WO2013084874A1 - プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法 - Google Patents

プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法 Download PDF

Info

Publication number
WO2013084874A1
WO2013084874A1 PCT/JP2012/081364 JP2012081364W WO2013084874A1 WO 2013084874 A1 WO2013084874 A1 WO 2013084874A1 JP 2012081364 W JP2012081364 W JP 2012081364W WO 2013084874 A1 WO2013084874 A1 WO 2013084874A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe card
insulating film
bump
bumps
sheet
Prior art date
Application number
PCT/JP2012/081364
Other languages
English (en)
French (fr)
Inventor
敏夫 田子
石坂 政明
Original Assignee
エルフィノート・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルフィノート・テクノロジー株式会社 filed Critical エルフィノート・テクノロジー株式会社
Priority to KR1020137031743A priority Critical patent/KR101955663B1/ko
Priority to US14/128,111 priority patent/US9642255B2/en
Publication of WO2013084874A1 publication Critical patent/WO2013084874A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • G01R1/06744Microprobes, i.e. having dimensions as IC details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a probe card used for a wafer test of a semiconductor device or a semiconductor chip, and more particularly to a multi-pin probe card for a wafer batch test.
  • a probe card In the test process of a semiconductor device or semiconductor chip formed on a wafer, a probe card is used to contact the electrode pad of the semiconductor device on the wafer, and signals are applied and collected for testing.
  • a probe card of a cantilever method using a probe pin made of tungsten or the like using a probe pin made of tungsten or the like, or a matrix method using a bent pin, etc. is applied to the wafer on the wafer placed on the stage of the prober apparatus from above. Tests are conducted in contact.
  • the semiconductor chip on the wafer that can be contacted by the probe card is a part of the whole wafer. Therefore, the wafer is moved by the prober sequentially while contacting in a piecewise manner. The entire test was conducted.
  • the membrane sheet type probe card with bumps described in Patent Document 1 and Patent Document 2 has a structure that can realize a probe card having tens of thousands of pins that can meet this demand.
  • 201 is a membrane bump (membrane sheet with bumps), and a bump 207, a short-circuit portion 209, and a back electrode portion 211 are formed on a polyimide sheet (insulating film) 205 stretched on a rigid ring 203.
  • the bump 207 has a role of contacting an electrode pad that is a lead terminal on the wafer.
  • Reference numeral 213 denotes an anisotropic conductive film, which is formed by forming a conductive path 217 that is energized in the thickness direction by being compressed in the thickness direction in an elastic film 215 formed of a rubber material.
  • Reference numeral 219 denotes a wiring board, which is composed of an insulating substrate 221 having a thickness of 3 to 5 mm serving as a base material, a terminal 223, an external terminal 225, and a lead wire 227 connecting between the terminals. It has a role of extracting the signal transmitted to 223 to the outside.
  • the bump 207, the short-circuit portion 209, the back electrode portion 211, the conductive path 217, and the terminal 223 are located at positions corresponding to electrode pads that are lead terminals on the wafer to be tested (more specifically, electrode pads). In the state where the positions in the horizontal direction coincide with each other, thousands to tens of thousands are prepared as necessary.
  • the polyimide sheet 205 is irradiated with a laser on a material obtained by bonding a polyimide sheet 205 having a thickness of about 25 ⁇ m to a copper foil 229 having a thickness of about 18 ⁇ m, and a small-diameter hole 231 having a diameter of about 30 ⁇ m. Is formed (first step).
  • a protective resist 233 is applied to the back surface of the copper foil 229, a plating electrode is connected to the copper foil 229, and nickel electroplating is performed. The plating forms the short-circuit portion 209 so as to fill the small-diameter hole 231.
  • the plating When the plating reaches the surface of the polyimide sheet 205, the plating spreads uniformly in all directions and progresses into a hemisphere, thereby forming the bump 207 (second).
  • Plating is performed until the height of the bump 207 reaches 10 to 20 ⁇ m.
  • the protective resist 233 applied to the back surface of the copper foil 229 is removed, the resist is applied again to expose the pattern of the back electrode portion, and the back electrode portion 211 is formed by etching the copper foil 229. Then, the resist is removed, and finally the polyimide sheet 205 is attached to the rigid ring 203 to form the membrane bump 201 (see the third step, FIG. 19).
  • This probe card has a frame plate 301 shown in FIG.
  • the frame plate 301 has a diameter of 200 mm to 300 mm, which is substantially the same as the size of the wafer to be inspected, and has a thickness of 40 ⁇ m to 80 ⁇ m, for example.
  • the frame plate 301 has a thermal expansion coefficient or linear thermal expansion coefficient close to that of the wafer so as to eliminate the influence of the position shift accompanying the temperature change, and the thermal expansion coefficient or linear thermal expansion coefficient of the frame plate 301. Is, for example, 0 to 1 ⁇ 10 ⁇ 5 / ° C.
  • the frame plate 301 is formed with a plurality of through holes or through holes 303 penetrating in the thickness direction corresponding to the semiconductor chips formed on the wafer, and these are formed by etching.
  • FIG. 21 shows the structure around the through hole 303 formed in the frame plate 301, and the anisotropic conductive film 305 and the contact film (membrane sheet with bump) 307 are arranged in a state supported around the through hole 303. ing.
  • the anisotropic conductive film 305 includes an elastic film 309 and a conductive path 311 provided on the elastic film 309.
  • the elastic film 309 is formed of a rubber material having a thickness of 80 ⁇ m and has an outer periphery (313).
  • the frame plate 301 is fixed around the through hole 303 and has a role of holding the conductive path 311.
  • the conductive path 311 includes a large number of metal particles in an elastic film having a thickness of 130 ⁇ m, and has a function of being deformed when pressure is applied from the thickness direction and energizing in the vertical direction by contact between the metal particles.
  • the contact film 307 includes an insulating film 315, bumps 317 formed on the surface side of the insulating film 315, and conductive electrodes 319.
  • the insulating film 315 is made of polyimide having a thickness of 25 ⁇ m, and the periphery or the back of the periphery is fixed to the frame plate 301 with an adhesive 321.
  • Bumps 317 having a diameter of about 20 ⁇ m are formed of nickel on the surface side of the insulating film 315 and have a role of contacting the electrode pads of the semiconductor chip of the wafer.
  • a conductive electrode 319 connected to the bump 317 is formed in the insulating film 315 on the surface of the insulating film 315 and in the film, and has a role of connecting the bump 317 and the conductive path 311 of the anisotropic conductive film 305.
  • Reference numeral 323 denotes a wiring board having a large diameter corresponding to the wafer, and is composed of an insulating substrate 325 having a thickness of 3 to 5 mm serving as a base material, a terminal 327, an external terminal 329, and a lead wire 331, and the bump 317 to the conductive electrode 319.
  • the signal transmitted to the terminal 327 via the conductive path 311 is taken out from the external terminal 329 to the outside.
  • reference numeral 333 denotes a laminated sheet, in which a large number of contact films 307 are formed.
  • FIG. 23 shows a cross section of the laminated sheet.
  • a laminated sheet 333 a laminate of 4 ⁇ m-thick copper foil 337 to a 25 ⁇ m-thick polyimide sheet 335 that is an aggregate of the insulating films 315 is used.
  • a resist 339 is attached to the bonding sheet 333, and a pattern is formed on the resist 339 using a photomask in order to form conductive electrodes at positions corresponding to the electrode pads of the semiconductor chip formed on the wafer.
  • the bonding sheet 333 is immersed in a polyimide etching solution, and conductive electrode holes 341 are formed in the polyimide sheet 335 using the pattern formed in the resist 339 as a mask (see the first step, FIG. 24).
  • etching proceeds in a mortar shape (trapezoidal cross section) at an angle of 50 ° with respect to the sheet surface as shown in FIG.
  • the resist 339 is peeled off, and nickel plating is performed using the copper foil 337 as a plating electrode.
  • nickel is grown in the conductive electrode hole 341 to the thickness of the polyimide sheet 335 to form a conductive electrode 319. (Second step).
  • a resist 342 is attached to the copper foil 337, and a bump hole 343 is formed in the resist 342 using a photomask to form a bump 317 at a position corresponding to the electrode pad of the semiconductor chip (third Step, see FIG. Further, as shown in FIG. 27, nickel plating is performed using the copper foil 337 as a plating electrode, and nickel is grown in the bump hole 343 within a range not exceeding the thickness of the resist 342 to form a bump 317 (fourth step). .
  • the resist 342 is peeled off, a resist 345 is attached, a pattern is formed on the resist 345 using a photomask, and in this state, the copper 337 is etched to etch the copper 337 around the bump 317.
  • a conductive electrode base 347 constituting a part of the conductive electrode 319 is formed (fifth step, FIG. 28).
  • the resist 345 is peeled off, the rectangular portion in FIG. 22 is cut, and divided to form the contact film 307.
  • an adhesive 321 is applied to a non-defective contact film 307 selected from these, and mounted in each through hole 303 of the frame plate 301 using a mounting machine as shown in FIG.
  • the probe card is completed by arranging the entire 301 on the wiring board 323 or on the surface side.
  • the configuration of the probe card shown in the first conventional embodiment requires a large pressure for contact with the electrode pad of the wafer because the bump shape is hemispherical and the tip of the bump is not sharp.
  • the shape of the bump is a quadrangular prism or a column. Therefore, it is possible to obtain a bump with a thin tip by forming a small cross-sectional area of the bump, but it is not possible to make only the tip of the bump thin, so from the viewpoint of ensuring the strength of the entire bump, Sharpening is practically impossible. Therefore, even in the second conventional probe card, a large pressure is required for contact with the electrode pad of the wafer.
  • the present invention has been made to solve such conventional problems, and is used for a probe card capable of bringing a large number of bumps into good contact with electrode pads of a wafer at a low pressure in a lump.
  • An object is to provide a membrane sheet with bumps and a method for producing the membrane sheet with bumps.
