WO2013081151A1 - ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム - Google Patents

ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム Download PDF

Info

Publication number
WO2013081151A1
WO2013081151A1 PCT/JP2012/081209 JP2012081209W WO2013081151A1 WO 2013081151 A1 WO2013081151 A1 WO 2013081151A1 JP 2012081209 W JP2012081209 W JP 2012081209W WO 2013081151 A1 WO2013081151 A1 WO 2013081151A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
application
coating
temperature
region
Prior art date
Application number
PCT/JP2012/081209
Other languages
English (en)
French (fr)
Inventor
中田 裕二
信久 塚本
公志 高垣
貴紀 川村
Original Assignee
ダイハツ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012241072A external-priority patent/JP6124394B2/ja
Application filed by ダイハツ工業株式会社 filed Critical ダイハツ工業株式会社
Priority to MYPI2014001484A priority Critical patent/MY184816A/en
Priority to CN201280058045.3A priority patent/CN103988047B/zh
Publication of WO2013081151A1 publication Critical patent/WO2013081151A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
    • G01B21/085Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the present invention relates to a method for evaluating a coating thickness and a coating range of a wax, and a coating inspection system, and in particular, a method for evaluating a coating thickness and a coating range of a wax to be applied to an invisible place, and a temperature of a coating region.
  • the present invention relates to a coating inspection system for inspecting a coating operation based on a distribution.
  • a rust-preventing wax is used after the painting process to prevent the corrosion of steel sheets due to the intrusion of rainwater, etc., into bag structures such as doors and hoods that make up the car body.
  • a rust-proofing process for applying the coating.
  • the purpose of applying this type of wax is to prevent rust, so after the wax application operation, whether or not the wax is properly applied, specifically, the applied wax is sufficient. It is necessary to inspect whether or not the coating film thickness is such that sufficient rust prevention performance can be exhibited, or whether or not it is applied within a range where sufficient rust prevention performance can be exhibited.
  • the application location of the wax is the inner surface of the bag structure such as a door or a hood, the range that can be directly confirmed visually is limited. Therefore, it is difficult to confirm the coating thickness of the entire region, and it is difficult to confirm the coating range without omission.
  • the amount of coating (coating film thickness or the area of the area that can actually be applied) is determined by the amount of wax dripping from the drain hole provided in the member to be coated (door, etc.).
  • the current situation is that they are indirectly evaluated.
  • Patent Document 1 discloses a method for evaluating the application state of wax by analyzing an image obtained by imaging an application site of a vehicle body with an infrared thermograph. ing. Specifically, this evaluation method divides an image obtained by imaging with an infrared thermograph into pixel units, calculates a temperature increase rate for each divided unit pixel, and sets this in advance 2 Compared with two thresholds, the temperature rise in the unit pixel is due to the direct application of wax (if it is greater than the higher threshold) or due to thermal diffusion from the wax (up and down This is a method for specifying the range of the application distribution by determining whether the value is between threshold values. The series of processes is performed by a data processing apparatus that stores an analysis algorithm for performing the processes and can transmit thermal image data obtained by imaging with an infrared camera.
  • a method of measuring the coating film thickness using a non-contact measuring device such as a laser displacement meter is not conceivable, but this type of measuring device is expensive, and such a device is used.
  • the measurement of the coating film thickness in the bag structure is still very difficult.
  • control and adjustment may be complicated, it is not suitable for measuring the coating film thickness of the wax as in the present case.
  • the evaluation technique described in Patent Document 1 requires time for analyzing the captured image after the work is completed in order to evaluate the application range using the temperature increase rate. Become. In this case, the application range cannot be evaluated until after the analysis time has elapsed, resulting in an increase in work time and consequently an increase in work cost.
  • the member to be coated is a door or hood of a vehicle body
  • the first technical problem to be solved by the present invention is to evaluate the total thickness of the coated film of wax by a simple method.
  • the second technical problem to be solved by the present invention is to evaluate the total number of wax application areas in a short time.
  • the solution of the first technical problem is achieved by the method for evaluating the coating thickness of the wax according to the first aspect of the present invention. That is, in this evaluation method, the surface temperature of the non-application region where the wax is not applied among the members to be coated and the back surface temperature of the region where the wax is applied are obtained by imaging the member to be coated with an infrared thermograph.
  • the theoretical formula derivation process for deriving the theoretical formula showing the relationship between the temperature difference between the temperature and the surface temperature of the non-coating area and the coating thickness of the wax, and the actual coating film of the wax from the actual temperature difference using the theoretical formula It is characterized by having a coating film thickness evaluation step for evaluating the thickness.
  • ⁇ Doors, hoods, etc., to which wax is applied are usually formed from thin steel plates.
  • the wax application operation is performed on a predetermined area while scanning the wax application gun, a certain time is required from the start of application to the end of application. Therefore, heat transfer from the applied wax to the member to be applied is performed in the wax application area immediately after the start of the application work, and after the application work is completed, the back surface temperature of the application area is actually imaged with an infrared thermograph.
  • the wax and the application region of the member to be applied have reached an isothermal state or a state close thereto.
  • the temperature rise of the member to be coated at this time tends to increase as the amount of heat of the applied wax, that is, the amount of applied wax increases.
  • the present inventors have determined that the temperature difference between the back surface temperature of the coated region after the wax is coated on the coated member and the surface temperature of the region where the wax is not coated, and the application of the wax Finding the theoretical formula between the film thickness and evaluating the actual coating film thickness based on this theoretical formula, the knowledge that the evaluation of the wax coating film thickness can be carried out with high accuracy for all vehicles I came to get.
  • the present invention was made on the basis of the above knowledge, and the theoretical formula in which a certain consistency was confirmed between the temperature difference between the coated area and the non-coated area of the wax and the measured value of the coated film thickness. Since the evaluation standard of the coating film thickness is determined using the above, it is possible to perform highly accurate and reliable film thickness evaluation while minimizing the influence of temperature variation for each member to be coated. In addition, since the coating film thickness can be evaluated by measuring the back surface temperature of the coating area of the coated member and the surface temperature of the non-coating area using an infrared thermograph, the coating film thickness is difficult to visually observe. However, it can be easily and accurately evaluated.
  • the measurement operation itself can be performed non-destructively and can be performed in a short time. . Therefore, it is possible to evaluate the total number of coating film thicknesses without causing a special increase in work time, and it is possible to further improve the quality assurance function.
  • the only necessary measuring instrument is an infrared thermograph, a significant increase in equipment cost can be avoided.
  • the method for evaluating the coating thickness of the wax according to the first aspect of the present invention acquires the surface temperature of the member to be coated before applying the wax as the surface temperature of the non-application region in the temperature acquisition step. May be.
  • the coating film thickness can be evaluated based on the temperature difference before and after the application in the wax application planned region.
  • the coating film thickness of the wax can be evaluated with reference to the surface temperature of the member to be coated that is not affected at all by the heat transfer due to the wax coating (no temperature change is caused).
  • stable film thickness evaluation can be performed without being affected by variations in temperature for each member to be coated.
  • the back surface of the region where the wax is to be applied of the member to be coated is further infrared-irradiated in the temperature acquisition step. You may make it acquire the back surface temperature of an application
  • the temperature before and after coating is acquired by imaging the back surface of the wax coating planned area with an infrared thermograph, even if there is a variation in temperature among the coated members, wax coating is performed. It becomes possible to measure the temperature of the region most suitable for acquisition as the previous surface temperature. Therefore, the actual temperature difference corresponding to the theoretical formula can be acquired, and the evaluation accuracy of the coating film thickness can be further improved.
  • the relative position (imaging position) between the member to be coated and the infrared thermograph can be made constant before and after the wax application, the complexity of the equipment required for film thickness evaluation can be avoided, which also reduces the equipment cost. An increase can be avoided.
  • the method for evaluating the coating thickness of the wax according to the first aspect of the present invention acquires the surface temperature of the member to be coated excluding the area where the wax is scheduled to be applied as the surface temperature of the non-application area in the temperature acquisition step. There may be.
  • the gist of the present invention is based on the actual temperature difference between the wax application region and the non-application region, and the evaluation of the wax coating film thickness for which a predetermined consistency was experimentally recognized between this actual temperature difference.
  • the non-application area of the wax for which the surface temperature is to be acquired is not limited to the area where the wax is scheduled to be applied. May be.
  • the wax application planned area can be stably stabilized by the infrared thermograph before and after the coating operation.
  • the actual temperature difference can be calculated based on the surface temperature of a region of the coated member that is not directly related to the region where the wax is scheduled to be applied (for example, the upper portion of the door panel). it can. In addition, if it is an area away from the planned application area, the temperature change during the application work due to heat transfer is estimated to be very small or negligible, so not only before the application work but also during the application work Even the acquired surface temperature of the region can be used without any problem as a calculation reference for the actual temperature difference.
  • the method for evaluating the coating thickness of the wax according to the first aspect of the present invention includes an allowable lower limit setting step for setting an allowable lower limit of the temperature difference corresponding to the allowable lower limit of the coating thickness based on a theoretical formula.
  • the area where the actual temperature difference obtained by imaging with the infrared thermograph is equal to or greater than the allowable lower limit value of the temperature difference is calculated, and only the area where the actual temperature difference is equal to or greater than the allowable lower limit value May be displayed on a monitor disposed at a position visible to the wax application worker.
  • the solution of the second technical problem is achieved by the method for evaluating the application range of the wax according to the second aspect of the present invention. That is, in this evaluation method, the surface temperature of the non-application area where the wax is not applied among the members to be applied, and the back surface temperature of the application area of the wax after a predetermined time has elapsed since the wax was applied.
  • a temperature acquisition process that is acquired by imaging the member with an infrared thermograph, an actual temperature difference calculation process that calculates an actual temperature difference between the back surface temperature of the application area and the surface temperature of the non-application area, and application by wax application
  • the allowable lower limit setting process for setting the allowable lower limit of the temperature difference between the back surface temperature of the application area and the surface temperature of the non-application area, the actual temperature difference, and the allowable lower limit of the temperature difference
  • an application range evaluation step for evaluating the application range of the wax, and in the allowable lower limit setting step, taking into account the temperature increase in the non-application region due to heat transfer from the wax application region to the non-application region. Characterized with a point that the permissible lower limit value of the temperature difference.
  • the wax application range can be evaluated by performing a temperature measurement (imaging) operation once for each of the wax application region and the non-application region.
  • imaging the time required for the temperature measurement operation can be shortened as compared with the evaluation method using the conventional infrared thermograph that needs to continuously capture images immediately after application.
  • the measurement operation itself can be performed non-destructively, And it takes a short time. Therefore, it is possible to evaluate the total number of coating areas without causing a special increase in work time, and it is possible to further improve the quality assurance function.
  • the allowable lower limit value of the temperature difference when setting the allowable lower limit value of the temperature difference, not only the temperature increase of the application region due to the application of the wax, but also the non-application region adjacent thereto from the wax application region (therefore obtaining the surface temperature). As a result, it may be a different area from the non-application area of the wax.)
  • the allowable lower limit of the temperature difference is set in consideration of the temperature increase in the non-application area due to heat transfer to . In this type of wax application operation, the amount of wax actually required is not so large, while the coated member is made of a material with relatively high heat conductivity, such as a steel plate or an aluminum alloy plate.
  • the allowable lower limit value of the temperature difference is set in consideration of the temperature increase in the non-application area due to heat transfer from the application area, so that the wax is properly applied. It is possible to avoid a situation in which an area that is not present is erroneously determined as an application area.
  • the wax application operation is prolonged or completed in a short time, so the elapsed time from the start of application to imaging varies, so the actual temperature difference value varies, but as described above If the evaluation is made taking into account the temperature rise due to heat transfer to the non-application area, the wax application range can be evaluated with high accuracy regardless of the imaging time. Moreover, it becomes possible to improve the reliability with respect to the evaluation result.
  • the wax application range evaluation method according to the present invention may acquire the surface temperature of the member to be applied before applying the wax as the surface temperature of the non-application area in the temperature acquisition step.
  • the application range can be evaluated based on the temperature difference before and after application in the wax application scheduled area.
  • the application range of the wax can be evaluated based on the surface temperature of the member to be applied that is not affected by the heat transfer due to the application of the wax (no temperature change is caused).
  • the evaluation result of the stable coating range can be obtained without being affected by the variation in temperature for each member to be coated.
  • the wax application range evaluation method according to the present invention may acquire the surface temperature of the member to be applied excluding the wax application scheduled area as the surface temperature of the non-application area in the temperature acquisition step.
  • the gist of the present invention is that an allowable lower limit value of the temperature difference is taken into account by taking into account the temperature increase in the coating area due to the wax application and the temperature increase in the non-application area due to heat transfer from the wax application area to the non-application area adjacent thereto. Therefore, the wax non-application area for which the surface temperature is to be acquired is not limited to the wax application scheduled area, and is, for example, out of the wax application scheduled area of the member to be applied. It may be an area. Thus, by setting the area outside the planned wax application area as the surface temperature acquisition area, for example, by an operator or peripheral equipment, the wax application planned area can be stably stabilized by the infrared thermograph before and after the coating operation.
  • the actual temperature difference can be calculated based on the surface temperature of a region of the coated member that is not directly related to the region where the wax is scheduled to be applied (for example, the upper portion of the door panel). it can. In addition, if it is an area away from the planned application area, the temperature change during the application work due to heat transfer is estimated to be very small or negligible, so not only before the application work but also during the application work Even the acquired surface temperature of the region can be used without any problem as a calculation reference for the actual temperature difference.
  • the wax application range evaluation method further includes a temperature difference in the allowable lower limit setting step in consideration of a decrease in temperature of the application region over time after the wax application.
  • the allowable lower limit value may be set.
  • the allowable lower limit of the temperature difference is set to be larger than necessary, even if the wax is properly applied, the area where the temperature decrease has already started is erroneously determined as a non-application area. May occur.
  • the allowable lower limit value of the temperature difference is set by further taking into account the temperature drop of the application region with the passage of a certain time (that is, the time from the start of application to the start of imaging).
  • the wax application range evaluation method includes a temperature difference between the back surface temperature of the application region and the surface temperature of the non-application region based on the wax application conditions for the member to be applied, and the wax.
  • the method further comprises a theoretical formula deriving step for deriving a theoretical formula showing the relationship with the coating film thickness, and in the allowable lower limit setting step, based on the theoretical formula, an allowable lower limit of the temperature difference corresponding to the allowable lower limit value of the coating film thickness
  • the theoretical value of the value is calculated, and the temperature rise in the non-application area due to heat transfer from the wax application area to the non-application area is added to the theoretical value to calculate the allowable lower limit value of the temperature difference. Also good.
  • the lower limit value of the allowable coating film thickness is defined by standards and the like.
  • the theoretical value of the allowable lower limit of the temperature difference is obtained based on the theoretical formula showing the relationship between the temperature difference between the wax application area and the non-application area and the application film thickness.
  • the wax application range evaluation method applies the wax application only to a region where the actual temperature difference obtained by imaging with an infrared thermograph is equal to or greater than the allowable lower limit of the temperature difference. You may display on the monitor arrange
  • this inspection system is a system for inspecting the application state of the applied material to the member to be coated, and an infrared thermograph for imaging at least the coating region of the member to be coated, and visible to the coating worker.
  • a display unit that displays a temperature distribution of the application region acquired by imaging an infrared thermograph, and the display unit continuously displays a change over time of the temperature distribution of the application region. And a still image of a dynamic image at a predetermined time can be displayed.
  • the display unit for displaying the temperature distribution of the application region acquired by imaging of the infrared thermograph is arranged in a range that can be visually recognized by the application operator, the application operator himself indicates the application state. It is possible to confirm and perform an inspection regarding the quality of the application work. Further, at this time, the display unit can display a dynamic image that continuously displays the change over time in the temperature distribution of the application region, so that the application operator can watch the temperature distribution of the application target member while working. Application work can be performed. Therefore, the coating operation can be performed smoothly.
