WO2013081271A1 - 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법 - Google Patents

하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법 Download PDF

Info

Publication number
WO2013081271A1
WO2013081271A1 PCT/KR2012/005979 KR2012005979W WO2013081271A1 WO 2013081271 A1 WO2013081271 A1 WO 2013081271A1 KR 2012005979 W KR2012005979 W KR 2012005979W WO 2013081271 A1 WO2013081271 A1 WO 2013081271A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
hybrid
ultra
high performance
section
Prior art date
Application number
PCT/KR2012/005979
Other languages
English (en)
French (fr)
Inventor
류금성
고경택
박정준
김성욱
Original Assignee
한국건설기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원 filed Critical 한국건설기술연구원
Publication of WO2013081271A1 publication Critical patent/WO2013081271A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/523Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing metal fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials

Definitions

  • the present invention relates to an ultra-high performance fiber reinforced concrete composition using a hybrid steel fiber and a method for manufacturing the same, and more particularly, to high crack resistance performance against macro cracking of torsion steel fibers having micro crack prevention and high pull-out performance of straight steel fibers. It relates to a composition and a manufacturing method for improving the mechanical performance of ultra-high performance fiber reinforced concrete using.
  • Concrete is widely used in the construction of concrete structures together with steel as an economical and durable construction material.
  • concrete has inherent defects that are small in tensile strength and flexural strength, and are prone to cracking, and brittle failure of concrete has been a problem due to an increase in compressive strength due to the practical use of high strength concrete.
  • fiber reinforced concrete manufactured by mixing steel fiber in volume of 1% (75kg / m3) or less in general concrete is applied to some concrete structures. It is used.
  • Such steel fibers are mostly made of straight steel fibers having a circular cross section and hook-type steel fibers having bent ends.
  • the steel fibers are those having a tensile strength of 1,500 MPa or less, lengths of about 10 mm to 30 mm, and diameters of about 0.45 mm to 1.0 mm.
  • the 1% fiber mixing does not sufficiently prevent brittle fracture of high-strength concrete, and thus, the structure is immediately destroyed when an earthquake or repetitive and impact load of a vehicle, fire, and natural degradation occur.
  • the fiber is broken before the cement composite is broken due to the lack of tensile strength of the fiber. Reaching the yield strength has a problem that does not help to improve the bending or tensile strength.
  • the present inventors have conducted research and experiments to overcome the problems of the conventional general concrete, fiber reinforced concrete and ultra high strength fiber reinforced concrete mentioned above, and as a result, when using hybrid reinforcing fiber mixed with long and short fibers, Bending strength and ductility effect are significantly improved than that of steel fiber, and the straight short fiber is used to prevent micro cracks of the matrix, and torsional long fiber is used to improve adhesion strength to the matrix and to improve frictional adhesion.
  • the purpose of the present invention is to provide ultra-high-performance concrete with excellent mechanical performance by using the high crack resistance against macro cracks by improving the pullout resistance.
  • the reinforcing fiber is composed of steel fibers, the reinforcing fibers and the amount of circular cross section
  • the end is fixed and rotated so that the outer periphery is characterized in that the hybrid fiber is mixed with the reinforcing fiber of the twisting cross-section twisted in the longitudinal direction continuously.
  • the reinforcing fiber of the torsional cross section is used as short fiber, and the reinforcing fiber of torsional cross section is used as long fiber.
  • the ultra-high performance fiber reinforced concrete manufacturing method using the hybrid steel fiber of the present invention is based on 100 parts by weight of cement 100 to 130 parts by weight, 10 to 30 parts by weight of reactive powder, 10 to 30 parts by weight filler and 0.05 to 1 weight of the middle agent Preparing a mortar including a part; Mixing the blended water and mortar so that the ratio of the blended water consisting of 90% by weight to 99.5% by weight of water and 0.5% to 10% by weight of the reducing agent and the binder of the mortar (sum of cement and reactive powder) is 0.2 or less.
  • step Mixing the hybrid reinforcing fibers in the mixture of the blended water and mortar, but injecting the hybrid reinforcing fibers mixed by adding 1 to 5 vol% of the total concrete to 100 vol%; After performing the wet curing for 1 to 3 days for the blended water and the mortar mixture is added to the hybrid reinforcing fiber, and performing steam curing for 2 to 4 days at a temperature of 60 °C to 110 °C; including It features.
  • the mortar preparing step includes mixing the mixture constituting the mortar at a speed of 20 rpm to 40 rpm for 7 to 15 minutes;
  • the mixing step of the blended water and mortar includes mixing for 7 minutes to 20 minutes at a speed of 80rpm to 120rpm and then mixing for 2 to 5 minutes at a speed of 40rpm to 60rpm;
  • Mixing the hybrid reinforcing fiber in the blended water and mortar is mixed for 3 to 10 minutes at a speed of 30rpm to 50rpm; characterized in that it comprises a.
  • the ultra-high performance fiber reinforced concrete composition using the hybrid steel fiber of the present invention and a method of manufacturing the same are intended to improve the mechanical properties of the ultra-high performance fiber reinforced concrete composition by the hybrid form and shape of the steel fiber, and improve the mechanical adhesion with the cement hardened body.
  • Figure 2 is a photograph showing a reinforcing fiber of a circular cross section which is one configuration of the present invention
  • Figure 3 is a perspective view showing a state before manufacturing the reinforcing fiber of the torsional short-lived which is one configuration of the present invention.
  • the reinforcing fiber is composed of steel fibers, the reinforcing fibers and the amount of circular cross section The end portion is fixed and rotated so that the outer periphery of the hybrid fiber is mixed with the reinforcing fiber of the twisted cross-section twisted in the longitudinal direction continuously.
  • the present invention is a super high-performance concrete composition in which the reinforcing fibers are blended, the reinforcing fibers are composed of steel fibers, the reinforcing fibers of the circular cross section and both ends are fixed to rotate so that the outer circumference is twisted in the longitudinal direction continuously It is characterized in that the hybrid fiber in which the reinforcing fiber of the torsional cross section is mixed.
  • the reinforcing fiber is composed of steel fiber bar, the steel fiber may be manufactured by cutting, casting, etc. thin carbon steel, the aspect ratio (length ratio of the length to the cross-sectional value) is about 30 to 100 Can be.
  • the reinforcing fiber according to the present invention has a diameter of 0.16 to 0.30 mm, a length of 20 to 150 mm, and a reinforcing fiber having a twisting cross section is 2 to 12 per 35 mm number of twists.
  • the tensile strength of the steel fiber can be determined to be 1300 ⁇ 3800 MPa, so that the effect can be sufficiently exhibited in the fiber reinforced ultra-high performance concrete.
  • the length of the hybrid reinforcing fiber is preferably limited to 20 to 150mm. If less than 20mm, it is insignificant to express an effect on strength expression and crack control in cement paste. This is because agglomeration may occur and dispersibility may decrease, and dispersibility may decrease due to an increase in specific gravity.
  • the torsional fiber of the torsional cross section as shown in Figure 3 is characterized in that the torsional cross-section is formed by rotating both ends are fixed to the straight fiber 100 formed with a plurality of convex borders in the longitudinal direction so that a plurality of acids are formed in the cross-section There is this.
