WO2013080679A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2013080679A1
WO2013080679A1 PCT/JP2012/076299 JP2012076299W WO2013080679A1 WO 2013080679 A1 WO2013080679 A1 WO 2013080679A1 JP 2012076299 W JP2012076299 W JP 2012076299W WO 2013080679 A1 WO2013080679 A1 WO 2013080679A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
silicon carbide
semiconductor device
conductivity type
carbide semiconductor
Prior art date
Application number
PCT/JP2012/076299
Other languages
English (en)
French (fr)
Inventor
林 秀樹
増田 健良
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201280053367.9A priority Critical patent/CN103907193A/zh
Publication of WO2013080679A1 publication Critical patent/WO2013080679A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Definitions

  • the present invention relates to a silicon carbide semiconductor device having a gate electrode and a method for manufacturing the same.
  • Non-Patent Document 1 discloses an electrostatic induction transistor (SIT), that is, a junction field effect transistor (JFET).
  • SIT electrostatic induction transistor
  • JFET junction field effect transistor
  • SiC silicon carbide
  • SiC silicon carbide
  • the normally-on type is disclosed. In general, in a power semiconductor, a normally-off type operation may be desired, for example, from the viewpoint of safety.
  • Non-patent Document 2 discloses that a SiC JFET is operated like a normally-off type using a SiMOSFET (Metal Oxide Semiconductor Field Effect Transistor). Specifically, a configuration in which a SiCJFET and a SiMOSFET are cascode-connected is disclosed.
  • SiMOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Non-Patent Document 1 normally-off operation has not been realized.
  • the technique of Non-Patent Document 2 requires an operation of connecting these multiple components to each other after forming a JFET chip and a MOSFET chip individually.
  • the present invention has been made to solve the above problems, and an object of the present invention is a silicon carbide semiconductor device configured as a single chip and having both low on-resistance characteristics and normally-off characteristics, And a method of manufacturing the same.
  • a silicon carbide semiconductor device of the present invention is a silicon carbide semiconductor device having a silicon carbide substrate having a first surface and a second surface opposite to the first surface, the first to the first included in the silicon carbide substrate. 4 region, a gate insulating film, a gate electrode, and first and second electrodes.
  • the first region has the first conductivity type and forms a first surface.
  • the second region has a second conductivity type different from the first conductivity type, and is provided on the first region.
  • the second region includes a first portion that forms a second surface and a second portion that is separated from the second surface.
  • the second region is provided with a plurality of through holes that expose the first region.
  • the third region has the first conductivity type and includes a contact portion, a connection portion, and a filling portion.
  • the contact portion is in contact with the first portion of the second region on the second surface.
  • the connecting portion forms a second surface and extends from the contact portion to each of the plurality of through holes in the second region.
  • the filling portion fills each of the plurality of through holes in the second region.
  • the fourth region has the first conductivity type and is provided on the first portion of the second region, and the first region and the third region are formed by the first portion of the second region. Are separated from each other and form a second surface.
  • the gate insulating film is provided on a portion between the contact portion of the third region and the fourth region in the first portion of the second region.
  • the gate electrode is provided on the gate insulating film.
  • the first electrode is electrically insulated from the gate electrode and is in contact with each of the first portion of the second region and the fourth region.
  • the second electrode is in contact with the first surface formed by the first
  • the semiconductor device can be configured as one chip by using one silicon carbide substrate. Further, both low on-resistance characteristics and normally-off characteristics can be obtained.
  • the first region may include a drift layer having an impurity concentration lower than that of the third region.
  • the breakdown voltage can be increased.
  • the first region may include a base layer that is in contact with the second electrode and has an impurity concentration larger than the impurity concentration of the third region.
  • the contact resistance between the first region and the first electrode can be reduced.
  • the second surface may have an inverted mesa shape including a side wall surface formed by the first portion of the second region.
  • region makes can be adjusted by selecting the inclination of a side wall surface.
  • the second surface formed by the first portion may include any one of a ⁇ 0-33-8 ⁇ plane and a ⁇ 0-11-4 ⁇ plane in a hexagonal crystal structure. .
  • the carrier mobility along the 2nd surface which the 1st part makes is raised. Therefore, the on-resistance of the semiconductor device can be reduced.
  • connection portion of the third region may include a low resistance layer having an impurity concentration larger than the impurity concentration of the filling portion of the third region.
  • the electrical resistance of the connection portion is reduced. Therefore, the on-resistance of the semiconductor device can be further reduced.
  • the method for manufacturing a silicon carbide semiconductor device of the present invention includes the following steps.
  • a first region having a first conductivity type and having a first surface and a surface opposite to the first surface is prepared.
  • a second region having a second conductivity type different from the first conductivity type is formed on a surface opposite to the first surface of the first region.
  • the second region includes a first portion and a second portion, and the second region is provided with a plurality of through holes that expose the first region.
  • a third region having the first conductivity type and covering the second region is formed so as to fill each of the plurality of through holes.
  • the second region and the third region are exposed so that the second portion of the second region is covered with the third region while the first portion of the second region is exposed.
  • the second region and the third region are partially etched so that the surface formed has an inverted mesa shape including the side wall surface formed by the first portion of the second region.
  • the etching step on the first portion of the second region, having the first conductivity type, separated from each of the first region and the third region by the first portion of the second region.
  • the formed fourth region is formed.
  • a gate insulating film is formed on the first portion of the second region forming the reverse mesa-shaped side wall surface.
  • a gate electrode is formed on the gate insulating film.
  • a first electrode that is electrically insulated from the gate electrode and is in contact with each of the first portion of the second region and the fourth region is formed.
  • a second electrode is formed on the first surface of the first region.
  • the semiconductor device can be configured as one chip by using one silicon carbide substrate. Further, both low on-resistance characteristics and normally-off characteristics can be obtained.
  • the etching step may be performed by thermal etching.
  • region can be exposed. Therefore, the reliability of the gate insulating film formed on this surface is improved. Therefore, the reliability of the part switched by an insulated gate among silicon carbide semiconductor devices can be improved.
  • the semiconductor device can be configured as one chip by using one silicon carbide substrate. Further, both low on-resistance characteristics and normally-off characteristics can be obtained.
  • FIG. 1 is a cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a first embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing a configuration of a silicon carbide substrate included in the silicon carbide semiconductor device of FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III in FIG.
  • FIG. 4 is a partially enlarged view of FIG. 3.
  • FIG. 2 is a diagram showing a current path in an on state of the silicon carbide semiconductor device of FIG. 1.
  • FIG. 2 schematically shows an equivalent circuit of the silicon carbide semiconductor device of FIG. 1. It is sectional drawing which shows schematically the 1st process of the manufacturing method of the silicon carbide semiconductor device in Embodiment 1 of this invention.
