WO2013084411A1 - 発振器およびicチップ - Google Patents

発振器およびicチップ Download PDF

Info

Publication number
WO2013084411A1
WO2013084411A1 PCT/JP2012/007243 JP2012007243W WO2013084411A1 WO 2013084411 A1 WO2013084411 A1 WO 2013084411A1 JP 2012007243 W JP2012007243 W JP 2012007243W WO 2013084411 A1 WO2013084411 A1 WO 2013084411A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
bias
generation circuit
bias generation
oscillation
Prior art date
Application number
PCT/JP2012/007243
Other languages
English (en)
French (fr)
Inventor
晴彦 丸
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to EP12855082.9A priority Critical patent/EP2784932A1/en
Priority to CN2012800037310A priority patent/CN103250347A/zh
Priority to US13/993,490 priority patent/US8988159B2/en
Priority to JP2013511200A priority patent/JP5592562B2/ja
Publication of WO2013084411A1 publication Critical patent/WO2013084411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/006Functional aspects of oscillators
    • H03B2200/0082Lowering the supply voltage and saving power

Definitions

  • the present invention relates to an oscillator and an IC chip that oscillates a frequency signal.
  • a TCXO temperature compensated crystal oscillator
  • PNDs personal navigation devices
  • TCXO temperature compensated crystal oscillator
  • these devices are required to have higher functionality and longer operating time, and low power consumption is required for their mounted components.
  • power consumption has been reduced by intermittently operating the TCXO.
  • it is required to operate the TCXO at a low voltage.
  • an oscillator described in Patent Document 1 exists as a conventional oscillator using such a temperature compensated crystal oscillator.
  • FIG. 7 is a configuration diagram showing a main part of the oscillator described in Patent Document 1.
  • the oscillator includes an oscillation circuit 1 that can change the frequency according to a voltage, and a bias generation circuit 2 that generates a bias signal necessary for driving the oscillation circuit 1.
  • the bias generation circuit 2 corresponds to the approximate cubic function generator disclosed in Patent Document 1.
  • FIG. 8 is a configuration diagram showing an approximate cubic function generator for an oscillator described in Patent Document 1.
  • the oscillation frequency has a temperature characteristic approximated by a cubic function. Therefore, the approximate cubic function generator 21 can cancel the temperature characteristic.
  • the approximate cubic function generator 21 receives a temperature detection value from the temperature detection circuit 22 that changes in a linear function with respect to a temperature change as an input signal VIN, and compensates the temperature characteristics of the crystal with a temperature compensation voltage (bias).
  • Signal BIAS is generated and supplied to the oscillation circuit 1.
  • the approximate cubic function generator 21 includes an adder 23, a third-order / constant component generator 24, a first-order component generator 25, and an adder circuit 26.
  • the adder 23 adds a variable voltage V0 for adjusting the center temperature of the cubic function curve to the input signal VIN, and outputs an addition output VS.
  • the third-order component / constant component generator 24 receives the addition output VS and outputs an output signal VAOUT.
  • the primary component generator 25 receives the addition output VS and outputs an output signal VBOUT.
  • the adder circuit 26 adds the output signal VAOUT and the output signal VBOUT, and outputs a temperature compensation voltage (bias signal BIAS).
  • the cubic component / constant component generator 24, the primary component generator 25, and the adder circuit 26 constituting the approximate cubic function generator 21 are supplied with power from an external power source that supplies the power supply voltage VDD. .
  • the bias generation circuit 2 generates a temperature compensation voltage (bias signal BIAS) for driving the oscillation circuit 1 and a reference voltage or a reference current necessary for driving the oscillation circuit 1, and supplies these to the oscillation circuit 1. Is done. Thereby, the temperature characteristic of the crystal oscillator can be accurately compensated.
  • bias signal BIAS bias signal
  • An oscillator includes an oscillation circuit, a bias generation circuit that generates a bias signal for driving the oscillation circuit, and boosts a power supply voltage to generate a boost voltage for driving the bias generation circuit And a booster circuit. According to this configuration, it is possible to reduce the power supply voltage without deteriorating the phase noise while adopting the conventional circuit configuration.
  • the booster circuit may be driven by an output signal of the oscillation circuit. In this way, there is an effect that spurious tones generated in the output voltage of the booster circuit are only an integer multiple of the oscillation frequency, and no non-harmonic spurious appears in the boosted voltage HVDD.
  • the bias generation circuit includes a first bias generation circuit driven by the power supply voltage, a second bias generation circuit driven by a boost voltage output from the boost circuit, and the first bias generation circuit.
  • a switching unit that switches between the output of the bias generation circuit and the output of the second bias generation circuit may be provided. This makes it possible to drive the bias generation circuit with the booster circuit while improving the starting characteristics of the oscillation circuit when the power is turned on.
  • the first bias generation circuit is an oscillation promotion bias generation circuit for promoting oscillation
  • the second bias generation circuit is a normal operation bias generation circuit for performing normal operation.
  • the oscillator may further include a control circuit that controls a switching operation in the switching unit.
  • the control circuit determines whether or not the boosted voltage output from the booster circuit is a predetermined voltage, and when the boosted voltage is a predetermined voltage, switching in the switching unit A control signal for executing processing may be output. This makes it possible to start the oscillation circuit stably in the minimum necessary time.
  • the bias generation circuit may be realized by a temperature compensation circuit.
  • the bias signal may be realized including a temperature compensation voltage.
  • the bias signal may be realized so as to be supplied as a control voltage of a voltage variable capacitance element in the oscillation circuit.
  • the bias generation circuit may be realized by a circuit that generates a reference voltage or a reference current necessary for driving the oscillation circuit.