  • the outer periphery of the reinforcing fiber having a torsional cross-section is formed by using a straight fiber 100 having a plurality of convex edges formed in a longitudinal direction so that a plurality of acids are formed in the cross section.
  • the circumferential length of is to be increased to eventually form a torsional cross section.
  • This twisting cross section is designed to improve the adhesion performance of the reinforcing fiber and the cement hardened body by the increased circumferential length.
  • the technical characteristics of enhancing the adhesion performance with the cement hardened body was introduced while not affecting the aspect ratio in the reinforcing fiber.
  • the reinforcing fiber having a torsional cross section is a straight steel fiber in which a plurality of convex edges are formed in a longitudinal direction such that a plurality of acids are formed in a cross section having a predetermined length as shown in FIG. 3.
  • the torsional cross section that maximizes the contact area with the cement hardened body is produced by the torsion in the steel fiber in such a way that both ends are fixed to each other while the ends thereof are fixed.
  • the twisted state (called 4 PITCH state) is shown four times at a constant length (35mm) at the top, and the twisted state six times (6 PITCH state) at a constant length (35mm) at the bottom. ).
  • a torsional cross section it will be possible to form a torsional cross section according to the use or the like two or more times as desired. If the torsional cross section is formed more than 12 times at 35mm, the tensile strength of the reinforcing fiber itself is reduced by excessive torsion, and cement mortar is hard to be filled to every corner of the reinforcing fiber, and bubbles are easily generated. Bars do not function in high-performance concrete, so limited.
  • the shape ratio is formed to be 100 or less, the cross-sectional dimension and the length have the maximum value. Therefore, when the maximum value (shape ratio 100) is used, the number of braids of the reinforcing fibers is preferably 12 or less.
  • the reinforcing fiber of the torsional cross section it is preferable to use a length of the reinforcing fiber of the torsional cross section longer than the reinforcing fiber of the circular cross section.
  • the reinforcing fiber of circular cross section is used as short fiber
  • the reinforcing fiber of torsional cross section is used as long fiber.
  • hybrid fibers improve the durability by controlling cracks of various shapes and sizes in cement paste.
  • the hybrid reinforcing fiber may be included in an amount of 1 to 5 vol% based on 100 vol% of the total concrete when the super high-performance steel fiber reinforcing concrete composition is blended. This is because the mixing effect is insignificant when less than 1 vol%, and the strength is lowered due to aggregation of fibers when the volume exceeds 5 vol%.
  • the present invention proposes a super high-performance fiber reinforced concrete manufacturing method using a hybrid steel fiber, it is prepared by blending cement, reactive powder, sand, filler, thickener, water reducing agent and hybrid reinforcing fiber.
  • a premixing mortar material in which cement, sand, reactive powder, filler and thickener are mixed evenly beforehand is added with a blending water composed of water and a high performance water reducing agent, mixed with a high speed mixer, and then mixed with a mortar and blending water.
  • the hybrid fiber is added to the mixture, mixed again, and then manufactured through a curing period.
  • the premixing mortar material is to place a storage site for the material constituting the construction site, to reduce the cost and minimize the weighing error and to reduce the mixing time.
  • water typically distilled water is preferred
  • a polycarboxylic high performance water reducing agent or a naphthalene high performance water reducing agent having a solid content of 30 to 40% by weight was prepared to form a ratio of 90 to 99.5% by weight and 0.5 to 10% by weight, respectively, and the premixed mortar and the blended water were mixed in a high speed mixer so that the ratio of the compounded water-binder (sum of cement and reactive powder) was 0.25 or less. Mix for 7-15 minutes at 20-40 rpm.
  • the hybrid reinforcing fiber is added to the mixture of mortar and the blended water so mixed in 1 to 5% by volume in the mixture and mixed for 3 to 10 minutes at a speed of 30 to 50rpm.
  • the final mixture was subjected to wet curing for 1 to 3 days, and then steam curing was performed at a high temperature of 60 to 110 ° C. for 2 to 4 to activate the hydration reaction of cement and the Pozzolanic reaction of reactive powder.
  • steam curing was performed at a high temperature of 60 to 110 ° C. for 2 to 4 to activate the hydration reaction of cement and the Pozzolanic reaction of reactive powder.
  • the sand is quartz sand (90 wt% or more of SiO 2) having a size of 5 mm or less, and about 100 parts by weight to 130 parts by weight based on 100 parts by weight of cement.
  • the reason for using sand of 5 mm or less is to secure the homogeneity of the cement composite and improve its strength.
  • the reactive powder is a mineral admixture such as silica fume, blast furnace slag, fly ash and the like. Such reactive powder is used in about 10 to 30 parts by weight based on 100 parts by weight of cement. Since the reactive powder is composed of spherical particles, the workability is improved by reducing friction of the steel fiber reinforced cement composite (steel fiber reinforced concrete), the fiber dispersibility is increased by increasing the viscosity of the paste, and the strength by the pozzolanic reaction It serves to improve.
  • the reactive powder has the advantage of increasing the long-term strength by the pozzolanic reaction which reacts with calcium hydroxide (Ca (OH) 2), a hydration reaction product of cement, to produce calcium silicate salt (3CaO2SiO23H2O) and calcium aluminate salt (3CaOAl2O3).
  • Ca (OH) 2 calcium hydroxide
  • Ca (OH) 2 a hydration reaction product of cement
  • 3CaO2SiO23H2O calcium silicate salt
  • CaOAl2O3 calcium aluminate salt
  • the filler is 10 to 30 parts by weight of quartz powder (SiO 2 95% or more) or limestone fine powder (CaCO 3 or more 75% or more) based on 100 parts by weight of cement.
  • the thickener is used to impart viscosity to the cement matrix.
  • Cellulose thickener or acryl thickener is used in an amount of 0.05 to 1 parts by weight based on 100 parts by weight of cement. Such thickeners serve to improve fiber dispersibility of steel fiber reinforced cement composites.
  • Reducing agents are used to ensure the fluidity of the cement matrix.
  • a polycarboxylic acid-based high performance water reducing agent or a naphthalene-based high performance water reducing agent having a solid content of 30 to 40% by weight based on 100 parts by weight of cement is used.
  • Such a water reducing agent serves to improve the workability and fiber dispersibility of the steel fiber reinforced cement composite.
  • the fiber ball phenomenon occurs when a large amount of steel fiber is used because the specific gravity and aspect ratio of the steel fiber are different from the particles of the material constituting the cement matrix. It is known that it does not exhibit the inherent performance of steel fiber reinforced cement composites, but rather cause brittle fracture and durability degradation.
  • the steel fiber-reinforced cement composite can secure high fiber dispersibility by using the above-described thickener and water reducing agent, so that a high toughness can be realized by adding a large amount of steel fiber to the steel fiber-reinforced cement composite without fiber aggregation as described below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 하이브리드 섬유를 혼입하는 초고성능 콘크리트에 관한 것으로, 이를 더욱 상세히 설명하면 비틀림 단면의 장섬유가 혼입되어 비틀림 단면의 형상에 기해 콘크리트의 기계적 물성을 향상시키고, 매크로한 균열을 제어함은 물론 원형 단면의 단섬유를 혼입하여 배합함으로써 마이크로한 균열을 제어하도록 함으로써 전체적으로 초고성능 콘크리트의 역학적 성능을 향상시킬 수 있는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법에 관한 것이다.

