter ces échanges, il faut donc modifier la surface d'échanges entre les gaz. Les deux possibilités envisagées sont soit d'augmenter la surface d'échanges en développant de la porosité à la surface de la membrane et dans un deuxième temps d'augmenter le nombre de sites actifs où ont préférentiellement lieu les échanges, soit d'augmenter la densité de joints de grains. Pour ce faire, il faut créer une architecture possédant une surface poreuse (on maximise la surface d'échanges par rapport à l'encombrement) possédant des grains de taille la plus petite possible.
L'état de surface des membranes pour l'application CMR joue un rôle primordial dans les performances du procédé [P. M. Geffroy et al., "Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La(i.X)SrxFe(i.y)Gay03-d perovskite membranes", Journal of Membrane Science, (2010) 354(1 -2) p.6-13; P. M. Geffroy et al., « Influence of oxygen surface exchanges on oxygen semi-permeation through La(1. X)SrxFe(1.y)Gay03-s dense membrane » Journal of Electrochemical Society, (201 1 ), 158 (8), p. B971 -B979; H.J.M. Bouwmeester et al., "Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides", Solid State lonics, (1994) 72(PART 2) p. 185-194; S. Kim et al., "Oxygen surface exchange in mixed ionic electronic conductor membranes. " Solid State lonics, (1999) 121 (1 ) p. 31 -36].
Pour optimiser le taux de conversion du méthane, il faut soit d'améliorer l'accessibilité des réactifs aux particules actives, soit d'augmenter la surface d'échanges entre l'oxygène et les particules de méthane.
Cependant, Les deux principales barrières au développement de supports à forte surface spécifique sont le frittage, phénomène naturel apparaissant à haute température, et l'épaisseur de la couche poreuse
Lors du frittage pour éliminer les porogènes introduits dans les encres de sérigraphie ou lors du cofrittage, la cohésion de l'ensemble de la couche est obtenue par une modification des grains de la poudre, qui se traduit plus particulièrement par leur grossissement. Il y a donc une diminution de la densité de joints de grains. Or, les méthodes actuelles de synthèse des matériaux ne permettent pas d'obtenir des grains de très faible diamètre. De plus, si l'épaisseur de la couche est trop importante, la tortuosité dans la porosité augmente ; cela réduit donc la surface utile sur laquelle les échanges de surface peuvent avoir lieu.
Un des objets de la présente invention est donc de proposer un protocole opératoire permettant l'obtention d'une architecture nano-structurée qui, à haute température, c'est-à-dire à une température supérieure à la température de cristallisation, est une pérovskite ultra-divisée composée de cristallites de 10-100 nm de diamètre. La couche de matériau ainsi formée développe une grande surface spécifique et possède une grande densité de joints de grains. Elle possède aussi une stabilité microstructurale accrue, qu'il s'agisse de la taille des grains ou de la densité des joints de grains, à haute température (700°C à 1000°C) et sur une longue période (plus de 2 OOOh).
Les méthodes généralement utilisées aujourd'hui, pour augmenter la surface d'échanges des membranes sont le dépôt d'une couche poreuse par sérigraphie, l'utilisation d'un support poreux où la porosité est créée par l'utilisation d'un agent porogène et l'utilisation de matériaux mésoporeux.
La sérigraphie consiste tout d'abord à préparer une encre dite « de sérigraphie », composée de poudre de matériau, d'agent porogène par exemple l'amidon de maïs, l'amidon de riz ou la fécule de pomme de terre et d'un médium [S. Lee et al., «Oxygen- permeating property of LaSrBFe03.d (B=Co, Ga) perovskite membrane surface-modified by LaSrCo03 », Solid State lonics, (2003) 158(3-4) p. 287-296]. L'encre de sérigraphie est ensuite déposée sur la membrane à l'aide d'une raclette qui force l'encre à traverser le masque de sérigraphie pour imprimer les motifs désirés. L'épaisseur déposée est comprise entre 20μηι et Ι ΟΟμηη. La Figure 2 est une photo prise au microscope électronique à balayage (photo MEB) d'une surface poreuse déposée par sérigraphie sur un support.
Les supports poreux sont réalisés par cofrittage d'une membrane dense associée à u ne membrane comportant des porogènes (A. Julian et al., « Elaboration of Lao.8Sro.2Feo.7Gao.303-d Lao.8Mo.2Fe03-d (M = Ca, Sr and Ba) asymmetric membranes by tape-casting and co-firing » ; Journal of Membrane Science, (2009) 333(1 -2) p. 132-140; G. Etchegoyen et al., "An architectural approach to the oxygen permeability of a Lao.6Sr0.4Feo.9Gao.i03-d perovskite membrane. " Journal of the European Ceramic Society, (2006) 26(13) p. 2807-2815 »]. Les porogènes sont éliminés lors du traitement thermique pour laisser alors de la porosité résiduelle. Cette méthode a largement été décrite dans la littérature mais elle permet d'avoir plutôt un support mécanique pour les membranes qu'une surface d'échange étendue. Les Figures 3A et 3B sont des photos prises au microscope électronique à balayage (photo MEB) de bicouches supports poreux avec une membrane dense.
L'élaboration de supports mésoporeux a été développée depuis une dizaine d'année pour diverses applications. Cependant ces procédés n'ont pas permis d'obtenir un support ultra divisé qui soit stabilisé lors de la cristallisation de la phase pérovskite.
La présente invention a ainsi pour objet un procédé de préparation d'un sol de phase pérovskite à stœchiométrie contrôlée possédant au moins quatre cations et stable dans le temps. Après trempage (dip coating en langue anglaise), lors de la cristallisation de ce sol en température, une couche d'architecture ultra divisée, ou nano structurée composée de particules de phase pérovskite de diamètre 10-100nm est déposée sur la surface de la membrane. Une caractéristique essentielle de cette invention concerne la très forte augmentation des joints de grains à la surface de la membrane ainsi que l'augmentation considérable de la surface d'échanges et du flux d'oxygène traversant la membrane. Selon un premier aspect, l'invention a donc pour objet un procédé de préparation d'un sol-gel d'au moins trois sels de métaux M-i, M2, et M3 aptes et destinés à la préparation d'un matériau de type pérovskite correspondant à la formule générale (I) :