  • the bias signal may be realized including a reference voltage or a reference current necessary for driving the oscillation circuit.
  • the bias signal may be realized so as to be supplied as a reference of an oscillator current in the oscillation circuit.
  • the bias generation circuit may be realized by a memory circuit that stores a temperature correction parameter.
  • An IC chip includes an oscillation circuit, a bias generation circuit that generates a bias signal for driving the oscillation circuit, and a boost circuit that boosts a power supply voltage and drives the bias generation circuit.
  • a power supply terminal for receiving power from an external power supply for supplying the power supply voltage, and a vibrator terminal for connecting the vibrator controlled by the oscillation circuit and the oscillation circuit.
  • a grounding terminal for ground connection and an output terminal for outputting an output signal of the oscillation circuit.
  • the oscillation circuit is mounted in one IC chip, receives a power supply voltage from an external power supply of the IC chip, and boosts the power supply voltage by the booster circuit in the IC chip. For this reason, for example, when manufacturing a power supply or other IC chip provided on the mounting substrate, without considering the influence on the oscillation circuit due to a decrease in the power supply voltage of the power supply provided outside the IC chip. It is possible to manufacture power supplies, IC chips, and the like.
  • FIG. 10 is a configuration diagram showing a main part of an oscillator described in Patent Document 1.
  • 10 is a configuration diagram illustrating an approximate cubic function generator for an oscillator described in Patent Literature 1.
  • FIG. 10 is a configuration diagram showing an approximate cubic function generator for an oscillator described in Patent Literature 1.
  • FIG. 1 is a block diagram showing an example of the configuration of the crystal oscillator according to the first embodiment.
  • FIG. 1 illustrates a case where the crystal oscillator (which is an oscillator) according to the first embodiment is mounted in one IC chip 10 and disposed on a mounting substrate 100 in an electronic apparatus.
  • an IC chip 20 on which a processing circuit is mounted is disposed on the mounting substrate 100.
  • the processing circuit of the IC chip 20 is, for example, a processing circuit that receives an output frequency from a crystal oscillator of the IC chip 10 and executes processing of an input / output device or the like.
  • the crystal resonator 1a is disposed on the mounting substrate 100 and provided outside the IC chip 10.
  • the IC chip 10 and the crystal resonator 1a are mounted in the same module. It may be.
  • the crystal oscillator according to the first embodiment mounted on the IC chip 10 includes an oscillation circuit 1 that applies a voltage to the crystal resonator 1a, a bias generation circuit 2 that generates a bias signal BIAS necessary for the oscillation circuit 1, and And the booster circuit 3.
  • the booster circuit 3 is a circuit for driving the bias generation circuit 2.
  • the oscillation circuit 1 and the bias generation circuit 2 are the same as the oscillation circuit 1 and the bias generation circuit 2 in FIG.
  • the oscillation circuit 1, the bias generation circuit 2, and the booster circuit 3 are mounted in the IC chip 10. Further, the IC chip 10 connects a power supply terminal 11 for receiving the supply of the power supply voltage VDD from an external power supply, a grounding terminal 12 for ground connection, the crystal resonator 1 a and the oscillation circuit 1. And an output terminal FOUT for outputting an output frequency from the oscillation circuit 1 to the outside of the IC chip 10.
  • the bias generation circuit 2 may be realized by, for example, a temperature compensation circuit including an approximate cubic function generator described in Patent Document 1, and generates a reference voltage or a reference current necessary for driving the oscillation circuit 1 It may be realized by a circuit that performs this, or may be realized by a memory circuit that stores a temperature correction parameter.
  • the bias signal BIAS output from the bias generation circuit 2 is the bias signal BIAS including the temperature compensation voltage.
  • the bias signal BIAS is supplied as a control voltage for the voltage variable capacitance element in the oscillation circuit 1, so that the oscillation frequency can be arbitrarily controlled and the temperature characteristics of the crystal can be compensated.
  • the bias signal BIAS output from the bias generation circuit 2 is a bias signal BIAS including a reference voltage and a reference current necessary for driving the oscillation circuit 1 in the case of SPXO (package crystal oscillator), for example.
  • the bias signal BIAS is supplied as a reference for an oscillator current or the like in the oscillation circuit 1, so that the fluctuation of the oscillation frequency due to the fluctuation of the power supply voltage VDD can be improved.
  • the booster circuit 3 is a circuit that boosts the power supply voltage VDD to generate a boosted voltage HVDD that is higher than the power supply voltage VDD, and drives the generating circuit 2 with the boosted voltage HVDD.
  • the crystal oscillator according to the first embodiment includes the booster circuit 3, so that the bias generation circuit 2 can be driven with the boost voltage HVDD even when the power supply voltage VDD is low.
  • the conventional circuit configuration can be adopted as it is, and the dynamic range in the bias generation circuit 2 is not reduced, so that phase noise deterioration can be prevented.
  • the present invention is useful regardless of the type of bias generation circuit constituting the crystal oscillator.
  • the IC chip 10 on which the crystal oscillator is mounted and other elements may be manufactured by different manufacturers.
  • the crystal oscillator is mounted in one IC chip 10 (that is, if the booster circuit 3 is provided in the IC chip 10)
  • power saving of the electronic device is achieved. Therefore, even if it is desired to set the power supply voltage VDD to be low, a manufacturer that manufactures the power supply or the IC chip 20 or the like does not consider the influence on the crystal oscillator due to the low power consumption. Can be manufactured.
  • the bias generation circuit 2 may include a circuit that generates a temperature compensation signal that compensates for the temperature characteristic of the output frequency, and the temperature compensation signal may be supplied to the oscillation circuit 1 as the bias signal BIAS. Further, the bias generation circuit 2 does not have to be driven by the boosted voltage HVDD for all the circuits constituting the bias generation circuit 2, and a part of the circuits may be driven by the power supply voltage VDD. .