  • the bumped membrane sheet for a probe card of the present invention is provided on the surface of the insulating film so as to be in electrical contact with the insulating film and the electrode pads of the semiconductor chip formed on the wafer.
  • a bumped membrane sheet for a probe card comprising a bump and a conductive electrode extending from the bump to the back side of the insulating film through the insulating film, and in the insulating film of the conductive electrode
  • the located portion is a trapezoid whose cross-sectional shape becomes narrower toward the surface of the insulating film, and the bump is formed in a triangular cross-section and has a bottom surface wider than the upper surface (surface) of the conductive electrode.
  • the upper surface of the conductive electrode is integrated with the bottom surface of the bump.
  • the bump is formed in a triangular cross section such as a conical shape or a pyramid shape (for example, a quadrangular pyramid shape), for example, the tip is sharp and can make good electrical contact with the electrode pad of the wafer with a small pressure.
  • the cross-sectional area gradually increases toward the bottom surface, it is possible to ensure sufficient strength as a whole.
  • the conductive electrode has a trapezoidal cross-sectional shape whose width becomes narrower toward the surface of the insulating film, the conductive electrode is prevented from coming off toward the surface side of the insulating film.
  • the conductive electrode Since the bump has a bottom surface wider than the top surface of the conductive electrode, the conductive electrode is prevented from coming off even if it faces the back surface side of the insulating film by contact or engagement between the outside of the bottom surface of the bump and the insulating film. Is done.
  • the upper surface of the conductive electrode is positioned at the same height as the surface of the insulating film.
  • the conductive electrode of the membrane sheet with bumps for the probe card has a back surface side end portion protruding from the back surface of the insulating film, and this back surface side end portion is the bottom surface (back surface) of the portion located in the insulating film of the conductive electrode. It can be formed to be wider. For example, the rear side end is integrated with the bottom surface of the portion located in the insulating film of the conductive electrode. With such a configuration, the effect of preventing the conductive electrode from coming off to the surface side of the insulating film is improved by the contact or engagement between the outside of the back surface side end and the back surface of the insulating film.
  • Such a membrane sheet with bumps constitutes a probe card in combination with a wiring board having terminals electrically connected to conductive electrodes.
  • the membrane sheet with bumps can have a size corresponding to the wafer, for example, the same or almost the same size as the wafer.
  • the probe card can include a frame plate in which a plurality of through holes corresponding to the semiconductor chip are formed, and the membrane sheet with bumps has a size corresponding to the through hole, and the periphery of the through hole on the surface side of the frame plate Can be supported.
  • a plurality of conductive films extending in the thickness direction are formed in a size corresponding to the through-hole, and are formed in a state of being insulated from each other in the elastic film and the elastic film supported around the through-hole or the through-hole.
  • An anisotropic conductive film having a path is provided, and the conductive electrode and the terminal of the wiring board can be electrically connected through the conductive path.
  • the method for manufacturing a membrane sheet with bumps for a probe card includes a bump provided on a surface of the insulating film so as to be in electrical contact with the insulating film and an electrode pad of a semiconductor chip formed on the wafer. And a conductive electrode extending from the bump through the insulating film to the back side of the insulating film, and a method for producing a bumped membrane sheet for a probe card, for forming the insulating film A preparation step for preparing an insulating sheet, a plating hole forming step for forming a plating hole having a triangular cross-section from the back side so as to correspond to the electrode pads of the semiconductor chip, and the plating thus formed.
  • the plated hole has a sharp tip, for example, a sharp bump has a surface along the surface of the electrode body having a triangular cross section, so the tip is sharp and formed by plating on the surface of the electrode body protruding from the insulating film Therefore, the bottom surface is wider than the top surface of the conductive electrode.
  • the bump is formed, for example, in a triangular cross section.
  • the electrode body having a triangular cross section protruding from the insulating film (upper side of the electrode body) constitutes the inside of the bump. Further, in the electrode body forming step, the electrode body can be formed such that the back side end portion wider than the bottom surface of the portion located in the insulating film protrudes from the back surface of the insulating film.
  • the bump shape is, for example, a cone or pyramid having a triangular cross section
  • the tip of the bump is sharp, so that the pressure required to contact the electrode pad of the wafer is low, for example, a pressure of 1/2 or less compared to the prior art.
  • a stable contact can be obtained at.
  • the structure necessary for extending the life of the anisotropic conductive film and contacting a large number of pins can be simplified.
  • the insulating film is sandwiched between the bottom surface of the bump (the outer periphery of the bottom surface) and the inclined surface of the conductive electrode, and the bump surface layer is located above the surface of the electrode body. Therefore, the bumps are firmly fixed to the insulating film both vertically and laterally. Therefore, there is an advantage that the yield drop due to the strength problem can be reduced without being damaged due to the bumps being removed or broken.
  • the first probe card includes a frame board having a contact film and an anisotropic conductive film, and a wiring board.
  • reference numeral 1 denotes a frame plate used for the first probe card, which has a diameter of 200 mm to 300 mm, which is almost the same as the size of a wafer to be inspected (semiconductor wafer), and has a thickness of, for example, 40 ⁇ m to 80 ⁇ m. It has become. Further, the frame plate 1 has a thermal expansion coefficient or a linear thermal expansion coefficient close to that of the wafer so as to eliminate the influence of the position shift accompanying the temperature change, and the thermal expansion coefficient or the linear thermal expansion coefficient of the frame plate 1. Is, for example, 0 to 1 ⁇ 10 ⁇ 5 / ° C. Therefore, a metal material such as Invar or 42 alloy is suitable for the material of the frame plate 1.
  • the frame plate 1 is formed with a plurality or a plurality of through holes 3 penetrating in the thickness direction corresponding to the semiconductor chips formed on the wafer, and these are formed by etching.
  • the through holes 3 are formed so as to correspond to one semiconductor chip, but may be formed so as to correspond to several or two to five semiconductor chips.
  • FIG. 2 shows a structure around the through hole 3 formed in the frame plate 1, and an anisotropic conductive film 5 and a contact film (membrane sheet with bumps) 7 are arranged in a state supported around the through hole 3. ing. Therefore, the anisotropic conductive film 5 and the contact film 7 have a size corresponding to the through hole (through hole) 3 or the semiconductor chip.
  • the structure shown in FIG. 2 is formed in each through hole 3 of the frame plate 1.
  • the anisotropic conductive film 5 includes an elastic film 9 and a conductive path 11 provided on the elastic film 9, and the elastic film 9 is formed of a rubber material having a thickness of 80 ⁇ m, and the outer periphery thereof is the frame plate 1.
  • An outward support flange 13 is integrally formed at the lower end of the outer periphery of the elastic film 9 (on the back side of the outer periphery), and the elastic film 9 is supported by the support flange 13 being placed on the outer peripheral back surface of the through hole 3. For example, it is tightly fitted in the through hole 3.
  • the conductive path 11 includes a large number of metal particles in an elastic film having a thickness of 130 ⁇ m, and has a function of being deformed when pressure is applied from the thickness direction and energizing in the vertical direction by contact between the metal particles. That is, the conductive path 11 has a protruding portion (here, a protruding portion having a rectangular (rectangular) columnar shape on the upper and lower sides (the front surface side and the back surface side), but the protruding portion may be a columnar shape). In order to form, it is comprised by forming a 130-micrometer-thick part partly.
  • the contact film 7 includes an insulating film 15, bumps 17 provided on the surface of the insulating film 15, and conductive electrodes 19 provided in the insulating film 15 and on the back surface of the insulating film 15.
  • the insulating film 15 is formed of polyimide having a thickness of 20 ⁇ m, and the peripheral portion or the back surface of the peripheral portion is fixed to the frame plate 1 (the surface of the frame plate 1 on the outer periphery of the anisotropic conductive film 5) with an adhesive 21.
  • a conical bump 17 having a bottom radius and height of about 20 ⁇ m is formed of nickel on the surface of the insulating film 15, and this bump 17 has a role of contacting an electrode pad of a semiconductor chip on the wafer.
  • conductive electrodes 19 connected to the bumps 17 are formed in the insulating film 15 in the film and on the back surface of the insulating film 15, and a lower end portion (back surface side end portion) 22 of the conductive electrode 19 is formed on the anisotropic conductive film 5.
  • the conductive electrode 19 is formed in an area equal to or larger than that of the conductive path 11, and the back surface of the conductive electrode 19 is exposed on the back side of the insulating film 15, and connects the bump 17 and the conductive path 11 of the anisotropic conductive film 5.
  • a portion 24 in the insulating film 15 of the conductive electrode 19 is formed in a truncated cone shape (a trapezoidal shape in cross section), and the back surface side end portion 22 is formed in a thin rectangular shape.
  • the rear surface side end portion 22 is formed wider than the bottom surface of the portion 24 in the insulating film 15 of the conductive electrode 19.
  • Reference numeral 23 denotes a wiring board having a large diameter corresponding to the wafer and the frame plate 1, an insulating substrate 25 having a thickness of 3 to 5 mm serving as a base material, a terminal 27, an external terminal 29 disposed at one end of the base material, and a drawer.
  • the lead line 31 is constituted by a line 31, and has a role of drawing a signal transmitted from the bump 17 to the terminal 27 through the conductive electrode 19 and the conductive path 11 from the external terminal 29.