  • the still image at a predetermined time of the dynamic image can be displayed on the display unit, for example, the still image at the end of the application work, that is, the temperature distribution of the application region immediately after the application work is completed. It can be confirmed in a stationary state. If the temperature distribution is in a static state, it can be checked in more detail and more accurately than when judging the quality of the application state by looking at a dynamic image whose state changes from moment to moment. In addition to being able to make a quick and accurate determination, the application operator can quickly and accurately grasp the area that needs to be repainted. Of course, it is possible to check in detail whether or not repainting is good by displaying a new still image at the end of each repainting operation. Therefore, not only the initial coating operation but also the repainting inspection can be performed quickly and accurately.
  • the display unit may be able to display a dynamic image and a still image at the same time.
  • the dynamic image and the still image regarding the temperature distribution of the application region can be displayed on the one display unit at the same time, and after the still image at a certain time of the dynamic image is displayed on the display unit,
  • the temporal change of the temperature distribution after the acquisition of the still image is continuously displayed as a dynamic image.
  • the coating operation can be performed while comparing the still image with the dynamic image reflecting the intermediate result of the subsequent repainting operation. Therefore, it is possible to perform the coating operation while confirming in real time the region that has already been repainted and the region that still needs repainting, and the repainting operation can be performed smoothly and quickly.
  • a coating inspection system includes a display instruction unit that instructs operation to display a still image on the display unit, and a conveyance instruction unit that instructs operation to convey a member to be coated by a conveying unit. May be further provided.
  • the temperature distribution after the completion of the coating operation is displayed as a still image on the display unit by operating the display instruction unit after the coating operator has completed the coating operation. Then, when the application worker himself / herself determines the quality of the application operation and determines that there is no problem (no unpainted residue), by operating the conveyance instruction unit, for example, the application target member supported by a conveyor or the like is It can be transported toward the process. On the other hand, if the application operator determines that there is a problem (there is an unpainted area) as a result of determining whether the application operation is good or not using a still image, the application operation can be performed without operating the conveyance instruction unit. Therefore, based on the judgment of the coating operator, the coated member can be transported when there is no remaining coating and it can be transported to the next process. Can be done quickly and reliably.
  • the operation of the conveyance instruction unit is performed by moving the still image on the display unit by the operation of the display instruction unit. It may be controlled to be effective only after being displayed.
  • the application operator can accurately and quickly grasp the inspection result of the application operation. Further, even when repainting is required, the repainting operation can be performed quickly and accurately.
  • FIG. 1 shows a flowchart of a method for evaluating a coating thickness of a wax according to an embodiment of the first aspect of the present invention.
  • the surface temperature of the member to be coated before applying the wax and the back surface temperature of the region to which the wax is applied are obtained by imaging the member to be coated with an infrared thermograph.
  • the embodiment further includes an allowable lower limit setting step S15 for setting an allowable lower limit value of the temperature difference corresponding to the allowable lower limit value of the coating film thickness based on the theoretical formula obtained in the theoretical formula deriving step S13.
  • an evaluation result display step S16 for displaying on a monitor disposed at a different position.
  • thermograph acquisition process S11 First, by imaging the coated member with an infrared thermograph, the surface temperature of the coated member before applying the wax and the back surface temperature of the coated region of the wax after the wax has been applied for a certain period of time. get. More specifically, as shown in FIG. 2, the side door 3 and the back door 4 and the hood 5 to be coated with wax can be individually imaged on the coating work station 2 of the vehicle body 1 as a member to be coated. A plurality of infrared thermographs 6 are installed, and the same number of monitors 7 as the infrared thermographs 6 are installed. In this embodiment, as shown in FIG. 2, a position where the coating worker 8 who performs the wax coating work can visually recognize the evaluation result of the coating film thickness of the coating target (such as the side door 3) in charge. The monitor 7 is installed in the direction.
  • the corresponding infrared thermograph 6 is opened with the side door 3, the back door 4, and the hood 5 opened. Then, the surfaces of the side door 3, the back door 4, and the hood 5 are imaged, and the surface temperature TP1 before applying the wax is measured.
  • a region where the wax is to be applied in FIG. 5A and FIG. 5B, the wax is actually applied. Imaging by the infrared thermograph 6 is performed so that the region 9) is included in the imaging range, and thereby the temperature (distribution) of the imaging region is measured.
  • the side door 3 will be described in detail by taking the side door 3 as an example.
  • the bag structure portion 11 of the side door 3 is in a state in which, for example, the overlapping portion of the outer panel 12 and the inner panel 13 is filled with the adhesive 14.
  • the outer panel 12 and the inner panel 13 are integrated by folding back (performing a hemming process) the outer peripheral portion of the outer panel 12.
  • the application worker 8 inserts the application gun 10 through a gap provided around the bag structure 11 and applies the inner surface of the outer panel 12 constituting the bag structure 11 and the inner surface of the inner panel 13. Wax 15 is applied to the surface.
  • the back surface of the wax application region 9 (see FIG. 5A and the like) is imaged again with the infrared thermograph 6, and the back surface temperature TP2 of the application region 9 is measured.
  • the wax application region 9 is the imaging range on the outer surface of the outer side such as the side door 3 as before application.
  • the infrared thermograph 6 is used for imaging, thereby measuring the temperature (distribution) of the imaging region.
  • Equation 2 the amount of heat C P required to raise the outer panel 12 by the temperature difference T min is expressed by Equation 2 below.
  • C P c P ⁇ M P ⁇ T
  • M P represents the mass of the outer panel in the wax coating region 9.
  • C WAX lost by the applied wax 15 is expressed by the following formula 3.
  • CWAX cWAX * MWAX * ⁇ TWAX- ( TP1 + T) ⁇
  • c WAX is the specific heat of the wax
  • M WAX is the mass of the applied wax
  • T WAX is the temperature of the wax immediately after application.
  • M P A ⁇ t P ⁇ ⁇ P
  • M WAX A ⁇ t WAX ⁇ ⁇ WAX It is represented by However, A is a wax coating area, t P is a thickness of the outer panel, t WAX is a wax coating thickness, ⁇ P is an outer panel density, and ⁇ WAX is a wax density.
  • the thermal equilibrium formula may be constructed in consideration of the amount of heat diffusing from the wax 15 into the air, for example.
  • the allowable lower limit value of the coating film thickness tWAX can be ensured as described above, a theoretical formula that can be derived under simpler conditions is adopted.
  • the allowable lower limit actual temperature difference than the value of the temperature difference derived in case of the absence of thermal diffusion into the air (actual temperature difference T R) is large, the actual wax 15 applied Since the film thickness t WAX is even larger, there is no problem in terms of quality assurance.
  • FIG. 4 is a graph showing the relationship between the temperature difference T and the coating film thickness t.sub.WAX , in which the curve indicated by the alternate long and short dash line is a theoretical formula showing the relationship between the temperature difference T and the coating film thickness t.sub.WAX.
  • the plots are values obtained by actually measuring the temperature difference T and the coating film thickness t WAX .
  • the actual coating thickness of the wax can be measured using, for example, a wet gauge. From this figure, by using a theoretical formula indicating the relationship between the temperature difference T and the coating thickness t WAX, validity of evaluating the application range of the wax 15 from the measured value of the temperature difference (actual temperature difference T R) is Proved.
  • a theoretical value of the allowable lower limit value T L of the temperature difference corresponding to the allowable lower limit value t L of the coating film thickness, which is a standard value, is calculated from the theoretical formula shown in Formula 6, and the wax coating is applied to the theoretical value.
  • the temperature increase in the non-application area 16 due to heat transfer from the area 9 to the non-application area 16 is added to calculate the allowable lower limit value TL of the temperature difference.
  • the allowable lower limit T of the temperature difference is further considered in consideration of the temperature decrease of the application region 9 with the passage of a certain time (here, the application work time of the wax 15) after the application of the wax 15. Set L.
  • the calculation method for the temperature increase in the non-application region 16 due to heat transfer from the wax application region 9 to the non-application region 16 is not particularly limited.
  • the actually applied wax 15 or the steel plate serving as the heat transfer medium You may obtain
  • the correlation between the application region and the application amount and the temperature increase may be acquired, and the temperature increase may be calculated based on the acquired correlation. The same applies to the calculation method of the temperature drop in the application region 9 with the passage of a certain time after the application of the wax 15.
  • the allowable lower limit value T L of the temperature difference determined immediately before coating thickness of the wax 15 To evaluate. Specifically, it is determined the actual temperature difference T R is the allowable lower limit value T L greater than or equal is a region of the temperature difference, as the wax 15 having actually required coating film thickness has been applied. On the other hand, the actual temperature difference T R is the region is less than the allowable lower limit value T L of the temperature difference, the wax 15 is not applied, or even have a sufficient coating thickness as has been applied Judge that there is no.
  • the confirmed application operator 8 directly applies the wax 15 to the corresponding location with the application gun 10. Reapply. If necessary, the temperature of the back surface of the coating region 9 is measured again with the infrared thermograph 6 after the coating is completed, and the steps S12 to S16 are repeated to re-apply the coating range. An evaluation may be performed.
  • the surface temperature TP1 of the side door 3 and the like before the wax 15 is applied and a certain time (here, the time from the start to the end of the wax application operation) after the wax 15 is applied.
  • a certain time here, the time from the start to the end of the wax application operation
  • the time required for the temperature measurement operation can be shortened as compared with the evaluation method using the conventional infrared thermograph that needs to continuously capture images immediately after application.
  • the wax coating film thickness tWAX can be evaluated based on the surface temperature TP1 of the side door 3 or the like before the wax 15 is applied, it is not affected by the temperature variation of each member to be coated. The evaluation result of the stable application range can be obtained. Further, since it is sufficient to measure only the surface temperature TP1 of the side door 3 and the like before applying the wax 15 and the back surface temperature TP2 of the application region 9 after a predetermined time has elapsed after application, the measurement operation itself is nondestructive. And can be implemented in a short time. Therefore, it is possible to evaluate the total number of coating film thicknesses t WAX without causing a special increase in work time, and it is possible to further improve the quality assurance function.
  • the allowable lower limit value TL of the temperature difference when setting the allowable lower limit value TL of the temperature difference, not only the temperature rise of the application region 9 due to the application of the wax 15 but also the heat transfer from the wax application region 9 to the non-application region 16 is performed.
  • the allowable lower limit value TL of the temperature difference is set in consideration of the temperature rise in the non-application area 16.
  • the allowable lower limit value TL of the temperature difference when set from the theoretical formula without considering the temperature increase in the non-application area 16 due to the heat transfer, the value takes into account the temperature increase in the non-application area 16. It becomes small compared with the case. Therefore, for example, if an image is taken immediately after application, a display result of the monitor 7 that reflects the actual application area 9 can be obtained.
  • the allowable lower limit value TL for the temperature difference is set to be larger than necessary, for example, as shown in FIG. 7B, although it is a region where the wax 15 is properly applied, There is a risk that it is not displayed on the monitor 7 (determined as the non-application area 16).
  • the allowable lower limit value TL of the temperature difference is set by further taking into account the temperature drop of the application region with the passage of a certain time (ie, the time from the start of application to the start of imaging).
  • a certain time ie, the time from the start of application to the start of imaging.
  • the method for evaluating the coating thickness of the wax according to the first aspect of the present invention can adopt any configuration without departing from the spirit of the present invention.
  • the surface temperature TP1 of the side door 3 and the like before the wax 15 is applied is set to the non-application area, that is, the area where the wax 15 is not applied including the application scheduled area.
  • the surface temperature T P1 of course, also possible to obtain the surface temperature T P1 in the non-application area 16 excluding the coating region where, as the surface temperature T P1 in the area where wax 15 is not applied It is.
  • the acquisition timing is not particularly limited.
  • the acquisition may be performed by imaging during the application operation.
  • the surface temperature TP1 of the region to which the wax 15 is not applied of the member to be coated (such as the side door 3), and the wax application region after a predetermined time has elapsed after the wax 15 is applied.
  • 9 of the backside temperature T P2 acquired once each has been to evaluate the coating thickness t WAX based on the actual temperature difference T R at this time of course not limited to this embodiment.
  • a thermal image temperature distribution image
  • arithmetic processing for sequentially evaluating the above-described coating film thickness T WAX for the captured thermal image.
  • the wax 15 is sequentially displayed on the monitor 7 from a region where the wax 15 is applied to an appropriate film thickness as the worker applies the wax 15.
  • the surface temperature TP1 of the non-application area may be any of the surface temperature before applying the wax 15 and the area (non-application area 16) excluding the area where the wax 15 is to be applied (the latter). If can be updated on the basis of sequential latest thermal image or the thermal image which has been acquired immediately also the surface temperature T P1 acquired.), also, based on the actual temperature difference T R are sequentially acquired in this way The evaluation result of the coating film thickness may be continuously displayed on the monitor 7.
  • the coating film thickness evaluation method for the wax according to the first aspect of the present invention has a ratio of one unit to a plurality of units (for example, three units). Of course, it may be evaluated, or may be evaluated at a rate of once every predetermined time (for example, 1 hour).
  • FIG. 8 shows a flowchart of the wax coating area evaluation method according to an embodiment of the second aspect of the present invention. As shown in FIG. 8, in this evaluation method, the surface temperature of the member to be coated before applying the wax, and the back surface temperature of the wax application region after the wax has been applied for a certain period of time are applied.
  • Temperature acquisition step S21 acquired by imaging the member with an infrared thermograph
  • actual temperature difference calculation step S22 for calculating the actual temperature difference between the back surface temperature of the application region and the surface temperature before application, and direct application of wax
  • the allowable lower limit of the temperature difference between the back surface temperature of the application area and the surface temperature before application is set.
  • An allowable lower limit setting step S23 to be set, and an application range evaluation step S24 for evaluating the application range of the wax based on the actual temperature difference and the allowable lower limit value of the temperature difference are provided.
  • the temperature difference between the back surface temperature of the coating region and the surface temperature before coating, and the wax coating film based on the wax coating conditions for the member to be coated is further provided, and as an evaluation result obtained in the coating range evaluating step S24, an actual temperature difference obtained by imaging with an infrared thermograph is a temperature.
  • an evaluation result display step S26 for displaying only a region that is equal to or larger than the allowable lower limit value of the difference on a monitor disposed at a position that is visible to the wax application worker.
  • thermograph acquisition process S21 First, by imaging the coated member with an infrared thermograph, the surface temperature of the coated member before applying the wax and the back surface temperature of the coated region of the wax after the wax has been applied for a certain period of time. get. More specifically, as shown in FIG. 2, the side door 3 and the back door 4 and the hood 5 to be coated with wax can be individually imaged on the coating work station 2 of the vehicle body 1 as a member to be coated. A plurality of infrared thermographs 6 are installed, and the same number of monitors 7 as the infrared thermographs 6 are installed. In this embodiment, as shown in FIG. 2, the position and direction in which the application worker 8 who performs the wax application operation can visually recognize the evaluation result of the application range of the application target (such as the side door 3) at the operation position. In addition, a monitor 7 is installed.
  • the corresponding infrared thermograph 6 is opened with the side door 3, the back door 4, and the hood 5 opened. Then, the surfaces of the side door 3, the back door 4, and the hood 5 are imaged, and the surface temperature TP1 before applying the wax is measured.
  • a region where the wax is to be applied in FIG. 5A and FIG. 5B, the wax is actually applied. Imaging by the infrared thermograph 6 is performed so that the region 9) is included in the imaging range, and thereby the temperature (distribution) of the imaging region is measured.
  • the side door 3 will be described in detail by taking the side door 3 as an example.
  • the bag structure portion 11 of the side door 3 is in a state in which, for example, the overlapping portion of the outer panel 12 and the inner panel 13 is filled with the adhesive 14.
  • the outer panel 12 and the inner panel 13 are integrated by folding back (performing a hemming process) the outer peripheral portion of the outer panel 12.
  • the application worker 8 inserts the application gun 10 through a gap provided around the bag structure 11 and applies the inner surface of the outer panel 12 constituting the bag structure 11 and the inner surface of the inner panel 13. Wax 15 is applied to the surface.
  • the back surface of the wax application region 9 (see FIG. 5A and the like) is imaged again with the infrared thermograph 6, and the back surface temperature TP2 of the application region 9 is measured.
  • the wax application region 9 is the imaging range on the outer surface of the outer side such as the side door 3 as before application.
  • the infrared thermograph 6 is used for imaging, thereby measuring the temperature (distribution) of the imaging region.
  • the thermal equilibrium formula may be constructed in consideration of the amount of heat diffusing from the wax 15 into the air, for example.
  • the allowable lower limit value of the coating film thickness tWAX can be ensured as described above, a theoretical formula that can be derived under simpler conditions is adopted.
  • the allowable lower limit value T actual temperature difference than the L temperature difference derived in case of the absence of thermal diffusion into the air (actual temperature difference T R) is large, the actual wax 15 Since the coating film thickness t WAX of the coating film shows a larger value, there is no problem in terms of quality assurance.
  • the application range of the wax 15 is evaluated from the measured value of the temperature difference (actual temperature difference T R ) using a theoretical formula showing the relationship between the temperature difference T and the coating film thickness t WAX. Therefore, for example, the theoretical value of the allowable lower limit value T L of the temperature difference corresponding to the allowable lower limit value t L of the coating film thickness that is the standard value is calculated from the theoretical formula shown in Equation 6. Then, the temperature rise in the non-application area 16 due to heat transfer from the wax application area 9 to the non-application area 16 is added to the theoretical value to calculate the allowable lower limit value TL of the temperature difference. Further, in this embodiment, the allowable lower limit T of the temperature difference is further considered in consideration of the temperature decrease of the application region 9 with the passage of a certain time (here, the application work time of the wax 15) after the application of the wax 15. Set L.