Description

하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법
본 발명은 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법에 관한 것으로, 보다 상세하게는 직선형 강섬유의 micro 균열 방지와 높은 인발저하성능을 가진 비틀림 강섬유의 macro 균열에 대한 높은 균열저항성능을 이용하여 초고성능 섬유보강 콘크리트의 역학적 성능을 향상시기기 위한 조성물 및 제조방법에 관한 것이다.
콘크리트는 경제성 및 내구성이 우수한 건설재료로서 강재와 더불어 콘크리트 구조물의 건설에 널리 사용되고 있다. 그러나 콘크리트는 인장강도와 휨강도가 작고, 균열이 발생하기 쉬운 본질적인 결함을 가지고 있으며, 또한 최근 고강도 콘크리트의 실용화에 따른 압축강도의 증가로 인해 콘크리트의 취성파괴(Brittle Failure)가 문제시되고 있다.
한편, 콘크리트의 취성파괴 등을 방지하기 위해 일반 콘크리트의 배합에 강섬유(Steel Fiber)를 체적으로 1%(75kg/㎥) 이하로 혼입하여 제조하는 섬유보강 콘크리트(Fiber Reinforced Concrete)가 일부 콘크리트 구조물에 사용되고 있다. 이러한 강섬유는 원형단면을 가진 직선형강섬유와 끝단을 구부린 후크형 강섬유를 사용하는 것이 대부분이다. 상기의 강섬유는 일반적으로 인장강도 1,500MPa 이하인 것을 사용하고, 길이는 10mm~30mm 정도, 직경은 0.45mm~1.0mm 정도의 범위인 것을 사용한다.
하지만 1% 정도의 섬유 혼입으로는 고강도 콘크리트의 취성파괴를 충분히 방지하지 못하여, 지진 또는 차량의 반복 및 충격하중, 화재 및 자연 열화현상 등이 발생하였을 때 곧바로 구조물이 파괴되는 취약점을 안고 있다.
또한, 종래에 180MPa 이상인 초고강도콘크리트에 기존의 원형섬유를 사용하는 경우(특허 제10-0620866호 ; 강섬유 보강 시멘트 복합체 및 그 제조방법)에는 섬유의 인장강도 부족으로 시멘트 복합체가 파단되기 전에 섬유가 항복강도에 도달하여 휨 또는 인장강도 개선에 도움을 주지 못하는 문제점이 있다.
그리고 섬유의 인장강도를 2,000MPa 이상인 강섬유를 사용하더라도 원형섬유를 사용한 경우에는 휨 또는 인장파괴 시 강섬유가 항복강도에 도달되어 파단되기 전에 강섬유 먼저 콘크리트로부터 뽑혀져 나오는 현상(Debonding)으로 강섬유 보강효과가 떨어져 인성(Toughness)향상에 크게 기여하지 못하는 문제점이 있었다.
이에 본 발명자들은 앞서 언급한 기존의 일반 콘크리트, 섬유보강 콘크리트 및 초고강도 섬유보강 콘크리트가 안고 있는 문제점을 극복하고자 연구와 실험을 거듭한 결과, 장,단섬유를 혼합한 하이브리드 보강섬유를 사용하면 단일 강섬유를 사용한 것보다 휨강도 및 연성효과가 대폭 향상되는 것을 이용하여 직선형 단섬유를 사용하여 매트릭스의 미세 균열(micro crack)을 방지하고 비틀림 장섬유를 사용하여 매트릭스와의 부착강도를 향상 및 마찰부착력에 의한 인발저항성을 향상시켜 대균열(macro crack)에 대한 높은 균열저항성능을 이용하여 역학적 성능이 우수한 초고성능 콘크리트를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 수단으로 본 발명의 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물은 보강섬유가 배합된 초고성능 콘크리트 조성물에 있어서, 상기 보강섬유는 강섬유로 구성되되, 원형 단면의 보강섬유와 양 단부가 고정되어 회전되도록 하여 외부둘레가 길이방향으로 연속하여 꼬아진 형상의 비틀림 단면의 보강섬유가 혼입된 하이브리드 섬유가 배합됨을 특징으로 한다.
여기서 상기 원형 단면의 보강섬유보다 상기 비틀림 단면의 보강섬유의 길이가 긴 것을 사용하는 것이 바람직하다. 즉 원형 단면의 보강섬유는 단섬유로 사용되고, 비틀림 단면의 보강섬유는 장섬유로 사용됨이 타당하다.
