WO2013084900A1 - 積層体、及び積層体の製造方法 - Google Patents

積層体、及び積層体の製造方法 Download PDF

Info

Publication number
WO2013084900A1
WO2013084900A1 PCT/JP2012/081418 JP2012081418W WO2013084900A1 WO 2013084900 A1 WO2013084900 A1 WO 2013084900A1 JP 2012081418 W JP2012081418 W JP 2012081418W WO 2013084900 A1 WO2013084900 A1 WO 2013084900A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
convex portions
portions
convex portion
electrode layer
Prior art date
Application number
PCT/JP2012/081418
Other languages
English (en)
French (fr)
Inventor
寛 坂本
康宏 池田
一色 眞誠
海田 由里子
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147014968A priority Critical patent/KR20140103264A/ko
Priority to CN201280060435.4A priority patent/CN103988097B/zh
Priority to JP2013548251A priority patent/JP6079637B2/ja
Publication of WO2013084900A1 publication Critical patent/WO2013084900A1/ja
Priority to US14/291,633 priority patent/US20140261677A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a laminate and a method for producing the laminate.
  • an antireflection structure having a periodic uneven portion on its surface has been developed for display devices such as liquid crystal displays (LCDs) and solar cells (see, for example, Patent Document 1).
  • the antireflection structure is a so-called “Moth ⁇ ⁇ Eye” type, and since the pitch of the convex portions is equal to or less than the wavelength of visible light, the light reflectance can be reduced and the light transmittance can be improved in a wide wavelength range.
  • a laminate formed by forming a transparent conductive film on the concavo-convex portion of the antireflection structure is used for, for example, a resistance film type or electrostatic capacity type touch panel.
  • the uneven part of the conventional antireflection structure has a structure in which a large number of conical protrusions are arranged on a plane.
  • the protrusions are periodically arranged in a hexagonal lattice shape or a tetragonal lattice shape.
  • the protrusions may be arranged such that the lower portions of the protrusions overlap each other.
  • the side surface of the protrusion becomes steep, so that a transparent film is formed on the side surface of the protrusion.
  • the thickness of the conductive film tends to be thin, and the conductivity may be low. Therefore, in the conventional structure, it is difficult to achieve both low reflectivity and high conductivity.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a laminate excellent in low reflectivity and high conductivity, and a method for producing the laminate.
  • a laminate according to one aspect of the present invention is provided.
  • An antireflection structure having periodic irregularities on the surface;
  • Arbitrary convex portions excluding the outermost convex portion and the six convex portions having the shortest sum of the distances from the arbitrary convex portions are (1) four of the six convex portions.
  • each of the convex portions and the arbitrary convex portion there is a connecting portion that connects the convex portions at a position lower than the top of the convex portion and higher than the bottom point of the concave portion, and (2) the six It arrange
  • the manufacturing method of the laminated body by the other aspect of this invention is as follows.
  • any convex portion excluding the outermost convex portion and the six convex portions having the shortest total distance from the arbitrary convex portion are (1) of the six convex portions.
  • each of the four convex portions and the arbitrary convex portion there is a connecting portion that connects the convex portions at a position lower than the vertex of the convex portion and higher than the bottom point of the concave portion, (2)
  • the six convex portions are arranged such that a concave portion exists between each of the remaining two convex portions and the arbitrary convex portion.
  • a laminate excellent in low reflectivity, scratch resistance and high conductivity and a method for producing the laminate are provided.
  • FIG. 3 is a plan view (part 1) schematically showing irregularities on the surface of the antireflection structure of FIG. 2. It is a figure which shows the unevenness
  • FIG. 10 is an explanatory diagram illustrating a method for producing an analysis model according to Comparative Example 1.
  • FIG. It is a figure which shows the measurement result of the surface resistivity by Example 1 and Comparative Example 1. It is a figure which shows the measurement result of the reflectance by Example 1 and Comparative Example 1.
  • FIG. 1 is a perspective view showing a part of a laminate according to the first embodiment of the present invention.
  • contour lines are shown by thin lines in order to express unevenness on the surface of the laminate.
  • the laminate 2 includes an antireflection structure 10 having a periodic uneven portion 20 on the surface, and a transparent conductive film 30 formed on the uneven portion 20.
  • the surface shape of the transparent conductive film 30 is a shape that follows the uneven portion 20.
  • a metal film (not shown) may be formed between the concavo-convex portion 20 and the transparent conductive film 30 in order to reduce the resistance.
  • the thickness of the metal film may be 10 nm or less from the viewpoint of light transmittance.
  • This laminated body 2 is used for, for example, a resistance film type or a capacitance type touch panel.
  • FIG. 2 is a perspective view showing the antireflection structure of FIG.
  • contour lines are shown by thin lines in order to express the unevenness of the surface of the antireflection structure.
  • FIG. 3 is a plan view (part 1) schematically showing irregularities on the surface of the antireflection structure of FIG.
  • FIG. 3A shows an array of lattices connecting the vertices of the convex portions
  • FIG. 3B shows a part of FIG. In FIG.
  • FIG. 4 is a view showing irregularities on the surface of the antireflection structure of FIG. 4A is unevenness in the cross section along line AA in FIG. 3,
  • FIG. 4B is unevenness in the cross section along line BB in FIG. 3, and
  • FIG. 4C is C in FIG.
  • FIG. 4D shows unevenness in the cross section along the line DD in FIG. 3
  • FIG. 4D shows unevenness in the cross section along the line DD in FIG.
  • the antireflection structure 10 is of a so-called moth-eye type, and includes a base 12 and a resin layer 14 formed on the base 12 as shown in FIG.
  • the base 12 and the resin layer 14 may have translucency.
  • Periodic uneven portions 20 are formed on the surface of the resin layer 14.
  • the antireflection structure 10 may be configured by only the resin layer 14.
  • the base 12 is formed in a sheet shape, a plate shape, or a block shape, for example.
  • substrate 12 is not specifically limited, For example, glass or a plastics etc. are used.
  • soda lime glass for example, soda lime glass, non-alkali glass, quartz glass or the like is used.
  • a glass forming method for example, a float method, a fusion method or the like is used.
  • plastics include (meth) acrylic resins such as polymethyl methacrylate, methyl methacrylate and other alkyl (meth) acrylates, and copolymers of vinyl monomers such as styrene; polycarbonate, diethylene glycol bisallyl carbonate (CR-39) (Brominated) bisphenol A type di (meth) acrylate homopolymer or copolymer, (brominated) polymer of urethane-modified monomer of bisphenol A mono (meth) acrylate and copolymer Thermosetting (meth) acrylic resins such as coalescence; polyesters, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyesters, acrylonitrile-styrene copolymers, polyvinyl chloride, polyurethane Epoxy resins, polyarylate, polyether sulfone, polyether ketone, cycloolefin polymer (trade name: ARTON, ZEONOR) and the like are prefer
  • the resin layer 14 is formed by, for example, applying and curing a thermosetting or photocurable resin on the base 12.
  • An uneven portion 20 is formed on the surface of the resin layer 14.
  • the concavo-convex portion 20 is formed between the predetermined convex portions 21 at a position lower than the convex portion 21, the concave portion 22, and the vertex 21 a of the convex portion 21 and higher than the bottom point 22 a of the concave portion 22.
  • a connecting portion 23 for connecting the two A plurality of convex portions 21, a plurality of concave portions 22, and a plurality of connecting portions 23 are two-dimensionally arranged.
  • the convex portions 21 are periodically arranged, for example, in a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape (a regular hexagonal lattice shape in FIGS. 2 and 3).
  • the convex portions 21 are preferably periodically arranged in a hexagonal lattice shape.
  • a case where the convex portions 21 are periodically arranged in a hexagonal lattice shape will be described. Note that the case where the convex portions 21 are periodically arranged in a tetragonal lattice pattern will be described in the second embodiment.
  • “Periodically arranged in the form of a regular hexagonal lattice” means that, as shown in FIG. 3, the arbitrary convex portions 21-1 are arranged around the arbitrary convex portions 21-1 excluding the outermost convex portions 21. This means that six convex portions 21-2 to 21-7 having the shortest distance and the same distance are arranged. The vertices of the six convex portions 21-2 to 21-7 are arranged at an equal pitch at an interval of 60 ° with the vertex of the convex portion 21-1 as the center, and constitute a regular hexagonal lattice.
  • “To be periodically arranged in a quasi-hexagonal lattice shape” means to be periodically arranged in a shape according to a regular hexagonal lattice.
  • the shape conforming to the regular hexagonal lattice is a shape obtained by distorting a regular hexagonal lattice such as a shape obtained by stretching a regular hexagonal lattice in a predetermined direction.
  • a lattice having a shape obtained by distorting a regular hexagonal lattice may be continuously arranged in a linear shape, a curved shape, or a meandering shape.
  • FIG. 3 there are six convex portions 21-1 excluding the outermost convex portion 21 and the total (sum) of the distances from the convex portions 21-1 that are the shortest.
  • the convex portions 21-2 to 21-7 are arranged so as to satisfy the following conditions (1) and (2).
  • (1) Between the four convex portions 21-2, 21-3, 21-5, 21-6 of the six convex portions 21-2 to 21-7 and the convex portion 21-1.
  • a concave portion 22 exists between each of the remaining two convex portions 21-4 and 21-7 among the six convex portions 21-2 to 21-7 and the convex portion 21-1. .
  • “Distance” is the distance between the vertices 21 a of the convex portions 21.
  • convex portions along two directions (F1 direction and F2 direction) among the three directions intersecting with an arbitrary convex portion 21-1 shown in FIG. 21 and the connecting portion 23 are alternately arranged, and the convex portion 21 and the concave portion 22 are alternately arranged along the remaining one direction (F3 direction).
  • the pitch P1 (see FIGS. 4A and 4B) of the protrusions 21 arranged at intervals in the F1 direction, the F2 direction, and the F3 may be set to a length equal to or shorter than the wavelength of visible light. .
  • the pitch P2 (see FIG. 4C) of the protrusions 21 arranged at intervals in the direction perpendicular to the F3 direction is larger than the pitch P1.
  • Concave portions 22 and connecting portions 23 are alternately arranged along a direction parallel to the F1 direction (see FIGS. 3 and 4D).
  • the direction in which the convex portions 21 and the concave portions 22 are alternately arranged is different from the direction in which the convex portions 21 and the connecting portions 23 are alternately arranged. Therefore, the height difference H1 (see FIG. 4B) between the vertex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22, and the vertex 21a of the convex portion 21 and the predetermined portion 23a of the connecting portion 23 (see FIG. 2).
  • the height difference H2 (see FIG. 4A) can be designed independently. Therefore, the height difference H1 and the height difference H2 can be optimized independently.
  • the predetermined portion 23 a of the connecting portion 23 is the lowest portion between the vertices 21 a of the convex portions 21 and is the highest portion between the bottom points 22 a of the concave portions 22.
  • the range of the pitch P1 may be set.
  • the pitch P1 is set to a length equal to or shorter than the wavelength of visible light, and may be, for example, 400 nm or less (preferably 300 nm or less). Further, the pitch P1 may be, for example, 50 nm or more (preferably 100 nm or more) from the viewpoint of productivity. Therefore, the pitch P1 may be 50 nm to 400 nm.
  • the aspect ratio of the concavo-convex portion 20 is represented by a ratio H1 / P1 between the height difference H1 between the apex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22 and the pitch P1 of the convex portion 21.
  • the aspect ratio H1 / P1 is, for example, 0.5 or more (preferably 0.7 or more, more preferably 1 or more) from the viewpoint of low reflectivity of the antireflection structure 10.
  • the aspect ratio H1 / P1 is, for example, 4 or less (preferably 3 or less, more preferably 2 or less) from the viewpoint of productivity.
  • the aspect ratio is obtained with the shortest pitch. Since the aspect ratio H1 / P1 is 0.5 to 4, the height difference H1 may be, for example, 100 nm to 500 nm.
  • a ratio H2 / H1 between the height difference H1 and the height difference H2 is set.
  • the ratio H2 / H1 is, for example, 0.1 or more (preferably 0.2 or more, more preferably 0.3 or more).
  • the slope becomes gentle between the apex 21a of the convex portion 21 and the predetermined portion 23a of the connecting portion 23, and the thickness of the transparent conductive film 30 becomes thicker. As a result, current flows easily.
  • the ratio H2 / H1 is, for example, 0.9 or less (preferably 0.7 or less, more preferably 0.5 or less). Since the ratio H2 / H1 is 0.1 to 0.9, the height difference H2 may be, for example, 30 nm to 300 nm.
  • the aspect ratio H1 / P1 and the ratio H2 / H1 can be optimized independently. Both low reflectivity and high conductivity are possible.
  • the pitch P1, the height difference H1, the height difference H2, and the like are obtained from an AFM image taken with an atomic force microscope (AFM) before forming the transparent conductive film 30, and a cross-sectional profile thereof.
  • AFM atomic force microscope
  • the convex portions 21 and the connecting portions 23 are alternately arranged along the F1 direction and the F2 direction which are linear directions, and the convex portions 21 and the concave portions 22 are arranged along the F3 direction which is a linear direction.
  • the present invention is not limited to this as long as the above conditions (1) and (2) are satisfied.
  • the convex portions 21 and the connecting portions 23 may be alternately arranged along a predetermined curved direction.
  • FIG. 5 is a plan view (part 2) schematically showing irregularities on the surface of the antireflection structure of FIG.
  • FIG. 5A shows an array of grids connecting the bottoms of the recesses
  • FIG. 5B shows a part of FIG.
  • the convex portions and the connecting portions are indicated by different dot patterns
  • the vertexes of the convex portions are black circles
  • the bottom points of the concave portions are white circles
  • the grids connecting the bottom points of the concave portions are indicated by bold lines.
  • an arbitrary recess 22-1 excluding the outermost recess 22 and six recesses 22-2 to 22-7 having the shortest total (sum) of the distances from the recess 22-1 Is arranged so as to satisfy the following conditions (3) and (4).
  • 23 exists.
  • a convex portion 21 exists between each of the remaining two concave portions 22-4 and 22-7 among the six concave portions 22-2 to 22-7 and the concave portion 22-1.
  • “Distance” is the distance between the bottom points 22 a of the recesses 22.
  • the transparent conductive film 30 is formed on the concavo-convex portion 20 of the antireflection structure 10.
  • the surface shape of the transparent conductive film 30 is a shape that follows the uneven portion 20 and is substantially the same as the surface shape of the uneven portion 20.
  • the average thickness of the transparent conductive film 30 is, for example, 10 nm to 150 nm, preferably 30 nm to 100 nm, and more preferably 50 nm to 80 nm.
  • the thickness of the transparent conductive film 30 is thick at a gentle slope portion and thin at a steep slope portion.
  • the thickness of the transparent conductive film 30 is the thickest at the vertex 21 a of the convex portion 21, and the thinnest at the portion between the vertex 21 a of the convex portion 21 and the bottom point 22 a of the concave portion 22.
  • the height difference H1 (see FIG. 4B) between the apex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22 becomes smaller, the inclination becomes gentler and the thickness of the transparent conductive film 30 becomes thicker. , Making it easier for electricity to flow. On the other hand, if the height difference H1 is too small, sufficient low reflectivity cannot be obtained.