  • FIG. 2 is a block diagram showing an example of the configuration of the crystal oscillator according to the second embodiment. 2, the configuration other than the IC chip 10 on the mounting substrate 100 is omitted, and only the configuration of the IC chip 10 on which the crystal oscillator is mounted is illustrated (the same applies to the following embodiments). ).
  • the crystal oscillator according to the second embodiment shown in FIG. 2 has substantially the same configuration as that of the crystal oscillator according to the first embodiment, but the booster circuit 3 is driven by the output signal of the oscillation circuit 1. Is different.
  • the booster circuit 3 performs a boosting operation using the output signal of the oscillation circuit 1 as a clock.
  • the spurious tone generated in the output voltage (boosted voltage HVDD) of the booster circuit 3 is only an integer multiple of the oscillation frequency, and no non-harmonic spurious appears in the boosted voltage HVDD.
  • the output terminal FOUT originally has a harmonic spurious signal that is an integral multiple of the oscillation frequency due to the output waveform (rectangular, clipped sine, etc.), the above-described spurious signal There is no problem even if a tone occurs.
  • the booster circuit 3 is driven by an RC oscillation circuit
  • the output frequency of the RC oscillation circuit may be generated at the output terminal FOUT as a spurious component.
  • the output frequency of the RC oscillation circuit and the oscillation frequency of the oscillation circuit 1 are mixed, non-harmonic spurious is generated in various frequency bands.
  • these problems can be avoided.
  • FIG. 3 is a block diagram showing an example of the configuration of the crystal oscillator according to the third embodiment.
  • the bias generation circuit 2 constituting the crystal oscillator according to the third embodiment includes an oscillation promotion bias generation circuit 2a (which is a first bias circuit) and a (second bias circuit).
  • the normal operation bias generation circuit 2b and the switching unit 4 are included.
  • the crystal oscillator of the third embodiment includes a control circuit 5 for controlling the switching unit 4.
  • the oscillation promoting bias generation circuit 2a is driven by the power supply voltage VDD, and outputs a bias BIASD that improves the negative resistance of the crystal oscillator and promotes oscillation.
  • the normal operation bias generation circuit 2b is driven by the boosted voltage HVDD and outputs a bias BIASH that causes the crystal oscillator to perform a normal operation.
  • “normal operation” means, for example, in the case of TCXO, a state in which temperature compensation is performed and a predetermined predetermined oscillation frequency is output.
  • control circuit 5 outputs a control signal CONTROL to the switching unit 4.
  • the switching unit 4 performs an operation of switching between the bias BIASD output from the oscillation promotion bias generation circuit 2a and the bias BIASH output from the normal operation bias generation circuit 2b in accordance with the control signal CONTROL.
  • FIG. 4 is a timing chart showing an example of the operation of the crystal oscillator according to the third embodiment.
  • the bias BIASD output from the oscillation promoting bias generation circuit 2a is input to the oscillation circuit 1 as the bias signal BIAS almost simultaneously with power-on (rising of the power supply voltage VDD), and the oscillation operation of the crystal oscillator The oscillation is accelerated.
  • the booster circuit 3 operates and the boosted voltage HVDD rises.
  • the bias BIASD and the bias BIASH are switched by the control signal CONTROL of the control circuit 5, and the crystal oscillator shifts to the normal operation state.
  • the control circuit 5 may be configured to be controlled with a time constant by being configured by a timer circuit or the like.
  • FIG. 5 is a block diagram showing an example of the configuration of the crystal oscillator according to the fourth embodiment.
  • the configuration of the crystal oscillator according to the fourth embodiment shown in FIG. 5 is substantially the same as the configuration of the crystal oscillator according to the third embodiment (FIG. 3).
  • the difference from FIG. 3 is that the control circuit 5 controls the switching unit 4 based on the output voltage (boosted voltage HVDD) of the booster circuit 3 to execute the bias switching operation.
  • the operation of the normal operation bias generation circuit 2b may become unstable. If the bias BIASH is applied to the oscillation circuit 1 as the bias signal BIAS while the operation of the normal operation bias generation circuit 2b is unstable, the negative resistance deteriorates and the start-up time is delayed and oscillation stops. May end up. Therefore, it is desirable that the switching operation in the switching unit 4 is executed at a timing such that the boosted voltage HVDD becomes equal to or higher than the predetermined voltage Vth.
  • FIG. 6 is a timing chart showing an example of the operation of the crystal oscillator according to the fourth embodiment.
  • the control circuit 5 detects that the boosted voltage HVDD becomes a predetermined voltage Vth
  • the control circuit 5 outputs a control signal CONTROL to the switching unit 4.
  • the switching unit 4 switches the bias signal BIAS output to the oscillation circuit 1 from the bias BIASD to the bias BIASH.
  • the control circuit 5 determines whether or not the boosted voltage HVDD of the booster circuit 3 is the predetermined voltage Vth, and the output voltage HVDD Is a predetermined voltage Vth, the control signal CONTROL is output to the switching unit 4.
  • the switching unit 4 performs an operation of switching the bias signal BIAS output to the oscillation circuit 1 from the bias BIASH to the bias BIASD. This makes it possible to start the crystal oscillator stably in the minimum necessary time.
  • the predetermined voltage Vth may have hysteresis at the rise and fall of the power supply voltage VDD.
  • a crystal oscillator has been described as an example of an oscillator.
  • the oscillation element of the oscillator is not limited to a crystal resonator.
  • a SAW (surface acoustic wave) resonator, a BOW (bulk acoustic wave) resonator, a MEMS (Micro Electro Mechanical Systems), a ceramic oscillator, or the like may be used instead of a crystal resonator.
  • SAW surface acoustic wave
  • BOW bulk acoustic wave
  • MEMS Micro Electro Mechanical Systems