  • a switching device 101 (silicon carbide semiconductor device) of the present embodiment includes an epitaxial substrate SC (silicon carbide substrate), a gate insulating film 20, a gate electrode 21, an interlayer insulating film 30, A source electrode 31 (first electrode), a source wiring 32, and a drain electrode 41 (second electrode) are included.
  • the epitaxial substrate SC is made of silicon carbide.
  • the crystal structure of epitaxial substrate SC is hexagonal in the present embodiment, and preferably has polytype 4H.
  • Epitaxial substrate SC includes first region 10, second region 13, third region 14, and fourth region 15.
  • the epitaxial substrate SC has a back surface P1 (first surface) and an upper surface P2 (second surface opposite to the first surface).
  • the back surface P1 has a flat shape.
  • the upper surface P2 has an inverted mesa shape (FIG. 2) having a recessed surface BS, a side wall surface SL, and a top surface PL.
  • the hollow surface BS and the top surface PL are parallel to the back surface P1, and the side wall surface SL is inclined with respect to the back surface P1.
  • the inverted mesa-shaped depression surface BS of the present embodiment has a hexagonal outer edge, for example, a regular hexagonal outer edge.
  • six side wall surfaces SL are provided so as to be connected to each of the six sides of the hexagonal outer edge.
  • the first region 10 has n-type (first conductivity type).
  • the first region 10 forms the back surface P1 of the epitaxial substrate SC.
  • the first region 10 includes a single crystal substrate 11 (base layer) that forms the back surface P1, and a drift layer 12 provided thereon.
  • Single crystal substrate 11 has an impurity concentration higher than that of third region 14.
  • the surface PS of the single crystal substrate 11 opposite to the back surface P1 preferably has a plane orientation ⁇ 000-1 ⁇ , and more preferably has a plane orientation (000-1).
  • the drift layer 12 has a lower impurity concentration than the impurity concentration of the third region 14.
  • the impurity concentration of single crystal substrate 11 is, for example, 5 ⁇ 10 18 / cm 3 .
  • the impurity concentration of drift layer 12 is, for example, 1 ⁇ 10 16 / cm 3 .
  • Second region 13 has a p-type (a second conductivity type different from the first conductivity type).
  • the second region 13 is provided on the first region 10.
  • the second region 13 is provided with a plurality of through holes that expose the first region 10.
  • the second region 13 includes an exposed portion 13 a (first portion) and a buried gate portion 13 b (first portion). 2) and a connecting portion 13W (see FIGS. 3 and 4).
  • the exposed portion 13a partially forms each of the recessed surface BS and the side wall surface SL of the upper surface P2 of the epitaxial substrate SC.
  • the buried gate portion 13b is separated from the upper surface P2, in other words, buried in the epitaxial substrate SC with respect to the upper surface P2.
  • the connecting portion 13W connects between the exposed portion 13a and the buried gate portion 13b.
  • the impurity concentration of the second region 13 is, for example, 5 ⁇ 10 17 / cm 3 .
  • the upper surface P2 formed by the exposed portion 13a preferably includes either the ⁇ 0-33-8 ⁇ plane or the ⁇ 0-11-4 ⁇ plane in the hexagonal crystal structure, (0-33-8) More preferably, it includes one of a plane and a (0-11-4) plane.
  • the upper surface P2 formed by the exposed portion 13a includes the ⁇ 0-33-8 ⁇ surface
  • the upper surface P2 formed by the exposed portion 13a includes the fine ⁇ 0-33-8 ⁇ surface and other fine surfaces. It may be a composite surface. When viewed macroscopically, this composite surface is preferably a ⁇ 0-11-2 ⁇ plane, and more preferably a (0-11-2) plane.
  • the exposed portion 13a has a hexagonal outer edge, for example, a regular hexagonal outer edge.
  • the exposed portion 13a is surrounded by a plurality of embedded gate portions 13b extending in a hexagonal shape.
  • connecting portions 13W extending radially from the exposed portion 13a connect these structures to each other.
  • the third region 14 has n-type.
  • the third region 14 includes a contact portion 14M, a connection portion 14W, and filling portions 14Ja and 14Jb.
  • the contact portion 14M partially forms the sidewall surface SL of the upper surface P2 of the epitaxial substrate SC, and is in contact with the exposed portion 13a of the second region 13 on the sidewall surface SL of the upper surface P2.
  • the connecting portion 14W partially forms the upper surface P2, and forms the top surface PL of the upper surface P2.
  • the connecting portion 14W extends from the contact portion 14M to each of the plurality of through holes in the second region 13.
  • the filling portions 14 ⁇ / b> Ja and 14 ⁇ / b> Jb fill each of the plurality of through holes in the second region 13.
  • the filling portion 14Ja fills the through hole provided between the exposed portion 13a and the buried gate portion 13b, and the filling portion 14Jb fills the through hole provided between the buried gate portion 13b.
  • the impurity concentration of the third region 14 is, for example, 1 ⁇ 10 17 / cm 3 .
  • the fourth region 15 has an n-type.
  • the fourth region 15 is provided on the exposed portion 13a of the second region 13, and is separated from each of the first region 10 and the third region 14 by the exposed portion 13a of the second region 13. ing. Further, the fourth region 15 partially forms the upper surface P2, and more specifically, partially forms the recessed surface BS of the upper surface P2.
  • the gate insulating film 20 is provided on a portion between the contact portion 14M of the third region 14 and the fourth region 15 in the exposed portion 13a of the second region 13.
  • Gate insulating film 20 is made of, for example, silicon oxide.
  • the gate electrode 21 is provided on the gate insulating film 20.
  • the interlayer insulating film 30 covers the gate electrode 21 and has a contact hole CH on the recess surface BS of the upper surface P2 of the epitaxial substrate SC.
  • the contact hole CH exposes each of the exposed portion 13a of the second region 13 and the fourth region 15.
  • the source electrode 31 is an ohmic electrode in contact with each of the exposed portion 13a of the second region 13 and the fourth region 15 in the contact hole CH.
  • the source electrode 31 is electrically insulated from the gate electrode 21.
  • the source wiring 32 is in contact with the source electrode 31 and is insulated from the gate electrode 21 by the interlayer insulating film 30.
  • the drain electrode 41 is an ohmic electrode in contact with the back surface P ⁇ b> 1 formed by the single crystal substrate 11 in the first region 10.
  • the switching device 101 has a MOS part MS and a JFET part JT.
  • the MOS portion MS has a MOS structure that can control the carrier flow with the side wall surface SL formed by the exposed portion 13a as a channel surface by the potential of the gate electrode 21.
  • the JFET portion JT has a JFET structure in which the carrier flow using the filling portion 14Jb as a channel can be controlled by the potential of the buried gate portion 13b.
  • the filling portion 14Ja between the exposed portion 13a and the buried gate portion 13b can also function as a channel of the JFET portion JT.
  • These MOS section MS and JFET section JT have a structure equivalent to the cascode circuit shown in FIG. As a result, the switching device 101 can perform high-speed switching of a current flow as shown by an arrow in FIG.