  • the bump 17, the conductive electrode 19, the conductive path 11, and the terminal 27 are formed in a state where the positions in the horizontal direction coincide with the electrode pads of the semiconductor chip that is the lead-out terminal on the wafer to be tested. Thousands to tens of thousands are prepared.
  • the contact film 7 Since the contact film 7 is small in size, it does not need to have the same thermal expansion coefficient (linear thermal expansion coefficient) as that of the wafer (specifically, it has a larger thermal expansion coefficient than the wafer) and is a material that can be easily processed. Can be formed at low cost.
  • reference numeral 33 denotes a laminated sheet in which a number of contact films 7 are formed.
  • the contact film 7 is formed to be larger than the necessary number of contact films 7 to be mounted on the frame plate 1.
  • the overall size of the bonding sheet 33 is the frame. It is smaller than the plate 1 and has a reduced square shape with a side of about 200 mm, and patterning by plating and resist can be easily processed with high accuracy by a normal apparatus.
  • FIG. 4 shows a cross section of a laminated sheet (a portion where one contact film 7 is formed).
  • the laminated sheet 33 is a 38 ⁇ m-thick polyimide sheet (insulating sheet) that becomes the insulating film 15 or forms the insulating film 15. ) 35 ⁇ m of 4 ⁇ m thick copper foil 37 is used (first step, preparation step). As a second step of manufacturing the contact film 7, a resist 39 is applied to the copper foil 37, and a photomask is formed so as to form a conductive electrode corresponding to or at the same position as the electrode pad of the semiconductor chip formed on the wafer. Is used to form a pattern on the resist 39 (see FIG. 5).
  • the bonding sheet 33 is immersed in a copper etching solution, and a round hole 40 is formed in the copper foil 37 using the pattern formed on the resist 39 as a mask (see FIG. 6).
  • the resist 39 is peeled off, the bonding sheet 33 is immersed in a polyimide etching solution containing hydrazine as a main component, the copper foil 37 is used as a mask, and the polyimide is formed corresponding to the round holes 40 of the copper foil 37.
  • Conductive electrode holes (plating holes) 41 are formed on the sheet 35 from the back side (plating hole forming step, see FIG. 7).
  • etching proceeds in a mortar shape at an angle (X, 50 ° in this case) with respect to the sheet surface.
  • the tip is sharp, for example, sharp, so that the whole is a cone or pyramid (triangular cross section).
  • This angle has a different value depending on the crystal structure of the polyimide.
  • the conductive electrode hole 41 can be obtained by setting the round hole diameter of the pattern formed in the resist 39 to 56 ⁇ m.
  • the diameter of the bottom (rear opening) is 56 ⁇ m, and the height to the tip of the conductive electrode hole 41 is 33.3 ⁇ m.
  • a resist 45 is applied to the copper foil 37, a conductive electrode pattern is formed on the resist 45 using a photomask, nickel plating is performed using the thin film 43 as a plating electrode, and a polyimide sheet 35 is obtained. Then, nickel plating is grown in the conductive electrode hole 41 until the thickness reaches about the middle of the resist 45 or the resist 45 to form an electrode body 46 (the lower side becomes the conductive electrode 19) (refer to FIG. 9 for electrode body formation step).
  • the conductive electrode forming part formed in the resist 45 is larger than the bottom part of the conductive electrode hole 41.
  • the resist 45 is peeled off, the polyimide sheet 35 is dipped in an etching solution from the surface side of the bonding sheet 33, and half etching is performed until the thickness of the polyimide sheet 35 becomes 20 ⁇ m to form the electrode body 46.
  • the copper thin film 43 is not particularly distinguished in FIG. 10 or the like.
  • the height to the tip of the conductive electrode hole 41 is 33.3 ⁇ m, the height of the exposed portion is 13.3 ⁇ m.
  • the insulating film 15 or an assembly of the insulating films 15 is formed by half etching of the polyimide sheet 35.
  • an eighth step as shown in FIG.
  • the exposed portion on the tip side of the electrode body 46 is subjected to nickel plating using the copper foil 37 as an electrode to form the bump 17 (bump forming step).
  • the formed bump 17 has a surface corresponding to the surface of the exposed portion of the electrode body 46 and has a conical shape or a triangular cross section.
  • the tip corner portion has an R shape.
  • the cross-sectional triangle shape has a circular arc shape at the tip corner or a small arc shape (arc shape with a small radius of curvature), or the tip corner has a small rounded cross-sectional shape, but the tip corner portion The sharpness is not lost.
  • the shapes of the formed bumps 17 and conductive electrodes 19 are shown in detail with reference to FIGS. 13 and 14. FIG.
  • FIG. 13 shows details of the plating thickness when the bumps 17 are formed (details of FIGS. 11 and 12).
  • the nickel plating performed on the exposed portion 48 on the distal end side of the electrode body 46 after the front end side of the electrode body 46 is exposed by half etching of the polyimide sheet 35 grows perpendicularly to the surface of the exposed portion 48. Therefore, the plated portion 50 having a uniform thickness along the surface of the exposed portion 48 is formed except at the tip portion, but the plated portion 50 is formed in a spherical shape centering on the tip of the exposed portion 48 at the tip portion,
  • the bump 17 has a triangular cross section in which the tip of the bump has an arc shape with a small cross section. Further, FIG.
  • the bump 17 has a triangular cross section in which the bump tip has an arc shape larger than that in FIG.
  • the polyimide sheet 35 (the insulating film 15 or an assembly of the insulating films 15 is formed by half etching) is formed on the bump 17 whose diameter is increased by the conductive electrode 19 having a trapezoidal cross section and the plated portion 50.
  • the bumps 17 and the conductive electrodes 19 are firmly fixed to the polyimide sheet 35 or the insulating film 15.
  • the thickness of this plating is preferably 5 ⁇ m to 10 ⁇ m. If the plating thickness is thinner than 5 ⁇ m, the fixing strength is weakened. If the plating thickness is thicker than 10 ⁇ m, the arc shape of the bump tip becomes large, and the sharpness of the bump tip decreases. End up. Finally, the copper foil 37 is removed by etching, and the rectangular portion in FIG. 3 is cut and divided to form the contact film 7. As shown in FIG. 12, an adhesive 21 is applied to a non-defective contact film 7 selected from these, and each through hole 3 of the frame plate 1 on which the anisotropic conductive film 5 is formed using a mounting machine is shown in FIG. (The copper foil 37 is not particularly distinguished and shown in FIG.
  • the entire frame board 1 is arranged on the wiring board 23 or on the surface side to complete the probe card.
  • plating is easy because of the large hole diameter processed into polyimide that tends to leave residues, and bumps and conductive electrodes are formed with high yield. be able to. That is, a small-diameter hole formed in a polyimide sheet by a laser is likely to cause plating growth failure due to a residue generated during processing, and a bump may be defective.
  • reference numeral 101 denotes a membrane bump (membrane sheet with bumps), a polyimide sheet (insulating film) 105 stretched on a rigid ring 103, a bump 107, and a conductive electrode 109 (a portion 124 of the conductive electrode 109 in the polyimide sheet 105).
  • the bump 107 has a role of contacting an electrode pad which is a lead terminal on the wafer.
  • An anisotropic conductive film 113 is formed by forming a conductive path 117 that is energized in the thickness direction by being compressed in the thickness direction in an elastic film 115 formed of a rubber material. It has a role of absorbing a variation in height such as 107 and applying a uniform contact pressure to the bump 107.
  • Reference numeral 119 denotes a wiring board, which is composed of an insulating substrate 121 having a thickness of 3 to 5 mm serving as a base material, a terminal 123, an external terminal 125, and a lead wire 127 connecting between them, and the terminal from the bump 107 via the conductive path 117. It has a role of extracting the signal transmitted to 123 to the outside.
  • the bump 107, the conductive electrode 109, the conductive path 117, and the terminal 123 are located at positions corresponding to the electrode pads that are the lead terminals on the wafer to be tested (more specifically, the positions in the horizontal direction of the electrode pads are In the same state), and thousands to tens of thousands are prepared as necessary.
  • the bump 107 and the conductive electrode 109 have the same configuration and structure as the bump 17 and the conductive electrode 19 of the first embodiment.
  • the manufacturing method of the membrane bump 101 is manufactured by the same method as the contact film 7 in the first embodiment. However, since the membrane bump 101 has a size corresponding to the wafer, the prepared bonding sheet 33 is also used to form the membrane bump 101 having a size corresponding to the wafer, and the polyimide sheet of the bonding sheet 33 is used. One insulating film 105 is formed from the entire (insulating sheet) 35.
  • the bonding sheet 33 has the same cross section as that in FIG. 4 in the first embodiment, and uses a 38 ⁇ m thick polyimide sheet 35 bonded with a 4 ⁇ m thick copper foil 37.
  • the manufacture of a single membrane bump 101 in the entire laminated sheet 33 includes the second step, the third step, the fourth step, the fifth step, the sixth step, and the first step in the first embodiment.
  • the process is performed through the same process as the process 7 and the eighth process.
  • the copper foil 37 is finally removed by etching as in the case of the first embodiment.
  • the completed polyimide sheet 105 with bumps is attached to the rigid ring 103 to form the membrane bump 101, the anisotropic conductive film 113 is disposed on the wiring substrate 119 or on the surface side, and the membrane bump 101 is anisotropically formed.
  • the probe card is completed by disposing it on the conductive film 113.
  • the second embodiment (second probe card) is effective when the density of the arrangement of semiconductor chips on the wafer is high and the division for forming the contact film 7 is difficult in the first embodiment.
  • the membrane sheet with a bump and the probe card of the present invention can be effectively used for multi-pin batch contact inspection of a wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 ウェーハのテストで、ウェーハの電極パッドに低い接触圧で安定に接触するウェーハ一括テスト用のプローブカードを提供する。 プローブカードを、ウェーハの半導体チップに対応した複数の貫通穴3を有するフレーム板1と、配線基板23と、貫通穴3に対応する大きさを有し、フレーム板1の貫通穴3又は貫通穴3周辺に固定した異方導電膜5と、貫通穴3に対応する大きさを有し、フレーム板1の貫通穴3周辺に固定した接点膜7と、から構成する。接点膜7を、絶縁膜15と絶縁膜15内および裏面に形成した導電電極19と、絶縁膜15のハーフエッチングにより露出させた電極体の先端側のメッキにより形成したバンプ17と、から構成し、鋭い先端を持つバンプ17を異方導電膜5の導電路11により配線基板23の端子に電気的に接続する。