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 従来の回路構成を採用しつつ、位相ノイズを劣化させること無く、電源電圧を低電圧化することが可能な発振器を提供すること。本発明の一態様によれば、発振回路(1)と、発振回路(1)を駆動するためのバイアス信号を生成するバイアス生成回路(2)と、電源電圧VDDを昇圧し、バイアス生成回路(2)を駆動する昇圧回路(3)と、を有する発振器が提供される。また、発振回路(1)と、バイアス生成回路(2)と、昇圧回路(3)は、一つのICチップ(10)内に備えられており、昇圧回路(3)は、ICチップ(10)の外部に備えられている電源から電源電圧VDDを受け取り昇圧するようになっていてもよい。

Description

発振器およびICチップ
 本発明は、周波数信号を発振する発振器およびICチップに関する。
 TCXO(温度補償型水晶発振器)は、周囲温度の変化に対し、安定した出力周波数が得られる。そのため、TCXOは、携帯電話やPND(パーソナル・ナビ・デバイス)等に広く用いられている。
 近年、これらの機器は、高機能化や動作可能時間の長寿命化が要求され、その実装部品には低消費電力化が求められている。従来は、TCXOを間欠動作させることによって低消費電力化を図ってきたが、更なる低消費電力化を実現するために、TCXOを低電圧で動作させることが求められている。このような温度補償型水晶発振器を用いた従来の発振器として、例えば、特許文献1に記載の発振器が存在する。
 図7は、特許文献1に記載の発振器の主要部を示す構成図である。この発振器は、電圧によって周波数を変えることが可能な発振回路1と、この発振回路1を駆動するために必要なバイアス信号を生成するバイアス生成回路2とからなる。
 ここで、バイアス生成回路2は、特許文献1の近似3次関数発生装置等が該当する。
 図8は、特許文献1に記載の発振器の近似3次関数発生装置を示す構成図である。例えば、ATカットの水晶振動子を用いる場合、発振周波数は3次関数で近似される温度特性を有しているので、この近似3次関数発生装置21により温度特性を打ち消すことができる。
 近似3次関数発生装置21は、温度変化に対して1次関数的に変化する温度検出回路22からの温度検出値が入力信号VINとして入力され、水晶の温度特性を補償する温度補償電圧(バイアス信号BIAS)を発生し、これを発振回路1に供給する。近似3次関数発生装置21は、加算器23と、3次成分兼定数成分発生部24と、1次成分発生部25と、加算回路26とからなる。加算器23は、入力信号VINに3次関数曲線の中心温度を調整するための可変電圧V0を加算し、加算出力VSを出力する。3次成分兼定数成分発生部24は、加算出力VSを入力し、出力信号VAOUTを出力する。1次成分発生部25は、加算出力VSを入力し、出力信号VBOUTを出力する。加算回路26は、出力信号VAOUTと出力信号VBOUTとを加算し、温度補償電圧(バイアス信号BIAS)を出力する。近似3次関数発生装置21を構成する3次成分兼定数成分発生部24、1次成分発生部25、加算回路26は、電源電圧VDDを供給する外部の電源からの電力の供給を受けている。
 バイアス生成回路2は、発振回路1を駆動するための温度補償電圧(バイアス信号BIAS)や、発振回路1を駆動するために必要な基準電圧あるいは基準電流を生成し、これらは発振回路1に供給される。これにより、水晶発振器の温度特性を正確に補償することができる。
特許3233946号公報
 しかしながら、特許文献1に記載のような従来の発振器の回路構成では、電源電圧を低電圧化しようとしても、大幅な低減は望めない。更には、従来の発振器の回路構成で、単に電源電圧を低電圧化するだけでは、ダイナミック・レンジが減少してしまい、位相ノイズが劣化してしまうことがある。このため、従来の発振器の回路構成では、電源電圧の低電圧化が困難であった。また、このような問題は、水晶発振子を用いる水晶発振器のみならず、他の発振素子を用いる発振回路にも同様に存在する。
 本発明は、上記課題に鑑みてなされたものであって、従来の回路構成を採用しつつ、位相ノイズを劣化させること無く、電源電圧を低電圧化することが可能な発振器を提供することを目的とする。
 本発明のある態様による発振器は、発振回路と、前記発振回路を駆動するためのバイアス信号を生成するバイアス生成回路と、電源電圧を昇圧し、前記バイアス生成回路を駆動するための昇圧電圧を生成する昇圧回路と、を有することを特徴とする。
 この構成によれば、従来の回路構成を採用しつつ、位相ノイズを劣化させること無く、電源電圧を低電圧化することが可能である。
 上記発振器において、前記昇圧回路は、前記発振回路の出力信号により駆動されるようにしてもよい。
 こうすれば、昇圧回路の出力電圧に発生するスプリアス・トーンが発振周波数の整数倍のみとなり、昇圧電圧HVDDには非高調波スプリアスが現れることはないという効果がある。
 上記発振器において、前記バイアス生成回路は、前記電源電圧により駆動される第1のバイアス生成回路と、前記昇圧回路から出力される昇圧電圧により駆動される第2のバイアス生成回路と、前記第1のバイアス生成回路の出力と、前記第2のバイアス生成回路の出力と、を切り替える切り替え部と、を備えるようにしてもよい。
 こうすれば、電源投入時における発振回路の起動特性を向上させつつ、バイアス生成回路を昇圧回路で駆動することが可能となる。
 上記発振器において、前記第1のバイアス生成回路は、発振を促進するための発振促進用バイアス生成回路であり、前記第2のバイアス生成回路は、通常動作を行うための通常動作用バイアス生成回路であってもよい。
 上記発振器は、前記切り替え部における切り替え動作を制御する制御回路をさらに有してもよい。
 上記発振器において、前記制御回路は、前記昇圧回路から出力される前記昇圧電圧が所定の電圧であるか否かを判定し、前記昇圧電圧が所定の電圧である場合には、前記切り替え部における切り替え処理を実行するための制御信号を出力してもよい。
 こうすれば、必要最低限の時間で、かつ、安定した発振回路の起動が可能となる。
 上記発振器において、前記バイアス生成回路は、温度補償回路で実現してもよい。
 上記発振器において、前記バイアス信号は、温度補償電圧を含んで実現してもよい。
 上記発振器において、前記バイアス信号は、前記発振回路内にある電圧可変容量素子の制御電圧として供給されるように実現してもよい。
 上記発振器において、前記バイアス生成回路は、前記発振回路を駆動するために必要な基準電圧あるいは基準電流を生成する回路で実現してもよい。
 上記発振器において、前記バイアス信号は、前記発振回路を駆動するために必要な基準電圧や基準電流を含んで実現してもよい。
 上記発振器において、前記バイアス信号は、前記発振回路内の発振器電流のリファレンスとして供給されるように実現してもよい。
 上記発振器において、前記バイアス生成回路は、温度補正用パラメータを格納するメモリ回路で実現してもよい。
