WO2013085040A1 - 光アイソレータ - Google Patents

光アイソレータ Download PDF

Info

Publication number
WO2013085040A1
WO2013085040A1 PCT/JP2012/081812 JP2012081812W WO2013085040A1 WO 2013085040 A1 WO2013085040 A1 WO 2013085040A1 JP 2012081812 W JP2012081812 W JP 2012081812W WO 2013085040 A1 WO2013085040 A1 WO 2013085040A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical isolator
hollow magnet
faraday element
optical
magnet
Prior art date
Application number
PCT/JP2012/081812
Other languages
English (en)
French (fr)
Inventor
晃 矢作
聡明 渡辺
新二 牧川
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2013548316A priority Critical patent/JP5792832B2/ja
Priority to EP12854759.3A priority patent/EP2790051A4/en
Priority to US14/364,005 priority patent/US20140300963A1/en
Priority to CN201280060030.0A priority patent/CN104145209A/zh
Priority to CA2858509A priority patent/CA2858509A1/en
Publication of WO2013085040A1 publication Critical patent/WO2013085040A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0064Anti-reflection components, e.g. optical isolators

Definitions

  • the present invention relates to an optical isolator used in a wavelength band of 320 to 633 nm.
  • industrial lasers used for medical and optical measurement applications include second harmonics (wavelength 532 nm) and third harmonics of ultraviolet (UV) and visible semiconductor lasers or lamp-pumped YAG lasers (wavelength 532 nm). Wavelength 355 nm) is used.
  • a semiconductor laser has a characteristic that its emission spectrum is narrow and excellent in conversion efficiency, but on the other hand, it is very sensitive to return light due to reflected light, and is coupled to the end face of the optical fiber and covered.
  • the reflected light from the measurement object returns, there is a risk that the characteristics become unstable. Therefore, for the stable operation of the semiconductor laser, in order to prevent the reflected light from returning to the light emitting element that is the light emitting light source, the light in the forward direction is transmitted between the light emitting light source and the workpiece, and the reverse direction is transmitted. It is indispensable to arrange an optical isolator having a function of blocking light, and to block the light reflected from the optical fiber to the light emitting source and returning.
  • the optical isolator includes a Faraday element, a pair of polarizers disposed on the light incident side and the light emission side of the Faraday element, a magnet that applies a magnetic field in the light transmission direction (optical axis direction) of the Faraday element, It consists of three main parts.
  • a phenomenon occurs in which the plane of polarization rotates in the Faraday element. This is a phenomenon called the Faraday effect.
  • the angle at which the polarization plane rotates is called the Faraday rotation angle, and its magnitude ⁇ is expressed by the following equation.
  • V is a Verde constant and is a constant determined by the material of the Faraday element and the measurement wavelength
  • H is the magnetic flux density
  • L is the length of the Faraday element.
  • YIG yttrium iron garnet
  • terbium gallium garnet chemical formula: Tb 3 Ga 5 O 12
  • glass containing lead is used.
  • a Faraday rotation angle of about 45 ° is required.
  • the light incident on the optical isolator is transmitted through an incident / exit polarizer whose polarization plane is rotated by 45 ° by a Faraday element and the respective angles are adjusted.
  • the return light makes use of the nonreciprocity of the Faraday element, and the polarization plane is rotated 45 ° in the opposite direction to become an orthogonal polarization plane of 90 ° with the incident polarizer.
  • An optical isolator utilizes this phenomenon to transmit light only in a single direction and to block light reflected and returned.
  • the YIG single crystal described in Patent Document 1 has large light absorption at a wavelength of 320 to 800 nm. Accordingly, since the influence of the absorption is strong at wavelengths of 320 to 800 nm, it cannot be used.
  • TGG terbium gallium garnet
  • the Verde constant of TGG is as large as about 0.46 min / (Oe ⁇ cm) at a wavelength of 633 nm, but there is a large light absorption at a wavelength of 500 to 600 nm, and the influence of the light absorption is strong at a wavelength of 320 to 380 nm and 450 to 550 nm. For this reason, there is a limit to its use at a wavelength of 633 nm or less.
  • One minute (min) represents 1/60 degrees.
  • glass containing lead has a small Verde constant at a wavelength of 320 to 800 nm, and the optical path becomes long when used as a Faraday element.
  • the problem to be solved by the present invention is to provide an optical isolator which is transparent and downsized at a wavelength of 320 to 633 nm.
  • it is to provide a small optical isolator suitable as an optical isolator used for a semiconductor laser used for medical, optical measurement and the like.
  • Another problem to be solved by the present invention is to provide an optical isolator using a Faraday element having a large Faraday effect and combined with a small outer magnet.
  • ⁇ 1> A Faraday element having a Verde constant at a wavelength of 405 nm of 0.70 min / (Oe ⁇ cm) or more, a first hollow magnet disposed on the outer periphery of the Faraday element, and a first hollow magnet are sandwiched on the optical axis.
  • the second and third hollow magnet units are each composed of two or more magnets equally divided in the direction of 90 degrees with respect to the optical axis.
  • the magnetic flux density B (Oe) applied to the Faraday element is in the range of the following formula (1), and the sample length L (cm) in which the Faraday element is arranged is in the range of the following formula (2).
  • 320-633 nm wavelength optical isolator characterized in that 0.8 ⁇ 10 4 ⁇ B ⁇ 1.5 ⁇ 10 4 (1) 0.25 ⁇ L ⁇ 0.45 (2) ⁇ 2>
  • ⁇ 4> The optical isolator according to ⁇ 2>, wherein the oxide is ceramics.
  • ⁇ 5> The optical isolator according to any one of ⁇ 1> to ⁇ 4>, wherein the Faraday element has an insertion loss of 1 dB or less and an extinction ratio of 30 dB or more at a sample length L (cm).
  • the first hollow magnet, and the second and third hollow magnet units are made of neodymium-iron-boron (NdFeB) based magnets, according to any one of ⁇ 1> to ⁇ 5>
  • an optical isolator according to claim 1 ⁇ 8>
  • the optical isolator according to any one of ⁇ 1> to ⁇ 7>, wherein the second and third hollow magnet units are an assembly of four magnets obtained by dividing a cylindrical magnet into four 90 ° portions.
  • optical isolator according to any one of ⁇ 1> to ⁇ 8>, further comprising two or more plate birefringent crystals and one or more 45 degree optical rotators, ⁇ 10>
  • ⁇ 11> The light according to any one of ⁇ 1> to ⁇ 10>, wherein the first hollow magnet, the second hollow magnet unit, and the third hollow magnet unit are mounted inside the carbon steel casing. Isolator.
  • the size of the optical isolator can be reduced by using a Faraday element having a large Verde constant, a magnet material having a high magnetic flux density, and a magnetic circuit.
  • the sample length of the Faraday element having the same content of 50% is about 1 ⁇ 2. Therefore, the optical damage of the Faraday element, which is a concern with the high-power laser, can be reduced.
  • the magnetic flux density applied to the Faraday element is increased, and further miniaturization can be achieved.
  • polarization independence can be achieved in addition to miniaturization.
  • FIG. 6 is a schematic cross-sectional view of a second hollow magnet unit 8 and a third hollow magnet unit 9. It is a schematic diagram which shows the behavior of the polarization plane of the input light and return light in an optical isolator along an optical axis.
  • the optical isolator according to the present invention transmits a Faraday element having a Verde constant at a wavelength of 405 nm of 0.70 min / (Oe ⁇ cm) or more, a first hollow magnet disposed on an outer periphery of the Faraday element, and a first hollow magnet.
  • 2nd and 3rd hollow magnet units arranged on the axis, and the 2nd and 3rd hollow magnet units are composed of two or more magnets equally divided in the direction of 90 degrees with respect to the optical axis.
  • the magnetic flux density B (Oe) applied to the Faraday element is in the range of the following formula (1)
  • the sample length L (cm) in which the Faraday element is arranged is in the range of the following formula (2). It is in that.
  • the Faraday element used in the present invention is a transparent Faraday element that absorbs very little light at a wavelength of 320 to 633 nm, and therefore can cope with a wavelength band that cannot function with a conventional element such as a TGG crystal. It was.
  • the optical isolator can be miniaturized. For this reason, the degree of freedom of the spatial dimension in the device incorporating the optical isolator can be increased.
  • the present invention is described in detail below.
  • the optical isolator of the present invention is preferably used for laser light having a wavelength band of 320 to 633 nm.
  • a laser includes the second harmonic (wavelength 532 nm) and the third harmonic (wavelength 355 nm) of a semiconductor laser or a lamp-pumped YAG laser.
  • a person skilled in the art can change the design of the optical isolator of the present invention to a laser beam having a wavelength band other than those described above.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of an optical isolator according to the present invention.
  • an incident polarizer 1, a Faraday element 4, and an output polarizer 6 are sequentially arranged on an optical axis 12 from the left incident side to the right output side.
  • the incident polarizer 1 is fixed on the optical axis 12 by the wedge glass 2
  • the output polarizer 6 is fixed by the wedge glass 2.
  • the incident polarizer 1 is fixed to the polarizer holder 3 on the incident side, and the 45-degree rotator 5 and the output polarizer 6 are fixed to the polarizer holder 3 on the output side.
  • the optical axis 11 is shown in the incident polarizer 1 and the outgoing polarizer 6.
  • the shape of the Faraday element 4 is not particularly limited, and may be a triangular prism shape or a quadrangular prism shape, but is preferably a cylindrical shape.