  • drift layer 12 is formed on surface PS of n-type single crystal substrate 11 by epitaxial growth of n-type silicon carbide.
  • a first region 10 having an n-type and having a back surface P1 and a surface opposite to the back surface P1 is prepared.
  • a second region 13 is formed on the surface of first region 10 opposite to the back surface P1 by epitaxial growth of p-type silicon carbide.
  • the epitaxial growth of silicon carbide can be performed by, for example, chemical vapor deposition (CVD).
  • second region 13 is patterned to include exposed portion 13a, buried gate portion 13b, and connecting portion 13W (not shown in FIG. 8, see FIG. 4).
  • a second region 13 having a plurality of through holes that expose one region 10 is formed. This patterning can be performed by, for example, photolithography and reactive ion etching (RIE).
  • RIE reactive ion etching
  • third region 14 covering second region 13 is formed by epitaxial growth of n-type silicon carbide so as to fill each of the through holes. Thereby, epitaxial substrate SC having upper surface P2 is formed.
  • mask layer 90 is formed on third region 14 so as to cover the portion of upper surface P2 that becomes top surface PL (FIG. 1).
  • Mask layer 90 is made of, for example, silicon oxide. When silicon oxide is used, the etching selectivity with respect to the epitaxial substrate SC can be extremely increased.
  • second region 13 and third region 14 are partially etched. This etching is performed so that the exposed portion 13a of the second region 13 is exposed while the embedded gate portion 13b of the second region 13 is covered with the third region 14. Further, this etching is performed so that the surface formed by the second region 13 and the third region 14 has a reverse mesa shape including the side wall surface SL formed by the exposed portion 13a.
  • an upper surface P2 having a recessed surface BS, a side wall surface SL, and a top surface PL is formed.
  • This etching is performed by thermal etching in the present embodiment.
  • thermal etching is performed by exposing an object to be etched to an etching gas at a high temperature, and has substantially no physical etching action.
  • the sidewall surface SL including the ⁇ 0-33-8 ⁇ plane or the ⁇ 0-11-4 ⁇ plane can be self-formed.
  • the thermal etching process gas in this embodiment contains halogen atoms. More preferably, the halogen atom is a chlorine atom, and in this case, the process gas includes, for example, Cl 2 gas. Instead of or together with chlorine atoms, the process gas may contain fluorine atoms, in which case the process gas comprises, for example, carbon tetrafluoride or sulfur hexafluoride. Preferably, the process gas further includes a gas containing oxygen atoms in addition to the gas containing a halogen element. The gas containing oxygen atoms is, for example, O 2 gas.
  • the process gas may contain a carrier gas. As the carrier gas, for example, nitrogen (N 2 ) gas, argon gas, or helium gas can be used.
  • the heat treatment temperature of the thermal etching is preferably 700 ° C. or higher and 1200 ° C. or lower.
  • the lower limit of this temperature is more preferably 800 ° C, and still more preferably 900 ° C.
  • the upper limit of this temperature is more preferably 1100 ° C., still more preferably 1000 ° C.
  • the etching rate can be set to a sufficiently practical value.
  • the heat treatment temperature is set to 700 ° C. or higher and 1000 ° C. or lower, the etching rate of SiC is, for example, about 70 ⁇ m / hr.
  • the fourth region has an n-type on the exposed portion 13 a of the second region 13 and is separated from each of the first region 10 and the third region 14 by the exposed portion 13 a of the second region 13. 15 is formed.
  • the formation of the fourth region 15 can be performed by, for example, an ion implantation method.
  • gate insulating film 20 is formed on upper surface P2. This formation can be performed, for example, by forming a thermal oxide film by thermal oxidation of the upper surface P2. As a result, the gate insulating film 20 is formed on the exposed portion 13a that forms the side wall surface SL. Next, a gate electrode 21 is formed on the gate insulating film 20.
  • the gate electrode 21 is patterned. As a result, a part of the gate insulating film 20 is exposed.
  • interlayer insulating film 30 is formed on the exposed gate insulating film and gate electrode 21.
  • contact hole CH penetrating interlayer insulating film 30 and gate insulating film 20 is formed so that exposed portion 13a and fourth region 15 forming depression surface BS are exposed.
  • the source electrode is formed on the recessed surface BS of the upper surface P2 exposed by the contact hole CH. Thereby, the source electrode 31 that is electrically insulated from the gate electrode 21 and is in contact with each of the exposed portion 13a and the fourth region 15 is formed. A source wiring 32 is also formed.
  • the switching device 101 is obtained by forming the drain electrode 41 on the back surface P1 of the first region 10.
  • the switching device 101 can be configured as one chip by using one epitaxial substrate SC. Further, both low on-resistance characteristics and normally-off characteristics can be obtained.
  • the first region 10 includes a drift layer 12 having an impurity concentration smaller than that of the third region 14. Thereby, the breakdown voltage of the switching device 101 can be increased.
  • the first region 10 includes the single crystal substrate 11 that is in contact with the drain electrode 41 and has an impurity concentration larger than that of the third region 14. Thereby, the contact resistance between the first region 10 and the source electrode 31 can be reduced.
  • the upper surface P2 has an inverted mesa shape including the side wall surface SL formed by the exposed portion 13a of the second region 13. Thereby, the azimuth
  • the upper surface P2 formed by the exposed portion 13a preferably includes either the ⁇ 0-33-8 ⁇ plane or the ⁇ 0-11-4 ⁇ plane in the hexagonal crystal structure. Thereby, the carrier mobility along the upper surface P2 formed by the exposed portion 13a is increased. Therefore, the on-resistance of the switching device 101 can be reduced.
  • the etching process for forming the sidewall surface SL is performed by thermal etching. Thereby, the smooth surface which consists of the exposed part 13a of the 2nd area
  • n-type when used as the first conductivity type as in the present embodiment, carrier mobility can be increased because electrons are used as carriers.
  • the p-type may be used as the first conductivity type.
  • the “n-type” and “p-type” in the configuration described above may be used interchangeably.
  • thermal etching method is used in the present embodiment, other dry etching methods or wet etching methods may be used.
  • switching device 102 (silicon carbide semiconductor device) of the present embodiment has an epitaxial substrate SCv (silicon carbide substrate).
  • epitaxial substrate SCv silicon carbide substrate
  • connection portion 14W of third region 14 includes low resistance layer 16 having an impurity concentration larger than the impurity concentration of filling portions 14Ja and 14Jb.
  • the switching device 102 Next, a method for manufacturing the switching device 102 will be described. First, steps similar to those shown in FIGS. 7 to 9 in the manufacturing method described in the first embodiment are performed. Next, the low resistance layer 16 is formed as shown in FIG. Thereby, epitaxial substrate SCv is formed. Thereafter, the switching device (FIG. 18) is obtained by performing the same steps as those in FIG. 10 of the first embodiment and the subsequent steps.