 本発明のある態様によるICチップは、発振回路と、前記発振回路を駆動するためのバイアス信号を生成するバイアス生成回路と、電源電圧を昇圧し、前記バイアス生成回路を駆動する昇圧回路と、を内部に備え、前記電源電圧を供給する外部の電源からの電力の供給を受けるための電源用端子と、前記発振回路によって制御される振動子と前記発振回路とを接続するための振動子用端子と、接地接続のための接地用端子と、前記発振回路の出力信号を出力するための出力端子と、を備えることを特徴とする。
 この構成によれば、発振回路は一つのICチップ内に実装され、ICチップの外部の電源からの電源電圧を受け取り、ICチップ内の昇圧回路で電源電圧を昇圧する。このため、例えば、実装基板上に備えられている電源や他のICチップを製造する場合に、ICチップ外部に備えられている電源の電源電圧の低下による発振回路への影響を考慮せずに電源やICチップ等を製造することが可能である。
 本発明の一態様によれば、従来の回路構成を採用しつつ、位相ノイズを劣化させること無く、電源電圧を低電圧化することが可能である。
本発明の第1の実施形態に係る水晶発振器の構成の一例を示すブロック図である。 本発明の第2の実施形態に係る水晶発振器の構成の一例を示すブロック図である。 本発明の第3の実施形態に係る水晶発振器の構成の一例を示すブロック図である。 本発明の第3の実施形態に係る水晶発振器の動作の一例を示すタイミング図である。 本発明の第4の実施形態に係る水晶発振器の構成の一例を示すブロック図である。 本発明の第4の実施形態に係る水晶発振器の動作の一例を示すタイミング図である。 特許文献1に記載の発振器の主要部を示す構成図である。 特許文献1に記載の発振器の近似3次関数発生装置を示す構成図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。以下の説明において参照する各図では、他の図と同等部分は同一符号によって示される。
(第1の実施形態)
 図1は、第1の実施形態に係る水晶発振器の構成の一例を示すブロック図である。図1は、第1の実施形態に係る(発振器である)水晶発振器が一つのICチップ10内に実装され、電子機器内の実装基板100上に配置されている場合を図示している。また、実装基板100上には、ICチップ10とは別に、処理回路が実装されたICチップ20が配置されている。ICチップ20の処理回路は、具体的には、例えば、ICチップ10の水晶発振器からの出力周波数を受けて、入出力装置等の処理を実行する処理回路である。また、図1においては、水晶振動子1aは、実装基板100上に配置され、ICチップ10の外部に設けられているが、ICチップ10と水晶振動子1aとは、同一モジュール内に実装されていてもよい。
 ICチップ10に実装されている第1の実施形態に係る水晶発振器は、水晶振動子1aに電圧を印加する発振回路1と、発振回路1に必要なバイアス信号BIASを生成するバイアス生成回路2と、昇圧回路3とから構成される。ここで、昇圧回路3は、バイアス生成回路2を駆動するための回路である。なお、発振回路1とバイアス生成回路2とは、それぞれ、図7における発振回路1とバイアス生成回路2と同様である。
 ここで、発振回路1と、バイアス生成回路2と、昇圧回路3とは、ICチップ10内に実装されている。また、このICチップ10は、外部の電源から電源電圧VDDの供給を受けるための電源用端子11と、接地接続のための接地用端子12と、水晶振動子1aと発振回路1とを接続するための振動子用端子13と、発振回路1からの出力周波数をICチップ10の外部に出力する出力端子FOUTと、をさらに備える。
 バイアス生成回路2は、例えば、特許文献1に記載の近似3次関数発生装置等からなる温度補償回路で実現してもよく、発振回路1を駆動するために必要な基準電圧あるいは基準電流を生成する回路で実現してもよく、温度補正用パラメータを格納するメモリ回路等で実現してもよい。
 バイアス生成回路2から出力されるバイアス信号BIASは、例えば、TCXOの場合は、温度補償電圧を含むバイアス信号BIASである。そして、そのバイアス信号BIASは、発振回路1内にある電圧可変容量素子の制御電圧として供給される事で、発振周波数を任意に制御し、水晶の温度特性を補償することができる。
 また、バイアス生成回路2から出力されるバイアス信号BIASは、例えば、SPXO(パッケージ水晶発振器)の場合は、発振回路1を駆動するために必要な基準電圧や基準電流を含むバイアス信号BIASである。そして、そのバイアス信号BIASは、発振回路1内の発振器電流等のリファレンスとして供給されることで、電源電圧VDDの変動による発振周波数の変動を良好にすることができる。
 また、昇圧回路3は、電源電圧VDDを昇圧して電源電圧VDDよりも高い電圧である昇圧電圧HVDDを生成する回路であり、この昇圧電圧HVDDにより生成回路2を駆動する。すなわち、第1の実施形態に係る水晶発振器は、昇圧回路3を有することによって、電源電圧VDDが低くてもバイアス生成回路2を昇圧電圧HVDDで駆動できる。これにより、従来の回路構成をそのまま採用することが可能であるとともに、バイアス生成回路2内のダイナミック・レンジも減少しないため、位相ノイズ劣化を防ぐことが可能となる。この様に、水晶発振器を構成するバイアス生成回路の種類に関わらず、本発明は有用であるといえる。
 また、水晶発振器が実装されるICチップ10と、その他の素子(電源やICチップ20等)は、それぞれ、異なるメーカーによって製造される場合がある。この場合、図1に示すように、水晶発振器が一つのICチップ10内に実装されていれば(すなわち、昇圧回路3がICチップ10内に備えられていれば)、電子機器の省電力化のために電源電圧VDDが低くなるように設定したい場合でも、電源やICチップ20等を製造するメーカーは、その低電力化による水晶発振器への影響を考慮せずに、電源やICチップ20等を製造することが可能となる。
 また、昇圧回路3の動作に必要なクロックは、ICチップ10の外部から入力されるように構成することも可能である。しかしながら、近年、水晶発振器は、小型化が進んでおり、ピン数に制約がある。そこで、RC回路等で構成される発振回路をICチップ10内に内蔵することによって、ピン数を増やすことなく第1の実施形態に係る水晶発振器を実現することが可能である。
 また、バイアス生成回路2は、出力周波数の温度特性を補償する温度補償信号を生成する回路を含み、その温度補償信号がバイアス信号BIASとして発振回路1に供給されるようになっていてもよい。さらに、バイアス生成回路2は、バイアス生成回路2を構成する全ての回路が昇圧電圧HVDDで駆動される必要はなく、その一部の回路が電源電圧VDDで駆動されるようになっていてもよい。
(第2の実施形態)
 図2は、第2の実施形態に係る水晶発振器の構成の一例を示すブロック図である。なお、図2においては、実装基板100上のICチップ10以外の構成については省略しており、水晶発振器が実装されたICチップ10の構成のみを図示している(以降の実施形態においても同様)。図2に示される第2の実施形態に係る水晶発振器は、第1の実施形態に係る水晶発振器の構成とほぼ同様の構成を採るが、昇圧回路3が、発振回路1の出力信号により駆動される点が異なる。