  • a cylindrical Faraday element will be described below as an example.
  • a second hollow magnet unit 8 and a third hollow magnet unit 9 are disposed on the outer periphery of the Faraday element 4 with the first hollow magnet 7 and the first hollow magnet sandwiched on the optical axis.
  • the first hollow magnet 7, the second hollow magnet unit 8, and the third hollow magnet unit 9 are all preferably hollow cylindrical, and the central axis of the Faraday element 4 and The central axis of the hollow portion of the first hollow magnet 7 and the hollow portions of the two hollow magnet units 8 and 9 are preferably coaxial. Further, the outer diameter of the Faraday element 4, the inner diameter of the hollow portion of the first hollow magnet 7, and the inner diameters of the hollow portions of the two hollow magnet units 8 and 9 are substantially the same, and are aligned after the optical isolator is assembled. It is preferable that With this arrangement, the Faraday element 4 is arranged at the center of the first hollow magnet 7.
  • the first hollow magnet 7, the second hollow magnet unit 8, and the third hollow magnet unit 9 are disposed so that these hollow portions are coaxial with the optical axis.
  • Each of these two hollow magnet units 8 and 9 includes a plurality of magnets equally divided into two or more in a direction 90 degrees (90 °) with respect to the optical axis, that is, a plane perpendicular to the optical axis. It is an aggregate.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the two hollow magnet units 8 and 9. Both hollow magnets are an assembly of four magnets obtained by dividing a cylindrical magnet into 90 ° sections. A four-divided magnet unit (aggregate) is preferable because of excellent processability. In addition to the four-divided magnet unit, an assembly of two magnets divided into two at 180 ° or an assembly of three magnets divided into three at 120 ° may be used.
  • the second hollow magnet unit 8 and the third hollow magnet unit 9 are each housed in a housing 10.
  • the magnet obtained by dividing the cylindrical magnet into four parts has a magnetic field polarity in the outer peripheral direction.
  • the outer peripheral diameter of the combined magnet unit and the inner diameter of the housing 10 are substantially matched so that the magnet unit can be inserted. 10 can be fixed inside. If this fixing method is used, the first hollow magnet 7 can be fixed without any gap by using the second hollow magnet unit 8 and the third hollow magnet 9 as pressing members on both sides.
  • magnetic field polarity means the direction of magnetization. That is, it represents the direction of the lines of magnetic force.
  • the optical isolator of the present invention has a Faraday element having a Verde constant at a wavelength of 405 nm of 0.70 min / (Oe ⁇ cm) or more. This Faraday element will be described.
  • the Faraday element that can be used in the present invention has a Verde constant at a wavelength of 405 nm of 0.70 min / (Oe ⁇ cm) or more.
  • the Verdet constant is not particularly limited as long as it is 0.70 min / (Oe ⁇ cm) or more, but the Verdet constant with a Yb 2 O 3 oxide content of 100% is the upper limit.
  • the Verde constant is less than 0.70 min / (Oe ⁇ cm)
  • the length of the Faraday element necessary for setting the Faraday rotation angle to 45 ° becomes long, and it is difficult to reduce the size of the optical isolator.
  • the Verde constant may be measured according to a conventional method and is not particularly limited. Specifically, an oxide having a predetermined thickness is cut out, mirror-polished and finished, a Faraday element is set in a permanent magnet having a known magnetic flux density, and a Verde constant at a wavelength of 405 nm is measured. The measurement conditions are 25 ⁇ 10 ° C. and measurement is performed in the atmosphere.
  • the sample length L (cm) in which the Faraday element is arranged is within the range of the following formula (2). 0.25 ⁇ L ⁇ 0.45 (2) If the sample length exceeds 0.45 cm, it is difficult to reduce the size of the optical isolator. If the sample length is less than 0.25 cm, the magnetic flux density for obtaining the desired Faraday rotation angle increases, and the optical isolator is also reduced in size. Becomes difficult.
  • the sample length in which the Faraday element is arranged means the length of the Faraday element on the optical axis, and is indicated by L in FIG.
  • the Faraday element used in the present invention preferably contains 95% or more by weight of an oxide represented by the following formula (I). Yb 2 O 3 (I)
  • the content of the oxide is more preferably 99.9% by weight or more, and further preferably 100% by weight.
  • terbium has a larger Verde constant than ytterbium, but has absorption at wavelengths of 320 to 380 nm and 450 to 550 nm. Therefore, producing a compound containing as much ytterbium as possible can increase the Verde constant of the compound and increase the Faraday rotation angle.
  • the factors that determine the size of the optical isolator are the Verde constant and the magnitude of the magnetic field.
  • the Verde constant is 0.20 min / (Oe ⁇ cm) or more at the wavelength to be used, and if it is less than that, the length of the Faraday element becomes 10 mm or more in the magnetic field to be used. It was found that the shape and transmission loss increased.
  • the Verde constant is 0.20 min / (Oe ⁇ cm) or more, and the length of the Faraday material is 10 mm or less.
  • the oxide represented by the formula (I) may be a single crystal or a ceramic.
  • JP-A-2011-150208 and the like can be referred to for a method for producing such single crystals and ceramics.
  • a single crystal is used as a Faraday element of an optical isolator, it is preferable that the surface is mirror-finished with an abrasive after cutting.
  • polishing agent is not specifically limited, For example, colloidal silica is illustrated.
  • the Faraday element that can be used in the present invention preferably has an insertion loss of 1 dB or less and an extinction ratio of 30 dB or more in the sample length L (cm) in the optical isolator of the present invention. Considering the assembly error, it is more preferable to have an insertion loss of 0.5 dB or less and an extinction ratio of 35 dB or more. Within the above range, it is preferable from the viewpoint of enabling production of an optical isolator having low loss and high isolation optical characteristics.
  • the optical characteristics such as insertion loss and extinction ratio are measured at a wavelength of 405 nm according to a conventional method. The measurement conditions are 25 ⁇ 10 ° C., and measurement is performed in the atmosphere.
  • the Faraday element that can be used in the present invention preferably has a transmittance (light transmittance) of 80% or more at a wavelength of 405 nm and a sample length Lcm (0.25 ⁇ L ⁇ 0.45) of 82%. Preferably, it is more than 85%.
  • the transmittance is preferably high, and the upper limit is not particularly limited and is 100% or less.
  • the transmittance is measured by the intensity of light when light having a wavelength of 405 nm is transmitted through a Faraday element having a thickness of Lcm. That is, the transmittance is expressed by the following formula.
  • Transmittance I / Io ⁇ 100 (In the above formula, I represents transmitted light intensity (intensity of light transmitted through a sample having a thickness of Lcm), and Io represents incident light intensity.)
  • I transmitted light intensity (intensity of light transmitted through a sample having a thickness of Lcm)
  • Io incident light intensity.
  • the hollow magnet unit group including the first hollow magnet, the second hollow magnet unit, and the third hollow magnet unit.
  • the first hollow magnet and the second and third hollow magnet units are preferably made as small permanent magnets as possible, and in order to obtain a large magnetic field strength, neodymium-iron-boron (NdFeB) It is preferable to use a system magnet.
  • the magnetic field polarity of the first hollow magnet is the optical axis direction
  • the magnetic field polarity of the second hollow magnet unit and the magnetic field polarity of the third hollow magnet unit are the optical axis. It is preferable that they are opposite to each other in the normal direction.
  • the optical isolator of the present invention it is important for the miniaturization to shorten the length of the Faraday element. For this reason, a Faraday element having a large Faraday effect, a magnet material (magnet) having a high magnetic flux density, and a magnetic Miniaturization is realized by using a combination of circuits. Further, optical damage to the Faraday element due to high power light, which is a problem in the semiconductor laser, is determined by the transmittance and the length of the Faraday element. Therefore, a Faraday element having a high transmittance and a short length is more convenient.
  • the optical isolator of the present invention it is preferable that two or more flat plate birefringent crystals and one or more 45 degree optical rotators are further provided on the optical axis. With this configuration, a polarization-independent optical isolator can be obtained.
  • the optical axis of the flat birefringent crystal is approximately 45 ° with respect to the optical axis and the thickness is 1.0 cm or more.
  • a rutile single crystal (TiO 2 ) ⁇ 1.0 mm which is 1/10 of the thickness
  • ⁇ -BBO crystal BaB 2 O 4
  • ⁇ 0.35 mm which is about 1/30 of the thickness. It is possible to cope with the beam diameter.
  • each component is resistant to high-power light and that it is a polarization-independent type that is not affected by the polarization state of the propagating light. Is mentioned.
  • a birefringent crystal that separates the light beam by utilizing the difference in refractive index is optimal as the polarizer used.
  • Typical birefringent crystals include yttrium vanadate (YVO 4 ), rutile single crystal (TiO 2 ) that is transparent at a wavelength of 400 to 633 nm, calcite single crystal (CaCO 3 ) that is transparent at a wavelength of 350 to 633 nm, wavelength There is an ⁇ -BBO crystal (BaB 2 O 4 ) that is transparent at 190 to 633 nm, and a transparent birefringent crystal may be used in accordance with the oscillation wavelength of the semiconductor laser. Further, in order to make the polarization independence described above, it is preferable to perform flat plate processing so that the optical axis of the birefringent crystal is approximately 45 degrees with respect to the optical axis.
