WO2013083066A1 - 一种含磷脂的食用油及其制备方法 - Google Patents

一种含磷脂的食用油及其制备方法 Download PDF

Info

Publication number
WO2013083066A1
WO2013083066A1 PCT/CN2012/086133 CN2012086133W WO2013083066A1 WO 2013083066 A1 WO2013083066 A1 WO 2013083066A1 CN 2012086133 W CN2012086133 W CN 2012086133W WO 2013083066 A1 WO2013083066 A1 WO 2013083066A1
Authority
WO
WIPO (PCT)
Prior art keywords
phospholipid
oil
less
edible oil
content
Prior art date
Application number
PCT/CN2012/086133
Other languages
English (en)
French (fr)
Inventor
周纪元
Original Assignee
Zhou Jiyuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhou Jiyuan filed Critical Zhou Jiyuan
Publication of WO2013083066A1 publication Critical patent/WO2013083066A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin

Definitions

  • the invention belongs to the field of food and agricultural product processing, and in particular to the field of edible oils, and more particularly to a phospholipid-containing edible oil and a preparation method thereof. Background technique
  • Edible oil is an important daily necessities.
  • the intake of oil (edible oil) per person recommended by the Chinese Nutrition Society should be less than 25 grams per day.
  • the Ministry of Health survey shows that the average daily intake of oil in our country is 44 grams, far exceeding the recommendation of the Nutrition Society. intake. This suggests that people should reduce their oil intake.
  • Phospholipids are a class of lipids containing phosphoric acid and are widely distributed in nature. Phospholipids are a basic component of biofilms, and all cells contain phospholipids. Phospholipids play an important role in the metabolism and structure of life.
  • Phospholipids can be hydrolyzed into glycerol, fatty acids, phosphoric acid and various amino alcohols (such as choline, ethanolamine, serine, etc.) by various phospholipases in vivo.
  • Glycerol can be converted to dihydroxyacetone phosphate to participate in sugar metabolism.
  • Fatty acids are decomposed by O-oxidation.
  • Phosphoric acid is an indispensable substance in the metabolism of various substances in the body.
  • Various amino alcohols can participate in the re-synthesis of phospholipids in the body, and choline can also be converted to other substances by transamination.
  • lecithin phosphatidylcholine
  • Keci Greek lego thos (yolk) in 1850.
  • Thin lecithin
  • the US Food and Drug Administration lists it as a GRAS (Genera l ly Recognized As Safe).
  • Lecithin has the function of lowering cholesterol and regulating blood lipids. Adding a certain amount of lecithin to the edible oil allows people to supplement the daily diet with a sufficient amount of lecithin to achieve health care, especially for patients with high cholesterol and high blood fat. In addition, lecithin also has the function of brain strengthening, enhancing memory and delaying aging. In addition, lecithin has a certain antioxidant effect.
  • the inventors have conducted intensive research and creative labor to obtain a phospholipid-containing edible oil and a preparation method thereof, and surprisingly found that by removing moisture and/or sugar and/or glycolipid in edible oil or effectively reducing The content of moisture and/or sugar and/or glycolipid in the edible oil, the obtained phospholipid-containing edible oil is stable (for example, it is left at room temperature for more than 18 months) Precipitation occurs, while heating (for example at 280 ° C) does not produce or hardly produce black matter (no discoloration or almost no discoloration or slight discoloration). Furthermore, the inventors have surprisingly found that the edible oil of the present invention is capable of maintaining a high quality and mouthfeel while reducing the amount of cooking.
  • One aspect of the invention relates to a phospholipid-containing edible oil, wherein the phospholipid is present in an amount of from 0.05% to 5% (w/w); preferably, the phospholipid content is 0.05% - 2% (w/w); more preferably, the phospholipid content is from 0.1% to 0.5% (w/w); further preferably, the phospholipid content is from 0.12% to 0.3% (w/w), for example 0.12%, 0.13% , 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.20%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, or 0.3% (w/w).
  • the present inventors have found that when the phospholipid content is less than 0.05% (w/w), the effect is not obvious when cooking; when 0.05%-0.5% (w/w), the heating discoloration red value is less than 0.4 (according to the first-grade edible oil) National standard); Above 0.5% (w/w) but less than 5% (w/w), the heating color red value increases by less than 8 (red value is less than or equal to 8 when the consumer is acceptable); At the same time, although the effect of cooking is enhanced, it will cause the discoloration of the oil to be unacceptable.
  • edible oil is vegetable oil and/or animal oil (i.e., vegetable oil and/or animal oil containing phospholipid); specifically, selected from peanut oil (including pressed peanut oil and/or Refined peanut oil), soybean oil, corn oil, rapeseed oil, and olive oil.
  • vegetable oil and/or animal oil i.e., vegetable oil and/or animal oil containing phospholipid
  • peanut oil including pressed peanut oil and/or Refined peanut oil
  • soybean oil including pressed peanut oil and/or Refined peanut oil
  • corn oil corn oil
  • rapeseed oil rapeseed oil
  • olive oil olive oil
  • the organism mainly contains two major types of phospholipids, a phospholipid composed of glycerol is called phosphoglyceride, and a phospholipid composed of sphingosine is called sphingolipid (sphingol ipid).
  • glycerophospholipids can be classified into Phosphatidyl cholines (PC), Phosphatidyl ethanolamines (PE), and Phosphat idyl serines according to the polarity of the head group.
  • PC Phosphatidyl cholines
  • PE Phosphatidyl ethanolamines
  • Phosphat idyl serines according to the polarity of the head group.
  • PS Phosphatidyl inositols
  • PG phosphatidylglycerol
  • PA phosphatidic acid
  • phospholipid in the present invention may be a single phospholipid (purified substance) as described above. It may also be a mixture of phospholipids in any ratio of the above various single phospholipids.
  • the phospholipid is a glycerophospholipid and/or a sphingomyelin; specifically, selected from the group consisting of phosphatidylcholine (lecithin), phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phospholipid Any one or more of acylglycerol and glycerophosphatidic acid; preferably, the phospholipid is lecithin.
  • the content of phosphatidylcholine is not less than 50%, 60%, 70%, or 80% (w/w).
  • the edible oil according to any one of the present invention wherein the phospholipid is an artificially added phospholipid and/or a non-artificially added phospholipid (e.g., a phospholipid retained or partially retained in an edible oil).
  • the phospholipid retained or partially retained in the edible oil refers to the content of de-sugar and/or de-saturated fat or reduced sugar and/or glycolipid in the edible oil, and the phospholipid is partially or completely retained in the edible oil instead of After the phospholipid is extracted, it is added to the edible oil after being subjected to de-sugarization and/or de-glycolipidation or reduction of sugar and/or glycolipid; it can be achieved by another preparation method of the edible oil of the present invention hereinafter.
  • the edible oil according to any one of the present invention wherein the phospholipid and the edible oil are derived from the same and/or different oil crops (e.g., seeds or nuts of an oil crop).
  • the source of the phospholipid to be used is not particularly limited, and it is preferred to use a phospholipid extracted from seeds or nuts of an oil crop for oil production.
  • phospholipids added to peanut oil are extracted from peanuts
  • phospholipids added to soybean oil are extracted from soybeans. Without being bound by theory, this can reduce costs and the compatibility of phospholipids with cooking oils is better.
  • the phospholipid may be a by-product produced in a vegetable oil (e.g., peanut oil, soybean oil, etc.) preparation process (which may be a conventional method well known to those skilled in the art); optionally, the phospholipid is treated; the treatment method is described later. A description of the phospholipid treatment in the method.
  • a vegetable oil e.g., peanut oil, soybean oil, etc.
  • lecithin reduces the surface tension of oil molecules, making oil molecules more diffuse and more fully attached to the surface of vegetables.
  • the spread of the seasonings and the maturity of the dishes are improved, and the effect of saving energy and using less seasonings is achieved.
  • the inventors have shown through experiments that the sensory effect of the original oil amount can be achieved by using half of the usual oil amount during cooking, and even the dish is brighter and more lustrous. This will greatly reduce the intake of human oil and fat, and help improve the current Chinese residents. The current situation of excessive oil intake.
  • an edible oil according to any one of the present invention, wherein the content of the sugar and/or glycolipid in the phospholipid is less than 100 mg/Kg, such as less than 90, 80, 70, or 60 mg/Kg; preferably, Less than 50 mg/Kg, such as less than 40, 30, 20, or 15 mg/Kg; more preferably, less than 10 mg/Kg, such as less than 9, 8, 7, 6, 5, 4, 3, 2, or 1 mg /Kg.
  • the edible oil (particularly, the phospholipid is an edible oil of phospholipids retained or partially retained in the edible oil) has a sugar and/or glycolipid content of less than or equal to 5 mg/kg; Preferably it is less than or equal to 3 mg/kg (eg less than or equal to 2.8 mg/kg, less than or equal to 2.6 mg/kg, less than or equal to 2.5 mg/kg, less than or equal to 2.4 mg/kg, less than or equal to 2.2 mg/kg More preferably, it is less than or equal to 2 mg/kg (for example, less than or equal to 1.8 mg/kg, less than or equal to 1.6 mg/kg, less than or equal to 1.5 mg/kg, less than or equal to 1.4 mg/kg, less than or equal to 1.2); Mg/kg); particularly preferably less than or equal to 1 mg/kg, less than or equal to 0.5 mg/kg or less than or equal to 0.1 mg/kg.
  • the edible sugar (particularly the phospholipid is an edible oil of phospholipids which are retained or partially retained in the edible oil) has a sugar and/or glycolipid content of ⁇ 1 mg/kg; preferably ⁇ 0 ⁇ 5 mg/kg; more preferably ⁇ 0.1 mg/kg.
  • the sugar includes monosaccharides and/or oligosaccharides, and includes, for example, one or more of fructose, sucrose, maltose, lactose, raffinose, and stachyose.
  • the glycolipid is a complex lipid carrying one or more covalently linked glycosyl groups, including, for example, monogalactoic acid diglyceride (MGDG), monogalactosyl monoester (MGMG), and galactose.
  • MGDG monogalactoic acid diglyceride
  • MGMG monogalactosyl monoester
  • galactose galactose
  • DGDG glycidyl ester
  • DGMG galactose monoester
  • the edible oil according to any one of the present invention wherein the edible oil has a moisture content of less than 400 mg/kg; preferably, less than 300 mg/kg; more preferably, less than 150 mg/kg.
  • Another aspect of the invention relates to a packaged edible oil, comprising an edible oil and a packaging container, wherein the edible oil is the edible oil according to any one of the invention, wherein the packaging container has a water permeability coefficient lower than A container made of 55 g/m 2 (retained at 38 ° C for 24 hours, 90% relative humidity) or water per gram of water per kilogram of oil in the container. Increase the amount of containers below 4.4mg.