(i-X) A'x B(i-y-U) B'y B"u Οβ-δ, (I),
formule (I) dans laquelle :
x, y, u et δ sont tels que la neutralité électrique du réseau cristallin est conservée, 0 < x < 0,9,
0 < u < 0,5,
(y + u) < 0,5,
0 < y≤0,5 et 0 < 5
et formule (I) dans laquelle :
- A représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- A' différent de A, représente un atome choisi parmi le scandium, l'yttrium, l'aluminium, le gallium, l'indium, le thallium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- B représente un atome choisi parmi les métaux de transition ;
- B' différent de B, représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain ou le plomb ;
- B" différent de B et de B', représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain, le plomb ou le zirconium;
ledit procédé comprenant les étapes suivantes :
- Une étape a) de préparation d'une solution aqueuse de sels hydrosolubles des dits éléments A, A', B, B' et optionnellement B", dans les proportions stœchiométriques nécessaires à l'obtention du matériau tel que défini ci-dessus ;
- Une étape b) de préparation d'une solution hydro-alcoolique d'au moins agent tensioactif non-ionique dans un alcool choisi parmi le méthanol, l'éthanol, le propanol, le propanol, l'isopropanol ou le butanol, mélangé à une solution aqueuse d'ammoniac en une proportion suffisance pour assurer la solubilisation complète dudit agent tensioactif non-ionique dans ladite solution hydro-alcoolique, la concentration dudit agent tensioactif non-ionique dans ladite solution hydro-alcoolique étant inférieure à la concentration micellaire critique ;
- Une étape c) de mélange de ladite solution aqueuse préparée à l'étape a), avec ladite dispersion alcoolique préparée à l'étape b) pour former un sol ; - Une étape d) de séchage dudit sol obtenu à l'étape c), par évaporation du solvant, pour obtenir un sol-gel.
Par sol-gel d'au moins trois de métaux M-i , M2, et M3 aptes et destinés à la préparation d'un matériau de type pérovskite, on désigne notamment un sol de trois métaux, un sol-gel de quatre métaux ou un sol-gel de cinq métaux.
Pour la mise en œuvre de l'étape a) du procédé tel que défini ci-dessus, les anions des sels hydrosolubles des dits éléments A, A', B, B' et optionnellement B", sont de valence inférieure à celle du cation correspondant.
Ainsi, pour un élément A, A', B, B' ou B" de valence +2, le contre-ion négatif est un anion de valence -1 ; selon cette option, cet anion est plus particulièrement choisi parmi les ions halogénures ou l'ion nitrate et de préférence, il s'agit de l'ion nitrate.
Pour un élément A, A', B, B' ou B" de valence +3, le contre-ion négatif est un anion de valence -1 ou de valence -2; selon cette option, cet anion est plus particulièrement choisi parmi les ions halogénures, l'ion nitrate ou l'ion sulfate; de préférence, il s'agit de l'ion nitrate.
Pour un élément A, A', B, B' ou B" de valence +4, le contre-ion négatif est un anion de valence -1 , de valence -2 ou de valence -3; selon cette option, cet anion est plus particulièrement choisi parmi les ions halogénures, l'ion nitrate, l'ion sulfate ou l'ion phosphate ; de préférence, il s'agit de l'ion nitrate.
Selon un aspect particulier du procédé tel que défini ci-dessus, les sels hydrosolubles des dits éléments A, A', B, B' et optionnellement B", mis en œuvre à l'étape a), sont les nitrates des dits éléments.
Selon un autre aspect particulier du procédé tel que défini ci-dessus, dans la solution aqueuse préparée à l'étape a), le ratio molaire :
Nombre de moles desdits sels hydrosolubles des dits éléments A, A', B, B' et
optionnellement B" (Nseis)/ Nombres de mole d'eau (NH2o), est plus particulièrement supérieur ou égal à 0,005 et inférieur ou égal à 0,05.
Par solution hydro-alcoolique, on désigne dans le cadre de l'étape b) du procédé tel que défini ci-dessus que le mélange alcool-eau contient d'au moins environ 70% en poids d'alcool et au plus 30% en poids d'eau.
Selon un aspect particulier du procédé tel que défini ci-dessus, l'alcool mis en œuvre à l'étape b) est l'éthanol.
Par proportion suffisance pour assurer la solubilisation complète dudit agent tensioactif non-ionique dans ladite solution hydro-alcoolique, on indique dans l'étape b) du procédé tel que défini ci-dessus que le ratio molaire N(tensioactif) N <NH3) est supérieur ou égal à 10"4 et inférieur ou égal à 10"2
Selon un autre aspect particulier du procédé tel que défini ci-dessus, le tensioactif non-ionique mis en œuvre à l'étape b), est choisi parmi les copolymères blocs constitués de chaînes de poly(alkylèneoxy) et plus particulièrement parmi les copolymères (EO)n- (PO)m-(EO)n.
Selon un autre aspect particulier du procédé tel que défini ci-dessus, le tensioactif non-ionique mis en œuvre à l'étape b) est un copolymère bloc (EO)99-(PO)7o-(EO)99 commercialisé sous le nom PLURONIC™F127
Dans la formule (I) telle que définie ci-dessus, A et A' sont plus particulièrement choisis parmi le lanthane (La), le cérium (Ce), l'yttrium (Y), le gadolinium (Gd), le magnésium (Mg), le calcium (Ca), le strontium (Sr) ou le baryum (Ba).
Selon un aspect tout particulier de la présente invention, dans la formule (I), A représente un atome de lanthane un atome de calcium ou un atome de baryum.
Selon un autre aspect tout particulier de la présente invention, dans la formule (I),
A' représente un atome de strontium.