한편 본 발명의 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 제조방법은 시멘트 100 중량부를 기준으로 모래 100 내지 130 중량부, 반응성 분체 10 내지 30중량부, 충전재 10 내지 30중량부 및 중점제 0.05 내지 1 중량부를 포함한 모르타르를 제조하는 단계; 물 90중량% 내지 99.5중량%와 감수제 0.5중량% 내지 10중량%로 구성되는 배합수와 상기 모르타르의 결합재(시멘트와 반응성 분체의 합)의 비가 0.2 이하가 되도록 하여 상기 배합수와 모르타르를 혼합하는 단계; 상기 배합수와 모르타르의 혼합물에 하이브리드 보강섬유를 혼합하되, 전체 콘크리트 100vol%에 대하여 1 ~ 5vol%를 투입하여 혼합하는 하이브리드 보강섬유를 투입 단계; 상기 하이브리드 보강섬유가 투입된 배합수와 모르타르 혼합물에 대해 1일 내지 3일 동안 습윤양생을 실시한 후, 60℃ 내지 110℃의 온도에서 2일 내지 4일 동안 증기양생을 실시하는 단계;를 포함하는 것을 특징으로 한다.
여기서 상기 모르타르 제조단계는 상기 모르타르를 구성하는 혼합물을 20rpm 내지 40rpm의 속도로 7분 내지 15분 동안 혼합하는 단계를 포함하고; 상기 배합수와 모르타르의 혼합 단계는 80rpm 내지 120rpm의 속도로 7분 내지 20분 동안 혼합한 후 다시 40rpm 내지 60rpm 속도로 2분 내지 5분 동안 혼합하는 단계를 포함하며; 상기 하이브리드 보강섬유를 상기 배합수와 모르타르에 혼합하는 단계는 30rpm 내지 50rpm의 속도로 3분 내지 10분 동안 혼합하는 단계;를 포함하는 것을 특징으로 한다.
본 발명의 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법은 강섬유의 하이브리드 형태 및 형상에 의해 초고성능 섬유보강 콘크리트 조성물의 역학적 특성을 향상시키고자 하는 것으로, 시멘트 경화체와의 기계적 부착성능을 향상시키기 위해 비틀림 단면의 보강섬유를 혼입하면서, 모든 균열을 제어하기 위해 비틀림 단면의 보강섬유를 장섬유로 원형단면의 보강섬유를 단섬유로 혼합하여 초고성능 섬유보강 콘크리트의 역학적 성능을 배가시키는 장점이 있다.
도 1은 본 발명의 일 구성인 비틀림 단면의 보강섬유를 나타내는 사진이고,
도 2는 본 발명의 일 구성인 원형 단면의 보강섬유를 나타내는 사진이고,
도 3은 본 발명의 일 구성인 비틀림 단명의 보강섬유를 제조하기 전 상태를 나타내는 사시도이다.
상기 목적을 달성하기 위한 수단으로 본 발명의 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물은 보강섬유가 배합된 초고성능 콘크리트 조성물에 있어서, 상기 보강섬유는 강섬유로 구성되되, 원형 단면의 보강섬유와 양 단부가 고정되어 회전되도록 하여 외부둘레가 길이방향으로 연속하여 꼬아진 형상의 비틀림 단면의 보강섬유가 혼입된 하이브리드 섬유가 배합됨을 특징으로 한다.
이하, 본 발명의 구성 및 작용을 첨부된 도면에 의거하여 좀 더 구체적으로 설명한다. 본 발명을 설명함에 있어서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 보강섬유가 배합된 초고성능 콘크리트 조성물에 있어서, 상기 보강섬유는 강섬유로 구성되되, 원형 단면의 보강섬유와 양 단부가 고정되어 회전되도록 하여 외부둘레가 길이방향으로 연속하여 꼬아진 형상의 비틀림 단면의 보강섬유가 혼입된 하이브리드 섬유가 배합됨을 특징으로 한다.
상기 보강섬유는 강섬유로 구성되는 바, 강섬유는 탄소강 등을 얇게 절삭가공, 주조 등의 방법으로 제조될 수 있으며, 형상비(Aspect Ratio, 단면수치에 대한 길이의 비)는 30 ~ 100 정도의 것이 사용될 수 있다. 바람직하게는 본 발명에 의한 보강섬유는 그 직경이 0.16 ~ 0.30mm, 길이가 20 내지 150mm, 비틀림 단면의 보강섬유는 비틀림 횟수 35mm 당 2 내지 12개인 것이 타당하다. 이러한 직경, 길이 및 꼬인 상태로 제조될 때, 강섬유의 인장강도가 1300 ~ 3800 MPa로 정해지도록 할 수 있어 섬유보강 초고성능 콘크리트에 있어 그 효과가 충분히 발휘할 수 있도록 함이 바람직하다.
한편 상기 하이브리드 보강섬유는 그 길이가 20 내지 150mm로 한정하는 것이 바람직한 바, 20mm 미만의 경우는 시멘트 페이스트 내에서 강도발현 및 균열제어에 효과를 발현하는 것이 미미하고, 150mm를 초과하는 경우 각각의 섬유 간에 뭉침이 발생하여 분산성이 저하될 수 있으며, 비중의 증가에 의해 분산성이 저하될 수 있기 때문이다.
상기 비틀림 단면의 보강섬유는 도 3에서 보는 바와 같이 단면에 복수의 산이 형성되도록 길이방향으로 복수의 볼록테두리가 형성된 직선형 섬유(100)를 양 단부가 고정되어 회전되도록 하여 비틀림 단면이 형성되도록 함에 특징이 있다.