  • the water permeability and water permeability coefficient can be calculated according to the following formula:
  • Another aspect of the invention relates to a method for preparing a phospholipid-containing edible oil, comprising the step of adding a phospholipid; optionally, the phospholipid is present in an amount of from 0.05% to 5% (w/w); preferably, the phospholipid content More preferably, the phospholipid content is from 0.1% to 0.5% (w/w); more preferably, the phospholipid content is from 0.12% to 0.3% (w/w).
  • the phospholipid is a glycerophospholipid and/or a sphingomyelin; specifically, selected from the group consisting of phosphatidylcholine (lecithin), phosphatidylethanolamine, phosphatidylserine, phosphatidyl Any one or more of inositol, phosphatidylglycerol, and glycerophosphatidic acid; preferably, the phospholipid is lecithin.
  • the edible oil is brought to a temperature of from 60 ° C to 80 ° C, and a phospholipid is further added.
  • the viscosity of the oil is relatively large. The inventors have found that stirring at a temperature higher than 60 ° C can dissolve the phospholipid better; the phospholipid is easily denatured and oxidized at 80 ° C or higher, and the temperature cannot be higher than 80. °C.
  • the edible oil of the present invention may be first prepared according to the common processes or methods of those skilled in the art. Preparation, for example:
  • the common preparation methods include the steps of selecting materials, crushing, steaming, frying, pressing oil, filtering, etc.; for example, refining peanut oil, the common preparation method is to use peanut butter as a by-product of pressing peanut oil processing.
  • the raw materials are obtained by the steps of leaching, steaming, degumming, filtration, and the like.
  • the term “squeezed peanut oil” means an oil obtained by direct pressing of peanuts.
  • refined peanut oil refers to the oil obtained by the leaching process of peanuts.
  • the process for preparing pressed peanut oil and refined peanut oil is shown in Fi g.
  • the step of preparing the pressed peanut oil comprises: after the peanut is crushed, rolled, and steamed, the pressed peanut oil is obtained by hydraulic or spiral pressing, and the pressed peanut oil is obtained by filtration.
  • the step of preparing the refined peanut oil comprises: preparing the residue of the pressed peanut oil (the peanut cake, still containing a certain amount of oil) by solvent leaching, distillation to obtain peanut refined hair oil, hydrating degumming, taking off Refined peanut oil is obtained after acid and deodorization.
  • the source of the phospholipid to be used is not particularly limited, and it is preferred to use a phospholipid extracted from oil crop seeds or nuts for use in oil production, without being limited by theory, which can reduce the cost, and the compatibility of the phospholipid with the edible oil is better. .
  • the phospholipid extracted from the oil crop seed itself is generally a mixture comprising a plurality of phospholipids,
  • peanuts contain 0.44%-0. 62% of phospholipids, of which lecithin accounts for 35% of total phospholipids, and cephalin accounts for 64% of total phospholipids (refer to He Dongping, Liu Liangzhong, Yan Zipeng) Comprehensive Utilization of Oil and Fat Plants, Beijing: China Light Industry Press, 2011: 22-23).
  • Ordinary peanut oil still contains certain phospholipids.
  • the pressing process is different, the phospholipid content is not the same, and the total phospholipid content is generally below 500mg/kg.
  • the phospholipid may be a by-product produced in the preparation of vegetable oils (e.g., peanut oil, soybean oil, etc.), which may be conventional methods well known to those skilled in the art.
  • the methods for preparing phospholipids in the processing of peanut oil mainly exist in the following two ways: one is to prepare the filter residue when the pressed peanut oil is filtered by the pressed oil, and the other is to prepare the hydrated oil foot when preparing the refined peanut oil.
  • the phospholipid is derived from a filter residue obtained by filtering a vegetable oil (for example, pressed peanut oil), which contains a large amount of phospholipids; specifically, the residue is extracted with n-hexane, evaporated to dryness, and hydrated. , concentrated, acetone deoiled, ethanol extracted to obtain phospholipids (crude phospholipids).
  • a vegetable oil for example, pressed peanut oil
  • the residue is extracted with n-hexane, evaporated to dryness, and hydrated. , concentrated, acetone deoiled, ethanol extracted to obtain phospholipids (crude phospholipids).
  • the peanut filter residue is dissolved in n-hexane, and the phospholipid component thereof is extracted, filtered, and concentrated in a vacuum to obtain a phospholipid-containing leaching oil, and hydrated by adding 2-3 times of water containing a phospholipid to obtain a hydration oil foot, followed by
  • the extraction and purification processes are the same as those used in the following methods using hydration oil feet.
  • the phospholipid is derived from a hydrated oil foot (which contains phospholipids) hydrated in the preparation of a refined vegetable oil (eg, refined peanut oil); specifically, by concentration, acetone deoiling, ethanol extraction Phospholipids (crude phospholipids). More specifically, the hydration oil feet are concentrated to remove the water therein to obtain concentrated phospholipids, and the added concentrated phospholipids are 2-4 times the amount of acetone to remove oils and fatty acids, and the phospholipids are not dissolved in acetone and precipitated, and concentrated under reduced pressure.
  • a hydrated oil foot which contains phospholipids
  • a refined vegetable oil eg, refined peanut oil
  • concentration acetone deoiling
  • ethanol extraction Phospholipids crude phospholipids
  • the powdered phospholipid is obtained, and the powdered phospholipid is extracted with 75%-100% ethanol, filtered, and concentrated under reduced pressure to obtain a crude phospholipid.
  • the crude phospholipid contains a certain amount of sugar and glycolipid, which can be purified by neutral alumina chromatography or de-sugarization by n-hexane ethanol to obtain the final phospholipid product.
  • the method comprises removing or reducing sugars and/or glycolipids in the edible oil, and/or removing or reducing phospholipids (especially crude phospholipids) prior to the addition of the phospholipids.
  • the steps of sugar and/or glycolipid Not limited by theory, general city
  • the amount of sugar and/or glycolipid in the oil (edible oil) is relatively low, and the sugar and/or glycolipid is mainly derived from phospholipids.
  • the method essentially comprises the steps of removing sugars and/or glycolipids from the phospholipids, or reducing the sugar and/or glycolipid content of the phospholipids.
  • Phospholipids contain about 1%-5% sugar and 1%-5% glycolipid, which are all from processing raw materials.
  • Sugar is mainly sucrose, stachyose, raffinose, etc.
  • the glycolipid is mainly monogalactosyldiester. , monogalacto-glycolate, bisgalactomannanoate, digalactosyl monoester, and the like.
  • the inventors have conducted intensive studies and found that controlling (or removing) the content of sugar and/or glycolipid in the phospholipid to 100 mg/kg or less can effectively control the color increase of the oil heating.
  • the content of the sugar and/or glycolipid in the phospholipid is less than 100 mg/Kg, such as less than 90, 80, 70, or 60 mg/Kg; preferably, less than 50 mg/Kg, such as less than 40, 30, 20, or 15 mg/Kg; more preferably, less than 10 mg/Kg, such as less than 9, 8, 7, 6, 5, 4, 3, 2, or 1 mg/Kg.
  • the ratio of phospholipid to alumina is greater than or equal to 1:4 (w/w), preferably 1:4 to 1:6 (w/w); more preferably 1 :4.5- 1: 5.5 (w/w), for example 1: 4.5, 1: 4.6, 1: 4.7, 1: 4.8, 1: 4.9, 1: 5.0, 1: 5.1, 1: 5.2, 1: 5.3, 1 : 5.4, or 1: 5.5 (w/w), etc.;
  • the content of the sugar and/or glycolipid in the final product (phospholipid) thus obtained is less than 100 mg/kg.
  • the alumina is activated at 400 ° C - 450 ° C for 3-4 hours before use; preferably at 400 ° C for 4 hours.
  • a concentration method may be employed; preferably, the temperature is 35 ° C - 45 ° C, and the degree of vacuum is ⁇ _ 0.08 MPa. You can also use the following method 2:
  • the content of the sugar and/or glycolipid in the final product (phospholipid) thus obtained is less than 100 mg/kg.
  • the step (2) is repeated 1 - 5 times (i.e., the above ethanol solution is again added to the n-hexane portion, which may be repeated), preferably repeated 3 times to obtain a n-hexane fraction.
  • the temperature is from 35 ° C to 45 ° C and the degree of vacuum is ⁇ -0.08 MPa.
  • the present invention also relates to a phospholipid prepared by the method for producing a phospholipid according to any of the above.
  • the invention further relates to the use of the above-described phospholipids in the preparation of a phospholipid-containing edible oil.
  • the phospholipid-containing edible oil has a phospholipid content of 0.05% to 5% (w/w); preferably, the phospholipid content is 0.05% to 2% (w/w); more preferably, the phospholipid content 0.1% - 0.5% (w/w); further preferably, the phospholipid content is from 0.12% to 0.3% (w/w), for example, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18 %, 0.19%, 0.20%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, or 0.3% (w/w).
  • the edible oil is vegetable oil and/or animal oil (ie, vegetable oil and/or animal oil containing a tablet); specifically, selected from peanut oil (including pressed peanut oil and/or refined peanut oil), Any one or more of soybean oil, corn oil, rapeseed oil, and olive oil.
  • the linseed and the edible oil are from the same and/or different oil crops (for example, seeds or nuts of an oil crop).
  • the moisture content in the present invention is less than 400 mg/kg (for example, 50 mg/kg to 400 mg/kg); preferably, less than 300 mg/kg; more preferably, less than 150 Mg/Kg.
  • the heating is carried out at 105 ° C - 150 ° C (preferably 105 ° C - 110 ° C) for 15 - 30 minutes; preferably 20 minutes while stirring.
  • the edible oil from which the moisture is removed or the moisture content is lowered is cooled to 60 ° C - 80 ° C, and then phospholipids are added.
  • the moisture is removed by concentration under reduced pressure or the moisture content is lowered; specifically, the pressure is reduced to 60 ° C - 80 ° C under a pressure vacuum of less than -0.08 MPa, and concentrated for 5-15 minutes ( Preferably, 10 minutes), preferably simultaneous stirring.
  • heating is steam indirect heating or heating tube heating.
  • the edible oil is vegetable oil and/or animal oil; specifically, selected from the group consisting of peanut oil, soybean oil, corn oil, rapeseed oil, and olive oil or A variety.
  • the preparation process of the invention is illustrated in Fig. 2.
  • the raw materials used in edible oil processing are mainly plant seeds and nuts. These seeds and nuts are rich in phospholipids.
  • peanuts contain 0.44% - 0.63% of phospholipids, soybeans 1.20% - 3.20%, and rapeseed 1.05% - 1.20, cottonseed 1.25% - 1.75%, sunflower seed 0.60% - 0.85%; the phospholipids in the oil are dissolved together with the oil during processing, the amount of phospholipid in the oil depends on the phospholipid content of the oil seed, the fat preparation