Dans la formule (I) telle que définie ci-dessus, B et B' sont plus particulièrement choisis parmi le fer (Fe), le chrome (Cr), le manganèse (Mn), le gallium (Ga), le cobalt (Co), le nickel (Ni) ou le titane (Ti).
Selon un autre aspect tout particulier de la présente invention, pour lequel dans la formule (I), B représente un atome de fer.
Selon un autre aspect tout particulier de la présente invention, dans la formule (I), B' représente un atome de gallium, un atome de titane ou un atome de cobalt.
Selon un autre aspect tout particulier de la présente invention, dans la formule (I), B" représente un atome de zirconium.
Dans la formule (I) telle que définie précédemment, u est plus particulièrement égal à 0.
Selon un aspect plus particulier de la présente invention, celle-ci a pour objet un procédé tel que défini précédemment, pour lequel le matériau pérovskite de formule (I) est choisi parmi les composés suivants:
La(i -x) Srx Fe(i-y) Coy Οβ-β, La(i-X) Srx Fe(i-y) Gay Οβ-δ, La(i-X) Srx Fe(i-y) Tiy Οβ-δ, Ba(i-X) Srx Fe0. y) Coy 03-δ, Ca Fe(i-y) Tiy 03-δ, ou La(i-X)SrxFe03-6
et, tout particulièrement parmi les composés suivants :
La0,6 Sr0,4 Fe0,9 Ga0,i Οβ-δ, La0,5 Sr0,5 Feo,9 Ti0,i Οβ-β.,
Lao,6 Sro,4 Feo,9 Gao,i Οβ-δ , Lao,5 Sro,5 Feo,9 Tio,i Οβ-β., Lao,5 Sro,5 Feo,9 Tio,i Οβ-δ, Lao,6
Sr0,4 Fe0,g Ga0,i 03-δ, et La0,s Sr0,2 Fe0,7Ga0,3 03-δ- L'invention a aussi pour objet un procédé de préparation d'un substrat revêtu sur au moins une de ses surfaces, d'un film de sol-gel d'un matériau pérovskite caractérisé en ce qu'il comprend :
- Une étape e) de trempage d'un substrat constitué d'un matériau pérovskite fritté de densité supérieure à 90%, de préférence supérieure à 95%, dans le sol issu de l'étape c) du procédé tel que défini précédemment, pour obtenir un substrat trempé;
- Une étape f) de tirage dudit substrat trempé issu de l'étape e) à vitesse constante, pour obtenir un substrat revêtu d'un film dudit sol ;
- Une étape g) de séchage dudit substrat revêtu d'un film dudit sol obtenu à l'étape f), par évaporation du solvant, pour obtenir ledit substrat revêtu d'un sol-gel.
Dans le procédé tel que défini ci-dessus, l'étape e) de trempage consiste à plonger un substrat dans le sol synthétisé précédemment et à le retirer à vitesse contrôlée et constante.
Dans le procédé tel que défini ci-dessus, au cours de l'étape f) de tirage, le mouvement du substrat entraîne le liquide formant une couche de surface. Cette couche se divise en deux, la partie interne se déplace avec le substrat alors que la partie externe retombe dans le récipient. L'évaporation progressive du solvant conduit à la formation d'un film à la surface du substrat.
Il est possible d'estimer l'épaisseur du dépôt obtenu en fonction de la viscosité du sol et de la vitesse de tirage.
e = a K v2/3
e étant l'épaisseur du dépôt, κ étant une constante de dépôt dépendante de la viscosité, de la densité du sol et de la tension de surface liquide-vapeur et v étant la vitesse de tirage.
Ainsi, plus la vitesse de tirage est élevée, plus l'épaisseur du dépôt est importante.
Dans le procédé tel que défini ci-dessus, l'étape g) de séchage est généralement effectuée à l'air libre ou sous atmosphère contrôlée pendant quelques heures.
Par matériau pérovskite fritté de densité supérieure à 90%, de préférence supérieure à 95%, on désigne plus particulièrement une composition céramique (CC) comprenant pour 100% volumique, au moins 75 % en volume et jusqu'à 100% en volume d'un composé conducteur mixte électronique et d'anions oxygène O2" (Ci) choisi parmi les oxydes céramiques dopés de formule (II) :
C(1-x-U) C x D(1-y-u) D'y D"u O», (II),
formule (II) dans laquelle :
x, y, u et δ sont tels que la neutralité électrique du réseau cristallin est conservée,
0 < x < 0,9, 0 < u < 0,5,
(y + u) < 0,5,
0 < y < 0,5 et 0 < δ
et formule (II) dans laquelle
- C représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- C différent de C, représente un atome choisi parmi le scandium, l'yttrium, l'aluminium, le gallium, l'indium, le thallium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- D représente un atome choisi parmi les métaux de transition ;
- D' différent de D, représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain ou le plomb ;
- D" différent de D et de D', représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain, le plomb ou le zirconium ;
et optionnellement jusqu'à 25% en volume d'un composé (C2), différent du composé (Ci) choisi parmi l'oxyde de magnésium, l'oxyde de calcium, l'oxyde d'aluminium, l'oxyde de zirconium, l'oxyde de titane, les oxydes mixtes de strontium et d'aluminium ou, de baryum et de titane ou de calcium et de titane ; ladite composition céramique (CC) ayant subi une étape de frittage avant sa mise en œuvre à l'étape e).
Selon un aspect particulier de la présente invention, ladite composition céramique (CC) comprend pour 100% volumique, au moins 90 % volumique et plus particulièrement au moins 95% volumique et jusqu'à 100% volumique de composé (Ci) et optionnellement jusqu'à 10% en volumique, et plus particulièrement jusqu'à 5% volumique de composé (C2).
Selon un aspect particulier du procédé tel que défini ci-dessus, le frittage subi par le matériau de formule (II) avant sa mise en œuvre à l'étape e), est effectué sous air à une température supérieure à 1.000°C, voire supérieure à 1200°C pendant environ 10 heure de façon à atteindre la densité relative souhaitée.
Selon un autre aspect particulier de la présente invention, les formules (I) et (II) telles que définie précédemment sont identiques.
Selon un autre aspect, l'invention a pour objet, un procédé de préparation d'une membrane céramique (CM) caractérisé en que ledit substrat revêtu d'un sol-gel obtenu par le procédé tel que défini précédemment, subit une étape h) de calcination sous air. Dans le procédé tel que défini ci-dessus, l'étape h) de calcination est généralement effectuée sous air à une température d'environ 1000°C pendant au moins une 1 heure, la vitesse de montée en température étant autour de 1 °C par minute. La calcination des substrats sous air permet ainsi d'éliminer les nitrates mais aussi de décomposer le tensioactif et ainsi de libérer la porosité.