이는 도 1에서 보는 바와 같이 상기 비틀림 단면의 보강섬유를 제조시에 단면에 복수의 산이 형성되도록 길이방향으로 복수의 볼록테두리가 형성된 직선형 섬유(100)를 사용함으로써 원형단면을 사용하는 경우보다 외주연의 둘레길이가 증가되도록 하여 결국 비틀림 단면을 형성하도록 하는 것이다.
이렇게 비틀림 단면으로 구성하는 것은 증가된 둘레길이만큼 보강섬유와 시멘트 경화체의 부착성능이 향상시키기 위한 것이다. 즉 보강섬유에 있어 형상비에는 영향이 없도록 하면서 시멘트 경화체와의 부착성능을 높이는 기술적 특징이 도입된 것이다.
결국 본 발명의 일 구성으로, 도 1에서 보는 바와 같이 비틀림 단면을 가진 보강섬유는 도 3에서 보는 바와 같이 소정의 길이를 가진 단면에 복수의 산이 형성되도록 길이방향으로 복수의 볼록테두리가 형성된 직선형 강섬유(100)를 양 단부가 고정된 채 서로 반대방향으로 회전시키는 방식으로 강섬유에 비틀림이 발생하도록 하여 시멘트 경화체와 접촉면적을 극대화 할 수 있는 비틀림 단면이 제조되는 것이다.
도 1에서는 상단에 일정한 길이(35mm)에 있어 4회 꼬아진 상태(4 PITCH 상태라한다.)를 보인 것이고, 하단에 일정한 길이(35mm)에 있어 6회 꼬아진 상태(6 PITCH 상태라한다.)를 보인 것이다.
물론, 2회 이상 원하는 횟수만큼 용도 등에 따라 비틀림 단면을 형성하는 것이 가능할 것이다. 단 35mm에서 12회를 초과하여 비틀림 단면을 형성하는 경우에는 과도한 비틀림에 의해 보강섬유 자체의 인장강도가 저하되고, 시멘트 모르타르가 보강섬유의 구석구석까지 충전되기 어려우며, 또한 기포가 발생하기 쉽기 때문에 초고성능 콘크리트에서 제기능을 수행하지 못하는 바, 이와 같이 한정한다. 여기서 형상비가 100 이하로 형성된다고 했을 때 단면치수 및 길이에는 그 최대치가 있으므로 그 최대치(형상비 100)를 기준으로 했을 때 보강섬유의 꼰 횟수는 12회 이하가 바람직함을 알 수 있다.
이렇게 다수 회 비틀림 단면을 형성하도록 강섬유를 꼬게 되면 그 둘레면적은 자연스럽게 더 증가될 수 있도록 하면서 굳지 않은 시멘트 복합체에 있어 균열이 발생할 경우 균열면에 있어 서로 접하는 시멘트 복합체의 가교효과를 통해 종국적으로 섬유보강 초고성능 콘크리트의 보강효과를 증진시킬 수 있게 된다.
특히 본 발명에서는 상기 원형 단면의 보강섬유보다 상기 비틀림 단면의 보강섬유의 길이가 긴 것을 사용하는 것이 바람직하다.
즉 원형 단면의 보강섬유는 단섬유로 사용되고, 비틀림 단면의 보강섬유는 장섬유로 사용됨이 타당하다. 이는 원형 단면의 보강섬유를 단섬유로 사용함으로써 비교적 짧은 길이로 인해 뭉침이 방지되며, 시멘트 페이스트 내에서 상기 비틀림 단면의 보강섬유가 장섬유로 사용됨으로써 부착력 향상에 기해 인성, 휨강도 등을 향상시키는 반면 마이크로 한 균열을 제어할 수 없는 점을 보강함으로써 하이브리드 섬유는 시멘트 페이스트 내에서 다양한 형상, 크기의 균열을 제어하여 내구성을 향상시키게 되는 것이다.
상기한 바와 같은 하이브리드 보강섬유는 초고성능 강섬유 보강 콘크리트 조성물을 배합시에 전체 콘크리트 100vol%에 대하여 1~5vol% 포함시키는 것이 타당하다. 이는 1vol%미만이면 배합효과가 미미하고, 5vol%를 초과하면 섬유의 뭉침 현상 등으로 오히려 강도가 저하되기 때문이다.
한편 본 발명에서는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 제조방법을 제시하는 바, 시멘트, 반응성 분체, 모래, 충전재, 증점제, 감수제 및 하이브리드 보강섬유를 배합물로 하여 제조된다.
즉, 예컨대 시멘트, 모래, 반응성 분체, 충전재 및 증점제를 미리 골고루 혼합한 프리믹싱(premixing) 형 모르타르 재료에 물과 고성능 감수제로 구성된 배합수를 투입하여 고속믹서기로 혼합한 후, 모르타르와 배합수의 혼합물에 하이브리드 섬유를 투입하여 다시 혼합한 후 일정 기간의 양생 과정을 거쳐 제조된다.
구체적으로 프리믹싱형 모르타르 재료는 건설 현장에서 구성하는 재료의 저장고를 설치하기 위한 장소, 비용의 절감과 계량 오차의 최소화 및 믹싱 시간을 단축시키기 위한 것이다.
예컨대, 시멘트 100중량부를 기준으로 모래 100 ~ 130중량부, 반응성 분체 10 ~ 30중량부, 충전재 10 ~ 30중량부 및 증점제 0.05 ~ 1중량부로 구성되며, 이렇게 구성된 재료를 20 ~ 40rpm 속도로 7 ~ 15분 동안 골고루 혼합하여 제조된다.