  • the method and process conditions such as leaching soybean oil containing 3%-4% of phospholipids, peanut oil containing 0.6% - 1.2%, rapeseed oil 1.5% - 2.5%, cottonseed oil 1.5% - 2.5% ( He Dongping, Liu Liangzhong, Yan Zipeng, Editor-in-Chief.
  • Another method for preparing the phospholipid-containing edible oil of the present invention is to retain or partially retain the phospholipid in the edible oil by adding or changing the steps of hot filtration, de-sugaring, and dehydration in a conventional process (instead of all or part of Is a manually added phospholipid).
  • the obtained phospholipid-containing oil also has the advantages of not depositing for 18 months, heating without discoloration or light discoloration. Specifically, the following steps are included:
  • the hair oil is heated to 45 ° C - 80 ° C; more preferably 50 ° C - 55 ° C.
  • the phospholipids will be filtered, and the phospholipids will remain in the oil when filtered at a temperature range of 35 ° C - 80 ° C.
  • Other solid impurities will be trapped; above 80 ° C causes oxidation of phospholipids, and the quality of phospholipids or edible oils decreases.
  • the heating and dehydrating time is 9 - 12 minutes (for example, 10 minutes).
  • alumina is preferably Grade I activated alumina; or Grade I activated alumina obtained after drying at 400 °C.
  • step 4 without limiting the theory, the inventors have found that phospholipids are filtered at temperatures below 35 ° C; higher than 40 ° C causes alumina to purify sugar and/or glycolipids. decline.
  • phospholipids are phospholipids retained or partially retained in edible oils
  • the edible oils especially phospholipids being edible oils of phospholipids retained or partially retained in edible oils
  • the glycolipid content is less than or equal to 5 mg/kg; preferably less than or equal to 3 mg/kg (eg, less than or equal to 2.8 mg/kg, less than or equal to 2.6 mg/kg, less than or equal to 2.5 mg/kg, less than or Equal to 2.4 mg/kg, less than or equal to 2.2 5 mg/kg, less than or equal to 1. 6 mg / kg, less than or equal to 1. 6 mg / kg, less than or equal to 1. 5 mg / kg, less than or equal to less than or equal to 1.
  • the phospholipid-containing edible oil (phospholipid is a phospholipid retained or partially retained in the edible oil) is obtained, wherein the edible oil has a sugar and/or glycolipid content of ⁇ 1 mg/kg; preferably ⁇ 0. 5 mg/kg; more preferably ⁇ 0 ⁇ 1 mg/kg.
  • the method de-sugar and/or de-sugar-free in an edible oil or reduce the content of sugar and/or glycolipid.
  • the phospholipid is partially or completely retained in the edible oil, instead of being extracted, the sugar-free and/or
  • the addition of glycolipid or sugar and/or glycolipid to the edible oil saves the operation steps to a certain extent; at the same time, the compatibility of the phospholipid with the edible oil is very good.
  • hair oil means: a primary oil that has been prepared from animal or vegetable oils without refining.
  • the hair oil includes peanut oil, cottonseed oil, soybean oil, rapeseed oil, and the like.
  • the phospholipid-containing edible oil of the present invention is stable (e.g., does not precipitate at room temperature for more than 18 months), and does not produce a black substance (no discoloration) when heated (e.g., at 280 ° C). Furthermore, the inventors have surprisingly found that the edible oil of the present invention is capable of maintaining a high quality and mouthfeel while reducing the amount of cooking.
  • Fig. 1 Flow chart of conventional peanut oil preparation process.
  • Fig. 2 is a flow chart showing the preparation process of the phospholipid-containing edible oil (peanut oil) of one embodiment of the present invention.
  • Fig. 3 is a flow chart showing a process for preparing a phospholipid-containing edible oil (peanut oil) according to another embodiment of the present invention.
  • Fig. 4 is a flow chart showing the preparation process of a phospholipid-containing edible oil (peanut oil) according to another embodiment of the present invention (retaining or partially retaining phospholipids).
  • Fig. 5 Flow chart of the preparation process of the phospholipid-containing soybean oil of Example 7.
  • Fig. 6 Flow chart of the preparation process of the phospholipid-containing corn oil of Example 8.
  • Fig. 7 Flow chart of the preparation process of the phospholipid-containing rapeseed oil of Example 9.
  • Fig. 8 Heating at 280 °C. Fig. 8A, control sample 2 (un-degassed);
  • Fig. 8B Sample prepared in Example 1 (degrose, ⁇ 100 mg/kg).
  • Fig. 9 Results of the fried noodle pot effect test.
  • Fig. 9A 20g control sample 1 (ordinary peanut oil) after the fried noodles;
  • Fig. 9B 10g control sample 1 (ordinary peanut oil) after the fried noodles;
  • Fig. 9C 10g of the sample prepared in Example 1 (containing phospholipids) Peanut oil) The bottom of the pot after the fried noodles.
  • Fig. 10 Results of the test for the release of eggs.
  • Fig. 10A Control sample 1 (2nd release);
  • Fig. 10B Sample prepared in Example 1 (2nd release).
  • Fig. 11 Results of the test of fried bean sprouts.
  • Fig. 11A Control sample 1 (general peanut oil);
  • Fig. l lB sample prepared in Example 1 (phospholipid-containing peanut oil). detailed description
  • the obtained phospholipids are subjected to de-sugarization, and the steps are as follows:
  • Phospholipid->ethanol dissolution liquid to liquid ratio: 1:20
  • Alumina chromatography neutral alumina, activated at 400 ° C for 4 h, ratio of phospholipid to alumina: 1: 6)
  • vacuum concentration - 0.095 MPa, 45 ° C
  • final product de-sugar phospholipids.
  • the degumming step of the obtained phospholipid was carried out in the same manner as in Example 1.
  • Example 4 Preparation of phospholipid-containing peanut oil (4)
  • Example 5 Preparation of phospholipid-containing peanut oil (5)
  • Example 6 Preparation of phospholipid-containing peanut oil (6) As shown in Fig. 4.
  • the preparation method is shown in Fig. 5.
  • the step of preparing the soybean oil feet is a conventional technique: preparation of a phospholipid, a de-sugarizing step, and addition of a phospholipid, except that the raw material is a soybean oil foot, and other steps are referred to in Example 1.
  • the step of preparing the corn oil feet is a conventional technique: preparation of a phospholipid, a de-sugarizing step, and addition of a phospholipid, except that the raw material is a corn oil foot, and other steps are referred to in Example 1.
  • the step of preparing the rapeseed oil foot is a conventional technique: preparation of a phospholipid, a de-sugarizing step, and addition of a phospholipid, except that the raw material is a rapeseed oil, and other steps are referred to in Example 1.
  • Reference samples both pressed peanut oil
  • Reference samples include:
  • Control sample 1 Common peanut oil without phospholipid (un-sugared, not dehydrated), prepared according to the method of Fig. 1.
  • Control sample 2 Phospholipid-containing peanut oil which had not been de-sugared and dehydrated was prepared according to the methods of Example 1 and Fig. 2 except that no de-sugar treatment was carried out.
  • Control sample 3 Delipidated, dehydrated, phospholipid-containing peanut oil, according to Example 1 and Fig. 2 The method was prepared except that no dehydration treatment was carried out.
  • Control sample 4 A phospholipid-containing pressed peanut oil obtained by the method of Example 6, but which was subjected to a dehydration and de-saccharification step after the filtration of the oil.
  • Example 11 Determination of moisture content
  • the moisture content is determined according to GB 5009. 3-2010 Determination of moisture in foods. "Fourth Decal - Fischer method”.
  • Example 13 Determination of sugar content and glycolipid content in phospholipids
  • Determination method 0.25 g of phospholipid sample was weighed in a 10 mL volumetric flask, dissolved in n-hexane, and separated by thin layer chromatography, and the different ribbons were scraped off, and the K0H-ethanol solution was hydrolyzed to measure the sugar content by the film reagent method.
  • the method for detecting sugar is as follows:
  • MGDG monogalactosyldiester
  • MGMG monogalactosyl monoester
  • DGDG digalactosyldiester
  • DGMG digalactosyl monoester
  • the experimental samples were placed in a closed climate chamber with a temperature of 18 ° C, 37 ° C, and a humidity of 50%-60% RH, which was transparent to natural light (without direct sunlight). Regular observations are for transparency, color, acid value (AV) and peroxide value (P0V).
  • AV acid value
  • P0V peroxide value
  • the method for detecting transparency is based on GB/T 5525-2008 Vegetable Oil and Fat Inspection "Transparency Identification Method";
  • the detection method of color is carried out according to the determination of animal and vegetable fat and oil color of GB/T 22460-2008;
  • the method for detecting acid value is based on the determination of the acid value and acidity of animal and vegetable oils according to GB/T 5530-2005;
  • the method for detecting the value of peroxidation is based on the determination of the peroxide value of animal and vegetable oils in GB/T 5538-2005.
  • Example 15 Heating experiment at 280 ° C
  • the experimental method is verified according to the GB 5531-2008 grain and oil test-vegetable oil heating test. Take 50mL of fat and lOOmL beaker, heat to 280 °C in 16 minutes - 18 minutes, and inject into the 25. 4mm colorimetric tank, using Lovibond colorimetric The test is performed to compare the change in color before and after heating.
  • Example 8 0. 1 Qualified Example 9 0. 4 Qualified control sample 2 9. 5 unqualified, and can not accept the control sample 4 11. 1 failed, and can not accept the filtration in Example 8
  • the red value is the Lovibond color value unit; the result is judged as the red value increase is less than or equal to 0.4. Consumers are acceptable when the red value increases by less than or equal to 8.
  • Example 16 Stir-fried noodle pot effect test
  • the release capability is the ability of the food to be isolated from the mold or processing equipment and to be easily removed after baking.
  • the experimental results show that ordinary oil can only be taken out once, and it is impossible to start bonding with the pot even once.
  • the oil added with phospholipids can be unbonded multiple times.
  • the number of demolding is shown in Table 7 below.
  • the edible oil of the present invention has a good releasing ability, and as the concentration of the phospholipid increases, the releasing ability is improved.
  • Example 18 Effect of fried bean sprouts
  • mice sprouts purchased from ordinary mung bean sprouts on the market
  • chopped green onion purchased from ordinary onions on the market
  • common flower in Example 10 Raw oil, salt (purchased from the market common edible iodized salt), MSG (purchased from the market common edible MSG), wok (purchased from the ordinary uncoated iron pan on the market, thickness 1. 4mm, diameter 34cm).
  • Experimental method Heat the cleaned pot to 200 °C, add 10g of fat and then put 10g of green onion flower to start timing, quickly add 200g of bean sprouts, stir fry for 110 seconds, add 2g of salt and 2g of MSG, 120 seconds later, take out into the dish In the middle, observe the surface gloss and taste.
  • the fats and oils added with phospholipids of the present invention can be quickly coated on the surface of the bean sprouts to increase the surface gloss of the bean sprouts, and the taste is smooth and delicious.