  • the inclination of the slope is gentle like the vertex 21a of the convex portion 21, and thus the transparent conductive film 30 is thick. Therefore, current tends to flow in a net shape along the F1 direction and the F2 direction in which the convex portions 21 and the connecting portions 23 are alternately arranged.
  • the inclination becomes gentler as the height difference H2 (see FIG. 4A) becomes smaller (that is, H2 / H1 becomes smaller), Since the thickness of the transparent conductive film 30 is increased, a current easily flows.
  • the height difference H1 and the height difference H2 can be optimized independently, both low reflectivity and high conductivity can be achieved.
  • Examples of the material of the transparent conductive film 30 include ITO (In 2 O 3 —SnO 2 : indium tin oxide), SnO 2 (tin oxide), IZO (In 2 O 3 —ZnO: indium zinc oxide), and AZO ( Aluminum doped zinc oxide), FTO (fluorine doped tin oxide), GZO (gallium doped zinc oxide), or the like is used.
  • FIG. 6 and 7 are explanatory views (No. 1) and (No. 2) of the method for manufacturing a laminate according to the first embodiment of the present invention.
  • FIG. 6 shows a first step of producing a stamper using the prototype
  • FIG. 7 shows a second step of producing an antireflection structure (ie, replica) using the stamper.
  • the manufacturing method of a laminated body has the process of manufacturing the antireflection structure 10 which has the periodic uneven
  • the step includes, for example, a first step of producing a stamper 70 having a concavo-convex portion 80 on the surface of which the shape of the concavo-convex portion 60 of the prototype 50 is transferred, and a concavo-convex portion obtained by inverting and transferring the shape of the concavo-convex portion 80 of the stamper 70. And a second step of producing the antireflection structure 10 having 20 on the surface.
  • the prototype 50 can be used repeatedly in the first step, and the stamper 70 can be used repeatedly in the second step.
  • the first step includes, for example, a step of preparing the prototype 50 (see FIG. 6A), and a step of forming a stamper 70 by forming a metal film on the uneven portion 60 of the prototype 50 (FIG. 6B). )) And a step of peeling the stamper 70 from the master 50 (see FIG. 6C).
  • the material of the stamper 70 for example, nickel (Ni) or the like is used.
  • the stamper 70 is formed, for example, by forming a conductive film on the concavo-convex portion 60 of the prototype 50 and then forming a metal film such as Ni on the conductive film by electroforming.
  • PVD methods such as electroless plating, sputtering, and vacuum deposition are used.
  • the second step for example, a step of applying a curable resin onto the base 12 (see FIG. 7A), and the coating layer 13 is cured in a state where the uneven portion 80 of the stamper 70 is pressed against the surface of the coating layer 13. And a step of peeling the stamper 70 from the resin layer 14 formed by curing the coating layer 13 (see FIG. 7C).
  • a curable resin for example, a thermosetting resin or a photocurable resin is used.
  • a method for applying the curable resin for example, a general method such as a spin coating method, a die coating method, or an ink jet method is used.
  • the antireflection structure 10 is manufactured. Since the uneven portion 20 of the antireflection structure 10 has a shape obtained by inverting the shape of the uneven portion 60 of the prototype 50 twice, it has substantially the same shape and substantially the same dimensions as the uneven portion 60 of the prototype 50.
  • FIG. 8 is a plan view schematically showing irregularities on the surface of the prototype in FIG.
  • FIG. 8A shows an array of lattices connecting the vertices of the convex portions
  • FIG. 8B shows a part of FIG.
  • the convex portions and the connecting portions are indicated by different dot patterns
  • the vertexes of the convex portions are indicated by black circles
  • the bottom points of the concave portions are indicated by white circles
  • the lattices connecting the vertexes of the convex portions are indicated by bold lines.
  • the concavo-convex portion 60 of the prototype 50 is similar to the concavo-convex portion 20 of the antireflection structure 10, and has a convex portion 61, a concave portion 62, and a bottom of the concave portion 62 that is lower than the apex 61 a of the convex portion 61. It has the connection part 63 which connects predetermined convex parts 61 in the position higher than the point 62a.
  • a plurality of convex portions 61, a plurality of concave portions 62, and a plurality of connecting portions 63 are two-dimensionally arranged.
  • the convex portions 61 are periodically arranged in, for example, a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape (in this embodiment, a regular hexagonal lattice shape).
  • the convex portions 61 are preferably arranged periodically in a hexagonal lattice shape.
  • the distance from the arbitrary convex portion 61-1 around the arbitrary convex portion 61-1 except the outermost convex portion 61 is the shortest.
  • equal six convex portions 61-2 to 61-7 are arranged.
  • the vertices of the six convex portions 61-2 to 61-7 are arranged at an equal pitch with an interval of 60 ° around the vertex of the convex portion 61-1, and constitute a regular hexagonal lattice.
  • FIG. 8 there are six arbitrary convex portions 61-1 excluding the outermost convex portion 61, and the total (sum) of the distances from the convex portions 61-1.
  • the convex portions 61-2 to 61-7 are arranged so as to satisfy the following conditions (5) and (6).
  • (5) Between the four convex portions 61-2, 61-3, 61-5, 61-6 of the six convex portions 61-2 to 61-7 and the convex portion 61-1.
  • a concave portion 62 exists between each of the remaining two convex portions 61-4 and 61-7 among the six convex portions 61-2 to 61-7 and the convex portion 61-1. .
  • convex portions along two directions (F1 direction and F2 direction) among the three directions intersecting with an arbitrary convex portion 61-1 shown in FIG. 61 and the connection part 63 are arrange
  • Concave portions 62 and connecting portions 63 are alternately arranged along a direction parallel to the F1 direction.
  • the direction in which the convex portions 61 and the concave portions 62 are alternately arranged differs from the direction in which the convex portions 61 and the connecting portions 63 are alternately arranged. Therefore, the height difference between the apex 61a of the convex portion 61 and the bottom point 62a of the concave portion 62, and the predetermined portion of the apex 61a of the convex portion 61 and the connecting portion 63 (corresponding to the predetermined portion 23a of the connecting portion 23 of the antireflection structure 10). It is possible to design the difference in height with respect to the portion). Therefore, in the antireflection structure 10 shown in FIGS.
  • the height difference H1 between the vertex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22, the vertex 21a of the convex portion 21 and the predetermined portion 23a of the connecting portion 23 can be designed independently. Therefore, since the height difference H1 and the height difference H2 can be optimized independently, both low reflectivity and scratch resistance can be achieved.
  • the concavo-convex portion 20 of the antireflection structure 10 has a shape obtained by inverting the shape of the concavo-convex portion 60 of the prototype 50 twice, but the shape of the concavo-convex portion 60 of the prototype 50 is inverted one or more times.
  • the coating layer 13 may be cured in a state in which the uneven portion 60 of the prototype 50 is pressed against the surface of the coating layer 13 (see FIG. 7). Regardless of the number of times of reversal transfer, the convex portion 21 of the antireflection structure 10 satisfies the above conditions (1) and (2), so that both low reflectivity and scratch resistance can be achieved.
  • the method for manufacturing a laminate further includes a step (not shown) of forming a transparent conductive film 30 on the concavo-convex portion 20 of the antireflection structure 10.
  • a film forming method of the transparent conductive film 30 for example, a CVD method (chemical vapor deposition method) such as thermal CVD, plasma CVD, or photo CVD, or a PVD method (physical vapor deposition method) such as vacuum vapor deposition, plasma vapor deposition, or sputtering is used.
  • FIG. 9 is an explanatory diagram (part 3) of the method for manufacturing the antireflection structure according to the first embodiment of the present invention.
  • FIG. 9 shows a process of manufacturing a prototype.
  • the manufacturing method of a laminated body may further have the process of manufacturing the prototype 50.
  • This step includes, for example, a step of forming a resist film 52 on the substrate 51 (see FIGS. 6 and 7), and a step in which the light intensity changes in the first direction (G1 direction) on the surface of the resist film 52.
  • a step of exposing the stripes see FIG. 9B) and a step of developing the resist film 52 after the exposure of the first and second interference fringes.
  • the substrate 51 (see FIGS. 6 and 7) is formed in, for example, a sheet shape, a plate shape, a block shape, or a roll shape.
  • substrate 51 is not specifically limited, For example, a silicon
  • the material of the resist film 52 a general material is used, and either a negative type or a positive type can be used. A developing solution is selected according to the material of the resist film 52.
  • the first interference fringes are formed by the two-beam interference exposure method.
  • a plurality of photosensitive portions 53 exposed by the first interference fringes are arranged at intervals in the first direction (G1 direction).
  • a general laser oscillator such as a He—Cd laser (wavelength: 325 nm) is used.
  • the second interference fringes are formed by the two-beam interference exposure method in the same manner as the first interference fringes after the resist film 52 is rotated.
  • a plurality of photosensitive portions 54 exposed by the first interference fringes are arranged at intervals in the second direction (G2 direction).
  • the exposure of the first interference fringes and the exposure of the second interference fringes are performed separately, but may be performed simultaneously.
  • the development of the resist film 52 is performed after the exposure of the first and second interference fringes.
  • a resin layer 56 (see FIG. 6A) having periodic uneven portions 60 on the surface is obtained.
  • the intersection 55 between the photosensitive portion 53 and the photosensitive portion 54 becomes the convex portion 61 after development.
  • the convex portion 61 is formed in a tapered shape toward the vertex 61a.
  • the portions other than the intersecting portion 55 of the photosensitive portions 53 and 54 become the connecting portion 63 after development.
  • a crossing portion 55 between the photosensitive portion 53 and the photosensitive portion 54 becomes a concave portion 62 after development.
  • the recess 62 is formed in a tapered shape toward the bottom point 62a. The portions other than the intersecting portion 55 of the photosensitive portions 53 and 54 become the connecting portion 63 after development.
  • the prototype 50 is produced.
  • the angle ⁇ formed by the first direction and the second direction is 60 °
  • the convex portions 61 are periodically arranged in a regular hexagonal lattice shape.
  • the angle ⁇ formed by the first direction and the second direction is 90 °
  • the convex portions 61 are periodically arranged in a regular tetragonal lattice shape.
  • the prototype 50 of this embodiment is produced by exposing the interference fringes to the resist film 52 by the two-beam interference exposure method
  • the production method of the prototype 50 is not particularly limited.
  • the concavo-convex portion 60 may be formed on the surface of the substrate 51 by photolithography, electron beam (EB) drawing, laser drawing, or the like.
  • FIG. 10 is a perspective view showing a part of a laminate according to the second embodiment of the present invention.
  • contour lines are shown by thin lines in order to express unevenness on the surface of the laminate.
  • the laminated body 102 includes an antireflection structure 110 having a periodic concavo-convex portion 120 on the surface and a transparent conductive film 130 formed on the concavo-convex portion 120, similarly to the laminated body 2 shown in FIG.
  • the surface shape of the transparent conductive film 130 is a shape that follows the uneven portion 120.
  • a metal film (not shown) may be formed between the concavo-convex portion 120 and the transparent conductive film 130 in order to reduce resistance.
  • the antireflection structure 110 is a so-called moth-eye type, and includes, for example, a base 112 and a resin layer 114 formed on the base 112, similarly to the antireflection structure 10 shown in FIG. 2. Periodic uneven portions 120 are formed on the surface of the resin layer 114. Note that the antireflection structure 110 may be formed of only the resin layer 114.
  • FIG. 11 is a perspective view showing an antireflection structure according to the second embodiment of the present invention.
  • FIG. 11 in order to express the unevenness
  • FIG. 12 is a plan view schematically showing irregularities on the surface of the antireflection structure of FIG. 11.
  • FIG. 12A shows an array of lattices connecting the vertices of the convex portions, and
  • FIG. 12B shows a part of FIG. In FIG.
  • FIG. 13 is a view showing irregularities on the surface of the antireflection structure of FIG. 11.
  • 13A is unevenness in the cross section along line AA in FIG. 12
  • FIG. 13B is unevenness in the cross section along line BB in FIG. 12
  • FIG. 13C is C in FIG. Shows irregularities in the cross section along the line -C.
  • the antireflection structure 110 is of a so-called moth-eye type, and includes a base 112 and a resin layer 114 formed on the base 112 as in the first embodiment, as shown in FIG. Periodic uneven portions 120 are formed on the surface of the resin layer 114.
  • the concavo-convex portion 120 includes a convex portion 121, a concave portion 122, and a connecting portion 123 that couples the predetermined convex portions 121 to each other at a position lower than the vertex 121 a of the convex portion 121 and higher than the bottom point 122 a of the concave portion 122.
  • a plurality of convex portions 121, a plurality of concave portions 122, and a plurality of connecting portions 123 are two-dimensionally arranged.
  • the convex portions 121 are periodically arranged in a regular tetragonal lattice shape, for example. “Periodically arranged in a tetragonal lattice shape” means that, as shown in FIG. 12, the distance from the arbitrary concave portion 122 is shortest around the arbitrary concave portion 122 except the outermost concave portion 122. It means that four equal convex portions 121 are arranged. The vertices 121a of the four convex portions 121 are arranged at equal pitches at 90 ° intervals around the bottom point 122a of the concave portion 122, and constitute a regular tetragonal lattice.
  • the convex portions 121 may be periodically arranged in a quasi-tetragonal lattice shape.
  • “Periodically arranged in a quasi-tetragonal lattice shape” means periodically arranged in a shape that conforms to a regular tetragonal lattice.
  • the shape conforming to the tetragonal lattice is a shape obtained by distorting a regular tetragonal lattice such as a shape obtained by stretching a regular tetragonal lattice in a predetermined direction.
  • a lattice having a shape obtained by distorting a regular tetragonal lattice may be continuously arranged in a linear shape, a curved shape, or a meandering shape.
  • any six convex portions 121-1 excluding the outermost convex portion 121 and the six total distances (sums) from the convex portions 121-1 are the shortest.
  • the convex portions (for example, convex portions 121-2 to 121-7) are arranged so as to satisfy the following conditions (7) and (8).
  • (7) Between the four convex portions 121-2, 121-3, 121-5, 121-6 of the six convex portions 121-2 to 121-7 and the convex portion 121-1.
  • a concave portion 122 exists between each of the remaining two convex portions 121-4 and 121-7 among the six convex portions 121-2 to 121-7 and the convex portion 121-1. .
  • “Distance” is the distance between the vertices 121 a of the convex portions 121.
  • the above conditions (7) and (8) are satisfied for all combinations.
  • convex portions along two directions (the J1 direction and the J2 direction) among the three directions intersecting with the arbitrary convex portion 121-1 shown in FIG. 121 and the connection part 123 are arrange
  • the pitch P11 (see FIG. 13A) of the convex portions 121 arranged at intervals in the J1 direction and the J2 direction may be set to a length equal to or shorter than the wavelength of visible light.
  • the pitch P12 (see FIG. 13B) of the convex portions 121 arranged at intervals in the J3 direction is larger than the pitch P11.
  • Concave portions 122 and connecting portions 123 are alternately arranged along a direction parallel to the J1 direction (see FIGS. 12 and 13C).
  • the direction in which the convex portions 121 and the concave portions 122 are alternately arranged is different from the direction in which the convex portions 121 and the connecting portions 123 are alternately arranged. Therefore, the height difference H11 (see FIG. 13B) between the vertex 121a of the convex portion 121 and the bottom point 122a of the concave portion 122, the vertex 121a of the convex portion 121, and the predetermined portion 123a of the connecting portion 123 (see FIG. 11).
  • the height difference H12 (see FIG. 13A) can be designed independently. Therefore, the height difference H11 and the height difference H12 can be optimized independently.
  • the predetermined portion 123 a of the connecting portion 123 is the lowest portion between the vertices 121 a of the convex portions 121 and the highest portion between the bottom points 122 a of the concave portions 122.
  • the range of the pitch P11 may be set. Since the pitch P11 is set to a length equal to or shorter than the wavelength of visible light as described above, the pitch P11 may be, for example, 400 nm or less (preferably 300 nm or less). Further, the pitch P11 may be, for example, 50 nm or more (preferably 100 nm or more) from the viewpoint of productivity. Therefore, the pitch P11 may be 50 nm to 400 nm.
  • the aspect ratio of the concavo-convex portion 120 is represented by a ratio H11 / P11 between the height difference H11 between the apex 121a of the convex portion 121 and the bottom point 122a of the concave portion 122 and the pitch P11 of the convex portion 121.
  • the aspect ratio H11 / P11 is, for example, 0.5 or more (preferably 0.7 or more, more preferably 1 or more) from the viewpoint of low reflectivity of the antireflection structure 110.
  • the aspect ratio H11 / P11 is, for example, 4 or less (preferably 3 or less, more preferably 2 or less) from the viewpoint of productivity.
  • the aspect ratio is obtained with the shortest pitch. Since the aspect ratio H11 / P11 is 0.5 to 4, the height difference H11 may be, for example, 100 nm to 500 nm.
  • the ratio H12 / H11 between the height difference H11 and the height difference H12 is set.
  • the ratio H12 / H11 is, for example, 0.1 or more (preferably 0.2 or more, more preferably 0.3 or more).
  • the slope becomes gentle between the apex 121a of the convex portion 121 and the predetermined portion 123a of the connecting portion 123, and the thickness of the transparent conductive film 130 increases as will be described in detail later. As a result, current flows easily.
  • the ratio H12 / H11 is, for example, 0.9 or less (preferably 0.7 or less, more preferably 0.5 or less). Since the ratio H12 / H11 is 0.1 to 0.9, the height difference H12 may be, for example, 30 nm to 300 nm.
  • the aspect ratio H11 / P11 and the ratio H12 / H11 can be optimized independently. Both low reflectivity and high conductivity are possible.
  • the convex portions 121 and the connecting portions 123 are alternately arranged along the J1 direction and the J2 direction which are linear directions, and the convex portions 121 and the concave portions 122 are along the J3 direction which is the linear direction.
  • the present invention is not limited to this as long as the above conditions (7) and (8) are satisfied.
  • the convex portions 121 and the connecting portions 123 may be alternately arranged along a predetermined curved direction.
  • the transparent conductive film 130 is formed on the uneven portion 120 of the antireflection structure 110.
  • the surface shape of the transparent conductive film 130 is a shape that follows the uneven portion 120, and is substantially the same as the surface shape of the uneven portion 120.
  • the average thickness of the transparent conductive film 130 is, for example, 10 nm to 80 nm. If the average thickness is less than 10 nm, sufficient conductivity cannot be obtained. In addition, when the average thickness exceeds 80 nm, the surface shape of the transparent conductive film 130 is unlikely to follow the uneven portion 120.
  • the thickness of the transparent conductive film 130 is thick at a gentle slope and thin at a steep slope.
  • the thickness of the transparent conductive film 130 is the thickest at the apex 121 a of the convex portion 121 and the thinnest at the portion between the apex 121 a of the convex portion 121 and the bottom point 122 a of the concave portion 122.
  • the height difference H11 (see FIG. 13B) between the apex 121a of the convex part 121 and the bottom point 122a of the concave part 122 becomes smaller, the inclination becomes gentler and the thickness of the transparent conductive film 130 becomes thinner. , Making it easier for electricity to flow. On the other hand, if the height difference H11 is too small, sufficient low reflectivity cannot be obtained.
  • the transparent conductive film 130 is thick. Therefore, a current tends to flow in a net shape along the J1 direction and the J2 direction in which the convex portions 121 and the connecting portions 123 are alternately arranged.
  • the height difference H12 see FIG. 13A
  • the inclination becomes gentler, Since the thickness of the transparent conductive film 130 is increased, a current easily flows.
  • the height difference H11 and the height difference H12 can be optimized independently, so that both low reflectivity and high conductivity can be achieved.
  • Examples of the material of the transparent conductive film 30 include ITO (In 2 O 3 —SnO 2 : indium tin oxide), SnO 2 (tin oxide), IZO (In 2 O 3 —ZnO: indium zinc oxide), and AZO ( Aluminum doped zinc oxide), FTO (fluorine doped tin oxide), GZO (gallium doped zinc oxide), or the like is used.
  • the manufacturing method of the stacked body 102 having the above-described configuration is the same as the manufacturing method of the stacked body 2 according to the first embodiment, and thus the description thereof is omitted.
  • the laminated body may have a low-reflection treatment layer on the back surface of the antireflection structure (the surface facing the surface on which the moth-eye type irregularities are formed).
  • the low reflection treatment layer has translucency.
  • the low reflection treatment layer may reduce the reflectance by the interference action of light, or may reduce the reflectance by absorption of light.
  • the low reflection treatment layer is formed of an organic material and / or an inorganic material.
  • dry coating such as PVD method or CVD method
  • wet coating such as die coating method, spray coating method, ink jet method or spin coating method is used.
  • the antireflection structure is used for a touch panel, the low reflection treatment layer may be disposed on the outer side, and the moth-eye uneven portion may be disposed on the inner side.
  • the laminated body may have a protective layer on a transparent conductive film.
  • the protective layer has translucency.
  • the protective layer absorbs the unevenness of the transparent conductive film and smoothes the surface of the laminate.
  • the protective layer is formed of an organic material and / or an inorganic material.
  • the protective layer may be a dielectric layer formed of, for example, SiO 2 .
  • the convex part of the said embodiment is tapering toward the top, the convex part may have a flat top part.
  • the “distance” in the claims is the distance between the center points of the tops of the convex portions.
  • the recessed part of the said embodiment is tapered toward the bottom point, the recessed part may have a flat bottom part.
  • FIG. 14 is a cross-sectional view showing an example of a display device using a laminate.
  • the display device 140 includes a metal electrode layer 141, for example, a light emitting layer 142 formed of an organic light emitting diode (OLED) or an organic electroluminescence (OEL) element, a transparent electrode layer. 143, and a transparent substrate 144 formed of, for example, glass or the like is laminated.
  • the transparent electrode layer 143 can be formed by, for example, the laminate 2 shown in FIG. 1 or the laminate 102 shown in FIG. By using the structure of the laminated body 2 or 102 for the transparent electrode layer 143, reflection at the interface between the transparent substrate 144 and the transparent electrode layer 143 is reduced, and light extraction efficiency is improved. Can be improved.
  • FIG. 15 is a cross-sectional view showing an example of a lighting device using a laminate.
  • the illumination device 150 has a configuration in which a metal electrode layer 151, for example, a light emitting layer 152 formed of an OLED or an OEL element, a transparent electrode layer 153, and a transparent substrate 154 formed of, for example, glass are stacked.
  • the transparent electrode layer 153 can be formed by, for example, the laminate 2 shown in FIG. 1 or the laminate 102 shown in FIG. By using the structure of the laminated body 2 or 102 for the transparent electrode layer 153, reflection at the interface between the transparent substrate 154 and the transparent electrode layer 153 is reduced, and light extraction efficiency is improved. Can be improved.
  • FIG. 16 is a cross-sectional view showing an example of a solar cell using a laminate.
  • a solar cell 160 includes a metal electrode layer 161, for example, a P-type semiconductor layer 162-1 made of P-type silicon, an N-type semiconductor layer 162-2 made of, for example, N-type silicon, and a transparent electrode layer 163.
  • a transparent substrate 164 made of, for example, glass or the like is laminated.
  • the P-type semiconductor layer 162-1 and the N-type semiconductor layer 162-2 are examples of a power generation layer.
  • the transparent electrode layer 163 can be formed by, for example, the laminate 2 shown in FIG. 1 or the laminate 102 shown in FIG. By using the structure of the laminated body 2 or 102 for the transparent electrode layer 163, reflection at the interface between the transparent substrate 164 and the transparent electrode layer 163 is reduced, and light capturing efficiency is improved. Can be improved.
  • the solar panel (not shown) which is an example of a solar power generation device has the structure which has arrange
  • reflection at the interface between the transparent substrate 164 and the transparent electrode layer 163 of each solar cell 160 is reduced, Since the efficiency of capturing light from the battery 160 is improved, the power generation efficiency of the solar panel can be improved.
  • Example 1 an antireflection structure having periodic irregularities on the surface was prepared by the method shown in FIGS. 6, 7, and 9, and a transparent conductive film was formed on the irregularities of the antireflection structure. Thus, a laminate was produced.
  • the convex portions of the concave and convex portions of the antireflection structure are periodically arranged in a regular hexagonal lattice shape.
  • the original stamper was prepared by forming a resist film made of an acrylic resin on a glass substrate as a base, exposing the resist film with interference fringes twice, and then developing the resist film.
  • An ArF excimer laser (wavelength 193 nm) was used as the light source for the interference fringes, and the crossing angle between the first interference fringes and the second interference fringes was set to 60 °.
  • the produced prototype had irregularities on the surface.
  • the dimensional shape of the original concavo-convex part is 250 nm when measured with an AFM (Seiko Instruments Inc., L-trace), the height difference between the top of the convex part and the bottom of the concave part, and the height between the top part of the convex part and the connecting part The difference is 125 nm, and the shortest pitch at the top of the convex portion is 250 nm.
  • the stamper was prepared by forming a Ni layer on the concavo-convex portion of the original by electroforming and peeling the Ni layer from the original. As a result of measuring the size and shape of the surface of the stamper with the AMF, the surface of the stamper was formed with an uneven portion having a shape obtained by inverting and transferring the original uneven portion.
  • the antireflection structure is formed by applying a photocurable acrylic resin on a biaxially stretched PET film as a substrate by a spin coating method, and irradiating UV light in a state where the uneven portions of the stamper are pressed against the surface of the coating layer.
  • the coating layer was cured.
  • the surface of the resin layer was formed with an uneven portion obtained by reversing the shape of the uneven portion of the stamper.
  • the laminate was produced by forming a transparent conductive film on the uneven portion of the antireflection structure.
  • a transparent conductive film an ITO film (average thickness 20 nm, 40 nm, 60 nm) formed by vacuum sputtering was used.
  • the average thickness means the thickness of the transparent conductive film formed on the surface of a flat plate portion having no uneven structure when forming the film on the uneven portion.
  • the surface resistance of the laminate on the transparent conductive film side was measured with a non-contact conductivity meter (Delcom Instruments, 717 Conductance Monitor, manufactured by Inc.). The measurement results are shown in FIG. In FIG. 18, the horizontal axis represents the thickness (nm) of the transparent conductive film, and the vertical axis represents the surface resistivity ( ⁇ / ⁇ ).
  • the reflectance when the surface of the transparent conductive film (average thickness 60 nm) was irradiated with visible light was measured with a spectrophotometer (manufactured by JASCO Corporation, ARM-500N).
  • the measurement results are shown in FIG.
  • the horizontal axis represents the wavelength (nm) of incident light, and the vertical axis represents the reflectance (%).
  • L1 represents the measurement result of Example 1
  • L11 represents the measurement result of Comparative Example 1 described later.
  • Comparative Example 1 In Comparative Example 1, an antireflection structure having a conventional concavo-convex portion on its surface was produced, and a transparent conductive film was formed on the concavo-convex portion of the antireflection structure to produce a laminate.
  • the convex portions of the concave and convex portions of the antireflection structure are periodically arranged in a regular hexagonal lattice shape.
  • the original stamper was prepared by forming a resist film made of an acrylic resin on a silicon substrate as a base, exposing it with an EB drawing apparatus, and developing the resist film.
  • the fabricated prototype has a concavo-convex portion on the surface, and the concavo-convex portion has a structure in which a large number of conical projections 94 are arranged on a plane 92 (only five are shown in FIG. 17) as shown in FIG. Met.
  • Each projection 94 has a rounded chamfer at the corner between the top surface and the side surface of the truncated cone, and has a tip formed of a part of a spherical surface.
  • the lower portions of the protrusions 94 partially overlap each other so that the outer circumferences of the bottom surfaces 94a of the three adjacent protrusions 94 intersect at one point on the plane 92.
  • the dimensional shape of the concavo-convex portion of the prototype is measured by AFM (manufactured by Seiko Instruments Inc., L-trace), the height H21 of the protrusion 94 is 450 nm, and the pitch P21 of the apex 94b of the protrusion 94 is 300 nm.
  • the stamper was prepared by forming a Ni layer on the concavo-convex portion of the original by electroforming and peeling the Ni layer from the original.
  • the surface of the stamper was formed with uneven portions having a shape obtained by inverting and transferring the original uneven portion.
  • the antireflection structure is formed by applying a UV curable acrylic resin on a glass substrate as a substrate by a spin coating method, and irradiating the surface of the coating layer with UV light while pressing the uneven portions of the stamper. Was made by curing.
  • the surface of the resin layer was formed with an uneven portion obtained by reversing the shape of the uneven portion of the stamper.
  • the laminate was produced by forming a transparent conductive film on the uneven portion of the antireflection structure.
  • a transparent conductive film an ITO film (average thickness 20 nm, 40 nm, 60 nm) formed by vacuum sputtering was used.
  • the surface resistivity and reflectance (average thickness of the transparent conductive film 60 nm) of the laminate were measured in the same manner as in Example 1. The measurement results are shown in FIGS.
  • Example 1 has both low reflectivity and high conductivity unlike the structure of Comparative Example 1.
  • the convex portion of the reflective structure does not satisfy the above conditions (1) and (2), and the surface resistivity is high. This is because, in Comparative Example 1, the slope is steep between the convex portions of the antireflection structure.
  • the present invention is suitable for a laminate that can be used for, for example, a display device, a lighting device, a solar battery, a solar panel, and the like, and a method for manufacturing the laminate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

 周期的な凹凸部20を表面に有する反射防止構造体10と、凹凸部20上に成膜される透明導電膜30とを有する積層体2において、最外側の凸部21を除く任意の凸部21-1と、任意の凸部21-1からの距離の合計が最短である6個の凸部21-2~21-7とは、(1)6個の凸部21-2~21-7のうちの4個の凸部21-2、21-3、21-5、21-6のそれぞれと任意の凸部21-1との間に凸部21の頂点21aよりも低く凹部22の底点22aよりも高い位置で凸部同士を連結する連結部23が存在し、(2)6個の凸部21-2~21-7のうちの残りの2個の凸部21-4、21-7のそれぞれと任意の凸部21-1との間に凹部22が存在するように配置される。

Description

積層体、及び積層体の製造方法
 本発明は、積層体、及び積層体の製造方法に関する。
 近年、液晶ディスプレイ(LCD)等の表示装置や太陽電池向けに、周期的な凹凸部を表面に有する反射防止構造体が開発されている(例えば、特許文献1参照)。反射防止構造体は、所謂モスアイ(Moth Eye)型であって、凸部のピッチが可視光の波長以下のため、広い波長範囲で光反射率を低減し光透過率を向上することができる。この反射防止構造体の凹凸部上に透明導電膜を成膜してなる積層体は、例えば抵抗膜式や静電容量式のタッチパネル等に用いられる。
国際公開第2011/027909号パンフレット
 従来の反射防止構造体の凹凸部は、平面上に錐状の突起部が多数配列された構造を有する。突起部の充填率を高めるため、突起部は六方格子状又は四方格子状に周期的に配置される。突起部の充填率をさらに高めるため、突起部の下部同士が重なり合うように配置されることがある。
 突起部の下部同士が重なり合うと、凸部の頂点と凹部の底点との高低差が小さくなるので、十分な低反射率が得られなくなる。
 また、十分な低反射率を得るため、凸部の頂点と凹部の底点との高低差を大きく設定すると、突起部の側面が急峻となるので、突起部の側面上に成膜される透明導電膜の厚さが薄くなりやすく、導電性が低くなることがあった。そのため、従来の構造では、低反射性と高導電性との両立が難しかった。
 本発明は、上記課題に鑑みてなされたものであって、低反射性及び高導電性に優れた積層体、及び積層体の製造方法の提供を目的とする。
 上記目的を解決するため、本発明の一の態様による積層体は、
 周期的な凹凸部を表面に有する反射防止構造体と、
 前記凹凸部上に成膜される透明導電膜とを有し、
 最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする。
 さらに、本発明の他の態様による積層体の製造方法は、
 周期的な凹凸部を表面に有する原型を用いて周期的な凹凸部を表面に有する反射防止構造体を製造する工程と、
 前記反射防止構造体の前記凹凸部上に透明導電膜を成膜する工程とを有し、
 前記原型において、最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする。
 本発明によれば、低反射性、耐擦傷性及び高導電性に優れた積層体、及び積層体の製造方法が提供される。
本発明の第1の実施形態による積層体の一部を示す斜視図である。 図1の反射防止構造体を示す斜視図である。 図2の反射防止構造体の表面の凹凸を模式的に示す平面図(その1)である。 図2の反射防止構造体の表面の凹凸を示す図である。 図2の反射防止構造体の表面の凹凸を模式的に示す平面図(その2)である。 本発明の第1の実施形態による反射防止構造体の製造方法の説明図(その1)である。 本発明の第1の実施形態による反射防止構造体の製造方法の説明図(その2)である。 図6の原型の表面の凹凸を模式的に示す平面図である。 本発明の第1の実施形態による反射防止構造体の製造方法の説明図(その3)である。 本発明の第2の実施形態による積層体の一部を示す斜視図である。 図10の反射防止構造体を示す斜視図である。 図11の反射防止構造体の表面の凹凸を模式的に示す平面図である。 図11の反射防止構造体の表面の凹凸を示す図である。 積層体を用いた表示装置の一例を示す断面図である。 積層体を用いた照明装置の一例を示す断面図である。 積層体を用いた太陽電池の一例を示す断面図である。 比較例1による解析モデルの作製方法を示す説明図である。 実施例1及び比較例1による表面抵抗率の測定結果を示す図である。 実施例1及び比較例1による反射率の測定結果を示す図である。
 以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。
 [第1の実施形態]
 図1は、本発明の第1の実施形態による積層体の一部を示す斜視図である。図1において、積層体の表面の凹凸を表現するため、等高線を細線で示す。
 積層体2は、周期的な凹凸部20を表面に有する反射防止構造体10と、凹凸部20上に成膜される透明導電膜30とを備える。透明導電膜30の表面形状は凹凸部20に倣った形状である。凹凸部20と透明導電膜30との間には、抵抗を下げるため、図示されない金属膜が形成されてもよい。金属膜の厚さは、光透過率の観点から10nm以下であってもよい。この積層体2は、例えば抵抗膜式や静電容量式のタッチパネル等に用いられる。
 図2は、図1の反射防止構造体を示す斜視図である。図2において、反射防止構造体の表面の凹凸を表現するため、等高線を細線で示す。図3は、図2の反射防止構造体の表面の凹凸を模式的に示す平面図(その1)である。図3(A)は凸部の頂点を結ぶ格子の配列を示し、図3(B)は図3(A)の一部を示す。図3において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凸部の頂点を結ぶ格子を太線で示す。図4は、図2の反射防止構造体の表面の凹凸を示す図である。図4(A)は図3のA-A線に沿った断面における凹凸、図4(B)は図3のB-B線に沿った断面における凹凸、図4(C)は図3のC-C線に沿った断面における凹凸、図4(D)は図3のD-D線に沿った断面における凹凸を示す。
 反射防止構造体10は、所謂モスアイ型であって、図2に示すように、基体12と基体12上に形成される樹脂層14とで構成される。基体12及び樹脂層14は、透光性を有してもよい。樹脂層14の表面には、周期的な凹凸部20が形成されている。尚、反射防止構造体10は、樹脂層14のみで構成されてもよい。
 基体12は、例えばシート状、板状、又はブロック状に形成される。基体12の材料は、特に限定されないが、例えばガラス又はプラスチック等が用いられる。
 ガラスとしては、例えばソーダライムガラス、無アルカリガラス、石英ガラス等が用いられる。ガラスの成形方法としては、例えばフロート法、フュージョン法等が用いられる。
 プラスチックとしては、例えばポリメチルメタアクリレート、メチルメタクリレートと他のアルキル(メタ)アクリレート、スチレンなどといったビニルモノマーとの共重合体などの(メタ)アクリル系樹脂;ポリカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などのポリカーボネート系樹脂;(臭素化)ビスフェノールA型のジ(メタ)アクリレートの単独重合体ないし共重合体、(臭素化)ビスフェノールAモノ(メタ)アクリレートのウレタン変性モノマーの重合体及び共重合体などといった熱硬化性(メタ)アクリル系樹脂;ポリエステル特にポリエチレンテレフタレート、ポリエチレンナフタレート及び不飽和ポリエステル、アクリロニトリル-スチレン共重合体、ポリ塩化ビニル、ポリウレタン、エポキシ樹脂、ポリアリレート、ポリエーテルスルホン、ポリエーテルケトン、シクロオレフィンポリマー(商品名:アートン、ゼオノア)などが好ましい。また、耐熱性を考慮したアラミド系樹脂の使用も可能である。
 樹脂層14は、例えば基体12上に熱硬化性又は光硬化性の樹脂を塗布し、硬化してなる。樹脂層14の表面には凹凸部20が形成される。
 凹凸部20は、図2及び図3に示すように、凸部21と、凹部22と、凸部21の頂点21aよりも低く凹部22の底点22aよりも高い位置で所定の凸部21同士を連結する連結部23とを有する。複数の凸部21と、複数の凹部22と、複数の連結部23とが2次元的に配列されている。
 凸部21は、例えば正六方格子状、準六方格子状、正四方格子状、又は準四方格子状(図2及び図3では正六方格子状)に周期的に配置される。凸部21の充填率を高めるため、凸部21は六方格子状に周期的に配置されることが好ましい。以下、凸部21が六方格子状に周期的に配置される場合について説明する。尚、凸部21が四方格子状に周期的に配置される場合については、第2の実施形態で説明する。
 「正六方格子状に周期的に配置される」とは、図3に示すように、最外側の凸部21を除く任意の凸部21-1の周囲に、該任意の凸部21-1からの距離が最短で且つ等しい6個の凸部21-2~21-7が配置されることを意味する。6個の凸部21-2~21-7の頂点は、凸部21-1の頂点を中心に60°間隔で等ピッチで配置され、正六角形状の格子を構成する。
 「準六方格子状に周期的に配置される」とは、正六方格子に準ずる形状に周期的に配置されることを意味する。正六方格子に準ずる形状は、正六角形状の格子を所定の方向に引き伸ばした形状等、正六角形状の格子を歪ませた形状である。正六角形状の格子を歪ませた形状の格子は、直線形状、曲線形状、又は蛇行形状に連続的に並んでもよい。
 本実施形態では、図3に示すように、最外側の凸部21を除く任意の凸部21-1と、該凸部21-1からの距離の合計(和)が最短である6個の凸部21-2~21-7とは、下記の条件(1)及び(2)を満たすように配置される。
(1)6個の凸部21-2~21-7のうちの4個の凸部21-2、21-3、21-5、21-6のそれぞれと、凸部21-1との間に連結部23が存在する。
(2)6個の凸部21-2~21-7のうちの残りの2個の凸部21-4、21-7のそれぞれと、凸部21-1との間に凹部22が存在する。
 「距離」は、凸部21の頂点21a同士の間の距離のことである。距離の合計が最短である6個の凸部の組合せが複数有る場合、全ての組合せについて上記の条件(1)及び(2)が成立する。尚、本実施形態では、距離の合計が最短である6個の凸部の組合せは1つだけである。
 上記の条件(1)及び(2)が成立する場合、図3に示す任意の凸部21-1を中心に交差する3方向のうち、2方向(F1方向及びF2方向)に沿って凸部21と連結部23とが交互に配置され、残りの一方向(F3方向)に沿って凸部21と凹部22とが交互に配置される。F1方向、F2方向、及びF3に間隔をおいて並ぶ凸部21のピッチP1(図4(A)及び図4(B)参照)は、可視光の波長以下の長さに設定されてもよい。F3方向と垂直な方向に間隔をおいて並ぶ凸部21のピッチP2(図4(C)参照)は、ピッチP1よりも大きい。F1方向と平行な方向に沿って凹部22と連結部23とが交互に配置されている(図3及び図4(D)参照)。
 このように、凸部21及び凹部22が交互に配置される方向と、凸部21及び連結部23が交互に配置される方向とが異なる。そのため、凸部21の頂点21aと凹部22の底点22aとの高低差H1(図4(B)参照)と、凸部21の頂点21aと連結部23の所定部分23a(図2参照)との高低差H2(図4(A)参照)とを独立に設計可能である。従って、高低差H1と、高低差H2とを独立に最適化することが可能である。ここで、連結部23の所定部分23aは、凸部21の頂点21a同士の間における最も低い部分であって、凹部22の底点22a同士の間における最も高い部分である。
 高低差H1と高低差H2の最適化のため、先ず、ピッチP1の範囲が設定されてもよい。ピッチP1は、上述の如く、可視光の波長以下の長さに設定されるので、例えば400nm以下(好ましくは300nm以下)であってもよい。また、ピッチP1は、生産性の観点から、例えば50nm以上(好ましくは100nm以上)であってもよい。従って、ピッチP1は50nm~400nmであってもよい。