Selon un autre aspect, l'invention a pour objet un procédé de préparation d'une poudre ultra-divisée de matériau de type pérovskite correspondant à la formule générale (I), caractérisé en ce que le sol issu de l'étape c) du procédé tel que défini précédemment, subit une étape i) d'atomisation pour former une poudre de sol-gel; ladite poudre de sol-gel étant ensuite soumise à l'étape h) de calcination sous air, pour former ladite poudre ultra-divisée ou nanostructurée (c'est-à-dire une taille de grains nanométrique de 10 à 100 nm).
L'invention a enfin pour objet l'utilisation de la membrane telle que définie précédemment pour produire de l'oxygène à partir d'air, par électrochimie à travers
L'exposé expérimental suivant illustre l'invention sans toutefois la limiter.
Les nitrates de lanthane, de strontium, de fer et de gallium, précurseurs de la pérovskite, sont mélangés dans les proportions stœchiométriques nécessaires à la formation d'une pérovskite de structure La0,8 Sr0,2 Fe0,7Ga0,3 03-δ avec un agent tensioactif non-ionique, dans une solution ammoniaque/éthanol. L'évaporation des solvants (éthanol et eau) permet la réticulation du sol en gel autour de micelles de surfactant par la formation de liaisons entre les groupements hydroxyles d'un sel et le métal d'un autre sel. Le contrôle des réactions d'hydrolyse/condensation liées aux interactions électrostatiques entre les précurseurs inorganiques et les molécules de surfactant permet un assemblage coopératif des phases organique et inorganique, ce qui génère des agrégats micellaires de surfactants de taille contrôlée au sein d'une matrice inorganique. Le phénomène d'auto-assemblage est induit par évaporation progressive du solvant d'une solution de réactifs, lorsque la concentration micellaire devient critique.
Ceci conduit soit à la formation de films à microstructure contrôlée dans le cas d'un dépôt sur substrat par trempage (dip coating en langue anglaise), soit à la formation d'une poudre à microstructure contrôlée après atomisation du sol.
Le point de départ du processus d'auto-arrangement est la solution hydroalcoolique des précurseurs inorganiques (La, Sr, Fe et Ga) et du tensioactif non ionique.
Le tensioactif non ionique mis en œuvre dans le procédé appartient à la famille des copolymères blocs, copolymères qui possèdent deux parties de polarités différentes : un corps hydrophobe et des extrémités hydrophiles. Ces copolymères sont constitués de chaînes de poly(oxyde d'alkylène), comme les copolymères de formule générale (EO)n- (PO)m-(EO)n, constitué par l'enchaînement de poly(oxyde d'éthylène) (EO), hydrophile aux extrémités et dans sa partie centrale le poly(oxyde de propylène) (PO), hydrophobe. Les chaînes de polymères restent dispersées en solution pour une concentration inférieure à la concentration micellaire critique (CMC).
La CMC est définie comme étant la concentration limite au delà de laquelle se produit le phénomène d'auto-arrangement des molécules de surfactant dans la solution. Au delà de cette concentration, les chaînes du surfactant ont tendance à se regrouper par affinité hydrophiles/hydrophobes. Ainsi, les corps hydrophobes se regroupent et forment des micelles de forme sphérique. Les extrémités des chaînes des polymères sont repoussées vers l'extérieur des micelles, et s'associent au cours de l'évaporation du solvant volatile (éthanol) avec les espèces ioniques en solution qui présentent également des affinités hydrophiles.
La taille des micelles est fixée par la longueur de la chaîne hydrophobe. Ainsi, en utilisant un copolymère bloc de type (EO)99-(PO)7o-(EO)99 disponible commercialement sous la référence Pluronic™F127, on produit des micelles de diamètre compris entre 6 nm et 10 nm peuvent être produites. Il s'agit là d'un exemple mais d'autres surfactants peuvent être employés pour couvrir une gamme de micelles de diamètre compris entre 3nm et 10nm.
Les gels obtenus après évaporation des solvants, sont calcinés sous air. L'élimination du tensioactif au cours du traitement thermique permet de générer une matrice cohésive présentant une porosité homogène et structurée.
La Figure 4 illustre le principe de l'auto-assemblage après trempage d'un substrat dans un sol, ledit auto-assemblage étant induit par évaporation conduisant à la formation d'un sol-gel conduisant après calcination à un support ultra-divisé de phase pérovskite à microstructure contrôlée.
On solubilise 0,9g de Pluronic™ F127 dans un mélange constitué 23cm3 d'éthanol absolu et de 4,5cm3 de solution ammoniacale (à 28% massique). Le mélange est ensuite chauffé à reflux pendant 1 heure.
On prépare 20 cm3 de la solution aqueuse contenant les nitrates de lanthane, de strontium, de fer et de gallium, précurseurs de la pérovskite, sont mélangés dans les proportions stœchiométriques nécessaires à la formation d'une pérovskite de structure La0,8 Sr0,2 Fe0,7Ga0,3 03-δ dans de l'eau osmosée (20 mL). Cette solution est ensuite ajoutée goutte à goutte à la solution de tensioactif.
Les rapports molaires mis en œuvre sont consignés dans le tableau 1 suivant : nH2o n nitrate 1 1 1
Figure imgf000013_0001
Tableau 1
L'ensemble est chauffé à reflux pendant 1 heure puis refroidi jusqu'à température ambiante. On obtient le sol attendu, qui reste stable au cours du temps
Un sol est synthétisé selon le mode opératoire décrit dans la partie expérimentale suivante. Ce sol a été réalisé pour obtenir la stœchiométrie
Figure imgf000013_0002