Abstract

本发明属于食品和农产品加工领域,具体地,涉及食用油领域,更具体地,涉及一种含磷脂的食用油及其制备方法。进一步具体地,本发明涉及一种含磷脂的食用油,其中,所述磷脂的含量为0.05%-5%(w/w);优选地,磷脂含量为0.1%-0.5%(w/w);更优选为0.12%-0.3%(w/w)。本发明的含磷脂的食用油稳定性良好(例如在常温下放置大于18个月不发生沉淀),同时加热(例如在280°C)时不产生或几乎不产生黑色物质(不变色或几乎不变色)。此外,本发明人还惊奇地发现,本发明的食用油能够在减少用量的同时保持较高的炒菜质量和口感。

Description

一种含磷脂的食用油及其制备方法 技术领域
本发明属于食品和农产品加工领域, 具体地, 涉及食用油领域, 更具体地, 涉及一种含磷脂的食用油及其制备方法。 背景技术
食用油是重要的生活用品。 中国营养学会推荐的每人每天油脂(食 用油) 的摄入量应少于 25克, 但卫生部调查显示, 我国居民实际平均 每曰摄入油脂量为 44克, 远远超过营养学会推荐的摄入量。 这提示人 们应该减少油脂的摄入。
然而目前的食用油不管是大豆油、 玉米油还是花生油等等都存在这 样的问题: 为了身体的健康炒菜时少用油, 炒出来的菜质量下降, 不合 乎中国人的口味。 而炒菜时多用油, 在浪费油脂的同时也在损害了自己 的健康。
因此, 需要开发能够减少用量并且同时保持较高的炒菜质量和口感 的食用油。
磷脂是一类含有磷酸的脂类, 在自然界分布广泛。 磷脂是生物膜的 基本组成成分, 所有的细胞中都含有磷脂。 磷脂在生命过程中起代谢作 用和结构形成作用, 是重要的生命物质。
磷脂在生物体内可经各种磷脂酶作用水解为甘油、 脂肪酸、 磷酸和 各种氨基醇(如胆碱、 乙醇胺、 丝氨酸等)。 甘油可以转变为磷酸二羟 丙酮, 参加糖代谢。 脂肪酸经 0 -氧化作用而分解。 磷酸是体内各种物 质代谢不可缺少的物质。 各种氨基醇可以参加体内磷脂的再合成, 胆碱 还可以通过转曱基作用转变为其他物质。
其中, 卵磷脂 (磷脂酰胆碱)最早由 Uauquel in于 1812年从人脑 中发现, 又由 Gobley于 1844年从蛋黄中分离出, 并于 1850年按希腊 文 leki thos (蛋黄) 命名为 Keci thin (卵磷脂 ), 磷脂是动植物中细 胞膜、 核膜、 质体膜的基本成分, 是生命的基础物质之一, 被国际公认 为人类血管的清道夫和最安全的食品乳化剂, 应用非常广泛, 美国食品 药品管理局将其列为 "普遍公认安全" ( GRAS, Genera l ly Recognized As Safe )级。
卵磷脂具有降低胆固醇、 调节血脂的功能。 在食用油中添加一定量 的卵磷脂, 使人们在日常的饮食中补充足够量的卵磷脂, 达到保健的作 用,特别对于高胆固醇、 高血脂患者更是调节身体健康的好方法。 另夕卜, 卵磷脂还具有健脑、 增强记忆力、 延緩衰老的功能。 此外, 卵磷脂还具 有一定的抗氧化作用。
虽然磷脂(如卵磷脂)的保健功能及乳化能力非常显著, 但油脂中 一旦含有较高浓度的磷脂(如卵磷脂),却会被认为该油脂质量不合格, "会发生沉淀, 不可保存" , "加热会产生严重的黑褐色物质, 影响感 官" 。 沉淀、 变色几乎成了油脂行业对磷脂的代名词。 国家标准(例如 GB1534-2003花生油) 中对其变色做了严格的限制, 一级压榨花生油在 280°C加热, 红色值增加不可超过 0. 4。
此外, 尽管我国历年的《食品添加剂使用标准》 中都把磷脂类列为 在生产中可适量添加的添加剂, 但却排除了在食用油或植物油中的应 用, 原因在于是含磷脂的油脂在加热时容易产生的颜色变化、 难闻的气 味以及在储存中产生的沉淀是难以让消费者接受。 故此, 目前的食用油 中都是需要脱去磷脂的,公开号为 CN1814719A和 CN101258882A的中国 专利申请中分别公开了相应的脱磷脂的方法。
如果能有效地改善上述不足, 使之被消费者认可, 则会给消费者带 来很大的利益。 因此,如果要将具有保健和乳化功能的磷脂(如卵磷脂) 保留在油脂中, 迫切需要解决其沉淀和变色的技术难题。 发明内容
本发明人经过深入的研究和创造性的劳动, 得到了一种含磷脂的 食用油及其制备方法,并且惊奇地发现,通过除去食用油中的水分和 / 或糖和 /或糖脂或有效降低食用油中的水分和 /或糖和 /或糖脂的含量, 得到的含磷脂的食用油稳定性良好(例如在常温下放置大于 18个月不 发生沉淀) , 同时加热 (例如在 280°C ) 时不产生或几乎不产生黑色 物质 (不变色或几乎不变色或轻微变色) 。 此外, 本发明人还惊奇地 发现, 本发明的食用油能够在减少用量的同时保持较高的炒菜质量和 口感。 由此提供了下述发明: 本发明的一个方面涉及一种含磷脂的食用油, 其中, 所述磷脂的 含量为 0.05% - 5 % ( w/w );优选地,磷脂含量为 0.05% - 2 % ( w/w ); 更优选地, 磷脂含量为 0.1% - 0.5% (w/w) ; 进一步优选地, 磷脂 含量为 0.12% - 0.3 % ( w/w ) ,例如 0.12%、 0.13%、 0.14%、 0.15%、 0.16% , 0.17%、 0.18% , 0.19%, 0.20% , 0.21% , 0.22% , 0.23%、 0.24%、 0.25%、 0.26%、 0.27%, 0.28%、 0.29%、或 0.3% (w/w)。
本发明人发现, 当磷脂含量低于 0.05% (w/w) 时, 炒菜时效果不 明显; 0.05%- 0.5% (w/w) 时, 加热变色红值增加小于 0.4 (符合一 级食用油国家标准); 高于 0.5% (w/w)但小于 5% (w/w)时, 加热变 色红值增加小于 8 (红值增加小于或等于 8时消费者可接受) ; 高于 5%时, 虽然炒菜效果增强, 却会造成油脂加热变色难以接受。
根据本发明任一项所述的食用油, 其中, 所述食用油为植物油和 / 或动物油(即含磷脂的植物油和 /或动物油); 具体地, 为选自花生油 (包括压榨花生油和 /或精炼花生油)、 大豆油、 玉米油、 菜籽油、 以 及橄榄油中的任一种或多种。
生物体中主要含有两大类磷脂, 由甘油构成的磷脂称为甘油磷脂 (phosphoglyceride); 由神经鞘氨醇构成的磷脂, 称为鞘磷脂 (sphingol ipid)。
其中, 甘油磷脂又可以根据极性头部集团的不同区分为磷脂酰胆 碱 ( Phosphatidyl cholines, PC ) 、 磚脂醜乙醇氨 ( Phosphatidyl ethanolamines, PE ) 、 碑脂醜丝氛酸 ( Phosphat idyl serines, PS ) 、 磷脂酰肌醇 (Phosphatidyl inositols, PI ) 、 磷脂酰甘油 ( PG ) 、 甘油磚脂酸 ( phosphatidic acid, PA)等。
本发明中的术语"磷脂",可以是上述单一的一种磷脂(纯净物), 也可以是上述多种单一磷脂的任意比例的混合物磷脂。
在本发明的一个实施方案中, 所述磷脂为甘油磷脂和 /或鞘磷脂; 具体地, 选自磷脂酰胆碱(卵磷脂) 、 磷脂酰乙醇氨、 磷脂酰丝氨酸、 磷脂酰肌醇、 磷脂酰甘油、 以及甘油磷脂酸中的任一种或多种; 优选 地,所述磷脂为卵磷脂。在本发明的具体的实施方式中,对于磷脂(混 合物), 其中磷脂酰胆碱的含量为不小于 50 %、 60 %、 70 %、 或 80 % ( w/w ) 。
根据本发明任一项所述的食用油, 其中, 所述磷脂是人工添加的 磷脂和 /或非人工添加的磷脂(例如食用油中保留或部分保留的磷脂)。 所述食用油中保留或部分保留的磷脂,是指在食用油中脱糖和 /或脱糖 脂或者降低糖和 /或糖脂的含量,磷脂部分或全部保留在食用油中, 而 非将磷脂提取出来后, 经过脱糖和 /或脱糖脂或者降低糖和 /或糖脂的 处理后再加入到食用油中; 其可以由后文中本发明食用油的另一种制 备方法实现。
根据本发明任一项所述的食用油, 其中, 所述磷脂与食用油来自 同一种和 /或不同种油料作物(例如油料作物的种子或者坚果)。 具体 地, 所用的磷脂的来源并不特别限定, 优选使用来自与制油所用油料 作物的种子或坚果提取的磷脂。 例如, 添加到花生油中的磷脂从花生 中提取, 添加到大豆油中的磷脂从大豆中提取。 不拘于理论的限制, 这样可以降低成本, 并且磷脂与食用油的兼容性更好。 所述磷脂可以 是植物油 (例如花生油、 大豆油等) 制备过程(可以是本领域技术人 员熟知的常规方法) 中产生的副产品; 可选地, 对磷脂进行处理; 处 理方法请见后文的制备方法中对磷脂处理的描述。
不拘于理论的束缚, 卵磷脂降低了油分子的表面张力, 使油分子 的扩散性更好, 更充分地附着在菜的表面。 同时由于油分子更好的附 着性、 扩散性, 提高了调味料的扩散性和菜品的成熟度, 达到节约能 源, 少用调味品的效果。 本发明人通过试验表明, 在炒菜时使用平时 用油量的一半就能达到原有用油量的感官效果, 甚至菜品更加明亮有 光泽。 这样将大大减少人体油脂的摄入量, 有利于改善目前中国居民 油脂摄入量过多的现状。
根据本发明任一项所述的食用油, 其中, 所述磷脂中的糖和 /或糖 脂的含量小于 100 mg/Kg, 例如小于 90、 80、 70、 或 60 mg/Kg; 优选 地, 小于 50 mg/Kg, 例如小于 40、 30、 20、 或 15mg/Kg; 更优选地, 小于 10 mg/Kg, 例如小于 9、 8、 7、 6、 5、 4、 3、 2、 或 1 mg/Kg。
在本发明的一个实施方案中, 所述食用油 (特别是磷脂为食用油 中保留或部分保留的磷脂的食用油)中的糖和 /或糖脂的含量为小于或 等于 5 mg/kg;优选为小于或等于 3 mg/kg (例如小于或等于 2.8 mg/kg、 小于或等于 2.6 mg/kg、小于或等于 2.5 mg/kg、小于或等于 2.4 mg/kg、 小于或等于 2.2 mg/kg) ; 更优选为小于或等于 2 mg/kg (例如小于或 等于 1.8 mg/kg、 小于或等于 1.6 mg/kg、 小于或等于 1.5 mg/kg、 小 于或等于 1.4 mg/kg、 小于或等于 1.2 mg/kg ) ; 特别优选为小于或等 于 1 mg/kg, 小于或等于 0.5 mg/kg或小于或等于 0.1 mg/kg。