  • the calculation method for the temperature increase in the non-application area 16 due to heat transfer from the wax application area 9 to the non-application area 16 is not particularly limited.
  • the actually applied wax 15 or a steel plate serving as a heat transfer medium It may be obtained by calculation based on physical property values related to the heat transfer of the above or by trial and error by actually applying the wax 15 to the outer panel 12 and measuring the temperature.
  • the correlation between the application region and the application amount and the temperature increase may be acquired, and the temperature increase may be calculated based on the acquired correlation. The same applies to the calculation method of the temperature drop in the application region 9 with the passage of a certain time after the application of the wax 15.
  • the coating operation is terminated as being applied to the vehicle body, and the vehicle body 1 is conveyed to the next step.
  • illustration is omitted, when a portion that is not displayed in a part of the region to be originally applied is found, the confirmed application operator 8 directly applies the wax 15 to the corresponding location with the application gun 10. Reapply. If deemed necessary, the temperature of the back surface of the coating region 9 is measured again with the infrared thermograph 6 after the coating is completed, and the steps S22 to S26 are repeated to re-apply the coating range. An evaluation may be performed.
  • the surface temperature TP1 of the side door 3 and the like before the wax 15 is applied and a certain time (here, the time from the start to the end of the wax application operation) after the wax 15 is applied.
  • a certain time here, the time from the start to the end of the wax application operation
  • the time required for the temperature measurement operation can be shortened as compared with the evaluation method using the conventional infrared thermograph that needs to continuously capture images immediately after application.
  • the wax coating film thickness tWAX can be evaluated based on the surface temperature TP1 of the side door 3 or the like before the wax 15 is applied, it is not affected by the temperature variation of each member to be coated. The evaluation result of the stable application range can be obtained. Further, since it is sufficient to measure only the surface temperature TP1 of the side door 3 and the like before applying the wax 15 and the back surface temperature TP2 of the application region 9 after a predetermined time has elapsed after application, the measurement operation itself is nondestructive. And can be implemented in a short time. Therefore, it is possible to evaluate the total number of coating film thicknesses t WAX without causing a special increase in work time, and it is possible to further improve the quality assurance function.
  • the allowable lower limit value TL of the temperature difference when setting the allowable lower limit value TL of the temperature difference, not only the temperature rise of the application region 9 due to the application of the wax 15 but also the heat transfer from the wax application region 9 to the non-application region 16 is performed.
  • the allowable lower limit value TL of the temperature difference is set in consideration of the temperature rise in the non-application area 16.
  • the allowable lower limit value TL of the temperature difference when set from the theoretical formula without considering the temperature increase in the non-application area 16 due to the heat transfer, the value takes into account the temperature increase in the non-application area 16. It becomes small compared with the case. Therefore, for example, if an image is taken immediately after application, a monitor display result that reflects the actual application area 9 can be obtained.
  • the temperature rises due to heat transfer from the wax 15, but after a certain period of time, the amount of heat transfer (heat diffusion) to the surroundings becomes the amount of heat transfer from the wax 15. A situation can be exceeded. Therefore, if the allowable lower limit value TL for the temperature difference is set to be larger than necessary, for example, as shown in FIG. Although it can be evaluated, after a further time has passed, the temperature starts to drop in a part of the application region 9, as shown in FIG. 7B, although it is a region where the wax 15 is properly applied, There is a possibility that it is not displayed (determined as the non-application area 16).
  • the allowable lower limit value TL of the temperature difference is set by further taking into account the temperature drop of the application region with the passage of a certain time (ie, the time from the start of application to the start of imaging).
  • a certain time ie, the time from the start of application to the start of imaging.
  • the wax application range evaluation method according to the second aspect of the present invention can take any configuration without departing from the spirit of the present invention.
  • the surface temperature TP1 of the side door 3 or the like before the wax 15 is applied is set to the non-application area, that is, the area where the wax 15 is not applied including the application scheduled area.
  • the surface temperature T P1 of course, also possible to obtain the surface temperature T P1 in the non-application area 16 excluding the coating region where, as the surface temperature T P1 in the area where wax 15 is not applied It is.
  • the acquisition timing is not particularly limited.
  • the acquisition may be performed by imaging during the application operation.
  • 9 of the backside temperature T P2 acquired once each has been to evaluate the application range based on the actual temperature difference T R at this time of course not limited to this embodiment.
  • the thermal image (temperature distribution image) by the infrared thermograph 6 is continuously captured, and the above-described calculation processing (image acquisition) for the application range is sequentially evaluated for the captured thermal image.
  • the monitor 15 may display the result from the area where the wax 15 is properly applied.
  • the surface temperature TP1 of the non-application area may be any of the surface temperature before applying the wax 15 and the area (non-application area 16) excluding the area where the wax 15 is to be applied (the latter). If can be updated based on the sequentially most recent thermal image acquired immediately before the thermal image also the surface temperature T P1 acquired.) the application of this manner based on the actual temperature difference T R are sequentially acquired
  • the film thickness evaluation result may be continuously displayed on the monitor 7.
  • the wax coating area evaluation method according to the second aspect of the present invention is evaluated at a ratio of one unit to a plurality of units (for example, three units). Of course, it is also possible to perform evaluation at a rate of once every predetermined time (for example, 1 hour).
  • the coating inspection system individually images the side door 3, the back door 4, and the hood 5 to be coated on the coating work station 2 of the vehicle body 1 as a member to be coated.
  • An infrared thermograph 6 that performs the operation and a monitor 7 that is disposed at a position and orientation that can be visually recognized by the application operator 8 and that displays the temperature distribution of the application region acquired by imaging the infrared thermograph 6.
  • the monitor 7 can display the dynamic image 17 and the still image 18 (both refer to FIG. 9A and the like described later) of the temperature distribution.
  • the coating state when the rust-preventing wax is sprayed and applied toward the bag structure 11 of each member to be coated is inspected.
  • the bag structure portion 11 of the side door 3 is, for example, an overlapping portion of the outer panel 12 and the inner panel 13.
  • the outer panel 12 and the inner panel 13 are integrated by folding back (performing a hemming process) the outer peripheral portion of the outer panel 12 with the adhesive 14 filled.
  • the application worker 8 inserts the application gun 10 through a gap provided around the bag structure 11 and applies the inner surface of the outer panel 12 constituting the bag structure 11 and the inner surface of the inner panel 13.
  • the wax 15 is applied as a coating.
  • the inspection system includes a display instruction unit 20 for instructing display of the still image 18 on the monitor 7 by operation, and a conveying means 23 by operation (see FIG. 2). Further, an operation member 22 provided with a conveyance instructing unit 21 for instructing conveyance of the vehicle body 1 is provided.
  • a transport instruction since the above-described series of operations are performed while the vehicle body 1 is being transported, if there is a transport instruction, the transport is continued as it is, and if there is no transport instruction (if there is no operation of the transport instruction unit 21), a predetermined time After the lapse, the vehicle body 1 is stopped.
  • the operation of the conveyance instruction unit 21 is controlled to be effective only after the still image 18 is displayed on the monitor 7 by the operation of the display instruction unit 20.
  • indication part 21 are pushed wrongly, it can avoid the situation where the vehicle body 1 flows into the following process, without receiving the application
  • the operation member 22 having the above-described configuration is attached to, for example, the application gun 10 and is in a state where the application operator 8 who uses the application gun 10 can immediately operate.
  • FIGS. 9A to 9C show an example of the display form of the monitor 7 as a display unit.
  • the dynamic image 17 When only the dynamic image 17 is displayed (FIG. 9A), the dynamic image 17 and the still image 18 are displayed simultaneously. In some cases, the inspection result 19 is displayed (FIG. 9C).
  • the dynamic image 17 continuously displays the temporal change of the temperature distribution in the application region of the wax 15 obtained by imaging with the infrared thermograph 6, and the still image 18 is the dynamic image 17. The temperature distribution at a predetermined time is displayed.
  • the temperature distribution displayed as the dynamic image 17 or the still image 18 may be raw data obtained by imaging the target part (part including the application region of the wax 15) with the infrared thermograph 6.
  • the raw data may be subjected to predetermined processing.
  • the evaluation results obtained by the wax coating thickness evaluation method according to the first aspect of the present invention and the wax coating range evaluation method according to the second aspect of the present invention described above are dynamic images. 17 or a static image 18 can be displayed on the monitor 7. Among them, for example in the case of displaying the results obtained in the application range evaluation method on the monitor 7, (1) the surface temperature T P1 of the application member before applying the wax 15, and began to apply the wax 15 the backside temperature T P2 of the wax coating region 9 (see FIG.
  • the backside temperature T P2 of the coating area before coating calculates the actual temperature difference T R of the surface temperature T P1 of, in consideration of the temperature rise of the coated area by the application of the wax 15, the surface temperature T P1 before coating the backside temperature T P2 of application area 9 to set the allowable lower limit value T L of the temperature difference T, the actual temperature difference T R is displayed on the monitor 7 only area allowed is the lower limit T L or more temperature difference as a dynamic image 17 and the still image 18 It may be.
  • 5A to 7B is displayed as a dynamic image 17 or a static image 18 at a predetermined position on the monitor. Moreover, the actual temperature difference T R becomes as reflecting the latest backside temperature distribution is displayed on dynamic image 17, the still image 18, a display instruction section 20 for instructing the display of the still image 18 applied worker 8 It reflects the backside temperature distribution at the time of operation.
  • the actual temperature difference T R is the temperature It may be displayed on the monitor 7 only area allowed is the lower limit T L or more difference as a dynamic image 17 and the still image 18.
  • the evaluation result (temperature distribution) shown in FIGS. 5A to 7B is displayed as a dynamic image 17 or a static image 18 at a predetermined position on the monitor.
  • the actual temperature difference T R becomes as reflecting the latest backside temperature distribution is displayed on dynamic image 17, the still image 18, a display instruction section 20 for instructing the display of the still image 18 applied worker 8 It reflects the backside temperature distribution at the time of operation.
  • the coated region of the wax 15 is included in the imaging range among the outer surfaces of the side door 3, the back door 4, and the hood 5 on the outer side.
  • imaging with the infrared thermograph 6 is performed, and thereby the temperature distribution in the application region is acquired.
  • the acquired temperature distribution of the application region of the wax 15 is displayed on the monitor 7 as a dynamic image 17 (see FIG. 9A).
  • the temperature distribution in the same region before application is acquired in advance, and the temperature distribution after performing the processing (1) or (2) is continuously displayed on the monitor 7 as the dynamic image 17. May be displayed.
  • (S32) Still Image Display Step When the application work of the wax 15 is completed, the application operator 8 operates the display instruction unit 20 of the operation member 22 to stop the temperature distribution on the monitor 7 as shown in FIG. 9B.
  • the image 18 is displayed.
  • the displayed still image 18 is a temperature distribution in the dynamic image 17 at the time when the display instruction unit 20 is operated.
  • the display mode of the still image 18 at this time is not particularly limited.
  • the still image 18 and the dynamic image 17 may be displayed in a state where they are arranged side by side. Further, the still image 18 may be displayed in a size larger than the dynamic image 17.
  • the application state is bad, in other words, the unpainted state (wax 15 is not applied or the application film is not applied). It is determined that there is an area where the thickness is insufficient), and the process proceeds to the repainting step (S35) (FIG. 11).
  • S35 repainting step
  • FIG. 11 As a display format on the monitor 7, for example, as shown in FIG. 5A to FIG. 7B, an area showing a temperature higher than a threshold value and less than the threshold value so that the coating operator 8 can easily grasp at a glance. It is possible to adopt a method in which the color tone is clearly different from the region showing the temperature.
  • (S34) Carriage Carrying Step When the coating worker 8 determines that the coating state is good in the quality determination step S33, the coating worker 8 operates the transport instruction unit 21 of the operation member 22 to the transport means 23. The conveyance of the vehicle body 1 is instructed. In the present embodiment, since the above-described series of operations is performed while the vehicle body 1 is being conveyed, the vehicle body 1 is continuously conveyed as it is if there is a conveyance instruction. Thereby, for example, the vehicle body 1 that has been inspected is transferred to the next process by the transfer means 23, and a series of operations and inspections on the vehicle body 1 are completed.
  • the inspection result 19 is displayed on the monitor 7 by the operation of the conveyance instructing unit 21 (for example, “OK” is displayed), and it is confirmed that not only the eight coating workers but also the surrounding workers are in a good coating state. It can be recognized (FIG. 9C).
  • the display instruction unit 20 of the still image 18 is operated again, the temperature distribution at the end of the repainting operation is displayed again as the still image 18, the quality is determined, and the determination result is good.
  • the above steps (S32, S33, S35) are repeated until appears.
  • the operation of the transport instruction unit 21 is not performed, and the vehicle body 1 stops when an allowable application work time has elapsed, and a warning sound or the like is generated.
  • the monitor 7 displays an inspection result 19 indicating that the coating is defective (for example, “NG” is displayed), and the surrounding workers including the eight coating workers can recognize that the coating is defective. .
  • the monitor 7 for displaying the temperature distribution of the application region acquired by the imaging of the infrared thermograph 6 is provided in the range that the application operator 8 can visually recognize, the application operator 8 itself The state of application can be confirmed and an inspection regarding the quality of the application operation can be performed.
  • the monitor 7 can display a dynamic image 17 that continuously displays the change over time in the temperature distribution of the application region, so that the temperature distribution of the member to be applied can be displayed while the application operator 8 is working.
  • the coating operation can be performed while watching. Therefore, the coating operation can be performed smoothly.
  • the still image 18 at a predetermined time of the dynamic image 17 can be displayed on the monitor 7, for example, the still image 18 at the end of the application operation, that is, the temperature distribution of the application region immediately after the application operation is completed is in a static state. Can be confirmed.
  • the quality of the application state can be checked in detail and accurately, so that it is possible to quickly and accurately determine the presence or absence of unpainted areas, and the application operator 8 himself can quickly and accurately also in areas where repainting is necessary. I can grasp it.
  • it is possible to check the repaint quality in detail by newly displaying the still image 18 at the end of each repainting operation. Therefore, not only the initial coating operation but also the repainting inspection can be performed quickly and accurately.
  • the dynamic image 17 and the still image 18 regarding the temperature distribution in the application region are simultaneously displayed on one monitor 7 (FIGS. 9B and 9C).
  • the still image 18 at the time is displayed on the monitor 7
  • the temporal change of the temperature distribution after the acquisition of the still image 18 is continuously displayed on the dynamic image 17.
  • the coating operation is performed while comparing the still image 18 with the dynamic image 17 reflecting the intermediate result of the subsequent repainting operation. Can do. Therefore, it is possible to perform the coating operation while confirming in real time the region that has already been repainted and the region that still needs repainting, and the repainting operation can be performed smoothly and quickly.
  • a display instruction unit 20 that instructs the display of the still image 18 on the monitor 7 by operation and a conveyance instruction unit 21 that instructs the conveyance of the vehicle body 1 by the conveyance unit 23 by operation are further provided. Therefore, after the application operator 8 finishes the application operation, the temperature distribution after the application operation is completed is displayed on the monitor 7 as a still image 18 by operating the display instruction unit 20. Then, when the coating worker 8 himself / herself determines whether the coating operation is good or not and determines that there is no problem (there is no unpainted), the transport instruction unit 21 is operated to transport the vehicle body 1 having the member to be coated. 23 can be continued.
  • the application worker 8 determines that there is a problem (there is an unpainted area) as a result of determining whether the application operation is good or not using the still image 18, the operation until the predetermined time elapses unless the conveyance instruction unit 21 is operated.
  • the repainting operation can be performed without stopping the vehicle body 1.
  • the monitor 7 as a display unit is disposed above the vehicle body 1 flowing on the coating work station 2. As shown in FIG. 1, this type of coating operation is normally performed on the production line of the vehicle body 1 that is a member to be coated, and a plurality of coating workers 8 perform a plurality of sites of coating work simultaneously. Therefore, if the monitor 7 is disposed just to the side of the coating work station 2, the other workers including the coating worker 8 in other parts and the surrounding facilities block the field of view, so In some cases, the temperature distribution cannot be confirmed. In this respect, in the present embodiment, the monitor 7 is disposed above the vehicle body 1 and in the direction of the application worker 8 who is in charge of each application site, so this type of problem is avoided as much as possible. The visibility of the corresponding application worker 8 can be improved.
  • this invention can also take a structure other than the above, unless it deviates from the structure reflecting the intention. .
  • the display instruction unit 20 and the conveyance instruction unit 21 may be arranged within the reach of the application worker 8 during the application operation, such as equipment installed near the work area or the application operator 8 himself / herself. That's fine.
  • the display instruction unit 20 and the conveyance instruction unit 21 may also be used as an injection switch (lever) of the application gun 10.
  • the operation of turning off the injection switch after the application work is completed functions as a display trigger for the still image 18.
  • the subsequent temperature operation of the injection switch functions as a display trigger for the dynamic image 17 or an imaging acquisition trigger for the infrared thermograph 6.
  • the case where the application work is performed while the vehicle body 1 is being transported is taken as an example.
  • the application work is performed with the vehicle body 1 introduced onto the application work station 2 temporarily stopped.
  • the conveyance instruction unit 21 may be operated to control the conveyance of the vehicle body 1 to be resumed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 ワックスを塗布する前の被塗布部材の表面温度と、ワックスを塗布した領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程と、塗布領域の裏面温度と、塗布前の表面温度との実温度差を算出する実温度差算出工程と、被塗布部材に対するワックスの塗布条件に基づいて、塗布領域の裏面温度と塗布前の表面温度との温度差と、ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程と、理論式を用いて実温度差からワックスの実際の塗布膜厚の評価を行う塗布膜厚評価工程とを具備する。