  • each thickness may be processed with high accuracy to satisfy a desired beam shift amount.
  • Two of these flat-type birefringent polarizers are arranged as input and output polarizers, and the polarization plane is rotated 45 degrees at the same wavelength as the Faraday element having a Faraday rotation angle of 45 degrees at any wavelength of 320 to 633 nm.
  • a polarization-independent optical isolator is configured by arranging a rotator and a magnet that provides a magnetic field in the optical axis direction of the Faraday element around the optical rotator.
  • FIG. 3 shows the behavior of the polarization planes of input light and return light in the optical isolator along the optical axis.
  • the upper part of FIG. 3 shows the behavior of the polarization plane of the input light.
  • the input light is separated into two parts, extraordinary light that shifts in the polarization direction of the optical axis of the incident polarizer according to Snell's law and ordinary light that travels straight in the direction of polarization orthogonal to the optical axis.
  • the incident light the ordinary light and the extraordinary light whose polarization planes are separated by 0 degree and 90 degrees respectively in the incident polarizer 1 are rotated 45 degrees clockwise by the Faraday element 4.
  • the optical axis of the half-wave plate was set to 22.5 degrees in the plane so that the angle of this polarization plane was further rotated 45 degrees clockwise.
  • both polarization planes are rotated 45 degrees clockwise, so that the ordinary light and extraordinary light are rotated by 90 degrees respectively.
  • the outgoing polarizer 6 has an optical axis in the same direction as the incident polarizer 1, so that ordinary light is beam-shifted as extraordinary light, and extraordinary light goes straight as ordinary light and both beams coincide with each other and are polarized. Independence is achieved.
  • Fig. 3 shows the behavior of the polarization plane of the return light.
  • the return light is rotated by 45 ° in the opposite direction to become an orthogonal polarization plane of 90 ° with the incident polarizer, and cannot be transmitted.
  • the first hollow magnet, the second hollow magnet unit, and the third hollow magnet unit are preferably mounted on a carbon steel casing.
  • a yoke material is formed around the magnet, so that the attractive force or attractive force of the magnet can be increased.
  • the outer peripheral diameters of the four equally divided magnet units and the inner diameter of the housing 10 are substantially matched so that the magnet can be inserted, each of them is only 2 by the demagnetizing force of the magnets.
  • Two magnet units can be fixed inside the housing.
  • Example 1 A 405 nm band optical isolator having the configuration shown in FIG. 1 was manufactured.
  • ⁇ -BBO crystal (BaB 2 O 4 ) having high transparency at 405 nm is used, and its light transmission surface is processed into a parallel flat plate having a thickness of 1.0 cm.
  • the optical axis 11 is inclined 47.8 degrees with respect to the optical axis 12.
  • the tilt direction is drawn in the paper.
  • this parallel plate polarizer is provided with an antireflection film having a central wavelength of 405 nm on the light transmission surface, and in order to prevent the reflected light of the light transmission surface from returning to the incident light path, the wedge glass 2 having an inclination angle of 5 degrees.
  • the bottom surface of the polarizer was bonded and fixed onto the polarizer holder 3. Further, the Faraday element 4 is positioned at the center of the hollow portion of the first hollow magnet 7, and the magnetic field distribution formed by all the magnets including the second hollow magnet unit 8 and the third hollow magnet unit 9. Fixed to the maximum position. As shown in FIG. 2, the second and third magnet units were used in combination with four equally divided magnets.
  • the 45-degree optical rotator 5 disposed after the Faraday element 4 in the order of the incident optical path used a half-wave plate made of artificial quartz, and an antireflection film having a central wavelength of 405 nm was applied to the light transmission surface.
  • ytterbium oxide having a Verde constant of 0.70 min / (Oe ⁇ cm) or more at a wavelength of 405 nm was used with a sample length of 0.25 to 0.45 cm.
  • a hollow magnet made of a neodymium-iron-boron (NdFeB) magnet was disposed on the outer periphery of the Faraday element.
  • NdFeB neodymium-iron-boron
  • the beam shift amount depends on the thickness of the parallel plate polarizer.
  • the beam shift amount is about 0.35 mm. Since the return light is also separated and emitted by 0.35 mm above and below the incident position, the maximum beam diameter (1 / e 2 ) can correspond to ⁇ 0.35 mm considering the optical isolator function.
  • the thickness of the parallel plate polarizer is an arbitrary thickness of 1.0 cm or more. Just make it big.
  • Yb 2 O 3 ceramics containing 100% by weight of ytterbium oxide was used as the material.
  • the Yb 2 O 3 ceramic was produced according to the method described in Japanese Patent Application Laid-Open No. 2011-150208. Specifically, after pulverizing high-purity Yb 2 O 3 powder, ethanol and ethylene glycol were added and wet-mixed to form a slurry, and this slurry was molded using a molding machine. The molded body was sintered at 1,600 ° C. for 2 hours in an argon atmosphere to obtain ceramics.
  • this ceramic When this ceramic was measured at a wavelength of 405 nm, it was found that it had optical characteristics of an insertion loss of 0.5 dB, an extinction ratio of 40 dB, and a Verde constant of 0.74 min / (Oe ⁇ cm).
  • the sample measured at this time was a cylindrical shape having an outer diameter (diameter) of ⁇ 0.3 cm and a length of 0.4 cm.
  • FIG. 4 shows the magnetic flux density T (10 4 Oe) at which the Faraday rotation angle becomes 45 degrees when the sample length of the ceramic used in Example 1 is changed by 0.05 cm from 0.25 to 0.45 cm. Shown as a function of sample length L.
  • Comparative Example 1 As shown in FIG. 4, as Comparative Example 1, an optical isolator using Yb 2 O 3 ceramics (Verde constant 0.37 min / (Oe ⁇ cm)) containing 50 wt% ytterbium oxide as a Faraday element was manufactured.
  • the relationship of the magnetic flux density with respect to the sample length is the relationship shown in Example 1, and all are within the range satisfying the formula (1) in the above ⁇ 1>.
  • the optical isolator of the present invention can reduce the sample length of the Faraday element and the applied magnetic flux density, so that the outer diameter of the magnet can be reduced. As a result, the optical isolator can be miniaturized. In addition to downsizing the product shape of the optical isolator, the magnetic field leaked from the optical isolator to the outside could be reduced.
  • the magnetic flux density distribution obtained was determined by magnetic field analysis using the outer diameter of each magnet as a parameter.
  • a finite element method JMAG-Designer
  • the magnet material was a neodymium-iron-boron (NdFeB) magnet manufactured by Shin-Etsu Chemical Co., Ltd.
  • the housing 10 was made of carbon steel.
  • the simulation result is shown in FIG.
  • the inner diameter ⁇ (diameter) and outer diameter (diameter) of the magnet in FIG. 5 are as follows.
  • Example 1 (sample length 0.45 cm): magnet inner diameter ⁇ 0.4 cm, outer diameter ⁇ 1.4 cm
  • Comparative Example 1 (sample length 0.45 cm): magnet inner diameter ⁇ 0.4 cm, outer diameter ⁇ 3.4 cm
  • Z (cm) indicates the distance from the central axis where the Faraday element is arranged, and 0 cm indicates the center on the central axis (the middle of the arranged Faraday element).
  • the sample length of the Faraday element is 0.40 cm
  • the upper limit magnetic flux density satisfying the expressions (1) and (2) indicates the magnetic flux density distribution of the sample length of 0.25 cm in the first embodiment
  • the lower limit magnetic flux density indicates the magnetic flux density distribution of the sample length of 0.45 cm in the first embodiment.
  • each of the magnets had an inner diameter of ⁇ 0.4 cm and an outer diameter of ⁇ 1.4 (lower limit value) to ⁇ 2.4 cm (upper limit value).
  • Example 1 (sample length 0.40 cm) was optimal. From this result, the magnet shape used when adopting the configuration of Example 1 was actually manufactured by combining the first, second, and third hollow magnets, and the inner diameter was ⁇ 0.4 cm and the outer diameter was ⁇ 1.6 cm. The length was 3.2 cm. When the Faraday rotation angle of this assembled component was measured at a wavelength of 405 nm, it was 45.0 degrees, which was consistent with the simulation results.
  • the magnet shape using Yb 2 O 3 50% ceramics with a sample length of 0.45 cm which is the lower limit value of the conventional configuration shown in Comparative Example 1, has an inner diameter of ⁇ 0.4 cm, an outer diameter of ⁇ 3.4 cm, and a length of 3.8 cm. Therefore, comparing both, it was found that the present invention achieves a size reduction of 80% by volume compared to the conventional product.
  • the Verde constant has a wavelength dependency, and the constant decreases as the wavelength increases. Therefore, the Verde constant was also evaluated at 633 nm, which is the upper limit wavelength at 320 to 633 nm.
  • the Verde constant of each Yb 2 O 3 ceramic used was 0.21 min / (Oe ⁇ cm) in Example 1 compared to 0.11 min / (Oe ⁇ cm) in Comparative Example 1, and the Faraday element was shortened. It was found that the value of 0.20 min / (Oe ⁇ cm) or more, which is a standard for the above, was satisfied. Therefore, the optical isolator of the present invention shows that each component used and its configuration have low loss and high isolation characteristics in the 320 to 633 nm band and function as a sufficiently miniaturized optical isolator. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)