在本发明的一个实施方案中, 所述食用油 (特别是磷脂为食用油 中保留或部分保留的磷脂的食用油) 中的糖和 /或糖脂的含量为 <1 mg/kg; 优选为 <0· 5 mg/kg; 更优选为<0.1 mg/kg。
所述糖包括单糖和 /或寡糖,例如包括果糖、蔗糖、麦芽糖、乳糖、 棉籽糖、 以及水苏糖等中的一种或者多种。
所述糖脂是一种携有一个或多个以共价键连接糖基的复合脂质, 例如包括单半乳糖甘二酯 (MGDG) 、 单半乳糖甘一酯 (MGMG) 、 双半 乳糖甘二酯 (DGDG) 、 以及双半乳糖甘一酯 (DGMG)等中的一种或者 多种。
根据本发明任一项所述的食用油, 其中, 所述食用油中的水分含 量小于 400 mg/Kg;优选地,小于 300 mg/Kg;更优选地,小于 150mg/Kg。 本发明的另一方面涉及一种包装的食用油, 包括食用油和包装容 器, 其中, 所述食用油为本发明中任一项所述的食用油, 所述包装容 器为由透水系数低于 55 g/m2 ( 38°C下静置 24小时, 相对湿度 90%) 的材料制成的容器,或者为容器内每千克油因透水导致每 24小时水分 增加量低于 4.4mg的容器。
可以使用透水系率系数较低的包装容器,或增加包装容器的厚度, 从而降低包装容器的透水量。
可以根据下面的式子计算透水量及透水系数:
ψγ = {άιη ' )/( ' t■ Δ ) = 1.157 X X (W¥l: ' ά)/Δρ
上式中:
Ρν - 水蒸气透过系数, g · cm/ cm2 · s · Pa;
WVT - 水蒸气透过量, g/m2 · 24h;
d - 试样厚度, cm;
△ P - 试样两侧的水蒸气压差, Pa;
A - 试样透水蒸气的面积, m2;
t - 质量增量稳定后的两次间隔时间, h;
△ m - t时间内的盾量增量, g。
在常见的容器材料中, 玻璃、 马口铁的透水系数非常低, 几乎为 零, 因此是优选的。 本发明的另一方面涉及一种制备含磷脂的食用油的方法, 包括添 加磷脂的步骤; 可选地, 所述磷脂的含量为 0.05% - 5% ( w/w ); 优 选地,磷脂含量为 0.05% - 2% (w/w) ; 更优选地,磷脂含量为 0.1% - 0.5 % (w/w); 进一步优选地, 磷脂含量为 0.12% - 0.3% (w/w) 。
根据本发明任一项所述的方法, 其中, 所述磷脂为甘油磷脂和 / 或鞘磷脂; 具体地, 选自磷脂酰胆碱(卵磷脂) 、 磷脂酰乙醇氨、 磷 脂酰丝氨酸、 磷脂酰肌醇、 磷脂酰甘油、 以及甘油磷脂酸中的任一种 或多种; 优选地, 所述磷脂为卵磷脂。
根据本发明任一项所述的方法, 其中, 使食用油温度达到 60°C - 80°C, 再添加磷脂。 不拘于理论的限制, 油脂粘度较大, 本发明人发 现, 高于 60°C的温度下搅拌能使磷脂较好地溶解均匀;磷脂在 80°C以 上容易变性、 氧化, 温度不能高于 80°C。
本发明的食用油可以先按照本领域技术人员的常用工艺或方法制 备, 例如:
彭阳生主编.植物油脂加工使用技术.北京: 金盾出版社,
2005: 189-226.
何东平主编. 油脂精炼与加工工艺学.北京:化学工业出版 社, 2010;
韩景生. 油脂精炼工艺学.北京: 中国财政经济出版社, 1988; 苏望懿主编.油脂加工工艺学.武汉:湖北科学技术出版社, 1997 ; 刘玉兰主编.油脂制取与加工工艺学.北京: 科学出版社, 2003。 然后向制得的食用油中添加上述磷脂 (或者按照下面的方法除去 水分或者降低水分含量之后再添加磷脂) 。 以压榨花生油为例, 常见 的制备方法包括选料、 破碎、 蒸坯、 炒制、 压榨毛油、 过滤等步骤; 以精炼花生油为例, 常见的制备方法是以压榨花生油加工的副产品花 生饼为原料, 通过浸出、 蒸制、 脱胶、 过滤等步骤制得。
在本发明中, 术语 "压榨花生油"是指花生经直接压榨制取的油。 术语 "精炼花生油" 是指花生经浸出工艺制取的油。
在本发明的一个实施方案中, 压榨花生油和精炼花生油的制备工 艺如 Fi g. 1所示。
在本发明的一个实施方案中, 压榨花生油的制备步骤包括: 花生 经破碎、 轧胚、 蒸炒后, 采用液压或螺旋压榨的方式得到压榨花生毛 油, 经过滤后得到压榨花生油。
在本发明的一个实施方案中, 精炼花生油的制备步骤包括: 将制 备压榨花生油压榨后的残渣(花生饼, 仍含有一定的油脂)通过溶剂 浸出、 蒸馏得到花生精炼毛油, 水化脱胶、 脱酸、 脱臭后得到精炼花 生油。
根据本发明任一项所述的方法, 其中, 所述磷脂与食用油来自同 一种和 /或不同种油料作物。具体地,所用的磷脂的来源并不特别限定, 优选使用来自与制油所用油料作物种子或坚果提取的磷脂, 不拘于理 论的限制, 这样可以降低成本, 并且磷脂与食用油的兼容性更好。
油料作物种子本身提取的磷脂一般是包括多种磷脂的混合物, 以 花生为例, 花生自身含有 0. 44%-0. 62%的磷脂, 其中卵磷脂含量占磷 脂总量的 35%, 脑磷脂占总磷脂量的 64% (参考 何东平,刘良忠, 闫子 鹏主编.油脂工厂综合利用,北京: 中国轻工业出版社, 2011: 22-23 )。 普通花生油中仍含有一定的磷脂,压榨工艺不同,磷脂含量不尽相同, 一般总磷脂含量在 500mg/kg以下。所述磷脂可以是植物油(例如花生 油、 大豆油等) 制备过程(可以是本领域技术人员熟知的常规方法) 中产生的副产品。
以花生为例, 花生油在加工过程中制备磷脂的方法主要存在以下 两种方式, 一是利用压榨花生油在压榨毛油过滤时的滤渣制备, 二是 利用制备精炼花生油时的水化油脚制备。
在本发明的一个实施方案中, 所述磷脂来自压榨植物油 (例如压 榨花生油)制备中过滤所得的滤渣(其中含有大量的磷脂); 具体地, 对滤渣采用正己烷提取, 蒸干、 加水水化、 浓缩、 丙酮去油、 乙醇分 提得到磷脂 (粗提磷脂) 。 更具体地, 花生滤渣经正己烷溶解, 提取 其中的磷脂成分, 经过滤、 真空浓缩得到含磷脂的浸出油, 加入含磷 脂量的 2 - 3倍的水进行水化得到水化油脚,后续提取、净化过程与下 面方法中利用水化油脚制备的方法相同。
在本发明的一个实施方案中, 所述磷脂来自精炼植物油 (例如精 炼花生油)制备中水化下来的水化油脚 (其中含有磷脂) ; 具体地, 通过浓缩、 丙酮去油、 乙醇分提得到磷脂 (粗提磷脂) 。 更具体地, 将水化油脚浓缩, 去除其中的水分, 得到浓缩磷脂, 加入的浓缩磷脂 量 2 - 4倍的丙酮去除油脂及脂肪酸,磷脂不能溶解于丙酮中被沉淀下 来, 减压浓缩后得到粉末磷脂, 粉末磷脂中加入 75% - 100%的乙醇提 取、 过滤, 再经减压浓缩后得到粗提磷脂。 粗提磷脂含有一定的糖和 糖脂, 可通过中性氧化铝层析净化或正己烷乙醇水法脱糖, 得到最终 磷脂产物。
根据本发明任一项所述的方法, 其中, 所述方法包括在添加磷脂 之前,除去或降低食用油中的糖和 /或糖脂,和 /或除去或降低磷脂(特 别是粗提磷脂)中的糖和 /或糖脂的步骤。 不拘于理论的限制, 一般市 售油脂 (食用油) 中糖和 /或糖脂的含量比较低, 糖和 /或糖脂主要来 源于磷脂。 因此, 所述方法主要包括除去磷脂中的糖和 /或糖脂, 或者 降低磷脂中的糖和 /或糖脂含量的步骤。 磷脂中含有大约 1%- 5%的糖 和 1%- 5%的糖脂, 均来自加工原料中, 糖主要是蔗糖, 水苏糖、 棉籽 糖等, 糖脂主要为单半乳糖甘二酯、单半乳糖甘一酯 、 双半乳糖甘二 酯、 双半乳糖甘一酯等。 不拘于理论的束缚, 本发明人经过深入的研 究发现, 将磷脂中的糖和 /或糖脂的含量控制 (或脱除) 至 100 mg/kg 以下, 可有效的控制油脂加热颜色增加。 在本发明中, 所述磷脂中的 糖和 /或糖脂的含量小于 100mg/Kg,例如小于 90、 80、 70、或 60mg/Kg; 优选地, 小于 50mg/Kg, 例如小于 40、 30、 20、 或 15mg/Kg; 更优选 地, 小于 10mg/Kg, 例如小于 9、 8、 7、 6、 5、 4、 3、 2、 或 1 mg/Kg。
根据本发明任一项所述的制备方法, 其中, 除去糖和 /或糖脂或者 降低糖和 /或糖脂含量的步骤(方法 1 )如下:
1 )将由滤渣或水化油脚制得的粗提磷脂用无水乙醇溶解,料液比 为大于或等于 1: 5, 优选地, 为 1: 5- 1: 20(w/w) , 更优选为 1: 10 - 1: 15(w/w) , 例如 1: 11、 1: 12、 1: 13、 1: 14、 或 1: 15(w/w) 等;
2 )将步骤1 ) 中所得产物进行氧化铝层析, 磷脂与氧化铝比大于 或等于 1: 4 (w/w),优选为 1:4 - 1:6 (w/w);更优选 1:4.5- 1: 5.5 (w/w), 例如 1: 4.5、 1: 4.6、 1: 4.7、 1: 4.8、 1: 4.9、 1: 5.0、 1: 5.1、 1: 5.2、 1: 5.3、 1: 5.4、 或 1: 5.5 (w/w)等;
3) 除去步骤 2) 中所得产物中的乙醇。
如此得到的最终产物 (磷脂) 中糖和 /或糖脂的含量小于 100mg/kg。
其中,
上述步骤 2 ) 中, 优选地, 所述氧化铝用前在 400°C - 450°C活化 3- 4小时; 优选在 400°C活化 4小时。
上述步骤 3) 中, 可以采用浓缩的方法; 优选地, 温度为 35°C - 45°C, 真空度为<_0.08MPa。 也可以采用如下的方法 2:
( 1 )将由滤渣或水化油脚制得的粗提磷脂用正己烷溶解,料液比 为 1: 10(w/w);
(2) 向步骤(1) 中所得产物中加入 50%- 60%的乙醇水溶液, 正 己烷: 乙醇水溶液 =2: 1, 分离得到正己烷部分;
( 3)将步骤(2) 中所得产物中的正己烷蒸干。
如此得到的最终产物 (磷脂) 中糖和 /或糖脂的含量小于 100mg/kg。
其中,
上述步骤( 2 ) 中, 优选地, 重复步骤( 2 ) 1 - 5次(即向正己烷 部分中再次加入上述乙醇溶液, 可重复) , 优选重复 3次, 得到正己 烷部分。