Description

ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム
 本発明は、ワックスの塗布膜厚並びに塗布範囲を評価する方法、及び塗布検査システムに関し、特に、目視できない箇所に塗布されるワックスの塗布膜厚並びに塗布範囲を評価する方法、及び塗布領域の温度分布に基づいて塗布作業の検査を行うための塗布検査システムに関する。
 例えば、自動車の車体の塗装工程においては、車体を構成するドアやフード等の袋構造部に対して、雨水等の浸入による鋼板の腐食を防止する目的で、塗装工程の後に防錆用のワックスを塗布する防錆処理工程が設けられている。
 上述のように、この種のワックスを塗布する目的は防錆であることから、ワックスの塗布作業の後には、適正にワックスが塗布されているか否か、具体的には塗布されたワックスが十分な防錆性能を発揮できる程度の塗布膜厚を有するか否か、あるいは十分な防錆性能を発揮できる範囲に塗布されているか否かを検査する必要がある。ところが、上記ワックスの塗布箇所は、ドアやフード等の袋構造部の内面であることから、目視で直接確認できる範囲が限られてしまう。そのため、全領域の塗布膜厚を確認することが難しく、また塗布範囲を漏れなく確認することが難しい。よって、この種の検査については、被塗布部材(ドアなど)に設けられた水抜き穴からのワックスの垂れ具合でもってその塗布量(塗布膜厚あるいは実際に塗布できた領域の広さ)を間接的に評価しているのが現状である。
 この他にも、定期的に一定数を抜き取って、内視鏡による検査や、解体による目視確認が行われているが、何れの方法も確認数が必然的に少なくなり、ばらつきの程度が不明なために、全量評価による十分な品質保証がなされているとは言い難かった。
 一方で、自動車の車体を構成する各種部材には、ワックスに限らず、見栄えなどの意匠性や、密封性や防錆性などの機能性の向上を図る目的で、各種塗装やシーラ等の塗布作業が行われている。これらの塗布状態は、被塗布部材の品質や性能に大きく影響するため、塗布時に、あるいは塗布後に、上記塗布状態についての検査を行ってその良否を判定するようにしている。
 ここで、塗布作業の検査に際しては、作業者の目視による検査や、カメラ等の撮像手段で得られた画像に基づいてその良否を判定する方法など、種々の検査手段が実際に採用されるに至っている。その一方で、フードやドアパネルなどの袋状部材に塗布作業を行う場合には、袋状部材の内部にまでワックスなどの塗布物を塗布することになるために、当該内部の塗布状態についても検査する必要が生じる。ところが、作業者による目視や通常のカメラ等の撮像手段では、内部の塗布状態を確認することは難しい。
 そこで、これらの問題を解決するべく、下記特許文献1には、車体の被塗布部位を赤外線サーモグラフで撮像して得た画像を解析することで、ワックスの塗布状態を評価する方法が開示されている。この評価方法は、具体的には、赤外線サーモグラフで撮像して得た画像をピクセル単位に分割すると共に、分割した単位ピクセルごとの温度上昇速度を計算し、これを予め設定しておいた2つのしきい値と比較することで、当該単位ピクセルにおける温度上昇が、ワックスを直接塗布したことによるもの(高いほうのしきい値より大きい場合)か、ワックスからの熱拡散によるもの(上下のしきい値間の値を示す場合)かを判定することで塗布分布の範囲を特定する手法である。また、上記一連の処理は、当該処理を行うための解析アルゴリズムを記憶し、赤外線カメラで撮像して得た熱画像データを送信可能なデータ処理装置により行われる。
特開2010-112806号公報
 このように、上記特許文献1に記載の評価技術によれば、塗布対象(ドアなど)を破壊することなくワックスの塗布状態を評価することができるが、実際に評価できるのは、塗布領域の範囲のみであり、その塗布膜厚まで正確に評価するものではない。上記温度上昇速度と塗布膜厚との関係が明らかになっているわけではないためである。また、生産ライン上を流れる塗布対象としての車体の表面温度にはばらつきが生じることから、仮に温度上昇速度と塗布膜厚との関係がわかったとしても、塗布領域裏面の温度上昇速度を常に一定の基準(しきい値)で評価することは困難である。
 例えば、レーザ変位計等の非接触測定装置を用いて塗布膜厚を測定する方法も考えられなくはないが、この種の測定装置は高価な上、このような装置を用いた場合であっても袋構造内における塗布膜厚の測定は非常に困難であることに変わりはない。さらに、制御や調整も複雑となるおそれがあることから、本件の如きワックスの塗布膜厚測定には適さない。
 また、塗布範囲の評価に関しても、上記特許文献1に記載の評価技術では、温度上昇速度を用いて塗布範囲を評価するために、作業終了後に、撮像した画像を解析するための時間が必要となる。これでは、解析時間の経過後でなければ、塗布範囲の評価を行うことができないため、作業時間の増加、ひいては作業コストの増加を招く。また、被塗布部材が車体のドアやフード等の場合、ワックスの塗布作業は、複数のドアやフードに対して複数の作業者が同時に行われることが望ましい。しかしながら、このような場合には、所定のワックス塗布領域の裏面を塗布直後から連続して一定時間撮像しようとしても、他の作業者やドア等が妨げとなるため、上述の如く連続して撮像することは難しい。これでは、一枚ずつドアの塗布作業と撮像作業を行う必要が生じ、上述の場合と同様、作業時間の増加を招く。
 また、特許文献1に記載の検査方法によれば、赤外線カメラで撮像して得た熱画像データに一定の処理を施すことにより、自動的に塗布領域を特定することができる。しかしながら、この種の塗布作業が、作業者が視認できない領域(袋状部材の内部)に対して行われるものである場合、どうしても塗り残しが生じる可能性が高くなり、また、それ故に、塗り残しが生じた領域に対して再度塗布を行う(塗り直しをする)必要も少なからず生じる。特許文献1に記載の検査方法においては、データ処理装置に温度分布を表示するモニタが設けられているが、特にその配設位置について記載されていない。また、パソコンをデータ処理装置として使用している。このように、検査結果を塗布作業者が直接確認できるような構成になっていない場合、例えば塗り直しが必要となった場合に当該塗り直しのために必要な情報(その時点で塗り残しがある領域)を塗布作業者が正確かつ迅速に把握することは難しい。
 以上の事情に鑑み、簡易な手法でワックスの塗布膜厚を全数評価することを、本発明により解決すべき第1の技術的課題とする。
 また、以上の事情に鑑み、短時間でワックスの塗布範囲を全数評価することを、本発明により解決すべき第2の技術的課題とする。
 また、以上の事情に鑑み、塗布作業の検査結果を塗布作業者が正確かつ迅速に把握することのできる塗布検査システムを提供することを、本発明により解決すべき第3の技術的課題とする。
 前記第1の技術的課題の解決は、本発明の第1の側面に係るワックスの塗布膜厚評価方法によって達成される。すなわち、この評価方法は、被塗布部材のうちワックスが塗布されていない非塗布領域の表面温度と、ワックスを塗布した領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程と、塗布領域の裏面温度と、非塗布領域の表面温度との実温度差を算出する実温度差算出工程と、被塗布部材に対するワックスの塗布条件に基づいて、塗布領域の裏面温度と非塗布領域の表面温度との温度差と、ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程と、理論式を用いて実温度差からワックスの実際の塗布膜厚の評価を行う塗布膜厚評価工程とを具備する点をもって特徴付けられる。
 ワックスの塗布対象となるドアやフード等は、通常、薄肉の鋼板等で形成される。また、ワックスの塗布作業は、ワックスの塗布ガンを走査しながら所定の領域に対して行うために、塗布開始から塗布終了までに一定の時間を要する。そのため、塗布作業の開始直後より、ワックスの塗布領域においては塗布されたワックスから被塗布部材への熱伝達が行われ、塗布作業の完了後、実際に赤外線サーモグラフで塗布領域の裏面温度を撮像可能となった時点では、ワックスと被塗布部材の塗布領域とが等温状態もしくはそれに近い状態に至っているものと推察される。また、この際の被塗布部材の上昇温度は、塗布されたワックスが有する熱量、すなわちワックスの塗布量が多いほど高くなる傾向にある。以上の点に鑑み、本発明者らは、被塗布部材におけるワックスが塗布された後の被塗布領域の裏面温度と、ワックスが塗布されていない領域の表面温度との温度差と、ワックスの塗布膜厚との間の理論式を求めると共に、この理論式に基づいて実際の塗布膜厚を評価するようにすれば、ワックスの塗布膜厚の評価が全車両について高精度に実施可能との知見を得るに至った。
 本発明は、上記の知見に基づき成されたもので、ワックスの塗布領域と非塗布領域との温度差、及び、塗布膜厚の実測値との間で一定の整合性が確認された理論式を用いて塗布膜厚の評価基準を定めるようにしたので、被塗布部材ごとの温度のばらつきの影響を最小限に抑えて、高精度かつ信頼性ある膜厚評価が可能となる。また、赤外線サーモグラフを用いて被塗布部材の塗布領域の裏面温度と非塗布領域の表面温度を測定することで塗布膜厚を評価することができるので、目視が難しい箇所の塗布膜厚であっても容易かつ正確に評価することができる。また、ワックスが塗布されていない領域の表面温度と、塗布して一定時間が経過した後の塗布領域の裏面温度さえ測定できればよいので、測定作業自体は非破壊で実施でき、かつ短時間で済む。そのため、特段の作業時間の増加を招くことなく塗布膜厚の全数評価が可能となり、一層の品質保証機能の向上を図ることが可能となる。もちろん、実質的に必要な測定機器は赤外線サーモグラフのみであるから、設備コストの大幅な増加を避けることもできる。
 また、本発明の第1の側面に係るワックスの塗布膜厚評価方法は、温度取得工程において、ワックスを塗布する前の被塗布部材の表面温度を非塗布領域の表面温度として取得するものであってもよい。
 このように、非塗布領域として、ワックスを塗布する前の被塗布部材の表面温度を取得することで、ワックスの塗布予定領域における塗布前後の温度差に基づき塗布膜厚を評価することができる。これにより、ワックスの塗布による熱伝達の影響を一切受けていない(温度変化を生じていない)状態の被塗布部材の表面温度を基準としてワックスの塗布膜厚を評価することができる。また、被塗布部材ごとの温度のばらつきの影響を受けることなく、安定した膜厚評価を行うことができる。
 また、上述のように、ワックスを塗布する前の被塗布部材の表面温度を非塗布領域の表面温度として取得する場合、さらに温度取得工程において、被塗布部材のワックスの塗布予定領域の裏面を赤外線サーモグラフで撮像することで、塗布領域の裏面温度と、塗布前の表面温度とを取得するようにしてもよい。
 このように、ワックスの塗布予定領域の裏面を赤外線サーモグラフで撮像することで塗布前後の温度を取得するようにすれば、仮に被塗布部材の中で温度にばらつきがあった場合でも、ワックス塗布前の表面温度として最も取得に適した領域の温度を測定することが可能となる。よって、理論式に対応する実温度差を取得でき、塗布膜厚の評価精度をさらに向上させることが可能となる。また、ワックスの塗布前後を通じて、被塗布部材と赤外線サーモグラフとの相対位置(撮像位置)を一定にできるので、膜厚評価に要する設備の複雑化を避けることができ、これによっても設備コストの増加を回避することができる。
 あるいは、本発明の第1の側面に係るワックスの塗布膜厚評価方法は、温度取得工程において、ワックスの塗布予定領域を除く被塗布部材の表面温度を非塗布領域の表面温度として取得するものであってもよい。
 本発明の趣旨は、ワックスの塗布領域と非塗布領域との実温度差に基づき、この実温度差との間で所定の整合性が実験的に認められたワックスの塗布膜厚を評価する点にあることを鑑みると、表面温度の取得対象となるワックスの非塗布領域は、ワックスの塗布予定領域に限ることはなく、例えば、被塗布部材のうちワックスの塗布予定領域から外れた領域であってもよい。このように、ワックスの塗布予定領域から外れた領域を表面温度の取得領域とすることで、例えば作業者や周辺設備により、塗布作業の前後を通じてワックスの塗布予定領域が赤外線サーモグラフで安定的に撮像できない場合であっても、被塗布部材のうちワックスの塗布予定領域とは直接関係ない領域(例えばドアパネルであれば、その上方部位など)の表面温度を基準として実温度差を算出することができる。また、塗布予定領域とは離れた領域であれば、熱伝達による塗布作業中の温度変化も非常に小さいか、あるいは無視できるレベルと推察されるので、塗布作業前に限らず、塗布作業中に取得した当該領域の表面温度であっても実温度差の算出基準として問題なく使用することができる。
 また、本発明の第1の側面に係るワックスの塗布膜厚評価方法は、理論式に基づき、塗布膜厚の許容下限値に対応する温度差の許容下限値を設定する許容下限値設定工程をさらに具備し、塗布膜厚評価工程において、赤外線サーモグラフで撮像することで得た実温度差が、温度差の許容下限値以上である領域を算出すると共に、この許容下限値以上である領域のみを、ワックスの塗布作業者に視認可能な位置に配設したモニタに表示するものであってもよい。
 上述のようにすれば、実際に許容され得る大きさの塗布膜厚を有する部分のみをモニタに表示することができる。これにより、塗布量(塗布膜厚)が不足している箇所をワックスの塗布作業者が正確に把握できるばかりでなく、同者がモニタで確認した直後にワックスの塗り直しを行うことができる。これにより、塗り直しを含めたワックスの塗布作業を非常に短時間で行うことが可能となる。
 また、前記第2の技術的課題の解決は、本発明の第2の側面に係るワックスの塗布範囲評価方法によって達成される。すなわち、この評価方法は、被塗布部材のうちワックスが塗布されていない非塗布領域の表面温度と、ワックスを塗布して一定時間が経過した後のワックスの塗布領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程と、塗布領域の裏面温度と、非塗布領域の表面温度との実温度差を算出する実温度差算出工程と、ワックスの塗布による塗布領域の温度上昇を考慮して、塗布領域の裏面温度と非塗布領域の表面温度との温度差の許容下限値を設定する許容下限値設定工程と、実温度差と、温度差の許容下限値とに基づき、ワックスの塗布範囲を評価する塗布範囲評価工程とを具備し、許容下限値設定工程において、ワックスの塗布領域から非塗布領域への熱伝達による非塗布領域の温度上昇を加味して、温度差の許容下限値を設定する点をもって特徴付けられる。
 このように、本発明では、被塗布部材のうちワックスが塗布されていない領域の表面温度と、ワックスを塗布して一定時間が経過した後のワックスの塗布領域の裏面温度との温度差に基づき塗布範囲を評価するようにしたので、ワックスの塗布領域と非塗布領域それぞれ1回ずつの温度測定(撮像)作業でもって、ワックスの塗布範囲を評価することができる。これにより、塗布直後から連続的に撮像し続ける必要のあった従来の赤外線サーモグラフによる評価手法に比べて、温度測定作業に要する時間を短縮することができる。また、被塗布部材のうちワックスが塗布されていない領域の表面温度と、塗布して一定時間が経過した後の塗布領域の裏面温度さえ測定できれば足りるので、測定作業自体は非破壊で実施でき、かつ短時間で済む。そのため、特段の作業時間の増加を招くことなく塗布範囲の全数評価が可能となり、一層の品質保証機能の向上を図ることが可能となる。
 また、本発明では、上記温度差の許容下限値を設定するに際し、ワックスの塗布による塗布領域の温度上昇だけでなく、ワックスの塗布領域からこれに隣接する非塗布領域(よって、表面温度の取得対象となるワックスの非塗布領域とは結果的に異なる領域であってもよい。)への熱伝達による非塗布領域の温度上昇も考慮して、温度差の許容下限値を設定するようにした。この種のワックスの塗布作業において、実際に必要とされるワックスの塗布量はそれほど多くなく、一方で、鋼板やアルミ合金板のように被塗布部材が比較的伝熱性に優れた材料で形成される場合、ワックスの塗布領域からこれに隣接する非塗布領域への熱伝達による非塗布領域の温度上昇量は無視できない大きさになる。以上の点に鑑み、本発明では、塗布領域からの熱伝達による非塗布領域の温度上昇も考慮して、上記温度差の許容下限値を設定するようにしたので、ワックスが適正に塗布されていない領域を塗布領域であると誤判定する事態を回避することができる。また、ワックスの塗布作業が予定より長引いたり、あるいは短時間で完了した場合には、塗布開始から撮像までの経過時間が変動するため、実際に得られる温度差の値はばらつくが、上述のように非塗布領域への熱伝達による温度上昇を加味して評価しているのであれば、撮像時刻に関係なく、ワックスの塗布範囲を高精度に評価することができる。また、評価結果に対する信頼性を高めることが可能となる。
 また、本発明に係るワックスの塗布範囲評価方法は、温度取得工程において、ワックスを塗布する前の被塗布部材の表面温度を非塗布領域の表面温度として取得するものであってもよい。
 このように、非塗布領域として、ワックスを塗布する前の被塗布部材の表面温度を取得することで、ワックスの塗布予定領域における塗布前後の温度差に基づき塗布範囲を評価することができる。これにより、ワックスの塗布による熱伝達の影響を一切受けていない(温度変化を生じていない)状態の被塗布部材の表面温度を基準としてワックスの塗布範囲を評価することができる。また、被塗布部材ごとの温度のばらつきの影響を受けることなく、安定した塗布範囲の評価結果を得ることができる。
 あるいは、本発明に係るワックスの塗布範囲評価方法は、温度取得工程において、ワックスの塗布予定領域を除く被塗布部材の表面温度を非塗布領域の表面温度として取得するものであってもよい。
 本発明の趣旨は、ワックスの塗布による塗布領域の温度上昇及びワックスの塗布領域からこれに隣接する非塗布領域への熱伝達による非塗布領域の温度上昇を加味して、温度差の許容下限値を設定する点にあることを鑑みると、表面温度の取得対象となるワックスの非塗布領域は、ワックスの塗布予定領域に限ることはなく、例えば、被塗布部材のうちワックスの塗布予定領域から外れた領域であってもよい。このように、ワックスの塗布予定領域から外れた領域を表面温度の取得領域とすることで、例えば作業者や周辺設備により、塗布作業の前後を通じてワックスの塗布予定領域が赤外線サーモグラフで安定的に撮像できない場合であっても、被塗布部材のうちワックスの塗布予定領域とは直接関係ない領域(例えばドアパネルであれば、その上方部位など)の表面温度を基準として実温度差を算出することができる。また、塗布予定領域とは離れた領域であれば、熱伝達による塗布作業中の温度変化も非常に小さいか、あるいは無視できるレベルと推察されるので、塗布作業前に限らず、塗布作業中に取得した当該領域の表面温度であっても実温度差の算出基準として問題なく使用することができる。
 また、本発明の第2の側面に係るワックスの塗布範囲評価方法は、許容下限値設定工程において、ワックスの塗布後、一定時間の経過に伴う塗布領域の温度低下をさらに加味して、温度差の許容下限値を設定するものであってもよい。
 ワックスが塗布された領域では、ワックスからの熱伝達により温度が上昇するが、一定時間の経過後には、周囲への熱伝達(熱拡散)量がワックスからの熱伝達量を上回る事態が起こり得る。そのため、上記温度差の許容下限値を必要以上に大きく設定していると、ワックスが適正に塗布された領域であっても、既に温度低下が始まっている領域を、非塗布領域と誤って判定するおそれが生じる。この点、上述のように、ワックスの塗布後、一定時間(すなわち塗布開始から撮像開始までの時間)の経過に伴う塗布領域の温度低下をさらに加味して温度差の許容下限値を設定することで、上述の不具合(誤判定)を防止して、より正確な塗布範囲の評価が可能となる。