Abstract

 医療、光計測用等の用途に使用される半導体レーザに使用される光アイソレータとして好適な小型光アイソレータを提供することを目的とする。 本発明の320~633nm波長帯域用光アイソレータは、波長405nmにおけるベルデ定数が0.70min/(Oe・cm)以上のファラディ素子と、前記ファラディ素子の外周に配置される第1の中空マグネット並びに第1の中空マグネットを光軸上で挟んで配置された第2及び第3の中空マグネットユニットと、を備え、第2及び第3の中空マグネットユニットは、光軸に対し90度方向に等分割された2以上のマグネットから構成され、前記ファラディ素子に印加される磁束密度B(Oe)は下記式(1)の範囲内にあり、前記ファラディ素子が配置されるサンプル長L(cm)は下記式(2)の範囲内にある、ことを特徴とする。 0.8×104≦B≦1.5×104 (1) 0.25≦L≦0.45 (2)

Description

光アイソレータ
 本発明は、320~633nmの波長帯域において使用される光アイソレータに関する。
 従来から、医療・光計測等の用途に使用する産業用レーザには、紫外線(UV)及び可視域の半導体レーザ或いはランプ励起式YAGレーザの第二高調波(波長532nm)、第三高調波(波長355nm)が使用されている。
 近年、その半導体レーザの波長用途も広くなり、高出力化が進んでいる。
 しかしながら、一般的に半導体レーザは、その発光スペクトルが狭くて変換効率に優れるという特徴を持つが、その反面、反射光による戻り光に対しては非常に敏感であり、光ファイバヘの結合端面や被測定物からの反射光が戻ると、特性が不安定状態になるという危険性がある。よって、半導体レーザの安定動作の為には、反射光が発光光源である発光素子へ戻るのを防止するため、発光光源と加工体との間に、順方向の光を透過し、逆方向の光を遮断する機能を有する光アイソレータ(an optical isolator)を配置し、光ファイバから発光光源へ反射して戻ってくる光を遮断することが不可欠となる。
 ここで、光アイソレータは、ファラディ素子と、ファラディ素子の光入射側及び光出射側に配置された一対の偏光子と、ファラディ素子の光透過方向(光軸方向)に磁界を印加するマグネットと、の3つの主要部品から構成される。この形態で光がファラディ素子に入射するとファラディ素子の中で偏光面が回転するという現象が生じる。これはファラディ効果と呼ばれる現象であり、偏光面が回転する角度をファラディ回転角と称し、その大きさθは次式で表される。
  θ=V×H×L
 上記式中、Vはベルデ定数でファラディ素子の材料及び測定波長で決まる定数であり、Hは磁束密度、Lはファラディ素子の長さである。この式から分かるように、ある一定の大きさのベルデ定数を持つ素子において、所望のファラディ回転角を得ようとすると、ファラディ素子に印加する磁界が大きいほど素子長を短くすることができ、素子長が長いほど磁束密度を小さくすることできる。
 特許文献1に記載されているように、上記波長帯においてベルデ定数が大きい材料としては、Feを含むYIG(イットリウム鉄ガーネット)単結晶がある。
 また、その他としては、テルビウム・ガリウム・ガーネット(化学式:Tb3Ga512)などがある。
 また、鉛を含むガラスも、用いられている。
 光アイソレータの機能を有するためには、45°程度のファラディ回転角が必要となる。具体的に、光アイソレータに入射された光は、その偏光面をファラディ素子により45°回転されて各々角度調整された入出射偏光子を透過する。一方、戻り光はファラディ素子の非相反性を利用して、逆方向に偏光面を45°回転され入射偏光子と90°の直行偏光面となり、透過できなくなる。光アイソレータは、この現象を利用して光を単一方向にのみ透過させ、反射して戻ってくる光を阻止するものである。
特開2011-150208号公報
 特許文献1に記載されているYIG単結晶は、波長320~800nmに大きな光吸収がある。従って、波長320~800nmではその吸収の影響が強く出るため、使用することはできない。
 従来から使用されている光アイソレータでは、例えばテルビウム・ガリウム・ガーネット(TGG)結晶のようなファラディ素子を使用している。TGGのベルデ定数は、波長633nmにおいて0.46min/(Oe・cm)程度と大きいが、波長500~600nmにおいて大きな光吸収があり、波長320~380nm、450~550nmではその光吸収の影響が強く出るため、633nm以下の波長においては、その使用に制限があった。なお、1分(min)は1/60度を表す。
 更に、鉛を含むガラスは、波長320~800nmではベルデ定数が小さく、ファラディ素子として用いると光路が長くなってしまう。
 本発明が解決しようとする課題は、波長320~633nmにおいて透明で小型化した光アイソレータを提供することである。特に、医療、光計測用等の用途に使用される半導体レーザに使用される光アイソレータとして好適な小型光アイソレータを提供することである。
 本発明が解決しようとする他の課題は、ファラディ効果が大きいファラディ素子を使用し、かつ、小さな外形のマグネットと組み合わせた光アイソレータを提供することである。本発明の他の課題は、以下の説明から明らかになるであろう。
 上記の諸課題は、以下の手段<1>により達成された。好ましい実施形態<2>~<11>と共に列記する。
 <1>波長405nmにおけるベルデ定数が0.70min/(Oe・cm)以上のファラディ素子と、前記ファラディ素子の外周に配置される第1の中空マグネット並びに第1の中空マグネットを光軸上で挟んで配置された第2及び第3の中空マグネットユニットと、を備え、第2及び第3の中空マグネットユニットは、それぞれ、光軸に対し90度方向に等分割された2以上のマグネットから構成され、前記ファラディ素子に印加される磁束密度B(Oe)は下記式(1)の範囲内にあり、前記ファラディ素子が配置されるサンプル長L(cm)は下記式(2)の範囲内にある、ことを特徴とする320-633nm波長帯域用光アイソレータ、
  0.8×104≦B≦1.5×104   (1)
  0.25≦L≦0.45   (2)
 <2>前記ファラディ素子が、下記式(I)で表される酸化物を95%以上含有する、<1>に記載の光アイソレータ、
  Yb23  (I)
 <3>前記酸化物が単結晶である、<2>に記載の光アイソレータ、
 <4>前記酸化物がセラミックスである、<2>に記載の光アイソレータ、
 <5>前記ファラディ素子が、サンプル長L(cm)において、1dB以下の挿入損失と30dB以上の消光比を有する、<1>~<4>のいずれか1つに記載の光アイソレータ、
 <6>第1の中空マグネット、並びに、第2及び第3の中空マグネットユニットが、ネオジム-鉄-ボロン(NdFeB)系磁石からなる、<1>~<5>のいずれか1つに記載の光アイソレータ、
 <7>第1の中空マグネットの磁界極性を光軸方向とし、第2及び第3の中空マグネットユニットの磁界極性を光軸法線方向において互いに反対とした、<1>~<6>のいずれか1つに記載の光アイソレータ、
 <8>第2及び第3の中空マグネットユニットが、円筒マグネットを90°に4分割した4個のマグネットの集合体である、<1>~<7>のいずれか1つに記載の光アイソレータ、
 <9>更に2枚以上の平板複屈折結晶及び1枚以上の45度旋光子を具備した、<1>~<8>のいずれか1つに記載の光アイソレータ、
 <10>前記平板複屈折結晶の光学軸は光軸に対しほぼ45度方向であり、厚みが1.0cm以上である、<9>に記載の光アイソレータ、
 <11>第1の中空マグネット、第2の中空マグネットユニット及び第3の中空マグネットユニットが炭素鋼筐体の内部に搭載された、<1>~<10>のいずれか1つに記載の光アイソレータ。
 <1>に記載の発明によれば、ベルデ定数の大きいファラディ素子と、磁束密度の大きいマグネット材及び磁気回路を用いることにより、光アイソレータの小型化が達成できた。
 また、<2>に記載の発明によれば、偏光回転能を左右するYb23酸化物含有量が95%以上であるため、同含有量50%ファラディ素子のサンプル長を1/2程度に短くできるので、高出力レーザにより懸念されるファラディ素子の光損傷を減少させることができた。
 上記の<7>に記載の発明により、ファラディ素子に印加される磁束密度を高め、一層の小型化が達成できた。
 上記の<8>に記載の発明により、小型化に加えて偏光無依存化を達成することができた。
本発明の光アイソレータの構成例を示す断面模式図である。 第2の中空マグネットユニット8及び第3の中空マグネットユニット9の断面模式図である。 光アイソレータ内における入力光と戻り光の偏光面の挙動を光軸に沿って示す模式図である。 実施例1及び比較例1において使用するファラディ素子のサンプル長L(0.25~0.45cm)に対する、ファラディ回転角が45度となる磁束密度T(104Oe)の大きさを示した図である。 有限要素法に基づく、NdFeB系マグネットの形状解析結果を示す図である。
 本発明の光アイソレータは、波長405nmにおけるベルデ定数が0.70min/(Oe・cm)以上のファラディ素子と、前記ファラディ素子の外周に配置される第1の中空マグネット並びに第1の中空マグネットを光軸上で挟んで配置された第2及び第3の中空マグネットユニットと、を備え、第2及び第3の中空マグネットユニットは、光軸に対し90度方向に等分割された2以上のマグネットから構成され、前記ファラディ素子に印加される磁束密度B(Oe)は下記式(1)の範囲内にあり、前記ファラディ素子が配置されるサンプル長L(cm)は下記式(2)の範囲内にある、ことを特徴とする。
  0.8×104≦B≦1.5×104   (1)
  0.25≦L≦0.45   (2)
 本発明に使用するファラディ素子は、波長320~633nmにおいて光吸収が極めて少ない透明なファラディ素子であるため、TGG結晶のような従来の素子では機能することができない波長帯へも対応することができた。このファラディ素子に磁束密度の大きいマグネット材及び磁気回路を用いることにより、光アイソレータの小型化を可能とした。このために、光アイソレータを組み込むデバイス内の空間的寸法の自由度を大きくすることができた。
 以下に本発明を詳細に説明する。
 本発明の光アイソレータは、320~633nmの波長帯域のレーザ光に好ましく使用される。このようなレーザには、半導体レーザやランプ励起式YAGレーザの第二高調波(波長532nm)、第三高調波(波長355nm)が含まれる。
 なお、当業者は、本発明の光アイソレータを上記以外の波長帯域のレーザ光に設計変更することができる。
 本発明の光アイソレータの基本的な構成例を、以下図面を参照して説明する。
 図1は、本発明の光アイソレータの構成例を示す断面模式図である。
 図1において、入射偏光子1、ファラディ素子4、及び出射偏光子6が、左側の入射側から右側の出射側に向う光軸12上に、順次配置されている。
 図1において、入射偏光子1は楔ガラス2により、また、出射偏光子6は楔ガラス2により光軸12上に固定されている。入射側で入射偏光子1は、偏光子ホルダ3に固定され、出射側では45度旋光子5と出射偏光子6が偏光子ホルダ3に固定されている。また、光学軸11を入射偏光子1及び出射偏光子6に示した。