 すなわち、昇圧回路3は、発振回路1の出力信号をクロックとして昇圧動作が実行される。これにより、昇圧回路3の出力電圧(昇圧電圧HVDD)に発生するスプリアス・トーンが発振周波数の整数倍のみとなり、昇圧電圧HVDDには非高調波スプリアスが現れることはない。
 ここで、出力端子FOUTには、出力波形(矩形、クリップド・サイン等)に起因する発振周波数の整数倍の高調波スプリアスが元々存在しているため、昇圧回路3の出力に上述のスプリアス・トーンが発生しても問題とならない。例えば、RC発振回路により昇圧回路3を駆動した場合、RC発振回路の出力周波数がスプリアス成分として出力端子FOUTに発生することがある。さらに、RC発振回路の出力周波数と発振回路1の発振周波数とがミキシングすることにより、様々な周波数帯に非高調波スプリアスが発生してしまう。しかしながら、第2の実施形態の水晶発振器によれば、これらの問題を回避することができる。
(第3の実施形態)
 図3は、第3の実施形態に係る水晶発振器の構成の一例を示すブロック図である。図3に示されるように、第3の実施形態に係る水晶発振器を構成するバイアス生成回路2は、(第1のバイアス回路である)発振促進用バイアス生成回路2aと、(第2のバイアス回路である)通常動作用バイアス生成回路2bと、切り替え部4とから構成される。また、第3の実施形態の水晶発振器は、切り替え部4を制御するための制御回路5を含んで構成される。
 発振促進用バイアス生成回路2aは、電源電圧VDDにより駆動され、水晶発振器の負性抵抗が向上して、発振が促進されるようなバイアスBIASDを出力する。一方、通常動作用バイアス生成回路2bは、昇圧電圧HVDDにより駆動され、水晶発振器が通常動作となるようなバイアスBIASHを出力する。ここでの「通常動作」とは、例えば、TCXOの場合には、温度補償が行われて予め定められた所定の発振周波数が出力される状態を意味する。
 また、制御回路5は、切り替え部4へ制御信号CONTROLを出力する。切り替え部4は、この制御信号CONTROLに応じて、発振促進用バイアス生成回路2aが出力するバイアスBIASDと通常動作用バイアス生成回路2bが出力するバイアスBIASHとを切り替える動作を行う。
 図4は、第3の実施形態に係る水晶発振器の動作の一例を示すタイミング図である。図4に示されるように、電源投入(電源電圧VDDの立ち上がり)とほぼ同時に、発振促進用バイアス生成回路2aが出力するバイアスBIASDがバイアス信号BIASとして発振回路1に入力され、水晶発振器の発振動作が促進される発振促進状態となる。発振動作が開始されて出力端子FOUTにクロックが出力されると、昇圧回路3が動作し、昇圧電圧HVDDが立ち上がる。その後、制御回路5の制御信号CONTROLによってバイアスBIASDとバイアスBIASHとが切り替えられ、水晶発振器は通常動作状態へと移行する。
 以上のように、第3の実施形態の水晶発振器によれば、電源投入時における水晶発振器の起動特性を向上させつつ、バイアス生成回路2を昇圧回路3で駆動することが可能となる。
 なお、制御回路5は、タイマー回路等により構成されることにより、時定数で制御を行うようになっていてもよい。
(第4の実施形態)
 図5は、第4の実施形態に係る水晶発振器の構成の一例を示すブロック図である。図5に示される第4の実施形態に係る水晶発振器の構成は、第3の実施形態に係る水晶発振器の構成(図3)とほぼ同様である。しかしながら、図3と異なる点は、制御回路5が、昇圧回路3の出力電圧(昇圧電圧HVDD)に基づいて、切り替え部4を制御し、バイアスの切り替え動作を実行させる点である。
 昇圧回路3が出力する昇圧電圧HVDDが、予め定められた所定の電圧Vth未満の場合、通常動作用バイアス生成回路2bの動作が不安定となることがある。通常動作用バイアス生成回路2bの動作が不安定な状態で、バイアスBIASHがバイアス信号BIASとして発振回路1に印加された場合には、負性抵抗が劣化して起動時間が遅くなり、発振が停止してしまうことがある。そのため、切り替え部4における切替え動作は、昇圧電圧HVDDが所定の電圧Vth以上になるようなタイミングで実行されることが望ましい。
 図6は、第4の実施形態に係る水晶発振器の動作の一例を示すタイミング図である。図4で説明したように、発振動作が開始されて出力端子FOUTにクロックが出力されると、昇圧回路3が動作して昇圧電圧HVDDが立ち上がる。第4の実施形態の水晶発振器では、その後、昇圧電圧HVDDがあらかじめ定められた所定の電圧Vthになったことを制御回路5が検出すると、制御回路5は、切り替え部4に制御信号CONTROLを出力する。そして、この制御信号CONTROLによって、切り替え部4は、発振回路1に出力するバイアス信号BIASを、バイアスBIASDからバイアスBIASHに切り替える。
 以上のように、第4の実施形態の水晶発振器によれば、制御回路5が、昇圧回路3の昇圧電圧HVDDが予め定められた所定の電圧Vthであるか否かを判定し、出力電圧HVDDが所定の電圧Vthである場合には、制御信号CONTROLを切り替え部4に出力する。切り替え部4は、この制御信号CONTROLが入力されることにより、発振回路1に出力するバイアス信号BIASを、バイアスBIASHからバイアスBIASDに切り替える動作を実行する。これにより、必要最低限の時間で、かつ、安定した水晶発振器の起動が可能となる。なお、所定の電圧Vthは、電源電圧VDDの立上り時と立下り時とでヒステリシスを有してもよい。
 なお、上記に説明した本発明の各実施形態においては、発振器の一例として水晶発振器で説明したが、発振器の発振素子を水晶振動子に限定するものでは無い。例えば、水晶振動子の代わりとして、SAW(surface acoustic wave)振動子やBOW(bulk acoustic wave)振動子、MEMS(Micro Electro Mechanical Systems)、セラミック発振子などを用いてもよい。これらの振動子であっても、同様の効果を奏する。
 以上、本発明の実施の形態について説明したが、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
 1 発振回路
 1a 水晶振動子
 2 バイアス生成回路
 2a 発振促進用バイアス生成回路
 2b 通常動作用バイアス生成回路
 3 昇圧回路
 4 切り替え部
 5 制御回路
 10 ICチップ(水晶発振器)
 11 電源用端子
 12 接地用端子
 13 振動子用端子
 20 ICチップ(処理回路)
 21 近似3次関数発生装置
 100 実装基板
 BIAS バイアス信号
 BIASH 通常動作用バイアス
 BIASD 発振促進用バイアス
 CONTROL 制御信号
 FOUT 出力端子
 VDD 電源電圧
 HVDD 昇圧電圧
 Vth 所定の電圧 