 次いで、凹凸部20のアスペクト比の範囲が設定される。凹凸部20のアスペクト比は、凸部21の頂点21aと凹部22の底点22aとの高低差H1と、凸部21のピッチP1との比H1/P1で表される。アスペクト比H1/P1は、反射防止構造体10の低反射性の観点から、例えば0.5以上(好ましくは0.7以上、より好ましくは1以上)である。また、アスペクト比H1/P1は、生産性の観点から、例えば4以下(好ましくは3以下、より好ましくは2以下)である。尚、凸部21のF1方向におけるピッチと、凸部21のF2方向におけるピッチと、凸部21のF3方向におけるピッチとが異なる場合、最短のピッチでアスペクト比が求められる。アスペクト比H1/P1が0.5~4であるので、高低差H1は例えば100nm~500nmであってもよい。
 次いで、高低差H1と高低差H2との比H2/H1が設定される。比H2/H1が大きくなるほど、連結部23の所定部分23aの高さが低くなるので、反射防止構造体10の低反射性が良くなる。比H2/H1は、例えば0.1以上(好ましくは0.2以上、より好ましくは0.3以上)である。一方、比H2/H1が小さくなるほど、詳しくは後述するが、凸部21の頂点21aと連結部23の所定部分23aとの間において、傾斜が緩やかになり、透明導電膜30の厚さが厚くなるので、電流が流れやすくなる。比H2/H1は、例えば0.9以下(好ましくは0.7以下、より好ましくは0.5以下)である。比H2/H1が0.1~0.9であるので、高低差H2は例えば30nm~300nmであってもよい。
 本実施形態では、高低差H1と、高低差H2とを独立に最適化することが可能であるので、アスペクト比H1/P1と、比H2/H1を独立に最適化することが可能であり、低反射性と高導電性の両立が可能である。
 ピッチP1、高低差H1、高低差H2等は、透明導電膜30の成膜前に原子間力顕微鏡(AFM:Atomic Force Microscope)により撮影したAFM画像、及びその断面プロファイルから求められる。
 尚、本実施形態では、直線方向であるF1方向及びF2方向に沿って凸部21と連結部23とが交互に配列され、直線方向であるF3方向に沿って凸部21と凹部22とが交互に配列されるが、上記の条件(1)及び(2)が成立する限り、本発明はこれに限定されない。例えば、六角形状の格子を湾曲状に配列する場合、所定の曲線方向に沿って凸部21と連結部23とが交互に配列されてもよい。
 尚、本実施形態では、凸部21の配置について着目したが、凹部22の配置について着目してもよい。
 図5は、図2の反射防止構造体の表面の凹凸を模式的に示す平面図(その2)である。図5(A)は凹部の底点を結ぶ格子の配列を示し、図5(B)は図5(A)の一部を示す。図5において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凹部の底点を結ぶ格子を太線で示す。
 図5に示すように、最外側の凹部22を除く任意の凹部22-1と、該凹部22-1からの距離の合計(和)が最短である6個の凹部22-2~22-7とは、下記の条件(3)及び(4)を満たすように配置される。
(3)6個の凹部22-2~22-7のうちの4個の凹部22-2、22-3、22-5、22-6のそれぞれと、凹部22-1との間に連結部23が存在する。
(4)6個の凹部22-2~22-7のうちの残りの2個の凹部22-4、22-7のそれぞれと、凹部22-1との間に凸部21が存在する。
 「距離」は、凹部22の底点22a同士の間の距離のことである。距離の合計が最短である6個の凹部22の組合せが複数有る場合、全ての組合せについて上記の条件(3)及び(4)が成立する。本実施形態では、距離の合計が最短である6個の凹部22の組合せは1つだけである。
 透明導電膜30は、反射防止構造体10の凹凸部20上に成膜される。透明導電膜30の表面形状は、凹凸部20に倣った形状であって、凹凸部20の表面形状と略同一である。
 透明導電膜30の平均厚さが厚くなるほど、透明導電膜30の導電性が高くなる。透明導電膜30の平均厚さが厚くなりすぎると、光の反射率が上がるおそれがある。透明導電膜30の平均厚さは、例えば10nm~150nm、好ましくは30nm~100nm、より好ましくは50nm~80nmである。
 透明導電膜30の厚さは、傾斜の緩やかな部分で厚く、傾斜の急な部分で薄くなる。透明導電膜30の厚さは、凸部21の頂点21aで最も厚く、凸部21の頂点21aと凹部22の底点22aとの間の部分で最も薄くなる。
 凸部21の頂点21aと凹部22の底点22aとの間において、高低差H1(図4(B)参照)が小さくなるほど、傾斜が緩やかになり、透明導電膜30の厚さが厚くなるので、電気が流れやすくなる。一方で、高低差H1が小さ過ぎると、十分な低反射性が得られなくなる。
 ところで、連結部23の所定部分23aでは、凸部21の頂点21aと同様に、傾斜が緩やかであるので、透明導電膜30の厚さが厚い。そのため、凸部21と連結部23とが交互に配列されるF1方向及びF2方向に沿って網状に電流が流れやすい。凸部21の頂点21aと連結部23の所定部分23aとの間において、高低差H2(図4(A)参照)が小さくなるほど(即ち、H2/H1が小さくなるほど)、傾斜が緩やかになり、透明導電膜30の厚さが厚くなるので、電流が流れやすくなる。
 本実施形態では、上述の如く、高低差H1と、高低差H2とを独立に最適化できるので、低反射性と、高導電性との両立が可能である。
 透明導電膜30の材料としては、例えばITO(In-SnO:インジウム錫酸化物)、SnO(酸化錫)、IZO(In-ZnO:インジウム亜鉛酸化物)、AZO(アルミドープ酸化亜鉛)、FTO(フッ素ドープ酸化錫)、GZO(ガリウムドープ酸化亜鉛)などが用いられる。
 図6及び図7は、本発明の第1の実施形態による積層体の製造方法の説明図(その1)及び(その2)である。図6は原型を用いてスタンパを作製する第1の工程を示し、図7はスタンパを用いて反射防止構造体(即ち、レプリカ)を作製する第2の工程を示す。
 積層体の製造方法は、周期的な凹凸部60を表面に有する原型50を用いて、周期的な凹凸部20を表面に有する反射防止構造体10を製造する工程を有する。該工程は、例えば、原型50の凹凸部60の形状を反転転写した凹凸部80を表面に有するスタンパ70を作製する第1の工程と、スタンパ70の凹凸部80の形状を反転転写した凹凸部20を表面に有する反射防止構造体10を作製する第2の工程とを有する。原型50は第1の工程において繰り返し使用可能であり、スタンパ70は第2の工程において繰り返し使用可能である。
 第1の工程は、例えば、原型50を用意する工程(図6(A)参照)と、原型50の凹凸部60上に金属膜を成膜してスタンパ70を作製する工程(図6(B)参照)と、スタンパ70を原型50から剥離する工程(図6(C)参照)とを有する。スタンパ70の材料には、例えばニッケル(Ni)等が用いられる。スタンパ70は、例えば原型50の凹凸部60上に導電膜を形成した後、導電膜上にNi等の金属膜を電鋳法で形成してなる。導電膜の形成方法としては、無電解メッキ、スパッタリングや真空蒸着等のPVD法が用いられる。
 第2の工程は、例えば基体12上に硬化性樹脂を塗布する工程(図7(A)参照)と、塗布層13の表面にスタンパ70の凹凸部80を押し付けた状態で塗布層13を硬化する工程(図7(B)参照)と、塗布層13を硬化してなる樹脂層14からスタンパ70を剥離する工程(図7(C)参照)とを有する。硬化性樹脂には、例えば熱硬化性樹脂又は光硬化性樹脂が用いられる。硬化性樹脂の塗布方法としては、例えばスピンコート法、ダイコート法、インクジェット法等の一般的な方法が用いられる。
 このようにして、反射防止構造体10が製造される。反射防止構造体10の凹凸部20は、原型50の凹凸部60の形状を2回反転した形状を有するので、原型50の凹凸部60と略同じ形状、略同じ寸法を有する。
 図8は、図6の原型の表面の凹凸を模式的に示す平面図である。図8(A)は凸部の頂点を結ぶ格子の配列を示し、図8(B)は図8(A)の一部を示す。図8において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凸部の頂点を結ぶ格子を太線で示す。
 原型50の凹凸部60は、反射防止構造体10の凹凸部20と同様に、図8に示すように、凸部61と、凹部62と、凸部61の頂点61aよりも低く凹部62の底点62aよりも高い位置で所定の凸部61同士を連結する連結部63とを有する。複数の凸部61と、複数の凹部62と、複数の連結部63とが2次元的に配列されている。
 凸部61は、例えば正六方格子状、準六方格子状、正四方格子状、又は準四方格子状(本実施形態では正六方格子状)に周期的に配置される。凸部61の充填率を高めるため、凸部61は、六方格子状に周期的に配置されることが好ましい。
 凸部61が正六方格子状に周期的に配置される場合、最外側の凸部61を除く任意の凸部61-1の周囲に、該任意の凸部61-1からの距離が最短で且つ等しい6個の凸部61-2~61-7が配置される。6個の凸部61-2~61-7の頂点は、凸部61-1の頂点を中心に60°間隔で等ピッチで配置され、正六角形状の格子を構成する。
 本実施形態では、図8に示すように、最外側の凸部61を除く任意の凸部61-1と、該凸部61-1からの距離の合計(和)が最短である6個の凸部61-2~61-7とは、下記の条件(5)及び(6)を満たすように配置される。
(5)6個の凸部61-2~61-7のうちの4個の凸部61-2、61-3、61-5、61-6のそれぞれと、凸部61-1との間に連結部63が存在する。
(6)6個の凸部61-2~61-7のうちの残りの2個の凸部61-4、61-7のそれぞれと、凸部61-1との間に凹部62が存在する。
 尚、本実施形態では、距離の合計が最短である6個の凸部の組合せは1つだけである。
 上記の条件(5)及び(6)が成立する場合、図8に示す任意の凸部61-1を中心に交差する3方向のうち、2方向(F1方向及びF2方向)に沿って凸部61と連結部63とが交互に配置され、残りの一方向(F3方向)に沿って凸部61と凹部62とが交互に配置される。F1方向と平行な方向に沿って、凹部62と連結部63とが交互に配置されている。
 このように、原型50において、凸部61及び凹部62が交互に配置される方向と、凸部61及び連結部63が交互に配置される方向とが異なる。そのため、凸部61の頂点61aと凹部62の底点62aとの高低差と、凸部61の頂点61aと連結部63の所定部分(反射防止構造体10の連結部23の所定部分23aに対応する部分)との高低差とを独立に設計可能である。よって、図2~図5に示す反射防止構造体10において凸部21の頂点21aと凹部22の底点22aとの高低差H1と、凸部21の頂点21aと連結部23の所定部分23aとの高低差H2とを独立に設計可能である。よって、高低差H1と、高低差H2とを独立に最適化することが可能であるので、低反射性と耐擦傷性との両立が可能である。
 尚、本実施形態では、反射防止構造体10の凹凸部20は、原型50の凹凸部60の形状を2回反転した形状を有するが、原型50の凹凸部60の形状を1回以上反転した形状を有していればよく、塗布層13(図7参照)の表面に原型50の凹凸部60を押し付けた状態で塗布層13を硬化してもよい。反転転写の回数に関係なく、反射防止構造体10の凸部21は上記の条件(1)及び(2)を満たすので、低反射性と耐擦傷性との両立が可能である。
 積層体の製造方法は、反射防止構造体10の凹凸部20上に透明導電膜30を成膜する図示されない工程をさらに有する。透明導電膜30の成膜方法としては、例えば熱CVDやプラズマCVD、光CVD等のCVD法(化学蒸着法)、真空蒸着やプラズマ蒸着、スパッタリング等のPVD法(物理蒸着法)が用いられる。
 図9は、本発明の第1の実施形態による反射防止構造体の製造方法の説明図(その3)である。図9は、原型を製造する工程を示す。