 また、本発明の第2の側面に係るワックスの塗布範囲評価方法は、被塗布部材に対するワックスの塗布条件に基づいて、塗布領域の裏面温度と非塗布領域の表面温度との温度差と、ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程をさらに具備し、許容下限値設定工程において、理論式に基づき、塗布膜厚の許容下限値に対応する温度差の許容下限値の理論値を算出し、この理論値に、ワックスの塗布領域から非塗布領域への熱伝達による非塗布領域の温度上昇を加算して、温度差の許容下限値を算出するものであってもよい。
 ワックスを塗布する目的は被塗布部材の防錆にあることから、許容される塗布膜厚の下限値が規格等で定められている。この点、ワックスの塗布領域と非塗布領域との温度差と塗布膜厚との関係を示す理論式に基づいて上記温度差の許容下限値の理論値を求めるようにしたので、これに塗布領域からの熱伝達による非塗布領域の温度上昇を加算して、上記温度差の許容下限値を算出することで、適正にワックスが塗布された範囲をより正確に評価することが可能となる。
 また、本発明の第2の側面に係るワックスの塗布範囲評価方法は、赤外線サーモグラフで撮像することで得た実温度差が、温度差の許容下限値以上である領域のみを、ワックスの塗布作業者に視認可能な位置に配設したモニタに表示するものであってもよい。
 上述のようにすれば、実際にワックスが適正に塗布された範囲のみをモニタに表示することができる。これにより、ワックスが塗布されていない領域をワックスの塗布作業者が正確に把握できるばかりでなく、同者がモニタで確認した直後にワックスの塗り直しを行うことができる。これにより、塗り直しを含めたワックスの塗布作業を非常に短時間で行うことが可能となる。
 また、前記第3の技術的課題の解決は、本発明の第3の側面に係る塗布検査システムによって達成される。すなわち、この検査システムは、被塗布部材への塗布物の塗布状態について検査を行うためのシステムであって、被塗布部材のうち少なくとも塗布領域を撮像する赤外線サーモグラフと、塗布作業者が視認可能な位置に配設され、赤外線サーモグラフの撮像により取得した塗布領域の温度分布を表示する表示部とを備え、表示部は、塗布領域の温度分布の経時変化を連続的に表示する動的画像と、動的画像の所定の時刻における静止画像とを表示可能とする点をもって特徴付けられる。
 このように、本発明では、塗布作業者が視認可能な範囲に、赤外線サーモグラフの撮像により取得した塗布領域の温度分布を表示する表示部を配設したので、塗布作業者自身が塗布状態を確認して当該塗布作業の良否に関する検査を行うことができる。また、この際、表示部に、塗布領域の温度分布の経時変化を連続的に表示する動的画像を表示可能とすることで、被塗布部材の温度分布を塗布作業者が作業中に見ながら塗布作業を行うことができる。よって、塗布作業を円滑に行うことができる。また、本発明では、上記表示部に、動的画像の所定の時刻における静止画像を表示可能としたので、例えば塗布作業の終了時点における静止画像、すなわち塗布作業完了直後の塗布領域の温度分布を静止状態で確認することができる。静止状態の温度分布であれば、時々刻々とその状態が変動する動的画像を見て塗布状態の良否を判定するよりも、より詳細かつ正確にチェックすることができるので、塗り残しの有無を迅速かつ正確に判定できると共に、塗り直しが必要な領域についても塗布作業者自身が迅速かつ正確に把握することができる。もちろん、塗り直し作業の終了時の度に終了時点の静止画像を新たに表示することで、塗り直しの良否判定を詳細にチェックすることもできる。よって、最初の塗布作業だけでなく塗り直し作業の検査についても迅速かつ正確に行うことができる。
 また、本発明の第3の側面に係る塗布検査システムは、表示部が、動的画像と静止画像とを同時に表示可能とするものであってもよい。
 このように、塗布領域の温度分布についての動的画像と静止画像とを一の表示部に同時に表示可能とすることで、動的画像のある時刻における静止画像を表示部に表示した後、当該静止画像の取得時よりも後の温度分布の経時変化が動的画像で連続的に表示される。これにより、例えば塗り直しの要否を静止画像に基づき行った後、当該静止画像とその後の塗り直し作業の途中結果を反映した動的画像とを見比べながら塗布作業を行うことができる。よって、既に塗り直しを終えた領域と未だ塗り直しを要する領域とをリアルタイムで確認しながら塗布作業を行うことができ、塗り直し作業を円滑かつ迅速に行うことが可能となる。
 また、本発明の第3の側面に係る塗布検査システムは、操作により表示部への静止画像の表示を指示する表示指示部と、操作により搬送手段による被塗布部材の搬送を指示する搬送指示部とをさらに備えるものであってもよい。
 このように構成することで、塗布作業者が塗布作業を終えた後、表示指示部を操作することにより、表示部に塗布作業完了後の温度分布が静止画像として表示される。そして、塗布作業者自身が塗布作業の良否を判定し、問題ない(塗り残しがない)と判断した場合に、搬送指示部を操作することで、例えばコンベア等に支持される被塗布部材を次工程に向けて搬送することができる。一方、静止画像で塗布作業の良否を判定した結果、問題あり(塗り残しがある)と塗布作業者が判断した場合、搬送指示部を操作することなく塗り直し作業を行うことができる。よって、塗布作業者の判断に基づき、塗り残しがなくなり、次工程に搬送してもよい状態となった時点で被塗布部材を搬送することができ、これら一連の検査及び搬送作業を全数に対して迅速かつ確実に行うことが可能となる。
 また、本発明の第3の側面に係る塗布検査システムが上記表示指示部及び搬送指示部を備えたものである場合、搬送指示部の操作は、表示指示部の操作により静止画像が表示部に表示された後にのみ有効となるように制御されていてもよい。
 上述のように、塗り直しを考慮した場合には、上述の如き構成(表示指示部と搬送指示部)を塗布作業者の手の届く範囲に配設することが有効だが、その場合には、押し間違いによる誤搬送が懸念される。この点、例えば上述のように表示指示部と搬送指示部を制御することにより、仮に表示指示部と搬送指示部とを押し間違えた場合であっても、被塗布部材が搬送されることはない。よって、塗布検査をすることなく被塗布部材が次工程に流れてしまう事態を回避して、全数検査を確実に行うことができる。
 以上のように、本発明の第1の側面に係る評価方法によれば、簡易な手法でワックスの塗布膜厚を全数評価することができる。
 また、以上のように、本発明の第2の側面に係る評価方法によれば、短時間でワックスの塗布範囲を全数評価することができる。
 また、以上のように、本発明の第3の側面に係る検査システムによれば、塗布作業の検査結果を塗布作業者が正確かつ迅速に把握することができる。また、塗り直しが必要となった場合においても、当該塗り直し作業を迅速かつ正確に行うことができる。
本発明の第1の側面の一実施形態に係るワックスの塗布膜厚評価方法のフローチャートである。 ワックスの塗布膜厚評価方法を実施するための設備の一例を示す斜視図である。 ワックスの塗布領域を含む被塗布部材としてのドアの袋構造部の断面図である。 ワックスの塗布領域の裏面温度と塗布前の表面温度との温度差と、ワックスの塗布膜厚との関係を示すグラフである。 本発明の第1の側面の一実施形態に係るワックスの塗布膜厚評価方法により得た評価結果のモニタへの表示例である。 図5Aと同一の塗布膜厚評価方法により得た評価結果のモニタへの表示例である。 本発明の第1の側面の他の実施形態に係るワックスの塗布膜厚評価方法により得た評価結果のモニタへの表示例である。 本発明の第1の側面の他の実施形態に係るワックスの塗布膜厚評価方法により得た評価結果のモニタへの表示例である。 図7Aと同一の塗布膜厚評価方法により得た評価結果のモニタへの表示例である。 本発明の第2の側面の一実施形態に係るワックスの塗布範囲評価方法のフローチャートである。 本発明の第3の側面の一実施形態に係る塗布検査システムの表示部の正面図であって、塗布作業時における表示部の表示形態を示す図である。 図9Aと同一の塗布検査システムの表示部の正面図であって、塗布作業終了後における表示部の表示形態を示す図である。 図9Aと同一の塗布検査システムの表示部の正面図であって、塗布検査終了後における表示部の表示形態を示す図である。 表示指示部及び搬送指示部の一構成例を示す平面図である。 本発明の第3の側面の一実施形態に係る塗布検査システムを用いた検査方法のフローチャートである。
 以下、本発明の第1の側面に係るワックスの塗布膜厚評価方法の一実施形態を図面に基づき説明する。この実施形態では、車体のドア及びフードの袋構造部に塗布したワックスの塗布膜厚を評価する場合を例にとって説明する。
 図1は、本発明の第1の側面の一実施形態に係るワックスの塗布膜厚評価方法のフローチャートを示している。図1に示すように、この評価方法は、ワックスを塗布する前の被塗布部材の表面温度と、ワックスを塗布した領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程S11と、塗布領域の裏面温度と、塗布前の表面温度との実温度差を算出する実温度差算出工程S12と、被塗布部材に対するワックスの塗布条件に基づいて、塗布領域の裏面温度と塗布前の表面温度との温度差と、ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程S13と、理論式を用いて実温度差からワックスの実際の塗布膜厚の評価を行う塗布膜厚評価工程S14とを具備する。
 また、この実施形態では、理論式導出工程S13で得た理論式に基づき、塗布膜厚の許容下限値に対応する温度差の許容下限値を設定する許容下限値設定工程S15をさらに具備すると共に、塗布膜厚評価工程S14で得た評価結果として、赤外線サーモグラフで撮像することで得た実温度差が、温度差の許容下限値以上である領域のみを、ワックスの塗布作業者に視認可能な位置に配設したモニタに表示する評価結果表示工程S16をさらに具備する。以下、各工程を詳細に説明する。
(温度取得工程S11)
 まず、ワックスを塗布する前の被塗布部材の表面温度と、ワックスを塗布して一定時間が経過した後のワックスの塗布領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する。具体的に説明すると、図2に示すように、被塗布部材としての車体1の塗布作業ステーション2に、ワックスの塗布対象となるサイドドア3やバックドア4、及びフード5を個別に撮像可能な赤外線サーモグラフ6を複数設置すると共に、赤外線サーモグラフ6と同数のモニタ7を設置する。この実施形態では、図2に示すように、ワックスの塗布作業を行う塗布作業者8がその作業位置において、担当する塗布対象(サイドドア3など)の塗布膜厚の評価結果を視認できる位置及び向きに、モニタ7を設置する。
 そして、実際に車体1が塗布作業ステーション2の所定位置(塗布作業位置)に搬入されると、まず、サイドドア3、バックドア4、及びフード5を開いた状態で、対応する赤外線サーモグラフ6でサイドドア3やバックドア4、及びフード5の表面を撮像し、ワックスを塗布する前の表面温度TP1を測定する。この実施形態では、図2に示すように、サイドドア3等のアウタ側の外表面のうち、ワックスの塗布が予定される領域(図5A及び図5Bで言えば、ワックスが実際に塗布された領域9)が撮像範囲に含まれるように、赤外線サーモグラフ6による撮像を行い、これにより撮像領域の温度(分布)を測定する。
 このようにして、ワックスを塗布する前の表面温度(分布)を測定したら、複数の塗布作業者8がそれぞれ担当の塗布対象となるサイドドア3やバックドア4、及びフード5の前に移動し、手に持った塗布ガン10で各塗布対象(サイドドア3、バックドア4、フード5)の袋構造部11に向けて防錆用のワックスを噴射し塗布する。サイドドア3を例に挙げて詳細に説明すると、図3に示すように、サイドドア3の袋構造部11は、例えばアウタパネル12とインナパネル13との重ね合わせ部に接着剤14を充填した状態でアウタパネル12の周縁部を折り返して(ヘミング加工を施して)アウタパネル12とインナパネル13とを一体化することにより形成される。そして、塗布作業者8は、袋構造部11の周囲に設けられた隙間から塗布ガン10を差し込んで塗布することで、袋構造部11を構成するアウタパネル12の内面と、インナパネル13の内面とにワックス15を塗布する。
 そして、ワックス15の塗布作業が終了した後、ワックスの塗布領域9(図5A等を参照)の裏面を赤外線サーモグラフ6で再度撮像し、塗布領域9の裏面温度TP2を測定する。この実施形態では、車体1と赤外線サーモグラフ6との相対位置は一定であるので、塗布前の際と同じく、サイドドア3等のアウタ側の外表面のうち、ワックスの塗布領域9が撮像範囲に含まれるように、赤外線サーモグラフ6による撮像を行い、これにより撮像領域の温度(分布)を測定する。
(実温度差算出工程S12)
 次に、温度測定工程S11で取得した塗布領域9の裏面温度TP2と、塗布前の表面温度TP1との実温度差Tを算出する。通常、ワックス15の塗布により被塗布部材(サイドドア3等)の被塗布表面温度が上昇することから、実温度差Tは、以下の式で表される。
  式1:T=TP2-TP1
(理論式導出工程S13)
 また、後述する温度差の許容下限値Tを設定するに際し、先に、本実施形態では、サイドドア3等に対するワックス15の塗布条件に基づいて、塗布領域9の裏面温度TP2と塗布前の表面温度TP1との温度差Tと、ワックス15の塗布膜厚tWAXとの関係を示す理論式を導出する。ここでは、塗布されたワックス15と被塗布部材としてのサイドドア3等を構成する鋼板との間でのみ熱交換が行われる(ワックス15の熱は全て鋼板に伝達される)と仮定した場合の、上記温度差Tと塗布膜厚tWAXとの関係を示す理論式を導出する。ここで、アウタパネル12を上記温度差T分だけ上昇させるのに必要な熱量Cは、以下の式2で表される。
  式2:C=c×M×T
 ただし、cはアウタパネルの比熱、Mはワックスの塗布領域9におけるアウタパネルの質量を示す。
 また、この場合、塗布されたワックス15が失った熱量CWAXは、以下の式3で表される。
  式3:CWAX=cWAX×MWAX×{TWAX-(TP1+T)}
 ただし、cWAXはワックスの比熱、MWAXは塗布されたワックスの質量、TWAXは塗布直後のワックスの温度を示す。
 また、アウタパネルの質量M、ワックスの質量MWAXはそれぞれ、
  式4:M=A×t×ρ
  式5:MWAX=A×tWAX×ρWAX
で表される。ただし、Aはワックスの塗布面積、tはアウタパネルの板厚、tWAXはワックスの塗布膜厚、ρはアウタパネルの密度、ρWAXはワックスの密度をそれぞれ示す。
 そして、式1及び式2において、C=CWAXとした場合、ワックスの塗布膜厚tWAXは、温度差Tの関数として
  式6:tWAX={C×t×ρ×T}/[cWAX×ρWAX×{TWAX-(TP1+T)}]
のように表される。
 なお、より厳密に温度差Tと塗布膜厚tWAXとの理論式を導出するのであれば、例えばワックス15から空気中に拡散する熱量等も考慮して、熱平衡式を構築するようにしてもよいが、今回は、上述のように、塗布膜厚tWAXの許容下限値さえ保証できればよいので、より簡易な条件下で導出可能な理論式を採用した。また、後述するように、空気中への熱拡散がないとした場合に導出した温度差の許容下限値よりも実際の温度差(実温度差T)が大きければ、実際のワックス15の塗布膜厚tWAXはさらに大きい値を示すことになるため、品質保証の面でも問題ない。
(許容下限値設定工程S15)
 このようにして、温度差Tと塗布膜厚tWAXとの理論式を求めたら、当該理論式に基づき、塗布膜厚の許容下限値tに対応する温度差の許容下限値Tの理論値を算出し、この理論値に、ワックスの塗布領域9から非塗布領域16(図5A等を参照)への熱伝達による非塗布領域16の温度上昇を加算して、温度差の許容下限値Tを算出する。図4は、温度差Tと塗布膜厚tWAXとの関係を示すグラフであって、同図中、一点鎖線で示す曲線は、温度差Tと塗布膜厚tWAXとの関係を示す理論式、プロットは、温度差T及び塗布膜厚tWAXを実際に測定して得た値である。なお、実際のワックスの塗布膜厚は例えばウェットゲージを用いて測定することが可能である。この図より、温度差Tと塗布膜厚tWAXとの関係を示す理論式を用いて、温度差の実測値(実温度差T)からワックス15の塗布範囲を評価することの妥当性が立証される。従い、例えば規格値である塗布膜厚の許容下限値tに対応する温度差の許容下限値Tの理論値を、式6に示す理論式から算出し、当該理論値に、ワックスの塗布領域9から非塗布領域16への熱伝達による非塗布領域16の温度上昇を加算して、温度差の許容下限値Tを算出する。また、この実施形態では、ワックス15の塗布後、一定時間(ここでは、ワックス15の塗布作業時間)の経過に伴う塗布領域9の温度低下分をさらに考慮して、温度差の許容下限値Tを設定する。
 なお、ワックスの塗布領域9から非塗布領域16への熱伝達による非塗布領域16の温度上昇分の算出方法は特に問わず、例えば実際に塗布されたワックス15や、熱伝達媒体となる鋼板の熱伝達に関連する物性値に基づく計算や、実際にワックス15をアウタパネル12に塗布して温度測定を行うことによるトライアンドエラーにより求めてもよい。あるいは、塗布領域及び塗布量と温度上昇分との相関を取得し、当該取得した相関に基づき、温度上昇分を算出してもよい。ワックス15の塗布後、一定時間の経過に伴う塗布領域9の温度低下分の算出方法についても同様である。
(塗布膜厚評価工程S14)
 このようにして、温度差の許容下限値Tを算出したら、先に求めた実温度差Tと、直前に求めた温度差の許容下限値Tとに基づき、ワックス15の塗布膜厚を評価する。具体的には、実温度差Tが、温度差の許容下限値T以上である領域については、実際に所要の塗布膜厚を有するワックス15が塗布されたものと判定する。一方で、実温度差Tが、温度差の許容下限値T未満である領域については、ワックス15が塗布されておらず、あるいは塗布されていたとしても十分な塗布膜厚を有していないものと判定する。
(評価結果表示工程S16)
 そして、塗布膜厚評価工程S14で得た評価結果として、赤外線サーモグラフ6で撮像することで得た実温度差Tが、温度差の許容下限値T以上である領域のみを、ワックス15の塗布作業者8に視認可能な位置(図2を参照)に配設したモニタ7に表示する。これにより、実際にワックス15が適正に塗布された範囲のみがモニタ7に表示される。従って、このモニタ7の表示内容を塗布作業者8が見て、例えば図5Aあるいは図5Bに示すように、本来塗布すべき領域全てが表示されていると判断した場合には、ワックス15は適正に塗布されたものとして当該塗布作業を終了し、次の工程に車体1が搬送される。また、図示は省略するが、本来塗布すべき領域の一部に表示されていない箇所が見受けられる場合には、確認した当の塗布作業者8が、そのまま塗布ガン10で対応箇所にワックス15を塗布し直す。なお、必要と思われる場合には、再度、塗布終了後に塗布領域9の裏面温度を赤外線サーモグラフ6でもって測定し、以下、上記S12~S16の工程を繰り返し実行することで、塗布範囲の再評価を行ってもよい。