Claims (14)

  1.  発振回路と、
     前記発振回路を駆動するためのバイアス信号を生成するバイアス生成回路と、
     電源電圧を昇圧し、前記バイアス生成回路を駆動するための昇圧電圧を生成する昇圧回路と、
    を有することを特徴とする発振器。
  2.  前記昇圧回路は、前記発振回路の出力信号により駆動されることを特徴とする請求項1に記載の発振器。
  3.  前記バイアス生成回路は、
     前記電源電圧により駆動される第1のバイアス生成回路と、
     前記昇圧回路から出力される昇圧電圧により駆動される第2のバイアス生成回路と、
     前記第1のバイアス生成回路の出力と、前記第2のバイアス生成回路の出力と、を切り替える切り替え部と、
    を備える
    ことを特徴とする請求項1又は2に記載の発振器。
  4.  前記第1のバイアス生成回路は、発振を促進するための発振促進用バイアス生成回路であり、
     前記第2のバイアス生成回路は、通常動作を行うための通常動作用バイアス生成回路であることを特徴とする請求項3に記載の発振器。
  5.  前記切り替え部における切り替え動作を制御する制御回路をさらに有することを特徴とする請求項3又は4に記載の発振器。
  6.  前記制御回路は、前記昇圧回路から出力される前記昇圧電圧が所定の電圧であるか否かを判定し、前記昇圧電圧が所定の電圧である場合には、前記切り替え部における切り替え処理を実行するための制御信号を出力することを特徴とする請求項5に記載の発振器。
  7.  前記バイアス生成回路は、温度補償回路であることを特徴とする請求項1乃至6のいずれかに記載の発振器。
  8.  前記バイアス信号は、温度補償電圧を含むことを特徴とする請求項7に記載の発振器。
  9.  前記バイアス信号は、前記発振回路内にある電圧可変容量素子の制御電圧として供給されることを特徴とする請求項8に記載の発振器。
  10.  前記バイアス生成回路は、前記発振回路を駆動するために必要な基準電圧あるいは基準電流を生成する回路であることを特徴とする請求項1乃至6のいずれかに記載の発振器。
  11.  前記バイアス信号は、前記発振回路を駆動するために必要な基準電圧や基準電流を含むことを特徴とする請求項10に記載の発振器。
  12.  前記バイアス信号は、前記発振回路内の発振器電流のリファレンスとして供給されることを特徴とする請求項11に記載の発振器。
  13.  前記バイアス生成回路は、温度補正用パラメータを格納するメモリ回路であることを特徴とする請求項1乃至6のいずれかに記載の発振器。
  14.  発振回路と、前記発振回路を駆動するためのバイアス信号を生成するバイアス生成回路と、電源電圧を昇圧し、前記バイアス生成回路を駆動する昇圧回路と、を内部に備え、
     前記電源電圧を供給する外部の電源からの電力の供給を受けるための電源用端子と、
     前記発振回路によって制御される振動子と前記発振回路とを接続するための振動子用端子と、
     接地接続のための接地用端子と、
     前記発振回路の出力信号を出力するための出力端子と、
    を備えることを特徴とするICチップ。 
PCT/JP2012/007243 2011-12-09 2012-11-12 発振器およびicチップ WO2013084411A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12855082.9A EP2784932A1 (en) 2011-12-09 2012-11-12 Oscillator and ic chip
CN2012800037310A CN103250347A (zh) 2011-12-09 2012-11-12 振荡器和ic 芯片
US13/993,490 US8988159B2 (en) 2011-12-09 2012-11-12 Oscillator and IC chip
JP2013511200A JP5592562B2 (ja) 2011-12-09 2012-11-12 発振器およびicチップ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-270583 2011-12-09
JP2011270583 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013084411A1 true WO2013084411A1 (ja) 2013-06-13