  • the electrical resistance of the connecting portion 14W is reduced. Therefore, the on-resistance of the switching device 102 can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 第1、第3および第4の領域(10、14および15)は第1の導電型を有し、第2の領域(13)は第2の導電型を有する。第2の領域(13)には第1の領域(10)を露出する複数の貫通孔が設けられている。第3の領域(14)は、接触部(14M)と接続部(14W)と充填部(14Jb)とを含む。接触部(14M)は第2の領域(13)の第1の部分(13a)と接している。接続部(14W)は、接触部(14M)から第2の領域(13)の複数の貫通孔の各々へと延びている。充填部(14Jb)は第2の領域(13)の複数の貫通孔の各々を充填している。第4の領域(15)は、第2の領域(13)の第1の部分(13a)上に設けられている。

Description

炭化珪素半導体装置およびその製造方法
 この発明は炭化珪素半導体装置およびその製造方法に関し、特にゲート電極を有する炭化珪素半導体装置およびその製造方法に関する。
 Y. Tanaka et al., ”700-V 1.0-mΩ・cm2 Buried Gate SiC-SIT (SiC-BGSIT)”, IEEE Electron Device Letters, Vol. 27, No. 11 (2006), pp. 908-910(非特許文献1)によれば、静電誘導トランジスタ(Static Induction Transistor:SIT)、すなわち接合型電界効果トランジスタ(Junction Field Effect Transistor:JFET)が開示されている。このJFETはSiC(炭化珪素)を用いておりかつ縦型であり、本文献によれば、非常に低いオン抵抗が得られるとされている。またこの文献によれば設計の最適化によってノーマリオフ型SITを実現できる可能性があると言及されているものの、開示されているのはノーマリオン型のものである。電力用半導体においては一般に、たとえば安全性の観点により、ノーマリオフ型の動作が望まれる場合がある。
 F. Bjoerk et al., ”1200V SiC JFET in Cascode Light Configuration: Comparison versus Si and SiC Based Switches”, Materials Science Forum, Vols. 679-680 (2011), pp. 587-590(非特許文献2)によれば、SiMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いてSiCJFETをノーマリオフ型のように動作させることについて開示されている。具体的には、SiCJFETとSiMOSFETとがカスコード接続された構成が開示されている。
Y. Tanaka et al., "700-V 1.0-mΩ・cm2 Buried Gate SiC-SIT (SiC-BGSIT)", IEEE Electron Device Letters, Vol. 27, No. 11 (2006), pp. 908-910 F. Bjoerk et al., "1200V SiC JFET in Cascode Light Configuration: Comparison versus Si and SiC Based Switches", Materials Science Forum, Vols. 679-680 (2011), pp. 587-590
 非特許文献1の技術においては、ノーマリオフ型の動作が実現されていなかった。非特許文献2の技術は、JFETチップとMOSFETチップとを個別に形成した後に、これら複数の部品を互いに接続する作業を必要とした。
 この発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、ワンチップとして構成され、かつ低いオン抵抗特性とノーマリオフ特性とを共に有する炭化珪素半導体装置、およびその製造方法を提供することである。
 本発明の炭化珪素半導体装置は、第1の面および第1の面と反対の第2の面を有する炭化珪素基板を有する炭化珪素半導体装置であって、炭化珪素基板に含まれる第1~第4の領域と、ゲート絶縁膜と、ゲート電極と、第1および第2の電極とを含む。第1の領域は、第1の導電型を有し、第1の面をなしている。第2の領域は、第1の導電型と異なる第2の導電型を有し、第1の領域上に設けられている。第2の領域は、第2の面をなす第1の部分と第2の面から離れている第2の部分とを含む。第2の領域には、第1の領域を露出する複数の貫通孔が設けられている。第3の領域は、第1の導電型を有し、接触部と接続部と充填部とを含む。接触部は、第2の面において第2の領域の第1の部分と接している。接続部は、第2の面をなしており、接触部から第2の領域の複数の貫通孔の各々へと延びている。充填部は第2の領域の複数の貫通孔の各々を充填している。第4の領域は、第1の導電型を有し、第2の領域の第1の部分上に設けられており、第2の領域の第1の部分によって第1の領域および第3の領域の各々から隔てられており、第2の面をなしている。ゲート絶縁膜は、第2の領域の第1の部分のうち第3の領域の接触部と第4の領域との間の部分の上に設けられている。ゲート電極はゲート絶縁膜上に設けられている。第1の電極は、ゲート電極と電気的に絶縁されており、かつ第2の領域の第1の部分および第4の領域の各々に接している。第2の電極は、第1の領域がなす第1の面に接している。
 上記装置によれば、半導体装置を、一の炭化珪素基板を用いることでワンチップとして構成することができる。また、低いオン抵抗特性とノーマリオフ特性とが共に得られる。
 上記装置において好ましくは、第1の領域は、第3の領域の不純物濃度に比して小さい不純物濃度を有するドリフト層を含んでもよい。これにより耐圧を高めることができる。
 上記装置において好ましくは、第1の領域は、第2の電極と接しかつ第3の領域の不純物濃度に比して大きい不純物濃度を有するベース層を含んでもよい。これにより第1の領域と第1の電極とのコンタクト抵抗を小さくすることができる。
 上記装置において好ましくは、第2の面は、第2の領域の第1の部分がなす側壁面を含む逆メサ形状を有してもよい。これにより、側壁面の傾斜を選択することで、第2の領域の第1の部分がなす第2の面の方位を調整することができる。
 上記装置において好ましくは、第1の部分がなす第2の面は、六方晶系の結晶構造における{0-33-8}面および{0-11-4}面のいずれか一方を含んでもよい。これにより、第1の部分がなす第2の面に沿ったキャリア移動度が高められる。よって半導体装置のオン抵抗を小さくすることができる。
 上記装置において好ましくは、第3の領域の接続部は、第3の領域の充填部の不純物濃度に比して大きい不純物濃度を有する低抵抗層を含んでもよい。これにより接続部の電気抵抗が小さくなる。よって半導体装置のオン抵抗をより小さくすることができる。
 本発明の炭化珪素半導体装置の製造方法は次の工程を有する。第1の導電型を有し、第1の面と第1の面と反対の面とを有する第1の領域が準備される。第1の領域の第1の面と反対の面上に、第1の導電型と異なる第2の導電型を有する第2の領域が形成される。第2の領域は、第1の部分および第2の部分を含み、第2の領域には第1の領域を露出する複数の貫通孔が設けられている。第1の導電型を有し、複数の貫通孔の各々を充填するように第2の領域を覆う第3の領域が形成される。第2の領域の第2の部分が第3の領域によって覆われた状態が保たれつつ第2の領域の第1の部分が露出されるように、かつ第2の領域および第3の領域がなす表面が、第2の領域の第1の部分がなす側壁面を含む逆メサ形状をなすように、第2の領域および第3の領域が部分的にエッチングされる。エッチングする工程の後に、第2の領域の第1の部分上に、第1の導電型を有し、第2の領域の第1の部分によって第1の領域および第3の領域の各々から隔てられた第4の領域が形成される。逆メサ形状の側壁面をなす第2の領域の第1の部分の上にゲート絶縁膜が形成される。ゲート絶縁膜上にゲート電極が形成される。ゲート電極と電気的に絶縁され、かつ第2の領域の第1の部分および第4の領域の各々に接する第1の電極が形成される。第1の領域の第1の面上に第2の電極が形成される。
