CN106278051A - 一种抗冲击复合板材及其制备方法 - Google Patents

一种抗冲击复合板材及其制备方法 Download PDF

Info

Publication number
CN106278051A
CN106278051A CN201610697125.3A CN201610697125A CN106278051A CN 106278051 A CN106278051 A CN 106278051A CN 201610697125 A CN201610697125 A CN 201610697125A CN 106278051 A CN106278051 A CN 106278051A
Authority
CN
China
Prior art keywords
layer
fiber reinforced
cement
reinforced cement
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610697125.3A
Other languages
English (en)
Other versions
CN106278051B (zh
Inventor
周芬
李春涛
杜运兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201610697125.3A priority Critical patent/CN106278051B/zh
Publication of CN106278051A publication Critical patent/CN106278051A/zh
Application granted granted Critical
Publication of CN106278051B publication Critical patent/CN106278051B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/087Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • B28B1/16Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted for producing layered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/523Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/525Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing organic fibres, e.g. wood fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0641Polyvinylalcohols; Polyvinylacetates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公布了一种抗冲击复合材料板材及其制备方法,属于建筑防护技术领域。该复合材料板材包括抗冲击材料层(1)与增韧层(2),板材的抗冲击材料层(1)采用钢纤维增强水泥基材料,增韧层(2)采用PVA纤维增强水泥基材料,抗冲击材料层(1)和增韧层(2)通过分层浇筑粘结。本发明在抗冲击方面可以有效的利用钢纤维增强水泥基材料和PVA纤维增强水泥基材料的优点,既具有较高的承载力,又有很强的耗能能力,从而达到较好的抗冲击性能。