上述步骤 3)中,优选地,温度为 35°C - 45°C,真空度为 <-0.08MPa。 本发明还涉及根据上述任一项的制备磷脂的方法制得的磷脂。 本发明还涉及上述的磷脂在制备含磷脂的食用油中的用途。 具体 地, 所述含磷脂的食用油中的磷脂的含量为 0.05% -5% (w/w); 优 选地,磷脂含量为 0.05% -2% (w/w); 更优选地,磷脂含量为 0.1% - 0.5 % (w/w); 进一步优选地, 磷脂含量为 0.12% - 0.3% (w/w) , 例如 0.12%、 0.13%、 0.14%、 0.15%、 0.16%、 0.17%、 0.18%、 0.19%、 0.20%、 0.21%、 0.22%、 0.23%、 0.24%、 0.25%、 0.26%、 0.27%、 0.28% , 0.29% , 或 0.3 % (w/w) 。 在本发明具体的实施方 式中, 所述食用油为植物油和 /或动物油 (即含碑脂的植物油和 /或动 物油); 具体地, 为选自花生油(包括压榨花生油和 /或精炼花生油)、 大豆油、 玉米油、 菜籽油、 以及橄榄油中的任一种或多种。 在本发明 具体的实施方式中,其中, 所述麟脂与食用油来自同一种和 /或不同种 油料作物 (例如油料作物的种子或者坚果) 。 根据本发明任一项所述的制备含磷脂的食用油的方法, 其中, 所 述方法包括在添加磷脂之前或之后, 除去食用油中的水分或者降低食 用油中的水分含量的步骤。 通常市售的油脂 (食用油) 中的含水量为
500 mg/kg- 1000 mg/kg, 本发明中所述水分含量小于 400 mg/Kg (例 如 50 mg/kg- 400 mg/kg) ; 优选地, 小于 300 mg/Kg; 更优选地, 小 于 150 mg/Kg。
根据本发明任一项所述的制备方法, 其中, 除去水分或者降低水 分含量的步骤如下:
在 105°C - 150°C (优选 105°C - 110°C ) 下加热 15 - 30分钟; 优 选地 20分钟, 同时进行搅拌。 在本发明的一个实施方案中, 将除去水 分或者降低水分含量的食用油冷却至 60°C - 80°C, 再添加磷脂。
在本发明的一个实施方案中, 采用减压浓缩的方式除去水分或者 降低水分含量; 具体地,在压力真空度小于 -0.08MPa下加热至 60°C - 80°C, 浓缩 5- 15分钟(优选 10分钟) , 优选同时进行搅拌。
在本发明的一个实施方案中, 其中, 上面所述加热为蒸汽间接加 热或加热管加热。
根据本发明任一项所述的方法, 其中, 所述食用油为植物油和 / 或动物油; 具体地, 选自花生油、 大豆油、 玉米油、 菜籽油、 以及橄 榄油中的任一种或多种。
在本发明的一个具体的实施方案中, 本发明的制备方法如 Fig.2 所示。 食用油脂加工所使用原料主要以植物的种子、 坚果为主, 这些种 子、 坚果均含有丰富的磷脂, 如花生中含有 0.44%- 0.63%的磷脂、 大 豆 1.20%- 3.20%、 油菜籽 1.05%- 1.20、 棉籽 1.25% - 1.75%、 葵花籽 0.60%- 0.85%; 油料中的磷脂在加工过程中随油脂一起溶出, 毛油中 的磷脂含量的多少, 取决于油料种子的磷脂含量、 油脂制取的方法和 工艺条件,如浸出大豆毛油含有 3%- 4%的磷脂,花生毛油中含有 0.6% - 1.2%, 菜籽毛油 1.5% - 2.5%, 棉籽毛油 1.5% - 2.5% (何东平 刘良 忠 闫子鹏主编. 油脂工厂综合利用.北京:中国轻工业出版社, 2011: 22 ) 。 本发明的含磷脂的食用油的另一种制备方法是, 通过在传统工艺 中增加或改变热过滤、 脱糖、 脱水步骤, 从而实现在食用油中保留或 部分保留磷脂 (而不是全部或部分是人工添加的磷脂) 。 得到的含磷 脂油同样具有放置 18 个月不发生沉淀, 加热不变色或者变色轻等优 点。 具体地, 包括下述步骤:
1 )将毛油加热至 35°C - 80°C过滤;
2 )过滤后的毛油在真空度 <-0.08MPa, 温度 60°C - 80°C下搅拌加 热脱水 5分钟 - 15分钟;
3)脱水后的油脂冷却至 35°C - 40°C后,加入 0.5%- 15%的氧化铝, 同时进行搅拌;
4 ) 35°C - 40°C过滤, 得到含磷脂食用油。
其中,
上述的步骤 1 )中, 优选地, 将毛油加热至 45°C - 80°C ; 更优选 为 50°C - 55°C。 不拘于理论的限制, 低于 35°C, 磷脂会被过滤下来, 再 35°C - 80°C温度范围过滤时磷脂会保留与油脂中, 其他固体杂质则 会被截留下来;高于 80°C会造成磷脂氧化,磷脂或食用油的质量下降。
上述的步骤 2 ) 中, 优选地, 加热脱水时间为 9 - 12分钟(例如 10分钟) 。
上述的步骤 3)中, 优选地, 加入 1%- 10%的氧化铝; 更优选加入 1.5% - 3.5% (w/w)的氧化铝。 所述氧化铝优选为 I级活性氧化铝; 或 者经 400°C烘干后得到的 I级活性的氧化铝。
上述的步骤 4) 中, 不拘于理论的限制, 本发明人发现, 温度低 于 35°C时, 磷脂会被过滤下来; 高于 40°C会造成氧化铝净化糖和 /或 糖脂的效率下降。
由此得到含磷脂的食用油 (磷脂为食用油中保留或部分保留的磷 脂) , 所述食用油 (特别是磷脂为食用油中保留或部分保留的磷脂的 食用油) 中的糖和 /或糖脂的含量为小于或等于 5 mg/kg; 优选为小于 或等于 3 mg/kg (例如小于或等于 2.8 mg/kg, 小于或等于 2.6 mg/kg, 小于或等于 2.5 mg/kg, 小于或等于 2.4 mg/kg, 小于或等于 2.2 mg/kg ) ; 更优选为小于或等于 2 mg/kg (例如小于或等于 1. 8 mg/kg、 小于或等于 1. 6 mg/kg、小于或等于 1. 5 mg/kg、小于或等于 1. 4 mg/kg, 小于或等于 1. 2 mg/kg ) ; 特别优选为小于或等于 l mg/kg、 小于或等 于 0· 5 mg/kg或小于或等于 0. 1 mg/kg。
优选地, 由此得到含磷脂的食用油 (磷脂为食用油中保留或部分 保留的磷脂) , 所述食用油中糖和 /或糖脂的含量为 <1 mg/kg; 优选为 <0. 5 mg/kg; 更优选为 <0· 1 mg/kg。
在本发明的一个具体的实施方案中, 本发明的制备方法如 Fig. 4 所示。
该方法在食用油中脱糖和 /或脱糖脂或者降低糖和 /或糖脂的含 量, 磷脂部分或全部保留在食用油中, 而非将磷脂提取出来后, 经过 脱糖和 /或脱糖脂或者降低糖和 /或糖脂的处理后再加入到食用油中, 一定程度上节省了操作步骤; 同时磷脂与食用油的兼容性很好。
术语 "毛油" 是指: 从动物或植物油料中制取、 没经过精炼加工 的初级油。 所述毛油包括花生毛油、 棉籽毛油、 大豆毛油、 菜籽毛油 等等。 发明的有益效果
本发明的含磷脂的食用油稳定性良好(例如在常温下放置大于 18 个月不发生沉淀), 同时加热(例如在 280°C )时不产生黑色物质(不 变色) 。 此外, 本发明人还惊奇地发现, 本发明的食用油能够在减少 用量的同时保持较高的炒菜质量和口感。 附图说明
Fig. 1: 常规的花生油制备工艺流程图。
Fig. 2: 本发明的一个实施方案的含磷脂的食用油(花生油)的制 备工艺流程图。
Fig. 3: 本发明的另一个实施方案的含磷脂的食用油(花生油)的 制备工艺流程图。 Fig. 4: 本发明的另一个实施方案的含磷脂的食用油(花生油)的 制备工艺流程图 (保留或部分保留磷脂) 。
Fig. 5: 实施例 7的含磷脂的大豆油的制备工艺流程图。
Fig. 6: 实施例 8的含磷脂的玉米油的制备工艺流程图。
Fig. 7: 实施例 9的含磷脂的菜籽油的制备工艺流程图。
Fig. 8: 280°C加热变色情况。 Fig. 8A, 对照样品 2 (未脱糖) ;
Fig. 8B, 实施例 1制备的样品 (脱糖, <100mg/kg ) 。
Fig. 9: 炒面粘锅性效果试验结果。 Fig. 9A, 20g对照样品 1 (普 通花生油)炒面后的锅底; Fig. 9B, 10g对照样品 1 (普通花生油)炒 面后的锅底; Fig. 9C, 10g实施例 1制备的样品 (含磷脂的花生油) 炒面后的锅底。
Fig. 10: 鸡蛋脱模性效果试验结果。 Fig. 10A, 对照样品 1 (第 2 次脱模) ; Fig. 10B, 实施例 1制备的样品 (第 2次脱模) 。
Fig. 11 : 炒豆芽效果试验结果。 Fig. 11A, 对照样品 1 (普通花生 油) ; Fig. l lB, 实施例 1制备的样品 (含磷脂的花生油) 。 具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述, 但是本领 域技术人员将会理解, 下面的实施例仅用于说明本发明, 而不应视为 限定本发明的范围。 实施例中未注明具体条件者, 按照常规条件或制 造商建议的条件进行。 所用试剂或仪器未注明生产厂商者, 均为可以 通过市购获得的常规产品。 实施例 1 : 含磷脂的花生油的制备( 1 )
如 Fig. 2所示。
其中, 磷脂的制备步骤如下:
水化油脚-〉真空浓缩 (90°C, -0. 095MPa ) -〉丙酮去油 (料液比: 1: 3, 脱油 3次) -〉真空浓缩 ( -0. 095MPa , 45 °C ) 乙醇浸提(乙醇浓 度: 85%, 料液比: 1: 8, 提取 2次) -〉真空浓缩 (-0. 095MPa, 45 °C ) -〉制得磷脂。
将得到的磷脂进行脱糖, 步骤如下:
磷脂-〉乙醇溶解(料液比: 1:20) -〉氧化铝层析(中性氧化铝, 用前 400°C活化 4h,磷脂与氧化铝比例: 1: 6 )->真空浓缩(-0.095MPa, 45°C ) -〉最终产物: 脱糖磷脂。
由此制得了含磷脂的花生油。 实施例 2: 含磷脂的花生油的制备( 2 )
如 Fig.3所示。
其中, 磷脂的制备步骤如下:
花生滤渣-〉正己烷溶解(料液比: 1: 3) -〉过滤( 0.8μπι) -〉真空 浓缩( 90°C, -0.095MPa ) -〉水化( 55°C, 加水量为 2-3倍磷脂量) -〉 水化油脚-〉同实施例 1中水化油脚中磷脂制备方法-〉制得磷脂。
得到的磷脂的脱糖步骤参照实施例 1中进行。
由此制得了含磷脂的花生油。 实施例 3: 含磷脂的花生油的制备(3)
除脱糖磷脂与压榨花生油以 0.05%调制外, 其它步骤与实施例 1 中相同。 由此制得了含磷脂的花生油。 实施例 4: 含磷脂的花生油的制备(4)
除脱糖磷脂与压榨花生油以 0.5%调制外,其它步骤与实施例 1中 相同。 由此制得了含磷脂的花生油。 实施例 5: 含磷脂的花生油的制备(5)