Description

プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法
 本発明は、半導体デバイス又は半導体チップのウェーハテストに用いるプローブカードに関するもので、特に、ウェーハ一括テスト用の多数ピンのプローブカードに関するものである。
 ウェーハに形成された半導体デバイス又は半導体チップのテスト工程では、プローブカードを用いてウェーハ上の半導体デバイスの電極パッドに接触し、信号を印加、収集してテストを実施する。従来、このためにプローバ装置のステージ上に置かれたウェーハに対し、上方向よりタングステンなどによるプローブピンを用いたカンチレバー方式、屈曲ピンを用いたマトリクス方式などによるプローブカードを区分的にウェーハに当て接触させてテストを実施している。従来のプローブカードを用いたテストにおいては、プローブカードにて接触できるウェーハ上の半導体チップはウェーハ全体の一部であり、そのため区分的に接触をしながらプローバ装置にて順次ウェーハを移動してウェーハ全体のテストを実施していた。
 これに対し多数ピンのプローブカードによりこの区分数を少なくしてテスト効率を上げたいとの強い要望がある。例えば特許文献1や特許文献2に記載されたバンプ付きメンブレンシート方式のプローブカードはこの要望に対応できる数万の多数ピンを持つプローブカードを実現できる構造を有する。
 第1の従来形態として図16を用いて特許文献1に記載されたバンプ付きメンブレンシート方式のプローブカードの構造について説明する。図16において、201はメンブレンバンプ(バンプ付きメンブレンシート)であり、剛性リング203に張られたポリイミドシート(絶縁膜)205にバンプ207、短絡部209及び裏面電極部211が形成されており、このバンプ207がウェーハ上の引出し端子である電極パッドに接触する役割を持つ。213は異方導電膜であり、ゴム材により形成された弾性膜215に、厚み方向に圧縮されることにより厚み方向に通電する導電路217を形成することにより構成され、ウェーハの電極パッドやバンプ207などの高さバラツキを吸収し、バンプ207に均一な接触圧を与える役割を持つ。219は配線基板であり、基材となる厚さ3乃至5mmの絶縁性基板221、端子223、外部端子225およびその間を接続する引出線227により構成され、バンプ207から導電路217を介して端子223に伝わった信号を外部に引出す役割を持つ。ここでバンプ207、短絡部209、裏面電極部211、導電路217及び端子223は、テストの対象となるウェーハ上の引出し端子である電極パッドに対応した位置(より具体的には、電極パッドに水平方向の位置が一致した状態)に形成され、必要に応じて数千から数万が用意される。
 次にメンブレンバンプ201の製造方法を図17乃至図19を用いて説明する。まず、図17に示すように、厚さ約18μmの銅箔229に厚さ約25μmのポリイミドシート205を貼り合わせた材料に対し、ポリイミドシート205にレーザを照射して直径約30μmの小径穴231を形成する(第1の工程)。次に、銅箔229の裏面に保護レジスト233を塗布し、銅箔229にメッキ電極を接続してニッケルの電気メッキを行う。メッキは、小径穴231を埋めるようにして短絡部209を形成し、更にポリイミドシート205の表面に達すると、全ての方向に一様に拡がって半球状に進み、バンプ207を形成する(第2の工程、図18参照)。メッキは、バンプ207の高さが10~20μmになるまで行われる。次に、銅箔229の裏面に塗布された保護レジスト233を除去し、再度レジストを塗布して裏面電極部のパターンを感光させ、銅箔229のエッチングにより裏面電極部211を形成する。そして、レジストを除去し、最後にポリイミドシート205を剛性リング203に貼りメンブレンバンプ201を構成する(第3の工程、図19参照)。
 次に第2の従来形態として図20乃至図29を用いて特許文献2に記載されたバンプ付きメンブレンシート方式のプローブカードの構造について説明する。
 このプローブカードは図20に示すフレーム板301を有している。フレーム板301は、検査対象のウェーハのサイズとほぼ同等の200mm乃至300mmの直径を有していて、厚さは例えば40μm乃至80μmとなっている。また、フレーム板301は、温度変化に伴う位置ずれの影響を排除できるように、ウェーハに近い熱膨張係数又は線熱膨張係数を有していて、フレーム板301の熱膨張係数又は線熱膨張係数は例えば0乃至1×10-5/℃となっている。さらに、フレーム板301にはウェーハに形成された半導体チップに対応して厚み方向に貫通する複数の貫通孔又は貫通穴303が形成されており、これらはエッチングにより形成される。
 図21はフレーム板301に形成された貫通穴303周辺の構造を示しており、貫通穴303周辺にて支持された状態で異方導電膜305と接点膜(バンプ付きメンブレンシート)307が配置されている。異方導電膜305は、弾性膜309と、この弾性膜309に設けられた導電路311とにより構成され、弾性膜309は、厚さ80μmのゴム材料により形成されていて、外周(313)がフレーム板301の貫通穴303周辺に固定され、導電路311を保持する役割を持つ。
 導電路311は厚さ130μmの弾性膜中に金属粒子を多数含み、厚み方向から圧力が加わると変形して金属粒子同士の接触により上下方向に通電する機能を有する。
 一方、接点膜307は、絶縁膜315と、絶縁膜315の表面側に形成されたバンプ317と、導電電極319とにより構成されている。絶縁膜315は、厚さ25μmのポリイミドにて形成され、その周辺部又は周辺部裏面を接着剤321によりフレーム板301に固定されている。絶縁膜315の表面側にはニッケルにより直径高さ共約20μmのバンプ317が形成され、ウェーハの半導体チップの電極パッドにコンタクトする役割を持つ。さらに、絶縁膜315には、バンプ317に繋がる導電電極319が絶縁膜315の表面および膜内に形成され、バンプ317と異方導電膜305の導電路311とを接続する役割を有する。323はウェーハに対応する大きな径を有する配線基板であり、基材となる厚さ3乃至5mmの絶縁性基板325、端子327、外部端子329および引出線331により構成され、バンプ317から導電電極319、導電路311を介して端子327に伝わった信号を外部端子329から外部に引出す役割を持つ。
 以下に図22乃至図29を用いて接点膜307の製造方法を示す。
 図22において333は貼合せシートであり、この中に接点膜307を多数形成する。図23は貼合せシートの断面を示しており、貼合せシート333としては、絶縁膜315の集合体である25μm厚のポリイミドシート335に対し4μm厚の銅箔337を貼合せたものを用いる。そして、貼合せシート333にレジスト339を貼り、ウェーハに形成された半導体チップの電極パッドに対応した位置に導電電極を形成すべく、フォトマスクを用いてレジスト339にパターンを形成する。次に貼合せシート333をポリイミドエッチング液に浸し、レジスト339に形成したパターンをマスクとしてポリイミドシート335に導電電極穴341を形成する(第1の工程、図24参照)。この場合、ポリイミドの持つ異方性により、図24に示すようにシート面に対して50°の角度にてすり鉢状(断面台形状)にエッチングが進行する。次に、レジスト339を剥がし、銅箔337をメッキ電極としてニッケルメッキを行い、図25に示すように、ポリイミドシート335の厚さ程度まで導電電極穴341にニッケルを成長させ、導電電極319を形成する(第2の工程)。導電電極319を形成したら、銅箔337にレジスト342を貼り、半導体チップの電極パッドに対応した位置にバンプ317を形成すべくフォトマスクを用いてレジスト342にバンプ穴343を形成する(第3の工程、図26参照)。さらに、図27に示すように、銅箔337をメッキ電極としてニッケルメッキを行い、レジスト342の厚さを超えない範囲でバンプ穴343にニッケルを成長させバンプ317を形成する(第4の工程)。そして、レジスト342を剥離し、レジスト345を貼り、フォトマスクを用いてレジスト345にパターンを形成し、この状態にて銅をエッチングするエッチング液に浸し、銅箔337をエッチングしてバンプ317の周囲に、導電電極319の一部を構成する導電電極ベース347を形成する(第5の工程、図28)。この後、レジスト345を剥離し、図22における長方形状部分を裁断し、分割して接点膜307を形成する。図29に示すように、この中より選別した良品の接点膜307に接着剤321を塗布し、実装機を用いてフレーム板301の各貫通穴303に図21のように搭載し、さらにフレーム板301全体を配線基板323の上又は表面側に配置することによりプローブカードを完成させる。
特開平10-178074号 特開2011-022001号
 第1の従来形態に示すプローブカードの構成は、バンプの形が半球状であり、バンプの先端が鋭くないため、ウェーハの電極パッドとの接触に大きな圧力が必要であった。
 第2の従来形態に示すプローブカードの構成では、第1の従来形態のプローブカードと異なり、バンプの形が四角柱状や円柱状である。そこで、バンプの断面積を小さく形成して先端が細いバンプを得ることが可能ではあるが、バンプの先端のみを細くすることができないので、バンプ全体の強度を確保する観点から、バンプの先端を鋭くすることは実際上は不可能である。したがって、第2の従来形態のプローブカードでも、ウェーハの電極パッドとの接触に大きな圧力が要求されることとなる。
 本発明は、こういった従来の問題を解決するためになされたもので、多数のバンプを小さな圧力でウェーハの電極パッドに一括して良好に接触させることができるプローブカード、このプローブカードに用いるバンプ付きメンブレンシート及びこのバンプ付きメンブレンシートの製造方法の提供を目的とする。
 この目的を達成するための本発明のプローブカード用のバンプ付きメンブレンシートは、絶縁膜と、ウェーハに形成された半導体チップの電極パッドに電気的に接触するように前記絶縁膜の表面に設けられたバンプと、このバンプから前記絶縁膜内を通って前記絶縁膜の裏面側まで延びる導電電極と、を備えたプローブカード用のバンプ付きメンブレンシートであって、前記導電電極の前記絶縁膜内に位置する部分は、断面形状が前記絶縁膜の表面に向って幅が狭くなる台形状であり、前記バンプは断面三角形状に形成されて前記導電電極の上面(表面)よりも広い底面を有しているものである。導電電極の上面はバンプの底面と例えば一体化している。バンプは、例えば円錐状又は角錐状(例えば4角錐状)などの断面三角形状に形成されているので、先端は鋭く、小さな圧力でウェーハの電極パッドと電気的に良好に接触できるものである。しかも、底面側に向って漸次断面積が増えるので、全体的に十分な強度の確保が可能となる。また、導電電極は、絶縁膜の表面に向って幅が狭くなる台形状の断面形状を有しているので、導電電極は絶縁膜の表面側に向って抜け止めされる。そして、バンプは導電電極の上面よりも広い底面を有しているので、このバンプの底面の外側と絶縁膜との接触又は係合によって、導電電極は絶縁膜の裏面側に向っても抜け止めされる。導電電極の上面は、例えば絶縁膜の表面と同一の高さに位置している。
 プローブカード用のバンプ付きメンブレンシートの導電電極は、絶縁膜の裏面から突出する裏面側端部を有し、この裏面側端部が、導電電極の絶縁膜内に位置する部分の底面(裏面)よりも広くなるように形成できる。裏面側端部は例えば導電電極の絶縁膜内に位置する部分の底面と一体化している。このように構成することにより、裏面側端部の外側と絶縁膜の裏面との接触又は係合により、導電電極の絶縁膜の表面側への抜け止め効果が向上する。
 このようなバンプ付きメンブレンシートは、導電電極と電気的に接続される端子を有する配線基板と組み合わされてプローブカードを構成する。
 バンプ付きメンブレンシートはウェーハに対応した大きさ、例えばウェーハと同一の又はほぼ同一の大きさを有することができる。
 プローブカードは、半導体チップに対応する貫通孔が複数形成されたフレーム板を備えることができ、バンプ付きメンブレンシートは、貫通孔に対応した大きさを有し、フレーム板の表面側の貫通孔周辺に支持されることができる。ここでは、貫通孔に対応した大きさに形成され、貫通孔又は貫通孔周辺に支持された弾性膜及びこの弾性膜内に相互に絶縁された状態で形成された、厚み方向に延びる複数の導電路を有する異方導電膜を設け、導電電極と配線基板の端子とを、この導電路を介して電気的に接続することができる。
 また、本発明のプローブカード用のバンプ付きメンブレンシートの製造方法は、絶縁膜と、ウェーハに形成された半導体チップの電極パッドに電気的に接触するように前記絶縁膜の表面に設けられたバンプと、このバンプから前記絶縁膜内を通って前記絶縁膜の裏面側まで延びる導電電極と、を備えたプローブカード用のバンプ付きメンブレンシートの製造方法であって、前記絶縁膜を形成するための絶縁シートを準備する準備ステップと、準備した前記絶縁シートに、前記半導体チップの前記電極パッドに対応するように、裏面側から断面三角形のメッキ穴を形成するメッキ穴形成ステップと、形成した前記メッキ穴にメッキして、このメッキ穴に対応した形状を有し、下側(裏面側)が前記導電電極を構成する電極体を形成する電極体形成ステップと、前記電極体の、前記導電電極を構成する部分よりも上側(表面側)が前記絶縁シートから断面三角形状に突出して露出するように、前記絶縁シートの表面側をハーフエッチングする露出ステップと、前記絶縁シートをハーフエッチングして形成した前記絶縁膜(絶縁膜の集合体の場合がある)から突出する断面三角形状の前記電極体の表面にメッキして、この電極体の表面に沿った表面を有する前記バンプを形成するバンプ形成ステップと、を備えるものである。メッキ穴は先端が鋭く、例えば尖っているバンプは、断面三角形状の電極体の表面に沿った表面を有するので、先端は鋭く、また、絶縁膜から突出する電極体の表面にメッキして形成されるので、底面は導電電極の上面よりも広くなる。バンプは例えば断面三角形状に形成される。絶縁膜から突出する断面三角形状の電極体(電極体の上側)はバンプの内部を構成する。また、電極体形成ステップでは、絶縁膜内に位置する部分の底面よりも広い裏面側端部が絶縁膜の裏面から突出するように電極体を形成することができる。
 本発明では、バンプの形が例えば断面三角形の円錐又は角錐のため、バンプの先端が鋭く、このためウェーハの電極パッドへの接触に必要な圧力が低く、従来に比べ例えば1/2以下の圧力にて安定な接触が得られる。これにより、例えば異方導電膜の長寿命化および多数ピンの接触に必要な構造を簡易にすることができる。
 さらに、バンプに偏った圧力が印加されても、バンプの底面(底面の外周)と、導電電極の傾斜面とにより絶縁膜を挟み込む構造であり、しかも、バンプ表面層は電極体の表面の上側の広い範囲と接合しているので、バンプは上下方向にも横方向にもしっかりと絶縁膜に対して固定されることとなる。したがって、バンプが抜けたり折れたりするなどして損傷することがなく、強度の問題による歩留り低下を少なくできるメリットがある。
本発明の第1の実施形態におけるフレーム板を示す図である。 本発明の第1の実施形態におけるプローブカードの構造を示す断面図である。 本発明の第1の実施形態におけるプローブカードの構造を示す平面図である。 本発明の第1の実施形態における貼合わせシートを示す図である。 本発明の第1の実施形態における貼合わせシートを示す断面図である。 本発明の第1の実施形態における接点膜の製造方法の第2の工程を示す図である。 本発明の第1の実施形態における接点膜の製造方法の第3の工程を示す図である。 本発明の第1の実施形態における接点膜の製造方法の第4の工程を示す図である。 本発明の第1の実施形態における接点膜の製造方法の第5の工程を示す図である。 本発明の第1の実施形態における接点膜の製造方法の第6の工程を示す図である。 本発明の第1の実施形態における接点膜の製造方法の第7の工程を示す図である。 本発明の第1の実施形態における接点膜の製造方法の第8の工程を示す図である 本発明の第1の実施形態における接点膜の製造方法の接着剤塗布の工程を示す図である。 本発明の第1の実施形態におけるメッキ厚5μmのバンプ形状を示す図である。 本発明の第1の実施形態におけるメッキ厚10μmのバンプ形状を示す図である。 本発明の第2の実施形態におけるプローブカードの構造を示す断面図である。 第1の従来形態におけるプローブカードの構造を示す断面図である。 第1の従来形態におけるメンブレンバンプの製造方法の第1の工程を示す図である。 第1の従来形態におけるメンブレンバンプの製造方法の第2の工程を示す図である。 第1の従来形態におけるメンブレンバンプの製造方法の第3の工程を示す図である。 第2の従来形態におけるフレーム板を示す図である。 第2の従来形態におけるプローブカードの構造を示す断面図である。 第2の従来形態における貼合わせシートを示す図である。 第2の従来形態における貼合わせシートを示す断面図である。 第2の従来形態における接点膜の製造方法の第1の工程を示す図である。 第2の従来形態における接点膜の製造方法の第2の工程を示す図である。 第2の従来形態における接点膜の製造方法の第3の工程を示す図である。 第2の従来形態における接点膜の製造方法の第4の工程を示す図である。 第2の従来形態における接点膜の製造方法の第5の示す図である。 第2の従来形態における接点膜の製造方法の接着材塗布の工程を示す図である。
 以下、本発明の第1の実施形態(第1のプローブカード)について、図1乃至図14を参照して説明する。第1のプローブカードは、接点膜及び異方導電膜を有するフレーム板と、配線基板とを備えたものである。
 図1において、1は第1のプローブカードに用いるフレーム板であり、検査対象のウェーハ(半導体ウェーハ)のサイズとほぼ同等の200mm乃至300mmの直径を有していて、厚さは例えば40μm乃至80μmとなっている。また、フレーム板1は、温度変化に伴う位置ずれの影響を排除できるように、ウェーハに近い熱膨張係数又は線熱膨張係数を有していて、フレーム板1の熱膨張係数又は線熱膨張係数は例えば0乃至1×10-5/℃となっている。そのため、フレーム板1の材質は、インバー、42アロイといった金属材料が適している。さらに、フレーム板1にはウェーハに形成された半導体チップに対応して厚み方向に貫通する複数又は多数の貫通穴3が形成されており、これらはエッチングにより形成される。ここでは、貫通穴3は、1つの半導体チップに対応するように形成されているが、数個の又は2乃至5個の半導体チップに対応するように形成されてもよい。
 次に図2を参照してこのフレーム板1を用いた第1のプローブカードの構造を説明する。
 図2はフレーム板1に形成された貫通穴3周辺の構造を示しており、貫通穴3周辺にて支持された状態で異方導電膜5と接点膜(バンプ付きメンブレンシート)7が配置されている。したがって、異方導電膜5と接点膜7は、貫通穴(貫通孔)3又は半導体チップに対応する大きさを有している。フレーム板1のそれぞれの貫通穴3に図2の構造が構成される。異方導電膜5は、弾性膜9と、この弾性膜9に設けられた導電路11とにより構成され、弾性膜9は、厚さ80μmのゴム材料により形成されていて、外周がフレーム板1の貫通穴3周辺に固定され、導電路11を保持する役割を持つ。弾性膜9の外周下端(外周裏側)には、外向きの支持フランジ13が一体的に形成されていて、弾性膜9は、支持フランジ13が貫通穴3の外周裏面に載って支持されるように、貫通穴3に、例えばきつく嵌め込まれている。
 導電路11は厚さ130μmの弾性膜中に金属粒子を多数含み、厚み方向から圧力が加わると変形して金属粒子同士の接触により上下方向に通電する機能を有する。すなわち、導電路11は、弾性膜9に、突出部分(ここでは上下(表面側及び裏面側)の角(長方形)柱状の突出部分であるが、突出部分は円柱状とすることもできる)が形成されるように、部分的に130μmの厚さ部分を形成することにより構成される。
 一方、接点膜7は、絶縁膜15と、絶縁膜15の表面に設けられたバンプ17と、絶縁膜15の膜内および絶縁膜15の裏面に設けられた導電電極19とにより構成されている。絶縁膜15は、厚さ20μmのポリイミドにて形成され、その周辺部又は周辺部裏面を接着剤21によりフレーム板1(異方導電膜5の外周のフレーム板1表面)に固定されている。絶縁膜15の表面にはニッケルにより底面の半径及び高さ共約20μmの円錐形のバンプ17が形成されており、このバンプ17は、ウェーハの半導体チップの電極パッドに接触する役割を持つ。さらに、絶縁膜15には、バンプ17に繋がる導電電極19が絶縁膜15の膜内および裏面に形成され、この導電電極19の下端部(裏面側端部)22は、異方導電膜5の導電路11と同等若しくはより広い面積にて形成されていて、導電電極19は、裏側端面が絶縁膜15の裏面側で露出し、バンプ17と異方導電膜5の導電路11とを接続する役割を有する。導電電極19の絶縁膜15内の部分24は、円錐台形状(断面台形状)に形成され、裏面側端部22は薄肉の長方形状に形成されている。そして、裏面側端部22は、導電電極19の絶縁膜15内の部分24の底面よりも広く形成されている。23はウェーハ及びフレーム板1に対応する大きな径を有する配線基板であり、基材となる厚さ3乃至5mmの絶縁性基板25、端子27、基材の一端に配置された外部端子29および引出線31により構成され、引出線31は、バンプ17から導電電極19、導電路11を介して端子27に伝わった信号を外部端子29から外部に引出す役割を持つ。ここでバンプ17、導電電極19、導電路11、端子27は、テストの対象となるウェーハ上の引出し端子である半導体チップの電極パッドに水平方向の位置が一致した状態に形成され、必要に応じて数千から数万が用意される。
 次に、図3乃至図12を用いて接点膜7の製造方法を説明する。接点膜7は、サイズが小さいので、ウェーハと同一の熱膨張係数(線熱膨張係数)を有する必要はなく(具体的には、ウェーハよりも大きな熱膨張係数を有する)、加工が容易な材料を用いて安価に形成することができる。
 図3において33は貼合せシートであり、この中に接点膜7を多数形成する。この場合、フレーム板1に搭載される接点膜7の必要数より多めに接点膜7を形成するが、形成ピッチを高めて(狭めて)形成するため、貼合せシート33全体のサイズとしてはフレーム板1より小さい、1辺が200mm程度の縮小された正方形状のものとなり、メッキ、レジストによるパターンニングを通常の装置により容易に高精度にて処理できる。図4は貼合せシート(1つの接点膜7を形成する部分)の断面を示しており、貼合せシート33は、絶縁膜15となる又は絶縁膜15を形成する38μm厚のポリイミドシート(絶縁シート)35に対し4μm厚の銅箔37を貼合せたものを用いる(第1の工程、準備ステップ)。
 接点膜7の製造の第2の工程として、銅箔37にレジスト39を貼り、ウェーハに形成された半導体チップの電極パッドに対応した又は電極パッドと同じ位置に導電電極を形成すべく、フォトマスクを用いてレジスト39にパターンを形成する(図5参照)。さらに第3の工程として、貼合せシート33を銅エッチング液に浸し、レジスト39に形成したパターンをマスクとして銅箔37に丸穴40を形成する(図6参照)。次に第4の工程として、レジスト39を剥離し、ヒドラジンを主成分とするポリイミドエッチング液に貼合せシート33を浸し、銅箔37をマスクとし、銅箔37の丸穴40に対応してポリイミドシート35に裏面側から導電電極穴(メッキ穴)41を形成する(メッキ穴形成ステップ、図7参照)。この場合、ポリイミドの持つ異方性により、シート面に対して角度(X、ここでは50°)にてすり鉢状にエッチングが進行するが、ポリイミドエッチング液に長時間浸すことにより導電電極穴41の先端を鋭く、例えば尖って形成し、全体として円錐又は角錐(断面三角形状)になるようにする。この角度はポリイミドの結晶構造により異なる値を持つが、例えば角度(X)がシート面に対して50°の場合、レジスト39に形成したパターンの丸穴直径を56μmとすれば、導電電極穴41の底部(裏面開口部)の直径は56μm、導電電極穴41の先端までの高さは33.3μmとなる。次に第5の工程として、図8に示すように貼合せシート33の裏面より銅のスパッタを施し、導電電極穴41に銅の薄膜43を形成する。次に第6の工程として、銅箔37にレジスト45を塗布し、フォトマスクを用いてレジスト45に導電電極のパターンを形成した上で、薄膜43をメッキ電極としてニッケルメッキを行い、ポリイミドシート35の厚さ程度もしくはレジスト45の中程に至るまで導電電極穴41にニッケルメッキを成長させ、電極体46(下側が導電電極19となる)を形成する(電極体形成ステップ、図9参照)。ここでレジスト45に形成された導電電極の形成部は、導電電極穴41の底部よりも大きい。次に第7の工程として、レジスト45を剥離し、貼合せシート33の表面側よりポリイミドシート35をエッチング液に浸し、ポリイミドシート35の厚さが20μmとなるまでハーフエッチングを行って電極体46の先端側を露出させる(露出ステップ、図10参照、ただし図10等では銅の薄膜43を特に区別して表示していない)。先に示したように導電電極穴41の先端までの高さを33.3μmに形成すれば、露出させた部分の高さは13.3μmとなる。ポリイミドシート35のハーフエッチングにより絶縁膜15又は絶縁膜15の集合体が形成される。次に第8の工程として、図11に示すように銅箔37を電極として電極体46の先端側の露出した部分に対しニッケルメッキを施しバンプ17を形成する(バンプ形成ステップ)。形成されるバンプ17は、電極体46の露出した部分の表面に対応する表面を有し、円錐形状又は断面三角形状となるが、具体的には、例えば、先端角部がR形状となっている断面三角形状、先端角部が円弧形状又は小さい円弧形状(曲率半径の小さい円弧形状)となっている断面三角形状又は先端角部が小さな丸みを帯びた断面三角形状となるが、先端角部の鋭さは失われない。
 形成されたバンプ17及び導電電極19の形状を図13、図14を用いて詳細に示すが、図13はバンプ17形成時のメッキ厚が5μmの詳細であり(図11及び図12の詳細)、ポリイミドシート35のハーフエッチングにより、電極体46の先端側を露出させてから、電極体46の先端側の露出部48に対して行うニッケルメッキは、露出部48の表面に対し垂直に成長していくため、先端個所以外では、露出部48の表面に沿った均一な厚みのメッキ部50を形成するが、先端個所では露出部48の先端を中心とする球状にメッキ部50を形成し、バンプ17は、バンプ先端が断面小さい円弧形状となっている断面三角形状となる。さらに図14は、バンプ17形成時のメッキ厚が10μmの詳細であり(図11でメッキ厚を10μmとした場合)、図13と同様に先端個所では露出部48の先端を中心とする球状にメッキ部50を形成し、バンプ17は、バンプ先端が図13より大きな円弧形状となっている断面三角形状となる。このような構成では、ポリイミドシート35(ハーフエッチングにより絶縁膜15又は絶縁膜15の集合体となっている)を、断面台形状の導電電極19と、メッキ部50により直径が太くなったバンプ17とにより挟み込む構造となり、バンプ17および導電電極19がポリイミドシート35又は絶縁膜15にしっかり固定される。このメッキは5μmから10μmの厚さが望ましく、メッキ厚が5μmより薄いとこの固定強度が弱くなり、メッキ厚が10μmより厚いとバンプ先端の円弧形状が大きくなるためバンプ先端の鋭さが減少してしまう。最後に銅箔37をエッチングにより除去し、図3における長方形状部分を裁断し、分割して接点膜7を形成する。図12に示すように、この中より選別した良品の接点膜7に接着剤21を塗布し、実装機を用いて異方導電膜5が形成されたフレーム板1の各貫通穴3に図2のように搭載し(図2Aでは特に銅箔37を区別して表示していない)、さらにフレーム板1全体を配線基板23の上又は表面側に配置することによりプローブカードを完成させる。
 ここでは、第1の従来形態のバンプ、短絡部および裏面電極部の形成手法に較べ、残渣の残りやすいポリイミドに加工した穴径が大きいためメッキが容易となり、歩留りよくバンプおよび導電電極を形成することができる。すなわち、レーザによりポリイミドシートに開けた小口径の穴は加工に伴って発生する残渣によりメッキの成長不良が発生しやすく、バンプに不良が発生するおそれがある。
 本プローブカードをプローバ装置に搭載し、位置合わせをした上でウェーハに押し付けるとウェーハの電極パッドにバンプ17が当たり、その圧力は導電電極19を通して異方導電膜5の導電路11に加わり、ウェーハの電極パッドと接触して得られた信号はバンプ17、導電電極19、導電路11、端子27及び引出線31を通して外部端子29に引き出される。
 次に、本発明の第2の実施形態(第2のプローブカード)について、図15を参照して説明する。
 図15において、101はメンブレンバンプ(バンプ付きメンブレンシート)であり、剛性リング103に張られたポリイミドシート(絶縁膜)105にバンプ107、導電電極109(導電電極109のポリイミドシート105内の部分124及び裏面側端部122を含む)が形成されており、このバンプ107がウェーハ上の引出し端子である電極パッドに接触する役割を持つ。113は異方導電膜であり、ゴム材により形成された弾性膜115に、厚み方向に圧縮されることにより厚み方向に通電する導電路117を形成することにより構成され、ウェーハの電極パッドやバンプ107などの高さバラツキを吸収し、バンプ107に均一な接触圧を与える役割を持つ。119は配線基板であり、基材となる厚さ3乃至5mmの絶縁性基板121、端子123、外部端子125およびその間を接続する引出線127により構成され、バンプ107から導電路117を介して端子123に伝わった信号を外部に引出す役割を持つ。ここでバンプ107、導電電極109、導電路117及び端子123は、テストの対象となるウェーハ上の引出し端子である電極パッドに対応した位置(より具体的には、電極パッドに水平方向の位置が一致した状態)に形成され、必要に応じて数千から数万が用意される。バンプ107及び導電電極109は、第1の実施形態のバンプ17及び導電電極19と同一の構成及び構造を有する。
 メンブレンバンプ101の製造方法は第1の実施形態における接点膜7と同様の方法により製造される。ただし、メンブレンバンプ101はウェーハに対応した大きさを有しているため、準備する貼合せシート33もウェーハに対応したサイズのメンブレンバンプ101を形成するためのものとなり、貼合せシート33のポリイミドシート(絶縁シート)35全体から一枚の絶縁膜105を形成することとなる。貼合せシート33は第1の実施形態における図4と同じ断面を持ち、38μm厚のポリイミドシート35に対し4μm厚の銅箔37を貼合せたものを用いる。この貼合せシート33全体での一枚のメンブレンバンプ101の製造は、第1の実施形態における第2の工程、第3の工程、第4の工程、第5の工程、第6の工程、第7の工程及び第8の工程と同様の工程を経て行われる。第8の工程が終わると最後に第1の実施形態の場合と同様に銅箔37をエッチングにより除去する。完成した一枚のバンプ付きポリイミドシート105を剛性リング103に貼り付けてメンブレンバンプ101を形成し、配線基板119の上又は表面側に異方導電膜113を配置し、上記メンブレンバンプ101を異方導電膜113の上に配置することによりプローブカードを完成させる。
 ウェーハの半導体チップの配列の密度が高く、第1の実施形態において接点膜7を形成するための分割が困難な場合、第2の実施形態(第2のプローブカード)が有効となる。
 本発明のバンプ付きメンブレンシートやプローブカードはウェーハの多ピン一括接触検査に有効に用いることができる。
   7      接点膜(バンプ付きメンブレンシート)
   17、107 バンプ
   19、109 導電電極
   35     ポリイミドシート(絶縁シート)
   46     電極体
   101    メンブレンバンプ(バンプ付きメンブレンシート)
   105    ポリイミドシート(絶縁膜)