Description

一种抗冲击复合板材及其制备方法
技术领域
本发明涉及一种抗冲击复合材料板材及其制备方法,属于建筑防护技术领域。
背景技术
近年来,随着汽车撞击、意外爆炸等导致建筑物损坏或倒塌的情况越来越多,建筑物的防爆、抗冲击性能越来越受到人们的关注,尤其在一些重要建筑物、有爆炸危险的建筑物及建筑围护结构中,必须采取有效措施减少爆炸或冲击对建筑物造成的破坏。目前采用的措施主要是修筑防爆墙,防爆墙一般为钢筋混凝土结构、钢结构或者砖砌结构,该类防爆墙能够一定程度的减少爆炸冲击波对建筑物造成的破坏。但是钢结构防爆墙的成本高,钢筋混凝土及砖砌防爆墙存在防爆抗冲击能力差,占地面积大等缺点,而且爆炸可能导致墙体破裂,碎片飞溅等危险。因此,开发抗冲击性能更优越的结构将其应用于工业及民用建筑等领域,对于反恐、保护结构和减少人员和财产的损失具有重要的意义。
发明内容
本发明提供了一种抗冲击复合材料板材及其制备方法,其目的在于减少爆炸或冲击作用对建筑物造成的破坏。纤维增强水泥基复合材料作为一种新型复合材料,其在抗弯、抗折、抗冲击等方面均表现出优异的性能,而且抗裂性和能量吸收性能好。本发明以纤维增强水泥基材料为基础研制的抗冲击复合材料板材的主要创新点在于,该抗冲击复合板材由两部分构成,承受冲击荷载的一面采用钢纤维增强水泥基材料,另一面采用PVA纤维增强水泥基材料作为增韧层,消耗冲击能量,这两种材料通过分层浇筑粘结。
本发明在承受冲击荷载作用下充分发挥了复合板材受压区钢纤维增强水泥基材料的增强作用,以及复合板材受拉区PVA纤维增强水泥基材料的增韧、阻裂作用,实现了两种纤维增强水泥基材料性能的优势互补。当建筑物承受冲击荷载时,不但为其提供了足够的强度,而且使其具有极高的能量吸收能力。如图2所示为四点弯曲试验得到的荷载-挠度曲线,曲线a为钢纤维增强水泥基材料板材的荷载-挠度曲线,曲线b为PVA纤维增强水泥基材料板材的荷载-挠度曲线,曲线c为本发明抗冲击复合板材的荷载-挠度曲线。可以看出钢纤维增强水泥基复合材料强度高,PVA纤维增强水泥基复合材料延性好,但两者材料均有一定不足。本发明的抗冲击复合板材将两种材料分层复合后,充分发挥了两者的优势,使其既有足够的强度,又有很好的延性。
本发明采用以下技术方案来实现:
所述钢纤维增强水泥基材料包括水泥、粉煤灰、硅灰、细砂、水、减水剂和钢纤维,其中水胶比为0.15~0.25,钢纤维的体积含量为1%~3%;所述PVA纤维增强水泥基材料包括水泥、粉煤灰、细砂、水、减水剂、增稠剂和PVA纤维,其中水胶比为0.35~0.45,PVA纤维的体积含量为1.5%~2.5%。
为了使纤维增强水泥基复合材料具有较好的和易性,所述钢纤维增强水泥基材料的制备方法是将上述的胶凝材料添加到搅拌锅中,低速干拌1min,使各种胶凝材料分散均匀;再加入水和减水剂,低速湿拌3min,形成流动性较好的浆体;再加入钢纤维,低速搅拌2min。所述PVA纤维增强水泥基材料的制备方法,是将上述的胶凝材料添加到搅拌锅中,低速干拌1min,使各胶凝材料分散均匀;再加入水和减水剂,低速湿拌3min,形成流动性较好的浆体;再加入PVA纤维,低速搅拌2min,高速搅拌1min,使纤维分散均匀。
为了充分发挥两种纤维增强水泥基复合材料的优势,本发明要求抗冲击材料层(1)的厚度大于板材厚度的1/3,增韧层(2)的厚度大于板材厚度的1/3。优选的,抗冲击材料层和增韧层的厚度均为板材厚度的1/2时,板材各种性能均较佳。
所述界面结合处的处理,是先在模具中浇筑一层钢纤维增强水泥基材料,将其振捣抹平至厚度均匀,在钢纤维增强水泥基材料初凝前浇筑PVA纤维增强水泥基材料。两者不同时浇筑是为了防止两种纤维增强水泥基复合材料互相混合。
本发明的有益效果是:该抗冲击复合材料板材,有效的利用钢纤维和PVA纤维增强水泥基复合材料的优点,充分的消耗冲击能量,达到较好的抗冲击性能。而且纤维增强水泥基复合材料的抗裂性能好,不易产生碎片飞溅等危险。
附图说明
图1是本发明抗冲击复合板材结构示意图;
图2是四点弯曲试验得到的三种相同厚度板材的荷载-挠度曲线,曲线a为钢纤维增强水泥基材料板材的荷载-挠度曲线,曲线b为PVA纤维增强水泥基材料板材的荷载-挠度曲线,曲线c为本发明抗冲击复合板材的荷载-挠度曲线。
具体实施方式
下面结合实例对本发明作进一步详细说明:
钢纤维增强水泥基材料配比为:普通硅酸盐水泥:粉煤灰:硅灰:细砂:减水剂:水=1:0.8:0.2:0.8:0.01,钢纤维体积含量为1.5%,其中所用钢纤维长度为12~15mm,直径为0.18~0.23mm,抗拉强度为2850MPa,弹性模量为200GPa。
PVA纤维增强水泥基材料配比为:普通硅酸盐水泥:粉煤灰:细砂:减水剂:增稠剂:水=1:1:0.8:0.014:0.0007,PVA纤维体积含量为2%,其中所用PVA纤维长度为12mm,直径为0.039mm,抗拉强度为1600MPa,弹性模量为48.4GPa。
钢纤维增强水泥基材料的制备方法是将水泥、粉煤灰、细砂、硅灰倒入搅拌锅中,低速干拌1min,使各种胶凝材料分散均匀;再加入水和减水剂,低速湿拌3min,形成流动性较好的浆体;再加入钢纤维,低速搅拌2min。
PVA纤维增强水泥基材料的制备方法是将水泥、粉煤灰、细砂、增稠剂倒入搅拌锅中,低速干拌1min,使各胶凝材料分散均匀;再加入水和减水剂,低速湿拌3min,形成流动性较好的浆体;再加入PVA纤维,低速搅拌2min,高速搅拌1min,使纤维分散均匀。
抗冲击复合材料板材的制作:板件分为两层,一层钢纤维增强水泥基材料层,一层为PVA纤维增强水泥基材料层,在板件浇筑过程中,先浇筑一定厚度的钢纤维增强水泥基材料,将其振捣抹平至厚度均匀,在室内常温环境下待1小时,然后再浇筑一定厚度的PVA纤维增强水泥基材料。在每层水泥基材料浇筑后在振动台上振实3分钟。板件浇筑完成后,在室温环境下放置一天后脱模,脱模后的在温度为20±2℃的标准养护室进行养护,直至28天。

Claims (4)

1.一种抗冲击复合材料板材,其特征在于,包括抗冲击材料层(1)与增韧层(2),板材的抗冲击材料层(1)采用钢纤维增强水泥基材料,增韧层(2)采用PVA纤维增强水泥基材料,抗冲击材料层(1)和增韧层(2)在界面结合处通过分层浇筑粘结。
2.根据权利要求1所述的抗冲击复合材料板材,其特征在于,所述钢纤维增强水泥基材料包括水泥、粉煤灰、硅灰、细砂、水、减水剂和钢纤维,其中水胶比为0.15~0.25,钢纤维的体积含量为1%~3%;所述PVA纤维增强水泥基材料包括水泥、粉煤灰、细砂、水、减水剂、增稠剂和PVA纤维,其中水胶比为0.35~0.45,PVA纤维的体积含量为1.5%~2.5%。
3.根据权利要求1所述的抗冲击复合材料板材,其特征在于所述抗冲击材料层(1)厚度不小于板材厚度的1/3,增韧层(2)厚度不小于板材厚度的1/3。
4.根据权利要求1所述界面结合处的处理,其特征在于,先在模具中浇筑一层钢纤维增强水泥基材料,将其振捣抹平至厚度均匀,待钢纤维增强水泥基材料达到初凝时,在钢纤维增强水泥基材料上浇筑PVA纤维增强水泥基材料。
CN201610697125.3A 2016-08-22 2016-08-22 一种抗冲击复合板材及其制备方法 Expired - Fee Related CN106278051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610697125.3A CN106278051B (zh) 2016-08-22 2016-08-22 一种抗冲击复合板材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610697125.3A CN106278051B (zh) 2016-08-22 2016-08-22 一种抗冲击复合板材及其制备方法

Publications (2)

Publication Number Publication Date
CN106278051A true CN106278051A (zh) 2017-01-04
CN106278051B CN106278051B (zh) 2018-12-04

Family

ID=57661731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610697125.3A Expired - Fee Related CN106278051B (zh) 2016-08-22 2016-08-22 一种抗冲击复合板材及其制备方法

Country Status (1)

Country Link
CN (1) CN106278051B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269295A (zh) * 2017-06-29 2017-10-20 昆明理工大学 一种pva‑ecc套衬结构及施工方法
CN107489431A (zh) * 2017-06-29 2017-12-19 昆明理工大学 一种大变形围岩段复合式衬砌
CN109336428A (zh) * 2018-10-26 2019-02-15 安徽理工大学 层布式水泥与mswi底灰碱激发双胶凝体系材料制备方法
CN115162608A (zh) * 2022-06-28 2022-10-11 湖南大学 一种基于纤维-基体界面强弱处理的高性能纤维增强水泥基复合板材及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103507367A (zh) * 2012-06-18 2014-01-15 辽宁辽杰科技有限公司 一种复合夹芯保温板材及其制备方法
CN105622018A (zh) * 2015-12-30 2016-06-01 南京理工大学 一种抗侵彻抗爆炸的水泥基防护工程材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103507367A (zh) * 2012-06-18 2014-01-15 辽宁辽杰科技有限公司 一种复合夹芯保温板材及其制备方法
CN105622018A (zh) * 2015-12-30 2016-06-01 南京理工大学 一种抗侵彻抗爆炸的水泥基防护工程材料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269295A (zh) * 2017-06-29 2017-10-20 昆明理工大学 一种pva‑ecc套衬结构及施工方法
CN107489431A (zh) * 2017-06-29 2017-12-19 昆明理工大学 一种大变形围岩段复合式衬砌
CN107489431B (zh) * 2017-06-29 2019-09-27 昆明理工大学 一种大变形围岩段复合式衬砌
CN109336428A (zh) * 2018-10-26 2019-02-15 安徽理工大学 层布式水泥与mswi底灰碱激发双胶凝体系材料制备方法
CN109336428B (zh) * 2018-10-26 2021-10-22 安徽理工大学 层布式水泥与mswi底灰碱激发双胶凝体系材料制备方法
CN115162608A (zh) * 2022-06-28 2022-10-11 湖南大学 一种基于纤维-基体界面强弱处理的高性能纤维增强水泥基复合板材及其制备方法

Also Published As

Publication number Publication date
CN106278051B (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
Sukontasukkul et al. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer
Li et al. Development of high-strength and high-ductility ECC with saturated multiple cracking based on the flaw effect of coarse river sand
EP2067753A1 (en) Concrete Mix
US20090075076A1 (en) Impact resistant strain hardening brittle matrix composite for protective structures
CN106396548A (zh) 一种抗冲击防腐水泥基复合材料及其制备方法
CN102092996A (zh) 一种耐高温超高性能水泥基复合材料及其制备方法
CN106278051A (zh) 一种抗冲击复合板材及其制备方法
CN109020425B (zh) 一种带铁磁性建筑模网墙用自保温防裂砂浆及其制备方法
Gao et al. Experimental investigation on flexural behavior of hybrid fibers reinforced recycled brick aggregates concrete
Vatannia et al. Development of economic, practical and green ultra-high performance fiber reinforced concrete verified by particle packing model
CN108409243B (zh) 用于地下硫酸盐侵蚀环境的约束管灌注桩及其制备方法
KR101224141B1 (ko) 섬유보강 콘크리트 보
Jena et al. Comparative study on self-compacting concrete reinforced with different chopped fibers
CN107216091A (zh) 一种新型桥梁伸缩缝填充材料
CN207405875U (zh) 一种非粘结性超高韧性水泥基复合材料功能梯度梁
CN113582627A (zh) 一种纳米氧化铝改性超轻质水泥基复合材料及其制备方法和应用
Marke et al. Comparative evaluation of the flexural strength of concrete and colcrete
Hamiruddin et al. Effect of Steel Fibre Contents with High Strength Fibre Reinforced Concrete. J
JP5851264B2 (ja) 水硬性組成物
Gyawali Effect of sand types and mixing procedures on the flexural behaviour of the high ductile mortar in monotonic and cyclic loadings
Sounthararajan et al. Reinforcing efficiency of crimped profile of polypropylene fibres on the cementitious matrix
Illampas et al. Development and performance evaluation of a novel high-ductility fiber-reinforced lime-pozzolana matrix for textile reinforced mortar (TRM) masonry strengthening applications
KR20060013302A (ko) 고인성 시멘트 복합체와 포러스콘크리트를 복합한흡음패널의 제조방법 및 제품
Viet et al. Experimental evaluation on engineering properties and microstructure of the high-performance fiber-reinforced mortar with low polypropylene fiber content
Al-Hadithi et al. Stress-Strain Relationship for Steel-Fiber Reinforced Polymer Modified Concrete under Compression

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181204