이렇게 제조된 프리믹싱형 모르타르 재료의 유동성 및 시공성을 확보하기 위해 물(일반적으로 증류수가 바람직함)과 고형분 30 ~ 40중량%인 폴리칼본산계(Polycarboxylic) 고성능 감수제 또는 나프탈렌계(Naphthalene) 고성능 감수제를 각각 90 ~ 99.5중량%와 0.5 ~ 10중량% 비를 이루도록 배합수를 제조하여, 배합수-결합재(시멘트와 반응성 분체의 합)의 비가 0.25 이하가 되도록 프리믹식형 모르타르와 배합수를 고속 믹서기에서 20 ~ 40rpm 속도로 7 ~ 15분 동안 혼합한다.
이렇게 혼합된 모르타르와 배합수의 혼합물에 하이브리드 보강섬유를 상기 혼합물에 1 ~ 5체적%를 투입하여 30 ~ 50rpm의 속도로 3 ~ 10분 동안 혼합한다.
그리고, 이와 같이 최종 혼합물을 1 ~ 3일 동안의 습윤양생을 실시한 다음, 시멘트의 수화반응과 반응성분체의 포졸란 반응(Pozzolanic reaction)을 활성화시키기 위해 60 ~ 110℃의 고온하에서 증기양생을 2 ~ 4일 동안 실시함으로써 초고성능 콘크리트가 제조된다.
상기 모래는 5mm 이하의 크기를 가진 석영질 모래(SiO2 90중량% 이상)이며, 시멘트 100중량부를 기준으로 약 100 ~ 130중량부가 사용된다. 5mm 이하의 모래를 사용한 이유는 시멘트 복합체의 균질성을 확보하여 그 강도를 향상시키기 위한 것이다.
상기 반응성 분체는 실리카퓸, 고로슬래그, 플라이애쉬 등과 같은 광물질 혼화재이다. 이와 같은 반응성 분체는 시멘트 100중량부를 기준으로 약 10 ~ 30중량부가 사용된다. 반응성 분체는 구형 입자들로 이루어져 있으므로 강섬유 보강 시멘트 복합체(강섬유 보강 콘크리트)의 마찰을 감소시켜 시공성을 향상시키고, 페이스트(paste)의 점성을 증가시킴으로 섬유 분산성을 증가시키고, 또한 포졸란 반응에 의해 강도를 향상시키는 역할을 한다.
일반적으로 반응성 분체는 시멘트의 수화반응 생성물인 수산화칼슘(Ca(OH)2)과 반응하여 규산칼슘염(3CaO2SiO23H2O)과 알루미산칼슘염(3CaOAl2O3)을 생성하는 포졸란 반응에 의해 장기 강도가 증가시키는 장점이 있으나, 재령 초기에는 반응성 분체를 사용한 만큼 시멘트 사용량이 감소하므로 콘크리트의 초기 강도가 저하되어 시공 기간이 길어지고, 수축이 많이 발생하는 단점이 있다. 이와 같은 반응성 분체의 의한 초기 강도 저하 등의 문제점을 해결하기 위하여, 시멘트의 수화반응과 반응성 분체의 포졸란 반응이 활성화되도록 재령 초기에 60 ~ 120℃의 고온 하에서 증기양생을 실시하게 된다. 이와 같은 기술적 구성에 의하여 시멘트의 수화반응이 빨리 진행될 뿐만 아니라 포졸란 반응에 의해 수산화칼슘이 거의 소비되어 강섬유 보강 시멘트 복합체의 초기 강도 저하를 극복하는 동시에 초강도화를 실현할 수 있게 된다.
충전재는 10㎛ 이하의 입자크기를 가진 석영질 분말(SiO2 95% 이상) 또는 석회석 미분말(CaCO3 75% 이상)을 시멘트 100중량부를 기준으로 10 ~ 30중량부를 사용한다.
이와 같은 충전재를 사용함으로써 시멘트 페이스트와 골재 사이의 계면영역 또는 시멘트 페이스트와 섬유 사이의 계면영역에 충전되는 필러(filler)작용으로 계면영역의 파괴를 방지하여 강섬유 보강 시멘트 복합체의 강도가 향상된다.
증점제는 시멘트 매트릭스에 점성을 부여하기 위한 것으로서, 셀로룰오스(Cellulose) 증점제 또는 아크릴(Acryl) 증점제를 시멘트 100중량부를 기준으로 0.05 ~ 1중량부를 사용한다. 이와 같은 증점제는 강섬유 보강 시멘트 복합체의 섬유 분산성을 향상시키는 역할을 한다.
감수제는 시멘트 매트릭스의 유동성을 확보하기 위해 사용된다. 강섬유 보강 시멘트 복합체에서 시멘트 100중량부를 기준으로 고형분 30 ~ 40중량%인 폴리칼본산계 고성능 감수제 또는 나프탈렌계 고성능 감수제 0.5 ~ 10중량부가 사용된다. 이와 같은 감수제는 강섬유 보강 시멘트 복합체의 시공성 및 섬유 분산성을 향상시키는 역할을 한다.
일반적으로 강섬유 보강 시멘트 복합체에서는 강섬유의 비중과 형상계수(aspect ratio ; 직경와 길이의 비)가 시멘트 매트릭스를 구성하는 재료의 입자와의 차이로 강섬유를 다량으로 사용한 경우에는 섬유 뭉침(fiber ball) 현상이 발생하여 강섬유 보강 시멘트 복합체의 본래 성능을 발휘하지 못하거나 오히려 취성파괴 및 내구성 저하를 일으키는 것으로 알려져 있다.
그러나, 강섬유 보강 시멘트 복합체는 위에서 서술한 증점제 및 감수제 등의 사용에 의해 섬유 분산성을 확보하여 후술하는 바와 같이 섬유 뭉침 현상 없이도 다량의 강섬유를 강섬유 보강 시멘트 복합체에 첨가하여 고인성을 구현할 수 있다.