 上記製造方法によれば、半導体装置を、一の炭化珪素基板を用いることでワンチップとして構成することができる。また、低いオン抵抗特性とノーマリオフ特性とが共に得られる。
 上記製造方法において好ましくは、エッチングする工程は熱エッチングによって行われてもよい。これにより、第2の領域の第1の部分からなる平滑な面を露出させることができる。よってこの面上に形成されるゲート絶縁膜の信頼性が高められる。よって、炭化珪素半導体装置のうち絶縁ゲートによってスイッチングされる部分の信頼性を高めることができる。
 上述したように本発明によれば、半導体装置を、一の炭化珪素基板を用いることでワンチップとして構成することができる。また、低いオン抵抗特性とノーマリオフ特性とが共に得られる。
本発明の実施の形態1における炭化珪素半導体装置の構成を概略的に示す断面図である。 図1の炭化珪素半導体装置が有する炭化珪素基板の構成を概略的に示す平面図である。 図1の線III-IIIに沿う概略断面図である。 図3の一部拡大図である。 図1の炭化珪素半導体装置のオン状態における電流経路を示す図である。 図1の炭化珪素半導体装置の等価回路を概略的に示す図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第1工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第2工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第3工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第4工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第5工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第6工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第7工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第8工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第9工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第10工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第11工程を概略的に示す断面図である。 本発明の実施の形態2における炭化珪素半導体装置の構成を概略的に示す断面図である。 本発明の実施の形態2における炭化珪素半導体装置の製造方法の一工程を概略的に示す断面図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。また、本明細書中の結晶学的記載においては、個別面を()、集合面を{}でそれぞれ示している。また、面の指数が負であることを示す際に、数字の上に”-”(バー)を付す代わりに、数字の前に負の符号を付けている。また角度の記載には、全方位角を360度とする系を用いている。
 (実施の形態1)
 図1に示すように、本実施の形態のスイッチング装置101(炭化珪素半導体装置)は、エピタキシャル基板SC(炭化珪素基板)と、ゲート絶縁膜20と、ゲート電極21と、層間絶縁膜30と、ソース電極31(第1の電極)と、ソース配線32と、ドレイン電極41(第2の電極)とを含む。
 エピタキシャル基板SCは炭化珪素からなる。エピタキシャル基板SCの結晶構造は、本実施の形態においては六方晶系であり、好ましくはポリタイプ4Hを有する。またエピタキシャル基板SCは、第1の領域10、第2の領域13、第3の領域14および第4の領域15を含む。またエピタキシャル基板SCは、裏面P1(第1の面)および上面P2(第1の面と反対の第2の面)を有する。裏面P1は平坦な形状を有する。上面P2は、窪み面BSと側壁面SLと頂面PLとを有する逆メサ形状(図2)をなしている。窪み面BSおよび頂面PLは裏面P1に平行であり、側壁面SLは裏面P1に対して傾いている。
 図2に示すように、本実施の形態の逆メサ形状の窪み面BSは、六角形状の外縁を有し、たとえば正六角形状の外縁を有する。またこの六角形状の外縁が有する6つの辺のそれぞれにつながるように、6つの側壁面SLが設けられている。このような逆メサ形状が用いられることにより、6回対称性を有する六方晶系の結晶構造を有する炭化珪素が用いられた場合において、窪み面BSを取り囲む側壁面SL全体の面方位を結晶学的に互いに等価なものとすることができる。
 第1の領域10はn型(第1の導電型)を有する。また第1の領域10はエピタキシャル基板SCの裏面P1をなしている。また第1の領域10は、裏面P1をなしている単結晶基板11(ベース層)と、その上に設けられたドリフト層12とを有する。単結晶基板11は、第3の領域14の不純物濃度に比して大きい不純物濃度を有する。単結晶基板11の、裏面P1と反対の面PSは、面方位{000-1}を有することが好ましく、面方位(000-1)を有することがより好ましい。ドリフト層12は、第3の領域14の不純物濃度に比して小さい不純物濃度を有する。単結晶基板11の不純物濃度は、たとえば5×1018/cm3である。ドリフト層12の不純物濃度は、たとえば1×1016/cm3である。
 第2の領域13はp型(第1の導電型と異なる第2の導電型)を有する。また第2の領域13は第1の領域10上に設けられている。また第2の領域13には第1の領域10を露出する複数の貫通孔が設けられており、第2の領域13は、露出部13a(第1の部分)と埋込ゲート部13b(第2の部分)と連結部13Wとを含む(図3および図4参照)。露出部13aは、エピタキシャル基板SCの上面P2の窪み面BSおよび側壁面SLの各々を部分的になしている。埋込ゲート部13bは、上面P2から離れており、言い換えれば、上面P2に対してエピタキシャル基板SCの内部に埋め込まれている。連結部13Wは露出部13aおよび埋込ゲート部13bの間をつないでいる。第2の領域13の不純物濃度は、たとえば5×1017/cm3である。
 露出部13aがなす上面P2は、六方晶系の結晶構造における{0-33-8}面および{0-11-4}面のいずれか一方を含むことが好ましく、(0-33-8)面および(0-11-4)面のいずれか一方を含むことがより好ましい。ここで、露出部13aがなす上面P2が{0-33-8}面を含む、という場合、露出部13aがなす上面P2が、微細な{0-33-8}面と微細な他の面とによる複合面であってもよい。この複合面は巨視的に見た場合、{0-11-2}面であることが好ましく、(0-11-2)面であることがより好ましい。
 好ましくは、平面視において、図4に示すように、露出部13aは、六角形状の外縁を有し、たとえば正六角形状の外縁を有する。また露出部13aを、六角形状に延びる埋込ゲート部13bが多重に取り囲んでいる。また露出部13aから放射状に延びる連結部13Wが、これらの構造を互いに連結している。
 第3の領域14はn型を有する。また第3の領域14は接触部14Mと接続部14Wと充填部14Ja、14Jbとを含む。接触部14Mは、エピタキシャル基板SCの上面P2の側壁面SLを部分的になしており、上面P2の側壁面SLにおいて第2の領域13の露出部13aと接している。接続部14Wは、上面P2を部分的になしており、また上面P2の頂面PLをなしている。また接続部14Wは接触部14Mから第2の領域13の複数の貫通孔の各々へと延びている。充填部14Jaおよび14Jbは、第2の領域13の複数の貫通孔の各々を充填している。充填部14Jaは露出部13aと埋込ゲート部13bとの間に設けられた貫通孔を充填しており、充填部14Jbは、埋込ゲート部13b間に設けられた貫通孔を充填している。第3の領域14の不純物濃度は、たとえば1×1017/cm3である。