 積層体の製造方法は、原型50を製造する工程をさらに有してもよい。該工程は、例えば、基体51(図6及び図7参照)上にレジスト膜52を成膜する工程と、レジスト膜52の表面に、第1の方向(G1方向)に光強度が変化する第1の干渉縞を露光する工程(図9(A)参照)と、レジスト膜52の表面に、第1の方向と交差する第2の方向(G2方向)に光強度が変化する第2の干渉縞を露光する工程(図9(B)参照)と、第1及び第2の干渉縞の露光後にレジスト膜52を現像する工程とを含む。
 基体51(図6及び図7参照)は、例えばシート状、板状、ブロック状、又はロール状に形成される。基体51の材料は、特に限定されないが、例えばシリコン、石英ガラス、ソーダガラス、無アルカリガラス等が用いられる。
 レジスト膜52の材料としては、一般的なものが用いられ、ネガ型、ポジ型のいずれも使用可能である。レジスト膜52の材料に応じて、現像液が選定される。
 第1の干渉縞は、2光束干渉露光法で形成される。第1の干渉縞によって感光した複数の感光部53が第1の方向(G1方向)に間隔をおいて並ぶ。干渉波の光源としては、He-Cdレーザ(波長325nm)等の一般的なレーザ発振器が用いられる。
 第2の干渉縞は、レジスト膜52を回転した後、第1の干渉縞と同様に、2光束干渉露光法で形成される。第1の干渉縞によって感光した複数の感光部54が第2の方向(G2方向)に間隔をおいて並ぶ。
 尚、本実施形態では、第1の干渉縞の露光と、第2の干渉縞の露光とは、別々に行われるが、同時に行われてもよい。
 レジスト膜52の現像は、第1及び第2の干渉縞の露光後に行われる。レジスト膜52を現像することにより、周期的な凹凸部60を表面に有する樹脂層56(図6(A)参照)が得られる。
 レジスト膜52がネガ型の場合、強く感光した部分ほど現像後に残りやすい。そのため、感光部53と感光部54との交差部分55が、現像後に凸部61となる。凸部61は、頂点61aに向けて先細り状に形成される。感光部53、54の交差部分55以外の部分が、現像後に連結部63となる。
 また、レジスト膜52がポジ型の場合、強く感光した部分ほど現像によって除去されやすい。そのため、感光部53と感光部54との交差部分55が、現像後に凹部62となる。凹部62は、底点62aに向けて先細り状に形成される。感光部53、54の交差部分55以外の部分が、現像後に連結部63となる。
 このようにして、原型50が作製される。第1の方向と第2の方向とのなす角θが60°の場合、凸部61が正六方格子状に周期的に配置される。尚、第1の方向と第2の方向とのなす角θが90°の場合、凸部61が正四方格子状に周期的に配置される。
 尚、本実施形態の原型50は、2光束干渉露光法でレジスト膜52に干渉縞を露光して作製されるが、原型50の作製方法は特に限定されない。例えば、フォトリソグラフィ法、電子線(EB)描画法、レーザ描画法等で基体51の表面に凹凸部60を形成してもよい。
 [第2の実施形態]
 図10は、本発明の第2の実施形態による積層体の一部を示す斜視図である。図10において、積層体の表面の凹凸を表現するため、等高線を細線で示す。
 積層体102は、図2に示す積層体2と同様に、周期的な凹凸部120を表面に有する反射防止構造体110と、凹凸部120上に成膜される透明導電膜130とを備える。透明導電膜130の表面形状は凹凸部120に倣った形状である。凹凸部120と透明導電膜130との間には、抵抗を下げるため、図示されない金属膜が形成されてもよい。
 反射防止構造体110は、所謂モスアイ型であって、例えば、図2に示す反射防止構造体10と同様に、基体112と、基体112上に形成される樹脂層114とで構成される。樹脂層114の表面には、周期的な凹凸部120が形成されている。尚、反射防止構造体110は、樹脂層114のみで構成されてもよい。
 図11は、本発明の第2の実施形態による反射防止構造体を示す斜視図である。図11において、反射防止構造体の表面の凹凸を表現するため、等高線を細線で示す。図12は、図11の反射防止構造体の表面の凹凸を模式的に示す平面図である。図12(A)は凸部の頂点を結ぶ格子の配列を示し、図12(B)は図11(A)の一部を示す。図11において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凸部の頂点同士を結ぶ格子を太線で示す。図13は、図11の反射防止構造体の表面の凹凸を示す図である。図13(A)は図12のA-A線に沿った断面における凹凸、図13(B)は図12のB-B線に沿った断面における凹凸、図13(C)は図12のC-C線に沿った断面における凹凸を示す。
 反射防止構造体110は、所謂モスアイ型であって、図11に示すように、第1の実施形態と同様に、基体112と基体112上に形成される樹脂層114とで構成される。樹脂層114の表面には、周期的な凹凸部120が形成されている。
 凹凸部120は、凸部121と、凹部122と、凸部121の頂点121aよりも低く凹部122の底点122aよりも高い位置で所定の凸部121同士を連結する連結部123とを有する。複数の凸部121と、複数の凹部122と、複数の連結部123とが2次元的に配列されている。
 凸部121は、例えば正四方格子状に周期的に配置される。「正四方格子状に周期的に配置される」とは、図12に示すように、最外側の凹部122を除く任意の凹部122の周囲に、該任意の凹部122からの距離が最短で且つ等しい4個の凸部121が配置されることを意味する。4個の凸部121の頂点121aは、凹部122の底点122aを中心に90°間隔で等ピッチで配置され、正四角形の格子を構成する。
 尚、凸部121は、準四方格子状に周期的に配置されてもよい。「準四方格子状に周期的に配置される」とは、正四方格子に準ずる形状に周期的に配置されることを意味する。正四方格子に準ずる形状は、正四角形状の格子を所定の方向に引き伸ばした形状等、正四角形状の格子を歪ませた形状である。正四角形状の格子を歪ませた形状の格子は、直線形状、曲線形状、又は蛇行形状に連続的に並んでもよい。
 本実施形態では、図12に示すように、最外側の凸部121を除く任意の凸部121-1と、該凸部121-1からの距離の合計(和)が最短である6個の凸部(例えば凸部121-2~121-7)とは、下記の条件(7)及び(8)を満たすように配置される。
(7)6個の凸部121-2~121-7のうちの4個の凸部121-2、121-3、121-5、121-6のそれぞれと、凸部121-1との間に連結部123が存在する。
(8)6個の凸部121-2~121-7のうちの残りの2個の凸部121-4、121-7のそれぞれと、凸部121-1との間に凹部122が存在する。
 「距離」は、凸部121の頂点121a同士の間の距離のことである。距離の合計が最短である6個の凸部の組合せが複数有る場合、全ての組合せについて上記の条件(7)及び(8)が成立する。本実施形態では、凸部121-1からの距離が最短で且つ等しい凸部が4個あり、凸部121-1からの距離が次に短く且つ等しい凸部が4個あるので、凸部121-1からの距離の合計が最短である6個の凸部の組合せは6個ある。6個全ての組合せについて上記の条件(7)及び(8)が成立する。
 上記の条件(7)及び(8)が成立する場合、図12に示す任意の凸部121-1を中心に交差する3方向のうち、2方向(J1方向及びJ2方向)に沿って凸部121と連結部123とが交互に配置され、残りの一方向(J3方向)に沿って凸部121と凹部122とが交互に配置される。J1方向及びJ2方向に間隔をおいて並ぶ凸部121のピッチP11(図13(A)参照)は、可視光の波長以下の長さに設定されてもよい。J3方向に間隔をおいて並ぶ凸部121のピッチP12(図13(B)参照)はピッチP11よりも大きい。J1方向と平行な方向に沿って、凹部122と連結部123とが交互に配置されている(図12及び図13(C)参照)。
 このように、凸部121及び凹部122が交互に配置される方向と、凸部121及び連結部123が交互に配置される方向とが異なる。そのため、凸部121の頂点121aと凹部122の底点122aとの高低差H11(図13(B)参照)と、凸部121の頂点121aと連結部123の所定部分123a(図11参照)との高低差H12(図13(A)参照)とを独立に設計可能である。従って、高低差H11と、高低差H12とを独立に最適化することが可能である。ここで、連結部123の所定部分123aは、凸部121の頂点121a同士の間における最も低い部分であって、凹部122の底点122a同士の間における最も高い部分である。
 高低差H11と高低差H12の最適化のため、先ず、ピッチP11の範囲が設定されてもよい。ピッチP11は、上述の如く、可視光の波長以下の長さに設定されるので、例えば400nm以下(好ましくは300nm以下)であってもよい。また、ピッチP11は、生産性の観点から、例えば50nm以上(好ましくは100nm以上)であってもよい。従って、ピッチP11は50nm~400nmであってもよい。
 次いで、凹凸部120のアスペクト比の範囲が設定される。凹凸部120のアスペクト比は、凸部121の頂点121aと凹部122の底点122aとの高低差H11と、凸部121のピッチP11との比H11/P11で表される。アスペクト比H11/P11は、反射防止構造体110の低反射性の観点から、例えば0.5以上(好ましくは0.7以上、より好ましくは1以上)である。また、アスペクト比H11/P11は、生産性の観点から、例えば4以下(好ましくは3以下、より好ましくは2以下)である。尚、凸部121のJ1方向におけるピッチと、凸部121のJ2方向におけるピッチとが異なる場合、最短のピッチでアスペクト比が求められる。アスペクト比H11/P11が0.5~4であるので、高低差H11は例えば100nm~500nmであってもよい。
 次いで、高低差H11と高低差H12との比H12/H11が設定される。比H12/H11が大きくなるほど、連結部123の所定部分123aの高さが低くなるので、反射防止構造体110の低反射性が良くなる。比H12/H11は、例えば0.1以上(好ましくは0.2以上、より好ましくは0.3以上)である。一方、比H12/H11が小さくなるほど、詳しくは後述するが、凸部121の頂点121aと連結部123の所定部分123aとの間において、傾斜が緩やかになり、透明導電膜130の厚さが厚くなるので、電流が流れやすくなる。比H12/H11は、例えば0.9以下(好ましくは0.7以下、より好ましくは0.5以下)である。比H12/H11が0.1~0.9であるので、高低差H12は例えば30nm~300nmであってもよい。
 本実施形態では、高低差H11と、高低差H12とを独立に最適化することが可能であるので、アスペクト比H11/P11と、比H12/H11を独立に最適化することが可能であり、低反射性と高導電性の両立が可能である。
 尚、本実施形態では、直線方向であるJ1方向及びJ2方向に沿って凸部121と連結部123とが交互に配列され、直線方向であるJ3方向に沿って凸部121と凹部122とが交互に配列されるが、上記の条件(7)及び(8)が成立する限り、本発明はこれに限定されない。例えば、正四角形状の格子を湾曲状に配列する場合、所定の曲線方向に沿って凸部121と連結部123とが交互に配列されてもよい。
 尚、本実施形態では、凸部121の配置について着目したが、第1の実施形態と同様に、凹部122の配置について着目してもよい。
 透明導電膜130は、反射防止構造体110の凹凸部120上に成膜される。透明導電膜130の表面形状は、凹凸部120に倣った形状であって、凹凸部120の表面形状と略同一である。
 透明導電膜130の平均厚さは、例えば10nm~80nmである。平均厚さが10nm未満では、導電性が十分に得られない。また、平均厚さが80nmを超えると、透明導電膜130の表面形状が、凹凸部120に倣った形状となりにくい。
 透明導電膜130の厚さは、傾斜の緩やかな部分で厚く、傾斜の急な部分で薄くなる。透明導電膜130の厚さは、凸部121の頂点121aで最も厚く、凸部121の頂点121aと凹部122の底点122aとの間の部分で最も薄くなる。
 凸部121の頂点121aと凹部122の底点122aとの間において、高低差H11(図13(B)参照)が小さくなるほど、傾斜が緩やかになり、透明導電膜130の厚さが薄くなるので、電気が流れやすくなる。一方で、高低差H11が小さ過ぎると、十分な低反射性が得られなくなる。
 ところで、連結部123の所定部分123aでは、凸部121の頂点121aと同様に、傾斜が緩やかであるので、透明導電膜130の厚さが厚い。そのため、凸部121と連結部123とが交互に配列されるJ1方向及びJ2方向に沿って網状に電流が流れやすい。凸部121の頂点121aと連結部123の所定部分123aとの間において、高低差H12(図13(A)参照)が小さくなるほど(即ち、H12/H11が小さくなるほど)、傾斜が緩やかになり、透明導電膜130の厚さが厚くなるので、電流が流れやすくなる。
 本実施形態では、上述の如く、高低差H11と、高低差H12とを独立に最適化できるので、低反射性と、高導電性との両立が可能である。
 透明導電膜30の材料としては、例えばITO(In-SnO:インジウム錫酸化物)、SnO(酸化錫)、IZO(In-ZnO:インジウム亜鉛酸化物)、AZO(アルミドープ酸化亜鉛)、FTO(フッ素ドープ酸化錫)、GZO(ガリウムドープ酸化亜鉛)などが用いられる。
 上記構成の積層体102の製造方法は、第1の実施形態による積層体2の製造方法と同様であるので、説明を省略する。
 以上、本発明の第1及び第2の実施形態について説明したが、本発明は、上記の実施形態に制限されない。本発明の範囲を逸脱することなく、上記の実施形態に種々の変形や置換を加えることができる。
 例えば、積層体は、反射防止構造体の裏面(モスアイ型の凹凸部が形成される面と対向する面)に低反射処理層を有してもよい。低反射処理層は透光性を有する。低反射処理層は、光の干渉作用によって反射率を低下させてもよいし、光の吸収によって反射率を低下させてもよい。低反射処理層は、有機物及び/又は無機物で形成される。低反射処理層の形成方法には、PVD法やCVD法等のドライコーティング、ダイコート法、スプレイコート法、インクジェット法、スピンコート法等のウェットコーティングが用いられる。反射防止構造体がタッチパネルに用いられる場合、低反射処理層が外側、モスアイ型の凹凸部が内側に配置されてもよい。
 また、積層体は、透明導電膜上に保護層を有してもよい。保護層は透光性を有する。保護層は、透明導電膜の凹凸を吸収し、積層体の表面を平滑化する。保護層は有機物及び/又は無機物で形成される。保護層は例えばSiO等で形成される誘電体層であってもよい。
 また、上記実施形態の凸部は頂点に向けて先細り状であるが、凸部が平らな頂部を有してもよい。この場合、特許請求の範囲における「距離」は、凸部の頂部の中心点同士の間の距離である。同様に、上記実施形態の凹部は底点に向けて先細り状であるが、凹部が平らな底部を有してもよい。
 次に、上記実施形態における積層体の適用例について、図14~図16と共に説明する。
 図14は、積層体を用いた表示装置の一例を示す断面図である。図14において、表示装置140は、金属電極層141、例えば有機発光ダイオード(OLED:Organic Light Emitting Diode)又は有機エレクトロルミネッセンス(OEL:Organic Electro-Luminescence)素子で形成された発光層142、透明電極層143、及び例えばガラスなどで形成された透明基板144が積層された構成を有する。透明電極層143は、例えば図1に示す積層体2又は図10に示す積層体102で形成可能である。透明電極層143に積層体2又は102の構成を用いることで、透明基板144と透明電極層143との界面での反射が低減され、光の取り出し効率が向上するため、表示装置140の発光効率を向上させることができる。
 図15は、積層体を用いた照明装置の一例を示す断面図である。図15において、照明装置150は、金属電極層151、例えばOLED又はOEL素子で形成された発光層152、透明電極層153、及び例えばガラスなどで形成された透明基板154が積層された構成を有する。透明電極層153は、例えば図1に示す積層体2又は図10に示す積層体102で形成可能である。透明電極層153に積層体2又は102の構成を用いることで、透明基板154と透明電極層153との界面での反射が低減され、光の取り出し効率が向上するため、照明装置150の発光効率を向上させることができる。
 図16は、積層体を用いた太陽電池の一例を示す断面図である。図16において、太陽電池160は、金属電極層161、例えばP型シリコンで形成されたP型半導体層162-1、例えばN型シリコンで形成されたN型半導体層162-2、透明電極層163、及び例えばガラスなどで形成された透明基板164が積層された構成を有する。P型半導体層162-1及びN型半導体層162-2は、発電層の一例である。透明電極層163は、例えば図1に示す積層体2又は図10に示す積層体102で形成可能である。透明電極層163に積層体2又は102の構成を用いることで、透明基板164と透明電極層163との界面での反射が低減され、光の取り込み効率が向上するため、太陽電池160の発電効率を向上することができる。
 なお、太陽光発電装置の一例であるソーラーパネル(図示せず)は、例えば図16に示す如き太陽電池160を複数、例えばマトリクス状に配置した構成を有する。この場合、各太陽電池160の透明電極層163に積層体2又は102の構成を用いることで、各太陽電池160の透明基板164と透明電極層163との界面での反射が低減され、各太陽電池160光の取り込み効率が向上するため、ソーラーパネルの発電効率を向上することができる。
 以下に、実施例等により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 [実施例1]
 実施例1では、図6、図7及び図9に示す方法で周期的な凹凸部を表面に有する反射防止構造体を作製し、反射防止構造体の凹凸部上に透明導電膜を成膜して積層体を作製した。反射防止構造体の凹凸部の凸部は、正六方格子状に周期的に配置した。
 スタンパの原型は、基体としてのガラス基板上にアクリル系樹脂からなるレジスト膜を成膜し、レジスト膜に干渉縞を2回露光した後、レジスト膜を現像して作製した。干渉縞の光源にはArFエキシマーレーザ(波長193nm)を用い、1回目の干渉縞と2回目の干渉縞との交差角は60°とした。作製した原型は表面に凹凸部を有していた。
 原型の凹凸部の寸法形状は、AFM(Seiko Instruments社製、L-trace)で測定すると、凸部の頂点と凹部の底点との高低差は250nm、凸部の頂点と連結部との高低差は125nm、凸部の頂点の最短ピッチは250nmである。
 スタンパは、原型の凹凸部上に電鋳法でNi層を形成し、Ni層を原型から剥離して作製した。スタンパの表面の寸法形状をAMFで測定した結果、スタンパの表面には原型の凹凸部を反転転写した形状の凹凸部が形成されていた。
 反射防止構造体は、基体としての二軸延伸PETフィルム上に光硬化性のアクリル系樹脂をスピンコート法で塗布し、塗布層の表面にスタンパの凹凸部を押し付けた状態でUV光を照射し、塗布層を硬化して作製した。塗布層をUV硬化してなる樹脂層の表面の寸法形状をAFMで測定した結果、樹脂層の表面にはスタンパの凹凸部の形状を反転転写した凹凸部が形成されていた。樹脂層の凹凸部は、原型の凹凸部と略同じ寸法形状を有しており、H1(図4(A)参照)=250nm、H2(図4(B)参照)=125nm、P1(図4(A)及び(B)参照)=250nmである。
 積層体は、反射防止構造体の凹凸部上に透明導電膜を成膜して作製した。透明導電膜には、真空スパッタ法で成膜したITO膜(平均厚さ20nm、40nm、60nm)を用いた。平均厚さは、凹凸部に成膜する際に、凹凸構造のない平坦な平板部分の表面に成膜して形成される透明導電膜の厚さを意味する。
 積層体の透明導電膜側の表面抵抗は、非接触導電率計(Delcom Instruments, Inc.社製、717 Conductance Monitor)により測定した。測定の結果を図18に示す。図18において、横軸は透明導電膜の厚さ(nm)、縦軸は表面抵抗率(Ω/□)である。
 透明導電膜(平均厚さ60nm)の表面に可視光を照射したときの反射率は、分光測定機(日本分光社製、ARM-500N)により測定した。測定の結果を図19に示す。図19において、横軸は入射光の波長(nm)、縦軸は反射率(%)である。また、図19において、L1は実施例1の測定結果、L11は後述の比較例1の測定結果を表す。
 [比較例1]
 比較例1では、従来の凹凸部を表面に有する反射防止構造体を作製し、反射防止構造体の凹凸部上に透明導電膜を成膜して積層体を作製した。反射防止構造体の凹凸部の凸部は、正六方格子状に周期的に配置した。
 スタンパの原型は、基体としてのシリコン基板上にアクリル系樹脂からなるレジスト膜を成膜し、EB描画装置によって露光した後、レジスト膜を現像して作製した。作製した原型は表面に凹凸部を有しており、当該凹凸部は図17に示すように、平面92上に錐状の突起部94が多数(図17では5つのみ図示)配列された構造であった。
 各突起部94は、円錐台の頂面と側面との角部を丸く面取りしたものであって、球面の一部で構成される先端部を有する。隣り合う3つの突起部94の底面94aの外周が平面92において1点で交わるように、突起部94の下部同士が一部重なっている。
 原型の凹凸部の寸法形状は、AFM(Seiko Instruments社製、L-trace)で測定すると、突起部94の高さH21は450nm、突起部94の頂点94bのピッチP21は300nmである。
 スタンパは、原型の凹凸部上に電鋳法でNi層を形成し、Ni層を原型から剥離して作製した。スタンパの表面の寸法形状をAFMで測定した結果、スタンパの表面には原型の凹凸部を反転転写した形状の凹凸部が形成されていた。
 反射防止構造体は、基体としてのガラス基板上にUV硬化性のアクリル系樹脂をスピンコート法で塗布し、塗布層の表面にスタンパの凹凸部を押し付けた状態でUV光を照射し、塗布層を硬化して作製した。塗布層をUV硬化してなる樹脂層の表面の寸法形状をAFMで測定した結果、樹脂層の表面にはスタンパの凹凸部の形状を反転転写した凹凸部が形成されていた。樹脂層の凹凸部は、原型の凹凸部と略同じ寸法形状を有しており、H21=450nm、P21=300nmである。
 積層体は、反射防止構造体の凹凸部上に透明導電膜を成膜して作製した。透明導電膜には、真空スパッタ法で成膜したITO膜(平均厚さ20nm、40nm、60nm)を用いた。
 積層体の表面抵抗率及び反射率(透明導電膜の平均厚さ60nm)は、実施例1と同様にして測定した。測定の結果を図18及び図19に示す。
 図18及び図19から、実施例1の構造は、比較例1の構造と異なり、低反射性及び高導電性の両方を有していることがわかる。比較例1では、反射構造体の凸部が上記の条件(1)及び(2)を満たしておらず、表面抵抗率が高い。比較例1では、反射防止構造体の凸部同士の間において傾斜が急峻なためである。
 本発明は、例えば表示装置、照明装置、太陽電池、ソーラーパネルなどに使用できる積層体、及び積層体の製造方法に好適である。
 本出願は、2011年12月8日に日本国特許庁に出願された特願2011-269060に基づくものであり、その出願を優先権主張するものであり、その出願の全ての内容を参照することにより包含するものである。
2  積層体
10 反射防止構造体
20 凹凸部
21 凸部
21a 頂点
22 凹部
22a 底点
23 連結部
30 透明導電膜
50 原型
51 基体
52 レジスト膜
53、54 感光部