Claims (9)

  1. 보강섬유가 배합된 초고성능 콘크리트 조성물에 있어서,
    상기 보강섬유는 강섬유로 구성되되,
    원형 단면의 보강섬유와, 양 단부가 고정되어 회전되도록 하여 외부둘레가 길이방향으로 연속하여 꼬아진 형상의 비틀림 단면의 보강섬유가 혼입된 하이브리드 섬유가 배합됨을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  2. 제 1항에 있어서,
    상기 원형 단면의 보강섬유보다 상기 비틀림 단면의 보강섬유의 길이가 긴 것을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  3. 제 1항에 있어서,
    상기 하이브리드 보강섬유는 그 길이가 20 내지 150mm인 것을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  4. 제 1항에 있어서,
    상기 비틀림 단면의 보강섬유는 35mm당 비틀림 횟수 2 내지 12개인 것을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  5. 제 1항에 있어서,
    상기 하이브리드 보강섬유는 그 직경이 0.16 ~ 0.30mm인 것을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  6. 제 1항에 있어서,
    상기 하이브리드 보강섬유는 전체 콘크리트 100vol%에 대하여 1 ~ 5vol%가 배합됨을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  7. 제 1항에 있어서,
    상기 비틀림 단면의 보강섬유는 단면에 복수의 산이 형성되도록 길이방향으로 복수의 볼록테두리가 형성된 직선형 섬유를 양 단부가 고정되어 회전되도록 하여 비틀림 단면이 형성됨을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물.
  8. 시멘트 100 중량부를 기준으로 모래 100 내지 130 중량부, 반응성 분체 10 내지 30중량부, 충전재 10 내지 30중량부 및 중점제 0.05 내지 1 중량부를 포함한 모르타르를 제조하는 단계;
    물 90중량% 내지 99.5중량%와 감수제 0.5중량% 내지 10중량%로 구성되는 배합수와 상기 모르타르의 결합재(시멘트와 반응성 분체의 합)의 비가 0.2이하가 되도록 하여 상기 배합수와 모르타르를 혼합하는 단계;
    상기 배합수와 모르타르의 혼합물에 제 1항 내지 제 7항중 어느 한항의 하이브리드 보강섬유를 혼합하되, 전체 콘크리트 100vol%에 대하여 1 ~ 5vol%를 투입하여 혼합하는 하이브리드 보강섬유를 투입 단계; 및
    상기 하이브리드 보강섬유가 투입된 배합수와 모르타르 혼합물에 대해 1일 내지 3일 동안 습윤양생을 실시한 후, 60℃ 내지 110℃의 온도에서 2일 내지 4일 동안 증기양생을 실시하는 단계를 포함하는 것을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 제조방법.
  9. 제 8항에 있어서,
    상기 모르타르 제조단계는 상기 모르타르를 구성하는 혼합물을 20rpm 내지 40rpm의 속도로 7분 내지 15분 동안 혼합하는 단계를 포함하고;
    상기 배합수와 모르타르의 혼합 단계는 80rpm 내지 120rpm의 속도로 7분 내지 20분 동안 혼합한 후 다시 40rpm 내지 60rpm 속도로 2분 내지 5분 동안 혼합하는 단계를 포함하며;
    상기 하이브리드 보강섬유를 상기 배합수와 모르타르에 혼합하는 단계는 30rpm 내지 50rpm의 속도로 3분 내지 10분 동안 혼합하는 단계;를 포함하는 것임을 특징으로 하는 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 제조방법.
PCT/KR2012/005979 2011-11-30 2012-07-26 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법 WO2013081271A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110126559A KR101292173B1 (ko) 2011-11-30 2011-11-30 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법
KR10-2011-0126559 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013081271A1 true WO2013081271A1 (ko) 2013-06-06