 第4の領域15はn型を有する。また第4の領域15は、第2の領域13の露出部13a上に設けられており、第2の領域13の露出部13aによって第1の領域10および第3の領域14の各々から隔てられている。また第4の領域15は、上面P2を部分的になしており、より具体的には上面P2の窪み面BSを部分的になしている。
 ゲート絶縁膜20は、第2の領域13の露出部13aのうち第3の領域14の接触部14Mと第4の領域15との間の部分の上に設けられている。ゲート絶縁膜20は、たとえば酸化珪素からなる。ゲート電極21はゲート絶縁膜20上に設けられている。層間絶縁膜30はゲート電極21を覆っており、またエピタキシャル基板SCの上面P2の窪み面BS上にコンタクトホールCHを有する。コンタクトホールCHは、第2の領域13の露出部13aと第4の領域15との各々を露出している。ソース電極31は、コンタクトホールCHにおいて第2の領域13の露出部13aおよび第4の領域15の各々に接しているオーミック電極である。ソース電極31はゲート電極21と電気的に絶縁されている。ソース配線32は、ソース電極31に接しており、またゲート電極21とは層間絶縁膜30によって絶縁されている。ドレイン電極41は、第1の領域10の単結晶基板11がなしている裏面P1に接しているオーミック電極である。
 次にスイッチング装置101の動作について説明する。
 図5に示すように、スイッチング装置101はMOS部MSとJFET部JTとを有する。MOS部MSは、露出部13aがなす側壁面SLをチャネル面とするキャリアの流れをゲート電極21の電位によって制御可能なMOS構造である。JFET部JTは、充填部14Jbをチャネルとするキャリアの流れを埋込ゲート部13bの電位によって制御可能なJFET構造である。本実施の形態においては露出部13aと埋込ゲート部13bとの間の充填部14JaもJFET部JTのチャネルとして機能し得る。これらMOS部MSおよびJFET部JTは、図6に示すカスコード回路と等価な構造をなしている。これによりスイッチング装置101は、図5中の矢印に示すような電流の流れをゲート電極21の電位によって高速スイッチング可能であり、かつ低いオン抵抗を有する。
 次にスイッチング装置101の製造方法について説明する。
 図7を参照して、n型の炭化珪素のエピタキシャル成長によって、n型の単結晶基板11の面PS上にドリフト層12が形成される。これにより、n型を有し、裏面P1と裏面P1と反対の面とを有する第1の領域10が準備される。次に第1の領域10の裏面P1と反対の面上に、p型の炭化珪素のエピタキシャル成長によって第2の領域13が形成される。炭化珪素のエピタキシャル成長は、たとえば化学気相成長(Chemical Vapor Deposition:CVD)によって行い得る。
 図8を参照して、第2の領域13がパターニングされることによって、露出部13a、埋込ゲート部13b、および連結部13W(図8において図示せず。図4参照。)を含み、第1の領域10を露出する複数の貫通孔が設けられた第2の領域13が形成される。このパターニングは、たとえばフォトリソグラフィおよび反応性イオンエッチング(Reactive Ion Etching:RIE)により行い得る。
 図9を参照して、n型の炭化珪素のエピタキシャル成長によって、上記貫通孔の各々を充填するように、第2の領域13を覆う第3の領域14が形成される。これにより上面P2を有するエピタキシャル基板SCが形成される。
 図10を参照して、上面P2のうち頂面PL(図1)となる部分を覆うように、第3の領域14上にマスク層90が形成される。マスク層90は、たとえば酸化珪素からなる。酸化珪素が用いられると、エピタキシャル基板SCに対するエッチング選択比を極めて大きくすることができる。
 図11を参照して、第2の領域13および第3の領域14が部分的にエッチングされる。このエッチングは、第2の領域13の埋込ゲート部13bが第3の領域14によって覆われた状態が保たれつつ第2の領域13の露出部13aが露出されるように行われる。またこのエッチングは、第2の領域13および第3の領域14がなす表面が、露出部13aがなす側壁面SLを含む逆メサ形状をなすように行われる。このエッチングにより、窪み面BSと側壁面SLと頂面PLとを有する上面P2が形成される。
 このエッチングは本実施の形態においては熱エッチングによって行われる。ここで熱エッチングとは、エッチングされる対象を高温下でエッチングガスにさらすことによって行われるものであり、物理的エッチング作用を実質的に有しないものである。熱エッチングを用いることによって、{0-33-8}面または{0-11-4}面を含む側壁面SLを自己形成することができる。
 本実施の形態における熱エッチングのプロセスガスはハロゲン原子を含む。より好ましくはハロゲン原子は塩素原子であり、この場合、プロセスガスは、たとえばClガスを含む。塩素原子に代わってまたは塩素原子とともに、プロセスガスはフッ素原子を含んでもよく、この場合プロセスガスは、たとえば四フッ化炭素または六フッ化硫黄を含む。好ましくは、プロセスガスは、ハロゲン元素を含有するガスに加えてさらに、酸素原子を含有するガスを含む。酸素原子を含有するガスは、たとえばO2ガスである。なお、プロセスガスはキャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、またはヘリウムガスを用いることができる。
 熱エッチングの熱処理温度は、好ましくは700℃以上1200℃以下である。この温度の下限は、より好ましくは800℃、さらに好ましくは900℃である。またこの温度の上限は、より好ましくは1100℃、さらに好ましくは1000℃である。この場合、エッチング速度を十分実用的な値とすることができる。熱処理温度を700℃以上1000℃以下とした場合、SiCのエッチング速度はたとえば70μm/hr程度になる。
 さらに図12を参照して、上記のマスク層90が除去される。また第2の領域13の露出部13a上に、n型を有し、第2の領域13の露出部13aによって第1の領域10および第3の領域14の各々から隔てられた第4の領域15が形成される。第4の領域15の形成は、たとえばイオン注入法によって行い得る。
 図13を参照して、上面P2上にゲート絶縁膜20が形成される。この形成は、たとえば上面P2の熱酸化による熱酸化膜の形成によって行い得る。この結果、側壁面SLをなす露出部13aの上にゲート絶縁膜20が形成される。次にゲート絶縁膜20上にゲート電極21が形成される。
 図14を参照して、ゲート電極21がパターニングされる。これによりゲート絶縁膜20の一部が露出される。
 図15を参照して、露出されたゲート絶縁膜およびゲート電極21の上に層間絶縁膜30が形成される。
 図16を参照して、窪み面BSをなす露出部13aおよび第4の領域15の各々が露出されるように、層間絶縁膜30およびゲート絶縁膜20を貫通するコンタクトホールCHが形成される。
 図17を参照して、コンタクトホールCHによって露出された上面P2の窪み面BS上にソース電極が形成される。これにより、ゲート電極21と電気的に絶縁され、かつ露出部13aおよび第4の領域15の各々に接するソース電極31が形成される。またソース配線32が形成される。
 再び図1を参照して、第1の領域10の裏面P1上にドレイン電極41が形成されることで、スイッチング装置101が得られる。
 本実施の形態によれば、スイッチング装置101を、一のエピタキシャル基板SCを用いることでワンチップとして構成することができる。また、低いオン抵抗特性とノーマリオフ特性とが共に得られる。
 また第1の領域10は、第3の領域14の不純物濃度に比して小さい不純物濃度を有するドリフト層12を含む。これによりスイッチング装置101の耐圧を高めることができる。
 また第1の領域10は、ドレイン電極41と接しかつ第3の領域14の不純物濃度に比して大きい不純物濃度を有する単結晶基板11を含む。これにより第1の領域10とソース電極31とのコンタクト抵抗を小さくすることができる。
 また上面P2は、第2の領域13の露出部13aがなす側壁面SLを含む逆メサ形状を有する。これにより、側壁面SLの傾斜を選択することで、第2の領域13の露出部13aがなす上面P2の方位を調整することができる。