除脱糖磷脂与压榨花生油以 5%调制外, 其它步骤与实施例 1中相 同。 由此制得了含磷脂的花生油。 实施例 6: 含磷脂的花生油的制备(6) 如 Fig. 4所示。
由此制得含磷脂的花生油。 其中磷脂不是另外添加的, 而是保留 或部分保留了花生中的磷脂。 实施例 7: 含磷脂的大豆油的制备
制备方法如 Fig. 5所示。
其中, 制备大豆油脚的步骤为常规技术: 磷脂的制备、 脱糖步骤 以及磷脂的添加, 除了采用原料为大豆油脚, 其它步骤参照实施例 1。
由此制得含磷脂的大豆油。 实施例 8: 含磷脂的玉米油的制备
制备方法如 Fig. 6所示。
其中, 制备玉米油脚的步骤为常规技术: 磷脂的制备、 脱糖步骤 以及磷脂的添加, 除了采用原料为玉米油脚, 其它步骤参照实施例 1。
由此制得含磷脂的玉米油。 实施例 9: 含磷脂的菜籽油的制备
制备方法如 Fig. 7所示。
其中, 制备菜籽油脚的步骤为常规技术: 磷脂的制备、 脱糖步骤 以及磷脂的添加, 除了采用原料为菜籽油脚, 其它步骤参照实施例 1。
由此制得含磷脂的菜籽油。 实施例 10: 对照样品的制备
对照品样品 (均为压榨花生油) 包括:
对照样品 1:不含磷脂的普通花生油(未脱糖未脱水),按照 Fig. 1 的方法制备。
对照样品 2:未脱糖已脱水的含磷脂花生油,按照实施例 1和 Fig. 2 的方法制备, 除了没有进行脱糖处理。
对照样品 3:已脱糖未脱水的含磷脂花生油,按照实施例 1和 Fig. 2 的方法制备, 除了没有进行脱水处理。
对照样品 4 : 参照实施例 6 中的方法制备, 但是毛油经一滤后未 经过脱水、 脱糖步骤得到的含磷脂压榨花生油。 实施例 11 : 水分含量的测定实验
实验样品: 实施例 1 - 9所制备的食用油样品以及实施例 10制备 的对照样品 1 - 4。
实验方法:
水分含量测定依据 GB 5009. 3-2010食品中水分的测定 "第四法卡 尔 - 费休法" 进行。
实验结果: 如表 1所示。
表 1 : 食用油中水分含量的测定结果
样品名称 水分含量( mg/kg ) 实施例 1 153
实施例 2 143
实施例 3 139
实施例 4 167
实施例 5 133
实施例 6 172
实施例 7 155
实施例 8 102
实施例 9 143
对照样品 1 654
对照样品 2 144
对照样品 3 630
对照样品 4 703 实施例 12: 磷脂含量的测定实验
实验样品: 如表 2。
实验方法:
依据 NY/T 1798-2009植物油脂中磷脂组分含量的测定 高效液相 色谱法进行。
实验结果:
如下面的表 2所示。
表 2: 磷脂检测数据 (单位: mg/kg)
Figure imgf000019_0001
实施例 13: 磷脂中的糖含量和糖脂含量的测定实验
实验样品: 实施例 1中制备的磷脂 (脱糖前和脱糖后) 。
测定方法:称取 0.25g磷脂试样于 10mL容量瓶中,用正己烷溶解, 利用薄层层析分离后将不同色带刮下, K0H-乙醇溶液水解后菲林试剂 法检测其糖含量。
其中糖的检测方法如下:
实验方法: 称取 10g样品, 加入乙腈:水( 1+1 )漩涡混合提取 3 分钟, 超声 20分钟, 4000r/分钟离心 10分钟, 取下层液体, 过 C18 固相萃取柱(厂家: Agilent, 型号: 0DS-C18 , 500mg , 3mL) 净化, 弃去前 20滴流出液。 收集剩余部分, 过 0.22μπι膜, 液相色谱 -蒸发 光散射检测器检测(设备厂家及型号: agilentllOO + allteach es2000 ESLD, 色谱柱型号: waters Xbrige Amid 250mm* 4.6mm 5μπι) 。
糖脂的检测方法参考文献: 李桂华, 王成涛. 大豆磷脂中糖脂含 量的测定 [J].河南工业大学学报 2010, 33 (4): 5-8。
实验结果: 如表 3、 4所示。 表 3: 磷脂中糖含量的测定结果
Figure imgf000020_0001
Figure imgf000020_0002
注: MGDG: 单半乳糖甘二酯; MGMG: 单半乳糖甘一酯 ; DGDG: 双半乳糖甘二酯; DGMG: 双半乳糖甘一酯。
实施例 2 - 9样品的糖含量或糖脂含量结果与实施例 1样品的测定 结果类似。
可见, 脱糖工艺除去糖及糖脂的效果良好。 实施例 14 : 稳定性实验
实验样品: 实施例 1 - 9所制备的食用油样品以及实施例 1 0制备 的对照样品。
实验方法:
将实验样品分别放入温度为 18 °C、 37 °C , 湿度 50%-60%RH, 可透 自然光(无阳光直射) 的密闭的气候箱内。 定期观察其是透明度、 色 泽、 酸值(AV )及过氧化值(P0V ) 。
其中:
透明度的检测方法依据 GB/T 5525-2008 植物油脂检验 "透明度 鉴定法" 进行;
色泽的检测方法依据 GB/T 22460-2008 动植物油脂罗维朋色泽 的测定进行; 酸价的检测方法依据 GB/T 5530-2005 动植物油脂酸值和酸度的 测定进行;
过氧化的值检测方法依据 GB/T 5538-2005动植物油脂过氧化值的 测定进行。
实验结果:
如下面的表 5所示。
表 5: 稳定性实验检测结果
Figure imgf000022_0001
另外, 实施例 2 - 9样品的透明度结果与实施例 1样品类似, 均未产生沉淀。 对照样品 4与对照样品 3的情况类似, 在不到 18 个月的时间内产生沉淀。
结果显示, 对于含有磷脂的食用油, 未进行脱水处理的稳定 性较差, 容易产生沉淀。 实施例 15 : 280°C的加热实验
实验样品: 实施例 1 - 9所制备的食用油样品以及实施例 10 制备的对照样品
实验方法依据 GB 5531-2008粮油检验-植物油脂加热试验验 证, 取 50mL油脂与 l OOmL烧杯中, 16 分钟- 18 分钟内加热至 280°C , 注入 25. 4mm比色槽中, 采用罗维朋比色计进行检测, 比 较加热前后色泽变化情况。
实验结果:
结果如下面的表 6和 F i g. 8A-B所示。
表 6 : 样品加热实验结果 食用油 红值增加 结果判定 实施例 1 0. 3 合格
实施例 2 0. 3 合格
实施例 3 0. 2 合格
实施例 4 0. 3 合格
不合格,
实施例 5 8
但是可以接受
不合格,
实施例 6 2. 1
但是可以接受 实施例 7 0. 2 合格
实施例 8 -0. 1 合格 实施例 9 0. 4 合格 对照样品 2 9. 5 不合格, 且不能接受 对照样品 4 11. 1 不合格, 且不能接受 实施例 8中滤
>20 不合格, 且不能接受 前毛油
注: 红值为罗维朋色值单位; 结果判定依据为红值增加小于 或等于 0. 4为合格。 红值增加小于或等于 8时消费者可接受。
结果显示, 经过脱水脱糖处理后的含磷脂食用油 (实施例 1 - 9 )在高温下的稳定性良好, 没有产生黑色物质(不变色), 符 合国家标准。 实施例 16 : 炒面粘锅性效果试验
实验材料: 面条(购自超市普通手擀面) 、 实施例 1制得食 用油样品、 实施例 10中的对照样品 1 (普通花生油) 、 盐(购自 市场普通食用碘盐)、味精(购自市场普通食用味精)、 炒锅(购 自市场上普通无涂层铁锅, 厚度 1. 4mm, 直径 34cm ) , 蒸柜 (美 的 D2Z2-S24KRA ) 。
实验方法:
将面条平铺于蒸柜中,加水选定中火蒸煮 10分钟,取出室温 冷却后备用。 炒锅在使用前用含洗洁剂的水蒸煮 5分钟, 清水清 洗干净后, 将锅加热至 200摄氏度后, 迅速加入一定量的油脂。 同时将油脂铺展与锅底表面, 加入 10g葱花, 迅速加入 80g豆芽 后开始计时, 翻炒 30秒后加入 200g面条, 不断翻炒, 60秒后加 入 lg盐和 lg味精, 并继续翻炒, 90秒后出锅盛盘观察锅底是否 存在粘锅现象。
按照上述方法进行 3次, 除了所述 "一定量的油脂" 分别是 20g 对照样品 1, 10g对照样品 1, 10g实施例 1的样品, 其它步 骤完全相同。 实验结果: 如 Fig. 9所示。
一般而言, 炒面时油用量越多, 面条越不易粘锅, 由 Fig. 9A 和 Fig. 9B可见。 结果显示, 含有磷脂的油可降低面条粘锅性, 即 使一半的用量也可以达到或超过普通油的效果(Fig. 9C ) 。 实施例 17: 鸡蛋脱模性效果试验
实验材料: 平底小锅 (直径 10cm, 铝材, 厚度 2mm ) 、 实施 例 1 制备的含磷脂花生油及实施例 10 中对照样品 1 (普通花生 油) 。
实验方法:
将鸡蛋去皮后用筷子捅破蛋黄并搅拌均句备用, 在平底小锅 中平铺薄薄一层油脂( l OOmg ), 将 5g鸡蛋液平铺在锅中, 300°C 火中加热 30 秒, 用筷子轻轻将蛋饼从平底锅中剥离。 再次加入 5g鸡蛋液于平底锅中加热、 剥离, 重复以上操作, 计算能完整剥 离鸡蛋饼的次数。
实验结果: 如 Fig. 10A - B所示。
脱模能力是食品与模具或加工器材隔离并达到烘焙后易于脱 离的能力。 实验结果表明, 普通用油只能简单取出一次, 甚至一 次都不能便开始与锅粘结。 而添加磷脂的油则可以多次不粘结。 脱模次数如下面的表 7所示。
表 7: 磷脂浓度和脱模次数实验结果
Figure imgf000025_0001
可见, 本发明的食用油的脱模能力良好, 并且随着磷脂浓度 增大, 脱模能力提高。
实施例 18: 炒豆芽效果试验
实验材料: 绿豆芽 (购自市场上普通绿豆豆芽) 、 葱花 (购 自市场上普通大葱)、 实施例 1制得花生油、 实施例 10中普通花 生油、 盐 (购自市场普通食用碘盐) 、 味精(购自市场普通食用 味精) 、 炒锅 (购自市场上普通无涂层铁锅, 厚度 1. 4mm, 直径 34cm ) 。
实验方法: 将洗干净的锅加热至 200 °C, 加入 10g油脂后放 入 10g葱花后开始计时,迅速加入 200g豆芽,翻炒 110秒后加入 2g盐和 2g味精, 120秒后取出盛入盘中,观察其表面光泽并进行 品尝。
实验结果: 如 F i g. 11A-B所示。
与普通油脂相比, 本发明加入磷脂的油脂可快速均句的涂布 在豆芽表面, 使豆芽表面光泽度增加, 口感爽滑可口。
尽管本发明的具体实施方式已经得到详细的描述, 本领域技 术人员将会理解。 根据已经公开的所有教导, 可以对那些细节进 行各种修改和替换, 这些改变均在本发明的保护范围之内。 本发 明的全部范围由所附权利要求及其任何等同物给出。

