WO2013084441A1 - 太陽電池の分光感度測定装置 - Google Patents

太陽電池の分光感度測定装置 Download PDF

Info

Publication number
WO2013084441A1
WO2013084441A1 PCT/JP2012/007583 JP2012007583W WO2013084441A1 WO 2013084441 A1 WO2013084441 A1 WO 2013084441A1 JP 2012007583 W JP2012007583 W JP 2012007583W WO 2013084441 A1 WO2013084441 A1 WO 2013084441A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light
light source
spectral sensitivity
bias
Prior art date
Application number
PCT/JP2012/007583
Other languages
English (en)
French (fr)
Inventor
宜弘 西川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP12855175.1A priority Critical patent/EP2790228B1/en
Priority to JP2013548076A priority patent/JP5761372B2/ja
Publication of WO2013084441A1 publication Critical patent/WO2013084441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell spectral sensitivity measuring device that measures spectral sensitivity of a solar cell to be measured, and more particularly to a solar cell spectral sensitivity measuring device that measures spectral sensitivity under bias light irradiation.
  • a solar cell is an element that directly converts light energy into electric power by utilizing the photovoltaic effect, and includes various types such as a single crystal silicon solar cell, an amorphous silicon solar cell, a non-silicon solar cell, and an organic compound solar cell.
  • various types have been researched and developed, and have begun to spread widely in recent years.
  • Non-Patent Document 1 Non-Patent Document 2
  • JIS Japanese Industrial Standards
  • the spectral sensitivity of a solar cell is the photoelectric conversion efficiency at each wavelength of incident light in the solar cell, and is usually a unit of A / W (ampere / watt) as the output current of the solar cell with respect to the light energy incident on the solar cell. It is represented by Therefore, the spectral sensitivity of the solar cell represents how much output current the solar cell has for incident light of different wavelengths, and the spectral sensitivity of the solar cell is an evaluation for evaluating the performance of the solar cell. Can be an indicator.
  • this solar cell spectral sensitivity measuring apparatus As a device for measuring the spectral sensitivity of this solar cell, for example, there is a conventional solar cell spectral sensitivity measuring device by the DSR method.
  • this solar cell spectral sensitivity measuring apparatus first, a solar cell PV to be measured is irradiated with white light as a bias light to bring the solar cell PV into a power generation state (a biased state (bias state)).
  • this spectral sensitivity measuring apparatus further measures the sensitivity (output current) at the wavelength of the monochromatic light by irradiating the solar cell PV with monochromatic light in the bias state.
  • this spectral sensitivity measuring apparatus measures the spectral sensitivity of the solar cell PV by scanning the wavelength of the said monochromatic light.
  • the spectral sensitivity of the solar cells depends on the amount of white bias light.
  • the spectral sensitivity of the solar cell depends on the spectrum of the bias light.
  • solar cells are starting to be used in various environments.
  • solar cells are used under light sources such as indoor incandescent bulbs, fluorescent lamps, and white LEDs.
  • the reference sunlight simulating natural sunlight is compared to the solar cell having spectral sensitivity that depends on the amount and spectrum of the bias light as described above.
  • the spectral sensitivity is evaluated by the above, the evaluated spectral sensitivity includes an error.
  • the dependence of the spectral sensitivity on the light energy (light quantity) of the white bias light is considered, but the bias light is only the white bias light, and the bias light However, it is not taken into consideration or assumed to be different from such white bias light.
  • the said nonpatent literature 2 shows the several light source device, they are the light source devices prepared in order to change the light quantity of white bias light.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is a solar cell spectral sensitivity measuring apparatus capable of measuring the spectral sensitivity of a solar cell with respect to bias lights having a plurality of different radiation spectra. Is to provide.
  • the spectral sensitivity measuring apparatus for a solar cell irradiates a solar cell to be measured with a bias light, and irradiates the monochromatic light while changing the wavelength so as to be superimposed on the solar cell. , And the spectral sensitivity of the solar cell to be measured is measured based on the measured outputs. And the spectral sensitivity measuring apparatus of the solar cell concerning this invention is comprised so that the radiation spectrum of the said bias light can be changed. Therefore, such a solar cell spectral sensitivity measuring apparatus can measure the solar cell spectral sensitivity with respect to each bias light of a plurality of different radiation spectra.
  • the solar cell spectral sensitivity measuring apparatus 1000 puts the solar cell PV in a power generation state (biased state (bias state)) by irradiating the solar cell PV to be measured with white light as bias light.
  • the monochromatic light is further irradiated to the solar cell PV to measure the sensitivity (output current) at the wavelength of the monochromatic light, and the spectral sensitivity of the solar cell PV is measured by scanning the monochromatic light wavelength. It is a device to do.
  • This solar cell spectral sensitivity measuring apparatus 1000 includes a white bias light source unit 1010, a monochromatic light source unit 1020, an irradiation optical system 1030, and a measurement unit 1040.
  • a white bias light source unit (Bias Unit) 1010 is a device that emits white bias light, and includes, for example, a halogen lamp 1011, an optical filter 1012, and a light amount adjustment unit 1013.
  • the optical filter 1012 uses natural sunlight AM1.5 (Air Mass 1.5) as light emitted from the halogen lamp 1011. )
  • AM1.5 Air Mass 1.5
  • the light amount adjusting unit 1013 adjusts the light amount of the filtered light so as to have various illuminances when the measurement target solar cell PV is irradiated.
  • the monochromatic light source unit (Monochrome Unit) 1020 is a device that emits monochromatic light, and is a spectroscope, for example, and includes a xenon lamp 1021 and a diffraction grating 1022.
  • the diffraction grating 1022 diffracts light emitted from the xenon lamp 1021, and diffracted light of the order corresponding to the predetermined wavelength. Inject.
  • the irradiation optical system 1030 superimposes the white bias light (reference sunlight) emitted from the white bias light source unit 1010 and the monochromatic light emitted from the monochromatic light source unit 1020, and superimposes the superimposed light (superimposed light). ) To the solar cell PV to be measured.
  • the irradiation optical system 1030 includes, for example, a half mirror 1031, an integrator lens 1032, and a condensing optical system 1033. In the irradiation optical system 1030, the half mirror 1031 superimposes the white bias light emitted from the white bias light source unit 1010 and the monochromatic light emitted from the monochromatic light source unit 1020.
  • the integrator lens 1032 emits the superimposed superimposed light so that the illuminance distribution becomes uniform.
  • the condensing optical system 1033 condenses the superimposed light with the illuminance distribution made uniform and irradiates the solar cell PV to be measured.
  • the measurement unit 1040 is a device that measures the output current of the solar cell PV to be measured.
  • the current generated in the solar cell PV to be measured by being irradiated with the superimposed light is measured by the measurement unit 1040.
  • Such a solar cell spectral sensitivity measuring apparatus 1000 measures the output current of the solar cell PV to be measured by the measurement unit 1040 while changing the wavelength of the monochromatic light superimposed on the superimposed light, thereby using the DSR method.
  • the spectral sensitivity of the solar cell PV to be measured is measured.
  • the spectral sensitivity of the solar cell depends on the amount of white bias light.
  • the spectral sensitivity of the solar cell depends on the spectrum of the bias light.
  • the spectral sensitivity of the solar cell increases in the wavelength range of about 500 nm or more as the amount of white bias light increases.
  • an infrared light emitting diode (IR-LED) or a halogen lamp (QHGL-Bias) having irradiation light energy in a relatively long wavelength region.
  • the spectral sensitivity of the solar cell starts to increase at a wavelength of about 750 nm and increases by about 10 to 20% in a long wavelength range of about 1050 nm or more.
  • a blue light emitting diode (blade LED) having irradiation light energy in a relatively short wavelength region starts to increase at a wavelength of about 950 nm, but is not so large even in a long wavelength range of about 1050 nm or more. It is not growing.
  • the horizontal axis in FIGS. 7 to 9 is the wavelength expressed in nm units, and the horizontal axis is the amount of change expressed in% units.
  • FIG. 9A is obtained by normalizing the spectrum shown in FIG. 9B with the peak. As described above, there is a solar cell having a spectral sensitivity having dependency on the light amount and spectrum of bias light.
  • the solar cell spectral sensitivity measuring apparatus 1000 based on the DSR method having the basic configuration shown in FIG. 6 may not be able to appropriately measure a solar cell having a spectral sensitivity that depends on the light amount and spectrum of the bias light. .
  • the solar cell spectral sensitivity measuring apparatus according to the DSR method of the embodiment described below is an improvement of this point.
  • the solar cell spectral sensitivity measuring apparatus 1A according to the first embodiment can irradiate a plurality of bias lights having different spectra, and the plurality of biases are measured when the spectral sensitivity of the solar cell PV is measured.
  • the apparatus is capable of selecting one bias light from light and measuring the spectral sensitivity of the solar cell PV with the selected bias light.
  • the solar cell spectral sensitivity measuring device 1A according to the first embodiment is substantially the same as the solar cell spectral sensitivity measuring device 1000 described with reference to FIG.
  • the solar cell PV By irradiating the selected solar cell PV with the selected bias light, the solar cell PV is brought into a power generation state (a biased state (bias state)), and further monochromatic light is irradiated to the solar cell PV in the bias state. Is used to measure the sensitivity (output current) at the wavelength of the monochromatic light, and the spectral sensitivity of the solar cell PV is measured by scanning the wavelength of the monochromatic light.
  • a biased state bias state
  • Such a solar cell spectral sensitivity measuring apparatus 1A includes, for example, a bias light source unit 10A, a monochromatic light source unit 20, an irradiation optical system 30, and a measurement unit 40, as shown in FIG. And a control unit 50A.
  • the bias light source unit (Bias Unit) 10A is a device that can irradiate a plurality of bias lights having different spectra, and includes, for example, a light source device 11, an optical filter device 12, and a light amount adjustment unit 13. ing.
  • the light source device 11 is a light source that emits light having an appropriate spectrum in consideration of the spectrum of the bias light and the filter wavelength characteristics of the optical filter device 12, and includes, for example, a halogen lamp or a xenon lamp. In the present embodiment, a halogen lamp 11 is used for the light source device 11.
  • the optical filter device 12 is a device that receives light emitted from the halogen lamp 11 of the light source device 11 and converts the spectrum of the incident light into a predetermined spectrum and emits it.
  • the said predetermined spectrum is a spectrum in the light source of the use environment (under assumption use environment) where use of the solar cell PV is assumed, for example. Examples of the light source under such an assumed usage environment include reference sunlight, incandescent bulbs, fluorescent lamps (for example, white daylight fluorescent lamps and D50 fluorescent lamps), and white LED bulbs.