Claims (12)

  1.  周期的な凹凸部を表面に有する反射防止構造体と、
     前記凹凸部上に成膜される透明導電膜とを有し、
     最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする積層体。
  2.  前記任意の凸部を中心に交差する3方向のうち、2方向に沿って前記凸部と前記連結部とが交互に配置され、残りの一方向に沿って前記前記凸部と前記凹部とが交互に配置される請求項1に記載の積層体。
  3.  前記凸部は、正六方格子状に周期的に配置される請求項1又は2に記載の積層体。
  4.  前記凸部は、正四方格子状に周期的に配置される請求項1又は2に記載の積層体。
  5.  金属電極層、発光層、透明電極層、及び透明基板が積層された構成を有し、
     前記透明電極層は、請求項1乃至4のいずれか1項に記載の積層体で形成された表示装置。
  6.  金属電極層、発光層、透明電極層、及び透明基板が積層された構成を有し、
     前記透明電極層は、請求項1乃至4のいずれか1項に記載の積層体で形成された照明装置。
  7.  金属電極層、発電層、透明電極層、及び透明基板が積層された構成を有し、
     前記透明電極層は、請求項1乃至4のいずれか1項に記載の積層体で形成された太陽電池。
  8.  周期的な凹凸部を表面に有する原型を用いて周期的な凹凸部を表面に有する反射防止構造体を製造する工程と、
     前記反射防止構造体の前記凹凸部上に透明導電膜を成膜する工程とを有し、
     前記原型において、最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする積層体の製造方法。
  9.  前記任意の凸部を中心に交差する3方向のうち、2方向に沿って前記凸部と前記連結部とが交互に配置され、残りの一方向に沿って前記前記凸部と前記凹部とが交互に配置される請求項8に記載の積層体の製造方法。
  10.  前記原型を製造する工程をさらに有し、
     該工程は、
     基体上にレジスト膜を成膜する工程と、
     該レジスト膜の表面に、第1の方向に沿って光強度が変化する第1の干渉縞を露光する工程と、
     該レジスト膜の表面に、前記第1の方向と交差する第2の方向に沿って光強度が変化する第2の干渉縞を露光する工程と、
     前記第1及び第2の干渉縞の露光後に、前記レジスト膜を現像する工程とを有する請求項8又は9に記載の積層体の製造方法。
  11.  前記第1の方向と前記第2の方向とのなす角が60°である請求項10に記載の積層体の製造方法。
  12.  前記第1の方向と前記第2の方向とのなす角が90°である請求項10に記載の積層体の製造方法。
PCT/JP2012/081418 2011-12-08 2012-12-04 積層体、及び積層体の製造方法 WO2013084900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147014968A KR20140103264A (ko) 2011-12-08 2012-12-04 적층체, 및 적층체의 제조 방법
CN201280060435.4A CN103988097B (zh) 2011-12-08 2012-12-04 层叠体及层叠体的制造方法
JP2013548251A JP6079637B2 (ja) 2011-12-08 2012-12-04 積層体、表示装置、照明装置、太陽電池、及び積層体の製造方法
US14/291,633 US20140261677A1 (en) 2011-12-08 2014-05-30 Laminated structure and laminated structure production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011269060 2011-12-08
JP2011-269060 2011-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/291,633 Continuation US20140261677A1 (en) 2011-12-08 2014-05-30 Laminated structure and laminated structure production method

Publications (1)

Publication Number Publication Date
WO2013084900A1 true WO2013084900A1 (ja) 2013-06-13

Family

ID=48574258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081418 WO2013084900A1 (ja) 2011-12-08 2012-12-04 積層体、及び積層体の製造方法

Country Status (6)

Country Link
US (1) US20140261677A1 (ja)
JP (1) JP6079637B2 (ja)
KR (1) KR20140103264A (ja)
CN (1) CN103988097B (ja)
TW (1) TWI607874B (ja)
WO (1) WO2013084900A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140293162A1 (en) * 2013-04-01 2014-10-02 Lg Electronics Inc. Touch display unit and method for manufacturing the same
CN104793778A (zh) * 2014-01-21 2015-07-22 胜华科技股份有限公司 触控装置
JP2015184629A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 液晶装置、及び電子機器
WO2016190247A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 微細凹凸構造を表面に有する物品およびその製造方法
JP2017054713A (ja) * 2015-09-10 2017-03-16 王子ホールディングス株式会社 金型、有機発光ダイオードの製造方法及び有機発光ダイオード
US10487009B2 (en) 2012-10-12 2019-11-26 Corning Incorporated Articles having retained strength

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180267210A1 (en) * 2015-02-03 2018-09-20 Sony Corporation Anti-reflection film, optical component, optical device, and method of producing anti-reflection film
CN104867995B (zh) * 2015-04-27 2017-03-01 电子科技大学 二维余弦波形面陷光结构及基于该结构的太阳能薄膜电池
KR20160149847A (ko) 2015-06-19 2016-12-28 삼성전자주식회사 반사 방지 필름, 그 필름을 포함한 전자 장치, 및 그 필름의 제조방법과 제조장치
CN106206794A (zh) * 2016-09-19 2016-12-07 黄仲佳 一种太阳能电池封装结构及其制作方法及具有其的太阳能电池
CN107134499B (zh) * 2017-05-23 2020-01-31 电子科技大学 复合曲面陷光结构及其制备方法
KR102622792B1 (ko) * 2018-08-30 2024-01-08 엘지디스플레이 주식회사 발광 표시 장치
ES2918185T3 (es) * 2018-12-20 2022-07-14 Ivoclar Vivadent Ag Bloque de molienda dental multicolor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008165213A (ja) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd 反射防止フィルム及び表示装置
JP2011154338A (ja) * 2009-09-02 2011-08-11 Sony Corp 透明導電性電極、タッチパネル、情報入力装置、および表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197100B2 (ja) * 2002-02-20 2008-12-17 大日本印刷株式会社 反射防止物品
EP1624502B1 (en) * 2004-08-04 2015-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
US7964788B2 (en) * 2006-11-02 2011-06-21 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
JP2009187001A (ja) * 2008-01-11 2009-08-20 Panasonic Corp 反射防止構造体、反射防止構造体の製造方法、及び反射防止構造体を備えた光学装置
JP5439783B2 (ja) * 2008-09-29 2014-03-12 ソニー株式会社 光学素子、反射防止機能付き光学部品、および原盤
TWI467214B (zh) * 2009-09-02 2015-01-01 Dexerials Corp A conductive optical element, a touch panel, an information input device, a display device, a solar cell, and a conductive optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008165213A (ja) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd 反射防止フィルム及び表示装置
JP2011154338A (ja) * 2009-09-02 2011-08-11 Sony Corp 透明導電性電極、タッチパネル、情報入力装置、および表示装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487009B2 (en) 2012-10-12 2019-11-26 Corning Incorporated Articles having retained strength
US10954157B2 (en) 2012-10-12 2021-03-23 Corning Incorporated Articles having retained strength
US11434166B2 (en) 2012-10-12 2022-09-06 Corning Incorporated Articles with a low-elastic modulus layer and retained strength
US11440837B2 (en) 2012-10-12 2022-09-13 Corning Incorporated Articles having retained strength
US11479501B2 (en) 2012-10-12 2022-10-25 Corning Incorporated Articles with a low-elastic modulus layer and retained strength
US11919803B2 (en) 2012-10-12 2024-03-05 Corning Incorporated Articles with a low-elastic modulus layer and retained strength
US20140293162A1 (en) * 2013-04-01 2014-10-02 Lg Electronics Inc. Touch display unit and method for manufacturing the same
CN104793778A (zh) * 2014-01-21 2015-07-22 胜华科技股份有限公司 触控装置
JP2015184629A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 液晶装置、及び電子機器
WO2016190247A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 微細凹凸構造を表面に有する物品およびその製造方法
JP2017054713A (ja) * 2015-09-10 2017-03-16 王子ホールディングス株式会社 金型、有機発光ダイオードの製造方法及び有機発光ダイオード

Also Published As

Publication number Publication date
TWI607874B (zh) 2017-12-11
CN103988097A (zh) 2014-08-13
US20140261677A1 (en) 2014-09-18
CN103988097B (zh) 2016-08-24
KR20140103264A (ko) 2014-08-26
TW201331036A (zh) 2013-08-01
JP6079637B2 (ja) 2017-02-15
JPWO2013084900A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6079637B2 (ja) 積層体、表示装置、照明装置、太陽電池、及び積層体の製造方法
JP4626721B1 (ja) 透明導電性電極、タッチパネル、情報入力装置、および表示装置
TWI446368B (zh) A transparent conductive element, an input device, and a display device
TWI467214B (zh) A conductive optical element, a touch panel, an information input device, a display device, a solar cell, and a conductive optical element
JP5307307B1 (ja) シート及び発光装置
US9116289B2 (en) Transparent conductive element, information input apparatus, and display apparatus
WO2011080890A1 (ja) 導電性光学素子
JP6005517B2 (ja) パターン基体およびその製造方法ならびに情報入力装置および表示装置
US20100195204A1 (en) Optical film
TWI480572B (zh) A transparent conductive element, an input device, and a display device
WO2014013862A1 (ja) 導電性光学素子、入力素子、および表示素子
JP2011167924A (ja) 低反射導電性表面を有する材料およびその製造方法
KR20130109915A (ko) 복수의 광 관리 조직들
JP2010153570A (ja) 太陽電池モジュール
JP2012216084A (ja) 情報入力装置
WO2013084899A1 (ja) 反射防止構造体、及び反射防止構造体の製造方法
JP2013037369A (ja) 透明導電性素子、入力装置、および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548251

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147014968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856406

Country of ref document: EP

Kind code of ref document: A1