La stœchiométrie a été vérifiée par Analyse spectrométrique ICP (Inductively Coupled Plasma Atomic Emission en langue anglaise) (voir Tableau 2 ci-dessous)
Figure imgf000013_0003
Figure imgf000013_0005
Tableau 2
Après un vieillissement du sol pendant 48 heures dans une étuve ventilée, celui-ci est sous au trempage d'une membrane en pérovskite dense.
Les substrats utilisés dans le cadre de notre étude sont des membranes en pérovskite frittées à 1350°C pendant 10h sous air (densité relative des membranes ≥ 97%, mesures effectuées par la méthode de la poussée d'Archimède). Ces membranes possèdent la même stœchiométrie en La, Sr, Fe et Ga que celle du sol réalisé précédemment.
La membrane est de stœchiométrie
Figure imgf000013_0004
L'échantillon est ensuite séché sous air libre pendant 6h avant de subir un traitement thermique sous air de manière à éliminer les nitrates et le surfactant.
La membrane recouverte d'un film mince a été calcinée sous air à 1000°C pendant 1 h, avec une vitesse de montée en température de 1 °C/min.
La Figure 6 est un diffractogramme de la poudre de sol-gel calcinée à 1000°C. Elle met en évidence la cristallisation complète de type pérovskite (structure AB03)
Les micrographies MEB-FEG (Figures 7 et 8) révèlent la formation d'un dépôt ultra divisé aux surfaces de la membrane. Le dépôt est cependant différent selon la surface exposée gaz réducteur (Figure 7) ou gaz oxydant (Figure 8) après vieillissement. Sur la surface en contact avec l'atmosphère réductrice (illustrée par les micrographies MEB-FEG des Figures 7A à 7C), il résulte du séchage et de la calcination du dépôt de sol un nappage de la surface de la membrane par un dépôt ultra divisé composé de particules d'une taille de l'ordre de 50-1 OOnm. La densité de joints de grain à la surface de la membrane est très fortement augmentée. Des amas de grains sous forme de plots d'un diamètre moyen de l'ordre de 200-500nm augmentent fortement la surface d'échange avec le gaz.
Sur la surface oxydante (illustrée par les micrographies MEB-FEG des Figures 8A à 8C), il résulte de la cristallisation de la phase pérovskite un dépôt ultra-divisé et très poreux avec des particules cristallisées possédant des facettes en contact les unes avec les autres. Ces particules sont d'une taille de l'ordre de la centaine de nanomètres et affichent une distribution granulométrique resserrée.
Les performances en semi-perméation à l'oxygène des membranes ayant subi un dépôt de sol par dip coating ont été mesurées.
La Figure 9 recense les courbes semi-perméation à l'oxygène sous un gradient air/argon en fonction de la température [J02 (en mole/m/s) = f(t°C)] pour les cinq matériaux suivants :
Matériau 1 : Lao,8Sr0,2Feo,7Gao,303-5 (dénommé LSFG8273) revêtu d'une couche poreuse de LSFG8273) par le procédé selon l'invention (vitesse de trempage = 10 mm/s) Matériau 2 : LSFG8273 revêtu d'une couche poreuse de LSFG8273 par le procédé selon l'invention (vitesse de trempage = (5 mm/s)
Matériau 3 : LSFG8273 revêtu par sérigraphie d'une couche poreuse de
LSFN8273
Matériau 4 : LSFG8273 revêtu par sérigraphie d'une couche poreuse de LSFG8273
Matériau 5 : LSFG8273 seul.
Le dépôt d'un sol de pérovskite à la surface d'une membrane surpasse largement les meilleures performances déjà obtenues par dépôt d'une couche sérigraphiée. La vitesse de trempage influe sur l'épaisseur de la couche déposée. Une vitesse plus rapide (10 mm/s) augmente l'épaisseur de la couche déposée et augmente la surface d'échange ainsi que la densité de joints de grains en surface. Les performances sont encore améliorées. Le tableau suivant recense les résultats obtenus à 900°C.
Membranes J02 (mol. m"1.s"1)
(Matériau 5) 4,14 10"8
(Matériau 4) 7,1 1 10"8 (Matériau 3) 9,35 10"8
(Matériau 2) 15,3 10"8
(Matériau 1 ) 19,5 10"8
Le dépôt de sol de pérovskite préparé par le procédé selon l'invention, a pour premier avantage de développer une grande surface spécifique et une forte densité de joints de grains. Par ailleurs, ce dépôt est stable sous gradient de pression partielle en oxygène, condition nécessaire pour l'utilisation d'un CMR pour le vaporéformage du méthane mais aussi pour produire de l'oxygène par séparation de l'air à travers ladite membrane céramique.
Le second avantage vient de l'épaisseur du dépôt et du procédé du dépôt. En effet, le dépôt est d'une épaisseur 100 fois plus faible que par sérigraphie (gain de matière) et du fait du trempage, toutes les géométries de support de membranes denses peuvent être utilisées (tubes, plaques planes).
La technique d'atomisation permet de transformer un sol en forme sèche solide (poudre) par l'utilisation d'un intermédiaire chaud.
L'appareil utilisé dans le cadre de notre étude est un modèle commercial de référence « 190 Mini Spray Dryer » de marque Buchi illustré par la Figure 5.
Le principe repose sur la pulvérisation en fines gouttelettes du sol (3), dans une enceinte cylindrique verticale (4) au contact d'un flux d'air chaud (2) afin d'évaporer le solvant de façon contrôlée. La poudre obtenue est entraînée par le flux de chaleur (5) jusqu'à un cyclone (6) qui va séparer l'air (7) de la poudre (8).
La poudre récupérée à l'issue de l'atomisation est calcinée dans les mêmes conditions que les substrats préparés par trempage ("dip coatés").
L'atomisation du sol, suivie d'une calcination de la poudre à 900°C, produit des granules sphériques de diamètre inférieur à 5 μιη (Figure 10). La microstructure de cette poudre est identique à celle obtenue sur le dépôt, à savoir une microstructure ultra divisée et poreuse avec une taille de cristallites de l'ordre de 10-100 nm.
De plus, les granules sphériques sont creuses et la paroi des granules possède elle-même une porosité élevée. L'utilisation de cette poudre pour réaliser des couches poreuses permettrait d'obtenir une porosité à double échelle et possédant une matrice avec une forte densité de joints de grains.