 ファラディ素子4の形状は特に限定されず、三角柱状、四角柱状でもよいが、円筒状であることが好ましい。以下に円筒状のファラディ素子を例にとり説明する。
 このファラディ素子4の外周には、第1の中空マグネット7並びに第1の中空マグネットを光軸上で挟んで、第2の中空マグネットユニット8及び第3の中空マグネットユニット9が配置されている。ファラディ素子4が円筒状の場合、第1の中空マグネット7並びに第2の中空マグネットユニット8及び第3の中空マグネットユニット9はいずれも中空円筒状であることが好ましく、ファラディ素子4の中心軸及び第1の中空マグネット7の中空部と二つの中空マグネットユニット8,9の中空部の中心軸は同軸であることが好ましい。また、ファラディ素子4の外径と、第1の中空マグネット7の中空部の内径と、二つの中空マグネットユニット8,9の中空部の内径はほぼ同じであり、光アイソレータを組み立てた後に調芯とすることが好ましい。この配置により、ファラディ素子4が第1の中空マグネット7の中心に配置される。
 第1の中空マグネット7と、第2の中空マグネットユニット8及び第3の中空マグネットユニット9とは、これらの中空部が光軸と同軸になるように配置されている。これらの2つの中空マグネットユニット8,9は、いずれも、光軸に対し90度(90°)方向に、すなわち光軸に対して垂直な面で、2以上に等分割された複数のマグネットの集合体である。
 図2は、2つの中空マグネットユニット8,9の一実施形態を示す断面模式図である。両中空マグネット共に、円筒マグネットを90°に4分割した4個のマグネットの集合体となっている。4分割したマグネットユニット(集合体)は、加工適性に優れるので好ましい。この4分割マグネットユニットの態様の他に、180°に2分割された2個のマグネットの集合体や、120°に3分割された3個のマグネットの集合体でもよい。
 図2に示すように、第2の中空マグネットユニット8及び第3の中空マグネットユニット9は、それぞれ、筐体10の内部に収納されている。
 図2に示す実施形態において、円筒マグネットを4分割したマグネットは、その磁界極性は外周方向となっている。この場合、各々のマグネットは相互に反磁力を持ち合わせるので、組み合わせたマグネットユニットの外周外径と筐体10の内径をマグネットユニットが挿入できるようにほぼ一致させると、各々の反磁力のみで筐体10の内部に固定することができる。この固定法を利用すれば、第2の中空マグネットユニット8と第3の中空マグネット9を両側の押さえとして、第1の中空マグネット7を隙間無く固定することができるので、構成するマグネット全体の固定が接着剤等を必要としない信頼性の高い実装とすることができる。
 ここで、「磁界極性」とは、磁化の方向を意味する。すなわち、磁力線の向きを表す。
 本発明の光アイソレータは、波長405nmにおけるベルデ定数が0.70min/(Oe・cm)以上のファラディ素子を有する。このファラディ素子について説明する。
 本発明に用いることができるファラディ素子は、波長405nmでのベルデ定数が0.70min/(Oe・cm)以上である。ベルデ定数は0.70min/(Oe・cm)以上であれば特に限定されないが、Yb23酸化物含有量100%のベルデ定数が上限となる。ベルデ定数が0.70min/(Oe・cm)未満であると、ファラディ回転角を45°とするために必要なファラディ素子の長さが長くなり、光アイソレータを小型化することが困難である。
 本発明において、ベルデ定数は、定法に従い測定すればよく、特に限定されない。
 具体的には、所定の厚さの酸化物を切り出し、鏡面研磨仕上げを行い、磁束密度の大きさが既知の永久磁石にファラディ素子をセットし、波長405nmにおけるベルデ定数を測定する。また、測定条件は25±10℃とし、大気中で測定を行う。
 本発明の光アイソレータにおいて、前記ファラディ素子が配置されるサンプル長L(cm)は下記式(2)の範囲内にある。
  0.25≦L≦0.45   (2)
 サンプル長が0.45cmを超えると、光アイソレータの小型化が難しくなり、0.25cm未満であると所望のファラディ回転角を得るための磁束密度の大きさが大きくなり、やはり光アイソレータの小型化が難しくなる。
 ここで、ファラディ素子が配置されるサンプル長とは、ファラディ素子の光軸上の長さを意味し、図1中にLで示されている。
 本発明に用いるファラディ素子は、下記式(I)で表される酸化物を95%重量以上含有することが好ましい。
  Yb23   (I)
 上記の酸化物の含有量は、99.9重量%以上であることがより好ましく、100重量%であることが更に好ましい。
 イッテルビウム(Yb)は、テルビウム(Tb)と同様に、軌道角運動量L=3であるため、常磁性元素であり、波長320~633nmにおいて吸収が無い元素である。このため、この波長域の光アイソレータに使用するには、最も適した元素である。
 一方、テルビウムは、イッテルビウムよりもベルデ定数が大きいが、波長320~380nm、450~550nmに吸収がある。従って、このイッテルビウムをできるだけ多く含む化合物を作製することが、その化合物のベルデ定数を大きくし、ファラディ回転角を大きくできる。
 更に波長320~633nmにおいて吸収が無い化合物を作製するには、構成する他の元素も、その波長域において透明である必要があり、それに最も適した化合物は、波長320~633nmにおいて吸収が無い元素との酸化物である。
 ここで、光アイソレータの大きさを決める要因は、ベルデ定数、磁界の大きさである。そして光アイソレータを小型化するためには、その構成部品であるファラディ素子をできるだけ短くできる材料を開発する必要がある。
 そこで、使用する波長において、ベルデ定数が0.20min/(Oe・cm)以上であることが望ましく、それ未満であると、使用する磁界において、ファラディ素子の長さが10mm以上になり、光アイソレータ形状と透過損失が大きくなってしまうことが判った。
 そして更なる検討・実験の結果、酸化イッテルビウムを重量比換算で95重量%以上含む材料であれば、ベルデ定数が0.20min/(Oe・cm)以上となり、ファラディ材料の長さが10mm以下になり、光アイソレータの小型化が図れると供に、波長320~633nmの光の吸収がほとんど発生しないものとすることができることを知見した。
 前記式(I)で表される酸化物は、単結晶であってもよく、セラミックスであってもよい。このような単結晶、セラミックスの製造方法としては、特開2011-150208号公報等が参照できる。
 なお、単結晶を光アイソレータのファラディ素子として使用する場合には、切断後、研磨剤等により表面に鏡面仕上げを施すことが好ましい。研磨剤は特に限定されないが、例えば、コロイダルシリカが例示される。
 本発明に用いることができるファラディ素子は、本発明の光アイソレータにおける前記サンプル長L(cm)において、1dB以下の挿入損失と30dB以上の消光比とを有することが好ましく、光アイソレータへの搭載及びその組み立てエラーを考慮すると、0.5dB以下の挿入損失と35dB以上の消光比を有することがより好ましい。上記の範囲内であると、低損失かつ高アイソレーションの光学特性を有する光アイソレータの作製を可能にするという観点で好ましい。
 なお、挿入損失及び消光比等の光学特性は、定法に従い、波長405nmにおいて測定する。なお、測定条件は25±10℃とし、大気中で測定を行う。
 本発明に用いることができるファラディ素子は、波長405nm、サンプル長Lcm(0.25≦L≦0.45)での透過率(光の透過率)が80%以上であることが好ましく、82%以上であることが好ましく、85%以上であることが更に好ましい。透過率は高いことが好ましく、その上限は特に限定されず、100%以下である。
 透過率は、波長405nmの光を厚さLcmのファラディ素子に透過させた時の光の強度により測定される。すなわち、透過率は以下の式で表される。
 透過率=I/Io×100
 (上記式中、Iは透過光強度(厚さLcmの試料を透過した光の強度)、Ioは入射光強度を表す。)
 なお、得られる酸化物の透過率が均一ではなく、測定箇所によって透過率に変動がある場合には、任意の10点の平均透過率をもって、該酸化物の透過率とする。
 本発明の光アイソレータにおいて、第1の中空マグネット並びに第2の中空マグネットユニット及び第3の中空マグネットユニットを含む中空マグネットユニット群について説明を追加する。
 第1の中空マグネット並びに第2及び第3の中空マグネットユニットは、いずれも、可能な限り小型な永久磁石とすることが好ましく、かつ大きな磁場強度を得るために、ネオジム-鉄-ボロン(NdFeB)系磁石を使用することが好ましい。
 本発明の光アイソレータにおいて、図1に示すように、第1の中空マグネットの磁界極性を光軸方向とし、第2の中空マグネットユニットの磁界極性と第3の中空マグネットユニットの磁界極性を光軸法線方向において互いに反対とすることが好ましい。この構成を採ることにより、ファラディ素子に与える印加磁束密度を最大とすることができる。
 本発明の光アイソレータの基本設計において、ファラディ素子の長さを短くすることが小型化のために重要であり、このためにファラディ効果が大きいファラディ素子と磁束密度の大きいマグネット材(磁石)及び磁気回路を組み合わせて用いることにより小型化を実現したものである。また、半導体レーザで問題となるハイパワー光によるファラディ素子の光損傷は、ファラディ素子の透過率と長さで決まるため、透過率が高く長さが短いファラディ素子ほど好都合である。
 本発明の光アイソレータにおいて、更に2枚以上の平板複屈折結晶及び1枚以上の45度旋光子を光軸上に具備することが好ましい。この構成により、偏光無依存型の光アイソレータとすることができる。
 この場合、前記平板複屈折結晶の光学軸は光軸に対しほぼ45°方向であり、厚みが1.0cm以上であることが好ましい。例えば、ルチル単結晶(TiO2)を使用した場合においては厚みの1/10であるφ1.0mm、α-BBO結晶(BaB24)においては厚みの1/30程度であるφ0.35mmのビーム径にまで対応することができる。
 半導体レーザの高出力化に伴い、搭載される光アイソレータに対する要求事項としては、各々の部品がハイパワー光に対して耐性を持ち、伝搬する光の偏光状態に影響されない偏光無依存型であることが挙げられる。この要求に応えるべく、使用される偏光子としては、その屈折率差を利用して光ビームを分離する複屈折結晶が最適である。代表的な複屈折結晶としては、波長400~633nmで透明であるイットリウム・バナデート(YVO4)、ルチル単結晶(TiO2)、波長350~633nmで透明である方解石単結晶(CaCO3)、波長190~633nmで透明であるα-BBO結晶(BaB24)があり、半導体レーザの発振波長に合わせ透明な複屈折結晶を使用すればよい。また、前述した偏光無依存化を図るために、複屈折結晶の光学軸は光軸に対しておよそ45度になるように平板加工を施すことが好ましい。また、その厚みは異常光の分離距離と比例関係にあるため所望のビームシフト量を満足する厚みに各々精度良く加工すればよい。この平板型複屈折偏光子を入出射偏光子として2枚配置し、その間に波長320~633nmのいずれかにおいてファラディ回転角が45度であるファラディ素子と同一波長で偏光面を45度回転する45度旋光子とその周囲にファラディ素子の光軸方向に磁界を与えるマグネットを配置することにより、偏光無依存型光アイソレータが構成される。