Claims

权 利 要 求
1. 一种含磷脂的食用油, 其中, 所述磷脂的含量为 0.05% - 5% ( w/w ); 优选地, 磷脂含量为 0.05% - 2% ( w/w ); 更优选地, 磷脂含量为 Q.1% - 0.5% (w/w) ; 进一步优选地, 磷脂含量为 0.12% - 0.3% (w/w) 。
2. 根据权利要求 1所述的食用油, 其中, 所述食用油为 植物油和 /或动物油; 具体地, 为选自花生油、 大豆油、 玉米油、 菜籽油、 以及橄榄油中的任一种或多种。
3. 根据权利要求 1所述的食用油, 其中, 所述磷脂为甘 油磷脂和 /或鞘磷脂; 具体地, 选自磷脂酰胆碱、 磷脂酰乙醇氨、 磷脂酰丝氨酸、 磷脂酰肌醇、 磷脂酰甘油、 以及甘油磷脂酸中的 任一种或多种; 优选地, 所述磷脂为磷脂酰胆碱。
4. 根据权利要求 1所述的食用油, 其中, 所述磷脂是人 工添加的磷脂和 /或非人工添加的磷脂(例如食用油中保留或部分 保留的磷脂) 。
5. 根据权利要求 4所述的食用油, 所述食用油中的糖和 /或糖脂的含量为小于或等于 5 mg/kg; 优选为小于或等于 3 mg/kg; 更优选为小于或等于 2 mg/kg; 特别优选为小于或等于 1 mg/kg, 小于或等于 0.5 mg/kg或小于或等于 0.1 mg/kg。
6. 根据权利要求 1所述的食用油, 其中, 所述磷脂与食 用油来自同一种和 /或不同种油料作物。
7. 根据权利要求 1所述的食用油, 其中, 所述磷脂中的 糖和 /或糖脂的含量小于 100 mg/Kg; 优选地, 小于 50mg/Kg; 更 优选地, 小于 10 mg/Kg。
8. 根据权利要求 1至 7中任一项所述的食用油, 其中, 所述食用油中的水分含量小于 400 mg/Kg; 优选地, 小于 300 mg/Kg; 更优选地, 小于 150 mg/Kg。
9. 一种包装的食用油, 包括食用油和包装容器, 其中, 所述食用油为权利要求 1 - 8中任一项所述的食用油,所述包装容 器为由透水系数低于 55 g/m2的材料制成的容器, 或者为容器内 每千克油因透水导致每 24小时水分增加量低于 4.4 mg的容器。
10. 一种制备含磷脂的食用油的方法, 包括添加磷脂的 步骤; 可选地, 所述碑脂的含量为 0.05% - 5% (w/w); 优选地, 磷脂含量为 0.05% - 2% (w/w) ; 更优选地, 磷脂含量为 0.1% - 0.5 %( w/w);进一步优选地,磷脂含量为 0.12% - 0.3%(w/w)。
11. 根据权利要求 10所述的方法, 其中, 所述磷脂为甘 油磷脂和 /或鞘磷脂; 具体地, 选自磷脂酰胆碱、 磷脂酰乙醇氨、 磷脂酰丝氨酸、 磷脂酰肌醇、 磷脂酰甘油、 以及甘油磷脂酸中的 任一种或多种; 优选地, 所述麟脂为磷脂酰胆碱。
12. 根据权利要求 10所述的方法, 其中, 所述磷脂与食 用油来自同一种和 /或不同种油料作物。
13. 根据权利要求 10所述的方法, 其中, 所述方法包括 在添加磷脂之前,除去磷脂中的糖和 /或糖脂或者降低磷脂中糖和 /或糖脂含量的步骤; 可选地, 所述磷脂中的糖含量小于 100 mg/Kg; 优选地, 小于 50 mg/Kg; 更优选地, 小于 10 mg/Kg。
14. 根据权利要求 13所述的制备方法, 其中, 除去糖和 /或糖脂或者降低糖和 /或糖脂含量的步骤如下面的方法 1或方法 2:
方法 1:
1 )将由滤渣或水化油脚制得的粗提磷脂用无水乙醇溶解,料 液比为大于或等于 1: 5 (w/w);
2 )将步骤1 ) 中所得产物进行氧化铝层析, 磷脂与氧化铝比 为大于或等于 1: 4 (w/w);
3) 除去步骤 2) 中所得产物中的乙醇; 或者
方法 2:
( 1 )将由滤渣或水化油脚制得的粗提磷脂用正己烷溶解,料 液比为 1: 10 (w/w); ( 2)向步骤(1 )中所得产物中加入 50%- 60%的乙醇水溶液, 正己烷: 乙醇水溶液 =2: 1, 分离得到正己烷部分;
( 3)将步骤(2) 中所得产物中的正己烷蒸干。
15. 根据权利要求 10所述的方法, 其中, 所述方法包括 在添加磷脂之前或之后, 除去食用油中的水分或者降低食用油中 的水分含量的步骤; 可选地, 所述水分含量小于 400 mg/Kg; 优 选地, 小于 300 mg/Kg; 更优选地, 小于 150 mg/Kg。
16. 根据权利要求 15所述的制备方法, 其中, 除去水分 或者降低水分含量的步骤如下面的方法 1或方法 2:
方法 1:
在 105°C - 150°C下加热 15- 30分钟; 优选地, 在 105°C - 110°C下加热 20分钟, 同时进行搅拌; 或
方法 2:
采用减压浓缩的方式除去水分或者降低水分含量, 在压力真 空度小于 -0.08MPa下加热至 60°C - 80°C,浓缩 5 - 15分钟;优选地, 浓缩 10分钟, 同时进行搅拌。
17. 根据权利要求 16所述的方法, 其中, 方法 1或方法 2中的所述加热为蒸汽间接加热或加热管加热。
18. 根据权利要求 10至 17任一项所述的方法, 其中, 所述食用油为植物油和 /或动物油; 具体地, 为选自花生油、 大豆 油、 玉米油、 菜籽油、 以及橄榄油中的任一种或多种。
19. 一种制备含磷脂的食用油的方法, 包括下述步骤: 1 )将毛油加热至 35°C - 80°C过滤;
2 ) 过滤后的毛油在真空度 <-0.08 MPa, 温度 60°C - 80°C下 搅拌加热脱水 5分钟 - 15分钟;
3)脱水后的油脂冷却至 35°C - 40°C后,加入 0.5% - 15%的氧 化铝, 同时进行搅拌;
4 ) 35°C - 40°C过滤, 得到含磷脂食用油。
20. 一种制备磷脂的方法,其包括下面的方法 1或方法 2 所示的步骤:
方法 1:
1 )将由滤渣或水化油脚制得的粗提磷脂用无水乙醇溶解,料 液比为大于或等于 1: 5 (w/w);
2)将步骤1) 中所得产物进行氧化铝层析, 磷脂与氧化铝比 大于或等于 1: 4 (w/w);
3) 除去步骤 2) 中所得产物中的乙醇; 或者
方法 2:
( 1)将由滤渣或水化油脚制得的粗提磷脂用正己烷溶解,料 液比为 1: 10 (w/w);
(2)向步骤(1)中所得产物中加入 50%- 60%的乙醇水溶液, 正己烷: 乙醇水溶液 =2: 1, 分离得到正己烷部分;
( 3)将步骤(2) 中所得产物中的正己烷蒸干。
21. 根据权利要求 20的制备磷脂的方法制得的磷脂。
22. 权利要求 21所述的磷脂在制备含磷脂的食用油中的 用途。
PCT/CN2012/086133 2011-12-09 2012-12-07 一种含磷脂的食用油及其制备方法 WO2013083066A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104063025A CN103156002A (zh) 2011-12-09 2011-12-09 一种含磷脂的食用油及其制备方法
CN201110406302.5 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013083066A1 true WO2013083066A1 (zh) 2013-06-13

Family

ID=48573562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086133 WO2013083066A1 (zh) 2011-12-09 2012-12-07 一种含磷脂的食用油及其制备方法

Country Status (2)

Country Link
CN (1) CN103156002A (zh)
WO (1) WO2013083066A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273836A (zh) * 2014-07-11 2016-01-27 马井芳 一种食用油去除毛油中的磷脂的食用油精炼方法
CN104356172B (zh) * 2014-10-16 2017-07-28 广州海莎生物科技有限公司 一种糖脂分离纯化的方法
CN113121592A (zh) * 2019-12-31 2021-07-16 丰益(上海)生物技术研发中心有限公司 一种延长煎炸寿命的花生油及其制备方法
CN114794253A (zh) * 2022-05-13 2022-07-29 吉林农业大学 一种含有磷脂的抗氧化大豆油的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561770A (zh) * 2004-03-12 2005-01-12 刘泉 食用油脂
CN101473873A (zh) * 2009-01-19 2009-07-08 姚建杉 米糠油工业化精炼生产方法及其设备
CN101530137A (zh) * 2008-03-12 2009-09-16 李建成 一种新型米饭食用油及其制备方法
WO2009123337A1 (ja) * 2008-03-31 2009-10-08 花王株式会社 乳化油脂組成物
CN101632402A (zh) * 2009-08-16 2010-01-27 苟春虎 高级营养保健食用油
JP2011072271A (ja) * 2009-09-30 2011-04-14 Kao Corp 乳化油脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654882B2 (ja) * 1991-12-31 1997-09-17 株式会社ホーネンコーポレーション レシチンの改質方法及び該レシチンを含む食用油脂組成物
JP3480622B2 (ja) * 1995-06-07 2003-12-22 辻製油株式会社 レシチン改質体含有油脂組成物
JP4306899B2 (ja) * 1999-10-26 2009-08-05 株式会社ヤクルト本社 ホスファチジルセリン含有油溶組成物の製造法
EP2025237A1 (en) * 2007-08-15 2009-02-18 Nestec S.A. Lecithin and LC-PUFA

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561770A (zh) * 2004-03-12 2005-01-12 刘泉 食用油脂
CN101530137A (zh) * 2008-03-12 2009-09-16 李建成 一种新型米饭食用油及其制备方法
WO2009123337A1 (ja) * 2008-03-31 2009-10-08 花王株式会社 乳化油脂組成物
CN101473873A (zh) * 2009-01-19 2009-07-08 姚建杉 米糠油工业化精炼生产方法及其设备
CN101632402A (zh) * 2009-08-16 2010-01-27 苟春虎 高级营养保健食用油
JP2011072271A (ja) * 2009-09-30 2011-04-14 Kao Corp 乳化油脂組成物

Also Published As

Publication number Publication date
CN103156002A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
TWI419649B (zh) 含長鏈多元未飽和脂肪酸成分之磷脂的製造方法及此類磷脂的用途
US6117905A (en) Edible oil containing arachidonic acid and foods containing the same
JP5539714B2 (ja) 液体ジメチルエーテルによる高度不飽和脂質の抽出
Hwang Sesame oil
CN101278748B (zh) 一种食用核桃油及脱脂核桃蛋白乳的生产方法
KR20130141460A (ko) 건강 유지 및 급성 및 만성 장애의 치료를 위한 지질 보충제
IL100732A (en) Manufacture of oils containing arachidonic acid and preparations containing common oils
CN102311868B (zh) 一种无溶剂提取富含磷脂和中性油脂的磷虾油的方法
CN108276438B (zh) 一种epa缩醛磷脂的制备方法及其应用
WO2009105620A1 (en) Selective short chain monounsaturated oils
TW200520693A (en) Oil or fat compositions containing phospholipids and a long-chain polyunsaturated fatty acid supply compound, and food using same
Lanza Nutritional and sensory quality of table olives
WO2013083066A1 (zh) 一种含磷脂的食用油及其制备方法
WO2010010364A2 (en) Process for the purification of oils
JP2000279092A (ja) レシチンを含む食用油およびその利用
CN112535291A (zh) 一种牡丹籽油微胶囊及其制备方法
JP2009269865A (ja) 経口投与剤
Uhegbu et al. Effect of soybean oil supplemented diet on fatty acid level and lipid profile of albino rats
JP2009269864A (ja) リン脂質結合型アラキドン酸増加剤
JP2005000126A (ja) 味噌の製造方法
CN109393057A (zh) 一种降血脂配方食用植物油
CN114468299B (zh) 一种促进大脑机能富含神经酸的膳食补充剂及其制备方法和应用
RU2362327C1 (ru) Среднекалорийный майонез
Yang et al. Egg Yolk Lipids
CN111096457A (zh) 一种海参油微胶囊粉及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855923

Country of ref document: EP

Kind code of ref document: A1