Family

ID=48573805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007243 WO2013084411A1 (ja) 2011-12-09 2012-11-12 発振器およびicチップ

Country Status (5)

Country Link
US (1) US8988159B2 (ja)
EP (1) EP2784932A1 (ja)
JP (1) JP5592562B2 (ja)
CN (1) CN103250347A (ja)
WO (1) WO2013084411A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140100855A (ko) * 2013-02-07 2014-08-18 에스케이하이닉스 주식회사 주기신호생성회로
JP6226127B2 (ja) * 2013-10-30 2017-11-08 セイコーエプソン株式会社 発振回路、発振器、発振器の製造方法、電子機器及び移動体
FI125611B (en) 2014-02-12 2015-12-15 Murata Manufacturing Co Drive circuit for starting a MEMS resonator
FI126019B (en) 2014-02-12 2016-05-31 Murata Manufacturing Co Drive circuit for a MEMS resonator
JP2015198339A (ja) * 2014-04-01 2015-11-09 セイコーエプソン株式会社 発振回路、発振器、電子機器、移動体及び発振器の制御方法
JP6705243B2 (ja) * 2016-03-25 2020-06-03 セイコーエプソン株式会社 発振器、電子機器及び移動体
CN114928355B (zh) * 2022-07-20 2022-10-28 广东大普通信技术股份有限公司 基于晶体振荡器的电压补偿方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316906A (ja) * 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd 高周波発振装置
JPH03201605A (ja) * 1989-11-09 1991-09-03 Matsushita Electric Ind Co Ltd 発振器
JP2006100526A (ja) * 2004-09-29 2006-04-13 Renesas Technology Corp 半導体集積回路装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201605B2 (ja) * 1990-09-27 2001-08-27 株式会社前川製作所 気体の除湿方法
JPH05259738A (ja) 1992-03-13 1993-10-08 Hitachi Ltd 発振回路
JP3171963B2 (ja) 1992-11-12 2001-06-04 株式会社東芝 半導体集積回路
US5481229A (en) * 1994-11-29 1996-01-02 Motorola, Inc. Low power temperature compensated crystal oscillator
JP2952815B2 (ja) 1995-10-02 1999-09-27 セイコーインスツルメンツ株式会社 超音波モータ装置
JPH10145139A (ja) * 1996-11-06 1998-05-29 Matsushita Electric Ind Co Ltd 水晶発振装置とその調整方法
JP3233946B2 (ja) 1997-06-02 2001-12-04 旭化成マイクロシステム株式会社 近似3次関数発生装置及びこれを使用した温度補償水晶発振回路並びに温度補償方法
JP2000068742A (ja) 1998-08-17 2000-03-03 Citizen Watch Co Ltd 電圧制御圧電発振器
JP2003174323A (ja) 2001-12-05 2003-06-20 Matsushita Electric Ind Co Ltd 半導体集積回路
JP5262901B2 (ja) 2009-03-26 2013-08-14 セイコーエプソン株式会社 発振器
JP2010239527A (ja) * 2009-03-31 2010-10-21 Panasonic Corp 電圧制御発振器、並びにそれを用いたpll回路、fll回路、及び無線通信機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316906A (ja) * 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd 高周波発振装置
JPH03201605A (ja) * 1989-11-09 1991-09-03 Matsushita Electric Ind Co Ltd 発振器
JP2006100526A (ja) * 2004-09-29 2006-04-13 Renesas Technology Corp 半導体集積回路装置

Also Published As

Publication number Publication date
CN103250347A (zh) 2013-08-14
EP2784932A1 (en) 2014-10-01
JPWO2013084411A1 (ja) 2015-04-27
US20130335153A1 (en) 2013-12-19
US8988159B2 (en) 2015-03-24
JP5592562B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5592562B2 (ja) 発振器およびicチップ
JP3358619B2 (ja) 温度補償型発振器、温度補償型発振器の制御方法及び無線通信装置
US7579917B2 (en) Output circuit for oscillator
JP2007267246A (ja) 基準電流制御回路、温度補償機能付き水晶発振器制御ic、水晶発振器、tcxoモジュールおよび携帯電話機
WO2004079895A1 (ja) 水晶発振回路
JP2007208584A (ja) 周波数調整回路
JP2011217349A (ja) 水晶発振回路
JP5311545B2 (ja) 発振器
JP5291564B2 (ja) 発振器
JP5253318B2 (ja) 発振装置
CN113315512B (zh) 电荷泵电路、pll电路和振荡器
JP7190331B2 (ja) 温度補償電圧生成回路、発振モジュール、及び、システム
JP4547226B2 (ja) 発振器及び半導体装置
JP2022170966A (ja) 回路装置及び発振器
JP2009290380A (ja) 発振器
JP2008099257A (ja) 発振回路
JP5178457B2 (ja) 発振器
JP5746650B2 (ja) 発振器
US11664765B2 (en) Circuit device and oscillator
JP7459704B2 (ja) 回路装置及びリアルタイムクロック装置
JP4788269B2 (ja) 圧電発振器
JP5962895B2 (ja) 発振器及び電子機器
KR100723226B1 (ko) 수정 발진 회로
JP2013009128A (ja) 発振器
JP2024014277A (ja) 回路装置及び振動デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013511200

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993490

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012855082

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE