WO2015025600A1 - 太陽電池絶対分光感度測定装置および該方法 - Google Patents

太陽電池絶対分光感度測定装置および該方法 Download PDF

Info

Publication number
WO2015025600A1
WO2015025600A1 PCT/JP2014/066109 JP2014066109W WO2015025600A1 WO 2015025600 A1 WO2015025600 A1 WO 2015025600A1 JP 2014066109 W JP2014066109 W JP 2014066109W WO 2015025600 A1 WO2015025600 A1 WO 2015025600A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias light
irradiation energy
solar cell
short
spectral sensitivity
Prior art date
Application number
PCT/JP2014/066109
Other languages
English (en)
French (fr)
Inventor
澄 今井
宜弘 西川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014542602A priority Critical patent/JP5741774B1/ja
Publication of WO2015025600A1 publication Critical patent/WO2015025600A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell absolute spectral sensitivity measuring apparatus and a solar cell absolute spectral sensitivity measuring method for measuring the absolute spectral sensitivity of a solar cell.
  • Solar cells are elements that directly convert light energy into electric power by utilizing the photovoltaic effect, and various solar cells have been researched and developed, and have begun to spread widely in recent years.
  • various types of solar cells such as silicon-based solar cells using silicon (Si), compound-based solar cells using a compound semiconductor such as InGaAs, and organic-based solar cells using an organic semiconductor.
  • Si silicon-based solar cells using silicon
  • compound-based solar cells using a compound semiconductor such as InGaAs compound semiconductor
  • organic-based solar cells using an organic semiconductor organic semiconductor.
  • a PN junction solar cell that forms a PN junction using two types of organic semiconductors and obtains a photovoltaic power by photoexcitation of electrons in the PN junction, and a photovoltaic power that is obtained by photoexcitation of electrons in an organic dye
  • dye-sensitized solar cells There are dye-sensitized solar cells.
  • the absolute spectral sensitivity of the solar cell is obtained by dividing the current component contributed by the spectral energy of an arbitrary wavelength out of the short-circuit current output from the solar cell by receiving certain irradiation light by the spectral energy. is there. By integrating the absolute spectral sensitivity and the spectral irradiance of the irradiation light, the short-circuit current of the solar cell can also be calculated.
  • the absolute spectral sensitivity measurement method based on the DSR method measures each differential spectral sensitivity for each irradiation energy by sequentially changing the irradiation energy of the bias light, and based on the measured plurality of differential spectral sensitivities, This is a method for obtaining absolute spectral sensitivity.
  • the bias light is, for example, white light or the like that is applied to the solar cell to bring the solar cell to be measured into a power generation state (a biased state (bias state)).
  • the said irradiation energy is the total energy (W / m ⁇ 2 >) of the irradiation light irradiated to the solar cell of a measuring object.
  • the differential spectral sensitivity is the rate of change of the short-circuit current due to minute fluctuations in spectral energy at an arbitrary wavelength in a biased solar cell.
  • This differential spectral sensitivity measures the short-circuit current (short-circuit current of bias light irradiation) in a solar cell in a bias state, and short-circuits in a state in which the solar cell in the bias state is further irradiated with monochromatic light whose irradiation energy is slightly changed.
  • Current short-circuit current for bias light and monochromatic light irradiation
  • the difference between the short-circuit current for bias light irradiation and the short-circuit current for bias light and monochromatic light irradiation is divided by the minute variation of the irradiation energy in the monochromatic light. Is required.
  • each differential spectral sensitivity is measured while scanning the irradiation energy of the bias light. Therefore, it is necessary to determine a combination of a plurality of irradiation energy values used for this measurement. .
  • the change in the short-circuit current according to the change in the irradiation energy is constant, so the measurement accuracy is ensured with any combination. Is done.
  • the change in the short-circuit current corresponding to the change in the irradiation energy is not constant.
  • any combination may be used.
  • the spectral sensitivity measured with a predetermined irradiation energy is substantially equivalent to the absolute spectral sensitivity, the difference spectrum is obtained with a plurality of irradiation energies. There is little need to measure sensitivity.
  • a polycrystalline silicon solar cell has a non-linear characteristic in which the difference spectral sensitivity changes greatly as the irradiation energy increases
  • a dye-sensitized solar cell has a spectral distribution of irradiation energy of sunlight.
  • the spectral distribution for example, AM1.5G
  • it has a non-linear characteristic in which the differential spectral sensitivity reaches a peak in the vicinity of about 10 W / m 2 .
  • the solar cell does not exhibit the same non-linearity over the entire range in which the irradiation energy is changed, but linearity is included in the entire range.
  • the present invention has been made in view of the above circumstances, and its purpose is to determine a more appropriate combination while reducing the measurement time when measuring the absolute spectral sensitivity of a solar cell.
  • a battery absolute spectral sensitivity measuring device and a solar cell absolute spectral sensitivity measuring method are provided.
  • the bias light is sequentially applied to the solar cell to be measured with a plurality of different first bias light irradiation energies under the control of the first light source unit. Irradiated, a plurality of short-circuit currents at each of the plurality of first bias light irradiation energies are measured, and first measured to determine the absolute spectral sensitivity of the solar cell based on the measured plurality of short-circuit currents. A combination of a plurality of second bias light irradiation energies for measuring a plurality of differential spectral sensitivities is required. Therefore, the solar cell absolute spectral sensitivity measuring apparatus and the solar cell absolute spectral sensitivity measuring method according to the present invention determine a more appropriate combination while shortening the measurement time when measuring the absolute spectral sensitivity of the solar cell. it can.
  • FIG. 4 is a diagram showing a first-order differential curve obtained by first-order differentiation of the characteristic curve shown in FIG. 3.
  • FIG. 4 is a diagram showing a first-order differential curve obtained by first-order differentiation of the characteristic curve shown in FIG. 3.
  • FIG. 4 is a diagram showing a second-order differential curve obtained by second-order differentiation of the characteristic curve shown in FIG. 3. It is a figure for demonstrating the method of calculating
  • the solar cell absolute spectral sensitivity measuring apparatus M in the present embodiment includes a first light source unit that irradiates a solar cell PV to be measured with bias light, a second light source unit that irradiates the solar cell PV with monochromatic light, and a solar cell PV.
  • the short-circuit current is measured by sequentially irradiating the solar cell PV with a plurality of first bias light irradiation energies different from each other by controlling the first light source unit.
  • the bias light combination calculation unit for obtaining the difference between the bias light combination calculation unit obtained by the bias light combination calculation unit by controlling the first light source unit.
  • a plurality of mutually different pluralities are obtained by controlling the second light source part for each of the plurality of second bias light irradiation energies while sequentially irradiating the solar cell PV with the plurality of second bias light irradiation energies.
  • Differential spectral sensitivity measurement unit for obtaining differential spectral sensitivity based on a plurality of short-circuit currents measured by the short-circuit current measurement unit by irradiating the solar cell PV with the monochromatic light by varying the monochromatic light irradiation energy at each of the wavelengths
  • an absolute spectral sensitivity calculation unit for obtaining an absolute spectral sensitivity of the solar cell PV based on a plurality of differential spectral sensitivities corresponding to each of the plurality of second bias light irradiation energies measured by the differential spectral sensitivity measuring unit.
  • Such a solar cell absolute spectral sensitivity measuring apparatus M can determine a more appropriate combination while shortening the measurement time when measuring the absolute spectral sensitivity of the solar cell PV. More specific embodiments of such a solar cell absolute spectral sensitivity measuring device M will be described below as the solar cell absolute spectral sensitivity measuring device Ma of the first embodiment and the solar cell absolute spectral sensitivity measuring device Mb of the second embodiment. explain.
  • FIG. 1 is a block diagram showing the configuration of the solar cell absolute spectral sensitivity measuring apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining the photocurrent output from the solar cell when the measurement target solar cell is irradiated with light in which pulsed monochromatic light is superimposed on the bias light.
  • the horizontal axis in FIG. 2 is a time axis representing elapsed time, and the vertical axis is a photocurrent axis representing the magnitude of photocurrent.
  • the solar cell absolute spectral sensitivity measuring device Ma in the first embodiment includes, for example, as shown in FIG. 1, a first light source unit 1, a second light source unit 2, a measurement unit 4, and a control calculation unit 7a. 1 further includes an irradiation optical system 3, a storage unit 5, an interface unit (hereinafter abbreviated as “IF unit”) 6, an input unit 8, and an output unit 9.
  • IF unit interface unit
  • the first light source unit 1 is a device that irradiates a solar cell PV to be measured (evaluation target) with bias light so that the irradiation energy thereof can be changed in accordance with the control of the control calculation unit 7a.
  • the first light source driving unit 10 And a first light source 11.
  • the first light source 11 is a device that emits predetermined bias light.
  • the bias light is light for bringing the solar cell PV into a power generation state (bias state).
  • the bias light may be any light including a wavelength that can be photoelectrically converted by the solar cell PV (a wavelength at which the solar cell PV has sensitivity), but the measurement result according to the use state (use environment) of the solar cell PV may be more accurately obtained. In order to obtain it, it is preferable that it is suitable light according to the use condition of the solar cell PV.
  • the bias light when the solar cell PV is used to receive natural sunlight and generate electric power, the bias light has a so-called AM1.5G (Air Mass 1.5G) spectral irradiance of natural sunlight. Pseudo sunlight with approximate standard relative spectral irradiance is preferred.
  • the first light source 11 includes, for example, a lamp such as a halogen lamp and a xenon lamp, and spectral radiation obtained by approximating the light emitted from the lamp to the spectral irradiance of natural sunlight. And an optical filter having a predetermined filter characteristic for conversion into illuminance.
  • the bias light is preferably the illumination light of the lighting fixture.
  • the 1st light source 11 is provided with the light source used for the said lighting fixture, for example.
  • the lighting fixture include a halogen lamp, a xenon lamp, an incandescent lamp, a fluorescent lamp, and a light emitting diode (for example, a white light emitting diode (white LED)).
  • the bias light may be a monochromatic light
  • the first light source 11 may be a monochromatic light source.
  • the wavelength of the monochromatic light is about 300 to about 400 nm where the influence of the TiO film (titanium oxide film) is significant, or the influence of the dye is large.
  • the appearing thickness can be about 600 to about 800 nm.
  • the first light source 11 includes a plurality of light sources such as a pseudo-sunlight source, a fluorescent lamp, and a white LED so that bias light having different spectral irradiances can be emitted, and the bias light emitted to the solar cell PV can be switched. It may be configured.
  • the first light source driving unit 10 controls, for example, drive control of emission (turning on) and stopping (extinguishing) of bias light emitted from the first light source 11 and intensity of emitted light (irradiation) of the bias light according to control of the control calculation unit 7a.
  • This is a device for driving and controlling the first light source 11 such as energy adjustment control.
  • the first light source driving unit 10 when receiving an instruction from the control calculation unit 7 a to turn on the bias light with a predetermined irradiation energy, performs the bias light with the predetermined irradiation energy. Is emitted to the first light source 11. Further, for example, when receiving an instruction to turn off the bias light from the control calculation unit 7a, the first light source driving unit 10 causes the first light source 11 to stop emitting the bias light.
  • the second light source unit 2 is a device that irradiates the solar cell PV to be measured with monochromatic light by changing the irradiation energy under the control of the control calculation unit 7a. Since the apparatus M measures the spectral sensitivity, the monochromatic light is light whose irradiation energy is known, and the wavelength of the monochromatic light needs to be variable.
  • the variable wavelength band of the monochromatic light includes a wavelength range in which the solar cell PV has sensitivity.
  • the second light source unit 2 has a function of selecting (variing) the wavelength of the monochromatic light, a function of adjusting (fluctuating) the emitted light intensity (irradiation energy) of the monochromatic light according to the control of the control calculation unit 7a, and A device having various functions such as a function of turning on and off the monochromatic light.
  • the irradiation energy of monochromatic light is measured by the irradiance detection part 41 and the 2nd DC amplifier 42 of the measurement part 4 so that it may mention later.
  • Such a second light source unit 2 includes, for example, a second light source driving unit 20, a second light source 21, a first optical system 22, a monochromator 23, a monochromator control unit 24, and a second optical system 25.
  • the second light source 21 is a light source device that emits light in a predetermined wavelength band including the wavelength of monochromatic light emitted from the monochromator 23, and is, for example, a white lamp such as a xenon lamp. Xenon lamps are suitable for measuring spectral sensitivity because they have high brightness and color temperature and emit light in a continuous spectrum over a wide band from ultraviolet to visible to infrared.
  • the second light source driving unit 20 controls driving of emission (lighting) and stop (extinguishing) of the light emitted from the second light source 21 and intensity of emitted light (irradiation energy) according to the control of the control calculation unit 7a. ) For controlling and driving the second light source 21.
  • the first optical system 22 and the second optical system 25 are optical elements such as lenses for concentrating or collimating (collimating) light according to the application.
  • the light emitted from the second light source 21 according to the control of the second light source driving unit 20 is incident on the monochromator 23 via the first optical system 22.
  • the monochromator 23 responds to an instruction (selection) from the second light source 21 via the optical system 22 according to the instruction (selection) of the control arithmetic unit 7a in accordance with the control of the control arithmetic unit 7a via the monochromator control unit 24.
  • This is a device that emits monochromatic light at a predetermined wavelength.
  • the monochromator 23 is, for example, a spectroscope that spatially disperses light of the predetermined wavelength band emitted from the second light source 21 and extracts only a narrow range of wavelengths using a slit or the like.
  • Such a monochromator 23 includes, for example, an entrance slit, a first reflecting mirror, a diffraction grating, a second reflecting mirror, and an exit slit, and the incident light beam that has entered through the entrance slit is transferred to the diffraction grating by the first reflecting mirror.
  • This is a device that reflects the diffracted light of the incident light beam reflected and diffracted by the diffraction grating to the exit slit by the second reflecting mirror.
  • the monochromator 23 can select the wavelength of light that reaches the slit position by rotating the diffraction grating and the like, and can extract only a wavelength in a desired range (single-color light conversion).
  • the monochromator 23 is controlled by the control calculation unit 7a so as to extract the wavelength in the desired range. Monochromatic light emitted from the monochromator 23 is incident on the branch optical element 26 via the optical system 25.
  • the monochromator control unit 24 is a device that controls the monochromator 23 according to the control of the control calculation unit 7a, such as selection control of the wavelength emitted from the monochromator 23, for example.
  • the branching optical element 26 is an optical component that divides incident light into two lights and emits them.
  • the monochromatic light incident on the branching optical element 26 is distributed by the branching optical element 26, one of which is incident on the irradiance detection unit 41 of the measuring unit 4, and the other is incident on the optical blade 29 and the irradiation optical system 3. Through the solar cell PV to be measured.
  • the optical blade 29 is a member that receives monochromatic light emitted from the monochromator 23 through the optical system 25 and emits the received monochromatic light by changing the irradiation energy (light intensity). More specifically, the optical blade 29 is, for example, a disk-shaped member that is formed in a plurality so as to line up the notch portions that are notched so as to extend in the radial direction with a predetermined width in the circumferential direction. is there.
  • the rotation output shaft of the motor 28 is fixed to the rotation center of the optical blade 29, and the optical blade 29 is rotated at a predetermined rotational speed with the rotation center as the rotation axis according to the control of the control calculation unit 7a via the motor drive unit 27. It is a device to rotate with.
  • the motor drive unit 27 is a device that controls the motor 28 according to the control of the control calculation unit 7a, such as drive control of rotation and stop of the motor 28 and speed control of the rotation speed of the motor 28, for example.
  • the motor drive unit 27 outputs a signal representing the rotation speed of the motor 28 to the lock-in amplifier 431 of the short-circuit current measurement unit 43 described later.
  • the optical blade 29 is rotated by a motor 28 at a predetermined rotational speed, and is pulsed by sequentially repeating the blocking and transmission of the monochromatic light with or without the plurality of notches.
  • Monochromatic light received from the meter 23 via the optical system 25 is emitted with its irradiation energy (light intensity) varied.
  • the second light source driving unit 20 when receiving an instruction from the control calculation unit 7 a to turn on monochromatic light whose light intensity varies in a pulse shape having a predetermined wavelength and period, the second light source driving unit 20
  • the second light source 21 emits the light.
  • the light emitted from the second light source 21 enters the monochromator 23 via the first optical system 22.
  • the monochromator control unit 24 controls the monochromator 23 so that the predetermined wavelength designated by the control calculation unit 7a is obtained.
  • the monochromator 23 takes out the monochromatic light of the predetermined wavelength from the light incident from the first light source 21 via the first optical system 22 according to the control of the monochromator control unit 24, and outputs the monochromatic light of the predetermined wavelength. Eject.
  • Monochromatic light emitted from the monochromator is incident on a region of the optical blade 29 that includes the notch.
  • the motor drive unit 27 rotates the motor 28 at a rotation speed corresponding to the predetermined cycle so as to be the predetermined cycle instructed from the control calculation unit 7a, and thereby rotates the optical blade 29.
  • the monochromatic light incident on the optical blade 29 repeats light shielding and transmission according to the presence or absence of a plurality of notch portions arranged in parallel in the circumferential direction, and is pulsed.
  • the pulsed monochromatic light is emitted from the second light source unit 2.
  • the second light source driving unit 20 stops the light emission to the second light source 21, and the motor driving unit 27 turns the motor 28 off.
  • the optical blade 29 is stopped.
  • the irradiation optical system 3 is an optical system that irradiates the solar cell PV with the bias light emitted from the first light source unit 1 and irradiates the solar cell PV with the monochromatic light emitted from the second light source unit 2.
  • Each of the bias light and the monochromatic light is preferably irradiated to the solar cell PV with a substantially uniform illuminance distribution.
  • the irradiation optical system 3 applies the bias light emitted from the first light source unit 1 to a substantially uniform illuminance.
  • a third optical system 31 for irradiating with a distribution and a fourth optical system 32 for irradiating monochromatic light emitted from the second light source unit 2 with a substantially uniform illuminance distribution are provided.
  • the irradiation optical system 3 further includes a fifth optical element 33 that bends the optical path of the first light source unit 1.
  • the fifth optical element 33 is irradiated with bias light and monochromatic light along the normal direction of the solar cell PV, and the optical axis of the first light source unit 1 and the second light source unit.
  • a half mirror 33 arranged so that bias light is incident and emitted at an incident angle and an emission angle of 45 degrees is used at the intersection with the two optical axes.
  • the bias light emitted from the first light source unit 1 is incident on the half mirror 33 via the third optical system 31, reflected by the half mirror 33, and the traveling direction thereof.
  • the bias light whose (optical path) is bent by 90 degrees is applied to the solar cell PV from the normal direction, and the pulsed monochromatic light emitted from the second light source unit 2 passes through the fourth optical system 32. Then, the pulsed monochromatic light incident on the half mirror 33 and transmitted through the half mirror 33 is irradiated from the normal direction to the solar cell PV within the bias light irradiation region of the bias light.
  • the measuring unit 4 is a device that measures the irradiation energy of monochromatic light emitted from the monochromator 23 and the short-circuit current of the solar cell PV.
  • the short circuit current of the solar cell PV is a current that flows from the solar cell PV when the potential difference between the positive electrode (+ electrode) and the negative electrode ( ⁇ electrode) in the solar cell PV is 0V.
  • the measurement unit 4 includes an irradiance detection unit 41 and a second DC amplifier 42 in order to measure the irradiation energy of monochromatic light emitted from the monochromator 23, and measures the short-circuit current of the solar cell PV.
  • a short-circuit current measuring unit 43 including a lock-in amplifier 431 and a first DC amplifier 432 is provided.
  • the irradiance detector 41 is a device (reference detector) that measures the irradiance (not the spectral irradiance) of monochromatic light (monochromatic light emitted from the monochromator 23) distributed by the branch optical element 26, The measurement result is output to the second DC amplifier 42.
  • the second DC amplifier 42 is an amplifier circuit that is connected to the irradiance detector 41 and amplifies the irradiance measured by the irradiance detector 41 with a predetermined amplification factor and outputs the amplified irradiance to the control arithmetic unit 7a.
  • the current of the base portion (short-circuit current) flowing by photoelectrically converting the bias light is converted.
  • the DC component) I DC superimposing the pulse-like AC component of the current (short-circuit current of the pulse-shaped portion which flows being fluctuated in synchronization with the pulsed monochromatic light) I AC by photoelectrically converting the pulsed monochromatic light Output current.
  • the lock-in amplifier 431 is a circuit that is connected to the solar cell PV and detects and amplifies the amplitude of the current in the pulsed portion shown in FIG. 2 out of the current output from the solar cell PV. Is output to the control calculation unit 7a. As described above, the lock-in amplifier 431 receives a signal representing the rotation speed of the motor 28 from the motor drive unit 27 as a synchronization signal. The lock-in amplifier 431 uses the synchronization signal as a reference signal, and the amplitude of the signal component synchronized with the intensity modulation of the monochromatic light that is intensity-modulated in a pulse form from the current output from the solar cell PV, that is, as shown in FIG.
  • the amplitude of the current in the pulsed portion is detected and amplified.
  • the first DC amplifier 432 is connected to the solar cell PV and is a circuit that detects and amplifies the amplitude of the current in the base portion shown in FIG. 2 out of the current output from the solar cell PV, and the detected result is detected. It outputs to the control calculation part 7a.
  • the control calculation unit 7a controls each part of the solar cell absolute spectral sensitivity measuring device Ma according to the function in order to obtain the absolute spectral sensitivity, and controls the overall operation of the solar cell absolute spectral sensitivity measuring device Ma. This is an apparatus for obtaining the absolute spectral sensitivity of the battery VP.
  • the control calculation unit 7a is, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory) or an EEPROM (Electrically Only Programmable Read Only) that stores various programs executed by the CPU and data necessary for the execution in advance.
  • a non-volatile memory element such as Memory
  • a volatile memory element such as a RAM (Random Access Memory) serving as a so-called working memory of the CPU
  • a microcomputer including a peripheral circuit thereof.
  • the control calculation unit 7a executes a control calculation program, whereby the control unit 71, the first light source control unit 72, the second light source control unit 73, the bias light combination calculation unit 74a, and the differential spectral sensitivity measurement unit 75.
  • the absolute spectral sensitivity calculation unit 76 is functionally configured.
  • the control unit 71 controls the operation of each unit by controlling each unit such as the measurement unit 4, the storage unit 5, the IF unit 6, the input unit 8, and the output unit 9 according to the function.
  • the first light source control unit 72 controls the first light source unit 1 by controlling the first light source 11 via the first light source driving unit 10. More specifically, the first light source control unit 72 outputs a predetermined control signal to the first light source driving unit 10 so that the first light source driving unit 10 generates bias light with irradiation energy having a desired magnitude. Lighting control to be radiated to the first light source 11 is performed. The first light source control unit 72 outputs a predetermined control signal to the first light source driving unit 10 so that the first light source driving unit 10 performs the extinction control for causing the first light source 11 to stop emitting the bias light. The first light source control unit 72 performs such various controls on the first light source unit 1.
  • the second light source control unit 73 controls the second light source 21 through the second light source driving unit 20, controls the monochromator 23 through the monochromator control unit 24, and motors through the motor driving unit 27.
  • the second light source unit 2 is controlled by controlling 28. More specifically, the second light source control unit 73 outputs a predetermined control signal to the second light source driving unit 20 so that the second light source driving unit 20 emits light with a relatively small predetermined irradiation energy. Lighting control to be emitted to the second light source 21 is performed.
  • the second light source control unit 73 outputs a predetermined control signal to the monochromator control unit 24 so that the monochromator control unit 24 performs wavelength control for causing the monochromator 23 to emit monochromatic light having a desired wavelength.
  • the second light source control unit 73 outputs a predetermined control signal to the motor drive unit 27, thereby causing the motor drive unit 27 to rotate the motor 28 at a predetermined rotation speed (the number of rotations per minute).
  • the blade is rotated at a predetermined rotation speed (the number of rotations per minute), and variation control is performed to emit monochromatic light whose irradiation energy is varied in a pulse shape.
  • the 2nd light source control part 73 performs lighting control which lights the monochromatic light which changed irradiation energy in the pulse form with the desired wavelength.
  • the 2nd light source control part 73 performs the light extinction control which light-extinguishes a pulse-shaped monochromatic light.
  • the second light source control unit 73 performs such various controls on the second light source unit 2.
  • the bias light combination calculation unit 74a controls the first light source unit 1 via the first light source control unit 72 to sequentially irradiate the solar cells PV with a plurality of different first bias light irradiation energies. And a plurality of different second bias light irradiations for measuring a plurality of differential spectral sensitivities used for determining an absolute spectral sensitivity of the solar cell PV based on a plurality of short circuit currents measured by the short circuit current measuring unit 43 in FIG. It seeks a combination of energy. More specifically, in the present embodiment, as shown in FIG. 1, the bias light combination calculation unit 74a functionally includes a short-circuit current measurement control unit 741 and a combination calculation unit 742.
  • the short-circuit current measurement control unit 741 controls the first light source unit 1 via the first light source control unit 72 so as to sequentially irradiate the solar cells PV with a plurality of different first bias light irradiation energies.
  • a plurality of short-circuit currents measured by the short-circuit current measuring unit 43 are obtained for each of the plurality of first bias light irradiation energies. More specifically, the short-circuit current measurement control unit 741 of the bias light combination calculation unit 74a is different from each other by an equal difference when the short-circuit current measurement unit 43 measures the plurality of short-circuit currents in this embodiment, for example.
  • the first light source unit 1 is controlled via the first light source control unit 72 so as to sequentially irradiate the solar cells PV with a plurality of bias lights having the first bias light irradiation energy, and the plurality of first bias light irradiation energies.
  • a plurality of short-circuit currents measured by the short-circuit current measuring unit 43 are acquired.
  • the irradiation energy interval Estep due to such an equal difference is the maximum number of irradiation energies Emax, the minimum value of irradiation energy Emin, and the number of short-circuit current measurements for obtaining the combination of the second vice light irradiation energies.
  • the short-circuit current measurement control unit 741 notifies the combination calculation unit 742 of a plurality of short-circuit currents corresponding to the acquired plurality of first bias light irradiation energies in association with the plurality of first bias light irradiation energies. And it memorize
  • the combination calculation unit 742 has a plurality of short-circuit current measurement units 43 measured by a plurality of bias lights respectively having different first bias light irradiation energy irradiated to the solar cell PV under the control of the short-circuit current measurement control unit 741. Based on the short-circuit current, a combination of a plurality of different second bias light irradiation energies for measuring a plurality of differential spectral sensitivities used to determine the absolute spectral sensitivity of the solar cell PV is obtained.
  • the combination calculation unit 742 of the bias light combination calculation unit 74a obtains the combination based on the degree of change in the relationship between the first bias light irradiation energy and the short-circuit current, for example.
  • the combination calculation unit 742 obtains the second derivative of the characteristic curve representing the relationship between the first bias light irradiation energy and the short-circuit current as the degree of change, and based on the second derivative of the obtained characteristic curve. To obtain the combination. More specifically, for example, in the present embodiment, the combination calculation unit 742 obtains the absolute value of the second derivative of the characteristic curve, and selects the absolute value by the preset number of measurements in descending order from the obtained absolute value. The combination is obtained by setting the first bias light irradiation energy corresponding to the selected absolute value as the second bias light irradiation energy.