Claims

Revendications
1 . Procédé de préparation d'un sol-gel d'au moins trois sels de métaux M-i, M2, et M3 aptes et destinés à la préparation d'un matériau de type pérovskite correspondant à la formule générale (I) :
(i-X) A'x B(i-y-U) B'y B"u Οβ-δ, (I),
formule (I) dans laquelle :
x, y, u et δ sont tels que la neutralité électrique du réseau cristallin est conservée, 0 < x < 0,9,
0 < u < 0,5,
(y + u) < 0,5,
0 < y < 0,5 et 0 < δ
et formule (I) dans laquelle :
- A représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- A' différent de A, représente un atome choisi parmi le scandium, l'yttrium, l'aluminium, le gallium, l'indium, le thallium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- B représente un atome choisi parmi les métaux de transition ;
- B' différent de B, représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain ou le plomb ;
- B" différent de B et de B', représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain, le plomb ou le zirconium;
ledit procédé comprenant les étapes suivantes :
- Une étape a) de préparation d'une solution aqueuse de sels hydrosolubles des dits éléments A, A', B, B' et optionnellement B", dans les proportions stœchiométriques nécessaires à l'obtention du matériau tel que défini ci-dessus ;
- Une étape b) de préparation d'une solution hydro-alcoolique d'au moins agent tensioactif non-ionique dans un alcool choisi parmi le méthanol, l'éthanol, le propanol, le propanol, l'isopropanol ou le butanol, mélangé à une solution aqueuse d'ammoniac en une proportion suffisance pour assurer la solubilisation complète dudit agent tensioactif non-ionique dans ladite solution hydro-alcoolique, la concentration dudit agent tensioactif non-ionique dans ladite solution hydro-alcoolique étant inférieure à la concentration micellaire critique ; - Une étape c) de mélange de ladite solution aqueuse préparée à l'étape a), avec ladite dispersion alcoolique préparée à l'étape b) pour former un sol ;
- Une étape d) de séchage dudit sol obtenu à l'étape c), par évaporation du solvant, pour obtenir un sol-gel.
2. Procédé tel que défini à la revendication 1 , dans le quel le tensioactif non- ionique mis en œuvre à l'étape b) est un copolymère bloc (EO)99-(PO)7o-(EO)99-
3. Procédé tel que défini à l'une des revendications 1 ou 2, pour lequel dans la formule (I), A représente un atome de lanthane, un atome de calcium ou un atome de baryum.
4. Procédé tel que défini à l'une quelconque des revendications 1 à 3, pour lequel dans la formule (I), A' représente un atome de strontium.
5. Procédé tel que défini à l'une quelconque des revendications 1 à 4, pour lequel dans la formule (I), B représente un atome de fer.
6. Procédé tel que défini à l'une quelconque des revendications 1 à 5, pour lequel dans la formule (I), B' représente un atome de gallium, un atome de titane ou un atome de cobalt.
7. Procédé tel que défini à l'une quelconque des revendications 1 à 6, pour lequel dans la formule (I), B" représente un atome de zirconium.
8. Procédé tel que défini à l'une quelconque des revendications 1 ou 7, pour lequel dans la formule (I), u est égal à 0.
9. Procédé tel que défini à la revendication 8, pour lequel le matériau pérovskite de formule (I) est choisi parmi les composés suivants:
La(i -x) Srx Fe(i-y) Coy 03-δ, La(i-X) Srx Fe(i-y) Gay 03-δ, La(i-X) Srx Fe(i-y) Tiy 03-5,
Ba(i-X) Srx Fe(i-y) Coy 03-5, Ca Fe(i-y) Tiy 03-5 ou La(i-X)SrxFe03-5
10. Procédé tel que défini à la revendication 9, pour lequel le matériau pérovskite de formule (I) est choisi parmi les composés suivants:
La0,6 Sr0,4 Fe0,9 Ga0,i 03-δ, La0,5 Si"o,5 Fe0,9 Ti0,i Οβ-δ.,
La0,6 Sro,4 Feo,9 Gao,i Οβ-β ,
Lao,5 Sro,5 Feo,9 Tio,i Οβ-δ.,
Lao,5 Sro,5 Feo,9 Tio,i Οβ-β,
La0,6 Sr0,4 Fe0,g Ga0,i 03-δ, et
Lao,8 Si"o,2 Feo,7Gao,3 Οβ-β.
1 1 . Procédé de préparation d'un substrat revêtu sur au moins une de ses surfaces, d'un film de sol-gel d'un matériau pérovskite caractérisé en ce qu'il comprend :
- Une étape e) de trempage d'un substrat constitué d'un matériau pérovskite fritté de densité supérieure à 90%, de préférence supérieure à 95%, dans le sol issu de l'étape c) du procédé tel que défini à l'une quelconque des revendications 1 à 10, pour obtenir un substrat trempé;
- Une étape f) de tirage dudit substrat trempé issu de l'étape e) à vitesse constante, pour obtenir un substrat revêtu d'un film dudit sol ;
- Une étape g) de séchage dudit substrat revêtu d'un film dudit sol obtenu à l'étape f), par évaporation du solvant, pour obtenir ledit substrat revêtu d'un sol-gel.
12. Procédé tel que défini à la revendication 1 1 , dans lequel ledit matériau pérovskite fritté de densité supérieure à 90%, de préférence supérieure à 95%, est une composition céramique (CC) comprenant pour 100% volumique, au moins 75 % en volume et jusqu'à 100% en volume d'un composé conducteur mixte électronique et d'anions oxygène O2" (Ci) choisi parmi les oxydes céramiques dopés de formule (II) :
C(1-x-U) C x D(1-y-u) D'y D"u O», (II),
formule (II) dans laquelle :
x, y, u et δ sont tels que la neutralité électrique du réseau cristallin est conservée, 0 < x < 0,9,
0 < u < 0,5,
(y + u) < 0,5,
0 < y < 0,5 et 0 < δ
et formule (II) dans laquelle :
- C représente un atome choisi parmi le scandium, l'yttrium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ;
- C différent de C, représente un atome choisi parmi le scandium, l'yttrium, l'aluminium, le gallium, l'indium, le thallium ou dans les familles des lanthanides, des actinides ou des métaux alcalino-terreux ; - D représente un atome choisi parmi les métaux de transition ;
- D' différent de D, représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain ou le plomb ;
- D" différent de D et de D', représente un atome choisi parmi les métaux de transition, les métaux de famille des alcalino-terreux, l'aluminium, l'indium, le gallium, le germanium, l'antimoine, le bismuth, l'étain, le plomb ou le zirconium ;
et optionnellement jusqu'à 25% en volume d'un composé (C2), différent du composé (Ci) choisi parmi l'oxyde de magnésium, l'oxyde de calcium, l'oxyde d'aluminium, l'oxyde de zirconium, l'oxyde de titane, les oxydes mixtes de strontium et d'aluminium ou, de baryum et de titane ou de calcium et de titane ; ladite ledit composition céramique (CC) ayant subi une étape de frittage avant sa mise en œuvre à l'étape e).
13. Procédé tel que défini à la revendication 12, dans lequel ladite composition céramique (CC) comprend pour 100% volumique, au moins 90 % volumique et plus particulièrement au moins 95% volumique et jusqu'à 100% volumique de composé (Ci) et optionnellement jusqu'à 10% en volumique, et plus particulièrement jusqu'à 5% volumique de composé (C2).
14. Procédé tel que défini à l'une des revendications 12 ou 13, dans lequel les formules (I) et (II) sont identiques.
15. Procédé de préparation d'une membrane céramique (CM) caractérisé en que ledit substrat revêtu d'un sol-gel obtenu par le procédé tel que défini à l'une quelconque des revendications 1 1 à 14, subit une étape h) de calcination sous air.
16. Procédé de préparation d'une poudre ultra-divisée ou nanostructurée ayant des tailles comprises entre 10nm et 100nm d'un matériau de type pérovskite correspondant à la formule générale (I), caractérisé en ce que le sol issu de l'étape c) du procédé tel que défini à l'une quelconque des revendications 1 à 9, subit une étape i) d'atomisation pour former une poudre de sol-gel; ladite poudre de sol-gel étant ensuite soumise à l'étape h) de calcination sous air, pour former ladite poudre ultra-divisée ou nanostructurée.
PCT/EP2012/068923 2011-12-15 2012-09-26 Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique WO2013087241A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2014128820A RU2608383C2 (ru) 2011-12-15 2012-09-26 Способ получения комплекса "золь-гель" по меньшей мере из трех солей металлов и применение способа для получения керамической мембраны
JP2014546365A JP2015504836A (ja) 2011-12-15 2012-09-26 ゾル−ゲルを少なくとも3つの金属塩から調製するための方法、およびセラミックメンブレンを調製するためのその方法の使用
KR1020147019174A KR20140104019A (ko) 2011-12-15 2012-09-26 셋 이상의 금속염으로부터 졸-겔의 제조 방법 및 세라믹 막 제조 방법의 용도
EP12766076.9A EP2791078A1 (fr) 2011-12-15 2012-09-26 Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en uvre du procédé pour préparer une membrane céramique
CN201280061184.1A CN104136393A (zh) 2011-12-15 2012-09-26 由至少三种金属盐制备溶胶-凝胶的方法以及所述方法用于制备陶瓷膜的用途
US14/364,389 US20140335266A1 (en) 2011-12-15 2012-09-26 Process For Preparing A Sol-Gel From At Least Three Metal Salts And Use Of The Process For Preparing A Ceramic Membrane
BR112014014370A BR112014014370A2 (pt) 2011-12-15 2012-09-26 processo para preparar um sol-gel a partir de pelo menos três sais metálicos e uso do processo para preparar uma membrana cerâmica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1161690A FR2984305B1 (fr) 2011-12-15 2011-12-15 Procede de preparation d'un sol-gel d'au moins trois sels de metaux et mise en œuvre du procede pour preparer une membrane ceramique
FR1161690 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013087241A1 true WO2013087241A1 (fr) 2013-06-20