 このように、本発明では、ワックス15を塗布する前のサイドドア3等の表面温度TP1と、ワックス15を塗布して一定時間(ここでは、ワックスの塗布作業開始から終了までの時間)が経過した後のワックスの塗布領域の裏面温度TP2との実温度差Tに基づき塗布膜厚tWAXを評価するようにしたので、ワックス15塗布の前後1回ずつの温度測定(撮像)作業でもって、ワックス15の塗布範囲を評価することができる。これにより、塗布直後から連続的に撮像し続ける必要のあった従来の赤外線サーモグラフによる評価手法に比べて、温度測定作業に要する時間を短縮することができる。また、ワックス15を塗布する前のサイドドア3等の表面温度TP1を基準としてワックスの塗布膜厚tWAXを評価することができるので、被塗布部材ごとの温度のばらつきの影響を受けることなく、安定した塗布範囲の評価結果を得ることができる。また、ワックス15を塗布する前のサイドドア3等の表面温度TP1と、塗布して一定時間が経過した後の塗布領域9の裏面温度TP2さえ測定できれば足りるので、測定作業自体は非破壊で実施でき、かつ短時間で済む。そのため、特段の作業時間の増加を招くことなく塗布膜厚tWAXの全数評価が可能となり、一層の品質保証機能の向上を図ることが可能となる。
 また、本発明では、上記温度差の許容下限値Tを設定するに際し、ワックス15の塗布による塗布領域9の温度上昇だけでなく、ワックスの塗布領域9から非塗布領域16への熱伝達による非塗布領域16の温度上昇も考慮して、温度差の許容下限値Tを設定するようにした。ここで、例えば上記熱伝達による非塗布領域16の温度上昇を考慮せずに理論式から上記温度差の許容下限値Tを設定した場合、その値は、非塗布領域16の温度上昇を考慮した場合と比べて小さいものとなる。そのため、例えば塗布直後に撮像すれば、実際の塗布領域9を良く反映したモニタ7表示結果が得られるところ、一定時間(例えばワックス15塗布作業時間)の経過後においては、図6に例示のように、実際には塗布していない箇所までもがモニタ7に着色表示(なお、同図中のグレースケールにおいては、白色に近いほど高温を、黒色に近いほど低温を表すものとする。図5Aや図5B、図7Aや図7Bについても同様とする。)されてしまい、正確な塗布範囲を表示することができない。これに対して、本発明のように、塗布領域9からの熱伝達による非塗布領域16の温度上昇を加味して温度差の許容下限値Tを設定すれば、ワックス15が適正に塗布されていない領域を塗布領域であると誤判定する事態を回避することができる。また、ワックス15の塗布作業が予定より長引いたり、あるいは短時間で完了した場合には、塗布開始から撮像までの経過時間が変動するため、実際に得られる温度分布はばらつくが(図5A及び図5Bを参照)、上述のように非塗布領域16への熱伝達による温度上昇を加味して評価しているため、表示領域に大差はない。よって、この評価方法であれば、塗布開始から温度測定作業までの時間にある程度弾力を持たせつつも、ワックス15の塗布範囲を高精度に評価することができる。また、評価結果に対する信頼性を高めることが可能となる。
 ところで、ワックス15が塗布された領域9では、ワックス15からの熱伝達により温度が上昇するが、一定時間の経過後には、周囲への熱伝達(熱拡散)量がワックス15からの熱伝達量を上回る事態が起こり得る。そのため、上記温度差の許容下限値Tを必要以上に大きく設定していると、例えば図7Aに示すように、塗布開始から所定時間の経過後であれば、ワックス15の塗布範囲を正確に評価できるものの、さらに時間が経過した後には、塗布領域9の一部で温度低下が始まってしまい、図7Bに示すように、適正にワックス15が塗布された領域であるにも関らず、モニタ7に表示されない(非塗布領域16と判定される)おそれが生じる。この点、上述のように、ワックス15の塗布後、一定時間(すなわち塗布開始から撮像開始までの時間)の経過に伴う塗布領域の温度低下をさらに加味して温度差の許容下限値Tを設定することで、図5Bに示すように、塗布作業終了直後からさらに一定の時間が経過した後であっても、ほぼ同じ表示結果(表示範囲)を得ることができる。
 もちろん、本発明の第1の側面に係るワックスの塗布膜厚評価方法は、本発明の趣旨を逸脱しない範囲で任意の構成を採ることが可能である。例えば、上記実施形態では、温度取得工程S11において、ワックス15を塗布する前のサイドドア3等の表面温度TP1を、非塗布領域、すなわち塗布予定領域を含めワックス15が塗布されていない領域の表面温度TP1として取得する場合を例示したが、もちろん、塗布予定領域を除く非塗布領域16の表面温度TP1を、ワックス15が塗布されていない領域の表面温度TP1として取得することも可能である。この場合には、例えばサイドドア3等の被塗布部材のうち塗布領域9から少し離れた領域を赤外線サーモグラフ6で撮像することで、当該領域の表面温度TP1を取得することができる。また、ワックス15の塗布による温度変化の非常に小さい領域を非塗布領域とすることから、その取得タイミングについても特に問われず、例えば塗布作業中に撮像することで取得したものであってもよい。
 また、上記実施形態では、被塗布部材(サイドドア3等)のうちワックス15が塗布されていない領域の表面温度TP1と、ワックス15を塗布して一定時間が経過した後のワックスの塗布領域9の裏面温度TP2とをそれぞれ1回ずつ取得し、この際の実温度差Tに基づき塗布膜厚tWAXを評価するようにしたが、もちろんこの形態には限られない。例えば、ワックス15の塗布開始直後から、連続的に赤外線サーモグラフ6による熱画像(温度分布画像)を撮像すると共に、撮像した熱画像につき順次上述の塗布膜厚TWAXの評価のための演算処理(画像取得時の実温度差Tと許容下限値Tとの比較)を行い、その結果をモニタ7に連続的に表示するようにしてもよい。すなわち、ワックス15の塗布作業が開始されたら、上記工程S11~S16までの工程(特に、時々刻々と変化する実温度差Tの温度分布の取得及び許容下限値Tとの比較)を繰り返し実施し、その評価結果をモニタ7に表示するようにしてもよい。これにより、作業者によるワックス15の塗布作業の進行に伴って、ワックス15が適正な膜厚に塗布された領域から順次モニタ7に表示される。この場合、非塗布領域の表面温度TP1としては、ワックス15を塗布する前の表面温度と、ワックス15の塗布予定領域を除く領域(非塗布領域16)の何れであってもよく(後者の場合、取得される表面温度TP1についても順次最新の熱画像あるいはその直前に取得した熱画像に基づいて更新可能である。)、また、このようにして順次取得した実温度差Tに基づく塗布膜厚の評価結果をモニタ7に連続的に表示するようにしてもよい。
 また、以上の説明では、全数評価を前提とした場合を例示したが、本発明の第1の側面に係るワックスの塗布膜厚評価方法は、複数台(例えば3台)に1台の割合で評価するものであってもよいし、あるいは、所定時間(例えば1時間)ごとに1回の割合で評価するものであってもよいことはもちろんである。
 以下、本発明の第2の側面に係るワックスの塗布範囲評価方法の一実施形態を図面に基づき説明する。この実施形態では、車体のドア及びフードの袋構造部に塗布したワックスの塗布範囲を評価する場合を例にとって説明する。
 図8は、本発明の第2の側面の一実施形態に係るワックスの塗布範囲評価方法のフローチャートを示している。図8に示すように、この評価方法は、ワックスを塗布する前の被塗布部材の表面温度と、ワックスを塗布して一定時間が経過した後のワックスの塗布領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程S21と、塗布領域の裏面温度と、塗布前の表面温度との実温度差を算出する実温度差算出工程S22と、ワックスの直接塗布による温度上昇、及び、ワックスの塗布領域から非塗布領域への熱伝達による非塗布領域の温度上昇を考慮して、塗布領域の裏面温度と塗布前の表面温度との温度差の許容下限値を設定する許容下限値設定工程S23と、実温度差と、温度差の許容下限値とに基づき、ワックスの塗布範囲を評価する塗布範囲評価工程S24とを具備する。
 また、この実施形態では、許容下限値設定工程S23の前に、被塗布部材に対するワックスの塗布条件に基づいて、塗布領域の裏面温度と塗布前の表面温度との温度差と、ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程S25をさらに具備すると共に、塗布範囲評価工程S24で得た評価結果として、赤外線サーモグラフで撮像することで得た実温度差が、温度差の許容下限値以上である領域のみを、ワックスの塗布作業者に視認可能な位置に配設したモニタに表示する評価結果表示工程S26をさらに具備する。以下、各工程を詳細に説明する。
(温度取得工程S21)
 まず、ワックスを塗布する前の被塗布部材の表面温度と、ワックスを塗布して一定時間が経過した後のワックスの塗布領域の裏面温度とを、被塗布部材を赤外線サーモグラフで撮像することで取得する。具体的に説明すると、図2に示すように、被塗布部材としての車体1の塗布作業ステーション2に、ワックスの塗布対象となるサイドドア3やバックドア4、及びフード5を個別に撮像可能な赤外線サーモグラフ6を複数設置すると共に、赤外線サーモグラフ6と同数のモニタ7を設置する。この実施形態では、図2に示すように、ワックスの塗布作業を行う塗布作業者8がその作業位置において、担当する塗布対象(サイドドア3など)の塗布範囲の評価結果を視認できる位置及び向きに、モニタ7を設置する。
 そして、実際に車体1が塗布作業ステーション2の所定位置(塗布作業位置)に搬入されると、まず、サイドドア3、バックドア4、及びフード5を開いた状態で、対応する赤外線サーモグラフ6でサイドドア3やバックドア4、及びフード5の表面を撮像し、ワックスを塗布する前の表面温度TP1を測定する。この実施形態では、図2に示すように、サイドドア3等のアウタ側の外表面のうち、ワックスの塗布が予定される領域(図5A及び図5Bで言えば、ワックスが実際に塗布された領域9)が撮像範囲に含まれるように、赤外線サーモグラフ6による撮像を行い、これにより撮像領域の温度(分布)を測定する。
 このようにして、ワックスを塗布する前の表面温度(分布)を測定したら、複数の塗布作業者8がそれぞれ担当の塗布対象となるサイドドア3やバックドア4、及びフード5の前に移動し、手に持った塗布ガン10で各塗布対象(サイドドア3、バックドア4、フード5)の袋構造部11に向けて防錆用のワックスを噴射し塗布する。サイドドア3を例に挙げて詳細に説明すると、図3に示すように、サイドドア3の袋構造部11は、例えばアウタパネル12とインナパネル13との重ね合わせ部に接着剤14を充填した状態でアウタパネル12の周縁部を折り返して(ヘミング加工を施して)アウタパネル12とインナパネル13とを一体化することにより形成される。そして、塗布作業者8は、袋構造部11の周囲に設けられた隙間から塗布ガン10を差し込んで塗布することで、袋構造部11を構成するアウタパネル12の内面と、インナパネル13の内面とにワックス15を塗布する。
 そして、ワックス15の塗布作業が終了した後、ワックスの塗布領域9(図5A等を参照)の裏面を赤外線サーモグラフ6で再度撮像し、塗布領域9の裏面温度TP2を測定する。この実施形態では、車体1と赤外線サーモグラフ6との相対位置は一定であるので、塗布前の際と同じく、サイドドア3等のアウタ側の外表面のうち、ワックスの塗布領域9が撮像範囲に含まれるように、赤外線サーモグラフ6による撮像を行い、これにより撮像領域の温度(分布)を測定する。
(実温度差算出工程S22)
 次に、温度測定工程S21で取得した塗布領域9の裏面温度TP2と、塗布前の表面温度TP1との実温度差Tを、既述の式1に基づき算出する。算出方法としては、例えば既述の式1に基づく方法が挙げられる。
(理論式導出工程S25)
 また、後述する温度差の許容下限値Tを設定するに際し、先に、本実施形態では、サイドドア3等に対するワックス15の塗布条件に基づいて、塗布領域9の裏面温度TP2と塗布前の表面温度TP1との温度差Tと、ワックス15の塗布膜厚tWAXとの関係を示す理論式を導出する。ここでは、塗布されたワックス15と被塗布部材としてのサイドドア3等を構成する鋼板との間でのみ熱交換が行われる(ワックス15の熱は全て鋼板に伝達される)と仮定した場合の、上記温度差Tと塗布膜厚tWAXとの関係を示す理論式(例えば、既述の式2~式6)を導出する。これにより、ワックスの塗布膜厚tWAXを温度差Tの関数として表示することができる。
 なお、より厳密に温度差Tと塗布膜厚tWAXとの理論式を導出するのであれば、例えばワックス15から空気中に拡散する熱量等も考慮して、熱平衡式を構築するようにしてもよいが、今回は、上述のように、塗布膜厚tWAXの許容下限値さえ保証できればよいので、より簡易な条件下で導出可能な理論式を採用した。また、後述するように、空気中への熱拡散がないとした場合に導出した温度差の許容下限値Tよりも実際の温度差(実温度差T)が大きければ、実際のワックス15の塗布膜厚tWAXはさらに大きい値を示すことになるため、品質保証の面でも問題ない。
(許容下限値設定工程S23)
 このようにして、温度差Tと塗布膜厚tWAXとの理論式を求めたら、当該理論式に基づき、塗布膜厚の許容下限値tに対応する温度差の許容下限値Tの理論値を算出し(図4を参照)、この理論値に、ワックスの塗布領域9から非塗布領域16(図5A等を参照)への熱伝達による非塗布領域16の温度上昇を加算して、温度差の許容下限値Tを算出する。ここで、図4に示すように、温度差Tと塗布膜厚tWAXとの関係を示す理論式を用いて、温度差の実測値(実温度差T)からワックス15の塗布範囲を評価することの妥当性が立証されるので、例えば規格値である塗布膜厚の許容下限値tに対応する温度差の許容下限値Tの理論値を、式6に示す理論式から算出し、当該理論値に、ワックスの塗布領域9から非塗布領域16への熱伝達による非塗布領域16の温度上昇を加算して、温度差の許容下限値Tを算出する。また、この実施形態では、ワックス15の塗布後、一定時間(ここでは、ワックス15の塗布作業時間)の経過に伴う塗布領域9の温度低下分をさらに考慮して、温度差の許容下限値Tを設定する。
 なお、上記ワックスの塗布領域9から非塗布領域16への熱伝達による非塗布領域16の温度上昇分の算出方法は特に問わず、例えば実際に塗布されたワックス15や、熱伝達媒体となる鋼板の熱伝達に関連する物性値に基づく計算や、実際にワックス15をアウタパネル12に塗布して温度測定を行うことによるトライアンドエラーにより求めてもよい。あるいは、塗布領域及び塗布量と温度上昇分との相関を取得し、当該取得した相関に基づき、温度上昇分を算出するようにしてもよい。ワックス15の塗布後、一定時間の経過に伴う塗布領域9の温度低下分の算出方法についても同様である。
(塗布範囲評価工程S24)
 このようにして、温度差の許容下限値Tを算出したら、先に求めた実温度差Tと、直前に求めた温度差の許容下限値Tとに基づき、ワックス15の塗布範囲を評価する。具体的には、実温度差Tが、温度差の許容下限値T以上である領域については、実際に所要の塗布膜厚を有するワックス15が塗布されたものと判定する。一方で、実温度差Tが、温度差の許容下限値T未満である領域については、ワックス15が塗布されておらず、あるいは塗布されていたとしても十分な塗布膜厚を有していないものと判定する。
(評価結果表示工程S26)
 そして、塗布範囲評価工程S24で得た評価結果として、赤外線サーモグラフ6で撮像することで得た実温度差Tが、温度差の許容下限値T以上である領域のみを、ワックス15の塗布作業者8に視認可能な位置(図2を参照)に配設したモニタ7に表示する。これにより、実際にワックス15が適正に塗布された範囲のみがモニタ7に表示される。従って、このモニタ7の表示内容を塗布作業者8が見て、例えば図5Aあるいは図5Bに示すように、本来塗布すべき領域全てが表示されていると判断した場合には、ワックス15は適正に塗布されたものとして当該塗布作業を終了し、次の工程に車体1が搬送される。また、図示は省略するが、本来塗布すべき領域の一部に表示されていない箇所が見受けられる場合には、確認した当の塗布作業者8が、そのまま塗布ガン10で対応箇所にワックス15を塗布し直す。なお、必要と思われる場合には、再度、塗布終了後に塗布領域9の裏面温度を赤外線サーモグラフ6でもって測定し、以下、上記S22~S26の工程を繰り返し実行することで、塗布範囲の再評価を行ってもよい。
 このように、本発明では、ワックス15を塗布する前のサイドドア3等の表面温度TP1と、ワックス15を塗布して一定時間(ここでは、ワックスの塗布作業開始から終了までの時間)が経過した後のワックスの塗布領域の裏面温度TP2との実温度差Tに基づき塗布膜厚tWAXを評価するようにしたので、ワックス15塗布の前後1回ずつの温度測定(撮像)作業でもって、ワックス15の塗布範囲を評価することができる。これにより、塗布直後から連続的に撮像し続ける必要のあった従来の赤外線サーモグラフによる評価手法に比べて、温度測定作業に要する時間を短縮することができる。また、ワックス15を塗布する前のサイドドア3等の表面温度TP1を基準としてワックスの塗布膜厚tWAXを評価することができるので、被塗布部材ごとの温度のばらつきの影響を受けることなく、安定した塗布範囲の評価結果を得ることができる。また、ワックス15を塗布する前のサイドドア3等の表面温度TP1と、塗布して一定時間が経過した後の塗布領域9の裏面温度TP2さえ測定できれば足りるので、測定作業自体は非破壊で実施でき、かつ短時間で済む。そのため、特段の作業時間の増加を招くことなく塗布膜厚tWAXの全数評価が可能となり、一層の品質保証機能の向上を図ることが可能となる。
 また、本発明では、上記温度差の許容下限値Tを設定するに際し、ワックス15の塗布による塗布領域9の温度上昇だけでなく、ワックスの塗布領域9から非塗布領域16への熱伝達による非塗布領域16の温度上昇も考慮して、温度差の許容下限値Tを設定するようにした。ここで、例えば上記熱伝達による非塗布領域16の温度上昇を考慮せずに理論式から上記温度差の許容下限値Tを設定した場合、その値は、非塗布領域16の温度上昇を考慮した場合と比べて小さいものとなる。そのため、例えば塗布直後に撮像すれば、実際の塗布領域9を良く反映したモニタ表示結果が得られるところ、一定時間(例えばワックス塗布作業時間)の経過後においては、図6に例示のように、実際には塗布していない箇所までもがモニタに着色表示されてしまい、正確な塗布範囲を表示することができない。これに対して、本発明のように、塗布領域9からの熱伝達による非塗布領域16の温度上昇を加味して温度差の許容下限値Tを設定すれば、ワックス15が適正に塗布されていない領域を塗布領域であると誤判定する事態を回避することができる。また、ワックス15の塗布作業が予定より長引いたり、あるいは短時間で完了した場合には、塗布開始から撮像までの経過時間が変動するため、実際に得られる温度分布はばらつくが(図5A及び図5Bを参照)、上述のように非塗布領域16への熱伝達による温度上昇を加味して評価しているため、表示領域に大差はない。よって、この評価方法であれば、塗布開始から温度測定作業までの時間にある程度弾力を持たせつつも、ワックス15の塗布範囲を高精度に評価することができる。また、評価結果に対する信頼性を高めることが可能となる。
 ところで、ワックスが塗布された領域9では、ワックス15からの熱伝達により温度が上昇するが、一定時間の経過後には、周囲への熱伝達(熱拡散)量がワックス15からの熱伝達量を上回る事態が起こり得る。そのため、上記温度差の許容下限値Tを必要以上に大きく設定していると、例えば図7Aに示すように、塗布開始から所定時間の経過後であれば、ワックス15の塗布範囲を正確に評価できるものの、さらに時間が経過した後には、塗布領域9の一部で温度低下が始まってしまい、図7Bに示すように、適正にワックス15が塗布された領域であるにも関らず、表示されない(非塗布領域16と判定される)おそれが生じる。この点、上述のように、ワックス15の塗布後、一定時間(すなわち塗布開始から撮像開始までの時間)の経過に伴う塗布領域の温度低下をさらに加味して温度差の許容下限値Tを設定することで、図5Bに示すように、塗布作業終了直後からさらに一定の時間が経過した後であっても、ほぼ同じ表示結果(表示範囲)を得ることができる。