 図3には、光アイソレータ内における入力光と戻り光の偏光面の挙動を光軸に沿って示した。
 図3の上段には、入力光の偏光面の挙動を示す。最初に、入力光はスネルの法則に従い入射偏光子の光学軸偏光方向にシフトする異常光と光学軸に対して直交偏光方向で直進する常光との2つに分離される。入射光は、入射偏光子1において偏光面をそれぞれ0度、90度に分離された常光、異常光がファラディ素子4により右回りにそれぞれ45度回転される。この偏光面の角度が更に右回りに45度回転されるように、1/2波長板の光学軸は面内に22.5度とし配置した。この構成で常光、異常光が1/2波長板を透過すると、偏光面が共に右回りに45度回転されるので、常光、異常光それぞれ90度偏光面を回転する。その結果、出射偏光子6においては、入射偏光子1と同方向に光学軸を有しているので、常光が異常光としてビームシフト、異常光は常光として直進し双方のビームが一致して偏光無依存化が図られる。
 図3の下段には、戻り光の偏光面の挙動を示す。戻り光はファラディ素子の非相反性を利用して、逆方向に偏光面を45°回転され入射偏光子と90°の直行偏光面となり、透過できなくなる。
 本発明の光アイソレータは、第1の中空マグネット並びに第2の中空マグネットユニット及び第3の中空マグネットユニットを炭素鋼筐体に搭載することが好ましい。炭素鋼筐体に収納することにより、マグネットの周囲にヨーク(継鉄)材が構成されることになるので、マグネットの持っている吸着力或いは吸引力を増大させることができる。
 なお、図2の説明おいて述べたように、等分割した4つのマグネットユニットの外周外径と筐体10の内径をマグネットが挿入できるようにほぼ一致させると、各々マグネットの反磁力のみで2つのマグネットユニットを筐体の内部に固定することができる。
(実施例1)
 図1に示す構成の405nm帯光アイソレータを製作した。
 入射偏光子1及び出射偏光子6としては405nmにおいて高い透明性を有する、α-BBO結晶(BaB24)を使用し、その光透過面は1.0cm厚の平行平板に加工されており、その光学軸11は光軸12に対して47.8度傾いている。図1では、傾き方向が紙面の中にあるように描かれている。更にこの平行平板偏光子は光透過面に中心波長405nmの反射防止膜を施すと共に、入射光路に光透過面の反射光が戻ることを回避するため、5度だけ傾き角度をもった楔ガラス2の上に偏光子底面を接着固定し偏光子ホルダ3に搭載した。
 また、ファラディ素子4は第1の中空マグネット7の中空部中心に位置するようにし、第2の中空マグネットユニット8と第3の中空マグネットユニット9を合わせた全てのマグネットにより形成される磁界分布の最大となる位置に固定した。第2及び第3のマグネットユニットは、図2に示したように、4つに等分割されたマグネットを組み合わせて使用した。入射光路順にファラディ素子4の後に配置される45度旋光子5は、人工水晶を材質とする1/2波長板を使用し、その光透過面には中心波長405nmの反射防止膜を施した。
 ファラディ素子としては、波長405nmにおいてベルデ定数が0.70min/(Oe・cm)以上となる、イッテルビウム酸化物をサンプル長0.25~0.45cmとして使用した。ファラディ素子の外周には、ネオジム-鉄-ボロン(NdFeB)系マグネットからなる中空マグネットを配置した。その中空マグネット両側には、磁界極性が反対であり、かつ光軸に対し90度方向に4つに等分割された中空マグネットユニットを配置し、分割された各々のマグネットの磁界極性は光軸法線方向とした磁気回路を構成した。また、マグネット及びマグネットユニットの外側には、炭素鋼筐体を配置した。
 なお、ビームシフト量は平行平板偏光子の厚みに依存する。平行平板偏光子の厚さを1.0cmとした本実施例においては、ビームシフト量は約0.35mmとなる。戻り光についても入射位置よりそれぞれ上下0.35mm離れて分離され出射されるので、光アイソレータ機能を考慮すると、最大ビーム径(1/e2)としてはφ0.35mmまで対応することができる。また、ハイパワー光のパワー密度を小さくする等の目的で、更に大きいビーム径を取り扱う場合は、ファラディ素子の有効領域を確保した上で、平行平板偏光子の厚みを1.0cm以上の任意の大きさにすればよい。
 次に、本実施例1において使用したファラディ素子4の詳細を説明する。材料としてはイッテルビウム酸化物を100重量%含むYb23セラミックスを用いた。前記Yb23セラミックスは、特開2011-150208号公報に記載の方法に従い作製した。具体的には、高純度Yb23粉末を粉砕した後、エタノール、エチレングリコールを加えて湿式混合し、スラリー状とし、このスラリーを成型器を用いて成型した。成型体を1,600℃で2時間、アルゴン雰囲気で焼結して、セラミックスを得た。
 このセラミックスを波長405nmにおいて測定したところ、挿入損失0.5dB、消光比40dB、ベルデ定数0.74min/(Oe・cm)の光学特性を有していることが分かった。なお、このときの測定したサンプルは外径(直径)φ0.3cm、長さ0.4cmの円筒形状であった。
 図4に、実施例1において使用するセラミックスのサンプル長を0.25~0.45cmに0.05cmずつ変化させた場合に、ファラディ回転角が45度となる磁束密度T(104Oe)をサンプル長Lの関数として示す。
 ここで、前述したサンプルサンプル長が0.4cmである場合に、実施例1のベルデ定数(0.74min/(Oe・cm))値よりファラディ回転角が45度となる磁束密度を算出すると、必要とする磁束密度は約9,100[Oe](=0.91[T])となることが分かる。
(比較例1)
 図4に示すように、比較例1としてイッテルビウム酸化物を50重量%含むYb23セラミックス(ベルデ定数0.37min/(Oe・cm))をファラディ素子とした光アイソレータを作製した。
 このYb23セラミックスに印加する磁束密度を算出すると、サンプル長0.4cmにおいて必要とする磁束密度は約18,200[Oe](=1.82[T])、同様に磁束密度の下限値を示すサンプル長0.45cmにおいては約16,000[Oe](=1.6[T])となることが分かる。
 よって、本発明の光アイソレータにおいては、サンプル長に対する磁束密度の関係が、実施例1で示される関係にあり、いずれも前出<1>中の式(1)を満たす範囲内にあった。
 Yb2350重量%のファラディ素子に使用するマグネットと比較して、本発明の光アイソレータでは、ファラディ素子のサンプル長及び印加する磁束密度を小さくできるので、マグネットの外径を小さくすることができ、この結果光アイソレータの小型化が実現できた。光アイソレータの製品形状の小型化の他に、光アイソレータから外部に漏洩する磁場の低減も図ることができた。
 これを具現化するため、各々マグネット外径をパラメータとして、得られる磁束密度分布を磁場解析により求めた。解析手法としては有限要素法(JMAG-Designer)を選択し、マグネット材質は信越化学工業(株)製ネオジム-鉄-ボロン(NdFeB)マグネット、筐体10の材質は炭素鋼とした。シミュレーション結果を図5に示す。
 なお、図5におけるマグネットの内径φ(直径)及びφ外径(直径)は、以下の通りである。
 実施例1(サンプル長0.45cm):マグネット内径φ0.4cm、外径φ1.4cm
 実施例1(サンプル長0.40cm):マグネット内径φ0.4cm、外径φ1.6cm
 実施例1(サンプル長0.25cm):マグネット内径φ0.4cm、外径φ2.4cm
 比較例1(サンプル長0.45cm):マグネット内径φ0.4cm、外径φ3.4cm
 図5中、Z(cm)は、ファラディ素子が配置される中心軸からの距離を示しており、0cmは中心軸上の中央(配置されるファラディ素子の真ん中)を示している。すなわち、ファラディ素子のサンプル長が0.45cmの場合には、ファラディ素子の端点は、Z=±0.225cmにあたり、同様に、ファラディ素子のサンプル長が0.40cmの場合には、ファラディ素子の端点はZ=±0.20cmにあたる。
 図5のシミュレーションの結果、光軸方向(Z)に対し、安定した磁束密度が得られることが分かった。
 式(1)、式(2)を満たす上限の磁束密度は実施例1におけるサンプル長0.25cmの磁束密度分布、下限の磁束密度は実施例1におけるサンプル長0.45cmの磁束密度分布を示しており、各々マグネット形状は上述の通り、内径φ0.4cm、外径φ1.4(下限値)~φ2.4cm(上限値)となった。
 実施例1において使用したファラディ素子4(サンプル長0.4cm、外径φ0.3cm)に与える磁束密度9,100[Oe](=0.91[T])を満足するには、図5中の実施例1(サンプル長0.40cm)が最適であった。この結果から、実施例1の構成を採用する場合に使用するマグネット形状は、第1、第2、及び第3の中空マグネットを組み合わせて実際に製作したところ内径φ0.4cm、外径φ1.6cm、長さ3.2cmとなった。この組立て構成品のファラディ回転角を波長405nmで実測したところ、45.0度となりシミュレーション結果と合致していた。これに405nmにおいて透明であるα-BBO結晶(BaB24)を偏光子とし光アイソレータを組み立てたところ、挿入損失0.7[dB]、アイソレーション35[dB]の光学特性を有する光アイソレータを作製することができた。
 比較例1で示した従来構成の下限値であるサンプル長0.45cmにおけるYb2350%セラミックスを使用したマグネット形状は、内径φ0.4cm、外径φ3.4cm、長さ3.8cmであるから、両者を比較すると、本発明においては従来品に比べて、体積比80%のサイズダウンを実現することが分かった。
 また、ベルデ定数には波長依存性があり、長波長になると定数が小さくなることが一般的に知られている。そこで320~633nmにおける上限波長である633nmにおいても、ベルデ定数を評価した。その結果、各々使用したYb23セラミックスのベルデ定数は、比較例1の0.11min/(Oe・cm)に対し実施例1では0.22min/(Oe・cm)とファラディ素子の短尺化の目安となる0.20min/(Oe・cm)以上を満足していることが分かった。よって、本発明の光アイソレータは、使用する各々の部品及びその構成が320~633nm帯において低損失で高アイソレーションの特性を持ち、十分に小型化された光アイソレータとして作用することを示している。
1    入射偏光子
2    楔ガラス
3    偏光子ホルダ
4    ファラディ素子
5    45度旋光子
6    出射偏光子
7    第1の中空マグネット
8    第2の中空マグネットユニット
9    第3の中空マグネットユニット
10   筐体
11   光学軸
12   光軸

Claims (11)

  1.  波長405nmにおけるベルデ定数が0.70min/(Oe・cm)以上のファラディ素子と、
     前記ファラディ素子の外周に配置される第1の中空マグネット並びに第1の中空マグネットを光軸上で挟んで配置された第2及び第3の中空マグネットユニットと、を備え、
     第2及び第3の中空マグネットユニットは、それぞれ、光軸に対し90度方向に等分割された2以上のマグネットから構成され、
     前記ファラディ素子に印加される磁束密度B(Oe)は下記式(1)の範囲内にあり、
     前記ファラディ素子が配置されるサンプル長L(cm)は下記式(2)の範囲内にある、ことを特徴とする
     320~633nm波長帯域用光アイソレータ。
      0.8×104≦B≦1.5×104   (1)
      0.25≦L≦0.45   (2)
  2.  前記ファラディ素子が、下記式(I)で表される酸化物を95重量%以上含有する、請求項1に記載の光アイソレータ。
      Yb23   (I)
  3.  前記酸化物が単結晶である、請求項2に記載の光アイソレータ。
  4.  前記酸化物がセラミックスである、請求項2に記載の光アイソレータ。
  5.  前記ファラディ素子が、サンプル長L(cm)において、1dB以下の挿入損失と30dB以上の消光比を有する、請求項1~4のいずれか1つに記載の光アイソレータ。
  6.  第1の中空マグネット、並びに、第2及び第3の中空マグネットユニットが、ネオジム-鉄-ボロン(NdFeB)系磁石からなる、請求項1~5のいずれか1つに記載の光アイソレータ。
  7.  第1の中空マグネットの磁界極性を光軸方向とし、第2及び第3の中空マグネットユニットの磁界極性を光軸法線方向において互いに反対とした、請求項1~6のいずれか1つに記載の光アイソレータ。
  8.  第2及び第3の中空マグネットユニットが、円筒マグネットを90°に4分割した4個のマグネットの集合体である、請求項1~7のいずれか1つに記載の光アイソレータ。
  9.  更に2枚以上の平板複屈折結晶及び1枚以上の45度旋光子を具備する、請求項1~8のいずれか1つに記載の光アイソレータ。
  10.  前記平板複屈折結晶の光学軸は光軸に対しほぼ45度方向であり、厚みが1.0cm以上である、請求項9に記載の光アイソレータ。
  11.  第1の中空マグネット、第2の中空マグネットユニット及び第3の中空マグネットユニットが炭素鋼筐体の内部に搭載された、請求項1~10のいずれか1つに記載の光アイソレータ。
PCT/JP2012/081812 2011-12-08 2012-12-07 光アイソレータ WO2013085040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013548316A JP5792832B2 (ja) 2011-12-08 2012-12-07 光アイソレータ
EP12854759.3A EP2790051A4 (en) 2011-12-08 2012-12-07 OPTICAL INSULATOR
US14/364,005 US20140300963A1 (en) 2011-12-08 2012-12-07 Optical Isolator
CN201280060030.0A CN104145209A (zh) 2011-12-08 2012-12-07 光隔离器
CA2858509A CA2858509A1 (en) 2011-12-08 2012-12-07 Optical isolator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268974 2011-12-08
JP2011268974 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013085040A1 true WO2013085040A1 (ja) 2013-06-13

Family

ID=48574391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081812 WO2013085040A1 (ja) 2011-12-08 2012-12-07 光アイソレータ

Country Status (7)

Country Link
US (1) US20140300963A1 (ja)
EP (1) EP2790051A4 (ja)
JP (1) JP5792832B2 (ja)
CN (1) CN104145209A (ja)
CA (1) CA2858509A1 (ja)
TW (1) TWI483002B (ja)
WO (1) WO2013085040A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093791A (ja) * 2013-11-11 2015-05-18 信越化学工業株式会社 透光性焼成体とこれを用いたファラデー回転子及び光アイソレータ
JP2015125375A (ja) * 2013-12-27 2015-07-06 信越化学工業株式会社 光アイソレータ
WO2019239684A1 (ja) * 2018-06-14 2019-12-19 日本電気硝子株式会社 ファラデー回転子及び磁気光学素子
JP2020085957A (ja) * 2018-11-16 2020-06-04 信越化学工業株式会社 光アイソレータ及びファラデー回転子
WO2022230528A1 (ja) * 2021-04-28 2022-11-03 信越化学工業株式会社 光アイソレータ
JP7442947B2 (ja) 2021-06-01 2024-03-05 信越化学工業株式会社 ファラデー回転子モジュール及び光アイソレータ
RU2822210C1 (ru) * 2024-02-15 2024-07-03 Общество с ограниченной ответственностью "АКТИВНАЯ ФОТОНИКА" Изолятор Фарадея с кристаллическим магнитооптическим ротатором для лазеров

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188118A1 (en) * 2015-05-28 2016-12-01 Maxphotonics Corporation An optical isolator, a laser output head and a laser device
CN104898308A (zh) * 2015-05-28 2015-09-09 深圳市创鑫激光股份有限公司 可调磁场的磁铁旋光组件及光隔离器
CN105223710A (zh) * 2015-10-16 2016-01-06 深圳市创鑫激光股份有限公司 一种光隔离器、激光输出头及激光设备
JP6863683B2 (ja) 2016-04-26 2021-04-21 信越化学工業株式会社 光アイソレータ
CN106125279A (zh) * 2016-06-27 2016-11-16 无锡宏纳科技有限公司 用于电信号隔离的光隔离器
US9897827B1 (en) * 2016-07-27 2018-02-20 Intel Corporation Feedback controlled closed loop on-chip isolator
JP2019215469A (ja) * 2018-06-14 2019-12-19 日本電気硝子株式会社 ファラデー回転子及び磁気光学素子
JP7236839B2 (ja) * 2018-10-23 2023-03-10 信越化学工業株式会社 光アイソレータ
US20210344167A1 (en) * 2020-05-01 2021-11-04 The Trustees Of Princeton University System and method for optical feedback stabilized semiconductor frequency combs
RU2769483C1 (ru) * 2021-09-22 2022-04-01 Общество с ограниченной ответственностью «ТИДЕКС» Изолятор терагерцового излучения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114420U (ja) * 1984-12-27 1986-07-19
JPH0777670A (ja) * 1993-09-08 1995-03-20 Kyocera Corp 光アイソレータ
JP2002082309A (ja) * 2000-09-06 2002-03-22 Tokin Corp 光アイソレータ
JP2011150208A (ja) 2010-01-25 2011-08-04 Shin-Etsu Chemical Co Ltd 光アイソレータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW336285B (en) * 1996-07-22 1998-07-11 Qualop Systems Corp Optical isolator system and method
JP2003514248A (ja) * 1999-01-29 2003-04-15 エヌイーシートーキン株式会社 ファラデー回転子に対して磁界を印加するための高性能且つ低価格の磁石を備えた光アイソレータ
CN1271454C (zh) * 2001-12-25 2006-08-23 Tdk株式会社 硬磁性柘榴石材料、其单晶体膜的制造方法、法拉第旋转子、其制造方法和用途
CN100399111C (zh) * 2002-01-24 2008-07-02 Tdk株式会社 法拉第转子及用其的光部件
US6956446B2 (en) * 2003-12-18 2005-10-18 Renaissance Electronics Corporation Nonreciprocal device having heat transmission arrangement
JP4706079B2 (ja) * 2005-05-30 2011-06-22 独立行政法人科学技術振興機構 光ファイバー素子及びそれを用いた光の非相反性付与方法
US7715664B1 (en) * 2007-10-29 2010-05-11 Agiltron, Inc. High power optical isolator
JP5239431B2 (ja) * 2008-03-24 2013-07-17 住友金属鉱山株式会社 ファラデー回転子
US20090324159A1 (en) * 2008-06-26 2009-12-31 Chiral Photonics, Inc. Optical chiral fiber isolator and method of fabrication thereof
CN101872076B (zh) * 2010-06-17 2012-09-26 西北工业大学 光学实验及光纤通信系统中实现光学隔离的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114420U (ja) * 1984-12-27 1986-07-19
JPH0777670A (ja) * 1993-09-08 1995-03-20 Kyocera Corp 光アイソレータ
JP2002082309A (ja) * 2000-09-06 2002-03-22 Tokin Corp 光アイソレータ
JP2011150208A (ja) 2010-01-25 2011-08-04 Shin-Etsu Chemical Co Ltd 光アイソレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790051A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093791A (ja) * 2013-11-11 2015-05-18 信越化学工業株式会社 透光性焼成体とこれを用いたファラデー回転子及び光アイソレータ
JP2015125375A (ja) * 2013-12-27 2015-07-06 信越化学工業株式会社 光アイソレータ
WO2019239684A1 (ja) * 2018-06-14 2019-12-19 日本電気硝子株式会社 ファラデー回転子及び磁気光学素子
JPWO2019239684A1 (ja) * 2018-06-14 2021-07-15 日本電気硝子株式会社 ファラデー回転子及び磁気光学素子
JP2020085957A (ja) * 2018-11-16 2020-06-04 信越化学工業株式会社 光アイソレータ及びファラデー回転子
WO2022230528A1 (ja) * 2021-04-28 2022-11-03 信越化学工業株式会社 光アイソレータ
JP7474725B2 (ja) 2021-04-28 2024-04-25 信越化学工業株式会社 光アイソレータ
JP7442947B2 (ja) 2021-06-01 2024-03-05 信越化学工業株式会社 ファラデー回転子モジュール及び光アイソレータ
RU2822210C1 (ru) * 2024-02-15 2024-07-03 Общество с ограниченной ответственностью "АКТИВНАЯ ФОТОНИКА" Изолятор Фарадея с кристаллическим магнитооптическим ротатором для лазеров

Also Published As

Publication number Publication date
CN104145209A (zh) 2014-11-12
CA2858509A1 (en) 2013-06-13
TW201337339A (zh) 2013-09-16
TWI483002B (zh) 2015-05-01
JP5792832B2 (ja) 2015-10-14
US20140300963A1 (en) 2014-10-09
JPWO2013085040A1 (ja) 2015-04-27
EP2790051A4 (en) 2015-06-03
EP2790051A1 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5792832B2 (ja) 光アイソレータ
JP6027756B2 (ja) 光モジュール
JP6243829B2 (ja) 1μm帯光アイソレータ
JP6052800B2 (ja) 光アイソレータ
CN112888989B (zh) 光隔离器
JP2007256616A (ja) 高出力レーザー用偏波無依存型光アイソレータ
JP2015125375A (ja) 光アイソレータ
WO2019239684A1 (ja) ファラデー回転子及び磁気光学素子
JP7476686B2 (ja) 磁気回路、ファラデー回転子、及び磁気光学デバイス
JP7238892B2 (ja) ファラデー回転子及び磁気光学素子
JP2009168894A (ja) 光アイソレータ
WO2022230528A1 (ja) 光アイソレータ
JP7442947B2 (ja) ファラデー回転子モジュール及び光アイソレータ
JP2017032639A (ja) 偏波無依存型光アイソレータ
JPH04247423A (ja) 光アイソレータ
JPH06281885A (ja) 光アイソレータ
JP2006126607A (ja) 光アイソレータ
JPH04242221A (ja) 光アイソレータ
JP2005128472A (ja) 磁気光学光部品及びそれを用いた埋込型光部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854759

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548316

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2858509

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14364005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012854759

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012854759

Country of ref document: EP