Family

ID=46934579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068923 WO2013087241A1 (fr) 2011-12-15 2012-09-26 Procédé de préparation d'un sol-gel d'au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique

Country Status (9)

Country Link
US (1) US20140335266A1 (fr)
EP (1) EP2791078A1 (fr)
JP (1) JP2015504836A (fr)
KR (1) KR20140104019A (fr)
CN (1) CN104136393A (fr)
BR (1) BR112014014370A2 (fr)
FR (1) FR2984305B1 (fr)
RU (1) RU2608383C2 (fr)
WO (1) WO2013087241A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814567A (zh) * 2017-11-03 2018-03-20 天津师范大学 一种具有较低矫顽场的伪铁电陶瓷及其制备方法
CN107935590A (zh) * 2017-12-08 2018-04-20 安阳工学院 微波烧结制备Aurivillius相SrBiFeCoTiO材料的方法及制备的产品
CN114044540A (zh) * 2021-09-07 2022-02-15 南京航空航天大学 一种a位、b位共掺杂的钙钛矿型电磁吸波材料及其制法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642131B (zh) * 2014-11-13 2019-06-18 中国科学院大连化学物理研究所 一种纳米粒子稳定钙钛矿结构透氧膜的方法
WO2017006943A1 (fr) * 2015-07-07 2017-01-12 日本碍子株式会社 Pile à combustible
CN106976915B (zh) * 2016-01-15 2018-11-23 南京工业大学 一种钙掺杂铝酸钴蓝色纳米色料及其制备方法
KR101802067B1 (ko) * 2016-05-02 2017-11-27 부산대학교 산학협력단 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말
CN108117086A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种氧吸附剂的制备方法
CN108114688A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 一种用于氧富集的氧吸附剂
RU2651009C1 (ru) * 2017-05-15 2018-04-18 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ синтеза наноразмерного порошкообразного материала на основе скандата лантана
CN111867709A (zh) 2018-01-04 2020-10-30 华盛顿大学 纳米选择性溶胶-凝胶陶瓷膜、选择性膜结构及相关方法
CN109876667A (zh) * 2019-04-04 2019-06-14 江苏海发新材料科技有限公司 一种多孔不锈钢膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306842A (zh) * 2008-07-04 2008-11-19 华中科技大学 一种固体氧化物燃料电池陶瓷阴极纳米粉体的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061682A (en) * 1990-01-17 1991-10-29 The Washington Technology Center Ceramic precursor mixture and technique for converting the same to ceramic
JP4153132B2 (ja) * 1999-09-27 2008-09-17 達己 石原 LaGaO3系電子−酸素イオン混合伝導体及びそれを用いた酸素透過膜
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP4311918B2 (ja) * 2002-07-09 2009-08-12 ダイハツ工業株式会社 ペロブスカイト型複合酸化物の製造方法
JP2006032132A (ja) * 2004-07-16 2006-02-02 Hosokawa Funtai Gijutsu Kenkyusho:Kk 固体電解質型燃料電池の空気極原料粉体、空気極及び固体電解質型燃料電池
JP2006082039A (ja) * 2004-09-17 2006-03-30 Noritake Co Ltd 酸素分離膜エレメント、その製造方法、酸素製造方法、および反応器
EP1785408A1 (fr) * 2005-11-15 2007-05-16 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé d'élaboration de supports poreux céramiques de microstructure contrôlée
RU2383495C2 (ru) * 2007-12-12 2010-03-10 ГОУ ВПО Уральский государственный университет им. А.М. Горького Способ получения сложных оксидов металлов
JP2010110671A (ja) * 2008-11-04 2010-05-20 National Institute Of Advanced Industrial Science & Technology 改質用ペロブスカイト担持Ni触媒材料及びこれを用いる合成ガス製造方法
US8124037B2 (en) * 2009-12-11 2012-02-28 Delphi Technologies, Inc. Perovskite materials for solid oxide fuel cell cathodes
EP2374526A1 (fr) * 2010-03-29 2011-10-12 Centre National de la Recherche Scientifique (C.N.R.S) Membrane composite solide démontrant une bonne conductivité de l'oxygène et interface de catalyseur de substrat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306842A (zh) * 2008-07-04 2008-11-19 华中科技大学 一种固体氧化物燃料电池陶瓷阴极纳米粉体的制备方法
CN101306842B (zh) * 2008-07-04 2010-12-08 华中科技大学 一种固体氧化物燃料电池陶瓷阴极纳米粉体的制备方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
A. JULIAN ET AL.: "Elaboration of La0.8Sr0.2Fe0.7Ga0.30O3-dlLa0.8M0.2FeO3-d (M = Ca, Sr and Ba) asymmetric membranes by tape-casting and co-firing", JOURNAL OF MEMBRANE SCIENCE, vol. 333, no. 1-2, 2009, pages 132 - 140, XP026031539
ALI HAIDER M ET AL: "Reverse micelle synthesis of perovskite oxide nanoparticles", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 196, no. 1, 16 June 2011 (2011-06-16), pages 65 - 72, XP028260919, ISSN: 0167-2738, [retrieved on 20110702], DOI: 10.1016/J.SSI.2011.06.013 *
CEDRIC DELBOS ET AL.: "Performances of tubular La0.8Sr0.2Fe0.7Ga0.3O3-delta mixed conducting membrane reactor for under pressure methane conversion to syngas", CATALYSIS TODAY, vol. 156, 12 June 2010 (2010-06-12), XP002679545 *
DATABASE WPI Week 200903, Derwent World Patents Index; AN 2009-A45259, XP002679544 *
H.J.M. BOUWMEESTER ET AL.: "Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides", SOLID STATE LONICS, vol. 72, 1994, pages 185 - 194, XP025725335, DOI: doi:10.1016/0167-2738(94)90145-7
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 26, no. 13, 2006, pages 2807 - 2815
JULIAN A ET AL: "Elaboration of La0.8Sr0.2Fe0.7Ga0.3O3-delta/La0.8M0.2FeO3-delta (M=Ca, Sr and Ba) asymmetric membranes by tape-casting and co-firing", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL, vol. 333, no. 1-2, 1 May 2009 (2009-05-01), pages 132 - 140, XP026031539, ISSN: 0376-7388, [retrieved on 20090213] *
P.M. GEFFROY ET AL.: "Influence of oxygen surface exchanges on oxygen semi-permeation through La(1- x)SrxFe(1-y)GayO3-? dense membrane", JOURNAL OF ELECTROCHEMICAL SOCIETY, vol. 158, no. 8, 2011, pages B971 - B979
P.M. GEFFROY ET AL.: "Influence of oxygen surface exchanges on oxygen semi-permeation through La(1-x)SrxFe(1-y) GayO3-? dense membrane", JOURNAL OF ELECTROCHEMICAL SOCIETY, vol. 158, no. 8, 2011, pages B971 - B979
P.M. GEFFROY ET AL.: "Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La(1-x)SrxFe(1-y)GayO3-d perovskite membranes", JOURNAL OF MEMBRANE SCIENCE, vol. 354, no. 1-2, 2010, pages 6 - 13
S. KIM ET AL.: "Oxygen surface exchange in mixed ionic electronic conductor membranes", SOLID STATE LONICS, vol. 121, no. 1, 1999, pages 31 - 36, XP004166453, DOI: doi:10.1016/S0167-2738(98)00389-0
S. LEE ET AL.: "Oxygen- permeating property of LaSrBFe03-d (B=Co, Ga) perovskite membrane surface-modified by LaSrCo03", SOLID STATE LONICS, vol. 158, no. 3-4, 2003, pages 287 - 296, XP004412985, DOI: doi:10.1016/S0167-2738(02)00821-4
SERRA J M ET AL: "Nano-structuring of solid oxide fuel cells cathodes", TOPICS IN CATALYSIS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 40, no. 1-4, 1 November 2006 (2006-11-01), pages 123 - 131, XP019454952, ISSN: 1572-9028, DOI: 10.1007/S11244-006-0114-6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814567A (zh) * 2017-11-03 2018-03-20 天津师范大学 一种具有较低矫顽场的伪铁电陶瓷及其制备方法
CN107935590A (zh) * 2017-12-08 2018-04-20 安阳工学院 微波烧结制备Aurivillius相SrBiFeCoTiO材料的方法及制备的产品
CN114044540A (zh) * 2021-09-07 2022-02-15 南京航空航天大学 一种a位、b位共掺杂的钙钛矿型电磁吸波材料及其制法