 もちろん、本発明の第2の側面に係るワックスの塗布範囲評価方法は、本発明の趣旨を逸脱しない範囲で任意の構成を採ることが可能である。例えば、上記実施形態では、温度取得工程S21において、ワックス15を塗布する前のサイドドア3等の表面温度TP1を、非塗布領域、すなわち塗布予定領域を含めワックス15が塗布されていない領域の表面温度TP1として取得する場合を例示したが、もちろん、塗布予定領域を除く非塗布領域16の表面温度TP1を、ワックス15が塗布されていない領域の表面温度TP1として取得することも可能である。この場合には、例えばサイドドア3等の被塗布部材のうち塗布領域9から離れた領域を赤外線サーモグラフ6で撮像することで、当該領域の表面温度TP1を取得することができる。また、ワックス15の塗布による温度変化の非常に小さい領域を非塗布領域とすることから、その取得タイミングについても特に問われず、例えば塗布作業中に撮像することで取得したものであってもよい。
 また、上記実施形態では、被塗布部材(サイドドア3等)のうちワックス15が塗布されていない領域の表面温度TP1と、ワックス15を塗布して一定時間が経過した後のワックスの塗布領域9の裏面温度TP2とをそれぞれ1回ずつ取得し、この際の実温度差Tに基づき塗布範囲を評価するようにしたが、もちろんこの形態には限られない。例えば、ワックス15の塗布開始直後から、連続的に赤外線サーモグラフ6による熱画像(温度分布画像)を撮像すると共に、撮像した熱画像につき順次上述の塗布範囲の評価のための演算処理(画像取得時の実温度差Tと許容下限値Tとの比較)を行い、その結果をモニタ7に連続的に表示するようにしてもよい。すなわち、ワックス15の塗布作業が開始されたら、上記工程S21~S26までの工程(特に、時々刻々と変化する実温度差Tの温度分布の取得及び許容下限値Tとの比較)を繰り返し実施し、その評価結果をモニタ7に表示するようにしてもよい。これにより、作業者によるワックス15の塗布作業の進行に伴って、ワックス15が適正に塗布された領域から順次モニタ7に表示される。この場合、非塗布領域の表面温度TP1としては、ワックス15を塗布する前の表面温度と、ワックス15の塗布予定領域を除く領域(非塗布領域16)の何れであってもよく(後者の場合、取得される表面温度TP1についても順次最新の熱画像の直前に取得した熱画像に基づいて更新可能である。)、また、このようにして順次取得した実温度差Tに基づく塗布膜厚の評価結果をモニタ7に連続的に表示するようにしてもよい。
 また、以上の説明では、全数評価を前提とした場合を例示したが、本発明の第2の側面に係るワックスの塗布範囲評価方法は、複数台(例えば3台)に1台の割合で評価するものであってもよいし、あるいは、所定時間(例えば1時間)ごとに1回の割合で評価するものであってもよいことはもちろんである。
 以下、本発明の第3の側面に係る塗布検査システムの一実施形態を図面に基づき説明する。
 本実施形態に係る塗布検査システムは、図2に示すように、被塗布部材としての車体1の塗布作業ステーション2に、塗布対象となるサイドドア3やバックドア4、及びフード5を個別に撮像する赤外線サーモグラフ6と、塗布作業者8が視認可能な位置及び向きに配設され、赤外線サーモグラフ6の撮像により取得した塗布領域の温度分布を表示する表示部としてのモニタ7とを主に備えるもので、モニタ7は、上記温度分布の動的画像17と静止画像18(共に後述する図9A等を参照)を表示可能としている。
 本実施形態では、上記検査システムを用いて、複数の塗布作業者8がそれぞれ担当の塗布対象となるサイドドア3やバックドア4、及びフード5の前に移動し、手に持った塗布ガン10で各被塗布部材(サイドドア3、バックドア4、フード5)の袋構造部11に向けて防錆用のワックスを噴射し塗布した場合の塗布状態について検査を行う。ここで、サイドドア3を例に挙げてその塗布作業の詳細を説明すると、図3に示すように、サイドドア3の袋構造部11は、例えばアウタパネル12とインナパネル13との重ね合わせ部に接着剤14を充填した状態でアウタパネル12の周縁部を折り返して(ヘミング加工を施して)アウタパネル12とインナパネル13とを一体化することにより形成される。そして、塗布作業者8は、袋構造部11の周囲に設けられた隙間から塗布ガン10を差し込んで塗布することで、袋構造部11を構成するアウタパネル12の内面と、インナパネル13の内面とに塗布物としてのワックス15を塗布する。
 また、本実施形態では、上記検査システムは、図10に示すように、操作によりモニタ7への静止画像18の表示を指示する表示指示部20と、操作により搬送手段23(図2を参照)による車体1の搬送を指示する搬送指示部21とを設けた操作部材22をさらに備える。本実施形態では、車体1を搬送しながら上記一連の作業を行うため、搬送指示があればそのまま搬送を継続し、搬送指示がなければ(搬送指示部21の操作がなければ)、所定時間の経過後、車体1が停止するようになっている。また、本実施形態では、搬送指示部21の操作は、表示指示部20の操作により静止画像18がモニタ7に表示された後にのみ有効となるように制御されている。これにより、表示指示部20と搬送指示部21とを押し間違えた場合に車体1が塗布作業者8による塗布検査を受けることなく次工程に流れてしまう事態を回避可能としている。上記構成の操作部材22は、例えば塗布ガン10に装着されており、塗布ガン10を使用する塗布作業者8が即時に操作できる状態にある。
 図9A~図9Cは、表示部としてのモニタ7の表示形態の一例を示すもので、動的画像17のみを表示する場合(図9A)と、動的画像17と静止画像18とを同時に表示する場合(図9B)、及びさらに検査結果19を表示する場合(図9C)がある。ここで、動的画像17は、赤外線サーモグラフ6で撮像して得たワックス15の塗布領域における温度分布の経時変化を連続的に表示するものであり、静止画像18は、上記動的画像17の所定の時刻における温度分布を表示するものである。
 また、これら動的画像17又は静止画像18として表示される温度分布は、赤外線サーモグラフ6で対象部位(ワックス15の塗布領域を含む部位)を撮像して得た生データであってもよいが、より実用的な観点からワックス15が適切に塗布されているか否かを判別し易くするために、生データに所定の処理を施したものであってもよい。
 具体的には、既述した本発明の第1の側面に係るワックスの塗布膜厚評価方法や、本発明の第2の側面に係るワックスの塗布範囲評価方法で得た評価結果を動的画像17又は静的画像18としてモニタ7に表示することが可能である。このうち、例えば塗布範囲評価方法で得た結果をモニタ7に表示する場合であれば、(1)ワックス15を塗布する前の被塗布部材の表面温度TP1と、ワックス15を塗布し始めた後のワックスの塗布領域9(図5A等を参照)の裏面温度TP2とを、被塗布部材を赤外線サーモグラフ6で撮像することで取得して、塗布領域の裏面温度TP2と、塗布前の表面温度TP1との実温度差Tを算出すると共に、ワックス15の塗布による塗布領域の温度上昇を考慮して、塗布領域9の裏面温度TP2と塗布前の表面温度TP1との温度差Tの許容下限値Tを設定し、上記実温度差Tが、温度差の許容下限値T以上である領域のみを動的画像17及び静止画像18としてモニタ7に表示するようにしてもよい。この場合、例えば図5A~図7Bに示す評価結果(温度分布)が動的画像17又は静的画像18としてモニタの所定位置に表示される。また、実温度差Tは、動的画像17に表示される最新の裏面温度分布を反映したものとなり、静止画像18は、静止画像18の表示を指示する表示指示部20を塗布作業者8が操作した時点の裏面温度分布を反映したものとなる。
 あるいは、上述した評価方法のうち、塗布膜厚評価方法で得た結果をモニタ7に表示する場合であれば、(2)ワックス15を塗布する前の被塗布部材の表面温度TP1と、ワックス15を塗布し始めた後のワックスの塗布領域9の裏面温度TP2とを、被塗布部材を赤外線サーモグラフ6で撮像することで取得して、塗布領域の裏面温度TP2と、塗布前の表面温度TP1との実温度差Tを算出すると共に、被塗布部材に対するワックス15の塗布条件に基づいて、塗布領域9の裏面温度TP2と塗布前の表面温度TP1との温度差Tと、ワックス15の塗布膜厚tWAXとの関係を示す理論式を導出して、この理論式に基づいて、塗布膜厚の許容下限値tに対応する温度差の許容下限値Tを設定して、実温度差Tが、温度差の許容下限値T以上である領域のみを動的画像17及び静止画像18としてモニタ7に表示するようにしてもよい。この場合も、例えば図5A~図7Bに示す評価結果(温度分布)が動的画像17又は静的画像18としてモニタの所定位置に表示される。また、実温度差Tは、動的画像17に表示される最新の裏面温度分布を反映したものとなり、静止画像18は、静止画像18の表示を指示する表示指示部20を塗布作業者8が操作した時点の裏面温度分布を反映したものとなる。
 次に、上記構成の塗布検査システムを用いた検査方法の一例を図面に基づき説明する。
(S31)塗布作業工程
 まず、図2に示すように、車体1が塗布作業ステーション2の所定位置(塗布作業位置)に搬入されると、サイドドア3、バックドア4、及びフード5を開いた状態で複数の塗布作業者8がそれぞれ担当の塗布対象となるサイドドア3やバックドア4、及びフード5の前に移動し、手に持った塗布ガン10で各々の被塗布部材(サイドドア3、バックドア4、フード5)の袋構造部11に向けて防錆用のワックス15を噴射し塗布する。また、この際、各々の被塗布部材に対応する赤外線サーモグラフ6でサイドドア3やバックドア4、及びフード5のアウタ側の外表面のうち、ワックス15の塗布領域が撮像範囲に含まれるように、赤外線サーモグラフ6による撮像を行い、これにより塗布領域の温度分布を取得する。そして、取得したワックス15の塗布領域の温度分布を動的画像17としてモニタ7に表示する(図9Aを参照)。この際、例えば塗布前の同領域の温度分布を予め取得しておく等して、上記(1)又は(2)の処理を施した後の温度分布を動的画像17としてモニタ7に連続的に表示するようにしてもよい。
(S32)静止画像表示工程
 こうして、ワックス15の塗布作業が終了したら、塗布作業者8は操作部材22の表示指示部20を操作して、図9Bに示すように、モニタ7に温度分布の静止画像18を表示する。この場合、表示される静止画像18は、動的画像17のうち表示指示部20の操作時点における温度分布である。この際の静止画像18の表示態様は特に限定されず、例えば図9Bに示すように、静止画像18と動的画像17とを横に並んだ状態で同時に表示してもよい。また、動的画像17よりも大きいサイズで静止画像18を表示してもよい。
(S33)良否判定工程
 このようにしてモニタ7に塗布領域の温度分布を静止画像18として表示したら、実際に塗布作業を行った塗布作業者8がモニタ7を見て、モニタ7に表示された静止画像18に基づき、塗布状態の良否判定を行う。すなわち、静止画像18として表示された温度分布のうち所定の温度(しきい値)以上を示す領域が、塗布を予定していた領域全てを含んでいれば、塗布状態は良好であると判定して、次の(S34)車体搬送工程へ進む。あるいは、しきい値以上を示す領域が塗布を予定していた領域を一部含んでいない場合には、塗布状態は不良である、言い換えると塗り残し(ワックス15が塗れておらず、あるいは塗布膜厚が不十分である領域)があるものと判定して、(S35)塗り直し工程へ進む(図11)。なお、モニタ7への表示形式として、例えば図5A~図7Bに示すように、塗布作業者8が一目見て把握し易いように、しきい値以上の温度を示す領域と、しきい値未満の温度を示す領域とで色調を明確に異ならせる方法が採用可能である。
(S34)車体搬送工程
 上記良否判定工程S33で塗布状態が良好であると塗布作業者8が判定した場合、塗布作業者8は操作部材22の搬送指示部21を操作して、搬送手段23に車体1の搬送を指示する。本実施形態では、車体1を搬送しながら上記一連の作業を行うため、搬送指示があればそのまま車体1が継続して搬送される。これにより、例えば検査を終えた車体1が搬送手段23により次工程へ搬送され、当該車体1に対する一連の作業、検査が終了する。なお、搬送指示部21の操作により、モニタ7に検査結果19が表示され(例えば「OK」の表示)、塗布作業者8本人だけでなく周囲の作業者も塗布状態が良好であったことを認識できる(図9C)。
(S35)塗り直し工程
 上記良否判定工程で塗布状態が不良である、すなわち塗り残しがあると塗布作業者8が判定した場合、塗布作業者8は、塗り残しがある領域に再度ワックス15を塗布する(塗り直し)。この場合、判定に用いた静止画像18で塗り残しがある領域の見当を付けてから、対応箇所に塗布ガン10の先端(ノズル)を向けて再度ワックス15を噴射することにより該当箇所の塗布を行う。また、同時に動的画像17を確認して塗り直しが適切にお行われたか否かを確認しながら未塗布領域にワックス15を塗布する。こうして塗り直し作業が終了したら、静止画像18の表示指示部20を再び操作して、塗り直し作業終了時の温度分布を静止画像18として再表示し、その良否を判定し、良好との判定結果が出るまで、上記工程(S32、S33、S35)を繰り返す。搬送指示部21の操作がなされず、許容できる塗布作業時間を経過した時点で車体1は停止し、警告音などが発生する。また、モニタ7には、塗布不良であるとの検査結果19が表示され(例えば「NG」の表示)、塗布作業者8本人を含め、周囲の作業者も塗布不良が発生したことを認識できる。
 このように、本発明では、塗布作業者8が視認可能な範囲に、赤外線サーモグラフ6の撮像により取得した塗布領域の温度分布を表示するモニタ7を配設したので、塗布作業者8自身が塗布状態を確認して当該塗布作業の良否に関する検査を行うことができる。また、この際、モニタ7に、塗布領域の温度分布の経時変化を連続的に表示する動的画像17を表示可能とすることで、被塗布部材の温度分布を塗布作業者8が作業中に見ながら塗布作業を行うことができる。よって、塗布作業を円滑に行うことができる。また、モニタ7に、動的画像17の所定の時刻における静止画像18を表示可能としたので、例えば塗布作業の終了時点における静止画像18、すなわち塗布作業完了直後の塗布領域の温度分布を静止状態で確認することができる。これにより、塗布状態の良否を詳細かつ正確にチェックすることができるので、塗り残しの有無を迅速かつ正確に判定できると共に、塗り直しが必要な領域についても塗布作業者8自身が迅速かつ正確に把握することができる。もちろん、塗り直し作業の終了時の度に終了時点の静止画像18を新たに表示することで、塗り直しの良否判定を詳細にチェックすることもできる。よって、最初の塗布作業だけでなく塗り直し作業の検査についても迅速かつ正確に行うことができる。
 また、本実施形態では、塗布領域の温度分布についての動的画像17と静止画像18とを一つのモニタ7に同時に表示するようにしたので(図9B、図9C)、動的画像17のある時刻における静止画像18をモニタ7に表示した後、当該静止画像18の取得時よりも後の温度分布の経時変化が動的画像17で連続的に表示される。これにより、上述の如く塗り直しの要否を静止画像18に基づき行った後、当該静止画像18とその後の塗り直し作業の途中結果を反映した動的画像17とを見比べながら塗布作業を行うことができる。よって、既に塗り直しを終えた領域と未だ塗り直しを要する領域とをリアルタイムで確認しながら塗布作業を行うことができ、塗り直し作業を円滑かつ迅速に行うことが可能となる。
 また、本実施形態では、操作によりモニタ7への静止画像18の表示を指示する表示指示部20と、操作により搬送手段23による車体1の搬送を指示する搬送指示部21とをさらに備えるようにしたので、塗布作業者8が塗布作業を終えた後、表示指示部20を操作することにより、モニタ7に塗布作業完了後の温度分布が静止画像18として表示される。そして、塗布作業者8自身が塗布作業の良否を判定し、問題ない(塗り残しがない)と判断した場合に、搬送指示部21を操作することで、被塗布部材を有する車体1の搬送手段23による搬送を継続して行うことができる。一方、静止画像18で塗布作業の良否を判定した結果、問題あり(塗り残しがある)と塗布作業者8が判断した場合、搬送指示部21を操作しなければ、所定時間の経過時までは、車体1を停止させることなく塗り直し作業を行うことができる。かつ、塗り直し作業により、塗り残しがなくなり次工程に搬送してもよいと塗布作業者8が判定し搬送指示部21を操作することで対応する車体1を停止させることなく搬送することができる。以上より、これら一連の検査及び搬送作業を全数に対して迅速かつ確実に行うことが可能となる。
 また、本実施形態では、表示部としてのモニタ7を、塗布作業ステーション2上を流れる車体1よりも上方に配設するようにした。この種の塗布作業は、通常、図1に示すように、被塗布部材となる車体1の生産ライン上で行われると共に、複数の塗布作業者8により複数部位の塗布作業が同時に行われる。よって、塗布作業ステーション2の単に側方にモニタ7を配設したのでは、他部位の塗布作業者8を含む他の作業者や、周辺の設備が視界を遮って、塗布作業中に塗布領域の温度分布を確認することができない場合も起こり得る。この点、本実施形態では、車体1よりも上方で、かつ各塗布部位を担当する塗布作業者8の向きにモニタ7を配設したので、この種の問題を可及的に回避して、対応する塗布作業者8の視認性を向上させることができる。
 以上、本発明の第3の側面に係る塗布検査システムの一実施形態について述べたが、本発明は、その意図を反映した構成を逸脱しない限りにおいて、上記以外の構成を採ることも可能である。
 例えば、上記実施形態では、表示指示部20と搬送指示部21とを設けた操作部材22を塗布ガン10に装着する場合を例示したが、もちろんこの形態には限定されない。例えば、作業エリアの近傍に配置された設備や、塗布作業者8自身が装着する等、塗布作業時に塗布作業者8の手の届く範囲に表示指示部20及び搬送指示部21が配置していればよい。あるいは、これら表示指示部20と搬送指示部21とを塗布ガン10の噴射スイッチ(レバー)と兼用させてもよい。この場合、塗布作業終了後における噴射スイッチのオフ操作が静止画像18の表示トリガーとして機能する。また、この後の噴射スイッチの温操作を動的画像17の表示トリガーもしくは赤外線サーモグラフ6の撮像取得トリガーとして機能する。
 また、上記実施形態では、車体1を搬送しながら塗布作業を実施する場合を例に挙げたが、もちろん、塗布作業ステーション2上に導入された車体1を一旦停止した状態で塗布作業を行い、塗布作業者8自身による検査(良否判定)の結果、塗り残しなしと判定され、搬送指示部21を操作することにより、車体1の搬送が再開されるように制御するようにしてもかまわない。
1     車体
2     塗布作業ステーション
3     サイドドア
4     バックドア
5     フード
6     赤外線サーモグラフ
7     モニタ
8     塗布作業者
9     塗布領域
10   塗布ガン
11   袋構造部
12   アウタパネル
13   インナパネル
14   接着剤
15   ワックス
16   非塗布領域
17   動的画像
18   静止画像
19   検査結果
20   表示指示部
21   搬送指示部
22   操作部材
23   搬送手段

Claims (9)

  1.  被塗布部材のうちワックスが塗布されていない非塗布領域の表面温度と、前記ワックスを塗布した領域の裏面温度とを、前記被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程と、
     前記塗布領域の裏面温度と、前記非塗布領域の表面温度との実温度差を算出する実温度差算出工程と、
     前記被塗布部材に対する前記ワックスの塗布条件に基づいて、前記塗布領域の裏面温度と前記非塗布領域の表面温度との温度差と、前記ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程と、
     前記理論式を用いて前記実温度差から前記ワックスの実際の塗布膜厚の評価を行う塗布膜厚評価工程とを具備するワックスの塗布膜厚評価方法。
  2.  被塗布部材のうちワックスが塗布されていない非塗布領域の表面温度と、前記ワックスを塗布して一定時間が経過した後の前記ワックスの塗布領域の裏面温度とを、前記被塗布部材を赤外線サーモグラフで撮像することで取得する温度取得工程と、
     前記塗布領域の裏面温度と、前記非塗布領域の表面温度との実温度差を算出する実温度差算出工程と、
     前記ワックスの塗布による前記塗布領域の温度上昇を考慮して、前記塗布領域の裏面温度と前記非塗布領域の表面温度との温度差の許容下限値を設定する許容下限値設定工程と、
     前記実温度差と、前記温度差の許容下限値とに基づき、前記ワックスの塗布範囲を評価する塗布範囲評価工程とを具備し、
     前記許容下限値設定工程において、前記ワックスの塗布領域から非塗布領域への熱伝達による前記非塗布領域の温度上昇を加味して、前記温度差の許容下限値を設定するワックスの塗布範囲評価方法。
  3.  前記温度取得工程において、前記ワックスを塗布する前の前記被塗布部材の表面温度を前記非塗布領域の表面温度として取得する請求項1又は2に記載のワックスの塗布膜厚評価方法。
  4.  前記温度取得工程において、前記ワックスの塗布予定領域を除く前記被塗布部材の表面温度を前記非塗布領域の表面温度として取得する請求項1又は2に記載のワックスの塗布膜厚評価方法。
  5.  前記理論式に基づき、前記塗布膜厚の許容下限値に対応する前記温度差の許容下限値を設定する許容下限値設定工程をさらに具備し、
     前記塗布膜厚評価工程において、赤外線サーモグラフで撮像することで得た前記実温度差が、前記温度差の許容下限値以上である領域を算出すると共に、前記許容下限値以上である領域のみを、前記ワックスの塗布作業者に視認可能な位置に配設したモニタに表示する請求項1に記載のワックスの塗布膜厚評価方法。
  6.  前記被塗布部材に対する前記ワックスの塗布条件に基づいて、前記塗布領域の裏面温度と前記塗布前の表面温度との温度差と、前記ワックスの塗布膜厚との関係を示す理論式を導出する理論式導出工程をさらに具備し、
     前記許容下限値設定工程において、前記理論式に基づき、前記塗布膜厚の許容下限値に対応する前記温度差の許容下限値の理論値を算出し、該理論値に、前記ワックスの塗布領域から非塗布領域への熱伝達による前記非塗布領域の温度上昇を加算して、前記温度差の許容下限値を算出する請求項2に記載のワックスの塗布範囲評価方法。
  7.  前記赤外線サーモグラフで撮像することで得た前記実温度差が、前記温度差の許容下限値以上である領域のみを、前記ワックスの塗布作業者に視認可能な位置に配設したモニタに表示する請求項2に記載のワックスの塗布範囲評価方法。
  8.  被塗布部材への塗布物の塗布状態について検査を行うための塗布検査システムであって、
     前記被塗布部材のうち少なくとも前記塗布物が塗布される塗布領域を撮像する赤外線サーモグラフと、
     塗布作業者が視認可能な位置に配設され、前記赤外線サーモグラフの撮像により取得した前記塗布領域の温度分布を表示する表示部とを備え、
     前記表示部は、前記塗布領域の温度分布の経時変化を連続的に表示する動的画像と、前記動的画像の所定の時刻における静止画像とを表示可能とする塗布検査システム。
  9.  操作により前記表示部への前記静止画像の表示を指示する表示指示部と、操作により搬送手段による前記被塗布部材の搬送を指示する搬送指示部とをさらに備える請求項8に記載の塗布検査システム。
PCT/JP2012/081209 2011-11-30 2012-11-30 ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム WO2013081151A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MYPI2014001484A MY184816A (en) 2011-11-30 2012-11-30 Method for evaluating coated film thickness and coating range of wax, and coating inspection system
CN201280058045.3A CN103988047B (zh) 2011-11-30 2012-11-30 蜡的涂布膜厚和涂布范围评价方法、以及涂布检查系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-261992 2011-11-30
JP2011261993 2011-11-30
JP2011261992 2011-11-30
JP2011-261993 2011-11-30
JP2012-241072 2012-10-31
JP2012241072A JP6124394B2 (ja) 2012-10-31 2012-10-31 塗布検査システム

Publications (1)

Publication Number Publication Date
WO2013081151A1 true WO2013081151A1 (ja) 2013-06-06

Family

ID=48535597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081209 WO2013081151A1 (ja) 2011-11-30 2012-11-30 ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム

Country Status (3)

Country Link
CN (1) CN103988047B (ja)
MY (1) MY184816A (ja)
WO (1) WO2013081151A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185891A1 (ja) * 2017-04-05 2018-10-11 株式会社ニコン 塗膜状態解析装置および膜厚測定装置
JP2019095436A (ja) * 2017-11-27 2019-06-20 株式会社豊田中央研究所 計測装置、計測方法、及びプログラム
CN114087998A (zh) * 2021-11-25 2022-02-25 重庆海浦洛自动化科技有限公司 用于空腔注蜡系统的在线膜厚检测系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907951B2 (ja) * 2018-01-11 2021-07-21 トヨタ自動車株式会社 ヒートシンクの検査方法、検査装置及び生産方法、生産システム
CN110360974B (zh) * 2019-06-27 2021-08-10 广东美的厨房电器制造有限公司 食物厚度估测方法及相关装置
CN110660696B (zh) * 2019-08-27 2021-09-21 浙江博蓝特半导体科技股份有限公司 一种蓝宝石衬底的制造方法和滴蜡设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287466A (ja) * 1985-06-13 1986-12-17 Asahi Okuma Ind Co Ltd 自動塗装ラインにおける補修塗装方法及び装置
JPH06138064A (ja) * 1992-10-28 1994-05-20 Dainippon Printing Co Ltd 自立型薄肉樹脂ボトルの底部検査方法
JPH08304036A (ja) * 1995-05-10 1996-11-22 Toppan Printing Co Ltd 塗膜の塗布ムラ検査方法及びその装置
JP2008519980A (ja) * 2004-11-12 2008-06-12 トヨタ モーター マニュファクチュアリング、ノース アメリカ インク 被膜、表面、及び界面を検査するシステム及び方法
JP2010112806A (ja) * 2008-11-05 2010-05-20 Toyota Motor Corp 塗布分布測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133126B2 (en) * 2003-06-27 2006-11-07 Delphi Technologies, Inc. Method for the detection of coatings using emissivity and reflectivity
US7220966B2 (en) * 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
CN101544233B (zh) * 2009-05-06 2011-04-13 中铁信弘远(北京)软件科技有限责任公司 一种编组站综合自动化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287466A (ja) * 1985-06-13 1986-12-17 Asahi Okuma Ind Co Ltd 自動塗装ラインにおける補修塗装方法及び装置
JPH06138064A (ja) * 1992-10-28 1994-05-20 Dainippon Printing Co Ltd 自立型薄肉樹脂ボトルの底部検査方法
JPH08304036A (ja) * 1995-05-10 1996-11-22 Toppan Printing Co Ltd 塗膜の塗布ムラ検査方法及びその装置
JP2008519980A (ja) * 2004-11-12 2008-06-12 トヨタ モーター マニュファクチュアリング、ノース アメリカ インク 被膜、表面、及び界面を検査するシステム及び方法
JP2010112806A (ja) * 2008-11-05 2010-05-20 Toyota Motor Corp 塗布分布測定方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185891A1 (ja) * 2017-04-05 2018-10-11 株式会社ニコン 塗膜状態解析装置および膜厚測定装置
JP2019095436A (ja) * 2017-11-27 2019-06-20 株式会社豊田中央研究所 計測装置、計測方法、及びプログラム
JP2022136245A (ja) * 2017-11-27 2022-09-15 株式会社豊田中央研究所 計測装置、計測方法、及びプログラム
JP7176356B2 (ja) 2017-11-27 2022-11-22 株式会社豊田中央研究所 計測装置、計測方法、及びプログラム
JP7363989B2 (ja) 2017-11-27 2023-10-18 株式会社豊田中央研究所 計測装置、計測方法、及びプログラム
CN114087998A (zh) * 2021-11-25 2022-02-25 重庆海浦洛自动化科技有限公司 用于空腔注蜡系统的在线膜厚检测系统
CN114087998B (zh) * 2021-11-25 2023-11-03 重庆海浦洛自动化科技有限公司 用于空腔注蜡系统的在线膜厚检测系统

Also Published As

Publication number Publication date
CN103988047A (zh) 2014-08-13
MY184816A (en) 2021-04-23
CN103988047B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
WO2013081151A1 (ja) ワックスの塗布膜厚並びに塗布範囲評価方法、及び塗布検査システム
US7220966B2 (en) Systems and methods for inspecting coatings, surfaces and interfaces
US20070051891A1 (en) Systems and methods for inspecting coatings
US9976968B2 (en) Cracking detection system and cracking detection method
EP2647951B1 (en) Sealant analysis system
JP4898320B2 (ja) 構造物の欠陥検出方法および装置、ならびに欠陥検出機能を備えた荷役機械
JP2007163390A (ja) 構造物の欠陥検出方法および装置
CN110998301A (zh) 用于检查表面层的检查方法和检查装置
EP1828754B1 (en) Systems and methods for inspecting coatings, surfaces and interfaces
JP6124394B2 (ja) 塗布検査システム
JP2011237383A (ja) 材料の欠陥検出方法及び欠陥検出システム
EP3919880B1 (en) Stress properties measurement method, stress properties measurement device, and stress properties measurement system
Zhao et al. Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography
US20120026323A1 (en) System and method for monitoring stress on a wind turbine blade
JP6112599B2 (ja) ワックスの塗布膜厚評価方法
WO2008055473A8 (de) Vorrichtung und verfahren zum messen von schichtdicken
WO2019122815A1 (en) Measurement system for metal strip production line
JP6012040B2 (ja) ワックスの塗布範囲評価方法
KR102139221B1 (ko) 실러 품질 검사 장치
EP3407056B1 (en) Method for detecting corrosion of a surface not exposed to view of a metal piece, by means of thermographic analysis
KR20090045579A (ko) 레이저센서를 이용한 차량용 실러 도포 검사 시스템
Kishigami et al. Detection of heavy-duty anticorrosion coating deterioration using near-infrared spectral characteristics
KR101059502B1 (ko) 선체 도장 균일 도포와 비접촉 도막 두께 측정 장치 및 그 방법
US20160067737A1 (en) Method of monitoring the process of coating a workpiece surface
JP7046365B2 (ja) 溶接装置及び溶接装置の板厚検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853083

Country of ref document: EP

Kind code of ref document: A1