  • the combination calculation unit 742 notifies the difference spectral sensitivity measurement unit 75 of the obtained combination of the obtained second bias light irradiation energy, and stores it in the storage unit 5 as necessary.
  • the difference spectral sensitivity measurement unit 75 controls the first light source unit 1 via the first light source control unit 72 to sequentially use the plurality of different second bias light irradiation energies obtained by the bias light combination calculation unit 74a. A plurality of wavelengths different from each other by controlling the second light source unit 2 via the second light source control unit 73 for each of the plurality of second bias light irradiation energies while irradiating the solar cell PV with the bias light.
  • the difference spectral sensitivity is obtained based on a plurality of short-circuit currents measured by the short-circuit current measuring unit 43 by irradiating the solar cell PV with the monochromatic light by varying the monochromatic light irradiation energy.
  • the differential spectral sensitivity measurement unit 75 notifies the absolute spectral sensitivity calculation unit 76 of the multiple differential spectral sensitivities measured for each of the multiple second bias light irradiation energies included in the combination, and stores the differential spectral sensitivity in the storage unit 5 as necessary.
  • the absolute spectral sensitivity calculation unit 76 uses the DSR method to calculate the absolute spectral sensitivity of the solar cell PV based on the plurality of differential spectral sensitivities corresponding to each of the plurality of second bias light irradiation energies measured by the differential spectral sensitivity measurement unit 75. Is what you want.
  • the absolute spectral sensitivity calculation unit 76 outputs the obtained absolute spectral sensitivity of the solar cell PV to the output unit 9, stores it in the storage unit 5 as necessary, and outputs it from the IF unit 6 to the outside.
  • the storage unit 5 is an external storage device such as a hard disk device or a CD-R drive device, and stores, for example, each measurement result of the measurement unit 4, each calculation result of the control calculation unit 7a, and the like.
  • the IF unit 6 is a communication interface for exchanging data between the solar cell absolute spectral sensitivity measuring device M and other external devices. For example, a device corresponding to the USB (Universal Serial Bus) standard, This is a device compatible with the RS232C standard.
  • the input unit 8 is a device for inputting commands (commands), data, and the like from the outside to the solar cell absolute spectral sensitivity measuring device M, and is, for example, a touch panel or a keyboard.
  • the output unit 9 is a device for outputting commands and data input from the input unit 8 and the calculation result of the control calculation unit 7a.
  • a display device such as an LCD (liquid crystal display) or an organic EL display
  • a printing apparatus such as a printer.
  • the control calculation unit 7a, the storage unit 5, the IF unit 6, the input unit 8, and the output unit 9 of the solar cell absolute spectral sensitivity measuring device M can be configured by, for example, a personal computer including a microprocessor, a memory, and peripheral devices. .
  • FIG. 3 is a flowchart showing the operation of the solar cell absolute spectral sensitivity measuring apparatus according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a characteristic curve representing a relationship between bias light irradiation energy and short-circuit current in a solar cell.
  • the horizontal axis in FIG. 4 represents the first irradiation energy
  • the vertical axis represents the short-circuit current.
  • FIG. 5 is a diagram showing a first-order differential curve obtained by first-order differentiation of the characteristic curve shown in FIG.
  • the horizontal axis in FIG. 5 represents the first irradiation energy
  • the vertical axis represents the first floor portion of the characteristic curve.
  • FIG. 6 is a diagram showing a second-order differential curve obtained by second-order differentiation of the characteristic curve shown in FIG.
  • the horizontal axis in FIG. 6 represents the first irradiation energy
  • the vertical axis represents the second derivative of the characteristic curve.
  • the portion surrounded by a square in FIG. 6 is an irradiation energy range that requires spectral sensitivity measurement in the example shown in FIG. 4.
  • FIG. 7 is a diagram for explaining a method for obtaining a combination of the second bias light irradiation energy using the second-order differential curve shown in FIG.
  • the horizontal axis in FIG. 7 represents the first irradiation energy
  • the vertical axis represents the absolute value of the second derivative of the characteristic curve.
  • a solar cell PV to be measured is set at a predetermined location, and measurement is started.
  • the spectral irradiance of the bias light is configured to be switchable
  • the type of the first light source 11 for which the absolute value spectral sensitivity is desired that is, the spectrum of the bias light.
  • the type of irradiance is input from the input unit 8 by the operator and determined (S11). For example, when the use of the solar battery PV is assumed in a room under a fluorescent lamp, a command for specifying the fluorescent lamp as bias light is input from the input unit 8 by the operator and determined.
  • the control calculation unit 7a switches the bias light to the fluorescent lamp. If the spectral irradiance of the bias light is not configured to be switchable, this process S11 is omitted and is started from the next process S12.
  • the maximum value (maximum irradiation energy) and the minimum value (minimum irradiation energy) of the irradiation energy of the bias light are input from the input unit 8 and determined by the operator (S12).
  • the range of the first bias light irradiation energy of the bias light is input and determined.
  • the minimum value in the range of the first bias light irradiation energy is normally set to 0 (when no bias light is irradiated), and the maximum value is, for example, in the usage environment of the solar cell PV to be measured. It is set as appropriate by taking into account the maximum light intensity of the light applied to the lens.
  • the maximum value is set to a value larger by a predetermined value than the irradiation energy for which the absolute spectral sensitivity in the use environment is desired.
  • the first bias light can be obtained by taking into account the irradiation energy range indicating the nonlinearity of the solar cell PV.
  • the maximum value in the irradiation energy range may be set as appropriate.
  • the short-circuit current measurement control unit 741 obtains and determines the interval of the first bias light irradiation energy (S13).
  • the short-circuit current measurement control unit 741 sequentially irradiates the solar cells PV with a plurality of bias lights having different first bias light irradiation energies at equidistant intervals obtained by the equation (1).
  • the 1st light source part 1 is controlled via the 1st light source control part 72, and a plurality of short circuit currents measured by short circuit current measurement part 43 by each of these 1st bias light irradiation energy are acquired (S14).
  • the short circuit current measurement control unit 741 controls the second light source unit 2 via the second light source control unit 73 in a state where the second light source unit 2 is turned off.
  • the second light source unit 2 is configured to further include a light blocking plate that blocks monochromatic light, and the short-circuit current measurement control unit 741 blocks the monochromatic light emitted from the second light source unit 2 by the light blocking plate. As described above, the second light source unit 2 may be controlled.
  • the short-circuit current measurement control unit 741 turns the first light source unit 1 through the first light source control unit 72 in a state where the first light source unit 1 is turned off.
  • the short-circuit current measured in order to obtain the combination of the second bias light irradiation energy is that the solar cell PV is irradiated with only the bias light without irradiating the solar cell PV with the pulsed monochromatic light.
  • short-circuit current measurement control unit 741 a i-th short circuit current Isc i corresponding to the i-th first bias light irradiation energy E i, short Only the output of the first DC amplifier 432 of the current measuring unit 43 is acquired.
  • the short-circuit current measurement control unit 741 generates the bias light emitted from the first light source unit 1.
  • E 1 + Estep the first light source unit 1 emits the bias light with the second first bias light irradiation energy E2.
  • the bias light emitted from the first light source unit 1 is incident on the solar cell PV via the third optical system 31 and the fifth optical system (half mirror) 33.
  • the solar cell PV When a bias light is incident, the solar cell PV is the bias light to photoelectric conversion, and outputs a photocurrent corresponding to the first bias light irradiation energy E 2 to the short circuit current measurement unit 43, the short circuit current measurement unit 43 size by the 1DC amplifier 432 corresponding to the first bias light irradiation energy E 2 of the bias light short circuit current of (level) and outputs the measurement result of the short-circuit current to the control operation unit 7a.
  • the short circuit current measurement control unit 741 acquires the output of the first DC amplifier 432 of the short circuit current measurement unit 43 as the second short circuit current Isc 2 corresponding to the second first bias light irradiation energy E 2 .
  • Short-circuit current measurement control unit 741, the acquired second short-circuit current Isc 2 stores the second first bias light irradiation energy E 2 to association with.
  • the first light source unit 1 is controlled via the light source control unit 72.
  • the first light source unit 1 and the short-circuit current measurement unit 43 operate in the same manner as described above, and the short-circuit current measurement control unit 741 sets the second short-circuit current Isc 3 corresponding to the third first bias light irradiation energy E 3.
  • the output of the first DC amplifier 432 of the short-circuit current measuring unit 43 is acquired.
  • the short-circuit current measurement control unit 741 is the first light source control unit in the same manner as described above.
  • the first light source unit 1 and the short-circuit current measuring unit 43 operate in the same manner as described above, and the short-circuit current measurement control unit 741 thereby controls the first light source unit 1 through 72.
  • a plurality of short-circuit currents measured by the short-circuit current measurement unit 43 are acquired for each first bias light irradiation energy, and these are associated and stored.
  • the case of measuring the short-circuit current ranges for each 1W / m 2 from 10 W / m 2 up to 1000W / m 2, is executed 990 measurements, when can be measured in one second per, All short-circuit currents can be measured in about 17 minutes. For example, when short-circuit currents are measured every 100 W / m 2 , all short-circuit currents can be measured in less than about 2 minutes.
  • An example of the characteristic curve representing the relationship between the first bias light irradiation energy and the short-circuit current acquired in this way is shown in FIG. Then, the short-circuit current measurement control unit 741 notifies the combination calculation unit 742 of the plurality of short-circuit currents acquired in this manner and associated with each of the plurality of first bias light irradiation energies.
  • the combination calculation unit 742 receives the solar cell based on the plurality of short-circuit currents associated with each of the plurality of first bias light irradiation energies notified from the short-circuit current measurement control unit 741.
  • a combination of a plurality of different second bias light irradiation energies for measuring a plurality of differential spectral sensitivities used to determine the absolute spectral sensitivity of PV is obtained (S15).
  • the combination calculation unit 742 obtains the second derivative of the characteristic curve representing the relationship between the first bias light irradiation energy and the short circuit current as the degree of change in the relationship between the first bias light irradiation energy and the short circuit current. Based on the second derivative of the obtained characteristic curve, the combination of the second bias light irradiation energy is obtained.
  • the combination calculation unit 742 calculates the first bias light irradiation energy from the plurality of short circuit currents associated with each of the plurality of first bias light irradiation energies notified from the short circuit current measurement control unit 741.
  • the second derivative of the characteristic curve representing the relationship between the current and the short-circuit current is obtained, and the combination of the second bias light irradiation energy is obtained based on the second derivative of the obtained characteristic curve.
  • the second derivative of the characteristic curve shown in FIG. 4 is shown in FIG.
  • the first derivative of the characteristic curve shown in FIG. 4 is shown in FIG.
  • the first bias light irradiation energy is in the range of about 100 to about 500 W / m 2
  • the relationship between the first bias light irradiation energy and the short-circuit current is a curve and changes.
  • the second derivative of the characteristic curve representing the relationship between the first bias light irradiation energy and the short circuit current has a non-zero value, and is nonlinear with respect to the change in the first bias light irradiation energy, and the short circuit current is It has changed.
  • the second derivative of the characteristic curve is 0, the short-circuit current changes in proportion to the change in the first bias light irradiation energy, and no change appears in the differential spectral sensitivity.
  • the combination calculation unit 742 obtains the absolute value of the second derivative of the characteristic curve, The combination is obtained by selecting absolute values by a predetermined number of measurements in descending order from the obtained absolute values, and setting the first bias light irradiation energy corresponding to the selected absolute values as the second bias light irradiation energy. Looking for., the combination calculation unit 742 obtains the curve shown in FIG. 7 by obtaining the absolute value of the second derivative of the characteristic curve shown in FIG. In FIG. 7, the absolute value of the second derivative of the characteristic curve corresponding to each of the plurality of first bias light irradiation energies is indicated by ⁇ .
  • the combination calculation unit 742 calculates the absolute value P1 by the number of measured 6 in descending order from the obtained absolute value. Select P6. Then, the combination calculation unit 742 uses the six first bias light irradiation energies E1 to E6 respectively corresponding to the selected six absolute values P1 to P6 as the second bias light irradiation energy, so that the second bias The combination of light irradiation energy is obtained.
  • the total time required for measuring the absolute spectral sensitivity (absolute spectral sensitivity measurement time)
  • the total number of times is calculated as the time required for one measurement of the differential spectral sensitivity ( It may be obtained by dividing by (difference spectral sensitivity measurement time).
  • the differential spectral sensitivity measurement unit 75 controls the first light source unit 1 via the first light source control unit 72 to thereby combine the bias light combination.
  • Each of the plurality of second bias light irradiation energies is applied to the solar cell PV sequentially with a plurality of second bias light irradiation energies different from each other in the combination obtained by the combination calculation unit 742 of the calculation unit 74a.
  • the monochromatic light irradiation energy is changed at each of a plurality of different wavelengths, and the monochromatic light is irradiated to the solar cell PV, thereby causing a short circuit current.
  • the differential spectral sensitivity is obtained based on the plurality of short-circuit currents measured by the measuring unit 43 (S16).
  • the differential spectral sensitivity measurement unit 75 obtains the differential spectral sensitivity with the second bias light irradiation energy E1, obtains the differential spectral sensitivity with the second bias light irradiation energy E2, and obtains the second bias light irradiation energy E3.
  • the difference spectral sensitivity is obtained with the second bias light irradiation energy E4, the difference spectral sensitivity is obtained with the second bias light irradiation energy E5, and the difference spectral sensitivity is obtained with the second bias light irradiation energy E6. . Then, the differential spectral sensitivity measurement unit 75 notifies the absolute spectral sensitivity calculation unit 76 of the differential spectral sensitivities at the measured second bias light irradiation energies E1 to E6.
  • the absolute spectral sensitivity calculation unit 76 calculates the DSR based on the plurality of differential spectral sensitivities corresponding to the plurality of second bias light irradiation energies measured by the differential spectral sensitivity measurement unit 75.
  • the absolute spectral sensitivity of the solar cell PV is obtained by the method (S17).
  • control calculation part 7a memorize
  • control calculating part 7a outputs the absolute spectral sensitivity of the solar cell PV calculated
  • the solar light PV to be measured is sequentially irradiated with the plurality of first bias light irradiation energies different from each other by the control of the first light source unit 1.
  • a plurality of short-circuit currents at each of the plurality of first bias light irradiation energies are measured, and a plurality of first measured currents are obtained in order to obtain an absolute spectral sensitivity of the solar cell PV based on the measured plurality of short-circuit currents.
  • a combination of a plurality of second bias light irradiation energies for measuring the difference spectral sensitivity is required.
  • the solar cell absolute spectral sensitivity measuring apparatus M in the present embodiment can determine a more appropriate combination while shortening the measurement time when measuring the absolute spectral sensitivity of the solar cell PV.
  • the combination of the plurality of second bias light irradiation energies is changed in the relationship between the first bias light irradiation energy and the short-circuit current by the bias light combination calculating unit 74a. Calculated based on degree.
  • the degree of nonlinearity in the nonlinear characteristic of the difference spectral sensitivity appears in a change in the relationship between the first bias light irradiation energy and the short-circuit current. For this reason, the solar cell absolute spectral sensitivity measuring apparatus M can determine a more appropriate combination by obtaining the combination based on the degree of change in the relationship between the first bias light irradiation energy and the short-circuit current.
  • the first bias light irradiation energy having a relatively large change degree is selected as the second bias light irradiation energy, and the first bias light irradiation energy having the relatively small change degree is excluded from the selection of the second bias light irradiation energy.
  • the solar cell absolute spectral sensitivity measuring device M can determine a more appropriate combination.
  • the bias light combination calculation unit 74a obtains the second derivative of the characteristic curve representing the relationship between the first bias light irradiation energy and the short-circuit current as the degree of change. Based on the second derivative of the obtained characteristic curve, the combination of the plurality of second bias light irradiation energies is obtained. Since the difference spectral sensitivity is related to the change rate of the short-circuit current as described above, the change in the relationship between the first bias light irradiation energy and the short-circuit current can be expressed by the second derivative of the characteristic curve. That is, the non-linear degree in the non-linear characteristic of the difference spectral sensitivity can be expressed by the second derivative of the characteristic curve. For this reason, the solar cell absolute spectral sensitivity measuring apparatus M can determine a more appropriate combination by obtaining the combination based on the second derivative of the characteristic curve.
  • the absolute value of the second derivative of the characteristic curve is obtained by the bias light combination calculation unit 74a, and the number of measurements set in advance in descending order from the obtained absolute value. Only the absolute value is selected, and the first bias light irradiation energy corresponding to the selected absolute value is set as the second bias light irradiation energy, thereby obtaining the combination of the plurality of second bias light irradiation energies.
  • the degree of nonlinearity in the nonlinear characteristic of the difference spectral sensitivity increases as the absolute value of the second derivative of the characteristic curve increases.
  • the solar cell absolute spectral sensitivity measuring device M obtains the combination by selecting the absolute value by the preset number of measurements in descending order, and therefore determines the most appropriate combination among the preset number of measurements. it can. That is, the solar cell absolute spectral sensitivity measuring device M can determine the most appropriate combination within a preset measurement time.
  • the bias light combination calculation unit 74a sequentially irradiates the solar cells PV with a plurality of bias light beams having different first bias light irradiation energies.
  • the short circuit current is measured.
  • the intervals in the plurality of first vice light irradiation energies are equal intervals, from the minimum irradiation energy to the maximum irradiation energy in the first bias light irradiation energy.
  • the degree of nonlinearity in the nonlinear characteristic of the differential spectral sensitivity can be evaluated fairly.
  • FIG. 8 is a diagram for explaining another method for obtaining a combination of the second bias light irradiation energy using the second-order differential curve shown in FIG.
  • the horizontal axis in FIG. 8 represents the first irradiation energy
  • the vertical axis represents the absolute value of the second derivative of the characteristic curve.
  • the bias light combination calculation unit 74a calculates the absolute value of the second derivative of the characteristic curve. For example, as shown in FIG.
  • the absolute value equal to or larger than the first determination value Th1 set in advance from the calculated absolute value. are selected, and the first bias light irradiation energy corresponding to the selected absolute value is set as the second bias light irradiation energy, so that the combination may be obtained. Since the solar cell absolute spectral sensitivity measuring apparatus M selects the absolute value equal to or greater than the first determination value Th1 to obtain the combination, the first bias light irradiation energy and the short-circuit current are related to each other. All locations having a non-linear degree corresponding to an absolute value greater than or equal to the determination value Th1 can be selected, and the absolute value spectral sensitivity can be measured with a desired accuracy according to the first determination value Th1.
  • the first determination value (first threshold value) Th1 is appropriately set according to the measurement accuracy and required measurement time required for the absolute spectral sensitivity.
  • first determination value Th1 is set to a relatively small value, a larger number of first bias light irradiation energies are selected and the number of second bias light irradiation energies is increased, so that the measurement accuracy is improved.
  • first determination value Th1 is set to a relatively large value, a smaller number of first bias light irradiation energies are selected, and the number of second bias light irradiation energies is reduced, so that the measurement time is shortened.
  • the bias light combination calculation unit 74a sequentially irradiates the solar cell PV with bias light having a plurality of first bias light irradiation energies that are different from each other by an equal difference.
  • bias light having a plurality of first bias light irradiation energies that are different from each other by an equal difference.
  • the short-circuit current measurement control unit 741 of the bias light combination calculation unit 74a measures the plurality of short-circuit currents by the short-circuit current measurement unit 43
  • the bias light having a plurality of first bias light irradiation energies different from each other by an equal ratio May be configured to sequentially irradiate the solar cell PV.
  • the i-th irradiation energy Ei (i is an integer from 1 to N) is expressed by the following Expression 2 (Expression 2-1 and Expression 2-2).
  • the irradiation energy Ei is determined in order from the minimum irradiation energy to the maximum irradiation energy, but the i-th irradiation energy Ei is not limited thereto.
  • the irradiation energy Ei has the maximum irradiation energy.
  • the i-th irradiation energy Ei may be determined in order from the energy to the minimum irradiation energy, and for example, from the predetermined irradiation energy Ep determined in advance to the maximum irradiation energy, and from the predetermined irradiation energy Ep to the minimum
  • the i-th irradiation energy Ei may be determined in order up to the irradiation energy.
  • Rstep EXP ((logEmax ⁇ logEmin) / N) (2-1)
  • Ei Emin ⁇ Rstep i (2-2)
  • each interval in the plurality of first vice light irradiation energies is an equal ratio interval. Therefore, when the number of measurements (measurement time) is the same as the equal difference interval, The first bias light irradiation energy range wider than the interval can be evaluated with respect to the nonlinear degree in the nonlinear characteristic of the differential spectral sensitivity.
  • the second derivative of the characteristic curve representing the relationship between the first bias light irradiation energy and the short-circuit current is obtained as the degree of change, and the second order of the obtained characteristic curve.
  • the combination is obtained based on the differentiation, but is not limited to this.
  • the bias light combination calculation unit 74a as the degree of change, for each of a plurality of first bias light irradiation energy, the short circuit current measured by the short circuit current measuring unit 43 corresponding to the first bias light irradiation energy and the A difference between the short-circuit current obtained by interpolation from two short-circuit currents corresponding to the first bias light irradiation energy before and after the first bias light irradiation energy is obtained, and the combination is obtained based on the obtained difference. It may be configured as follows.
  • the change between the two measurement points is related to the difference between the actual value of a certain measurement point between the two measurement points and the interpolated value of the certain measurement point from the two measurement points, The larger the difference, the greater the change between the two measurement points. Therefore, the nonlinear degree in the nonlinear characteristic of the differential spectral sensitivity corresponds to the measured short-circuit current corresponding to the first bias light irradiation energy and the first bias light irradiation energy before and after the first bias light irradiation energy, respectively. It can be expressed by the difference from the interpolated short circuit current interpolated from the two short circuit currents. For this reason, such a solar cell absolute spectral sensitivity measuring apparatus M can determine a more appropriate combination by calculating
  • FIG. 9 is a block diagram showing the configuration of the solar cell absolute spectral sensitivity measuring apparatus in the second embodiment.
  • the solar cell absolute spectral sensitivity measuring device Ma in the first embodiment first measured all the short-circuit currents for each of the plurality of first vice light irradiation energies.
  • the solar cell absolute spectral sensitivity measuring apparatus Mb in the second embodiment searches for the second bias light irradiation energy while dividing the range of the first bias light irradiation energy into a plurality of, and based on the search result, the plurality of second bias light irradiation energy. The combination of the bias light irradiation energy is obtained.
  • Such a solar cell absolute spectral sensitivity measuring device Mb in the second embodiment includes, for example, as shown in FIG. 9, a first light source unit 1, a second light source unit 2, a measurement unit 4, and a control calculation unit 7b.
  • the irradiation optical system 3, the storage unit 5, the IF unit 6, the input unit 8, and the output unit 9 are further provided.
  • the control calculation unit 7b controls each part of the solar cell absolute spectral sensitivity measuring device Mb according to the function in order to obtain the absolute spectral sensitivity, and controls the overall operation of the solar cell absolute spectral sensitivity measuring device Mb.
  • This is a device for obtaining the absolute spectral sensitivity of the battery VP, and is constituted by, for example, a microcomputer, like the control calculation unit 7a.
  • the control calculation unit 7b executes a control calculation program, whereby the control unit 71, the first light source control unit 72, the second light source control unit 73, the bias light combination calculation unit 74b, and the differential spectral sensitivity measurement unit 75.
  • the absolute spectral sensitivity calculation unit 76 is functionally configured.
  • the control unit 71, the first light source control unit 72, the second light source control unit 73, the differential spectral sensitivity measurement unit 75, and the absolute spectral sensitivity calculation unit 76 in the control calculation unit 7b of the second embodiment are respectively the first embodiment. Since this is the same as the control unit 71, the first light source control unit 72, the second light source control unit 73, the differential spectral sensitivity measurement unit 75, and the absolute spectral sensitivity calculation unit 76 in the control calculation unit 7a, description thereof is omitted.
  • the bias light combination calculation unit 74b divides the first bias light irradiation energy range from the first minimum irradiation energy to the first maximum irradiation energy of the first bias light irradiation energy set in advance into a plurality of regions. Corresponding to each of the short-circuit current, the minimum irradiation energy, and the maximum irradiation energy measured by the short-circuit current measuring unit 43 by irradiating the solar cell PV with the bias light at the first bias light irradiation energy at the boundary points in a plurality of regions.
  • the difference between the two actually measured short-circuit currents and the interpolated short-circuit current corresponding to the first bias light irradiation energy at the boundary point obtained by interpolation is obtained, and the obtained difference is the second determination value ( (2nd threshold value)
  • the first bias light irradiation energy at the boundary point is set to the second via.
  • a second bias light irradiation energy search process for light irradiation energy is executed, and each of the plurality of divided areas is newly renewed until the case where the obtained difference is equal to or larger than a preset second determination value Th2 is eliminated.
  • the bias light combination calculation unit 74b functionally includes a search processing unit 746 and a combination calculation unit 747.
  • the search processing unit 746 registers predetermined items in a search area list for registering information necessary for executing the second bias light irradiation energy search process, and the difference is equal to or greater than the second determination value Th2. Until the case disappears, each of the plurality of divided regions is newly updated to the first bias light irradiation energy range, the second minimum irradiation energy in the region is newly updated to the first minimum irradiation energy, and The second bias light irradiation energy search process is executed while the second maximum irradiation energy in the region is newly updated to the first maximum irradiation energy.
  • the search area list includes, for example, an area ID field for registering an identifier (area ID) representing each divided area, and a first bias light irradiation energy range of each area to indicate a first bias light irradiation energy range of each area. Fields such as a both-end irradiation energy field for registering each first bias light irradiation energy at both ends and a search process execution flag field for registering a flag indicating whether or not the second bias light irradiation energy search process is executed for each region And a record is generated for each area.
  • This search area list is stored in the storage element (for example, EEPROM) of the control calculation unit 7b or the storage unit 5.
  • the combination calculation unit 747 extracts the first bias light irradiation energy registered in the search region list as the second bias light irradiation energy after the second bias light irradiation energy search process of the search processing unit 746 is finished, The combination of the bias light irradiation energy is obtained.
  • FIG. 10 is a flowchart showing the operation of the solar cell absolute spectral sensitivity measuring apparatus according to the second embodiment.
  • FIG. 11 is a diagram for explaining a second bias light irradiation energy search process in the solar cell absolute spectral sensitivity measuring apparatus according to the second embodiment.
  • the horizontal axis in FIG. 11 represents the first irradiation energy, and the vertical axis represents the short-circuit current.
  • a solar cell PV to be measured is set at a predetermined location, and measurement is started.
  • the spectral irradiance of the bias light is configured to be switchable, first, as in the process S11 of the first embodiment, the absolute value spectral sensitivity is obtained.
  • the type of one light source 11 (the type of spectral irradiance of bias light) is input by the operator from the input unit 8 and determined (S21).
  • the maximum value (maximum irradiation energy) and the minimum value (minimum irradiation energy) of the irradiation energy of the bias light are input from the input unit 8 and determined by the operator (S22). ).
  • the search processing unit 746 displays the first first bias light irradiation energy in a plurality of regions, for example, three or four regions.
  • a search area list having a number of records corresponding to the divided areas is generated, and predetermined items are registered in the generated records (S23).
  • the first first bias light irradiation energy is divided into three first to third regions. Therefore, three first to third records are generated in the search area list according to the first to third areas.
  • the first boundary irradiation energy and the non-execution at the boundary point between the first area, the minimum irradiation energy, and the first and second areas are registered in the area ID field, the both-end irradiation energy field, and the search process execution flag field of the first record, respectively.
  • the first boundary irradiation energy and the second and third areas at the boundary point between the second area, the first area, and the second area are respectively displayed in the area ID field, the both-end irradiation energy field, and the search process execution flag field of the second record.
  • the second boundary irradiation energy and the non-execution at the boundary point between them are registered, and the third area, the second and the third areas are respectively stored in the area ID field, the both-end irradiation energy field, and the search process execution flag field of the third record.
  • the second boundary irradiation energy at the boundary point between Large radiation energy and unexecuted is registered. “Unexecuted” indicates that the area needs to be divided, and “executed” indicates that the area is not required to be divided.
  • the search processing unit 746 selects one area from which the second bias light irradiation energy search process has not been executed from the search area list, and each of the first bias light irradiation energy ranges of the selected area at each end.
  • the solar cell PV is irradiated with the bias light with the energy of 1 bias light irradiation, and the short-circuit current is measured (S24).
  • the irradiation energy of the bias light emitted from the first light source unit 1 is the first at the first end (minimum in the above range) in the first bias light irradiation energy range of this region.
  • the first light source unit 1 is controlled via the first light source control unit 72 such that the bias light irradiation energy E min is obtained.
  • the first light source unit 1 emits the bias light with the first bias light irradiation energy E min .
  • the bias light emitted from the first light source unit 1 is incident on the solar cell PV via the third optical system 31 and the fifth optical system (half mirror) 33.
  • the solar cell PV photoelectrically converts the bias light and outputs a photocurrent corresponding to the first bias light irradiation energy E min to the short-circuit current measuring unit 43.
  • the short-circuit current measuring unit 43 The first DC amplifier 432 measures a short-circuit current having a magnitude (level) corresponding to the bias light having the first bias light irradiation energy E min and outputs the short-circuit current measurement result to the control calculation unit 7b.
  • the search processing unit 746 acquires the output of the first DC amplifier 432 of the short-circuit current measuring unit 43 as the short-circuit current Isc min corresponding to the first bias light irradiation energy E min .
  • Short-circuit current measurement control unit 741 the acquired short-circuit current Isc min, in association with the first bias light irradiation energy E min.
  • the search processing unit 746 uses the first bias light irradiation energy at the other end (maximum in the above range) in the first bias light irradiation energy range of this region as the irradiation energy of the bias light emitted from the first light source unit 1.
  • the first light source unit 1 is controlled via the first light source control unit 72 so as to be E max .
  • the first light source unit 1 and the short-circuit current measurement unit 43 operate in the same manner as described above, and the search processing unit 746 uses the first short-circuit current measurement unit 43 as the short-circuit current Isc max corresponding to the first bias light irradiation energy E max .
  • the output of the 1DC amplifier 432 is acquired.
  • the first region is selected as a region where the second bias light irradiation energy search process has not been executed, and the short-circuit current Isc at the minimum irradiation energy as the first bias light irradiation energy E min at the one end is measured. Then, the short-circuit current at the first boundary irradiation energy at the boundary point between the first and second regions as the first bias light irradiation energy E man at the other end is measured.
  • the search processing unit 746 calculates the short-circuit current at the intermediate irradiation energy in the selected region from the respective short-circuit currents Isc mix and Isc max at the respective irradiation energies E min and E max measured in step S24. Then, the short-circuit current is obtained as the interpolation short-circuit current Isc cal by a predetermined interpolation method (S25). For example, as shown in FIG. 11, the interpolated short circuit current Isc cal is obtained from each short circuit current Isc mix and Isc max by linear interpolation (linear interpolation).
  • this interpolation method is not limited to linear interpolation, and various interpolation methods can be used.
  • This interpolation method may be, for example, non-linear interpolation using a higher order expression such as a quadratic expression or a cubic expression, and a polynomial.
  • this interpolation method is an interpolation that integrates a short-circuit current in the DSR method.
  • a method using an equation may also be used.
  • a method that measures and averages multiple short-circuit currents with the same irradiation energy a method that rearranges the measured values multiple times in the order of measurement values, and uses the center value (midian filter) ),
  • a method of taking a moving average among a plurality of irradiation energies, a method of determining an interpolation formula by the least square method, or the like can be used.
  • the search processing unit 746 actually measures the short-circuit current Isc mid at the intermediate irradiation energy in the selected region, which is the same irradiation energy as the irradiation energy for which the interpolation short-circuit current Isc cal is obtained in the process S25 (S26). ).
  • the search processing unit 746 performs the short-circuit current Isc mid actually measured in the process S26 and the interpolated short-circuit current Isc obtained by interpolation in the process S25 at the intermediate irradiation energy E mid in the selected region.
  • a difference Isc sub from cal is obtained, and it is judged whether or not the obtained difference Isc sub is equal to or larger than a preset second determination value (second threshold) Th2 (S27).
  • the search processing unit 746 executes the process S28, while the determination result in the process S27
  • the search processing unit 746 executes a process S31.
  • a new record is generated in the search area list in order to divide the selected area by the intermediate irradiation energy Emid in the selected area.
  • the search processing unit 746 then adds a new region ID and one end of the selected region in the first bias light irradiation energy range to each of the region ID field, the both-end irradiation energy field, and the search processing execution flag field in the new record.
  • the first bias light irradiation energy E min and the intermediate irradiation energy E mid in the first bias light irradiation energy range of the selected area, and the non-execution are registered, and the both ends irradiation energy field in the record of the selected area is registered.
  • the intermediate irradiation energy E mid in the first bias light irradiation energy range of the selected region and the first bias light irradiation energy E man at the other end in the first bias light irradiation energy range of the selected region are updated.
  • the search processing unit 746 adds a new region ID and an intermediate value in the first bias light irradiation energy range of the selected region to each of the region ID field, the both-end irradiation energy field, and the search processing execution flag field in the new record.
  • the irradiation energy E mid , the first bias light irradiation energy E man at the other end in the first bias light irradiation energy range of the selected region, and unexecuted are registered, and the both ends irradiation energy field in the record of the selected region is registered. Even if the first bias light irradiation energy E min at one end in the first bias light irradiation energy range of the selected region and the intermediate irradiation energy E mid in the first bias light irradiation energy range of the selected region are updated. Good. Then, the search processing unit 746 returns the process to step S24 in order to newly perform a second bias light irradiation energy search process for a region to be subjected to the second bias light irradiation energy search process.
  • the search processing unit 746 determines that it is not necessary to divide the selected area by the intermediate irradiation energy E mid in the selected area, and corresponds to the selected area in the search area list.
  • the search process execution flag field of the record is updated and changed from “not executed” to “executed” (S31), and the search processing unit 746 refers to the search process execution flag field in the search area list to thereby change all the areas.
  • step S32 If the result of determination in step S32 is that the second bias light irradiation energy search process has been executed for all regions (YES), the search processing unit 746 notifies the combination calculation unit 747 to that effect, and the combination The computing unit 74 executes process S33.
  • the search processing unit 746 returns the process to step S24 in order to newly perform the second bias light irradiation energy search process for the region to be subjected to the second bias light irradiation energy search process.
  • the combination calculation unit 747 extracts the first bias light irradiation energy registered in the search area list as the second bias light irradiation energy, and the combination of the second bias light irradiation energy. Ask for.
  • the bias light combination calculation unit 74b of the present embodiment divides the first first bias light irradiation energy range into three regions and then sets the first minimum irradiation energy of the preset first bias light irradiation energy.
  • the first bias light irradiation energy range from E min to the first maximum irradiation energy E max is divided into two regions, and the bias light with the first bias light irradiation energy E mid at the boundary point in the two divided regions.
  • the second bias light irradiation energy search process is performed as the bias light irradiation energy, and the two divided areas are eliminated until the obtained difference Isc sub is equal to or larger than the preset second determination value Th2.
  • Each is newly updated to the first bias light irradiation energy range, the second minimum irradiation energy in the region is newly updated to the first minimum irradiation energy Emin , and the second maximum irradiation energy in the region is newly updated. Updating the first maximum irradiation energy E max to execute the second bias light irradiation energy search process.
  • the combination of the second bias light irradiation energy is obtained.
  • the differential spectral sensitivity measurement unit 75 performs the first through the first light source control unit 72 in the same manner as the process S16 of the first embodiment. While controlling the light source unit 1 to sequentially irradiate the solar cell PV with a plurality of second bias light irradiation energy different from each other in the combination obtained by the combination calculation unit 747 of the bias light combination calculation unit 74b, By controlling the second light source unit 2 via the second light source control unit 73 for each of the plurality of second bias light irradiation energies, the monochromatic light irradiation energy is varied at each of a plurality of different wavelengths, thereby the monochromatic light.
  • the differential spectral sensitivity measurement unit 75 notifies the absolute spectral sensitivity calculation unit 76 of the differential spectral sensitivities at the measured second bias light irradiation energies E1 to E6 (S34).
  • the absolute spectral sensitivity calculation unit 76 corresponds to each of the plurality of second bias light irradiation energies measured by the differential spectral sensitivity measurement unit 75, as in the process S17 of the first embodiment.
  • the absolute spectral sensitivity of the solar cell PV is obtained by the DSR method based on the plurality of differential spectral sensitivities.
  • control calculation part 7b memorize
  • control calculating part 7b outputs the absolute spectral sensitivity of the solar cell PV calculated
  • the second bias light irradiation energy is eliminated until there is no case where the difference obtained as described above is equal to or greater than the preset second determination value Th2.
  • the search process is repeated, and the division of the first bias light irradiation energy range and the search for the first bias light irradiation energy selected for the second bias light irradiation energy are repeated.
  • the first bias light irradiation energy is set as the second bias light irradiation energy at a relatively fine interval (short interval), and the differential spectral sensitivity
  • the first bias light irradiation energy is set as the second bias light irradiation energy at a relatively wide interval (long interval), and according to the profile in the nonlinear characteristic of the differential spectral sensitivity.
  • the combination of the second bias light irradiation energy is required.
  • the solar cell absolute spectral sensitivity measuring device Mb in the second embodiment minimizes the measurement of the short-circuit current with unnecessary irradiation energy. be able to. Therefore, the solar cell absolute spectral sensitivity measuring apparatus Mb in the second embodiment can determine a more appropriate combination while shortening the measurement time when measuring the absolute spectral sensitivity of the solar cell PV.
  • the first bias light irradiation energy range when the first bias light irradiation energy range is first divided into a plurality of regions, the first first light irradiation energy range is three or four. Divided into regions.
  • the first irradiation energy range of the first bias light may be divided into two regions. In such a case, the actually measured short-circuit current and the interpolation short-circuit current at the boundary point are substantially equal, and the second bias light There is a possibility that the execution of the irradiation energy search process is terminated.
  • the characteristic of differential spectral sensitivity in the solar cell PV is often an approximately S-shaped curve, and the actually measured short-circuit current and the interpolated short-circuit current at the boundary point when the region is divided into two are approximately equal. For this reason, when dividing the first energy irradiation energy range of the first bias into two regions, there is a possibility that an appropriate combination may not be obtained.
  • the solar cell absolute spectral sensitivity measuring device Mb divides the first bias light irradiation energy range into three or four regions, so that the above situation can be avoided. Can be determined.
  • the first bias light irradiation energy range is divided into a plurality of regions within an equal range.
  • the first bias light irradiation energy range since the ranges of the divided areas are equal, the first bias light irradiation energy range from the minimum irradiation energy to the maximum irradiation energy in the first bias light irradiation energy is set. All can be evaluated fairly with respect to the degree of nonlinearity in the nonlinear characteristic of the differential spectral sensitivity.
  • the first bias light irradiation energy region is 2 Although divided into three regions, it may be divided into three or more regions.
  • the first bias light irradiation energy range is divided into a plurality of regions in an equal range, but is not limited thereto.
  • the bias light combination calculation unit 74b may divide the first bias light irradiation energy range into a plurality of regions within an equal ratio range.
  • the range of each of these divided regions is an equal ratio. Therefore, the wider first bias light irradiation energy range is related to the nonlinear degree in the nonlinear characteristic of the differential spectral sensitivity. Can be evaluated.
  • a solar cell absolute spectral sensitivity measuring apparatus includes a first light source unit that irradiates a measurement target solar cell with bias light, a second light source unit that irradiates the solar cell with monochromatic light, and a short circuit of the solar cell.
  • a short-circuit current measurement unit that measures current, and the short-circuit current measurement unit that sequentially irradiates the solar cell with a plurality of first bias light irradiation energy different from each other by controlling the first light source unit.
  • a combination of a plurality of different second bias light irradiation energies for measuring a plurality of differential spectral sensitivities used to determine an absolute spectral sensitivity of the solar cell is obtained.
  • a plurality of different light beams obtained by the bias light combination calculation unit by controlling the bias light combination calculation unit and the first light source unit. While the solar cell is irradiated with the bias light sequentially with two bias light irradiation energies, the second light source unit is controlled for each of the plurality of second bias light irradiation energies at a plurality of different wavelengths.
  • a differential spectral sensitivity measurement unit that obtains differential spectral sensitivity based on a plurality of short-circuit currents measured by the short-circuit current measurement unit by irradiating the solar cell with the monochromatic light by varying monochromatic light irradiation energy, and the difference
  • An absolute spectral sensitivity calculating unit that obtains an absolute spectral sensitivity of the solar cell based on a plurality of differential spectral sensitivities corresponding to the plurality of second bias light irradiation energies measured by the spectral sensitivity measuring unit.
  • bias light is sequentially irradiated to a solar cell to be measured with a plurality of different first bias light irradiation energies under the control of the first light source unit, and the plurality of first biases are measured.
  • first bias light irradiation energies under the control of the first light source unit
  • second bias light irradiation energies A combination of a plurality of second bias light irradiation energies is required.
  • the combination of the plurality of second bias light irradiation energies is first determined from the short circuit current before obtaining the absolute spectral sensitivity, there is no need to repeat the above trial and error, and the short circuit current
  • the measurement can be performed in a relatively short time, for example, several seconds such as about 1 second. For this reason, such a solar cell absolute spectral sensitivity measuring apparatus can determine a more appropriate combination while shortening measurement time when measuring the absolute spectral sensitivity of a solar cell.
  • the bias light combination calculation unit obtains the combination based on a degree of change in the relationship between the first bias light irradiation energy and the short-circuit current. .
  • the non-linear degree in the non-linear characteristic of the differential spectral sensitivity appears in the change in the relationship between the first bias light irradiation energy and the short-circuit current. For this reason, such a solar cell absolute spectral sensitivity measuring device can determine a more appropriate combination by obtaining the combination based on the degree of change in the relationship between the first bias light irradiation energy and the short-circuit current. .
  • the first bias light irradiation energy having a relatively large change degree is selected as the second bias light irradiation energy
  • the first bias light irradiation having a relatively small change degree is selected.
  • a more appropriate combination in which the energy is excluded from the selection of the second bias light irradiation energy can be determined.
  • the bias light combination calculation unit has a second floor of a characteristic curve representing a relationship between the first bias light irradiation energy and the short-circuit current as the degree of change. A derivative is obtained, and the combination is obtained based on the second derivative of the obtained characteristic curve.
  • the difference spectral sensitivity is related to the change rate of the short-circuit current as described above, the change in the relationship between the first bias light irradiation energy and the short-circuit current can be expressed by the second derivative of the characteristic curve. That is, the non-linear degree in the non-linear characteristic of the difference spectral sensitivity can be expressed by the second derivative of the characteristic curve. For this reason, such a solar cell absolute spectral sensitivity measuring apparatus can determine a more appropriate combination by calculating
  • the bias light combination calculation unit obtains an absolute value of a second derivative of the characteristic curve, and is set in advance in descending order from the obtained absolute value.
  • the combination is obtained by selecting the absolute value by the number and using the first bias light irradiation energy corresponding to the selected absolute value as the second bias light irradiation energy.
  • the bias light combination calculation unit obtains an absolute value of a second derivative of the characteristic curve, and a first determination set in advance from the obtained absolute value The combination is obtained by selecting an absolute value that is equal to or greater than the value and setting the first bias light irradiation energy corresponding to the selected absolute value as the second bias light irradiation energy.
  • Such a solar cell absolute spectral sensitivity measuring device selects the absolute value greater than or equal to the first determination value (greater than or equal to the first threshold value) to determine the combination, in the relationship between the first bias light irradiation energy and the short-circuit current A portion having a non-linear degree corresponding to the absolute value equal to or higher than the first determination value can be selected, and the absolute value spectral sensitivity can be measured with a desired accuracy according to the first determination value.
  • the bias light combination calculation unit may calculate the first bias light irradiation energy for each of the plurality of first bias light irradiation energies as the degree of change. Between the short-circuit current actually measured by the short-circuit current measuring unit corresponding to and the interpolation short-circuit current obtained by interpolation from the two short-circuit currents corresponding to the first bias light irradiation energy before and after the first bias light irradiation energy. A difference is obtained, and the combination is obtained based on the obtained difference.
  • the change between the two measurement points is related to the difference between the actual value of a certain measurement point between the two measurement points and the interpolated value of the certain measurement point from the two measurement points, The larger the difference, the greater the change between the two measurement points. Therefore, the nonlinear degree in the nonlinear characteristic of the differential spectral sensitivity corresponds to the measured short-circuit current corresponding to the first bias light irradiation energy and the first bias light irradiation energy before and after the first bias light irradiation energy. It can be represented by the difference from the interpolated short circuit current interpolated from the two short circuit currents. For this reason, such a solar cell absolute spectral sensitivity measuring apparatus can determine a more appropriate combination by calculating
  • the bias light combination calculation unit controls the first light source unit when measuring the plurality of short circuit currents using the short circuit current measurement unit.
  • the solar cells are sequentially irradiated with a plurality of bias lights having a plurality of first bias light irradiation energies that are different from each other by equal differences.
  • the first bias light from the minimum irradiation energy to the maximum irradiation energy in the first bias light irradiation energy.
  • the irradiation energy range can be evaluated fairly with respect to the degree of nonlinearity in the nonlinear characteristic of the differential spectral sensitivity.
  • the bias light combination calculation unit controls the first light source unit when measuring the plurality of short circuit currents using the short circuit current measurement unit.
  • the solar cells are sequentially irradiated with a plurality of bias lights having a first bias light irradiation energy different from each other at an equal ratio.
  • each interval in the plurality of first vice light irradiation energies is an equal ratio interval
  • the equal difference interval is obtained when the number of measurements (measurement time) is the same as the equal interval.
  • the first bias light irradiation energy range wider than the above case can be evaluated with respect to the nonlinear degree in the nonlinear characteristic of the differential spectral sensitivity.
  • the bias light combination calculation unit includes first bias energy from a first minimum irradiation energy to a first maximum irradiation energy set in advance. Dividing the 1-bias light irradiation energy range into a plurality of regions, and irradiating the solar cell with the first bias light irradiation energy at the boundary points in the divided regions, and actually measuring the short-circuit current measuring unit A difference between the short-circuited current and the interpolation short-circuit current corresponding to the first bias light irradiation energy at the boundary point obtained by interpolation from two short-circuit currents corresponding to the minimum irradiation energy and the maximum irradiation energy, The first bias light at the boundary point when the obtained difference is greater than or equal to a preset second determination value A second bias light irradiation energy search process is performed in which the irradiation energy is the second bias light irradiation energy, and the plurality
  • the second minimum irradiation energy in the region is newly updated to the first minimum irradiation energy, and the second maximum irradiation energy in the region is updated.
  • the combination is obtained by newly updating to the first maximum irradiation energy and executing the second bias light irradiation energy search process.
  • the second bias light irradiation energy search process is repeated until the case where the obtained difference is equal to or greater than a preset second determination value disappears, and the first bias light irradiation energy search process is repeated.
  • the division of the bias light irradiation energy range and the search for the first bias light irradiation energy selected as the second bias light irradiation energy are repeated. For this reason, in a region where the degree of nonlinearity in the nonlinear characteristic of the difference spectral sensitivity is relatively large, the first bias light irradiation energy is set as the second bias light irradiation energy at relatively fine intervals (short intervals), and the difference spectroscopy is performed.
  • the first bias light irradiation energy is made the second bias light irradiation energy at a relatively wide interval (long interval), and the profile in the nonlinear characteristic of the differential spectral sensitivity
  • the combination according to is required. Therefore, such a solar cell absolute spectral sensitivity measuring apparatus can determine a more appropriate combination while shortening the measurement time when measuring the absolute spectral sensitivity of the solar cell.
  • the bias light combination calculation unit first converts the first bias light irradiation energy range into a plurality of regions when the first first light irradiation energy range is divided.
  • the bias light irradiation energy range is divided into three or four regions.
  • the initial first bias light irradiation energy range may be divided into two regions.
  • the actually measured short-circuit current and the interpolated short-circuit current at the boundary point are substantially equal, and the second bias
  • the characteristic of differential spectral sensitivity in a solar cell is often an approximately S-shaped curve, and the actually measured short-circuit current and the interpolated short-circuit current at the boundary point when the region is divided into two are approximately equal.
  • the solar cell absolute spectral sensitivity measuring apparatus divides the first bias light irradiation energy range into three or four regions, the above situation can be avoided, so a more appropriate combination is determined. it can.
  • the bias light combination calculation unit divides the first bias light irradiation energy range into a plurality of regions in an equal range.
  • the bias light combination calculation unit divides the first bias light irradiation energy range into a plurality of regions in an equal ratio range.
  • the range of each of the divided areas is an equal ratio, so that the wider first bias light irradiation energy range is related to the nonlinear degree in the nonlinear characteristic of the differential spectral sensitivity. Can be evaluated.
  • the solar cell absolute spectral sensitivity measuring method includes a first irradiation step of irradiating a solar cell to be measured with a bias light from a first light source unit, and irradiating the solar cell with a monochromatic light from a second light source unit.
  • the second irradiation step, the short-circuit current measurement step of measuring the short-circuit current of the solar cell, and the first light source unit by controlling the first light source unit to sequentially apply the bias light with a plurality of different first bias light irradiation energies.
  • the differential spectroscopy By varying the monochromatic light irradiation energy at each of a plurality of wavelengths different from each other by controlling the monochromatic light to irradiate the solar cell, the differential spectroscopy based on the plurality of short circuit currents measured by the short circuit current measuring unit Based on a plurality of differential spectral sensitivities corresponding to each of the plurality of second bias light irradiation energies measured in the differential spectral sensitivity measuring step for obtaining sensitivity and the differential spectral sensitivity measuring step, the absolute spectral sensitivity of the solar cell is calculated. A required absolute spectral sensitivity calculation step.
  • bias light is sequentially irradiated to the solar cell to be measured with a plurality of different first bias light irradiation energies under the control of the first light source unit, and the plurality of first biases are measured.
  • a plurality of short-circuit currents at each light irradiation energy are measured, and based on the measured plurality of short-circuit currents, first, a plurality of differential spectral sensitivities to be measured are measured in order to obtain an absolute spectral sensitivity of the solar cell. Therefore, a combination of a plurality of second bias light irradiation energies is required.
  • the combination of the plurality of second bias light irradiation energies is first determined from the short circuit current before obtaining the absolute spectral sensitivity, there is no need to repeat the above trial and error, and the short circuit current
  • the measurement can be performed in a relatively short time, for example, several seconds such as about 1 second. For this reason, such a solar cell absolute spectral sensitivity measurement method can determine a more appropriate combination while shortening the measurement time when measuring the absolute spectral sensitivity of a solar cell.
  • a solar cell absolute spectral sensitivity measuring apparatus and a solar cell absolute spectral sensitivity measuring method can be provided.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 本発明の太陽電池絶対分光感度測定装置および該方法では、第1光源部の制御によって互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光が測定対象の太陽電池に照射され、前記複数の第1バイアス光照射エネルギーそれぞれでの複数の短絡電流が測定され、これら測定された複数の短絡電流に基づいて、太陽電池の絶対分光感度を求めるために、先ず測定される複数の差分分光感度を測定するための複数の第2バイアス光照射エネルギーから成る組合せが求められる。

Description

太陽電池絶対分光感度測定装置および該方法
 本発明は、太陽電池の絶対分光感度を測定する太陽電池絶対分光感度測定装置および太陽電池絶対分光感度測定方法に関する。
 太陽電池は、光起電力効果を利用することによって光エネルギーを直接電力へ変換する素子であり、様々な太陽電池が研究、開発され、近年、広く普及し始めている。この太陽電池には、シリコン(Si)を用いたシリコン系太陽電池、InGaAs等の化合物半導体を用いた化合物系太陽電池および有機半導体を用いた有機系太陽電池等の様々な種類があり、有機系太陽電池には、2種類の有機半導体を用いてPN接合を形成しPN接合における電子の光励起によって光起電力を得るPN接合型太陽電池と、有機色素中の電子の光励起によって光起電力を得る色素増感太陽電池とがある。
 このような太陽電池の性能を評価するために、例えばIEC60904やJIS(C8905~C8991)で定義された評価方法等があり、太陽電池の評価方法の一つとして、DSR法(differential spectral responsivity method)による太陽電池の絶対分光感度を測定する測定方法がある(例えば、特許文献1および非特許文献1参照)。なお、IECは、International Electrotechnocal Commission(国際電気標準会議)の略称であり、JISは、Japanese Industrial Standards(日本工業規格)の略称である。
 この太陽電池の絶対分光感度は、或る照射光を受光することによって太陽電池から出力される短絡電流のうちで任意の波長の分光エネルギーが寄与する電流分を、前記分光エネルギーで割ったものである。この絶対分光感度と照射光の分光放射照度とを積分することによって、太陽電池の短絡電流も計算できる。前記DSR法による絶対分光感度測定方法は、バイアス光の照射エネルギーを順次に変えることによって各照射エネルギーに対する各差分分光感度をそれぞれ測定し、これら測定した複数の差分分光感度に基づいて前記太陽電池の絶対分光感度を求める方法である。前記バイアス光は、測定対象の太陽電池を発電状態(バイアスのかかった状態(バイアス状態))にするために前記太陽電池に照射される、例えば白色光等の光である。前記照射エネルギーは、測定対象の太陽電池に照射される照射光の総エネルギー(W/m)である。前記差分分光感度は、バイアス状態の太陽電池において、任意の波長の分光エネルギーの微少な変動による短絡電流の変化率である。この差分分光感度は、バイアス状態の太陽電池における短絡電流(バイアス光照射の短絡電流)を測定し、このバイアス状態の太陽電池に、照射エネルギーを微小変動させた単色光をさらに照射した状態の短絡電流(バイアス光および単色光照射の短絡電流)を測定し、前記バイアス光照射の短絡電流とバイアス光および単色光照射の短絡電流との差を前記単色光における前記照射エネルギーの微小変動分で割ることによって、求められる。
 上述のDSR法を用いた絶対分光感度の測定方法では、バイアス光の照射エネルギーを走査しながら各差分分光感度をそれぞれ測定するので、この測定に用いる複数の照射エネルギー値の組合せを決める必要がある。この組合せを決定する際、短絡電流が照射エネルギーに比例する線形特性を有する線形セルの場合では、照射エネルギーの変化に応じた短絡電流の変化が一定であるので、任意の組合せで測定精度が確保される。しかしながら、短絡電流が照射エネルギーに比例しない非線形特性を有する非線形セルの場合では、照射エネルギーの変化に応じた短絡電流の変化が一定ではないので、任意の組合せでは測定精度が確保できない。例えば、単結晶シリコン太陽電池は、略線形特性を有するので、任意の組合せでよく、そもそも、所定の照射エネルギーで測定した分光感度が絶対分光感度に略相当するので、複数の照射エネルギーで差分分光感度を測定する必要性に乏しい。一方、例えば、多結晶シリコン太陽電池は、照射エネルギーの増大に伴って差分分光感度も大きく変化する非線形特性を有し、また例えば、色素増感太陽電池は、照射エネルギーの分光分布が太陽光の分光分布(例えばAM1.5G等)に略等しい場合、約10W/m近辺で差分分光感度がピークとなる非線形特性を有する。このため、このような各非線形特性を有する多結晶シリコン太陽電池や色素増感太陽電池の絶対分光感度を精度よく測定するために、照射エネルギーの変化量を比較的小さくする必要がある。このため、非線形特性を有する太陽電池の絶対分光感度を測定する場合、測定時間が長くなってしまう。
 また、実際には、このような非線形特性を有する太陽電池の場合でも、太陽電池は、照射エネルギーを変化させる範囲全体に亘って等しい非線形性を示す訳ではなく、前記範囲全体の中に線形性に近い特性を示す範囲(線形特性と見なせる範囲)も存在する。このため、従来では、試行錯誤を繰り返すことによって前記組合せが決定されていた。
特開2012-256778号公報
J.Metzdorf,"Calibration of solar cells.1:The differential spectral responsivity method"、1 May 1987/Vol.26 No.9 Applied Optics 1701-1708
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、太陽電池の絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる太陽電池絶対分光感度測定装置および太陽電池絶対分光感度測定方法を提供することである。
 本発明にかかる太陽電池絶対分光感度測定装置および太陽電池絶対分光感度測定方法では、第1光源部の制御によって互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光が測定対象の太陽電池に照射され、前記複数の第1バイアス光照射エネルギーそれぞれでの複数の短絡電流が測定され、これら測定された複数の短絡電流に基づいて、太陽電池の絶対分光感度を求めるために、先ず測定される複数の差分分光感度を測定するための複数の第2バイアス光照射エネルギーから成る組合せが求められる。したがって、本発明にかかる太陽電池絶対分光感度測定装置および太陽電池絶対分光感度測定方法は、太陽電池の絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
第1実施形態における太陽電池絶対分光感度測定装置の構成を示すブロック図である。 バイアス光にパルス状の単色光を重畳した光を測定対象の太陽電池に照射した場合に太陽電池から出力される光電流を説明するための図である。 第1実施形態における太陽電池絶対分光感度測定装置の動作を示すフローチャートである。 太陽電池におけるバイアス光照射エネルギーと短絡電流との関係を表す特性曲線の一例を示す図である。 図3に示す特性曲線を一階微分した一階微分曲線を示す図である。 図3に示す特性曲線を二階微分した二階微分曲線を示す図である。 図5に示す二階微分曲線を用いた第2バイアス光照射エネルギーの組合せを求める手法を説明するための図である。 図5に示す二階微分曲線を用いた第2バイアス光照射エネルギーの組合せを求める他の手法を説明するための図である。 第2実施形態における太陽電池絶対分光感度測定装置の構成を示すブロック図である。 第2実施形態における太陽電池絶対分光感度測定装置の動作を示すフローチャートである。 第2実施形態の太陽電池絶対分光感度測定装置における第2バイアス光照射エネルギー探索処理を説明するための図である。
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 本実施形態における太陽電池絶対分光感度測定装置Mは、測定対象の太陽電池PVにバイアス光を照射する第1光源部と、太陽電池PVに単色光を照射する第2光源部と、太陽電池PVの短絡電流を測定する短絡電流測定部と、前記第1光源部を制御することによって互いに異なる複数の第1バイアス光照射エネルギーで順次に前記バイアス光を太陽電池PVに照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて、太陽電池PVの絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるバイアス光組合せ演算部と、前記第1光源部を制御することによって前記バイアス光組合せ演算部で求められた前記互いに異なる複数の第2バイアス光照射エネルギーで順次に前記バイアス光を太陽電池PVに照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、前記第2光源部を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を太陽電池PVに照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて差分分光感度を求める差分分光感度測定部と、前記差分分光感度測定部で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、太陽電池PVの絶対分光感度を求める絶対分光感度演算部とを備える。このような太陽電池絶対分光感度測定装置Mは、太陽電池PVの絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。このような太陽電池絶対分光感度測定装置Mにおけるより具体的な実施形態を第1実施形態の太陽電池絶対分光感度測定装置Maおよび第2実施形態の太陽電池絶対分光感度測定装置Mbとして、以下に説明する。
 (第1実施形態)
 図1は、第1実施形態における太陽電池絶対分光感度測定装置の構成を示すブロック図である。図2は、バイアス光にパルス状の単色光を重畳した光を測定対象の太陽電池に照射した場合に太陽電池から出力される光電流を説明するための図である。図2の横軸は、経過時間を表す時間軸であり、その縦軸は、光電流の大きさを表す光電流軸である。第1実施形態における太陽電池絶対分光感度測定装置Maは、例えば、図1に示すように、第1光源部1と、第2光源部2と、測定部4と、制御演算部7aとを備え、図1に示す例では、さらに、照射光学系3と、記憶部5と、インターフェース部(以下、「IF部」と略記する。)6と、入力部8と、出力部9とを備える。
 第1光源部1は、制御演算部7aの制御に従い、測定対象(評価対象)の太陽電池PVにバイアス光をその照射エネルギーを変更可能に照射する装置であり、例えば、第1光源駆動部10と、第1光源11とを備える。
 第1光源11は、所定のバイアス光を放射する装置である。バイアス光は、太陽電池PVを発電状態(バイアス状態)とするための光である。バイアス光は、太陽電池PVが光電変換できる波長(太陽電池PVが感度を有する波長)を含む任意の光でよいが、太陽電池PVの使用状態(使用環境)に応じた測定結果をより精度良く得るために、太陽電池PVの使用状態に応じた適宜な光であることが好ましい。
 例えば、太陽電池PVが自然太陽光を受光して発電するように使用される場合には、バイアス光は、いわゆるAM1.5G(Air Mass 1.5G)と呼ばれる、自然太陽光の分光放射照度に近似した標準相対分光放射照度を持つ擬似太陽光であることが好ましい。このような擬似太陽光を放射するために、第1光源11は、例えば、ハロゲンランプおよびキセノンランプ等のランプと、前記ランプから放射された光を自然太陽光の分光放射照度に近似した分光放射照度に変換するために所定のフィルタ特性を持つ光学フィルタとを備えて構成される。
 また例えば、太陽電池PVが照明器具の照明光を受光して発電するように使用される場合には、バイアス光は、この照明器具の照明光であることが好ましい。このような照明器具の照明光を放射するために、第1光源11は、例えば、前記照明器具に使用される光源を備えて構成される。前記照明器具は、例えば、ハロゲンランプ、キセノンランプ、白熱電球、蛍光灯および発光ダイオード(例えば白色発光ダイオード(白色LED)等)等である。
 また例えばバイアス光は、単色光であってもよく、第1光源11は、単色光光源であっても良い。単色光の波長は、測定対象の太陽電池PVが色素増感太陽電池である場合では、TiO膜(酸化チタン膜)の影響が大きく現れる約300~約400nmとすることや、色素の影響が大きく現れる約600~約800nmとすることができる。
 第1光源11は、互いに異なる分光放射照度のバイアス光を放射できるように、複数の光源、例えば擬似太陽光の光源、蛍光灯および白色LEDを備え、太陽電池PVに放射するバイアス光を切り替え可能に構成されても良い。
 第1光源駆動部10は、制御演算部7aの制御に従い、例えば第1光源11で放射されるバイアス光の放射(点灯)および停止(消灯)の駆動制御や前記バイアス光の放射光強度(照射エネルギー)の調整制御等の、第1光源11を駆動および制御する装置である。
 このような第1光源部1では、例えば、制御演算部7aから所定の照射エネルギーでバイアス光を点灯するように指示を受けると、第1光源駆動部10は、前記所定の照射エネルギーでバイアス光を第1光源11に放射させる。また例えば、制御演算部7aからバイアス光を消灯するように指示を受けると、第1光源駆動部10は、バイアス光の放射を第1光源11に停止させる。
 第2光源部2は、制御演算部7aの制御に従い、測定対象の太陽電池PVに、その照射エネルギーを変動させて単色光を照射する装置である。本装置Mは、分光感度を測定するので、単色光は、照射エネルギーの分かる光であって、その単色光の波長が可変である必要がある。前記単色光の可変波長帯域は、太陽電池PVが感度を有する波長域を含む。このため、第2光源部2は、制御演算部7aの制御に従って、単色光の波長を選択(可変)する機能、前記単色光の放射光強度(照射エネルギー)を調整(変動)する機能、および、前記単色光を点灯および消灯する機能等の諸機能を備える装置である。なお、単色光の照射エネルギーは、後述するように測定部4の放射照度検知部41および第2DCアンプ42によって測定される。このような第2光源部2は、例えば、第2光源駆動部20と、第2光源21と、第1光学系22と、モノクロメータ23と、モノクロメータ制御部24と、第2光学系25と、分岐光学素子26と、モータ駆動部27と、モータ28と、光ブレード29とを備える。
 第2光源21は、モノクロメータ23から射出される単色光の波長を含む、所定の波長帯域の光を放射する光源装置であり、例えば、キセノンランプ等の白色ランプである。キセノンランプは、輝度および色温度が高く、そして、紫外から可視を介して赤外までの広帯域に亘る連続スペクトルで光を放射するため、分光感度の測定に好適である。第2光源駆動部20は、制御演算部7aの制御に従い、例えば第2光源21で放射される前記光の放射(点灯)および停止(消灯)の駆動制御や前記光の放射光強度(照射エネルギー)の調整制御等の、第2光源21を駆動および制御する装置である。
 第1光学系22および第2光学系25は、その用途に応じて光を集中、または、コリメート(平行光化)させるためのレンズ等の光学素子である。第2光源駆動部20の制御に従って第2光源21から放射された光は、第1光学系22を介してモノクロメータ23へ入射される。
 モノクロメータ23は、モノクロメータ制御部24を介して制御演算部7aの制御に従い、第2光源21から光学系22を介して入射された光を、制御演算部7aの指示(選択)に応じた所定の波長で単色光化して射出する装置である。モノクロメータ23は、例えば、第2光源21から放射された前記所定の波長帯域の光を空間的に分散させ、それをスリット等で狭い範囲の波長のみを取り出す分光器である。このようなモノクロメータ23は、例えば、入射スリット、第1反射鏡、回折格子、第2反射鏡および出射スリットを備え、入射スリットを介して入射された入射光束を第1反射鏡で回折格子へ反射し、回折格子で回折された入射光束の回折光を第2反射鏡で出射スリットへ反射する装置である。モノクロメータ23は、このような構成によって、回折格子等を回転させてスリットの位置に到達する光の波長を選択させ、所望の範囲の波長のみを取り出すこと(単色光化)ができる。モノクロメータ23は、前記所望する範囲の波長を取り出すように制御演算部7aによって制御される。モノクロメータ23から射出された単色光は、光学系25を介して分岐光学素子26へ入射される。モノクロメータ制御部24は、制御演算部7aの制御に従い、例えばモノクロメータ23から射出される波長の選択制御等の、モノクロメータ23を制御する装置である。
 分岐光学素子26は、入射光を2つの光に分配して射出する光部品である。分岐光学素子26に入射された単色光は、分岐光学素子26で分配され、その一方は、測定部4の放射照度検知部41に入射され、その他方は、光ブレード29および照射光学系3を介して、測定対象の太陽電池PVへ入射される。
 光ブレード29は、モノクロメータ23から放射された単色光を、光学系25を介して受光し、この受光した単色光の照射エネルギー(光強度)を変動させて射出する部材である。より具体的には、光ブレード29は、例えば、所定の幅で径方向に延びるように切り欠かれた切り欠き部を周方向に一定間隔で並ぶように複数形成された円板状の部材である。モータ28は、その回転出力軸が光ブレード29の回転中心に固定され、モータ駆動部27を介して制御演算部7aの制御に従い、光ブレード29を、前記回転中心を回転軸として所定の回転速度で回転させる装置である。モータ駆動部27は、制御演算部7aの制御に従い、例えばモータ28の回転および停止の駆動制御やモータ28の回転速度の速度制御等の、モータ28を制御する装置である。モータ駆動部27は、モータ28の回転速度を表す信号を後述の短絡電流測定部43のロックインアンプ431に出力する。このような構成によって光ブレード29は、モータ28によって所定の回転速度で回転することによって、前記複数の切り欠き部の有無で前記単色光の遮光と透過とを順次に繰り返すことでパルス化し、モノクロメータ23から光学系25を介して受光した単色光を、その照射エネルギー(光強度)を変動させて射出する。
 このような第2光源部1では、例えば、制御演算部7aから所定の波長および周期を持つパルス状に光強度変動する単色光を点灯するように指示を受けると、第2光源駆動部20は、前記光を第2光源21に放射させる。この第2光源21から放射された前記光は、第1光学系22を介してモノクロメータ23へ入射される。モノクロメータ制御部24は、制御演算部7aから指示された前記所定の波長となるように、モノクロメータ23を制御する。モノクロメータ23は、モノクロメータ制御部24の制御に従い、第1光源21から第1光学系22を介して入射された光から前記所定の波長の単色光を取り出し、前記所定の波長の単色光を射出する。このモノクロメータから射出された単色光は、光ブレード29における前記切り欠き部を含む領域に入射される。モータ駆動部27は、制御演算部7aから指示された前記所定の周期となるように、前記所定の周期に応じた回転速度でモータ28を回転させ、これによって光ブレード29を回転させる。光ブレード29が回転すると、周方向に複数並設された切り欠き部の有無に応じて、光ブレード29に入射された単色光が遮光と透過とを繰り返し、パルス化される。このパルス状の単色光が第2光源部2から射出される。また例えば、制御演算部7aからパルス状の単色光を消灯する指示を受けると、第2光源駆動部20は、光の放射を第2光源21に停止させ、モータ駆動部27は、モータ28を停止させ、光ブレード29を停止させる。
 照射光学系3は、第1光源部1から放射されたバイアス光を太陽電池PVへ照射し、第2光源部2から放射された単色光を太陽電池PVへ照射する光学系である。
 バイアス光および単色光それぞれは、太陽電池PVに略均一な照度分布で照射されることが好ましく、このため、照射光学系3は、第1光源部1から放射されたバイアス光を略均一な照度分布で照射するための第3光学系31と、第2光源部2から放射された単色光を略均一な照度分布で照射するための第4光学系32とを備える。そして、太陽電池PVにおけるバイアス光が照射されたバイアス光照射領域内に、単色光も照射される必要がある一方、第1光源部1の光軸と第2光源部2の光軸とが本実施形態では直交しているため、照射光学系3は、第1光源部1の光路を曲げる第5光学素子33をさらに備えている。この第5光学素子33には、例えば、本実施形態では、太陽電池PVの法線方向に沿ってバイアス光および単色光を照射するために、第1光源部1の光軸と第2光源部2の光軸との交点に、45度の入射角および射出角でバイアス光を入射出させるように配置されたハーフミラー33が用いられる。
 このような構成の照射光学系3では、第1光源部1から放射された前記バイアス光は、第3光学系31を介してハーフミラー33に入射され、ハーフミラー33で反射してその進行方向(光路)が90度折り曲げられたバイアス光は、太陽電池PVにその法線方向から照射され、そして、第2光源部2から放射されたパルス状の単色光は、第4光学系32を介してハーフミラー33に入射され、ハーフミラー33を透過したパルス状の単色光は、前記バイアス光のバイアス光照射領域内で太陽電池PVにその法線方向から照射される。
 測定部4は、モノクロメータ23から放射された単色光の照射エネルギーおよび太陽電池PVの短絡電流を測定する装置である。太陽電池PVの短絡電流は、太陽電池PVにおけるプラス極(+極)とマイナス極(-極)との間の電位差を0Vとした場合に太陽電池PVから流れる電流である。測定部4は、モノクロメータ23から放射された単色光の照射エネルギーを測定するために、放射照度検知部41と、第2DCアンプ42とを備え、そして、太陽電池PVの短絡電流を測定するために、ロックインアンプ431と第1DCアンプ432とを備える短絡電流測定部43を備える。
 放射照度検知部41は、分岐光学素子26によって分配された単色光(モノクロメータ23から射出された単色光)の放射照度(分光放射照度ではない)を測定する装置(基準検知器)であり、その測定結果を第2DCアンプ42へ出力する。第2DCアンプ42は、放射照度検知部41に接続され、放射照度検知部41で測定された放射照度を所定の増幅率で増幅して制御演算部7aへ出力する増幅回路である。
 太陽電池PVは、バイアス光と光強度をパルス状に変動させた単色光とが照射されると、図2に示すように、バイアス光を光電変換することによって流れるベース部分の電流(短絡電流のDC成分)IDCに、パルス状の単色光を光電変換することによってパルス状の単色光に同期してパルス状に変動しながら流れるパルス状部分の電流(短絡電流のAC成分)IACを重畳した電流を出力する。
 ロックインアンプ431は、太陽電池PVに接続され、太陽電池PVから出力された電流のうちの図2に示すパルス状部分の電流における振幅を検出して増幅する回路であり、この検出した検出結果を制御演算部7aへ出力する。ロックインアンプ431には、上述したように、モータ28の回転速度を表す信号が同期信号としてモータ駆動部27から入力される。ロックインアンプ431は、この同期信号を参照信号として、太陽電池PVから出力される電流から、パルス状に強度変調する単色光の前記強度変調に同期した信号成分の振幅、すなわち、図2に示すパルス状部分の電流における振幅を検出して増幅する。第1DCアンプ432は、太陽電池PVに接続され、太陽電池PVから出力された電流のうちの図2に示すベース部分の電流における振幅を検出して増幅する回路であり、この検出した検出結果を制御演算部7aへ出力する。
 制御演算部7aは、絶対分光感度を求めるべく、太陽電池絶対分光感度測定装置Maの各部を当該機能に応じてそれぞれ制御することによって太陽電池絶対分光感度測定装置Ma全体の動作を司るとともに、太陽電池VPの絶対分光感度を求める装置である。制御演算部7aは、例えば、CPU(Central Processing Unit)、このCPUによって実行される種々のプログラムやその実行に必要なデータ等を予め記憶するROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性記憶素子、このCPUのいわゆるワーキングメモリとなるRAM(Random Access Memory)等の揮発性記憶素子およびその周辺回路等を備えたマイクロコンピュータによって構成される。
 そして、制御演算部7aには、制御演算プログラムが実行されることによって、制御部71、第1光源制御部72、第2光源制御部73、バイアス光組合せ演算部74a、差分分光感度測定部75および絶対分光感度演算部76が機能的に構成される。
 制御部71は、測定部4、記憶部5、IF部6、入力部8および出力部9等の各部を当該機能に応じてそれぞれ制御することによってこれら各部の動作を司るものである。
 第1光源制御部72は、第1光源駆動部10を介して第1光源11を制御することによって、第1光源部1を制御するものである。より具体的には、第1光源制御部72は、所定の制御信号を第1光源駆動部10に出力することで、第1光源駆動部10によって、所望の大きさの照射エネルギーでバイアス光を第1光源11に放射させる点灯制御を行う。第1光源制御部72は、所定の制御信号を第1光源駆動部10に出力することで、第1光源駆動部10によって、第1光源11にバイアス光の放射を停止させる消灯制御を行う。第1光源制御部72は、このような各種の制御を第1光源部1に実施する。
 第2光源制御部73は、第2光源駆動部20を介して第2光源21を制御し、モノクロメータ制御部24を介してモノクロメータ23を制御し、そして、モータ駆動部27を介してモータ28を制御することによって、第2光源部2を制御するものである。より具体的には、第2光源制御部73は、所定の制御信号を第2光源駆動部20に出力することで、第2光源駆動部20によって、比較的微小な所定の照射エネルギーで光を第2光源21に放射させる点灯制御を行う。第2光源制御部73は、所定の制御信号をモノクロメータ制御部24に出力することで、モノクロメータ制御部24によって、所望の波長の単色光をモノクロメータ23に射出させる波長制御を行う。第2光源制御部73は、所定の制御信号をモータ駆動部27に出力することで、モータ駆動部27によって、所定の回転速度(1分当たりの回転数)でモータ28を回転させることによって光ブレードを所定の回転速度(1分当たりの回転数)で回転させ、パルス状に照射エネルギーを変動させた単色光を射出させる変動制御を行う。このように第2光源制御部73は、所望の波長でパルス状に照射エネルギーを変動させた単色光を点灯する点灯制御を行う。そして、第2光源制御部73は、パルス状の単色光を消灯する消灯制御を行う。第2光源制御部73は、このような各種の制御を第2光源部2に実施する。
 バイアス光組合せ演算部74aは、第1光源制御部72を介して第1光源部1を制御することによって互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光を太陽電池PVに照射することで短絡電流測定部43によって測定された複数の短絡電流に基づいて、太陽電池PVの絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるものである。より具体的には、本実施形態では、図1に示すように、バイアス光組合せ演算部74aは、機能的に、短絡電流測定制御部741と、組合せ演算部742とを備える。
 短絡電流測定制御部741は、互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光を太陽電池PVに照射するように、第1光源制御部72を介して第1光源部1を制御し、これら複数の第1バイアス光照射エネルギーそれぞれで短絡電流測定部43によって測定された複数の短絡電流を取得するものである。より具体的には、バイアス光組合せ演算部74aの短絡電流測定制御部741は、例えば、本実施形態では、前記複数の短絡電流を短絡電流測定部43によって測定する際に、等差で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に太陽電池PVに照射するように、第1光源制御部72を介して第1光源部1を制御し、これら複数の第1バイアス光照射エネルギーそれぞれで短絡電流測定部43によって測定された複数の短絡電流を取得する。
 このような等差による照射エネルギーの間隔Estepは、照射エネルギーの最大値をEmaxとし、照射エネルギーの最小値をEminとし、第2バイス光照射エネルギーの前記組合せを求めるための短絡電流の測定数をNとする場合に、次式1によって表される。
Estep=(Emax-Emin)/N   ・・・(1)
 短絡電流測定制御部741は、これら取得した複数の第1バイアス光照射エネルギーそれぞれに対応する複数の短絡電流を、前記複数の第1バイアス光照射エネルギーそれぞれと対応付けて、組合せ演算部742に通知し、必要に応じて記憶部5に記憶する。
 組合せ演算部742は、短絡電流測定制御部741の制御によって太陽電池PVに照射された互いに異なる第1バイアス光照射エネルギーをそれぞれ持つ複数のバイアス光それぞれで短絡電流測定部43によって測定された複数の短絡電流に基づいて、太陽電池PVの絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるものである。
 より具体的には、バイアス光組合せ演算部74aの組合せ演算部742は、例えば、第1バイアス光照射エネルギーと短絡電流との関係における変化度合いに基づいて、前記組合せを求める。
 例えば、本実施形態では、組合せ演算部742は、前記変化度合いとして、第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の二階微分を求め、この求めた特性曲線の二階微分に基づいて、前記組合せを求める。より具体的には、例えば、本実施形態では、組合せ演算部742は、前記特性曲線の二階微分の絶対値を求め、この求めた絶対値から大きい順に予め設定された測定数だけ絶対値を選抜し、この選抜した絶対値に対応する第1バイアス光照射エネルギーを第2バイアス光照射エネルギーとすることで、前記組合せを求める。
 組合せ演算部742は、この求めた第2バイアス光照射エネルギーの前記組合せを、差分分光感度測定部75に通知し、必要に応じて記憶部5に記憶する。
 差分分光感度測定部75は、第1光源制御部72を介して第1光源部1を制御することによってバイアス光組合せ演算部74aで求められた前記互いに異なる複数の第2バイアス光照射エネルギーで順次にバイアス光を太陽電池PVに照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、第2光源制御部73を介して第2光源部2を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を太陽電池PVに照射することで短絡電流測定部43によって測定された複数の短絡電流に基づいて差分分光感度を求めるものである。差分分光感度測定部75は、前記組合せに含まれる複数の第2バイアス光照射エネルギーそれぞれに対し測定した複数の差分分光感度を絶対分光感度演算部76に通知し、必要に応じて記憶部5に記憶する。
 絶対分光感度演算部76は、差分分光感度測定部75で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、DSR法によって太陽電池PVの絶対分光感度を求めるものである。絶対分光感度演算部76は、この求めた太陽電池PVの絶対分光感度を出力部9に出力し、必要に応じて記憶部5に記憶し、またIF部6から外部へ出力する。
 記憶部5は、例えばハードディスク装置やCD-Rドライブ装置等の外部記憶装置であり、例えば、測定部4の各測定結果や制御演算部7aの各演算結果等を記憶するものである。IF部6は、本太陽電池絶対分光感度測定装置Mと外部の他の装置との間で互いにデータを交換するための通信インターフェースであり、例えば、USB(Universal Serial Bus)規格に対応した装置やRS232C規格に対応した装置である。入力部8は、外部からコマンド(命令)やデータ等を太陽電池絶対分光感度測定装置Mに入力するための装置であり、例えばタッチパネルやキーボード等である。出力部9は、入力部8から入力されたコマンドやデータおよび制御演算部7aの演算結果等を出力するための装置であり、例えばLCD(液晶ディスプレイ)や有機ELディスプレイ等の表示装置や、例えばプリンタ等の印刷装置である。これら記憶部5、IF部6、入力部8および出力部9は、制御演算部7aによって制御される。
 これら太陽電池絶対分光感度測定装置Mの制御演算部7a、記憶部5、IF部6、入力部8および出力部9は、例えば、マイクロプロセッサ、メモリおよび周辺機器を備えるパーソナルコンピュータによって構成可能である。
 次に、本実施形態の動作について説明する。図3は、第1実施形態における太陽電池絶対分光感度測定装置の動作を示すフローチャートである。図4は、太陽電池におけるバイアス光照射エネルギーと短絡電流との関係を表す特性曲線の一例を示す図である。図4の横軸は、第1照射エネルギーを示し、その縦軸は、短絡電流を示す。図5は、図3に示す特性曲線を一階微分した一階微分曲線を示す図である。図5の横軸は、第1照射エネルギーを示し、その縦軸は、前記特性曲線の一階部分を示す。図6は、図3に示す特性曲線を二階微分した二階微分曲線を示す図である。図6の横軸は、第1照射エネルギーを示し、その縦軸は、前記特性曲線の二階微分を示す。図6中四角形で囲った部分は、後述するように、図4に示す例において、分光感度測定が必要な照射エネルギーの範囲である。図7は、図5に示す二階微分曲線を用いた第2バイアス光照射エネルギーの組合せを求める手法を説明するための図である。図7の横軸は、第1照射エネルギーを示し、その縦軸は、前記特性曲線の二階微分の絶対値を示す。
 このような太陽電池絶対分光感度測定装置Maでは、まず、測定対象の太陽電池PVが所定の場所にセットされ、測定が開始される。図3において、測定が開始されると、バイアス光の分光放射照度が切り替え可能に構成されている場合には、まず、絶対値分光感度を求めたい第1光源11の種類、すなわちバイアス光の分光放射照度の種類がオペレータによって入力部8から入力され、決定される(S11)。例えば、蛍光灯下の室内で太陽電池PVの使用が想定される場合には、オペレータによって入力部8からバイアス光として蛍光灯を指定するコマンドが入力され、決定される。このコマンドを入力部8から受け付けると、制御演算部7aは、バイアス光を蛍光灯に切り替える。なお、バイアス光の分光放射照度が切り替え可能に構成されていない場合には、この処理S11は、省略され、次の処理S12から開始される。
 次に、バイアス光の照射エネルギーにおける最大値(最大照射エネルギー)および最小値(最小照射エネルギー)がオペレータによって入力部8から入力され、決定される(S12)。これによってバイアス光の第1バイアス光照射エネルギーの範囲が入力され、決定される。この第1バイアス光照射エネルギーの範囲における最小値は、通常、0に設定され(バイアス光を照射しない場合)、その最大値は、例えば、測定対象の太陽電池PVの使用環境において、太陽電池PVに照射される光の最大光強度等を勘案することで適宜に設定される。例えば、その最大値は、使用環境での絶対分光感度を求めたい照射エネルギーより所定値だけ大きな値に設定される。なお、太陽電池PVの非線形性を示す照射エネルギー範囲が予め分かっている、あるいは予想されている場合には、この太陽電池PVの非線形性を示す照射エネルギー範囲を勘案することで、第1バイアス光照射エネルギーの範囲における最大値は、適宜に設定されてもよい。このように前記使用環境や前記非線形性を示す照射エネルギー範囲等に応じて第1バイアス光照射エネルギーの範囲を設定することで、太陽電池PVの特性が測定結果に反映され、より精度良く絶対分光感度が測定できる。
 次に、バイアス光の第1バイアス光照射エネルギーの範囲を入力部8から受け付けると、短絡電流測定制御部741は、第1バイアス光照射エネルギーの間隔を求め、決定する(S13)。本実施形態では、上述したように、前記式(1)によって、短絡電流測定制御部741は、等差で第1バイアス光照射エネルギーの間隔を求め、決定する。より具体的には、i番目の第1バイアス光照射エネルギーEは、E=0、E=Ei-1+Estepである。
 次に、短絡電流測定制御部741は、このような式(1)によって求めた等差間隔で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に太陽電池PVに照射するように、第1光源制御部72を介して第1光源部1を制御し、これら複数の第1バイアス光照射エネルギーそれぞれで短絡電流測定部43によって測定された複数の短絡電流を取得する(S14)。
 より具体的には、まず、短絡電流測定制御部741は、第2光源部2を消灯した状態に第2光源制御部73を介して第2光源部2を制御する。なお、第2光源部2は、単色光を遮光する遮光板をさらに備えるように構成され、短絡電流測定制御部741は、第2光源部2から放射される単色光を前記遮光板によって遮光するように、第2光源部2を制御してもよい。次に、1番目の第1バイアス光照射エネルギーEは、0であるので、短絡電流測定制御部741は、第1光源部1を消灯した状態に第1光源制御部72を介して第1光源部1を制御し、この状態で短絡電流測定部43によって測定された1番目の第1バイアス光照射エネルギーE(=0)に対応する1番目の短絡電流Iscを取得する。短絡電流測定制御部741は、この取得した1番目の短絡電流Iscを、1番目の第1バイアス光照射エネルギーE(=0)に対応付けて記憶する。
 ここで、第2バイアス光照射エネルギーの前記組合せを求めるために測定される短絡電流は、パルス状の単色光が太陽電池PVに照射されることなく、バイアス光のみが太陽電池PVに照射されるので(但し1番目はE=0なのでバイアス光も照射されない)、短絡電流測定制御部741は、i番目の第1バイアス光照射エネルギーEに対応するi番目の短絡電流Iscとして、短絡電流測定部43の第1DCアンプ432の出力のみを取得する。
 次に、2番目の第1バイアス光照射エネルギーEに対応する2番目の短絡電流Iscを取得するために、短絡電流測定制御部741は、第1光源部1から放射されるバイアス光の照射エネルギーが2番目の第1バイアス光照射エネルギーE(=E+Estep)となるように、第1光源制御部72を介して第1光源部1を制御する。この制御によって第1光源部1は、2番目の第1バイアス光照射エネルギーEでバイアス光を放射する。この第1光源部1から放射されたバイアス光は、第3光学系31および第5光学系(ハーフミラー)33を介して太陽電池PVに入射される。バイアス光が入射されると、太陽電池PVは、バイアス光を光電変換し、その第1バイアス光照射エネルギーEに応じた光電流を短絡電流測定部43へ出力し、短絡電流測定部43は、第1DCアンプ432によって第1バイアス光照射エネルギーEのバイアス光に対応した大きさ(レベル)の短絡電流を測定し、この短絡電流の測定結果を制御演算部7aへ出力する。これによって短絡電流測定制御部741は、2番目の第1バイアス光照射エネルギーEに対応する2番目の短絡電流Iscとして、短絡電流測定部43の第1DCアンプ432の出力を取得する。短絡電流測定制御部741は、この取得した2番目の短絡電流Iscを、2番目の第1バイアス光照射エネルギーEに対応付けて記憶する。
 次に、短絡電流測定制御部741は、第1光源部1から放射されるバイアス光の照射エネルギーが3番目の第1バイアス光照射エネルギーE(=E+Estep)となるように、第1光源制御部72を介して第1光源部1を制御する。第1光源部1および短絡電流測定部43は、上述と同様に動作し、短絡電流測定制御部741は、3番目の第1バイアス光照射エネルギーEに対応する2番目の短絡電流Iscとして、短絡電流測定部43の第1DCアンプ432の出力を取得する。短絡電流測定制御部741は、この取得した3番目の短絡電流Iscを、3番目の第1バイアス光照射エネルギーEに対応付けて記憶する。
 以下、第1光源部1から放射されるバイアス光の照射エネルギーが第1バイアス光照射エネルギーの範囲における最大値に達するまで、短絡電流測定制御部741は、上述と同様に、第1光源制御部72を介して第1光源部1を制御し、これに応じて第1光源部1および短絡電流測定部43は、上述と同様に動作し、これによって短絡電流測定制御部741は、前記複数の第1バイアス光照射エネルギーそれぞれで短絡電流測定部43によって測定された複数の短絡電流を取得し、これらを対応付けて記憶する。例えば、一例として、10W/mから1000W/mまでの範囲を1W/mごとに短絡電流を測定する場合、990回の測定が実行され、1回当たり1秒で測定できるとすると、約17分で全ての短絡電流が測定でき、また例えば100W/mごとに短絡電流を測定する場合、約2分弱で全ての短絡電流が測定できる。このように取得された第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の一例が図4に示されている。そして、短絡電流測定制御部741は、このように取得した、複数の第1バイアス光照射エネルギーそれぞれと対応付けられた複数の短絡電流を、組合せ演算部742へ通知する。
 次に、この通知を受けると、組合せ演算部742は、短絡電流測定制御部741から通知された、複数の第1バイアス光照射エネルギーそれぞれと対応付けられた複数の短絡電流に基づいて、太陽電池PVの絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求める(S15)。
 より具体的には、組合せ演算部742は、第1バイアス光照射エネルギーと短絡電流との関係における変化度合いとして、第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の二階微分を求め、この求めた特性曲線の二階微分に基づいて、第2バイアス光照射エネルギーの前記組合せを求める。
 例えば、本実施形態では、組合せ演算部742は、短絡電流測定制御部741から通知された、複数の第1バイアス光照射エネルギーそれぞれと対応付けられた複数の短絡電流から、第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の二階微分を求め、この求めた特性曲線の二階微分に基づいて、第2バイアス光照射エネルギーの前記組合せを求める。一例として図4に示した特性曲線の二階微分が図6に示されている。なお、図4に示した特性曲線の一階微分が図5に示されている。図4に示す特性曲線は、第1バイアス光照射エネルギーが約100から約500W/mの範囲で、第1バイアス光照射エネルギーと短絡電流との関係は、曲線であり、変化しているので、この範囲で、第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の二階微分は、0ではない値を有し、第1バイアス光照射エネルギーの変化に対し非線形で短絡電流は、変化している。一方、前記特性曲線の二階微分が0である場合は、第1バイアス光照射エネルギーの変化に比例して短絡電流は、変化し、差分分光感度に変化は、現れない。
 このような特性曲線の二階微分に基づいて第2バイアス光照射エネルギーの前記組合せを求める際に、例えば、本実施形態では、組合せ演算部742は、前記特性曲線の二階微分の絶対値を求め、この求めた絶対値から大きい順に予め設定された測定数だけ絶対値を選抜し、この選抜した絶対値に対応する第1バイアス光照射エネルギーを第2バイアス光照射エネルギーとすることで、前記組合せを求めている。例えば、組合せ演算部742は、図6に示す特性曲線の二階微分の絶対値を求めることによって、図7に示す曲線を求める。なお、図7には、複数の第1バイアス光照射エネルギーそれぞれに対応する特性曲線の二階微分の絶対値が○で示されている。そして、絶対分光感度を求めるために測定される差分分光感度の測定数が6個である場合には、組合せ演算部742は、この求めた絶対値から大きい順に測定数の6個だけ絶対値P1~P6を選抜する。そして、組合せ演算部742は、この選抜した6個の絶対値P1~P6にそれぞれ対応する6個の第1バイアス光照射エネルギーE1~E6を第2バイアス光照射エネルギーとすることで、第2バイアス光照射エネルギーの前記組合せを求める。なお、測定数は、例えば、絶対分光感度の測定に要する総時間(絶対分光感度測定時間)が設定されている場合には、その総時間を、差分分光感度の1回の測定に要する時間(差分分光感度測定時間)で除算することで求められてもよい。
 次に、このように第2バイアス光照射エネルギーの前記組合せが求められると、差分分光感度測定部75は、第1光源制御部72を介して第1光源部1を制御することによってバイアス光組合せ演算部74aの組合せ演算部742で求められた前記組合せにおける互いに異なる複数の第2バイアス光照射エネルギーで順次にバイアス光を太陽電池PVに照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、第2光源制御部73を介して第2光源部2を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を太陽電池PVに照射することで短絡電流測定部43によって測定された複数の短絡電流に基づいて差分分光感度を求める(S16)。例えば、上述の例では、差分分光感度測定部75は、第2バイアス光照射エネルギーE1で差分分光感度を求め、第2バイアス光照射エネルギーE2で差分分光感度を求め、第2バイアス光照射エネルギーE3で差分分光感度を求め、第2バイアス光照射エネルギーE4で差分分光感度を求め、第2バイアス光照射エネルギーE5で差分分光感度を求め、そして、第2バイアス光照射エネルギーE6で差分分光感度を求める。そして、差分分光感度測定部75は、これら測定した各第2バイアス光照射エネルギーE1~E6での各差分分光感度を絶対分光感度演算部76へ通知する。
 次に、この通知を受けると、絶対分光感度演算部76は、差分分光感度測定部75で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、DSR法によって太陽電池PVの絶対分光感度を求める(S17)。
 そして、制御演算部7aは、絶対分光感度演算部76によって求められた太陽電池PVの絶対分光感度を記憶部5に記憶し、出力部9へ出力する。また必要に応じて、制御演算部7aは、絶対分光感度演算部76によって求められた太陽電池PVの絶対分光感度をIF部6から外部へ出力する。
 このように本実施形態における太陽電池絶対分光感度測定装置Mでは、第1光源部1の制御によって互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光が測定対象の太陽電池PVに照射され、これら複数の第1バイアス光照射エネルギーそれぞれでの複数の短絡電流が測定され、これら測定された複数の短絡電流に基づいて、太陽電池PVの絶対分光感度を求めるために先ず測定される複数の差分分光感度を測定するための複数の第2バイアス光照射エネルギーから成る組合せが求められる。このように、これら複数の第2バイアス光照射エネルギーの組合せが、絶対分光感度を求める前に、短絡電流から先ず決定されるので、背景技術で説明した上述の試行錯誤を繰り返す必要がなく、そして、短絡電流の測定は、比較的短い時間で、例えば1秒程度の数秒で測定できる。このため、本実施形態における太陽電池絶対分光感度測定装置Mは、太陽電池PVの絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。
 また、上述の太陽電池絶対分光感度測定装置Mでは、これら複数の第2バイアス光照射エネルギーの前記組合せは、バイアス光組合せ演算部74aによって、第1バイアス光照射エネルギーと短絡電流との関係における変化度合いに基づいて求められる。差分分光感度の非線形特性における非線形度合いは、第1バイアス光照射エネルギーと短絡電流との関係の変化に現れる。このため、太陽電池絶対分光感度測定装置Mは、前記第1バイアス光照射エネルギーと前記短絡電流との関係における変化度合いに基づいて、前記組合せを求めることで、より適切な組合せを決定できる。例えば前記変化度合いが比較的大きい第1バイアス光照射エネルギーを第2バイアス光照射エネルギーに選定するとともに前記前記変化度合いが比較的小さい第1バイアス光照射エネルギーを第2バイアス光照射エネルギーの選定から外したより適切な組合せを、太陽電池絶対分光感度測定装置Mは、決定できる。
 また、上述の太陽電池絶対分光感度測定装置Mでは、バイアス光組合せ演算部74aによって、前記変化度合いとして、第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の二階微分が求められ、この求められた特性曲線の二階微分に基づいて、これら複数の第2バイアス光照射エネルギーの前記組合せが求められる。差分分光感度は、上述したように短絡電流の変化率に関係するので、第1バイアス光照射エネルギーと短絡電流との関係における変化は、前記特性曲線の二階微分で表すことができる。すなわち、差分分光感度の非線形特性における非線形度合いは、前記特性曲線の二階微分で表すことができる。このため、太陽電池絶対分光感度測定装置Mは、前記特性曲線の二階微分に基づいて、前記組合せを求めることで、より適切な組合せを決定できる。
 また、上述の太陽電池絶対分光感度測定装置Mでは、バイアス光組合せ演算部74aによって、前記特性曲線の二階微分の絶対値が求められ、この求められた絶対値から大きい順に予め設定された測定数だけ絶対値が選抜され、この選抜された絶対値に対応する第1バイアス光照射エネルギーを第2バイアス光照射エネルギーとすることで、これら複数の第2バイアス光照射エネルギーの前記組合せが求められる。差分分光感度の非線形特性における非線形度合いは、前記特性曲線の二階微分の絶対値が大きいほど大きい。このため、太陽電池絶対分光感度測定装置Mは、大きい順に予め設定された測定数だけ前記絶対値を選抜して前記組合せを求めるので、予め設定された測定数のうちで最も適切な組合せを決定できる。すなわち、太陽電池絶対分光感度測定装置Mは、予め設定された測定時間内で最も適切な組合せを決定できる。
 また、上述の太陽電池絶対分光感度測定装置Mでは、バイアス光組合せ演算部74aによって、等差で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光が順次に太陽電池PVに照射され、前記複数の短絡電流が測定される。このように本実施形態における太陽電池絶対分光感度測定装置Mは、複数の第1バイス光照射エネルギーにおける各間隔が等間隔となるので、第1バイアス光照射エネルギーにおける最小照射エネルギーから最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を全て公平に、前記差分分光感度の非線形特性における非線形度合いに関し、評価できる。
 なお、上述の太陽電池絶対分光感度測定装置Mでは、バイアス光組合せ演算部74aは、前記特性曲線の二階微分の絶対値の大きい方から順に絶対値を選抜したが、これに限定されるものではない。図8は、図5に示す二階微分曲線を用いた第2バイアス光照射エネルギーの組合せを求める他の手法を説明するための図である。図8の横軸は、第1照射エネルギーを示し、その縦軸は、前記特性曲線の二階微分の絶対値を示す。例えば、バイアス光組合せ演算部74aは、前記特性曲線の二階微分の絶対値を求め、例えば、図8に示すように、この求めた絶対値から予め設定された第1判定値Th1以上の絶対値を全て選抜し、この選抜した絶対値に対応する第1バイアス光照射エネルギーを第2バイアス光照射エネルギーとすることで、前記組合せを求めるように、構成されても良い。このような太陽電池絶対分光感度測定装置Mは、前記第1判定値Th1以上の絶対値を選抜して前記組合せを求めるので、第1バイアス光照射エネルギーと短絡電流との関係における、前記第1判定値Th1以上の絶対値に対応する非線形度合いを持つ箇所を全て選抜でき、前記第1判定値Th1に応じた所望の精度で絶対値分光感度を測定できる。前記第1判定値(第1閾値)Th1は、絶対分光感度に要求される測定精度や所要測定時間等に応じて適宜に設定される。前記第1判定値Th1を相対的に小さい値に設定すると、より多数の第1バイアス光照射エネルギーが選抜され、第2バイアス光照射エネルギーの個数が多くなるので、測定精度が向上する。また、前記第1判定値Th1を相対的に大きな値に設定すると、より小数の第1バイアス光照射エネルギーが選抜され、第2バイアス光照射エネルギーの個数が少なくなるので、測定時間が短くなる。
 また、上述の太陽電池絶対分光感度測定装置Mでは、バイアス光組合せ演算部74aは、等差で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に太陽電池PVに照射することで前記複数の短絡電流を測定したが、これに限定されるものではない。例えば、バイアス光組合せ演算部74aの短絡電流測定制御部741は、前記複数の短絡電流を短絡電流測定部43によって測定する際に、等比で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に太陽電池PVに照射するように、構成されても良い。
 照射エネルギーの間隔比Rstepとする場合、i番目の照射エネルギーEi(iは1からNまでの整数)は、次式2(式2-1、式2-2)によって表される。なお、この式2では、照射エネルギーEiは、最小の照射エネルギーから最大の照射エネルギーまで順にi番目の照射エネルギーEiが決定されるが、これに限らず、例えば、照射エネルギーEiは、最大の照射エネルギーから最小の照射エネルギーまで順にi番目の照射エネルギーEiが決定されてもよく、また例えば予め決定された所定の照射エネルギーEpから最大の照射エネルギーまで順に、そして、前記所定の照射エネルギーEpから最小の照射エネルギーまで順に、それぞれ、i番目の照射エネルギーEiが決定されてもよい。
Rstep=EXP((logEmax-logEmin)/N)   ・・・(2-1)
Ei=Emin×Rstep   (2-2)
 このような太陽電池絶対分光感度測定装置Mは、複数の第1バイス光照射エネルギーにおける各間隔が等比間隔となるので、等差間隔と同じ測定数(測定時間)とした場合に、等差間隔の場合よりも広い第1バイアス光照射エネルギー範囲を、差分分光感度の非線形特性における非線形度合いに関し、評価できる。
 また、上述の太陽電池絶対分光感度測定装置Mでは、前記変化度合いとして、第1バイアス光照射エネルギーと短絡電流との関係を表す特性曲線の二階微分が求められ、この求められた特性曲線の二階微分に基づいて、前記組合せが求められたが、これに限定されるものではない。例えば、バイアス光組合せ演算部74aは、前記変化度合いとして、複数の第1バイアス光照射エネルギーそれぞれに対し、当該第1バイアス光照射エネルギーに対応する短絡電流測定部43によって実測された短絡電流と当該第1バイアス光照射エネルギーの前後の第1バイアス光照射エネルギーそれぞれに対応する2つの短絡電流から補間によって求められた補間短絡電流との差を求め、この求めた差に基づいて、前記組合せを求めるように構成されても良い。2個の測定点の間における変化は、前記2個の測定点の間における或る測定点の実測値と前記2個の測定点から前記或る測定点の補間値との差に関係し、前記差が大きいほど、前記2個の測定点の間における変化は、大きいと考えられる。したがって、差分分光感度の非線形特性における前記非線形度合いは、当該第1バイアス光照射エネルギーに対応する実測の短絡電流と当該第1バイアス光照射エネルギーの前後の第1バイアス光照射エネルギーそれぞれに対応する2つの短絡電流から補間された補間短絡電流との差で表すことができる。このため、このような太陽電池絶対分光感度測定装置Mは、前記差に基づいて、前記組合せを求めることで、より適切な組合せを決定できる。
 次に、別の実施形態について説明する。
 (第2実施形態)
 図9は、第2実施形態における太陽電池絶対分光感度測定装置の構成を示すブロック図である。
 第1実施形態における太陽電池絶対分光感度測定装置Maは、第2バイアス光照射エネルギーの前記組合せを決定する場合に、まず、複数の第1バイス光照射エネルギーそれぞれについて短絡電流を全て測定したが、第2実施形態における太陽電池絶対分光感度測定装置Mbは、第1バイアス光照射エネルギーの範囲を複数に分割しながらに第2バイアス光照射エネルギーを探索し、この探索結果に基づいて複数の第2バイアス光照射エネルギーの前記組合せを求めるものである。
 このような第2実施形態における太陽電池絶対分光感度測定装置Mbは、例えば、図9に示すように、第1光源部1と、第2光源部2と、測定部4と、制御演算部7bとを備え、図9に示す例では、さらに、照射光学系3と、記憶部5と、IF部6と、入力部8と、出力部9とを備える。これら第2実施形態の太陽電池絶対分光感度測定装置Mbにおける第1光源部1、第2光源部2、照射光学系3、測定部4、記憶部5、IF部6、入力部8および出力部9は、それぞれ、第1実施形態の太陽電池絶対分光感度測定装置Mbにおける第1光源部1、第2光源部2、照射光学系3、測定部4、記憶部5、IF部6、入力部8および出力部9と同様であるので、その説明を省略する。
 制御演算部7bは、絶対分光感度を求めるべく、太陽電池絶対分光感度測定装置Mbの各部を当該機能に応じてそれぞれ制御することによって太陽電池絶対分光感度測定装置Mb全体の動作を司るとともに、太陽電池VPの絶対分光感度を求める装置であり、制御演算部7aと同様に例えばマイクロコンピュータによって構成される。そして、制御演算部7bには、制御演算プログラムが実行されることによって、制御部71、第1光源制御部72、第2光源制御部73、バイアス光組合せ演算部74b、差分分光感度測定部75および絶対分光感度演算部76が機能的に構成される。これら第2実施形態の制御演算部7bにおける制御部71、第1光源制御部72、第2光源制御部73、差分分光感度測定部75および絶対分光感度演算部76は、それぞれ、第1実施形態の制御演算部7aにおける制御部71、第1光源制御部72、第2光源制御部73、差分分光感度測定部75および絶対分光感度演算部76と同様であるので、その説明を省略する。
 バイアス光組合せ演算部74bは、予め設定された第1バイアス光照射エネルギーの第1最小照射エネルギーから第1最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を複数の領域に分割し、この分割した複数の領域における境界点の第1バイアス光照射エネルギーで前記バイアス光を太陽電池PVに照射することで短絡電流測定部43によって実測された短絡電流と前記最小照射エネルギーおよび前記最大照射エネルギーそれぞれに対応する2つの実測の短絡電流から補間によって求められた前記境界点の第1バイアス光照射エネルギーに対応する補間短絡電流との差を求め、この求めた前記差が予め設定された第2判定値(第2閾値)Th2以上である場合に前記境界点の第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとする第2バイアス光照射エネルギー探索処理を実行し、この求めた前記差が予め設定された第2判定値Th2以上である前記場合が無くなるまで、前記分割した複数の領域それぞれを新たに前記第1バイアス光照射エネルギー範囲に更新し、当該領域における第2最小照射エネルギーを新たに前記第1最小照射エネルギーに更新し、そして、当該領域における第2最大照射エネルギーを新たに前記第1最大照射エネルギーに更新して前記第2バイアス光照射エネルギー探索処理を実行することで、前記組合せを求めるものである。より具体的には、本実施形態では、図9に示すように、バイアス光組合せ演算部74bは、機能的に、探索処理部746と、組合せ演算部747とを備える。
 探索処理部746は、第2バイアス光照射エネルギー探索処理を実行する際に必要となる情報を登録する探索領域リストに所定の事項を登録しつつ、前記差が第2判定値Th2以上である前記場合が無くなるまで、前記分割した複数の領域それぞれを新たに前記第1バイアス光照射エネルギー範囲に更新し、当該領域における第2最小照射エネルギーを新たに前記第1最小照射エネルギーに更新し、そして、当該領域における第2最大照射エネルギーを新たに前記第1最大照射エネルギーに更新しつつ、第2バイアス光照射エネルギー探索処理を実行するものである。探索領域リストは、例えば、分割された各領域を表す識別子(領域ID)を登録する領域IDフィールド、各領域の第1バイアス光照射エネルギー範囲を表すために各領域の第1バイアス光照射エネルギー範囲における両端の各第1バイアス光照射エネルギーを登録する両端照射エネルギーフィールド、および、各領域に対する第2バイアス光照射エネルギー探索処理の実行の有無を表すフラグを登録する探索処理実行フラグフィールド等の各フィールドを備え、各領域ごとにレコードが生成される。この探索領域リストは、制御演算部7bの記憶素子(例えばEEPROM等)あるいは記憶部5に記憶される。
 組合せ演算部747は、探索処理部746の第2バイアス光照射エネルギー探索処理の終了後に、探索領域リストに登録されている第1バイアス光照射エネルギーを第2バイアス光照射エネルギーとして抽出し、第2バイアス光照射エネルギーの前記組合せを求めるものである。
 次に、本実施形態の動作について説明する。図10は、第2実施形態における太陽電池絶対分光感度測定装置の動作を示すフローチャートである。図11は、第2実施形態の太陽電池絶対分光感度測定装置における第2バイアス光照射エネルギー探索処理を説明するための図である。図11の横軸は、第1照射エネルギーを示し、その縦軸は、短絡電流を示す。
 このような太陽電池絶対分光感度測定装置Mbでは、まず、測定対象の太陽電池PVが所定の場所にセットされ、測定が開始される。図10において、測定が開始されると、バイアス光の分光放射照度が切り替え可能に構成されている場合には、まず、第1実施形態の処理S11と同様に、絶対値分光感度を求めたい第1光源11の種類(バイアス光の分光放射照度の種類)がオペレータによって入力部8から入力され、決定される(S21)。
 次に、第1実施形態の処理S12と同様に、バイアス光の照射エネルギーにおける最大値(最大照射エネルギー)および最小値(最小照射エネルギー)がオペレータによって入力部8から入力され、決定される(S22)。
 次に、バイアス光の第1バイアス光照射エネルギーの範囲を入力部8から受け付けると、探索処理部746は、最初の第1バイアス光照射エネルギーを複数の領域に、例えば3個または4個の領域に分割し、この分割した各領域に応じた個数のレコードを持つ探索領域リストを生成し、この生成した各レコードに所定の事項を登録する(S23)。ここでは、一例として、最初の第1バイアス光照射エネルギーは、3個の第1ないし第3領域に分割される。したがって、探索領域リストには、第1ないし第3領域に応じて3個の第1ないし第3レコードが生成される。第1レコードの領域IDフィールド、両端照射エネルギーフィールドおよび探索処理実行フラグフィールドそれぞれに、第1領域、最小照射エネルギーと第1および第2領域間の境界点における第1境界照射エネルギーおよび未実行が登録され、第2レコードの領域IDフィールド、両端照射エネルギーフィールドおよび探索処理実行フラグフィールドそれぞれに、第2領域、第1および第2領域間の境界点における第1境界照射エネルギーと第2および第3領域間の境界点における第2境界照射エネルギーおよび未実行が登録され、そして、第3レコードの領域IDフィールド、両端照射エネルギーフィールドおよび探索処理実行フラグフィールドそれぞれに、第3領域、第2および第3領域間の境界点における第2境界照射エネルギーと最大照射エネルギーおよび未実行が登録される。なお、「未実行」は、当該領域に対し領域の分割が必要であることを表し、「実行済み」は、当該領域に対し領域の分割が不必要であることを表す。
 次に、探索処理部746は、探索領域リストから第2バイアス光照射エネルギー探索処理が未実行である領域を1つ選択し、この選択した領域の第1バイアス光照射エネルギー範囲における両端の各第1バイアス光照射エネルギーのバイアス光を太陽電池PVに照射し、その短絡電流を測定する(S24)。
 より具体的には、探索処理部746は、第1光源部1から放射されるバイアス光の照射エネルギーが、この領域の第1バイアス光照射エネルギー範囲における一方端(前記範囲において最小)の第1バイアス光照射エネルギーEminとなるように、第1光源制御部72を介して第1光源部1を制御する。この制御によって第1光源部1は、この第1バイアス光照射エネルギーEminでバイアス光を放射する。この第1光源部1から放射されたバイアス光は、第3光学系31および第5光学系(ハーフミラー)33を介して太陽電池PVに入射される。バイアス光が入射されると、太陽電池PVは、バイアス光を光電変換し、その第1バイアス光照射エネルギーEminに応じた光電流を短絡電流測定部43へ出力し、短絡電流測定部43は、第1DCアンプ432によって第1バイアス光照射エネルギーEminのバイアス光に対応した大きさ(レベル)の短絡電流を測定し、この短絡電流の測定結果を制御演算部7bへ出力する。これによって探索処理部746は、この第1バイアス光照射エネルギーEminに対応する短絡電流Iscminとして、短絡電流測定部43の第1DCアンプ432の出力を取得する。短絡電流測定制御部741は、この取得した短絡電流Iscminを、第1バイアス光照射エネルギーEminに対応付けて記憶する。そして、探索処理部746は、第1光源部1から放射されるバイアス光の照射エネルギーが、この領域の第1バイアス光照射エネルギー範囲における他方端(前記範囲において最大)の第1バイアス光照射エネルギーEmaxとなるように、第1光源制御部72を介して第1光源部1を制御する。第1光源部1および短絡電流測定部43は、上述と同様に動作し、探索処理部746は、第1バイアス光照射エネルギーEmaxに対応する短絡電流Iscmaxとして、短絡電流測定部43の第1DCアンプ432の出力を取得する。探索処理部746は、この取得した短絡電流Iscmaxを、第1バイアス光照射エネルギーEmaxに対応付けて記憶する。
 例えば、第2バイアス光照射エネルギー探索処理が未実行である領域として、第1領域が選択され、前記一方端の第1バイアス光照射エネルギーEminとしての前記最小照射エネルギーでの短絡電流Iscが測定され、前記他方端の第1バイアス光照射エネルギーEmanとしての第1および第2領域間の境界点における第1境界照射エネルギーでの短絡電流が測定される。
 次に、探索処理部746は、前記選択した領域における中間の照射エネルギーでの短絡電流を、処理S24で実測した両端の各照射エネルギーEmin、Emaxでの各短絡電流Iscmix、Iscmaxから、所定の補間方法によって補間短絡電流Isccalとして短絡電流を求める(S25)。例えば、図11に示すように、各短絡電流Iscmix、Iscmaxから線形補間(直線補間)によって補間短絡電流Isccalが求められる。
 なお、この補間方法は、線形補間に限定されるものではなく、各種の補間方法を用いることができる。この補間方法は、例えば、二次式や三次式等の高次式および多項式等を用いた非線形補間であってもよく、また例えば、この補間方法は、DSR法において、短絡電流を積分する補間式を用いた方法であっても良い。また非線形補間した場合におけるノイズ対策として、同一の照射エネルギーで複数回の短絡電流を測定して平均化する方法、複数回の測定値を測定値順に並び替え中央の値を採用する方法(ミディアンフィルタ)、複数の照射エネルギー間で移動平均を取る方法、あるいは、補間式を最小二乗法で決定する方法等が利用できる。
 次に、探索処理部746は、処理S25で補間短絡電流Isccalを求めた照射エネルギーと同一の照射エネルギーである、前記選択した領域における中間の照射エネルギーでの短絡電流Iscmidを実測する(S26)。
 次に、探索処理部746は、図11に示すように、前記選択した領域における中間の照射エネルギーEmidにおいて、処理S26で実測した短絡電流Iscmidと処理S25で補間で求めた補間短絡電流Isccalとの差Iscsubを求め、この求めた差Iscsubが予め設定された第2判定値(第2閾値)Th2以上であるか否かを判定する(S27)。
 この処理S27の判定の結果、前記差Iscsubが第2判定値Th2以上である場合(YES)には、探索処理部746は、処理S28を実行し、一方、処理S27の判定の結果、前記差Iscsubが第2判定値Th2以上でない場合(前記差Iscsubが第2判定値Th2未満である場合)(NO)には、探索処理部746は、処理S31を実行する。
 この処理S28において、前記選択した領域における中間の照射エネルギーEmidで前記選択した領域を分割するために、探索領域リストに新たなレコードを生成する。そして、探索処理部746は、この新たなレコードにおける領域IDフィールド、両端照射エネルギーフィールドおよび探索処理実行フラグフィールドそれぞれに、新たな領域ID、前記選択した領域の第1バイアス光照射エネルギー範囲における一方端の第1バイアス光照射エネルギーEminと前記選択した領域の第1バイアス光照射エネルギー範囲における中間の照射エネルギーEmid、および未実行を登録し、前記選択された領域のレコードにおける両端照射エネルギーフィールドに、前記選択した領域の第1バイアス光照射エネルギー範囲における中間の照射エネルギーEmidと前記選択した領域の第1バイアス光照射エネルギー範囲における他方端の第1バイアス光照射エネルギーEmanを更新する。あるいは、探索処理部746は、この新たなレコードにおける領域IDフィールド、両端照射エネルギーフィールドおよび探索処理実行フラグフィールドそれぞれに、新たな領域ID、前記選択した領域の第1バイアス光照射エネルギー範囲における中間の照射エネルギーEmidと前記選択した領域の第1バイアス光照射エネルギー範囲における他方端の第1バイアス光照射エネルギーEman、および未実行を登録し、前記選択された領域のレコードにおける両端照射エネルギーフィールドに、前記選択した領域の第1バイアス光照射エネルギー範囲における一方端の第1バイアス光照射エネルギーEminと前記選択した領域の第1バイアス光照射エネルギー範囲における中間の照射エネルギーEmidを更新してもよい。そして、探索処理部746は、第2バイアス光照射エネルギー探索処理すべき領域を新たに第2バイアス光照射エネルギー探索処理するために、処理を処理S24に戻す。
 一方、処理S31において、探索処理部746は、前記選択した領域における中間の照射エネルギーEmidで前記選択した領域を分割する必要がないと判断し、探索領域リストにおいて、前記選択した領域に対応するレコードの探索処理実行フラグフィールドを「未実行」から「実行済み」に更新変更し(S31)、探索処理部746は、探索領域リストにおける探索処理実行フラグフィールドを参照することによって、全ての領域に対し、第2バイアス光照射エネルギー探索処理を実行したか否かを判断する(S32)。
 この処理S32における判断の結果、全ての領域に対し、第2バイアス光照射エネルギー探索処理を実行した場合(YES)には、探索処理部746は、その旨を組合せ演算部747に通知し、組合せ演算部74は、処理S33を実行する。一方、処理S32における判断の結果、全ての領域に対し、第2バイアス光照射エネルギー探索処理を実行していない場合(第2バイアス光照射エネルギー探索処理を実行すべき領域が残っている場合)(NO)には、探索処理部746は、第2バイアス光照射エネルギー探索処理すべき領域を新たに第2バイアス光照射エネルギー探索処理するために、処理を処理S24に戻す。
 処理S33において、前記通知を受けると、組合せ演算部747は、探索領域リストに登録されている第1バイアス光照射エネルギーを第2バイアス光照射エネルギーとして抽出し、第2バイアス光照射エネルギーの前記組合せを求める。
 このように本実施形態のバイアス光組合せ演算部74bは、最初の第1バイアス光照射エネルギー範囲を3個の領域に分割した後に、予め設定された第1バイアス光照射エネルギーの第1最小照射エネルギーEminから第1最大照射エネルギーEmaxまでの第1バイアス光照射エネルギー範囲を2個の領域に分割し、この分割した2個の領域における境界点の第1バイアス光照射エネルギーEmidでバイアス光を太陽電池PVに照射することで短絡電流測定部43によって実測された短絡電流Iscmidと最小照射エネルギーEminおよび最大照射エネルギーEmaxそれぞれに対応する2つの短絡電流Iscmin、Iscmaxから補間によって求められた前記境界点の第1バイアス光照射エネルギーEmidに対応する補間短絡電流Isccalとの差Iscsubを求め、この求めた差Iscsubが予め設定された第2判定値Th2以上である場合に前記境界点の第1バイアス光照射エネルギーEmidを第2バイアス光照射エネルギーとする第2バイアス光照射エネルギー探索処理を実行し、この求めた差Iscsubが予め設定された第2判定値Th2以上である前記場合が無くなるまで、これら分割した2個の領域それぞれを新たに前記第1バイアス光照射エネルギー範囲に更新し、当該領域における第2最小照射エネルギーを新たに第1最小照射エネルギーEminに更新し、そして、当該領域における第2最大照射エネルギーを新たに第1最大照射エネルギーEmaxに更新して前記第2バイアス光照射エネルギー探索処理を実行することで、第2バイアス光照射エネルギーの前記組合せを求めている。
 次に、このように第2バイアス光照射エネルギーの前記組合せが求められると、差分分光感度測定部75は、第1実施形態の処理S16と同様に、第1光源制御部72を介して第1光源部1を制御することによってバイアス光組合せ演算部74bの組合せ演算部747で求められた前記組合せにおける互いに異なる複数の第2バイアス光照射エネルギーで順次にバイアス光を太陽電池PVに照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、第2光源制御部73を介して第2光源部2を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を太陽電池PVに照射することで短絡電流測定部43によって測定された複数の短絡電流に基づいて差分分光感度を求める。そして、差分分光感度測定部75は、これら測定した各第2バイアス光照射エネルギーE1~E6での各差分分光感度を絶対分光感度演算部76へ通知する(S34)。
 次に、この通知を受けると、絶対分光感度演算部76は、第1実施形態の処理S17と同様に、差分分光感度測定部75で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、DSR法によって太陽電池PVの絶対分光感度を求める。
 そして、制御演算部7bは、絶対分光感度演算部76によって求められた太陽電池PVの絶対分光感度を記憶部5に記憶し、出力部9へ出力する。また必要に応じて、制御演算部7bは、絶対分光感度演算部76によって求められた太陽電池PVの絶対分光感度をIF部6から外部へ出力する。
 このように第2実施形態における太陽電池絶対分光感度測定装置Mbでは、上述のように求めた前記差が予め設定された第2判定値Th2以上である場合が無くなるまで、第2バイアス光照射エネルギー探索処理が繰り返され、第1バイアス光照射エネルギー範囲の分割と第2バイアス光照射エネルギーに選抜される第1バイアス光照射エネルギーの探索とが繰り返される。このため、差分分光感度の非線形特性における前記非線形度合いが比較的大きい領域では、相対的に細かい間隔(短い間隔)で第1バイアス光照射エネルギーが第2バイアス光照射エネルギーとされ、差分分光感度の非線形特性における前記非線形度合いが比較的小さい領域では、相対的に広い間隔(長い間隔)で第1バイアス光照射エネルギーが第2バイアス光照射エネルギーとされ、差分分光感度の非線形特性におけるプロファイルに応じた第2バイアス光照射エネルギーの前記組合せが求められる。特に、照射エネルギーと短絡電流との関係が大きく変化しない太陽電池PVに対し、第2実施形態における太陽電池絶対分光感度測定装置Mbは、不要な照射エネルギーでの短絡電流の測定を最小限とすることができる。したがって、第2実施形態における太陽電池絶対分光感度測定装置Mbは、太陽電池PVの絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。
 また、上述の太陽電池絶対分光感度測定装置Mbでは、最初に第1バイアス光照射エネルギー範囲を複数の領域に分割する場合に、最初の前記第1バイアス光照射エネルギー範囲は、3個または4個の領域に分割される。最初の前記第1バイアス光照射エネルギー範囲を2個の領域に分割しても良いが、このような場合、境界点における実測の短絡電流と補間短絡電流とが略等しくなって、第2バイアス光照射エネルギー探索処理の実行が終了してしまう可能性もある。特に、太陽電池PVにおける差分分光感度の特性は、略S字曲線となることが多く、2個に領域を分割した場合における境界点における実測の短絡電流と補間短絡電流とが略等しくなる。このため、最初の前記第1バイアス光照射エネルギー範囲を2個の領域に分割する場合、適切な前記組合せが求められなくなる場合が生じる虞がある。上記太陽電池絶対分光感度測定装置Mbは、最初の前記第1バイアス光照射エネルギー範囲を3個または4個の領域に分割するので、上述の事態を回避することができるから、より適切な組合せを決定できる。
 また、上述の太陽電池絶対分光感度測定装置Mbでは、第1バイアス光照射エネルギー範囲は、等範囲で複数の領域に分割される。このような太陽電池絶対分光感度測定装置Mbは、前記分割された各領域の範囲が等しくなるので、第1バイアス光照射エネルギーにおける最小照射エネルギーから最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を全て公平に、差分分光感度の非線形特性における非線形度合いに関し、評価できる。
 なお、上述の太陽電池絶対分光感度測定装置Mbでは、最初の前記第1バイアス光照射エネルギー範囲が3個または4個の領域に分割された後は、第1バイアス光照射エネルギーの領域は、2個の領域に分割されたが、3個以上の領域に分割されても良い。
 また、上述の太陽電池絶対分光感度測定装置Mbでは、第1バイアス光照射エネルギー範囲は、等範囲で複数の領域に分割されたが、これに限定されるものではない。例えば、バイアス光組合せ演算部74bは、第1バイアス光照射エネルギー範囲を等比範囲で複数の領域に分割してもよい。このような太陽電池絶対分光感度測定装置Mbは、これら分割された各領域の範囲が等比となるので、より広い第1バイアス光照射エネルギー範囲を、差分分光感度の非線形特性における非線形度合いに関し、評価できる。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 一態様にかかる太陽電池絶対分光感度測定装置は、測定対象の太陽電池にバイアス光を照射する第1光源部と、前記太陽電池に単色光を照射する第2光源部と、前記太陽電池の短絡電流を測定する短絡電流測定部と、前記第1光源部を制御することによって互いに異なる複数の第1バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて、前記太陽電池の絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるバイアス光組合せ演算部と、前記第1光源部を制御することによって前記バイアス光組合せ演算部で求められた前記互いに異なる複数の第2バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、前記第2光源部を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を前記太陽電池に照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて差分分光感度を求める差分分光感度測定部と、前記差分分光感度測定部で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、前記太陽電池の絶対分光感度を求める絶対分光感度演算部とを備える。
 このような太陽電池絶対分光感度測定装置では、第1光源部の制御によって互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光が測定対象の太陽電池に照射され、前記複数の第1バイアス光照射エネルギーそれぞれでの複数の短絡電流が測定され、これら測定された複数の短絡電流に基づいて、前記太陽電池の絶対分光感度を求めるために先ず測定される複数の差分分光感度を測定するための複数の第2バイアス光照射エネルギーから成る組合せが求められる。このように、前記複数の第2バイアス光照射エネルギーの前記組合せが、絶対分光感度を求める前に、短絡電流から先ず決定されるので、上述の試行錯誤を繰り返す必要がなく、そして、前記短絡電流の測定は、比較的短い時間で、例えば1秒程度の数秒で測定できる。このため、このような太陽電池絶対分光感度測定装置は、太陽電池の絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記第1バイアス光照射エネルギーと前記短絡電流との関係における変化度合いに基づいて、前記組合せを求める。
 差分分光感度の非線形特性における非線形度合いは、第1バイアス光照射エネルギーと短絡電流との関係の変化に現れる。このため、このような太陽電池絶対分光感度測定装置は、前記第1バイアス光照射エネルギーと前記短絡電流との関係における変化度合いに基づいて、前記組合せを求めることで、より適切な組合せを決定できる。このような太陽電池絶対分光感度測定装置は、例えば前記変化度合いが比較的大きい第1バイアス光照射エネルギーを第2バイアス光照射エネルギーに選定するとともに前記前記変化度合いが比較的小さい第1バイアス光照射エネルギーを第2バイアス光照射エネルギーの選定から外したより適切な組合せを決定できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記変化度合いとして、前記第1バイアス光照射エネルギーと前記短絡電流との関係を表す特性曲線の二階微分を求め、前記求めた特性曲線の二階微分に基づいて、前記組合せを求める。
 差分分光感度は、上述したように短絡電流の変化率に関係するので、第1バイアス光照射エネルギーと短絡電流との関係における変化は、前記特性曲線の二階微分で表すことができる。すなわち、差分分光感度の非線形特性における非線形度合いは、前記特性曲線の二階微分で表すことができる。このため、このような太陽電池絶対分光感度測定装置は、前記特性曲線の二階微分に基づいて、前記組合せを求めることで、より適切な組合せを決定できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記特性曲線の二階微分の絶対値を求め、前記求めた絶対値から大きい順に予め設定された測定数だけ絶対値を選抜し、前記選抜した絶対値に対応する前記第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとすることで、前記組合せを求める。
 差分分光感度の非線形特性における非線形度合いは、前記特性曲線の二階微分の絶対値が大きいほど大きい。このため、このような太陽電池絶対分光感度測定装置は、大きい順に予め設定された測定数だけ前記絶対値を選抜して前記組合せを求めるので、予め設定された測定数のうちで最も適切な組合せを決定できる。すなわち、このような太陽電池絶対分光感度測定装置は、予め設定された測定時間内で最も適切な組合せを決定できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記特性曲線の二階微分の絶対値を求め、前記求めた絶対値から予め設定された第1判定値以上の絶対値を選抜し、前記選抜した絶対値に対応する前記第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとすることで、前記組合せを求める。
 このような太陽電池絶対分光感度測定装置は、前記第1判定値以上(第1閾値以上)の絶対値を選抜して前記組合せを求めるので、第1バイアス光照射エネルギーと短絡電流との関係における、前記第1判定値以上の絶対値に対応する非線形度合いを持つ箇所を選抜でき、前記第1判定値に応じた所望の精度で絶対値分光感度を測定できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記変化度合いとして、前記複数の第1バイアス光照射エネルギーそれぞれに対し、当該第1バイアス光照射エネルギーに対応する前記短絡電流測定部によって実測された短絡電流と当該第1バイアス光照射エネルギーの前後の第1バイアス光照射エネルギーそれぞれに対応する2つの短絡電流から補間によって求められた補間短絡電流との差を求め、前記求めた差に基づいて、前記組合せを求める。
 2個の測定点の間における変化は、前記2個の測定点の間における或る測定点の実測値と前記2個の測定点から前記或る測定点の補間値との差に関係し、前記差が大きいほど、前記2個の測定点の間における変化は、大きいと考えられる。したがって、前記差分分光感度の非線形特性における前記非線形度合いは、当該第1バイアス光照射エネルギーに対応する実測の短絡電流と当該第1バイアス光照射エネルギーの前後の第1バイアス光照射エネルギーそれぞれに対応する2つの短絡電流から補間された補間短絡電流との差で表すことができる。このため、このような太陽電池絶対分光感度測定装置は、前記差に基づいて、前記組合せを求めることで、より適切な組合せを決定できる。
 他の一態様では、これら上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記複数の短絡電流を前記短絡電流測定部によって測定する際に、前記第1光源部を制御することによって等差で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に前記太陽電池に照射する。
 このような太陽電池絶対分光感度測定装置は、複数の第1バイス光照射エネルギーにおける各間隔が等間隔となるので、第1バイアス光照射エネルギーにおける最小照射エネルギーから最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を全て公平に、前記差分分光感度の非線形特性における非線形度合いに関し、評価できる。
 他の一態様では、これら上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記複数の短絡電流を前記短絡電流測定部によって測定する際に、前記第1光源部を制御することによって等比で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に前記太陽電池に照射する。
 このような太陽電池絶対分光感度測定装置は、複数の第1バイス光照射エネルギーにおける各間隔が等比間隔となるので、等差間隔と同じ測定数(測定時間)とした場合に、等差間隔の場合よりも広い第1バイアス光照射エネルギー範囲を、前記差分分光感度の非線形特性における非線形度合いに関し、評価できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、予め設定された第1バイアス光照射エネルギーの第1最小照射エネルギーから第1最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を複数の領域に分割し、前記分割した複数の領域における境界点の第1バイアス光照射エネルギーで前記バイアス光を前記太陽電池に照射することで前記短絡電流測定部によって実測された短絡電流と前記最小照射エネルギーおよび前記最大照射エネルギーそれぞれに対応する2つの短絡電流から補間によって求められた前記境界点の第1バイアス光照射エネルギーに対応する補間短絡電流との差を求め、前記求めた差が予め設定された第2判定値以上である場合に前記境界点の第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとする第2バイアス光照射エネルギー探索処理を実行し、前記求めた差が予め設定された第2判定値以上である前記場合が無くなるまで、前記分割した複数の領域それぞれを新たに前記第1バイアス光照射エネルギー範囲に更新し、当該領域における第2最小照射エネルギーを新たに前記第1最小照射エネルギーに更新し、そして、当該領域における第2最大照射エネルギーを新たに前記第1最大照射エネルギーに更新して前記第2バイアス光照射エネルギー探索処理を実行することで、前記組合せを求める。
 このような太陽電池絶対分光感度測定装置では、前記求めた差が予め設定された第2判定値以上である前記場合が無くなるまで、前記第2バイアス光照射エネルギー探索処理が繰り返され、前記第1バイアス光照射エネルギー範囲の分割と第2バイアス光照射エネルギーに選抜される第1バイアス光照射エネルギーの探索とが繰り返される。このため、前記差分分光感度の非線形特性における前記非線形度合いが比較的大きい領域では、相対的に細かい間隔(短い間隔)で第1バイアス光照射エネルギーが第2バイアス光照射エネルギーとされ、前記差分分光感度の非線形特性における前記非線形度合いが比較的小さい領域では、相対的に広い間隔(長い間隔)で第1バイアス光照射エネルギーが第2バイアス光照射エネルギーとされ、前記差分分光感度の非線形特性におけるプロファイルに応じた前記組合せが求められる。したがって、このような太陽電池絶対分光感度測定装置は、太陽電池の絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。
 他の一態様では、上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、最初に前記第1バイアス光照射エネルギー範囲を複数の領域に分割する場合に、最初の前記第1バイアス光照射エネルギー範囲を3個または4個の領域に分割する。
 最初の前記第1バイアス光照射エネルギー範囲を2個の領域に分割しても良いが、このような場合、境界点における実測の短絡電流と補間短絡電流とが略等しくなって、前記第2バイアス光照射エネルギー探索処理の実行が終了してしまう可能性もある。特に、太陽電池における差分分光感度の特性は、略S字曲線となることが多く、2個に領域を分割した場合における境界点における実測の短絡電流と補間短絡電流とが略等しくなる。このため、最初の前記第1バイアス光照射エネルギー範囲を2個の領域に分割する場合、適切な前記組合せが求められなくなる場合が生じる虞がある。上記太陽電池絶対分光感度測定装置は、最初の前記第1バイアス光照射エネルギー範囲を3個または4個の領域に分割するので、上述の事態を回避することができるから、より適切な組合せを決定できる。
 他の一態様では、これら上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記第1バイアス光照射エネルギー範囲を等範囲で複数の領域に分割する。
 このような太陽電池絶対分光感度測定装置は、前記分割された各領域の範囲が等しくなるので、第1バイアス光照射エネルギーにおける最小照射エネルギーから最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を全て公平に、前記差分分光感度の非線形特性における非線形度合いに関し、評価することができる。
 他の一態様では、これら上述の太陽電池絶対分光感度測定装置において、前記バイアス光組合せ演算部は、前記第1バイアス光照射エネルギー範囲を等比範囲で複数の領域に分割する。
 このような太陽電池絶対分光感度測定装置は、前記分割された各領域の範囲が等比となるので、より広い第1バイアス光照射エネルギー範囲を、前記差分分光感度の非線形特性における非線形度合いに関し、評価することができる。
 他の一態様にかかる太陽電池絶対分光感度測定方法は、測定対象の太陽電池にバイアス光を第1光源部から照射する第1照射工程と、前記太陽電池に単色光を第2光源部から照射する第2照射工程と、前記太陽電池の短絡電流を測定する短絡電流測定工程と、前記第1光源部を制御することによって互いに異なる複数の第1バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射することで前記短絡電流測定工程によって測定された複数の短絡電流に基づいて、前記太陽電池の絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるバイアス光組合せ演算工程と、前記第1光源部を制御することによって前記バイアス光組合せ演算工程で求められた前記互いに異なる複数の第2バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、前記第2光源部を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を前記太陽電池に照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて差分分光感度を求める差分分光感度測定工程と、前記差分分光感度測定工程で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、前記太陽電池の絶対分光感度を求める絶対分光感度演算工程とを備える。
 このような太陽電池絶対分光感度測定方法では、第1光源部の制御によって互いに異なる複数の第1バイアス光照射エネルギーで順次にバイアス光が測定対象の太陽電池に照射され、前記複数の第1バイアス光照射エネルギーそれぞれでの複数の短絡電流が測定され、これら測定された複数の短絡電流に基づいて、前記太陽電池の絶対分光感度を求めるために、先ず測定される複数の差分分光感度を測定するための複数の第2バイアス光照射エネルギーから成る組合せが求められる。このように、前記複数の第2バイアス光照射エネルギーの前記組合せが、絶対分光感度を求める前に、短絡電流から先ず決定されるので、上述の試行錯誤を繰り返す必要がなく、そして、前記短絡電流の測定は、比較的短い時間で、例えば1秒程度の数秒で測定できる。このため、このような太陽電池絶対分光感度測定方法は、太陽電池の絶対分光感度を測定する場合に、測定時間の短縮化を図りつつ、より適切な組合せを決定できる。
 この出願は、2013年8月19日に出願された日本国特許出願特願2013-169789を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、太陽電池絶対分光感度測定装置および太陽電池絶対分光感度測定方法を提供することができる。
 

Claims (13)

  1.  測定対象の太陽電池にバイアス光を照射する第1光源部と、
     前記太陽電池に単色光を照射する第2光源部と、
     前記太陽電池の短絡電流を測定する短絡電流測定部と、
     前記第1光源部を制御することによって互いに異なる複数の第1バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて、前記太陽電池の絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるバイアス光組合せ演算部と、
     前記第1光源部を制御することによって前記バイアス光組合せ演算部で求められた前記互いに異なる複数の第2バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、前記第2光源部を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を前記太陽電池に照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて差分分光感度を求める差分分光感度測定部と、
     前記差分分光感度測定部で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、前記太陽電池の絶対分光感度を求める絶対分光感度演算部とを備える、
     太陽電池絶対分光感度測定装置。
  2.  前記バイアス光組合せ演算部は、前記第1バイアス光照射エネルギーと前記短絡電流との関係における変化度合いに基づいて、前記組合せを求める、
     請求項1に記載の太陽電池絶対分光感度測定装置。
  3.  前記バイアス光組合せ演算部は、前記変化度合いとして、前記第1バイアス光照射エネルギーと前記短絡電流との関係を表す特性曲線の二階微分を求め、前記求めた特性曲線の二階微分に基づいて、前記組合せを求める、
     請求項2に記載の太陽電池絶対分光感度測定装置。
  4.  前記バイアス光組合せ演算部は、前記特性曲線の二階微分の絶対値を求め、前記求めた絶対値から大きい順に予め設定された測定数だけ絶対値を選抜し、前記選抜した絶対値に対応する前記第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとすることで、前記組合せを求める、
     請求項3に記載の太陽電池絶対分光感度測定装置。
  5.  前記バイアス光組合せ演算部は、前記特性曲線の二階微分の絶対値を求め、前記求めた絶対値から予め設定された第1判定値以上の絶対値を選抜し、前記選抜した絶対値に対応する前記第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとすることで、前記組合せを求める、
     請求項3に記載の太陽電池絶対分光感度測定装置。
  6.  前記バイアス光組合せ演算部は、前記変化度合いとして、前記複数の第1バイアス光照射エネルギーそれぞれに対し、当該第1バイアス光照射エネルギーに対応する前記短絡電流測定部によって実測された短絡電流と当該第1バイアス光照射エネルギーの前後の第1バイアス光照射エネルギーそれぞれに対応する2つの短絡電流から補間によって求められた補間短絡電流との差を求め、前記求めた差に基づいて、前記組合せを求める、
     請求項2に記載の太陽電池絶対分光感度測定装置。
  7.  前記バイアス光組合せ演算部は、前記複数の短絡電流を前記短絡電流測定部によって測定する際に、前記第1光源部を制御することによって等差で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に前記太陽電池に照射する、
     請求項1ないし請求項6のいずれか1項に記載の太陽電池絶対分光感度測定装置。
  8.  前記バイアス光組合せ演算部は、前記複数の短絡電流を前記短絡電流測定部によって測定する際に、前記第1光源部を制御することによって等比で互いに異なる複数の第1バイアス光照射エネルギーのバイアス光を順次に前記太陽電池に照射する、
     請求項1ないし請求項6のいずれか1項に記載の太陽電池絶対分光感度測定装置。
  9.  前記バイアス光組合せ演算部は、予め設定された第1バイアス光照射エネルギーの第1最小照射エネルギーから第1最大照射エネルギーまでの第1バイアス光照射エネルギー範囲を複数の領域に分割し、前記分割した複数の領域における境界点の第1バイアス光照射エネルギーで前記バイアス光を前記太陽電池に照射することで前記短絡電流測定部によって実測された短絡電流と前記最小照射エネルギーおよび前記最大照射エネルギーそれぞれに対応する2つの短絡電流から補間によって求められた前記境界点の第1バイアス光照射エネルギーに対応する補間短絡電流との差を求め、前記求めた差が予め設定された第2判定値以上である場合に前記境界点の第1バイアス光照射エネルギーを前記第2バイアス光照射エネルギーとする第2バイアス光照射エネルギー探索処理を実行し、前記求めた差が予め設定された第2判定値以上である前記場合が無くなるまで、前記分割した複数の領域それぞれを新たに前記第1バイアス光照射エネルギー範囲に更新し、当該領域における第2最小照射エネルギーを新たに前記第1最小照射エネルギーに更新し、そして、当該領域における第2最大照射エネルギーを新たに前記第1最大照射エネルギーに更新して前記第2バイアス光照射エネルギー探索処理を実行することで、前記組合せを求める、
     請求項1に記載の太陽電池絶対分光感度測定装置。
  10.  前記バイアス光組合せ演算部は、最初に前記第1バイアス光照射エネルギー範囲を複数の領域に分割する場合に、最初の前記第1バイアス光照射エネルギー範囲を3個または4個の領域に分割する、
     請求項9に記載の太陽電池絶対分光感度測定装置。
  11.  前記バイアス光組合せ演算部は、前記第1バイアス光照射エネルギー範囲を等範囲で複数の領域に分割する、
     請求項9または請求項10に記載の太陽電池絶対分光感度測定装置。
  12.  前記バイアス光組合せ演算部は、前記第1バイアス光照射エネルギー範囲を等比範囲で複数の領域に分割する、
     請求項9または請求項10に記載の太陽電池絶対分光感度測定装置。
  13.  測定対象の太陽電池にバイアス光を第1光源部から照射する第1照射工程と、
     前記太陽電池に単色光を第2光源部から照射する第2照射工程と、
     前記太陽電池の短絡電流を測定する短絡電流測定工程と、
     前記第1光源部を制御することによって互いに異なる複数の第1バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射することで前記短絡電流測定工程によって測定された複数の短絡電流に基づいて、前記太陽電池の絶対分光感度を求めるために用いられる複数の差分分光感度を測定するための互いに異なる複数の第2バイアス光照射エネルギーから成る組合せを求めるバイアス光組合せ演算工程と、
     前記第1光源部を制御することによって前記バイアス光組合せ演算工程で求められた前記互いに異なる複数の第2バイアス光照射エネルギーで順次に前記バイアス光を前記太陽電池に照射しながら、前記複数の第2バイアス光照射エネルギーそれぞれに対し、前記第2光源部を制御することによって互いに異なる複数の波長それぞれで単色光照射エネルギーを変動させて前記単色光を前記太陽電池に照射することで前記短絡電流測定部によって測定された複数の短絡電流に基づいて差分分光感度を求める差分分光感度測定工程と、
     前記差分分光感度測定工程で測定された前記複数の第2バイアス光照射エネルギーそれぞれに対応する複数の差分分光感度に基づいて、前記太陽電池の絶対分光感度を求める絶対分光感度演算工程とを備える、
     太陽電池絶対分光感度測定方法。
PCT/JP2014/066109 2013-08-19 2014-06-18 太陽電池絶対分光感度測定装置および該方法 WO2015025600A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014542602A JP5741774B1 (ja) 2013-08-19 2014-06-18 太陽電池絶対分光感度測定装置および該方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013169789 2013-08-19
JP2013-169789 2013-08-19

Publications (1)

Publication Number Publication Date
WO2015025600A1 true WO2015025600A1 (ja) 2015-02-26

Family

ID=52483385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066109 WO2015025600A1 (ja) 2013-08-19 2014-06-18 太陽電池絶対分光感度測定装置および該方法

Country Status (2)

Country Link
JP (1) JP5741774B1 (ja)
WO (1) WO2015025600A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011843A (ja) * 2015-06-19 2017-01-12 コニカミノルタ株式会社 分光感度測定装置及び分光感度測定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101749565B1 (ko) * 2015-11-18 2017-06-21 한국표준과학연구원 광전 소자의 분광감응도 도함수 측정장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298471A (ja) * 2007-05-29 2008-12-11 National Institute Of Advanced Industrial & Technology 太陽電池の分光感度特性測定装置
JP2012256778A (ja) * 2011-06-10 2012-12-27 Konica Minolta Optics Inc 短絡電流測定装置、太陽電池評価装置、短絡電流測定方法、および、太陽電池評価方法
JP2013089632A (ja) * 2011-10-13 2013-05-13 Sharp Corp 分光感度測定方法、分光感度測定装置およびその制御プログラム
WO2013084441A1 (ja) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 太陽電池の分光感度測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298471A (ja) * 2007-05-29 2008-12-11 National Institute Of Advanced Industrial & Technology 太陽電池の分光感度特性測定装置
JP2012256778A (ja) * 2011-06-10 2012-12-27 Konica Minolta Optics Inc 短絡電流測定装置、太陽電池評価装置、短絡電流測定方法、および、太陽電池評価方法
JP2013089632A (ja) * 2011-10-13 2013-05-13 Sharp Corp 分光感度測定方法、分光感度測定装置およびその制御プログラム
WO2013084441A1 (ja) * 2011-12-05 2013-06-13 コニカミノルタ株式会社 太陽電池の分光感度測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011843A (ja) * 2015-06-19 2017-01-12 コニカミノルタ株式会社 分光感度測定装置及び分光感度測定方法

Also Published As

Publication number Publication date
JPWO2015025600A1 (ja) 2017-03-02
JP5741774B1 (ja) 2015-07-01

Similar Documents

Publication Publication Date Title
JP4944231B2 (ja) 太陽電池評価装置およびそれに用いられる光源評価装置
JP5223928B2 (ja) 太陽電池評価装置および太陽電池評価方法
Zaid et al. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source
WO2010082852A1 (en) Led based coded-source spectrometer
JP5761372B2 (ja) 太陽電池の分光感度測定装置
JP5741774B1 (ja) 太陽電池絶対分光感度測定装置および該方法
CN104422516B (zh) 分光器所用的波长校准方法以及分光光度计
Hamadani et al. Absolute spectral responsivity measurements of solar cells by a hybrid optical technique
WO2012172767A1 (ja) 分光感度測定装置、および、分光感度測定方法
JP2013156132A (ja) 太陽電池評価装置および該方法
JP4944233B2 (ja) 太陽電池評価装置およびそれに用いられる光源評価装置
JP6447184B2 (ja) 分光感度測定装置
JP5772972B2 (ja) 太陽電池評価装置、および太陽電池評価方法
JP5696595B2 (ja) 短絡電流測定装置、太陽電池評価装置、短絡電流測定方法、および、太陽電池評価方法
JP5895691B2 (ja) 太陽電池評価装置および該方法
JP5811938B2 (ja) 太陽電池評価装置および該方法
Melskens et al. Fast Optical Measurement System: Ultrafast external quantum efficiency measurements on silicon solar cells
Zaini et al. Indoor calibration method for UV index meters with a solar simulator and a reference spectroradiometer
JP6464939B2 (ja) 分光感度測定装置及び分光感度測定方法
JP2013234895A (ja) 太陽電池評価装置および該方法
KR102552281B1 (ko) 페로브스카이트 태양전지의 양자효율 측정장치 및 그 제어방법
JP5601308B2 (ja) 太陽電池評価装置、及び、太陽電池評価方法
Dönsberg Uudistettu referenssi-infrapunaspektrometri
JP2006030034A (ja) 太陽電池の分光感度測定装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014542602

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837803

Country of ref document: EP

Kind code of ref document: A1