Also Published As

Publication number Publication date
FR2984305A1 (fr) 2013-06-21
KR20140104019A (ko) 2014-08-27
EP2791078A1 (fr) 2014-10-22
RU2014128820A (ru) 2016-02-10
US20140335266A1 (en) 2014-11-13
FR2984305B1 (fr) 2015-01-30
BR112014014370A2 (pt) 2017-07-04
JP2015504836A (ja) 2015-02-16
CN104136393A (zh) 2014-11-05
RU2608383C2 (ru) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2013087241A1 (fr) Procédé de préparation d&#39;un sol-gel d&#39;au moins trois sels de métaux et mise en œuvre du procédé pour préparer une membrane céramique
EP3291912B1 (fr) Membrane carbonée pour la séparation d&#39;eau et de gaz
EP0188950B1 (fr) Procédé de fabrication de membranes minérales, poreuses et perméables
EP1802783B1 (fr) Procede de revêtement
EP2010308B1 (fr) Procede de preparation d&#39;une couche nanoporeuse de nanoparticules
US9587117B2 (en) Hybrid metal and metal oxide layers with enhanced activity
EP2155923B1 (fr) Procede et dispositif de preparation d&#39;un revetement multicouche sur un substrat
US11673097B2 (en) Filtration membrane and methods of use and manufacture thereof
CH663356A5 (fr) Procede de fabrication de membranes minerales, poreuses et permeables.
FR2946979A1 (fr) Fabrication de materiaux ceramiques autosupportes de faible epaisseur a base d&#39;oxydes metalliques
EP2097940B1 (fr) Electrode a gaz, son procede de fabrication et ses applications
EP0745150A1 (fr) Materiau electroactive, sa preparation et son utilisation pour l&#39;obtention d&#39;elements cathodiques
FR2969013A1 (fr) Catalyseur comprenant des particules actives bloquees physiquement et chimiquement sur le support
CA2838363A1 (fr) Dispositif d&#39;epuration des gaz d&#39;echappement d&#39;un moteur thermique comprenant un support ceramique et une phase active ancree chimiquement et mecaniquement dans le support
WO2011023897A1 (fr) Catalyseur pour le traitement photocalytique de milieux gazeux comprenant du monoxyde de carbone
CN109260963A (zh) 一种还原氧化石墨烯/金纳米复合过滤薄膜及其制备与应用
WO2012080653A1 (fr) Support céramique catalytique présentant une microstructure contrôlée
EP2651553A1 (fr) Catalyseur comprenant des particules actives bloquées physiquement sur le support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12766076

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012766076

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14364389

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014546365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019174

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014128820

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014014370

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014014370

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140612