  • Such an optical filter device 12 includes a number of optical filters 121 corresponding to the number of bias lights in order to generate a plurality of bias lights having different spectra.
  • the optical filter device 12 in order to generate three bias lights having respective spectra corresponding to AM1.5 standard sunlight, daylight fluorescent lamps, and white LED bulbs, the optical filter device 12 includes three first to thirty-first light sources. Third optical filters 121-1 to 121-3 are provided.
  • the first optical filter 121-1 is an optical element having a filter wavelength characteristic that converts the spectrum of light emitted from the light source device 11 into the spectrum of AM1.5 reference sunlight shown in FIG.
  • the first optical filter 121-1 When the light emitted from the halogen lamp 11 of the light source device 11 is incident on the first optical filter 121-1, the light is emitted from the first optical filter 121-1 in a spectrum simulating the spectrum of AM1.5 reference sunlight. Is done.
  • the second optical filter 121-2 is an optical element having a filter wavelength characteristic that converts the spectrum of light emitted from the light source device 11 into the spectrum of a daylight fluorescent lamp shown in FIG.
  • the light emitted from the halogen lamp 11 of the light source device 11 is incident on the second optical filter 121-2, the light is emitted from the second optical filter 121-2 with a spectrum simulating a daylight fluorescent lamp.
  • the third optical filter 121-3 is an optical element having a filter wavelength characteristic that converts the spectrum of the light emitted from the light source device 11 into the spectrum of the white LED bulb shown in FIG.
  • the light emitted from the halogen lamp 11 of the light source device 11 is incident on the third optical filter 121-3, the light is emitted from the third optical filter 121-3 with a spectrum simulating a white LED bulb.
  • Each of the first to third optical filters 121-1 to 121-3 is configured by appropriately combining one or a plurality of filter elements.
  • the filter element include a colored glass filter element, an optical thin film filter element, and a dielectric multilayer filter element.
  • the horizontal axis in FIGS. 2 and 3 is the wavelength in nm units, and the vertical axis is the illuminance level.
  • the illuminance level is represented by an absolute value in FIG. 2, and is represented by a relative value normalized by a peak in FIG.
  • the light amount adjusting unit 13 is an optical element for adjusting the light amount of the emitted light.
  • the light amount adjustment unit 13 includes, for example, an optical aperture, an ND filter, and the like.
  • bias light source unit 10A in order to generate bias light having a predetermined emission spectrum, first, an optical filter 121 corresponding to the predetermined emission spectrum is selected. Then, the light emitted from the halogen lamp 11 of the light source device 11 is filtered by the selected optical filter 121 in the optical filter device 12. The filtered light is adjusted by the light amount adjustment unit 13 so that the light amount is a predetermined amount when irradiated to the solar cell PV to be measured, and is emitted to the irradiation optical system 30.
  • the monochromatic light source unit (Monochrome Unit) 20 is a device that can irradiate a plurality of monochromatic lights having different wavelengths, and is, for example, a spectroscope, and includes a light source device 21 and a diffraction grating 22. ing.
  • the light source device 21 is a light source that emits light having an appropriate wavelength range in consideration of the wavelength range (for example, 300 nm to 1200 nm) of the plurality of monochromatic lights and the diffraction characteristics of the diffraction grating 22.
  • the xenon lamp 21 I have.
  • the diffraction grating 22 is an optical element that diffracts light emitted from the xenon lamp 21 of the light source device 21 in order to generate monochromatic light.
  • a monochromatic light source unit 20 in order to generate and emit monochromatic light of a predetermined wavelength, light emitted from the xenon lamp 21 of the light source device 21 is incident on the diffraction grating 22, and this incident light is The diffracted light of the order corresponding to a predetermined wavelength that is diffracted by the diffraction grating 22 is emitted to the irradiation optical system 30 through an emission slit (not shown).
  • the irradiation optical system 30 superimposes the bias light emitted from the bias light source unit 10A and the monochromatic light emitted from the monochromatic light source unit 20, and uses the superposed light (superimposed light) as a measurement target. It is an optical system for irradiating the solar cell PV.
  • the irradiation optical system 30 includes, for example, a half mirror 31 that superimposes each light incident from two different directions and emits the light in one direction, an integrator lens 32 that emits light with a uniform illuminance distribution of the incident light, and incident light. And a condensing optical system 33 that emits light so as to collect light. If it is not necessary to adjust the illuminance distribution, the integrator lens 32 can be omitted. If it is not necessary to collect light, the condensing optical system 33 can be omitted.
  • the bias light emitted from the bias light source unit 10A and the monochromatic light emitted from the monochromatic light source unit 20 are incident on the half mirror 31, and these bias light and monochromatic light are Are superimposed by the half mirror 31 and emitted to the integrator lens 32.
  • the superimposed light incident on the integrator lens 32 is made uniform in its illuminance distribution by the integrator lens 32 and is emitted to the condensing optical system 33.
  • the superimposed light that is incident on the condensing optical system 33 and has a uniform illuminance distribution is condensed by the condensing optical system 33 and irradiated to the solar cell PV to be measured.
  • the bias light emitted from the bias light source unit 10A and the monochromatic light emitted from the monochromatic light source unit 20 are superimposed by the half mirror 31, but other configurations may be used.
  • the bias light emitted from the bias light source unit 10A is irradiated with the bias light irradiation region in the solar cell PV to be measured so that the monochromatic light emitted from the monochromatic light source unit 20 is further irradiated.
  • the solar cell spectral sensitivity measuring apparatus 1A may be configured.
  • the bias light emitted from the bias light source unit 10A is incident on the measurement surface of the solar cell PV to be measured from an oblique direction, and monochromatic light is incident on the irradiation region of the bias light.
  • the solar cell spectral sensitivity measuring apparatus 1A is configured such that monochromatic light emitted from the light source unit 20 is incident in a direction perpendicular to the measurement surface (normal direction).
  • the measurement unit 40 is an apparatus that measures the output current of the solar cell PV to be measured for each wavelength of monochromatic light, and measures the spectral sensitivity of the solar cell PV to be measured by the DSR method.
  • the current generated in the solar cell PV to be measured by being irradiated with the superimposed light with the illuminance distribution made uniform is measured by the measurement unit 40.
  • Control unit 50A is a device that controls each part of solar cell spectral sensitivity measuring apparatus 1A according to the function.
  • the control unit 50A is inputted from an input unit (not shown) out of a plurality of, in this example, three first to third optical filters 121-1 to 121-3 in the optical filter device 12 of the bias light source unit 10A.
  • the optical filter 121 is selected in accordance with the received instruction, and the optical filter device 12 is controlled so that the light emitted from the light source device 11 enters the light amount adjusting unit 13 through the selected optical filter 121.
  • the optical filter device 12 includes a rotating plate in which first to third optical filters 121-1 to 121-3 are respectively fitted in first to third openings formed at predetermined intervals in the circumferential direction, A motor that rotationally drives the rotating plate.
  • the control unit 50 ⁇ / b> A controls the motor so that the light emitted from the light source device 11 enters the light amount adjustment unit 13 through the selected optical filter 121.
  • the amount of rotation of the rotating plate is controlled.
  • the solar cell spectral sensitivity measuring apparatus 1A may be configured in this way.
  • a desired optical filter 121 is selected from the plurality of optical filters 121 in the optical filter device 12 of the bias light source unit 10A by manual operation of the operator, and light emitted from the light source device 11 is the selected optical filter.
  • the solar cell spectral sensitivity measuring apparatus 1 ⁇ / b> A according to the first embodiment may be configured to be incident on the light amount adjusting unit 13 via the filter 121.
  • control unit 50A controls the monochromatic light source unit 20 to turn on the monochromatic light source unit 20 and scan the wavelength of monochromatic light.
  • the control unit 50A controls the measurement unit 40 to measure the output current of the solar cell PV to be measured for each wavelength of the scanned monochromatic light, and when the scanning of the monochromatic light wavelength is completed, the DSR The measurement unit 40 is controlled so as to obtain the spectral sensitivity of the solar cell PV to be measured by the method.
  • the solar cell PV to be measured is set at a predetermined position.
  • the control unit 50A Upon receiving a measurement start instruction and a selection instruction for selecting the optical filter 121 in the optical filter device 12 from the input unit (not shown), the control unit 50A applies bias light having a radiation spectrum corresponding to the selection instruction to a bias light source.
  • the bias light source unit 10A is controlled so that the light emitted from the light source device 11 enters the light amount adjustment unit 13 through the optical filter 121 according to the selection instruction.
  • the control unit 50A controls the bias light source unit 10A so that the halogen lamp 11 of the light source device 11 is turned on.
  • the control unit 50A scans the wavelength of the monochromatic light at a predetermined wavelength interval (for example, 10 nm or 20 nm) in a predetermined wavelength range (for example, 300 nm to 1200 nm), so that the monochromatic light having a wavelength corresponding to the start of scanning is used.
  • the monochromatic light source unit 20 is controlled so as to emit light.
  • the wavelength of the monochromatic light can be changed by changing the incident angle of the incident light incident on the diffraction grating 22.
  • the control unit 50A controls the monochromatic light source unit 20 to turn on the xenon lamp 21 of the light source device 21.
  • bias light having a radiation spectrum corresponding to the selection instruction is emitted from the bias light source unit 10A to the irradiation optical system 30, and monochromatic light having a wavelength corresponding to the start of scanning is emitted from the monochromatic light source unit. 20 is emitted to the irradiation optical system 30.
  • the half mirror 31 superimposes the bias light incident from the bias light source unit 10A and the monochromatic light incident from the monochromatic light source unit 20, and uses the superimposed superimposed light as an integrator lens. 32.
  • the integrator lens 32 makes the illuminance distribution of the superimposed light incident from the half mirror 31 uniform, and emits the uniformed superimposed light to the condensing optical system 33.
  • the condensing optical system 33 condenses the superimposed light incident from the integrator lens 32 and irradiates the collected solar light PV with the condensed light.
  • the measurement unit 40 measures the output current output from the solar cell PV to be measured based on the generated power.
  • the control unit 50A emits the monochromatic light of the next wavelength.
  • the unit 20 is controlled to cause the measuring unit 40 to measure the output current output from the solar cell PV to be measured by receiving superimposed light including monochromatic light of that wavelength. Thereafter, the same operation is performed by scanning monochromatic light at a predetermined wavelength range within a predetermined wavelength range up to monochromatic light having a wavelength corresponding to the end of scanning, and sequentially receiving superimposed light including the monochromatic light of that wavelength.
  • the output current output from the target solar cell PV is measured.
  • the solar cell spectral sensitivity measuring apparatus 1A may be configured as follows.
  • the monochromatic light source unit 20 periodically emits monochromatic light as pulsed light at a predetermined time interval, and the measuring unit 40 includes a lock-in amplifier synchronized with the predetermined time interval.
  • the output current output from the solar cell PV to be measured by receiving superimposed light including monochromatic light is measured using the lock-in amplifier.
  • the measuring unit 40 obtains the spectral sensitivity of the solar cell PV to be measured by the DSR method using bias light instead of the white bias light, and the obtained solar cell PV to be measured. Is output to an output unit (not shown).
  • This DSR method is described in detail in Non-Patent Document 1 in the case of white bias light, and the procedure is roughly as shown in FIG. In the present embodiment, the DSR method is executed using the above-described bias light instead of the white bias light.
  • the solar cell spectral sensitivity measuring apparatus 1A includes the bias light source unit 10A that can change the radiation spectrum of the bias light, so that the solar cell spectrum for each bias light having a plurality of different radiation spectra is provided. Sensitivity can be measured. For this reason, the spectral sensitivity measuring apparatus 1A of the solar cell in the present embodiment makes the radiation spectrum correspond to the spectrum of light in the usage environment, for example, the spectrum of the incandescent bulb, the spectrum of the white LED, etc. The spectral sensitivity of the solar cell in can be measured more accurately.
  • the solar cell spectral sensitivity measuring device 1A in the present embodiment can effectively exhibit its performance. Can be used preferably.
  • the solar cell spectral sensitivity measuring apparatus 1A according to this embodiment can more accurately measure the spectral sensitivity of the solar cell PV having the spectral sensitivity depending on at least the change in the spectrum of the bias light.
  • the solar cell spectral sensitivity measuring apparatus 1A has a relatively simple configuration including a plurality of optical filters 121, and the bias light source unit 10A is realized.
  • the solar cell spectral sensitivity measuring apparatus 1A in the present embodiment uses the DSR method, even if the solar cell PV to be measured has a spectral sensitivity that depends on the change in the amount of bias light, The spectral sensitivity of the solar cell PV can be accurately measured.
  • the DSR method is not used by adjusting the light amount of the light amount adjusting unit 13 in the spectral sensitivity measuring device 1A of the solar cell so that the measurer has a predetermined light amount. You may measure with.
  • the solar cell spectral sensitivity measuring apparatus 1A includes a light source device 11 and a plurality of optical components that receive light emitted from the light source device 11 and emit light incident from the light source device 11 with different spectra.
  • the filter 121 is configured to include the bias light source unit 10A including the three optical filters 121-1 to 121-3 in the example illustrated in FIG. 1, the solar cell spectral sensitivity measuring apparatus 1B according to the second embodiment. Is configured to include a bias light source unit 10B including a plurality of light source devices 141 that emit light with different spectra instead of the bias light source unit 10A.
  • the solar cell spectral sensitivity measuring apparatus 1B includes, for example, a bias light source unit 10B, a monochromatic light source unit 20, an irradiation optical system 30, and a measurement unit 40, as shown in FIG. And a control unit 50B.
  • the monochromatic light source unit 20, the irradiation optical system 30, and the measuring unit 40 are respectively monochromatic light in the solar cell spectral sensitivity measuring apparatus 1A of the first embodiment. Since it is the same as that of the light source part 20, the irradiation optical system 30, and the measurement part 40, the description is abbreviate
  • the bias light source unit 10B is a device that irradiates a plurality of bias lights having different spectra, and includes a plurality of light source devices 141 and a light amount adjustment unit 13, for example.
  • the plurality of light source devices 141 are, for example, light sources themselves in a use environment (under an assumed use environment) in which use of the solar cell PV is assumed. Examples of the plurality of light source devices 141 include a solar simulator simulating AM1.5 standard sunlight, an incandescent bulb, a fluorescent lamp (for example, a white daylight fluorescent lamp and a D50 fluorescent lamp), and a white LED bulb.
  • the bias light source unit 10B includes a solar simulator (AM-1.5 Light) 141-1 that simulates AM1.5 standard sunlight, a white daylight fluorescent lamp (FL Light) 141-2, and a white LED. It has three light source devices 141, which are light bulbs (LED Lights) 141-3.
  • the light amount adjusting unit 13 is the same as the light amount adjusting unit 13 in the bias light source unit 10A of the first embodiment, and is an optical element for adjusting the amount of emitted light.
  • the light amount adjustment unit 13 includes, for example, an optical aperture, an ND filter, and the like.
  • bias light source unit 10B in order to emit bias light having a predetermined emission spectrum, first, the light source device 141 corresponding to the predetermined emission spectrum is selected. Then, the amount of light emitted from the selected light source device 141 is adjusted by the light amount adjusting unit 13 so that the light amount is adjusted to a predetermined amount when irradiated to the solar cell PV to be measured. Is injected into.
  • Control unit 50B is a device that controls each part of solar cell spectral sensitivity measuring apparatus 1B according to the function.
  • the control unit 50B firstly selects a light source device 141 according to an instruction input from an input unit (not shown) from among a plurality of, in this example, three light source devices 141-1 to 141-3 in the bias light source unit 10B. Select.
  • the control unit 50B controls the bias light source unit 10B so that the selected light source device 141 is turned on and the bias light emitted from the selected light source device 141 is incident on the light amount adjusting unit 13.
  • a desired light source device 141 is selected from a plurality of light source devices 141 in the bias light source unit 10B and turned on by manual operation by an operator, and the selected light source device 141 is turned on.
  • the solar cell spectral sensitivity measuring apparatus 1 ⁇ / b> B may be configured so that the radiated bias light is incident on the light amount adjusting unit 13.
  • control unit 50B controls the monochromatic light source unit 20 to turn on the monochromatic light source unit 20 and scan the wavelength of monochromatic light.
  • the control unit 50B controls the measurement unit 40 to measure the output current of the solar cell PV to be measured for each wavelength of the scanned monochromatic light, and when the scanning of the monochromatic light wavelength is completed, the DSR The measurement unit 40 is controlled so as to obtain the spectral sensitivity of the solar cell PV to be measured by the method.
  • the light source device 141 is selected instead of the optical filter 121 in the bias light source unit 10A of the first embodiment.
  • the solar cell spectral sensitivity measuring apparatus 1B includes the bias light source unit 10B that can change the radiation spectrum of the bias light. Therefore, the solar cell spectrum for each bias light having a plurality of different radiation spectra is provided. Sensitivity can be measured.
  • the solar cell spectral sensitivity measuring apparatus 1B can use the light source device of the light source under the usage environment in order to obtain a desired radiation spectrum, and thus the spectral sensitivity of the solar cell under the usage environment. Can be measured very accurately. Therefore, when the solar cell PV to be measured has a spectral sensitivity that depends at least on the change in the spectrum of the bias light, the spectral sensitivity measuring device 1B for the solar cell in this embodiment can effectively exhibit its performance. Can be used preferably.
  • the solar cell spectral sensitivity measuring apparatus 1B in this embodiment uses the DSR method, even if the solar cell PV to be measured has a spectral sensitivity that depends on the change in the amount of bias light, The spectral sensitivity of the solar cell PV can be accurately measured.
  • a spectral sensitivity measuring device for a solar cell is a spectral sensitivity measuring device for a solar cell that measures spectral sensitivity in a solar cell to be measured, and the bias light that irradiates the solar cell to be measured with bias light.
  • a monochromatic light source unit capable of changing the wavelength of the monochromatic light by irradiating the measurement target solar cell with monochromatic light so as to be superimposed on the bias light emitted from the bias light source unit; and
  • a measurement unit that measures the output of the measurement target solar cell while changing the wavelength of the monochromatic light emitted from the monochromatic light source unit, and measures the spectral sensitivity of the measurement target solar cell based on the measured outputs.
  • the bias light source unit is configured to change the emission spectrum.
  • such a solar cell spectral sensitivity measuring apparatus includes the bias light source unit capable of changing the radiation spectrum, it is possible to measure the solar cell spectral sensitivity with respect to each bias light having a plurality of different radiation spectra. Therefore, such a solar cell spectral sensitivity measuring device can more accurately measure the spectral sensitivity of the solar cell in the use environment by making the radiation spectrum correspond to the spectrum of light in the use environment. it can.
  • the above-described spectral sensitivity measuring device for a solar cell measures spectral sensitivity in a solar cell having a spectral sensitivity depending on at least a change in a spectrum of bias light as the measurement target. It is.
  • the solar cell to be measured has a spectral sensitivity that depends at least on the change in the spectrum of the bias light
  • the spectral sensitivity measuring device of the solar cell can effectively exhibit its performance, suitably Can be used.
  • the bias light source unit receives light emitted from the light source device and the light source device, and is incident from the light source. And a plurality of optical filters that emit in different spectra.
  • the bias light source unit is realized with a relatively simple configuration including a plurality of optical filters.
  • the bias light source unit includes a plurality of light source devices that emit light in different spectra.
  • Such a solar cell spectral sensitivity measuring apparatus includes a plurality of light source devices, the spectral sensitivity of the solar cell under the light source corresponding to the light source device can be accurately measured.
  • the above-described spectral sensitivity measuring device for a solar cell measures the spectral sensitivity of the solar cell to be measured by a DSR method (differential spectral responsivity method).
  • a spectral sensitivity measuring device for a solar cell by the DSR method is provided, and even when the solar cell to be measured has a spectral sensitivity that depends on a change in the amount of bias light, the spectral sensitivity of the solar cell can be measured more accurately. Is done.
  • a spectral sensitivity measuring device for a solar cell can be provided.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 本発明の太陽電池の分光感度測定装置は、測定対象の太陽電池にバイアス光を照射し、これに重畳されるように、波長を変更しながら単色光を照射し、前記太陽電池における出力をそれぞれ測定し、これら測定した各出力に基づいて前記太陽電池における分光感度を測定する。そして、この分光感度測定装置は、前記バイアス光の放射スペクトルを変更可能に構成されている。したがって、この分光感度測定装置は、互いに異なる複数の放射スペクトルの各バイアス光に対する太陽電池の分光感度を測定することができる。

Description

太陽電池の分光感度測定装置
 本発明は、測定対象の太陽電池における分光感度を測定する太陽電池の分光感度測定装置に関し、特に、バイアス光照射下における分光感度を測定する太陽電池の分光感度測定装置に関する。
 太陽電池は、光起電力効果を利用することによって光エネルギーを直接電力へ変換する素子であり、単結晶シリコン太陽電池、アモルファスシリコン太陽電池、非シリコン系太陽電池および有機化合物系太陽電池等の様々な種類が研究、開発され、近年、広く普及し始めている。
 このような太陽電池の性能を評価するために、例えばIEC60904やJIS(C8905~C8991)で定義された評価方法等があり、太陽電池の評価方法の一つとして、DSR法(differential spectral responsivity method)による太陽電池の分光感度の測定方法がある(例えば、非特許文献1および非特許文献2参照)。なお、IECは、International Electrotechnical Commission (国際電気標準会議)の略称であり、JISは、Japanese Industrial Standards (日本工業規格)の略称である。
 太陽電池の分光感度は、太陽電池における、入射光の各波長での光電変換効率であり、太陽電池に入射される光エネルギーに対する太陽電池の出力電流として通常A/W(アンペア/ワット)の単位で表される。したがって、太陽電池の分光感度は、異なる波長の入射光に対し、太陽電池がどの程度の出力電流を有するかを表しており、太陽電池の分光感度は、太陽電池の性能を評価するための評価指標になり得る。
 この太陽電池の分光感度を測定する装置として、例えば、DSR法による従来の太陽電池の分光感度測定装置がある。この太陽電池の分光感度測定装置は、まず、測定対象の太陽電池PVにバイアス光として白色光を照射することによって太陽電池PVを発電状態(バイアスのかかった状態(バイアス状態))とする。次に、この分光感度測定装置は、そのバイアス状態でさらに単色光を太陽電池PVに照射することによって当該単色光の波長での感度(出力電流)を測定する。そして、この分光感度測定装置は、前記単色光の波長を走査することによって太陽電池PVの分光感度を測定する。
 ところで、太陽電池には、上述したように、種々の種類があり、各種の太陽電池を検討したところ、太陽電池の分光感度は、白色バイアス光の光量に依存性がある。その一方で、太陽電池の分光感度は、バイアス光のスペクトルに依存性がある。
 他方、太陽電池の普及に伴い太陽電池は、様々な環境の下で使用され始めている。例えば、屋内の白熱電球、蛍光灯および白色LED等の光源下で太陽電池が使用されている。このような自然太陽光ではない光源下で使用される場合、上述のような、バイアス光の光量やスペクトルに依存性を持つ分光感度を有する太陽電池に対し、自然太陽光を模した基準太陽光で分光感度を評価する場合、その評価した分光感度には、誤差が含まれてしまう。
 なお、前記非特許文献1および非特許文献2では、分光感度における白色バイアス光の光エネルギー(光量)に対する依存性は、考慮されているが、バイアス光は、白色バイアス光のみであり、バイアス光がこのような白色バイアス光とは異なることは、考慮されておらず、想定もされていない。また、前記非特許文献2では、複数の光源装置が示されているが、それらは、白色バイアス光の光量を変更するために用意された光源装置である。
J.Metzdorf,"Calibration of solar cells.1:The differential spectral responsivity method"、1 May 1987/Vol.26 No.9 Applied Optics 1701-1708 S.Winter,T.Wittchen,J.Metzdorf,"Primary Reference Cell Calibration at the PTB based on an Improved DSR Facility",16th European Photovoltaic Solar Energy Conference Galsggoo 2000
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、互いに異なる複数の放射スペクトルの各バイアス光に対する太陽電池の分光感度を測定することができる太陽電池の分光感度測定装置を提供することである。
 本発明にかかる太陽電池の分光感度測定装置は、測定対象の太陽電池にバイアス光を照射し、これに重畳されるように、波長を変更しながら単色光を照射し、前記測定対象の太陽電池における出力をそれぞれ測定し、これら測定した各出力に基づいて前記測定対象の太陽電池における分光感度を測定する。そして、本発明にかかる太陽電池の分光感度測定装置は、前記バイアス光の放射スペクトルを変更可能に構成されている。したがって、このような太陽電池の分光感度測定装置は、互いに異なる複数の放射スペクトルの各バイアス光に対する太陽電池の分光感度を測定することができる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
本発明にかかる第1実施形態における太陽電池の分光感度測定装置の構成を示す図である。 AM1.5の基準太陽光のスペクトルを示す図である。 白色LED電球のスペクトルおよび蛍光灯のスペクトルを示す図である。 前記太陽電池の分光感度測定装置に用いられるDSR法を示すフローチャートである。 本発明にかかる第2実施形態における太陽電池の分光感度測定装置の構成を示す図である。 DSR法による太陽電池の分光感度測定装置の基本構成を示す図である。 太陽電池の分光感度における白色バイアス光の光量に対する依存性を示すための図である。 太陽電池の分光感度におけるバイアス光のスペクトルに対する依存性を示すための図である。 前記バイアス光の分光放射スペクトルを示す図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 まず、DSR法の基本について説明し、その次に、実施形態について説明する。
 (DSR法の基本)
 図6において、太陽電池の分光感度測定装置1000は、測定対象の太陽電池PVにバイアス光として白色光を照射することによって太陽電池PVを発電状態(バイアスのかかった状態(バイアス状態))とし、そのバイアス状態でさらに単色光を太陽電池PVに照射することによって当該単色光の波長での感度(出力電流)を測定し、前記単色光の波長を走査することによって太陽電池PVの分光感度を測定する装置である。この太陽電池の分光感度測定装置1000は、白色バイアス光光源部1010と、単色光光源部1020と、照射光学系1030と、測定部1040とを備えている。
 白色バイアス光光源部(Bias Unit)1010は、白色バイアス光を照射する装置であり、例えば、ハロゲンランプ1011と、光学フィルタ1012と、光量調整部1013とを備えている。この白色バイアス光光源部1010では、例えば、白色バイアス光としての基準太陽光とするために、光学フィルタ1012は、ハロゲンランプ1011から放射された光を自然太陽光AM1.5(Air Mass 1.5)のスペクトルに擬するように濾波(フィルタリング)する。光量調整部1013は、この濾波した光の光量を、測定対象の太陽電池PVに照射された場合に様々な照度になるように、調整する。
 単色光光源部(Monochrome Unit)1020は、単色光を照射する装置であり、例えば、分光器であり、キセノンランプ1021と、回折格子1022とを備えている。この単色光光源部1020では、所定の波長の単色光を生成し射出するために、回折格子1022は、キセノンランプ1021から放射された光を回折し、前記所定の波長に相当する次数の回折光を射出する。
 照射光学系1030は、白色バイアス光光源部1010から出射された白色バイアス光(基準太陽光)と、単色光光源部1020から出射された単色光とを重畳し、この重畳された光(重畳光)を測定対象の太陽電池PVへ照射するための光学系である。照射光学系1030は、例えば、ハーフミラー1031と、インテグレータレンズ1032と、集光光学系1033とを備えている。この照射光学系1030では、ハーフミラー1031は、白色バイアス光光源部1010から出射された白色バイアス光と、単色光光源部1020から出射された単色光とを重畳する。インテグレータレンズ1032は、この重畳された重畳光をその照度分布が均一となるように射出する。集光光学系1033は、この照度分布を均一化した重畳光を集光して測定対象の太陽電池PVに照射する。
 測定部1040は、測定対象の太陽電池PVの出力電流を測定する装置である。前記重畳光が照射されることによって測定対象の太陽電池PVで生成された電流は、測定部1040で測定される。
 このような太陽電池の分光感度測定装置1000は、重畳光に重畳されている単色光の波長を変えながら、測定対象の太陽電池PVの出力電流を測定部1040で測定することによって、DSR法により測定対象の太陽電池PVにおける分光感度を測定する。
 ところで、上述したように、太陽電池の分光感度は、白色バイアス光の光量に依存性がある。その一方で、太陽電池の分光感度は、バイアス光のスペクトルに依存性がある。例えば、図7に示す例の太陽電池では、太陽電池の分光感度は、白色バイアス光の光量が大きくなるに従って、波長約500nm以上の波長範囲において、大きくなっている。その一方で、図8に示す例の太陽電池では、図9を見ると分かるように比較的長波長領域に照射光エネルギーを持つ例えば赤外線発光ダイオード(IR-LED)、ハロゲンランプ(QHGL-Bias)およびKSL光源(KSL-Bias)では、太陽電池の分光感度は、波長約750nmで大きくなり始め、波長約1050nm以上の長波長範囲において、約10~20%も大きくなっている。一方、図9を見ると分かるように比較的短波長領域に照射光エネルギーを持つ例えば青色発光ダイオード(blaue LED)では、波長約950nmで大きくなり始めるものの、波長約1050nm以上の長波長範囲でもそれほど大きくなっていない。なお、図7ないし図9の横軸は、nm単位で表す波長であり、それらの横軸は、%単位で示す変化量である。また、図9Aは、図9Bに示すスペクトルをそのピークで規格化したものである。このようにバイアス光の光量やスペクトルに依存性を持つ分光感度の太陽電池がある。
 このため、図6に示す基本構成のDSR法による太陽電池の分光感度測定装置1000では、バイアス光の光量やスペクトルに依存性を持つ分光感度の太陽電池を適切に測定することができない場合がある。以下に示す実施形態のDSR法による太陽電池の分光感度測定装置は、この点を改良したものである。
 (第1実施形態)
 第1実施形態における太陽電池の分光感度測定装置1Aは、互いに異なるスペクトルである複数のバイアス光を照射することが可能であって、太陽電池PVの分光感度を測定する場合に、前記複数のバイアス光の中から1つのバイアス光を選択し、この選択したバイアス光での太陽電池PVの分光感度を測定することができる装置である。そして、この選択したバイアス光での測定では、図6を用いて説明した太陽電池の分光感度測定装置1000と略同様に、この第1実施形態における太陽電池の分光感度測定装置1Aは、測定対象の太陽電池PVに、前記選択したバイアス光を照射することによって太陽電池PVを発電状態(バイアスのかかった状態(バイアス状態))とし、そのバイアス状態でさらに単色光を太陽電池PVに照射することによって当該単色光の波長での感度(出力電流)を測定し、前記単色光の波長を走査することによって太陽電池PVの分光感度を測定する。
 このような第1実施形態における太陽電池の分光感度測定装置1Aは、例えば、図1に示すように、バイアス光光源部10Aと、単色光光源部20と、照射光学系30と、測定部40と、制御部50Aとを備えている。
 バイアス光光源部(Bias Unit)10Aは、互いに異なるスペクトルを持つ複数のバイアス光を照射することができる装置であり、例えば、光源装置11と、光学フィルタ装置12と、光量調整部13とを備えている。
 光源装置11は、前記バイアス光のスペクトルおよび光学フィルタ装置12のフィルタ波長特性等を考慮した適宜なスペクトルを持つ光を放射する光源であり、例えばハロゲンランプやキセノンランプ等を備えている。本実施形態では、光源装置11には、ハロゲンランプ11が用いられている。
 光学フィルタ装置12は、光源装置11のハロゲンランプ11から放射された光が入射され、この入射光のスペクトルを所定のスペクトルに変換して射出する装置である。前記所定のスペクトルは、例えば、太陽電池PVの使用が想定される使用環境下(想定使用環境下)の光源におけるスペクトルである。このような想定使用環境下の光源として、例えば、基準太陽光、白熱電球、蛍光灯(例えば白昼色蛍光灯やD50蛍光灯等)および白色LED電球等が挙げられる。このような光学フィルタ装置12は、前記互いに異なるスペクトルの複数のバイアス光を生成するために、前記バイアス光の個数に対応する個数の光学フィルタ121を備えている。
 本実施形態では、AM1.5の基準太陽光、白昼色蛍光灯および白色LED電球に対応する各スペクトルを持つ3つのバイアス光を生成するために、光学フィルタ装置12は、3個の第1ないし第3光学フィルタ121-1~121-3を備えている。
 第1光学フィルタ121-1は、光源装置11から放射された光のスペクトルを、図2に示すAM1.5の基準太陽光のスペクトルに変換するようなフィルタ波長特性を持つ光学素子である。光源装置11のハロゲンランプ11から放射された光は、第1光学フィルタ121-1に入射されると、AM1.5の基準太陽光のスペクトルを模したスペクトルで第1光学フィルタ121-1から射出される。
 第2光学フィルタ121-2は、光源装置11から放射された光のスペクトルを、図3に示す白昼色蛍光灯のスペクトルに変換するようなフィルタ波長特性を持つ光学素子である。光源装置11のハロゲンランプ11から放射された光は、第2光学フィルタ121-2に入射されると、白昼色蛍光灯を模したスペクトルで第2光学フィルタ121-2から射出される。
 第3光学フィルタ121-3は、光源装置11から放射された光のスペクトルを、図3に示す白色LED電球のスペクトルに変換するようなフィルタ波長特性を持つ光学素子である。光源装置11のハロゲンランプ11から放射された光は、第3光学フィルタ121-3に入射されると、白色LED電球を模したスペクトルで第3光学フィルタ121-3から射出される。
 これら第1ないし第3光学フィルタ121-1~121-3のそれぞれは、1または複数のフィルタ素子を適宜に組み合わせて構成される。前記フィルタ素子として、例えば、色ガラスフィルタ素子、光学薄膜フィルタ素子および誘電体多層膜フィルタ素子等が挙げられる。
 なお、図2および図3の横軸は、nm単位で表す波長であり、これらの縦軸は、照度レベルである。照度レベルは、図2では、絶対値で表されており、図3では、ピークで規格化した相対値で表されている。
 光量調整部13は、射出光の光量を調整するための光学素子である。光量調整部13は、例えば、光学絞りやNDフィルタ等を備えている。
 このようなバイアス光光源部10Aでは、所定の放射スペクトルを持つバイアス光を生成するために、まず、前記所定の放射スペクトルに対応する光学フィルタ121が選択される。そして、光源装置11のハロゲンランプ11から放射された光は、光学フィルタ装置12における前記選択された光学フィルタ121で濾波される。この濾波された光は、測定対象の太陽電池PVに照射された場合に所定の光量となるようにその光量が光量調整部13で調整され、照射光学系30へ射出される。
 また、単色光光源部(Monochrome Unit)20は、互いに異なる波長を持つ複数の単色光を照射することができる装置であり、例えば、分光器であり、光源装置21と、回折格子22とを備えている。
 光源装置21は、前記複数の単色光の波長範囲(例えば300nm~1200nm等)および回折格子22の回折特性等を考慮した適宜な波長範囲を持つ光を放射する光源であり、例えばキセノンランプ21を備えている。回折格子22は、単色光を生成するために、光源装置21のキセノンランプ21から放射された光を回折する光学素子である。
 このような単色光光源部20では、所定の波長の単色光を生成し射出するために、光源装置21のキセノンランプ21から放射された光は、回折格子22に入射され、この入射光は、回折格子22によって回折され、所定の波長に相当する次数の回折光は、図略の出射スリット等を介して照射光学系30へ射出される。
 また、照射光学系30は、バイアス光光源部10Aから出射されたバイアス光と、単色光光源部20から出射された単色光とを重畳し、この重畳された光(重畳光)を測定対象の太陽電池PVへ照射するための光学系である。照射光学系30は、例えば、異なる2方向から入射された各光を重畳して1方向へ射出するハーフミラー31と、入射光の照度分布を均一化して射出するインテグレータレンズ32と、入射光を集光するように射出する集光光学系33とを備えている。なお、照度分布を調整する必要がない場合には、インテグレータレンズ32は、省略可能であり、また、集光する必要がない場合には、集光光学系33は、省略可能である。
 このような照射光学系30では、バイアス光光源部10Aから出射されたバイアス光と、単色光光源部20から出射された単色光とは、ハーフミラー31に入射され、これらバイアス光および単色光は、ハーフミラー31で重畳され、インテグレータレンズ32へ射出される。インテグレータレンズ32に入射された重畳光は、インテグレータレンズ32でその照度分布が均一化されて集光光学系33へ射出される。集光光学系33に入射された、照度分布を均一化した重畳光は、集光光学系33で集光され、測定対象の太陽電池PVに照射される。
 なお、上述では、バイアス光光源部10Aから出射されたバイアス光と、単色光光源部20から出射された単色光とは、ハーフミラー31によって重畳されたが、他の構成であってもよい。例えば、バイアス光光源部10Aから出射されたバイアス光が照射される、測定対象の太陽電池PVにおけるバイアス光照射領域に、単色光光源部20から出射された単色光がさらに照射されるように、太陽電池の分光感度測定装置1Aが、構成されてもよい。より具体的には、例えば、バイアス光光源部10Aから出射されたバイアス光が、測定対象の太陽電池PVの測定面に対し斜め方向から入射され、そして、そのバイアス光の照射領域に、単色光光源部20から出射された単色光が、前記測定面に対し垂直方向(法線方向)から入射されるように、太陽電池の分光感度測定装置1Aが、構成される。
 測定部40は、単色光の各波長について、測定対象の太陽電池PVの出力電流をそれぞれ測定し、DSR法により測定対象の太陽電池PVにおける分光感度を測定する装置である。前記照度分布を均一化した重畳光が照射されることによって測定対象の太陽電池PVで生成された電流は、測定部40で測定される。
 制御部50Aは、太陽電池の分光感度測定装置1Aにおける各部を当該機能に応じて制御する装置である。
 制御部50Aは、バイアス光光源部10Aの光学フィルタ装置12における複数、この例では3個の第1ないし第3光学フィルタ121-1~121-3の中から、図略の入力部から入力された指示に応じた光学フィルタ121を選択し、光源装置11から放射された光が前記選択した光学フィルタ121を介して光量調整部13に入射されるように、光学フィルタ装置12を制御する。
 例えば、光学フィルタ装置12は、周方向に所定の間隔を空けて形成された第1ないし第3開口に第1ないし第3光学フィルタ121-1~121-3がそれぞれ嵌め込まれた回転板と、前記回転板を回転駆動するモータとを備える。そして、太陽電池の分光感度測定装置1Aは、制御部50Aが前記モータを制御することによって、光源装置11から放射された光が前記選択した光学フィルタ121を介して光量調整部13に入射するように、前記回転板の回転量を制御する。太陽電池の分光感度測定装置1Aは、このように構成されてもよい。
 なお、オペレータの手動操作によって、バイアス光光源部10Aの光学フィルタ装置12における複数の光学フィルタ121の中から、所望の光学フィルタ121を選択し、光源装置11から放射された光が前記選択した光学フィルタ121を介して光量調整部13に入射されるように、第1実施形態における太陽電池の分光感度測定装置1Aが構成されてもよい。
 また、制御部50Aは、単色光光源部20を点灯し、単色光の波長を走査するように、単色光光源部20を制御する。制御部50Aは、前記走査された単色光の各波長について、測定対象の太陽電池PVの出力電流をそれぞれ測定するように、測定部40を制御し、単色光の波長の走査が終了すると、DSR法により測定対象の太陽電池PVにおける分光感度を求めるように、測定部40を制御する。
 このような構成の太陽電池の分光感度測定装置1Aでは、まず、測定対象の太陽電池PVが所定の位置にセットされる。図略の前記入力部から測定開始の指示および光学フィルタ装置12における光学フィルタ121を選択する選択指示を受け付けると、制御部50Aは、前記選択指示に対応する放射スペクトルを持つバイアス光をバイアス光光源部10Aから射出するために、光源装置11から放射された光が前記選択指示に応じた光学フィルタ121を介して光量調整部13に入射されるように、バイアス光光源部10Aを制御する。制御部50Aは、光源装置11のハロゲンランプ11を点灯するように、バイアス光光源部10Aを制御する。そして、制御部50Aは、所定の波長範囲(例えば300nm~1200nm等)で単色光の波長を所定の波長間隔(例えば10nmや20nm等)で走査するために、走査開始に対応する波長の単色光を射出するように、単色光光源部20を制御する。上記構成の単色光光源部20では、回折格子22に入射される入射光の入射角を変更することで、単色光の波長を変更することができる。そして、制御部50Aは、光源装置21のキセノンランプ21を点灯するように、単色光光源部20を制御する。
 このように制御されると、前記選択指示に対応する放射スペクトルを持つバイアス光がバイアス光光源部10Aから照射光学系30へ射出され、前記走査開始に対応する波長の単色光が単色光光源部20から照射光学系30へ射出される。照射光学系30では、ハーフミラー31は、バイアス光光源部10Aから入射された前記バイアス光と、単色光光源部20から入射された前記単色光とを重畳し、この重畳した重畳光をインテグレータレンズ32へ射出する。インテグレータレンズ32は、ハーフミラー31から入射された重畳光の照度分布を均一化し、この均一化した重畳光を集光光学系33へ射出する。集光光学系33は、インテグレータレンズ32から入射された前記重畳光を集光し、この集光した前記重畳光を測定対象の太陽電池PVに照射する。
 測定対象の太陽電池PVは、この集光した前記重畳光を受光すると、光起電力効果により、前記重畳光に応じた電力を生成する。測定部40は、前記生成した電力に基づき測定対象の太陽電池PVから出力される出力電流を測定する。
 前記走査開始に対応する波長の単色光の測定が終了すると、次の波長の単色光の測定を実施するために、制御部50Aは、次の波長の単色光を射出するように、単色光光源部20を制御し、測定部40に、その波長の単色光を含む重畳光を受光することによって測定対象の太陽電池PVから出力される出力電流を測定させる。以下同様の動作によって、走査終了に対応する波長の単色光まで、単色光が所定の波長範囲において所定の波長間隔で走査され、順次、その波長の単色光を含む重畳光を受光することによって測定対象の太陽電池PVから出力される出力電流が測定される。
 なお、出力電流におけるバイアス光の寄与分と単色光の寄与分とをより明確に区別するために、次のように太陽電池の分光感度測定装置1Aが構成されてよい。単色光光源部20は、単色光を所定の時間間隔で周期的にパルス光で射出し、測定部40は、前記所定の時間間隔に同期したロックインアンプを備える。そして、単色光を含む重畳光を受光することによって測定対象の太陽電池PVから出力される出力電流は、前記ロックインアンプを用いて測定される。
 そして、単色光の走査が終了すると、測定部40は、白色バイアス光に代えてバイアス光を用いたDSR法により測定対象の太陽電池PVの分光感度を求め、この求めた測定対象の太陽電池PVの分光感度を図略の出力部へ出力する。
 このDSR法は、白色バイアス光の場合について、前記非特許文献1に詳述されており、その手順は、大略、図4に示す通りである。本実施形態では、この白色バイアス光に代え、上述のバイアス光を用いてDSR法が実行される。
 このように本実施形態における太陽電池の分光感度測定装置1Aは、バイアス光の放射スペクトルを変更可能なバイアス光光源部10Aを備えるので、互いに異なる複数の放射スペクトルの各バイアス光に対する太陽電池の分光感度を測定することができる。このため、本実施形態における太陽電池の分光感度測定装置1Aは、前記放射スペクトルを使用環境下の光のスペクトル、例えば白熱電球のスペクトルや白色LEDのスペクトル等に対応させることにより、当該使用環境下における太陽電池の分光感度をより正確に測定することができる。
 特に、測定対象の太陽電池PVが少なくともバイアス光のスペクトルの変化に依存する分光感度を持つ場合に、本実施形態における太陽電池の分光感度測定装置1Aは、効果的にその性能を発揮することができ、好適に使用され得る。しかも、このような少なくともバイアス光のスペクトルの変化に依存する分光感度を持つ太陽電池PVの分光感度を、本実施形態における太陽電池の分光感度測定装置1Aは、より正確に測定することができる。
 また、本実施形態における太陽電池の分光感度測定装置1Aは、複数の光学フィルタ121を備えるという、比較的簡易な構成で、そのバイアス光光源部10Aが実現されている。
 また、本実施形態における太陽電池の分光感度測定装置1Aは、DSR法を用いているので、測定対象の太陽電池PVがバイアス光の光量変化に依存する分光感度を持つ場合であっても、より正確に太陽電池PVの分光感度を測定することができる。また、太陽電池の分光感度がバイアス光に依存しない場合は、測定者が所定の光量になるように太陽電池の分光感度測定装置1Aにおける光量調整部13の光量を調整してDSR方式を用いないで測定してもよい。
 (第2実施形態)
 次に、別の実施形態について説明する。第1実施形態における太陽電池の分光感度測定装置1Aは、光源装置11と、光源装置11から放射された光が入射され、光源装置11から入射された光を互いに異なるスペクトルで射出する複数の光学フィルタ121、図1に示す例では3個の光学フィルタ121-1~121-3とを備えるバイアス光光源部10Aを備えて構成されたが、第2実施形態における太陽電池の分光感度測定装置1Bは、バイアス光光源部10Aに代え、互いに異なるスペクトルで光を放射する複数の光源装置141を備えるバイアス光光源部10Bを備えて構成される。
 このような第2実施形態における太陽電池の分光感度測定装置1Bは、例えば、図5に示すように、バイアス光光源部10Bと、単色光光源部20と、照射光学系30と、測定部40と、制御部50Bとを備える。第2実施形態の太陽電池の分光感度測定装置1Bにおける、これら単色光光源部20、照射光学系30および測定部40は、それぞれ、第1実施形態の太陽電池の分光感度測定装置1Aにおける単色光光源部20、照射光学系30および測定部40と同様であるので、その説明を省略する。
 バイアス光光源部10Bは、互いに異なるスペクトルを持つ複数のバイアス光を照射する装置であり、例えば、複数の光源装置141と、光量調整部13とを備えている。これら複数の光源装置141は、例えば、太陽電池PVの使用が想定される使用環境下(想定使用環境下)の光源そのものである。複数の光源装置141として、例えば、AM1.5の基準太陽光を模したソーラシミュレータ、白熱電球、蛍光灯(例えば白昼色蛍光灯やD50蛍光灯等)および白色LED電球等が挙げられる。本実施形態では、バイアス光光源部10Bは、AM1.5の基準太陽光を模したソーラシミュレータ(AM-1.5 Light)141-1、白昼色蛍光灯(FL Light)141-2および白色LED電球(LED Light)141-3の3個の光源装置141を備えている。
 光量調整部13は、第1実施形態のバイアス光光源部10Aにおける光量調整部13と同様であり、射出光の光量を調整するための光学素子である。光量調整部13は、例えば、光学絞りやNDフィルタ等を備えている。
 このようなバイアス光光源部10Bでは、所定の放射スペクトルを持つバイアス光を射出するために、まず、前記所定の放射スペクトルに対応する光源装置141が選択される。そして、前記選択された光源装置141から放射された光は、測定対象の太陽電池PVに照射された場合に所定の光量となるようにその光量が光量調整部13で調整され、照射光学系30へ射出される。
 制御部50Bは、太陽電池の分光感度測定装置1Bにおける各部を当該機能に応じて制御する装置である。
 制御部50Bは、まず、バイアス光光源部10Bにおける複数、この例では3個の光源装置141-1~141-3の中から、図略の入力部から入力された指示に応じた光源装置141を選択する。制御部50Bは、この選択した光源装置141を点灯させ、この選択した光源装置141から放射されたバイアス光を光量調整部13に入射させるように、バイアス光光源部10Bを制御する。なお、第1実施形態と同様に、オペレータの手動操作によって、バイアス光光源部10Bにおける複数の光源装置141の中から、所望の光源装置141を選択して点灯させ、この選択した光源装置141から放射されたバイアス光を光量調整部13に入射させるように、第2実施形態における太陽電池の分光感度測定装置1Bが構成されてもよい。
 また、制御部50Bは、単色光光源部20を点灯し、単色光の波長を走査するように、単色光光源部20を制御する。制御部50Bは、前記走査された単色光の各波長について、測定対象の太陽電池PVの出力電流をそれぞれ測定するように、測定部40を制御し、単色光の波長の走査が終了すると、DSR法により測定対象の太陽電池PVにおける分光感度を求めるように、測定部40を制御する。
 このような構成の第2実施形態における太陽電池の分光感度測定装置1Bでは、第1実施形態のバイアス光光源部10Aにおける光学フィルタ121の選択に代え、光源装置141の選択が行われ、第1実施形態のバイアス光光源部10Aにおける光源装置11の点灯に代え、前記選択された光源装置141の点灯が行われる点を除き、第1実施形態における太陽電池の分光感度測定装置1Aと同様の動作が行われ、測定対象の太陽電池PVの分光感度が測定される。
 このように本実施形態における太陽電池の分光感度測定装置1Bは、バイアス光の放射スペクトルを変更可能なバイアス光光源部10Bを備えるので、互いに異なる複数の放射スペクトルの各バイアス光に対する太陽電池の分光感度を測定することができる。
 特に、本実施形態における太陽電池の分光感度測定装置1Bは、所望の放射スペクトルを得るために使用環境下の光源そのものの光源装置を用いることができるので、当該使用環境下における太陽電池の分光感度を極めて正確に測定することができる。したがって、測定対象の太陽電池PVが少なくともバイアス光のスペクトルの変化に依存する分光感度を持つ場合に、本実施形態における太陽電池の分光感度測定装置1Bは、効果的にその性能を発揮することができ、好適に使用され得る。
 また、本実施形態における太陽電池の分光感度測定装置1Bは、DSR法を用いているので、測定対象の太陽電池PVがバイアス光の光量変化に依存する分光感度を持つ場合であっても、より正確に太陽電池PVの分光感度を測定することができる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる太陽電池の分光感度測定装置は、測定対象の太陽電池における分光感度を測定する太陽電池の分光感度測定装置であって、前記測定対象の太陽電池に、バイアス光を照射するバイアス光光源部と、前記バイアス光光源部から照射される前記バイアス光に重畳するように前記測定対象の太陽電池に単色光を照射し、該単色光の波長を変更可能な単色光光源部と、前記単色光光源部から照射される単色光の波長を変更しながら前記測定対象の太陽電池における出力を測定し、前記測定した各出力に基づいて前記測定対象の太陽電池における分光感度を測定する測定部とを備え、前記バイアス光光源部は、放射スペクトルを変更可能に構成されている。
 このような太陽電池の分光感度測定装置は、放射スペクトルを変更可能な前記バイアス光光源部を備えるので、互いに異なる複数の放射スペクトルの各バイアス光に対する太陽電池の分光感度を測定することができる。このため、このような太陽電池の分光感度測定装置は、前記放射スペクトルを使用環境下の光のスペクトルに対応させることにより、当該使用環境下における太陽電池の分光感度をより正確に測定することができる。
 また、他の一態様では、好ましくは、上述の太陽電池の分光感度測定装置は、前記測定対象として、少なくともバイアス光のスペクトルの変化に依存する分光感度を持つ太陽電池における分光感度を測定するものである。
 これによれば、測定対象の太陽電池が少なくともバイアス光のスペクトルの変化に依存する分光感度を持つので、太陽電池の分光感度測定装置は、効果的にその性能を発揮することができ、好適に使用され得る。
 また、他の一態様では、これら上述の太陽電池の分光感度測定装置において、前記バイアス光光源部は、光源装置と、前記光源装置から放射された光が入射され、前記光源から入射された光を互いに異なるスペクトルで射出する複数の光学フィルタとを備える。
 これによれば、複数の光学フィルタを備えるという、比較的簡易な構成で、前記バイアス光光源部が実現される。
 また、他の一態様では、これら上述の太陽電池の分光感度測定装置において、前記バイアス光光源部は、互いに異なるスペクトルで光を放射する複数の光源装置を備える。
 このような太陽電池の分光感度測定装置は、複数の光源装置を備えるので、その光源装置に対応した光源下における太陽電池の分光感度を正確に測定することができる。
 また、他の一態様では、好ましくは、これら上述の太陽電池の分光感度測定装置は、DSR法(differential spectral responsivity method)で前記測定対象の太陽電池における分光感度を測定するものである。
 これによれば、DSR法による太陽電池の分光感度測定装置が提供され、測定対象の太陽電池がバイアス光の光量変化に依存する分光感度を持つ場合でも、より正確に太陽電池の分光感度が測定される。
 この出願は、2011年12月5日に出願された日本国特許出願特願2011-266020を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、太陽電池の分光感度測定装置を提供することができる。

Claims (5)

  1.  測定対象の太陽電池における分光感度を測定する太陽電池の分光感度測定装置であって、
     前記測定対象の太陽電池に、バイアス光を照射するバイアス光光源部と、
     前記バイアス光光源部から照射される前記バイアス光に重畳するように前記測定対象の太陽電池に単色光を照射し、該単色光の波長を変更可能な単色光光源部と、
     前記単色光光源部から照射される単色光の波長を変更しながら前記測定対象の太陽電池における出力を測定し、前記測定した各出力に基づいて前記測定対象の太陽電池における分光感度を測定する測定部とを備え、
     前記バイアス光光源部は、前記バイアス光の放射スペクトルを変更可能であること
     を特徴とする太陽電池の分光感度測定装置。
  2.  前記測定対象の太陽電池は、少なくともバイアス光のスペクトルの変化に依存する分光感度を持つものであること
     を特徴とする請求項1に記載の太陽電池の分光感度測定装置。
  3.  前記バイアス光光源部は、
     光源装置と、
     前記光源装置から放射された光が入射され、前記光源から入射された光を互いに異なるスペクトルで射出する複数の光学フィルタとを備えること
     を特徴とする請求項1または請求項2に記載の太陽電池の分光感度測定装置。
  4.  前記バイアス光光源部は、互いに異なるスペクトルで光を放射する複数の光源装置を備えること
     を特徴とする請求項1または請求項2に記載の太陽電池の分光感度測定装置。
  5.  前記測定部は、前記測定した各出力に基づいて、DSR法で前記測定対象の太陽電池における分光感度を求めること
     を特徴とする請求項2ないし請求項4のいずれか1項に記載の太陽電池の分光感度測定装置。
PCT/JP2012/007583 2011-12-05 2012-11-27 太陽電池の分光感度測定装置 WO2013084441A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12855175.1A EP2790228B1 (en) 2011-12-05 2012-11-27 Solar cell spectral response measurement device
JP2013548076A JP5761372B2 (ja) 2011-12-05 2012-11-27 太陽電池の分光感度測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266020 2011-12-05
JP2011266020 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084441A1 true WO2013084441A1 (ja) 2013-06-13

Family

ID=48573833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007583 WO2013084441A1 (ja) 2011-12-05 2012-11-27 太陽電池の分光感度測定装置

Country Status (3)

Country Link
EP (1) EP2790228B1 (ja)
JP (1) JP5761372B2 (ja)
WO (1) WO2013084441A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025600A1 (ja) * 2013-08-19 2015-02-26 コニカミノルタ株式会社 太陽電池絶対分光感度測定装置および該方法
JP2016144253A (ja) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 分光感度測定装置
JP2017011843A (ja) * 2015-06-19 2017-01-12 コニカミノルタ株式会社 分光感度測定装置及び分光感度測定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664938A (zh) * 2020-06-11 2020-09-15 江南大学 高强度单色光辐照的测量方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376381A (ja) * 1986-09-18 1988-04-06 Sharp Corp 太陽電池の分光感度測定法
JP2004281706A (ja) * 2003-03-14 2004-10-07 Japan Science & Technology Agency Ledを用いた太陽電池の評価方法及びその評価装置
WO2010058649A1 (ja) * 2008-11-19 2010-05-27 コニカミノルタセンシング株式会社 太陽電池評価装置および太陽電池評価方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298471A (ja) * 2007-05-29 2008-12-11 National Institute Of Advanced Industrial & Technology 太陽電池の分光感度特性測定装置
GB0821146D0 (en) * 2008-11-19 2008-12-24 Univ Denmark Tech Dtu Method of testing solar cells
JP5328041B2 (ja) * 2009-12-01 2013-10-30 日清紡メカトロニクス株式会社 ソーラシミュレータ及びソーラシミュレータによる測定方法
US8073645B2 (en) * 2011-05-30 2011-12-06 Cyrium Technologies Incorporated Apparatus and method to characterize multijunction photovoltaic solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376381A (ja) * 1986-09-18 1988-04-06 Sharp Corp 太陽電池の分光感度測定法
JP2004281706A (ja) * 2003-03-14 2004-10-07 Japan Science & Technology Agency Ledを用いた太陽電池の評価方法及びその評価装置
WO2010058649A1 (ja) * 2008-11-19 2010-05-27 コニカミノルタセンシング株式会社 太陽電池評価装置および太陽電池評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. METZDORF: "Calibration of solar cells. 1: The differential spectral responsivity method", APPLIED OPTICS, vol. 26, no. 9, 1 May 1987 (1987-05-01), pages 1701 - 1708
S. WINTER; T. WITTCHEN; J. METZDORF: "Primary Reference Cell Calibration at the PTB based on an Improved DSR Facility", 16TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE GALSGGOO, 2000

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025600A1 (ja) * 2013-08-19 2015-02-26 コニカミノルタ株式会社 太陽電池絶対分光感度測定装置および該方法
JP2016144253A (ja) * 2015-01-30 2016-08-08 コニカミノルタ株式会社 分光感度測定装置
JP2017011843A (ja) * 2015-06-19 2017-01-12 コニカミノルタ株式会社 分光感度測定装置及び分光感度測定方法

Also Published As

Publication number Publication date
JP5761372B2 (ja) 2015-08-12
EP2790228A4 (en) 2015-07-08
JPWO2013084441A1 (ja) 2015-04-27
EP2790228A1 (en) 2014-10-15
EP2790228B1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP4944231B2 (ja) 太陽電池評価装置およびそれに用いられる光源評価装置
JP5256521B2 (ja) Ledを用いた太陽電池の評価方法及びその評価装置
JP5761372B2 (ja) 太陽電池の分光感度測定装置
JP2012033844A (ja) 検出装置を有する太陽光シミュレータ及び太陽電池検査装置
TWI472738B (zh) 材料老化測試設備及其測試方法
CN104422516B (zh) 分光器所用的波长校准方法以及分光光度计
Hamadani et al. Absolute spectral responsivity measurements of solar cells by a hybrid optical technique
JP2010223771A (ja) 太陽電池の分光感度測定装置および電流電圧特性測定装置
JP5761343B2 (ja) 分光感度測定装置、および、分光感度測定方法
JP5741774B1 (ja) 太陽電池絶対分光感度測定装置および該方法
JP2011049474A (ja) 太陽電池評価装置
WO2012035694A1 (ja) 太陽電池評価装置および光源評価装置
JP2013156132A (ja) 太陽電池評価装置および該方法
JP2011081274A (ja) 疑似スペクトル発生装置
Esen et al. Solar irradiation fundamentals and solar simulators
KR101841931B1 (ko) 태양전지의 양자효율측정장치와 그 제어방법
WO2013128544A1 (ja) 照明装置
Mahmoud et al. New facility for primary calibration of differential spectral responsivity of solar cells using LDLS-based monochromatic source
KR20130120660A (ko) 솔라 시뮬레이터의 광 특성 제어장치
Poikonen Characterization of Light Emitting Diodes and Photometer Quality Factors
JP5772972B2 (ja) 太陽電池評価装置、および太陽電池評価方法
JP5811938B2 (ja) 太陽電池評価装置および該方法
Eghbali et al. Differential Spectral Responsivity of Solar Cells Measured with an LED Based Experimental Setup
JP6447184B2 (ja) 分光感度測定装置
JP6464939B2 (ja) 分光感度測定装置及び分光感度測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012855175

Country of ref document: EP