 また露出部13aがなす上面P2は、六方晶系の結晶構造における{0-33-8}面および{0-11-4}面のいずれか一方を含むことが好ましい。これにより、露出部13aがなす上面P2に沿ったキャリア移動度が高められる。よってスイッチング装置101のオン抵抗を小さくすることができる。
 また側壁面SLを形成するためのエッチングする工程は熱エッチングによって行われる。これにより、第2の領域13の露出部13aからなる平滑な面を露出させることができる。よってこの面上に形成されるゲート絶縁膜20の信頼性が高められる。よって、スイッチング装置101のうち絶縁ゲートによってスイッチングされる部分の信頼性を高めることができる。
 また本実施の形態のように第1の導電型としてn型が用いられる場合、キャリアとして電子が用いられるので、キャリア移動度を高くすることができる。ただし第1の導電型としてp型が用いられてもよい。言い換えれば、上述した構成における「n型」と「p型」とが入れ替えられたものが用いられてもよい。
 なお本実施の形態において熱エッチング法が用いられるが、これ以外のドライエッチング法またはウエットエッチング法が用いられてもよい。
 (実施の形態2)
 図18を参照して、本実施の形態のスイッチング装置102(炭化珪素半導体装置)はエピタキシャル基板SCv(炭化珪素基板)を有する。エピタキシャル基板SCvにおいて、第3の領域14の接続部14Wは、充填部14Ja、14Jbの不純物濃度に比して大きい不純物濃度を有する低抵抗層16を含む。
 次にスイッチング装置102の製造方法について説明する。まず実施の形態1で説明した製造方法における図7~図9に示す工程までと同様の工程が行われる。次に、図19に示すように低抵抗層16が形成される。これによりエピタキシャル基板SCvが形成される。この後、実施の形態1の図10の工程およびそれ以降の工程と同様の工程が行われることにより、スイッチング装置(図18)が得られる。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、接続部14Wの電気抵抗が小さくなる。よってスイッチング装置102のオン抵抗をより小さくすることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 第1の領域、11 単結晶基板(ベース層)、12 ドリフト層、13 第2の領域、13a 露出部、13b 埋込ゲート部、13W 連結部、14 第3の領域、14Ja,14Jb 充填部、14M 接触部、14W 接続部、15 第4の領域、16 低抵抗層、20 ゲート絶縁膜、21 ゲート電極、30 層間絶縁膜、31 ソース電極、32 ソース配線、41 ドレイン電極、90 マスク層、101,102 スイッチング装置(炭化珪素半導体装置)、BS 窪み面、CH コンタクトホール、JT JFET部、MS MOS部、P1 裏面(第1の面)、P2 上面(第2の面)、PL 頂面、SC,SCv エピタキシャル基板(炭化珪素基板)、SL 側壁面。

Claims (8)

  1.  第1の面(P1)および前記第1の面と反対の第2の面(P2)を有する炭化珪素基板(SC)を有する炭化珪素半導体装置であって、
     第1の導電型を有し、前記炭化珪素基板に含まれ、前記第1の面をなす第1の領域(10)と、
     前記第1の導電型と異なる第2の導電型を有し、前記炭化珪素基板に含まれ、前記第1の領域上に設けられた第2の領域(13)とを備え、前記第2の領域は、前記第2の面をなす第1の部分(13a)と前記第2の面から離れている第2の部分(13b)とを含み、前記第2の領域には前記第1の領域を露出する複数の貫通孔が設けられており、さらに
     前記第1の導電型を有し、前記炭化珪素基板に含まれ、前記第2の面において前記第2の領域の前記第1の部分と接する接触部(14M)と、前記第2の面をなし前記接触部から前記第2の領域の前記複数の貫通孔の各々へと延びる接続部(14W)と、前記第2の領域の前記複数の貫通孔の各々を充填する充填部(14Ja、14Jb)とを含む第3の領域(14)と、
     前記第1の導電型を有し、前記炭化珪素基板に含まれ、前記第2の領域の前記第1の部分上に設けられ、前記第2の領域の前記第1の部分によって前記第1の領域および前記第3の領域の各々から隔てられ、前記第2の面をなす第4の領域(15)と、
     前記第2の領域の前記第1の部分のうち前記第3の領域の前記接触部と前記第4の領域との間の部分の上に設けられたゲート絶縁膜(20)と、
     前記ゲート絶縁膜上に設けられたゲート電極(21)と、
     前記ゲート電極と電気的に絶縁され、かつ前記第2の領域の前記第1の部分および前記第4の領域の各々に接する第1の電極(31)と、
     前記第1の領域がなす前記第1の面に接する第2の電極(41)とを備える、炭化珪素半導体装置。
  2.  前記第1の領域は、前記第3の領域の不純物濃度に比して小さい不純物濃度を有するドリフト層(12)を含む、請求項1に記載の炭化珪素半導体装置。
  3.  前記第1の領域は、前記第2の電極と接しかつ前記第3の領域の不純物濃度に比して大きい不純物濃度を有するベース層(11)を含む、請求項1または2に記載の炭化珪素半導体装置。
  4.  前記第2の面は、前記第2の領域の前記第1の部分がなす側壁面を含む逆メサ形状を有する、請求項1~3のいずれか1項に記載の炭化珪素半導体装置。
  5.  前記第1の部分がなす前記第2の面は、六方晶系の結晶構造における{0-33-8}面および{0-11-4}面のいずれか一方を含む、請求項1~4のいずれか1項に記載の炭化珪素半導体装置。
  6.  前記第3の領域の前記接続部は、前記第3の領域の前記充填部の不純物濃度に比して大きい不純物濃度を有する低抵抗層(16)を含む、請求項1~5のいずれか1項に記載の炭化珪素半導体装置。
  7.  第1の導電型を有し、第1の面(P1)と前記第1の面と反対の面とを有する第1の領域(10)を準備する工程と、
     前記第1の領域の前記第1の面と反対の面上に、前記第1の導電型と異なる第2の導電型を有する第2の領域(13)を形成する工程とを備え、前記第2の領域は、第1の部分(13a)および第2の部分(13b)を含み、前記第2の領域には前記第1の領域を露出する複数の貫通孔が設けられており、さらに
     前記第1の導電型を有し、前記複数の貫通孔の各々を充填するように前記第2の領域を覆う第3の領域(14)を形成する工程と、
     前記第2の領域の前記第2の部分が前記第3の領域によって覆われた状態が保たれつつ前記第2の領域の前記第1の部分が露出されるように、かつ前記第2の領域および前記第3の領域がなす表面が、前記第2の領域の前記第1の部分がなす側壁面を含む逆メサ形状をなすように、前記第2の領域および前記第3の領域を部分的にエッチングする工程と、
     前記エッチングする工程の後に、前記第2の領域の前記第1の部分上に、前記第1の導電型を有し、前記第2の領域の前記第1の部分によって前記第1の領域および前記第3の領域の各々から隔てられた第4の領域(15)を形成する工程と、
     前記逆メサ形状の前記側壁面をなす前記第2の領域の前記第1の部分の上にゲート絶縁膜(20)を形成する工程と、
     前記ゲート絶縁膜上にゲート電極(21)を形成する工程と、
     前記ゲート電極と電気的に絶縁され、かつ前記第2の領域の前記第1の部分および前記第4の領域の各々に接する第1の電極(31)を形成する工程と、
     前記第1の領域の前記第1の面上に第2の電極(41)を形成する工程とを備える、炭化珪素半導体装置の製造方法。
  8.  前記エッチングする工程は熱エッチングによって行われる、請求項7に記載の炭化珪素半導体装置の製造方法。
PCT/JP2012/076299 2011-12-02 2012-10-11 炭化珪素半導体装置およびその製造方法 WO2013080679A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280053367.9A CN103907193A (zh) 2011-12-02 2012-10-11 碳化硅半导体器件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-264332 2011-12-02