Claims (9)

  1.  絶縁膜と、ウェーハに形成された半導体チップの電極パッドに電気的に接触するように前記絶縁膜の表面に設けられたバンプと、このバンプから前記絶縁膜内を通って前記絶縁膜の裏面側まで延びる導電電極と、を備えたプローブカード用のバンプ付きメンブレンシートであって、
     前記導電電極の前記絶縁膜内に位置する部分は、断面形状が前記絶縁膜の表面に向って幅が狭くなる台形状であり、前記バンプは断面三角形状に形成されて前記導電電極の上面よりも広い底面を有している、ことを特徴とするプローブカード用のバンプ付きメンブレンシート。
  2.  前記導電電極は、前記絶縁膜の裏面から突出する裏面側端部を有し、この裏面側端部は、前記導電電極の前記絶縁膜内に位置する部分の底面よりも広く形成されている、ことを特徴とする請求項1記載のプローブカード用のバンプ付きメンブレンシート。
  3.  請求項1又は2記載のプローブカード用のバンプ付きメンブレンシートと、このバンプ付きメンブレンシートの前記導電電極と電気的に接続される端子を有する配線基板と、を備えたことを特徴とするプローブカード。
  4.  前記バンプ付きメンブレンシートは前記ウェーハに対応した大きさを有している、ことを特徴とする請求項3記載のプローブカード。
  5.  前記半導体チップに対応する貫通穴が複数形成されたフレーム板をさらに備え、前記バンプ付きメンブレンシートは、前記貫通穴に対応した大きさを有し、前記フレーム板の表面側の前記貫通穴周辺に支持されている、ことを特徴とする請求項3記載のプローブカード。
  6.  前記貫通穴に対応した大きさに形成され、前記貫通穴又は前記貫通穴周辺に支持された弾性膜及びこの弾性膜内に相互に絶縁された状態で形成された、厚み方向に延びる複数の導電路を有する異方導電膜をさらに備え、前記導電電極と前記配線基板の前記端子とは、この導電路を介して電気的に接続される、ことを特徴とする請求項5記載のプローブカード。
  7.  絶縁膜と、ウェーハに形成された半導体チップの電極パッドに電気的に接触するように前記絶縁膜の表面に設けられたバンプと、このバンプから前記絶縁膜内を通って前記絶縁膜の裏面側まで延びる導電電極と、を備えたプローブカード用のバンプ付きメンブレンシートの製造方法であって、
     前記絶縁膜を形成するための絶縁シートを準備する準備ステップと、
     準備した前記絶縁シートに、前記半導体チップの前記電極パッドに対応するように、裏面側から断面三角形のメッキ穴を形成するメッキ穴形成ステップと、
     形成した前記メッキ穴にメッキして、このメッキ穴に対応した形状を有し、下側が前記導電電極を構成する電極体を形成する電極体形成ステップと、
     前記電極体の、前記導電電極を構成する部分よりも上側が前記絶縁シートから断面三角形状に突出して露出するように、前記絶縁シートの表面側をハーフエッチングする露出ステップと、
     前記絶縁シートをハーフエッチングして形成した前記絶縁膜から突出する断面三角形状の前記電極体の表面にメッキして、この電極体の表面に沿った表面を有する前記バンプを形成するバンプ形成ステップと、を備えることを特徴とするプローブカード用のバンプ付きメンブレンシートの製造方法。
  8.  前記バンプは断面三角形状に形成される、ことを特徴とする請求項7記載のプローブカード用のバンプ付きメンブレンシートの製造方法。
  9.  前記電極体形成ステップでは、前記絶縁シートの裏面から突出し、前記絶縁シート内に位置する部分の底面よりも広い裏面側端部が設けられるように前記電極体を形成する、ことを特徴とする請求項7又は8記載のプローブカード用のバンプ付きメンブレンシートの製造方法。
PCT/JP2012/081364 2011-12-06 2012-12-04 プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法 WO2013084874A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137031743A KR101955663B1 (ko) 2011-12-06 2012-12-04 프로브 카드용의 범프 부착 멤브레인 시트, 프로브 카드 및 프로브 카드용의 범프 부착 멤브레인 시트의 제조방법
US14/128,111 US9642255B2 (en) 2011-12-06 2012-12-04 Membrane sheet with bumps for probe card, probe card and method for manufacturing membrane sheet with bumps for probe card

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011266983A JP5859834B2 (ja) 2011-12-06 2011-12-06 プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法
JP2011-266983 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084874A1 true WO2013084874A1 (ja) 2013-06-13

Family

ID=48574238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081364 WO2013084874A1 (ja) 2011-12-06 2012-12-04 プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法

Country Status (4)

Country Link
US (1) US9642255B2 (ja)
JP (1) JP5859834B2 (ja)
KR (1) KR101955663B1 (ja)
WO (1) WO2013084874A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409364B (zh) * 2014-11-19 2017-12-01 清华大学 转接板及其制作方法、封装结构及用于转接板的键合方法
US20170176496A1 (en) * 2015-12-18 2017-06-22 Akshay Mathkar Space transformer including a perforated mold preform for electrical die test
KR102272987B1 (ko) * 2021-01-27 2021-07-05 주식회사 프로이천 범프형 프로브카드

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772171A (ja) * 1993-09-03 1995-03-17 Toshiba Corp 配線板用電気検査治具
JP2003157918A (ja) * 2001-11-19 2003-05-30 Taiko Denki Co Ltd 弾性電気接点
JP2006003346A (ja) * 2004-05-19 2006-01-05 Jsr Corp シート状プローブおよびその製造方法並びにその応用
JP2008089378A (ja) * 2006-09-29 2008-04-17 Jsr Corp シート状プローブおよびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922486B2 (ja) 1993-12-21 1999-07-26 松下電器産業株式会社 プローブカード
TW508440B (en) * 1999-12-27 2002-11-01 Hoya Co Ltd Probe structure and manufacturing method thereof
US6586955B2 (en) * 2000-03-13 2003-07-01 Tessera, Inc. Methods and structures for electronic probing arrays
JP2003215161A (ja) * 2002-01-22 2003-07-30 Tokyo Electron Ltd プローブ、プローブの製造方法、プローブの取付方法、プローブの取付装置及びプローブカード
JP3759156B2 (ja) 2004-04-27 2006-03-22 Jsr株式会社 シート状プローブの製造方法
KR20070010187A (ko) * 2004-04-27 2007-01-22 제이에스알 가부시끼가이샤 시트상 프로브, 그의 제조 방법 및 그의 용도
US20080048686A1 (en) * 2004-05-19 2008-02-28 Jsr Corporation Sheet-like Probe, Method of Producing the Probe, and Application of the Probe
JP4852236B2 (ja) * 2004-10-08 2012-01-11 パナソニック株式会社 バンプ付きメンブレンおよびその製造方法およびウエハの検査方法
JP2008205042A (ja) * 2007-02-16 2008-09-04 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2009204393A (ja) 2008-02-27 2009-09-10 Renesas Technology Corp プローブカード、プローブカードの製造方法、半導体検査装置および半導体装置の製造方法
JP2010276541A (ja) 2009-05-29 2010-12-09 Renesas Electronics Corp 薄膜プローブシートおよびその製造方法、プローブカード、ならびに半導体チップ検査装置
US8988093B2 (en) * 2009-06-02 2015-03-24 Hsio Technologies, Llc Bumped semiconductor wafer or die level electrical interconnect
JP4615057B1 (ja) 2009-07-15 2011-01-19 エルフィノート・テクノロジー株式会社 プローブカード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772171A (ja) * 1993-09-03 1995-03-17 Toshiba Corp 配線板用電気検査治具
JP2003157918A (ja) * 2001-11-19 2003-05-30 Taiko Denki Co Ltd 弾性電気接点
JP2006003346A (ja) * 2004-05-19 2006-01-05 Jsr Corp シート状プローブおよびその製造方法並びにその応用
JP2008089378A (ja) * 2006-09-29 2008-04-17 Jsr Corp シート状プローブおよびその製造方法

Also Published As

Publication number Publication date
KR101955663B1 (ko) 2019-03-07
KR20140099179A (ko) 2014-08-11
US9642255B2 (en) 2017-05-02
US20140327463A1 (en) 2014-11-06
JP5859834B2 (ja) 2016-02-16
JP2013120079A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
US11204369B2 (en) Semiconductor device test socket
US6672876B1 (en) Probe card with pyramid shaped thin film contacts
US7049837B2 (en) Probe sheet, probe card, semiconductor test equipment and semiconductor device fabrication method
JP4540577B2 (ja) プローブカード・アセンブリ及びキット、及びそれらを用いる方法
US8146245B2 (en) Method for assembling a wafer level test probe card
KR100980369B1 (ko) 프로브 카드의 프로브 니들 구조체와 그 제조 방법
JP4741949B2 (ja) 検査プローブ
US20080029763A1 (en) Transmission Circuit, Connecting Sheet, Probe Sheet, Probe Card, Semiconductor Inspection System and Method of Manufacturing Semiconductor Device
JP2014119450A (ja) 試験装置及びその試験方法
JP4343256B1 (ja) 半導体装置の製造方法
JP5859834B2 (ja) プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法
JP4615057B1 (ja) プローブカード
JP6333225B2 (ja) プローブカード用のバンプ付きメンブレンシート、プローブカード及びプローブカード用のバンプ付きメンブレンシートの製造方法
JP2000121673A (ja) コンタクタ
JP2004144742A (ja) プローブシート、プローブカード、半導体検査装置および半導体装置の製造方法
KR100266389B1 (ko) 스프링 접점부를 구비한 대 기판을 정주시키기 위한 접점 캐리어(타일)
JP2009257910A (ja) 二重弾性機構プローブカードとその製造方法
JP2005156365A (ja) 電気特性測定用プローブ及びその製造方法
TWI601959B (zh) Proximity patch for probe card, method for manufacturing patch for probe card and probe card
JP4490978B2 (ja) コンタクタ
JP4296609B2 (ja) 半導体検査治具の製造方法
WO2022208708A1 (ja) プローブカード
JP4492976B2 (ja) 半導体装置
KR20110030763A (ko) 프로브 카드 제조에 사용되는 핀 어레이 틀
US20090146673A1 (en) Manufacturing method of probe card and the probe card

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031743

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128111

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855488

Country of ref document: EP

Kind code of ref document: A1