Family

ID=48535690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005979 WO2013081271A1 (ko) 2011-11-30 2012-07-26 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101292173B1 (ko)
WO (1) WO2013081271A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191351A (zh) * 2018-03-08 2018-06-22 同济大学 一种掺混杂纤维的超高性能混凝土
CZ307462B6 (cs) * 2017-01-24 2018-09-19 ÄŚeskĂ© vysokĂ© uÄŤenĂ­ technickĂ© v Praze - fakulta stavebnĂ­ Způsob homogenizace vysokohodnotného nebo ultra-vysokohodnotného betonu
CN113087456A (zh) * 2019-12-23 2021-07-09 南通市建设混凝土有限公司 一种防裂高韧性长寿命特种纤维混凝土及其制备工艺
CN114474302A (zh) * 2022-02-25 2022-05-13 中铁大桥局集团有限公司 梯度功能超高性能混凝土制品及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020012409A (es) * 2018-05-18 2021-04-13 Pensmore Reinforcement Tech Llc Fibras de refuerzo trenzadas y método de fabricación.
KR102310892B1 (ko) 2020-01-21 2021-10-08 주식회사 삼표산업 글리콜 에테르계 화합물로 이루어진 물성안정제를 이용한 저점성 초고성능 콘크리트 조성물
CN112177043B (zh) * 2020-08-31 2022-06-17 香港理工大学深圳研究院 一种基于带孔钢板的混凝土复合构件及其制造方法
KR102229910B1 (ko) * 2020-09-04 2021-03-19 주식회사 금화 콘크리트 포장도로의 균열부위 보수용 보수장치 및 그 보수장치를 이용한 콘크리트 포장도로의 균열부위 보수방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247697A (ja) * 1999-03-02 2000-09-12 Yasuda Kogyo Kk コンクリート補強用鋼繊維およびその製造方法ならびに鋼繊維補強コンクリート製品
KR100620866B1 (ko) * 2004-02-16 2006-09-13 한국건설기술연구원 강섬유 보강 시멘트 복합체 및 그 제조 방법
US20070289502A1 (en) * 2003-12-16 2007-12-20 Xavier Destree Metal Fiber Concrete
KR20090010734A (ko) * 2007-07-24 2009-01-30 재단법인 포항산업과학연구원 섬유보강콘크리트용 강섬유
KR20110051914A (ko) * 2009-11-11 2011-05-18 한국건설기술연구원 물결형 강섬유와 직선형 강섬유를 혼입한 초고성능 강섬유 보강 시멘트 복합체의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247697A (ja) * 1999-03-02 2000-09-12 Yasuda Kogyo Kk コンクリート補強用鋼繊維およびその製造方法ならびに鋼繊維補強コンクリート製品
US20070289502A1 (en) * 2003-12-16 2007-12-20 Xavier Destree Metal Fiber Concrete
KR100620866B1 (ko) * 2004-02-16 2006-09-13 한국건설기술연구원 강섬유 보강 시멘트 복합체 및 그 제조 방법
KR20090010734A (ko) * 2007-07-24 2009-01-30 재단법인 포항산업과학연구원 섬유보강콘크리트용 강섬유
KR20110051914A (ko) * 2009-11-11 2011-05-18 한국건설기술연구원 물결형 강섬유와 직선형 강섬유를 혼입한 초고성능 강섬유 보강 시멘트 복합체의 제조방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307462B6 (cs) * 2017-01-24 2018-09-19 ÄŚeskĂ© vysokĂ© uÄŤenĂ­ technickĂ© v Praze - fakulta stavebnĂ­ Způsob homogenizace vysokohodnotného nebo ultra-vysokohodnotného betonu
CN108191351A (zh) * 2018-03-08 2018-06-22 同济大学 一种掺混杂纤维的超高性能混凝土
CN113087456A (zh) * 2019-12-23 2021-07-09 南通市建设混凝土有限公司 一种防裂高韧性长寿命特种纤维混凝土及其制备工艺
CN114474302A (zh) * 2022-02-25 2022-05-13 中铁大桥局集团有限公司 梯度功能超高性能混凝土制品及其制备方法和应用

Also Published As

Publication number Publication date
KR101292173B1 (ko) 2013-08-01
KR20130060481A (ko) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2013081271A1 (ko) 하이브리드 강섬유를 사용한 초고성능 섬유보강 콘크리트 조성물 및 이의 제조방법
Ralegaonkar et al. Application of chopped basalt fibers in reinforced mortar: A review
KR101253249B1 (ko) 물결형 강섬유와 직선형 강섬유를 혼입한 초고성능 강섬유 보강 시멘트 복합체의 제조방법
Madhkhan et al. Effect of pozzolanic materials on mechanical properties and aging of glass fiber reinforced concrete
CN104556881B (zh) 一种超高韧性混凝土及其制备方法
KR101751479B1 (ko) 초고성능 섬유보강 콘크리트 및 그 제조방법
KR100620866B1 (ko) 강섬유 보강 시멘트 복합체 및 그 제조 방법
Han et al. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume
JP5681676B2 (ja) セメント組成物、セメント系マトリックス、繊維補強セメント系混合物及びセメント混和材
KR101207038B1 (ko) 유리미분말이 혼입된 초고성능 섬유보강 시멘트 복합체 및 그 제조방법
CN111116132A (zh) 用于组合结构及装配式建筑节点的灌浆料及其制备方法
CN106927761A (zh) 掺加铁尾矿砂、硅灰和玄武岩纤维的高性能混凝土
KR101246114B1 (ko) Tbm 공법에 적용되는 세그먼트용 콘크리트 조성물 및 이에 의하여 제조된 고성능 콘크리트 세그먼트
JP2010116274A (ja) 短繊維補強セメント成形体
WO2016047870A1 (ko) 시멘트계 재료 보강용 아치형 강섬유
JP4709677B2 (ja) プレミクス高靭性ポリマーセメントモルタル材料及び高靭性ポリマーセメントモルタル
KR20140105965A (ko) 자기다짐 콘크리트 복합재료
KR20160011081A (ko) 고흡수성 수지가 포함된 고강도 콘크리트 조성물
JP2012056780A (ja) セメント系成形体補強用短繊維及びそのセメント系成形体補強用短繊維を添加したセメント系成形体
KR20120055119A (ko) 초고성능 섬유보강 콘크리트 및 이의 제조방법
CN113200727A (zh) 一种改善pva纤维和纳米二氧化硅水泥基复合材料流变性能的方法
JP5182779B2 (ja) コンクリートもしくはモルタル補強用無機マトリックス・炭素繊維複合線材、その製造方法およびコンクリートもしくはモルタル構造物
CN106278051A (zh) 一种抗冲击复合板材及其制备方法
KR20130075334A (ko) 비정질 강섬유 시멘트 복합체 및 이를 이용한 콘크리트
JP4451083B2 (ja) モルタルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/10/2014).

122 Ep: pct application non-entry in european phase

Ref document number: 12853003

Country of ref document: EP

Kind code of ref document: A1