JP2011264332A JP5757223B2 (ja) 2011-12-02 2011-12-02 炭化珪素半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013080679A1 true WO2013080679A1 (ja) 2013-06-06

Family

ID=48523367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076299 WO2013080679A1 (ja) 2011-12-02 2012-10-11 炭化珪素半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US20130140583A1 (ja)
JP (1) JP5757223B2 (ja)
CN (1) CN103907193A (ja)
WO (1) WO2013080679A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096932B2 (ja) * 2013-11-26 2017-03-15 シャープ株式会社 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018096722A1 (ja) * 2016-11-25 2019-10-17 住友電気工業株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632368A (ja) * 1986-06-23 1988-01-07 Nippon Telegr & Teleph Corp <Ntt> 半導体装置およびその製造方法
JP2008172007A (ja) * 2007-01-11 2008-07-24 Fuji Electric Device Technology Co Ltd 絶縁ゲート型炭化珪素半導体装置とその製造方法。
JP2008186925A (ja) * 2007-01-29 2008-08-14 Fuji Electric Device Technology Co Ltd 絶縁ゲート炭化珪素半導体装置とその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029595B2 (ja) * 2001-10-15 2008-01-09 株式会社デンソー SiC半導体装置の製造方法
US20060214268A1 (en) * 2005-03-25 2006-09-28 Shindengen Electric Manufacturing Co., Ltd. SiC semiconductor device
JP5283147B2 (ja) * 2006-12-08 2013-09-04 国立大学法人東北大学 半導体装置および半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632368A (ja) * 1986-06-23 1988-01-07 Nippon Telegr & Teleph Corp <Ntt> 半導体装置およびその製造方法
JP2008172007A (ja) * 2007-01-11 2008-07-24 Fuji Electric Device Technology Co Ltd 絶縁ゲート型炭化珪素半導体装置とその製造方法。
JP2008186925A (ja) * 2007-01-29 2008-08-14 Fuji Electric Device Technology Co Ltd 絶縁ゲート炭化珪素半導体装置とその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F. BJOERK ET AL.: "1200V SiC JFET in Cascode Light Configuration: Comparison versus Si and SiC Based Switches", MATERIALS SCIENCE FORUM, vol. 679-680, 2011, pages 587 - 590
F. BJOERK: "1200V SiC JFET in Cascode Light Configuration: Comparison versus Si and SiC Based Switches", MATERIALS SCIENCE FORUM, vol. 679-680, 2011, pages 587 - 590
Y. TANAKA ET AL.: "700-V 1.0-m??cm2 Buried Gate SiC-SIT (SiC-BGSIT", IEEE ELECTRON DEVICE LETTERS, vol. 27, no. 11, 2006, pages 908 - 910, XP011142440, DOI: doi:10.1109/LED.2006.884724
Y. TANAKA ET AL.: "700-V l.0-m?· cm2 Buried Gate SiC-SIT (SiC-BGSIT", IEEE ELECTRON DEVICE LETTERS, vol. 27, no. 11, 2006, pages 908 - 910, XP011142440, DOI: doi:10.1109/LED.2006.884724

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096932B2 (ja) * 2013-11-26 2017-03-15 シャープ株式会社 半導体装置
JPWO2015079875A1 (ja) * 2013-11-26 2017-03-16 シャープ株式会社 半導体装置

Also Published As

Publication number Publication date
JP5757223B2 (ja) 2015-07-29
JP2013118245A (ja) 2013-06-13
US20130140583A1 (en) 2013-06-06
CN103907193A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP4777630B2 (ja) 半導体装置
US9087894B2 (en) Semiconductor device and method of manufacturing the device
JP4777676B2 (ja) 接合型半導体装置および接合型半導体装置の製造方法
JP5994604B2 (ja) 炭化珪素半導体装置およびその製造方法
US9362121B2 (en) Method of manufacturing a silicon carbide semiconductor device
JP4996828B2 (ja) 接合型半導体装置の製造方法
JP2006093382A (ja) 半導体装置
JP6135364B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2017112161A (ja) 半導体装置
JP6345378B1 (ja) 半導体装置
JP2017092355A (ja) 半導体装置および半導体装置の製造方法
JP5971218B2 (ja) 半導体装置
US9324860B2 (en) Semiconductor device
JP5880311B2 (ja) 炭化珪素半導体装置
JP2015162579A (ja) 半導体装置
JP5757223B2 (ja) 炭化珪素半導体装置およびその製造方法
JP3759145B2 (ja) 炭化珪素半導体装置およびその製造方法
KR101965550B1 (ko) 반도체 장치
US9698220B2 (en) Semiconductor device
JP2014011211A (ja) 炭化珪素半導体装置
JP2017022218A (ja) 炭化珪素半導体装置の製造方法
JP2013065871A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012854235

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE