WO2013080463A1 - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
WO2013080463A1
WO2013080463A1 PCT/JP2012/007266 JP2012007266W WO2013080463A1 WO 2013080463 A1 WO2013080463 A1 WO 2013080463A1 JP 2012007266 W JP2012007266 W JP 2012007266W WO 2013080463 A1 WO2013080463 A1 WO 2013080463A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
voltage
temporary
control unit
cell system
Prior art date
Application number
PCT/JP2012/007266
Other languages
English (en)
French (fr)
Inventor
慎司 城森
真明 松末
晃一郎 池田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12853089.6A priority Critical patent/EP2787566A4/en
Priority to CN201280058319.9A priority patent/CN103959528A/zh
Priority to US14/360,368 priority patent/US20140335433A1/en
Publication of WO2013080463A1 publication Critical patent/WO2013080463A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • This invention relates to a fuel cell.
  • a polymer electrolyte fuel cell (hereinafter simply referred to as a “fuel cell”) includes a membrane electrode assembly in which electrodes are arranged on both sides of an electrolyte membrane exhibiting good proton conductivity in a wet state as a power generator (the following patent) Literature 1 etc.).
  • a fuel cell mounted on a fuel cell vehicle has been operated for a long period of time, such as when driving is continued in an environment where the outside air temperature is extremely high (for example, around 40 ° C.), or during climbing or acceleration. When the operation is continued, the operating temperature may be extremely high.
  • the fuel cell is in a high temperature state, the proton conductivity in the electrolyte membrane is lowered, the power generation performance is lowered, and it becomes difficult to output desired power. There was a possibility.
  • Such a problem is not limited to fuel cell vehicles, but is a problem common to fuel cell systems including fuel cells.
  • An object of the present invention is to provide a technique for improving the controllability of a fuel cell.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms or application examples.
  • a fuel cell system comprising: a fuel cell; and a control unit that controls a voltage of the fuel cell, wherein the control unit is based on a target voltage that is a target value of a voltage for a predetermined current of the fuel cell.
  • a processing condition for changing the power generation characteristic of the fuel cell expressed as a relationship between current and voltage is set, and the control unit temporarily sets the voltage of the fuel cell based on the power generation characteristic of the fuel cell.
  • a fuel cell system that performs a temporary voltage reduction process that causes a temporary increase in the current of the fuel cell by changing the power generation and changes the power generation characteristics of the fuel cell according to the processing condition.
  • the processing conditions include a minimum voltage in the temporary voltage reduction process, a period in which the minimum voltage is held in the temporary voltage reduction process, and a temporary voltage reduction process.
  • a fuel cell system wherein the fuel cell system is at least one of a rate of increase in voltage when the voltage is restored.
  • the minimum voltage in the temporary voltage processing, the period during which the minimum voltage is held, and the voltage at which the voltage is restored are used as the processing conditions for the temporary voltage reduction processing according to the target voltage increase amount.
  • Ascending speed current decreasing speed
  • the operation state of the fuel cell immediately before executing the temporary voltage reduction process is an accumulated time of a period in which the fuel cell is in a high temperature state higher than a predetermined temperature.
  • a fuel cell system which is at least one of a catalyst utilization factor indicating a state of a catalyst supported on the electrode of the fuel cell.
  • the processing conditions for the temporary voltage reduction process should be set appropriately according to the target voltage increase amount, the accumulated time during the high temperature period, and / or the catalyst utilization rate of the fuel cell. Can do.
  • [Application Example 6] 6 The fuel cell system according to any one of application examples 2 to 5, further comprising a voltage measuring unit that measures a voltage of the fuel cell, wherein the control unit is configured to perform the temporary voltage reduction process.
  • a fuel cell system that performs the correction of the relationship so that a difference between a measured value of a battery voltage and the target voltage is reduced. With this fuel cell system, it is possible to set more appropriate processing conditions for obtaining a desired voltage increase in the temporary voltage reduction processing.
  • [Application Example 7] 7 The fuel cell system according to any one of application examples 1 to 6, wherein charge and discharge are further controlled by the control unit, and the secondary battery assists output power of the fuel cell in the temporary voltage reduction process.
  • the control unit presets a lower limit value of the charging state of the secondary battery, which is a threshold value for limiting discharge of the secondary battery, so that the charging state of the secondary battery does not become smaller than the lower limit value.
  • the state of charge of the secondary battery is managed, and the control unit limits the discharge of the secondary battery by reducing the lower limit value when the temporary voltage reduction process is executed.
  • a fuel cell system that relaxes the conditions. With this fuel cell system, it is possible to ensure power compensation by the secondary battery during the execution of the temporary voltage reduction process.
  • a control method for a fuel cell system comprising: (A) The computer sets processing conditions for changing the power generation characteristics of the fuel cell expressed as a relationship between the current and the voltage based on a target voltage that is a target value of the voltage with respect to a predetermined current of the fuel cell. And a process of (B) The computer temporarily reduces the voltage of the fuel cell based on the power generation characteristics of the fuel cell, thereby causing a temporary increase in the current of the fuel cell, thereby generating the power generation characteristics of the fuel cell. And a step of executing a temporary voltage lowering process for changing the value according to a processing condition set based on the target voltage.
  • the control method for example, even if the power generation performance of the fuel cell is degraded in a high temperature state, the power generation characteristics of the fuel cell can be obtained by executing the temporary voltage reduction process under appropriate processing conditions. And the voltage of the fuel cell can be raised to the target voltage. Therefore, the controllability of the voltage control of the fuel cell is improved.
  • the present invention can be realized in various forms, for example, in the form of a fuel cell system, a vehicle equipped with the fuel cell system, and the like.
  • the present invention can also be realized in the form of a control method for a fuel cell system, a control device and program for executing the control method, a recording medium on which the program is recorded, and the like.
  • Explanatory drawing which shows the control procedure of the system control by the control part of a fuel cell system.
  • operation Explanatory drawing for demonstrating the fall of the power generation performance of a fuel cell.
  • FIG. 4 is an explanatory diagram showing a relationship between a voltage increase rate and a voltage increase amount when the voltage is recovered after temporarily decreasing the voltage in the fuel cell.
  • Explanatory drawing which shows an example of the map used in order to acquire the rate of voltage rise based on the amount of voltage rise.
  • Explanatory drawing which shows the control procedure of the system control in the fuel cell system of 3rd Example.
  • Explanatory drawing which shows the control procedure of the electric power generation characteristic recovery driving
  • Explanatory drawing which shows the relationship between the increase amount of the voltage by a temporary voltage reduction process, and high temperature continuation time.
  • the schematic diagram which shows an example of the map used in order to determine the process conditions of a temporary voltage reduction process.
  • Explanatory drawing which shows the process sequence of the electric power generation characteristic recovery driving
  • Explanatory drawing which shows an example of the map showing the relationship between a cathode potential and a catalyst utilization factor.
  • Explanatory drawing which shows the control procedure of the electric power generation characteristic recovery driving
  • Explanatory drawing which shows the process sequence of the preparation process of a secondary battery.
  • FIG. 1 is a schematic diagram showing the configuration of a fuel cell system as an embodiment of the present invention.
  • the fuel cell system 100 is mounted on a fuel cell vehicle or the like, and outputs electric power used as a driving force in response to a request from a driver.
  • the fuel cell system 100 includes a fuel cell 10, a control unit 20, a cathode gas supply unit 30, a cathode gas discharge unit 40, an anode gas supply unit 50, an anode gas circulation discharge unit 60, and a refrigerant supply unit 70. Is provided.
  • the fuel cell 10 is a polymer electrolyte fuel cell that generates power by receiving supply of hydrogen (anode gas) and air (cathode gas) as reaction gases.
  • the fuel cell 10 has a stack structure in which a plurality of power generators 11 called single cells are stacked.
  • Each power generation body 11 has a membrane electrode assembly (not shown) that is a power generation body in which electrodes are arranged on both surfaces of the electrolyte membrane, and two separators (not shown) that sandwich the membrane electrode assembly. .
  • the electrolyte membrane can be composed of a solid polymer thin film showing good proton conductivity in a wet state.
  • the electrode can be composed of conductive particles carrying a catalyst for promoting a power generation reaction.
  • the catalyst for example, platinum (Pt) can be adopted, and as the conductive particles, for example, carbon (C) particles can be adopted.
  • the control unit 20 is configured by a microcomputer including a central processing unit and a main storage device.
  • the control unit 20 receives a request for output power and controls each component described below to cause the fuel cell 10 to generate power in response to the request.
  • the cathode gas supply unit 30 includes a cathode gas pipe 31, an air compressor 32, an air flow meter 33, an on-off valve 34, and a humidifying unit 35.
  • the cathode gas pipe 31 is a pipe connected to the cathode side of the fuel cell 10.
  • the air compressor 32 is connected to the fuel cell 10 via the cathode gas pipe 31 and supplies air compressed by taking in outside air to the fuel cell 10 as cathode gas.
  • the air flow meter 33 measures the amount of outside air taken in by the air compressor 32 on the upstream side of the air compressor 32 and transmits it to the control unit 20.
  • the control unit 20 controls the amount of air supplied to the fuel cell 10 by driving the air compressor 32 based on the measured value.
  • the on-off valve 34 is provided between the air compressor 32 and the fuel cell 10 and opens and closes according to the flow of supply air in the cathode gas pipe 31. Specifically, the on-off valve 34 is normally closed and opens when air having a predetermined pressure is supplied from the air compressor 32 to the cathode gas pipe 31.
  • the humidification unit 35 humidifies the high-pressure air sent out from the air compressor 32.
  • the control unit 20 controls the humidification amount of air supplied to the fuel cell 10 by the humidification unit 35 in order to maintain the wet state of the electrolyte membrane and obtain good proton conductivity, so that the humidity inside the fuel cell 10 is increased. Adjust the condition.
  • the humidification part 35 is connected with the cathode exhaust gas piping 41, and uses the water
  • the cathode gas discharge unit 40 includes a cathode exhaust gas pipe 41, a pressure regulating valve 43, and a pressure measurement unit 44.
  • the cathode exhaust gas pipe 41 is a pipe connected to the cathode side of the fuel cell 10, and discharges the cathode exhaust gas to the outside of the fuel cell system 100.
  • the pressure regulating valve 43 adjusts the pressure of the cathode exhaust gas in the cathode exhaust gas pipe 41 (back pressure on the cathode side of the fuel cell 10).
  • the pressure measurement unit 44 is provided on the upstream side of the pressure regulating valve 43, measures the pressure of the cathode exhaust gas, and transmits the measured value to the control unit 20.
  • the control unit 20 adjusts the opening degree of the pressure regulating valve 43 based on the measurement value of the pressure measurement unit 44.
  • the anode gas supply unit 50 includes an anode gas pipe 51, a hydrogen tank 52, an on-off valve 53, a regulator 54, a hydrogen supply device 55, and a pressure measurement unit 56.
  • the hydrogen tank 52 is connected to the anode of the fuel cell 10 through the anode gas pipe 51, and supplies hydrogen filled in the tank to the fuel cell 10.
  • the fuel cell system 100 may include a reforming unit that reforms a hydrocarbon-based fuel to generate hydrogen instead of the hydrogen tank 52 as a hydrogen supply source.
  • the on-off valve 53, the regulator 54, the hydrogen supply device 55, and the pressure measuring unit 56 are provided in the anode gas pipe 51 in this order from the upstream side (hydrogen tank 52 side).
  • the on-off valve 53 opens and closes according to a command from the control unit 20 and controls the inflow of hydrogen from the hydrogen tank 52 to the upstream side of the hydrogen supply device 55.
  • the regulator 54 is a pressure reducing valve for adjusting the pressure of hydrogen on the upstream side of the hydrogen supply device 55, and its opening degree is controlled by the control unit 20.
  • the hydrogen supply device 55 can be constituted by, for example, an injector that is an electromagnetically driven on-off valve.
  • the pressure measurement unit 56 measures the pressure of hydrogen on the downstream side of the hydrogen supply device 55 and transmits it to the control unit 20.
  • the control unit 20 controls the amount of hydrogen supplied to the fuel cell 10 by controlling the hydrogen supply device 55 based on the measurement value of the pressure measurement unit 56.
  • the anode gas circulation discharge unit 60 includes an anode exhaust gas pipe 61, a gas-liquid separation unit 62, an anode gas circulation pipe 63, a hydrogen circulation pump 64, an anode drain pipe 65, a drain valve 66, and a pressure measurement unit 67.
  • the anode exhaust gas pipe 61 is a pipe that connects the outlet of the anode of the fuel cell 10 and the gas-liquid separator 62, and anode exhaust gas containing unreacted gas (such as hydrogen and nitrogen) that has not been used for power generation reaction. Guide to the gas-liquid separator 62.
  • the gas-liquid separator 62 is connected to the anode gas circulation pipe 63 and the anode drain pipe 65.
  • the gas-liquid separator 62 separates the gas component and moisture contained in the anode exhaust gas, guides the gas component to the anode gas circulation pipe 63, and guides the moisture to the anode drain pipe 65.
  • the anode gas circulation pipe 63 is connected to the anode gas pipe 51 downstream from the hydrogen supply device 55.
  • the anode gas circulation pipe 63 is provided with a hydrogen circulation pump 64, and hydrogen contained in the gas component separated in the gas-liquid separation unit 62 by the hydrogen circulation pump 64 is supplied to the anode gas pipe 51. Sent out.
  • hydrogen contained in the anode exhaust gas is circulated and supplied to the fuel cell 10 again to improve the utilization efficiency of hydrogen.
  • the anode drain pipe 65 is a pipe for discharging the water separated in the gas-liquid separator 62 to the outside of the fuel cell system 100.
  • the drain valve 66 is provided in the anode drain pipe 65 and opens and closes according to a command from the control unit 20.
  • the control unit 20 normally closes the drain valve 66 and opens the drain valve 66 at a predetermined drain timing set in advance or a discharge timing of the inert gas in the anode exhaust gas. .
  • the pressure measurement unit 67 of the anode gas circulation discharge unit 60 is provided in the anode exhaust gas pipe 61.
  • the pressure measuring unit 67 measures the pressure of the anode exhaust gas (the back pressure on the anode side of the fuel cell 10) in the vicinity of the outlet of the hydrogen manifold of the fuel cell 10 and transmits it to the control unit 20.
  • the refrigerant supply unit 70 includes a refrigerant pipe 71, a radiator 72, a three-way valve 73, a refrigerant circulation pump 75, and two refrigerant temperature measuring units 76a and 76b.
  • the refrigerant pipe 71 is a pipe for circulating a refrigerant for cooling the fuel cell 10, and includes an upstream pipe 71a, a downstream pipe 71b, and a bypass pipe 71c.
  • the upstream pipe 71 a connects the refrigerant outlet manifold provided in the fuel cell 10 and the inlet of the radiator 72.
  • the downstream pipe 71 b connects the refrigerant inlet manifold provided in the fuel cell 10 and the outlet of the radiator 72.
  • One end of the bypass pipe 71c is connected to the upstream pipe 71a via the three-way valve 73, and the other end is connected to the downstream pipe 71b.
  • the control unit 20 controls the opening and closing of the three-way valve 73, thereby adjusting the amount of refrigerant flowing into the bypass pipe 71c and controlling the amount of refrigerant flowing into the radiator 72.
  • the radiator 72 is provided in the refrigerant pipe 71.
  • the radiator 72 cools the refrigerant by exchanging heat between the refrigerant flowing through the refrigerant pipe 71 and the outside air.
  • the refrigerant circulation pump 75 is provided on the downstream side pipe 71b on the downstream side (the refrigerant inlet side of the fuel cell 10) from the connection point of the bypass pipe 71c, and is driven based on a command from the control unit 20.
  • the two refrigerant temperature measuring units 76a and 76b are provided in the upstream pipe 71a and the downstream pipe 71b, respectively, and transmit the measured values to the control unit 20.
  • the control unit 20 detects the operating temperature of the fuel cell 10 from the difference between the measured values of the refrigerant temperature measuring units 76a and 76b. Further, the control unit 20 adjusts the operating temperature of the fuel cell 10 by controlling the rotational speed of the refrigerant circulation pump 75 based on the detected operating temperature of the fuel cell 10.
  • the fuel cell system 100 further includes an outside air temperature sensor 101 and a vehicle speed sensor 102 for acquiring vehicle information of the fuel cell vehicle.
  • the outside air temperature sensor 101 detects the temperature outside the fuel cell vehicle and transmits it to the control unit 20.
  • the vehicle speed sensor 102 detects the current speed of the fuel cell vehicle and transmits it to the control unit 20.
  • the control unit 20 appropriately uses information obtained from these sensors for output control of the fuel cell 10.
  • FIG. 2 is a schematic diagram showing the electrical configuration of the fuel cell system 100.
  • the fuel cell system 100 includes a secondary battery 81, a DC / DC converter 82, and a DC / AC inverter 83.
  • the fuel cell system 100 includes a cell voltage measurement unit 91, a current measurement unit 92, an impedance measurement unit 93, an SOC detection unit 94, and an open / close switch 95.
  • the fuel cell 10 is connected to a DC / AC inverter 83 via a DC wiring DCL, and the DC / AC inverter 83 is connected to a motor 200 that is a driving force source of the fuel cell vehicle.
  • the secondary battery 81 is connected to the DC wiring DCL via the DC / DC converter 82.
  • the secondary battery 81 functions as an auxiliary power source for the fuel cell 10.
  • the secondary battery 81 can be composed of, for example, a lithium ion battery.
  • the control unit 20 controls the DC / DC converter 82 to control the current / voltage of the fuel cell 10 and the charging / discharging of the secondary battery 81 and variably adjust the voltage level of the DC wiring DCL.
  • the SOC detector 94 is connected to the secondary battery 81.
  • the SOC detection unit 94 detects SOC (State of Charge), which is the charging state of the secondary battery 81, and transmits it to the control unit 20.
  • SOC of the secondary battery 81 means the ratio of the remaining charge (charged amount) of the secondary battery 81 to the charge capacity of the secondary battery 81.
  • the SOC detection unit 94 detects the SOC of the secondary battery 81 by measuring the temperature, power, and current of the secondary battery 81.
  • the control unit 20 controls charging / discharging of the secondary battery 81 based on the detection value of the SOC detection unit 94 so that the SOC of the secondary battery 81 is within a predetermined range. Specifically, when the SOC of the secondary battery 81 acquired from the SOC detection unit 94 is lower than a preset lower limit value, the control unit 20 controls the secondary battery 81 with the power output from the fuel cell 10. Charge. When the SOC of the secondary battery 81 is higher than a preset upper limit value, the secondary battery 81 is discharged.
  • the DC / AC inverter 83 converts the DC power obtained from the fuel cell 10 and the secondary battery 81 into AC power and supplies the AC power to the motor 200.
  • the DC / AC inverter 83 converts the regenerative power into DC power.
  • the regenerative power converted into direct current power is stored in the secondary battery 81 via the DC / DC converter 82.
  • the cell voltage measurement unit 91 is connected to each power generator 11 of the fuel cell 10 and measures the voltage (cell voltage) of each power generator 11.
  • the cell voltage measurement unit 91 transmits the measurement result to the control unit 20.
  • the control unit 20 acquires the voltage output from the fuel cell 10 based on the measurement result of the cell voltage measurement unit 91.
  • the current measuring unit 92 is connected to the DC wiring DCL, measures the current value output from the fuel cell 10, and transmits it to the control unit 20. When there is a difference between the measured value and the target value (control value) of the cell voltage and current, the control unit 20 corrects those control values so as to reduce the difference. Execute feedback control.
  • the impedance measuring unit 93 is connected to the fuel cell 10.
  • the impedance measuring unit 93 measures the impedance of the entire fuel cell 10 by applying an alternating current to the fuel cell 10 and transmits the measured impedance to the control unit 20.
  • the control unit 20 manages the wet state of the electrolyte membrane of the fuel cell 10 based on the measurement result of the impedance measurement unit 93.
  • the open / close switch 95 is provided in the DC wiring DCL, and controls electrical connection between the fuel cell 10 and the secondary battery 81 and the motor 200 based on a command from the control unit 20.
  • FIG. 3 is a flowchart showing a control procedure of system control by the control unit 20 of the fuel cell system 100.
  • the control unit 20 starts executing a normal operation for causing the fuel cell 10 to generate power based on a drive request from the driver to the fuel cell vehicle (step S10).
  • FIG. 4 is an explanatory diagram for explaining output control of the fuel cell system 100 during execution of normal operation.
  • FIG. 4 shows a graph G IV showing the current-voltage characteristics ( IV characteristics) of the fuel cell 10 and a graph G IP showing the current-power characteristics ( IP characteristics). Voltage and power are shown, and the horizontal axis is shown as current.
  • the power generation characteristics of a fuel cell can be expressed by IV characteristics or IP characteristics.
  • the IV characteristic of the fuel cell is expressed as a horizontal S-shaped gentle curve graph that decreases as the current increases, and the IP characteristic of the fuel cell is expressed as a convex curve graph.
  • the control unit 20 stores in advance information representing power generation characteristics such as IV characteristics and IP characteristics of the fuel cell 10 as control information for the fuel cell 10. Since the IV characteristic and the IP characteristic of the fuel cell 10 change according to the operating conditions such as the operating temperature of the fuel cell 10, the control unit 20 provides the control information for each of these operating conditions. It is preferable to have.
  • the control unit 20 acquires a target current It to be output from the fuel cell 10 with respect to the required power Pt based on the IP characteristic of the fuel cell 10. Then, the control unit 20 acquires the target voltage Vt of the fuel cell 10 for outputting the target current It based on the IV characteristic of the fuel cell 10.
  • the control unit 20 causes the fuel cell 10 and the secondary battery 81 to output the required power Pt by causing the DC / DC converter 82 to set the voltage of the DC wiring DCL to the target voltage Vt.
  • step S20 the control unit 20 detects the operating temperature of the fuel cell 10 at a predetermined timing during execution of the normal operation, and determines whether or not the fuel cell 10 is in a high temperature state.
  • the “high temperature state” means a state in which the operating temperature of the fuel cell 10 is higher than a preset threshold (for example, about 90 ° C.).
  • the control unit 20 continues normal operation control (step S10) when the fuel cell 10 is not in a high temperature state, and starts high temperature operation when the fuel cell 10 is in a high temperature state (step S25). ).
  • the control unit 20 performs control for suppressing an increase in the operating temperature of the fuel cell 10 and drying of the electrolyte membrane as a high-temperature operation. Specifically, control for increasing the supply flow rate of the refrigerant to the fuel cell 10 and control for increasing the humidification of the reaction gas are performed.
  • the output control of the fuel cell 10 is executed in the same way as during normal operation, but it is known that the power generation performance of the fuel cell 10 decreases as the operating temperature increases. .
  • FIG. 5 is an explanatory diagram for explaining a decrease in the power generation performance of the fuel cell as the operating temperature increases.
  • FIG. 5 shows a graph I-Vn showing an example of the IV characteristic of the fuel cell at a normal operating temperature (for example, about 60 ° C. to 80 ° C.) and the fuel cell in a high temperature state (for example, 90 ° C. or more).
  • a graph I-Vd showing an example of IV characteristics is shown with the vertical axis representing voltage and the horizontal axis representing current.
  • the IV characteristic of a fuel cell tends to change in a direction in which a curve graph representing the characteristic decreases as the operating temperature of the fuel cell increases.
  • the power generation efficiency of the fuel cell decreases, and the power generation state is likely to generate heat. Therefore, in a power generation state in which the graph showing the IV characteristic is remarkably lowered, drying of the electrolyte membrane and oxidation of the catalyst are promoted, and the fuel cell increases the electric power by increasing the current according to the power generation characteristic. It becomes a difficult limit state (illustrated by a broken line). If a further load is applied to the fuel cell in this state, the fuel cell may be irreversibly deteriorated.
  • the control unit 20 determines at a predetermined timing whether the power generation performance of the fuel cell 10 is significantly reduced during execution of the high temperature operation (FIG. 3). Step S30). In this determination process, for example, the control unit 20 may determine that the power generation state of the fuel cell 10 is in the limit state when the cell voltage with respect to the predetermined current of the fuel cell 10 falls below a predetermined threshold value. . Further, when the cell resistance acquired based on the impedance of the fuel cell 10 significantly increases, it may be determined that the power generation state of the fuel cell 10 is the limit state.
  • control unit 20 When it is determined that the power generation state of the fuel cell 10 is not the limit state, the control unit 20 continues the high temperature operation control (step S25). Further, when the operating temperature of the fuel cell 10 decreases during execution of the high temperature operation and recovers from the high temperature state, the normal operation is resumed (illustrated by a broken line arrow).
  • step S40 when it is determined in step S30 that the power generation state of the fuel cell 10 is the limit state, the control unit 20 starts a deterioration avoidance operation for avoiding the deterioration of the fuel cell 10 (step S40).
  • output control of the fuel cell 10 is limited.
  • the control unit 20 limits the output power of the fuel cell 10 with a predetermined limit value. More specifically, the control unit 20 limits the voltage of the fuel cell 10 to a predetermined limit voltage V lim and limits the current of the fuel cell 10 to a predetermined limit current I lim .
  • the secondary battery 81 compensates for the shortage with respect to the required power.
  • This power generation characteristic recovery operation is an operation that temporarily improves the power generation performance of the fuel cell 10 by repeatedly executing a temporary voltage reduction process described below at a predetermined cycle and a predetermined number of times.
  • FIGS. 6 (A) to 6 (C) are explanatory diagrams for explaining the temporary improvement of the power generation performance of the fuel cell by the temporary voltage drop process.
  • the graphs of FIGS. 6A and 6B are obtained by experiments.
  • FIG. 6A is a graph showing the time change of the current of the fuel cell
  • FIG. 6B is a graph showing the time change of the voltage of the fuel cell.
  • the graphs of FIGS. 6A and 6B are illustrated with their time axes corresponding to each other.
  • FIG. 6C is an explanatory diagram for explaining the increase in voltage after the voltage is temporarily decreased by the IV characteristic of the fuel cell.
  • a graph showing the IV characteristic of the fuel cell at time t 1 (before the voltage of the fuel cell is lowered) is shown by a broken line, and time t 2 (the voltage of the fuel cell is recovered).
  • a graph showing the IV characteristics of the fuel cell in the latter part is shown by a solid line.
  • the current and voltage of the fuel cell no longer correspond to each other after temporarily increasing the current, as shown in FIG. 6C.
  • This change in IV characteristics causes an increase in moisture inside the fuel cell due to a temporary increase in current, which promotes a decrease in the dry area of the electrolyte membrane and a decrease / activation of the oxide film of the catalyst. It was because it was done.
  • the amount of increase in voltage with respect to a certain current before and after execution of the temporary voltage reduction processing in FIG. 6, the amount obtained as V 3 -V 1 with respect to current I 1 ). Can be interpreted as a value indicating the degree of improvement in the power generation performance of the fuel cell.
  • the power generation characteristics of the fuel cell can be recovered and the power generation performance of the fuel cell can be improved.
  • the improvement in the power generation performance due to the recovery change of the power generation characteristics is temporary, and the voltage of the fuel cell gradually decreases with time even if the current is kept constant. Therefore, in order to obtain a desired improvement in power generation performance, it is desirable to repeatedly execute the temporary voltage reduction process.
  • FIG. 7A and 7B are explanatory diagrams for explaining output control of the fuel cell 10 in the power generation characteristic recovery operation.
  • FIG. 7A shows a graph illustrating an example of the time change of the voltage of the fuel cell 10 before and after the start of execution of the power generation characteristic recovery operation, with the vertical axis representing voltage and the horizontal axis representing time.
  • FIG. 7B is a graph showing an example of the time variation of the current of the fuel cell 10 with the vertical axis representing current, the horizontal axis representing time, and FIG. 7A corresponding to the time axis. It is shown.
  • the control unit 20 detects a request to increase the voltage of the fuel cell 10 to the target voltage Vt. (Steps S40 and S50 in FIG. 3). The control unit 20 executes output control of the fuel cell 10 as follows as the power generation characteristic recovery operation (step S60).
  • the control unit 20 decreases the voltage of the fuel cell 10 from the limit voltage V lim to Vc, and increases the current from I lim to Ic (time t 1a ). Then, after holding the voltage Vc after the decrease for a predetermined period, the voltage is raised to Vp higher than the original limit voltage V lim so that the current returns to the original I lim (time t 1b ).
  • the rising voltage Vp is set based on the target voltage Vt, and the target value (target rising amount ⁇ V) of the voltage rising amount ⁇ V is set to temporarily obtain the target rising amount ⁇ V.
  • the processing conditions for the target voltage lowering process are determined, and details will be described later.
  • the control unit 20 From time t 1b to t 2a , the control unit 20 performs control so that the current flowing out from the fuel cell 10 is held at I lim . However, as described above, since the power generation performance of the fuel cell 10 is temporarily improved, the control unit 20 gradually decreases the voltage from Vp at a preset speed. Thereafter, the control unit 20 performs a temporary voltage reduction process similar to the period from the time t 1a to the time t 1b a predetermined number of times at a constant cycle T so that the time average of the voltage of the fuel cell 10 becomes the target voltage Vt. Repeat with.
  • the voltage of the fuel cell 10 is reduced by repeatedly executing the temporary voltage reduction process for temporarily reducing the voltage as described above. It can be further increased from the limit voltage V lim .
  • the power generation characteristic recovery operation is executed in the following procedure.
  • FIG. 8 is a flowchart showing a specific control procedure of the power generation characteristic recovery operation.
  • the control unit 20 sets the increased voltage Vp after the temporary voltage reduction process based on the requested voltage (target voltage Vt), and increases the voltage to be increased by the temporary voltage reduction process.
  • a target increase amount ⁇ V which is an amount, is set.
  • the control unit 20 sets the increase voltage Vp and the target increase amount ⁇ V based on the target voltage Vt and a cycle T in which a preset temporary voltage decrease process is repeated.
  • the control unit 20 may set the rising voltage Vp and the target rising amount ⁇ V with respect to the target voltage Vt using a relationship prepared in advance.
  • step S110 the control unit 20 uses the post-decrease voltage Vc, which is the lowest voltage (target value of voltage decrease) of the fuel cell 10 in the temporary voltage decrease process, based on the target increase amount ⁇ V, as a result of the temporary voltage decrease process. Determine as a condition. Specifically, the control unit 20 acquires the reduced voltage Vc as follows.
  • FIG. 9 is a graph obtained by experiments by the inventor of the present invention, in which the voltage with respect to a predetermined current increases after the temporary voltage reduction processing (voltage increase amount) and the temporary voltage reduction processing. It is a graph which shows the relationship with the amount of voltage reduction (voltage reduction amount).
  • the inventor of the present invention changes the amount of voltage drop by performing a temporary voltage drop process when the fuel cell is generating power at current densities of 0.25 A / cm 2 , 0.5 A / cm 2 , and 1 A / cm 2. And the increase in voltage was measured when the original current density was restored.
  • a broken line graph G1 shown in FIG. 9 was obtained from the plots of the measured values.
  • the inventor of the present invention shows that the voltage increase amount increases as the voltage decrease amount increases between the voltage decrease amount in the temporary voltage decrease process and the voltage increase amount obtained by the temporary voltage decrease process. It has been found that there is a linear relationship that increases at an approximately constant rate. The inventors have found that the linear relationship can be obtained as a substantially constant relationship regardless of the current value of the fuel cell.
  • control unit 20 stores in advance a map representing the relationship between the voltage drop amount and the voltage rise amount similar to FIG.
  • the map is used to obtain a voltage decrease amount Vd with respect to the target increase amount ⁇ V, and after the decrease, which is the target value of the voltage decrease in the temporary voltage decrease process, from the voltage decrease amount Vd and the current voltage Vi.
  • step S120 a temporary voltage reduction process for temporarily reducing the voltage of the fuel cell 10 to the post-reduction voltage Vc determined in step S110 for a predetermined period is performed a predetermined number of times with a preset period T. , Repeat. Accordingly, as described with reference to FIG. 7, the voltage of the fuel cell 10 can be increased from the limit voltage V lim, and the time average of the voltage of the fuel cell 10 during the period in which the temporary voltage reduction process is repeatedly performed is obtained. When it is taken, the target voltage Vt is obtained.
  • step S130 the control unit 20 determines whether or not an appropriate voltage increase amount is obtained by the temporary voltage decrease process. Specifically, the control unit 20 measures the voltage after the fuel cell 10 has risen, calculates an error between the target increase amount ⁇ V, which is the target value, and the amount by which the voltage has actually increased, and the error. Is within a preset allowable range (for example, about ⁇ 10%).
  • the control unit 20 corrects the map described with reference to FIG. 9 so that the error is reduced (step S140). Specifically, the graph represented by the map is shifted to reflect the actual voltage increase obtained after the temporary voltage reduction process. Alternatively, the control unit 20 may change the gradient of the graph represented by the map.
  • the control unit 20 performs the power generation characteristic recovery operation when an appropriate value is obtained as the target increase amount ⁇ V in the temporary voltage decrease process in step S120, or when the map correction in step S130 is completed. finish. Then, the deterioration avoidance operation is executed again until it is necessary to increase the voltage of the fuel cell 10 (step S40).
  • the control unit 20 returns to the high temperature operation in step S25, and the fuel cell 10 is not in the high temperature state. When it is, it returns to normal operation (flow illustrated with a broken line arrow).
  • the power generation characteristic recovery operation is performed even after the fuel cell 10 is in a high temperature state and the power generation performance is reduced and reaches the limit range.
  • the voltage of the fuel cell 10 can reach the target voltage. Therefore, the controllability of the fuel cell 10 in a high temperature state is improved.
  • the processing condition of the temporary voltage reduction process is set according to the target voltage, so that the voltage of the fuel cell 10 can be appropriately controlled. Furthermore, since the voltage increase actually increased by the temporary voltage reduction processing is fed back to the map for setting the processing conditions, the controllability of the fuel cell 10 can be further improved.
  • FIG. 10 is a flowchart showing a control procedure of the power generation characteristic recovery operation executed by the fuel cell system as the second embodiment of the present invention.
  • FIG. 10 is substantially the same as FIG. 8 except that step S111 is provided instead of step S110.
  • the configuration of the fuel cell system of the second embodiment is almost the same as the configuration of the fuel cell system of the first embodiment (FIGS. 1 and 2). Further, the procedure of system control by the control unit 20 in the fuel cell system of the second embodiment is the same as the procedure described in the first embodiment (FIG. 3).
  • the control unit 20 is the voltage recovery speed in the temporary voltage decrease process based on the target increase amount ⁇ V.
  • a voltage increase rate Vrv is set (step S111).
  • the control unit 20 will explain the voltage increase rate (voltage increase rate) and the voltage increase amount when recovering the voltage in the temporary voltage decrease process described below. Use the relationship.
  • FIG. 11 is a graph obtained by an experiment by the inventors of the present invention, and is a graph showing a relationship between a voltage increase rate and a voltage increase amount when a temporary voltage decrease process is performed on a fuel cell. is there.
  • the vertical axis on the left is the cell voltage
  • the vertical axis on the right is the current density
  • the horizontal axis is the time
  • lower graphs G I1 to G I3 are shown.
  • graphs G V1 to G V3 showing the time change of the voltage are shown.
  • the control unit 20 uses the following map to set the processing conditions for the temporary voltage reduction processing.
  • FIG. 12 is an explanatory diagram showing an example of a map used by the control unit 20 to acquire the voltage increase rate Vrv based on the target increase amount ⁇ V in step S111.
  • FIG. 12 shows the map used in step S111 as a graph in which the vertical axis represents the voltage increase amount and the horizontal axis represents the voltage increase speed. This map is set so that the voltage increase rate increases as the voltage increase amount increases, and the rate of change of the voltage increase rate decreases as the voltage increase amount increases.
  • the control unit 20 uses this map to acquire the voltage increase speed Vrv with respect to the target increase amount ⁇ V (step S111). Then, as a temporary voltage reduction process, the voltage of the fuel cell 10 is reduced to a predetermined reduced voltage Vc, held at the reduced voltage Vc for a predetermined period, and then the fuel cell voltage is recovered at the voltage increase rate Vrv. (Step S120). Note that in the fuel cell system 100 of the second embodiment, the temporary voltage reduction process execution interval (after the voltage increase is performed) according to the voltage increase speed Vrv so that the temporary voltage reduction process can be executed at a predetermined period T. The time interval until the voltage is decreased again may be adjusted.
  • the voltage increase rate which is one of the processing conditions of the temporary voltage decrease process, is set based on the desired voltage increase amount using the relationship acquired in advance.
  • recovery of the desired power generation characteristics of the fuel cell 10 can be obtained. Therefore, the controllability of the fuel cell 10 during high load operation is improved.
  • the current decrease rate in the temporary voltage decrease process is set based on the desired voltage increase amount using the relationship acquired in advance. Is possible.
  • FIG. 13 is a flowchart showing a control procedure of system control executed by the control unit 20 in the fuel cell system as the third embodiment of the present invention.
  • FIG. 13 is substantially the same as FIG. 3 except that step S24 is added.
  • FIG. 14 is a flowchart showing a control procedure of power generation characteristic recovery operation in the fuel cell system of the third embodiment.
  • FIG. 14 is substantially the same as FIG. 8 except that step S105 is added and that step S112 is provided instead of step S110.
  • the configuration of the fuel cell system of the third embodiment is substantially the same as the configuration of the fuel cell system 100 of the first embodiment (FIGS. 1 and 2).
  • the temporary current is increased.
  • the processing conditions for the lowering process are set. Specifically, it is as follows.
  • the control unit 20 When the control unit 20 detects that the fuel cell 10 is in a high temperature state during execution of normal operation, the control unit 20 accumulates time during which the fuel cell 10 is in a high temperature state (hereinafter referred to as “high temperature duration”). After starting the measurement, high-temperature operation is started (steps S24 and S25). As will be described below, the high temperature duration time is used for setting processing conditions for temporary voltage reduction processing in the power generation characteristic recovery operation. Note that the high temperature measurement time may be reset when a predetermined time elapses after the operating temperature of the fuel cell 10 decreases and the high temperature state is lost.
  • step S100 after acquiring the target increase amount ⁇ V in step S100, the control unit 20 operates the fuel cell 10 immediately before executing the temporary voltage reduction process after obtaining the current high temperature duration time. Obtained as a state (step S105).
  • step S112 the post-reduction voltage Vc in the temporary voltage reduction process is determined based on the target increase amount ⁇ V and the high temperature duration time using a predetermined relationship.
  • FIG. 15 is a graph obtained by the experiment of the inventors of the present invention, and shows the measurement results when the temporary voltage reduction process is performed on the fuel cell under a constant processing condition for each high temperature duration time. It is the graph which made the vertical axis
  • the solid line graph G1 is a graph when the period during which the post-decrease voltage Vc is held in the temporary voltage reduction process is set longer than that in the case of the broken line graph G2.
  • the amount of voltage increase due to the temporary voltage reduction process becomes larger as the high temperature duration time becomes longer.
  • the increase rate of the voltage increase amount decreases as the high temperature duration time increases.
  • the voltage increase amount converges to the maximum value.
  • the inventor of the present invention has found that the relationship between the high temperature duration and the amount of voltage increase can be obtained for each post-decrease voltage that is the lowest voltage in the temporary voltage processing.
  • the fuel cell system of the third embodiment based on the high temperature duration time Td and the target increase amount ⁇ V, using such a high temperature duration time, a voltage increase amount, and a map showing the relationship between the decreased voltage. Then, the post-reduction voltage Vc, which is the processing condition of the temporary voltage reduction process, is determined.
  • FIG. 16 is a schematic diagram illustrating an example of a map used to determine processing conditions for temporary voltage reduction processing in step S112.
  • Vc v 1 , v 2 , v 3 ,..., V n ⁇ 1 , v n ).
  • a map representing the relationship between and is stored in advance.
  • step S112 the control unit 20 selects a map from which the target increase amount ⁇ V is obtained for the high temperature duration Td acquired in step S105, and acquires a post-decrease voltage Vc corresponding to the map. Then, the post-decrease voltage Vc is determined as a processing condition for the temporary voltage reduction process. Note that the map of FIG. 16 is corrected based on the measured value of the voltage increase amount of the fuel cell 10 measured after the temporary voltage decrease process is executed (step S140).
  • the appropriate temporary voltage decrease process is performed based on the high temperature duration Td immediately before the execution of the temporary voltage decrease process. Processing conditions can be set. Therefore, the controllability of the fuel cell 10 during high load operation is improved.
  • the post-decrease cell voltage Vc is determined as the processing condition for the temporary voltage reduction process based on the target increase amount ⁇ V and the high temperature duration time Td.
  • the amount of voltage increase after execution of the temporary voltage decrease process becomes larger as the time during which the decreased voltage Vc is held in the temporary voltage decrease process (low voltage holding period) is longer. It was.
  • the control unit 20 can also determine the low voltage holding period in the temporary voltage reduction process based on the target increase amount ⁇ V and the high temperature duration time Td.
  • FIG. 17 is a flowchart showing a processing procedure of the power generation characteristic recovery operation executed in the fuel cell system as the fourth embodiment of the present invention.
  • the current catalyst utilization rate ⁇ i of the cathode catalyst is acquired, and based on the catalyst utilization rate ⁇ i and the target increase amount ⁇ V, The processing conditions for the dynamic voltage drop processing are determined.
  • the configuration of the fuel cell system of the fourth embodiment is almost the same as the configuration of the fuel cell system of the first embodiment (FIGS. 1 and 2).
  • the control procedure of the system control which the control part 20 performs in the fuel cell system of 4th Example is the same as the control procedure demonstrated in 1st Example (FIG. 3).
  • step S200 as in step S100 (FIG. 8) described in the first embodiment, the current voltage of the fuel cell 10, the target voltage Vt, and the preset execution period T of the temporary voltage lowering process are set. Based on this, the target increase amount ⁇ V in the temporary voltage decrease process is set.
  • step S210 the control unit 20 acquires the current cathode potential ⁇ i of the fuel cell 10.
  • the cathode potential ⁇ i is obtained by using the current cell voltage V ci of the fuel cell 10, the cell resistance R of the fuel cell 10 that can be obtained from the measured value of the impedance measuring unit 93, and the current current density I of the fuel cell 10, It can be obtained from the following mathematical formula (1).
  • ⁇ i V ci + I ⁇ R (1)
  • FIG. 18 is an explanatory diagram showing an example of a map representing the relationship between the cathode potential and the catalyst utilization rate.
  • This map may be acquired by the control unit 20 by LSV (Linear Sweep Voltammetry) when the fuel cell system is activated, or may be stored in advance in the storage unit of the control unit 20.
  • LSV Linear Sweep Voltammetry
  • the relationship between the cathode potential and the catalyst utilization rate can usually be expressed as a horizontal S-shaped gentle curve graph in which the catalyst utilization rate decreases as the cathode potential increases. It can be determined uniquely.
  • step S220 the control unit 20 uses this map to obtain the current catalyst utilization rate ⁇ i for the current cathode potential ⁇ i (illustrated by a dashed arrow).
  • step S230 the current catalyst utilization rate ⁇ i , the target increase amount ⁇ V, the cell resistance R, and the current operating temperature T of the fuel cell 10 are substituted into the following equation (2) based on the Tafel equation. Then, the target catalyst utilization rate ⁇ t that is the target value of the catalyst utilization rate after the temporary voltage reduction processing is acquired.
  • ⁇ V (R ⁇ T / ⁇ ⁇ F) ⁇ ln ( ⁇ t / ⁇ i ) (2)
  • is a transfer coefficient of the cathode reaction, and is usually a value between 0.5 and 1.0.
  • F is a Faraday constant.
  • step S240 the map described with reference to FIG. 18 is used again to obtain the target cathode potential ⁇ t with respect to the target catalyst utilization rate ⁇ t (illustrated with a dashed line arrow in FIG. 18).
  • step S260 the temporary voltage reduction process for holding the reduced voltage Vc acquired in step S250 for a predetermined period is repeatedly executed a predetermined number of times with a predetermined period T.
  • step S270 the actual voltage increase amount of the fuel cell 10 in the temporary voltage decrease process is measured, and an error from the target increase amount ⁇ V that is the target value is calculated.
  • the control unit 20 corrects the map described with reference to FIG. 18 (step S280).
  • the post-reduction voltage Vc which is the processing condition of the temporary voltage reduction process.
  • the degree of improvement in power generation performance in the fuel cell 10 can be more directly controlled by setting the processing conditions for the temporary voltage reduction processing based on the catalyst utilization rate, and the output control of the fuel cell 10 Is possible with higher accuracy.
  • FIG. 19 is a flowchart showing a control procedure of the power generation characteristic recovery operation executed in the fuel cell system of the fourth embodiment.
  • FIG. 19 is substantially the same as FIG. 8 except that step S115 is added.
  • the configuration of the fuel cell system of the fifth embodiment is substantially the same as the configuration of the fuel cell system 100 of the first embodiment (FIGS. 1 and 2).
  • the control procedure of the system control which the control part 20 performs in the fuel cell system of 4th Example is the same as the procedure demonstrated in 1st Example (FIG. 3).
  • the output shortage of the fuel cell 10 may be compensated by the output of the secondary battery 81.
  • the lower limit value is set in advance in the SOC of the secondary battery 81, when the SOC of the secondary battery 81 is remarkably low, the secondary voltage during the temporary voltage drop process is executed. Compensation by the battery 81 may be difficult.
  • the compensation by the secondary battery 81 is ensured while the temporary voltage reduction processing is repeatedly executed.
  • the preparation process for performing is performed (step S115).
  • FIG. 20 is a flowchart showing the processing procedure of the preparation process for the secondary battery 81 in step S115.
  • the control unit 20 performs a process for determining whether output compensation by the secondary battery 81 is necessary based on the processing conditions of the temporary voltage reduction process. Specifically, the control unit 20 includes the power currently required for the fuel cell 10 (requested power) and the power that the fuel cell 10 can output while the temporary voltage reduction process is repeatedly performed. Compare Then, it is determined whether or not the output power of the fuel cell 10 is insufficient with respect to the required power while the temporary voltage reduction process is repeatedly executed.
  • the control unit 20 detects the current SOC of the secondary battery 81 (step S310). On the other hand, when it is determined that the output compensation by the secondary battery 81 is not necessary, the control unit 20 returns to the power generation characteristic recovery operation, and repeatedly executes the temporary voltage reduction process a predetermined number of times at a predetermined period T. (Step S120 in FIG. 19).
  • control unit 20 determines whether or not secondary battery 81 can compensate for the power shortage during the temporary voltage reduction process based on the current SOC of secondary battery 81. To do. That is, it is determined whether or not the SOC of the secondary battery 81 becomes lower than the lower limit value when the secondary battery 81 outputs the insufficient power. When it is determined that the compensation by the secondary battery 81 is possible, the control unit 20 returns to the power generation characteristic recovery operation and starts executing the temporary voltage reduction process (step S120 in FIG. 19).
  • control unit 20 performs a process of gradually limiting the output of the secondary battery 81 or a temporary voltage decrease process in order to ensure execution of the temporary voltage decrease process.
  • One of the processes for changing the processing condition is executed. Specifically, it is as follows.
  • the control unit 20 causes the secondary battery 81 to compensate for the insufficient power
  • the control unit 20 resets the lower limit value to a lower value.
  • it is determined whether compensation by the secondary battery 81 is possible step S330). That is, the lower limit value of the SOC of the secondary battery 81 is reset to a predetermined second lower limit value lower than the initial lower limit value, and the secondary battery 81 is compensated for insufficient power in the temporary voltage reduction process. If it is determined that the SOC of the secondary battery 81 is lower than the second lower limit value.
  • the control unit 20 sets the lower limit value of the SOC of the secondary battery 81 to the second value.
  • the lower limit value of the SOC of the secondary battery 81 is a value set in order to prevent the secondary battery 81 from being deteriorated due to insufficient storage amount.
  • the SOC limit of the secondary battery 81 is temporarily deliberate. As a result, the execution of the temporary voltage drop process is ensured.
  • Step S350 a correction for increasing the value of the decreased voltage Vc is executed so that the power shortage during the temporary voltage decrease process is reduced.
  • the control unit 20 After changing the lower limit value of the SOC or changing the lowered voltage Vc, the control unit 20 returns to the power generation characteristic recovery operation and starts executing the temporary voltage lowering process (step S120 in FIG. 19).
  • the temporary voltage reduction process is ensured by preparing in advance so that power can be compensated for by the secondary battery 81. Therefore, the power generation performance of the fuel cell 10 during high load operation can be improved with certainty.
  • the fuel cell system is mounted on the fuel cell vehicle.
  • the fuel cell system of each embodiment does not have to be mounted on the fuel cell vehicle.
  • the fuel cell system may be mounted on another device, system, or the like as a power supply source that supplies power according to an external request.
  • the control unit 20 sets the post-decrease voltage Vc, the voltage increase rate Vrv, and the low voltage holding period as the processing conditions for the temporary voltage decrease process based on the target increase amount ⁇ V. .
  • the temporary voltage reduction process is performed based on the increased voltage Vp that is the target voltage after the temporary voltage decrease process is executed. It can be interpreted that the processing conditions are set. Therefore, the control unit 20 may use a map representing the relationship between the rising voltage Vp prepared in advance and the processing conditions of the temporary voltage lowering process instead of the map described in the above embodiment.
  • the control unit 20 sets the processing condition for the temporary voltage reduction process based on the target voltage Vt using the relationship between the target voltage Vt prepared in advance and the processing condition for the temporary voltage reduction process. Also good.
  • control unit 20 may set other processing conditions as the processing conditions for the temporary voltage drop processing. For example, the control unit 20 may set a cycle T when the temporary voltage lowering process is repeatedly executed based on the rising voltage Vp and the target increase amount ⁇ V. In addition, the control unit 20 may set a plurality of processing conditions based on the rising voltage Vp and the target increase amount ⁇ V. For example, the control unit 20 may set the post-decrease voltage Vc and the voltage increase speed Vrv based on the increase voltage Vp and the target increase amount ⁇ V.
  • the high temperature duration Td is detected as the operating state of the fuel cell 10 immediately before the execution of the temporary voltage reduction process, and the temporary voltage is detected based on the target increase amount ⁇ V and the high temperature duration Td.
  • the processing conditions for the lowering process were determined.
  • the operating state of the fuel cell 10 detected to determine the processing conditions for the temporary voltage reduction processing may be other factors. Specifically, there are the following.
  • stoichiometric ratio means the ratio of the actual cathode gas supply rate to the theoretically required cathode gas amount (theoretical consumption of cathode gas) with respect to the power generation amount of the fuel cell.
  • Inlet pressure means the pressure on the reaction gas supply side of the fuel cell 10
  • Outlet pressure (back pressure) means the pressure on the reaction gas discharge side of the fuel cell 10.
  • the processing conditions for the temporary voltage reduction process are determined based on the increased voltage Vp, which is the target voltage after the temporary voltage reduction process, and at least one of the elements of the operating state of the fuel cell 10 described above. Just do it.
  • the processing condition of the temporary voltage drop processing may be determined based on, for example, a combination of the rising voltage Vp, the high temperature duration Td, and the cell voltage, or may be determined by a combination of multidimensional elements. good.
  • the high temperature operation of the fuel cell 10 is detected, and then the high temperature operation is started (step S25).
  • the power generation characteristic recovery operation step S60 was started.
  • the detection of the high temperature state of the fuel cell 10 may be omitted, and the execution of the high temperature operation and the execution of the deterioration avoidance operation may be omitted.
  • the control unit 20 may perform the power generation characteristic recovery operation when drying of the electrolyte membrane of the fuel cell 10 or a decrease in power generation performance is detected.
  • the control unit 20 when determining the temporary voltage drop processing condition, displays a map representing the relationship between the target increase amount ⁇ V and the processing condition of the temporary voltage decrease process, or the target increase amount ⁇ V. And a map representing the relationship between the operating state of the fuel cell 10 and the processing conditions of the temporary voltage reduction processing.
  • the control unit 20 does not need to use such a map.
  • the control unit 20 uses a correspondence relationship such as a preset mathematical formula or function based on the target increase amount ⁇ V or the operating state of the fuel cell 10, and the temporary voltage. You may set the process conditions of a fall process.
  • the control part 20 does not need to use the relationship represented by such a map or numerical formula.
  • the control unit 20 sets the processing condition of the temporary voltage reduction process based on at least the increase voltage Vp (including a value uniquely obtained from the increase voltage Vp) that is the target voltage after execution of the temporary voltage reduction process. It ’s fine.
  • control unit 20 decreases the lower limit value of the SOC of the secondary battery 81 in step S340. However, the control unit 20 may release the SOC limitation itself of the secondary battery 81 in step S340.
  • Modification 8 In each of the above embodiments, the map correction is performed based on the actual measured value of the voltage of the fuel cell 10 and the target increase amount ⁇ V after the temporary voltage decrease process. However, the map correction process may be omitted.
  • SYMBOLS 10 Fuel cell 11 ... Electric power generation body 20 ... Control part 30 ... Cathode gas supply part 31 ... Cathode gas piping 32 ... Air compressor 33 ... Air flow meter 34 ... On-off valve 35 ... Humidification part 40 ... Cathode gas discharge part 41 ... Cathode exhaust gas piping DESCRIPTION OF SYMBOLS 43 ... Pressure regulating valve 44 ... Pressure measurement part 50 ... Anode gas supply part 51 ... Anode gas piping 52 ... Hydrogen tank 53 ... On-off valve 54 ... Regulator 55 ... Hydrogen supply apparatus 56 ... Pressure measurement part 60 ... Anode gas circulation discharge part 61 ... Anode exhaust gas pipe 62 ...
  • Gas-liquid separation part 63 ... Anode gas circulation pipe 64 ... Hydrogen circulation pump 65 ... Anode drain pipe 66 ... Drain valve 67 ... Pressure measuring part 70 ... Refrigerant supply part 71 ... Refrigerant pipe 71a ... Upstream pipe 71b ... Downstream piping 71c ... Bypass piping 72 ... Radiator 73 ... Three-way valve 75 ... Refrigerant circulation pumps 76a, 76b ... Refrigerant temperature measurement unit 81 ... Secondary battery 82 ... DC / DC converter 83 ... DC / AC inverter 91 ... Cell voltage measurement unit 92 ... Current measurement unit 93 ... Impedance measurement Reference numeral 94: SOC detection part 95: Open / close switch 100 ... Fuel cell system 101 ... Outside air temperature sensor 102 ... Vehicle speed sensor 200 ... Motor DCL ... DC wiring

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池システム100は、燃料電池10と、燃料電池10の電圧を制御する制御部20とを備える。制御部20は、燃料電池10の所定の電流に対する電圧の目標値である目標電圧に基づいて、目標上昇量ΔVを設定する。制御部20は、一時的電圧低下処理の処理条件を、目標上昇量ΔVに基づいて設定する。制御部20は、設定した処理条件に基づいて、燃料電池10の電圧を燃料電池10の発電特性に基づいて一時的に低下させることにより、燃料電池10の一時的な電流の増大を生じさせて、燃料電池10の発電特性を変化させる一時的電圧低下処理を実行する。

Description

燃料電池システムおよび燃料電池システムの制御方法
 この発明は、燃料電池に関する。
 固体高分子形燃料電池(以下、単に「燃料電池」と呼ぶ)は、湿潤状態で良好なプロトン伝導性を示す電解質膜の両面に電極を配置した膜電極接合体を発電体として備える(下記特許文献1等)。燃料電池車両に搭載されている燃料電池は、外気温が著しく高い環境下(例えば、気温40℃前後)において運転が継続されたり、登坂中や加速中など、高負荷運転が長期間に渡って継続されたりする場合に、運転温度が著しく高い高温状態となる場合がある。燃料電池が高温状態となると、電解質膜におけるプロトン伝導性が低下して、その発電性能が低下してしまい、所望の電力を出力させることが困難になるなど、燃料電池の制御性が低下してしまう可能性があった。こうした問題は、燃料電池車両に限らず、燃料電池を備える燃料電池システムに共通の問題であった。
特開2005-129252号公報 特開2010-027297号公報
 本発明は、燃料電池の制御性を向上させる技術を提供することを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
[適用例1]
 燃料電池システムであって、燃料電池と、前記燃料電池の電圧を制御する制御部と、を備え、前記制御部は、前記燃料電池の所定の電流に対する電圧の目標値である目標電圧に基づいて、電流と電圧の関係として表される前記燃料電池の発電特性を変化させるための処理条件を設定し、前記制御部は、前記燃料電池の電圧を前記燃料電池の発電特性に基づいて一時的に低下させることにより、前記燃料電池の一時的な電流の増大を生じさせて、前記燃料電池の発電特性を変化させる一時的電圧低下処理を、前記処理条件に従って実行する、燃料電池システム。
 この燃料電池システムであれば、例えば、高温状態において燃料電池の発電性能が低下している場合であっても、適切な処理条件で一時的電圧低下処理を実行することにより、燃料電池の発電特性を変化させ、燃料電池の電圧を目標電圧まで上昇させることができる。従って、燃料電池の電圧制御の制御性が向上する。
[適用例2]
 適用例1記載の燃料電池システムであって、前記制御部は、前記一時的電圧低下処理を実行したときに、前記燃料電池の所定の電流に対する電圧が前記発電特性の変化により上昇する量と、前記一時的電圧低下処理の処理条件と、の関係を、予め取得しており、前記制御部は、前記関係を用いて、前記処理条件を、現在の電圧と前記目標電圧との差である目標電圧上昇量に基づいて設定する、燃料電池システム。
 この燃料電池システムであれば、一時的電圧低下処理によって電圧が上昇する量と、一時的電圧低下処理の処理条件との間の関係を用いることにより、燃料電池の電圧を目標電圧まで上昇させるための処理条件を適切に設定することができる。
[適用例3]
 適用例2記載の燃料電池システムであって、前記処理条件は、前記一時的電圧低下処理における最低電圧と、前記一時的電圧低下処理において最低電圧を保持した期間と、前記一時的電圧低下処理において電圧を回復させるときの電圧の上昇速度と、のうちの少なくとも1つである、燃料電池システム。
 この燃料電池システムであれば、目標電圧上昇量に応じて、一時的電圧低下処理の処理条件として、一時的電圧処理における最低電圧や、その最低電圧を保持する期間、電圧を回復させる際の電圧の上昇速度(電流の低下速度)を適切に設定することができる。
[適用例4]
 適用例2または適用例3記載の燃料電池システムであって、さらに、前記一時的電圧低下処理を実行する直前の前記燃料電池の運転状態を検出する運転状態検出部を備え、前記制御部は、前記一時的電圧低下処理を実行したときに、前記燃料電池の所定の電流に対する電圧が前記発電特性の変化により上昇する量と、前記燃料電池の運転状態と、前記一時的電圧低下処理の処理条件と、の関係を、予め取得しており、前記関係を用いて、前記燃料電池の運転状態と、前記目標電圧と、に基づいて、前記処理条件を設定する、燃料電池システム。
 この燃料電池システムであれば、目標電圧上昇量と、燃料電池の運転状態とに応じて、一時的電圧低下処理の処理条件を適切に設定することができる。
[適用例5]
 適用例4記載の燃料電池システムであって、前記一時的電圧低下処理を実行する直前の前記燃料電池の運転状態は、前記燃料電池が所定の温度よりも高い高温状態にある期間の累積時間と、前記燃料電池の電極に担持された触媒の状態を示す触媒利用率と、のうちの少なくとも1つである、燃料電池システム。
 この燃料電池システムであれば、目標電圧上昇量と、高温状態にある期間の累積時間および/または燃料電池の触媒利用率、に応じて、一時的電圧低下処理の処理条件を適切に設定することができる。
[適用例6]
 適用例2から5のいずれかに記載の燃料電池システムであって、さらに、前記燃料電池の電圧を計測する電圧計測部を備え、前記制御部は、前記一時的電圧低下処理実行後の前記燃料電池の電圧の計測値と、前記目標電圧との差が低減されるように、前記関係の補正を実行する、燃料電池システム。
 この燃料電池システムであれば、一時的電圧低下処理において、所望の電圧の上昇を得るための、より適切な処理条件の設定が可能となる。
[適用例7]
 適用例1から6のいずれかに記載の燃料電池システムであって、さらに、前記制御部によって充放電が制御され、前記一時的電圧低下処理において、前記燃料電池の出力電力を補助する二次電池を備え、前記制御部は、前記二次電池の放電を制限する閾値である前記二次電池の充電状態の下限値を予め設定し、前記二次電池の充電状態が前記下限値より小さくならないように、前記二次電池の充電状態を管理しており、前記制御部は、前記一時的電圧低下処理を実行する際に、前記下限値を低下させることにより、前記二次電池の放電を制限する条件を緩やかにする、燃料電池システム。
 この燃料電池システムであれば、一時的電圧低下処理の実行時における二次電池による電力の補償を確保することができる。
[適用例8]
 燃料電池システムの制御方法であって、
(a)コンピュータが、燃料電池の所定の電流に対する電圧の目標値である目標電圧に基づいて、電流と電圧との関係として表される前記燃料電池の発電特性を変化させるための処理条件を設定する工程と、
(b)コンピュータが、前記燃料電池の電圧を前記燃料電池の発電特性に基づいて一時的に低下させることにより、前記燃料電池の一時的な電流の増大を生じさせて、前記燃料電池の発電特性を変化させる一時的電圧低下処理を、前記目標電圧に基づいて設定した処理条件によって実行する工程と、を備える、制御方法。
 この制御方補であれば、例えば、高温状態において燃料電池の発電性能が低下している場合であっても、適切な処理条件で一時的電圧低下処理を実行することにより、燃料電池の発電特性を変化させ、燃料電池の電圧を目標電圧まで上昇させることができる。従って、燃料電池の電圧制御の制御性が向上する。
 なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池システム、その燃料電池システムを搭載した車両等の形態で実現することができる。また、本発明は、燃料電池システムの制御方法、その制御方法を実行する制御装置やプログラム、そのプログラムを記録した記録媒体等の形態で実現することができる。
燃料電池システムの構成を示す概略図。 燃料電池システムの電気的構成を示す概略図。 燃料電池システムの制御部によるシステム制御の制御手順を示す説明図。 通常運転の実行時における燃料電池システムの出力制御を説明するための説明図。 燃料電池の発電性能の低下を説明するための説明図。 一時的電圧低下処理による燃料電池の発電特性の一時的向上を説明するための説明図。 発電特性回復運転における燃料電池の電圧制御を説明するための説明図。 発電特性回復運転の具体的な制御手順を示す説明図。 一時的電圧低下処理を実行した後の電圧上昇量と、一時的電圧低下処理における電圧低下量との関係を示す説明図。 第2実施例の発電特性回復運転の制御手順を示す説明図。 燃料電池において、一時的に電圧を低下させた後に電圧を回復させたときの、電圧の上昇速度と、電圧の上昇量との関係を示す説明図。 電圧上昇量に基づいて電圧の上昇速度を取得するために用いるマップの一例を示す説明図。 第3実施例の燃料電池システムにおけるシステム制御の制御手順を示す説明図。 第3実施例の発電特性回復運転の制御手順を示す説明図。 一時的電圧低下処理による電圧の上昇量と高温継続時間との関係を示す説明図。 一時的電圧低下処理の処理条件を決定するために用いるマップの一例を示す模式図。 第4実施例の発電特性回復運転の処理手順を示す説明図。 カソード電位と触媒利用率との関係を表すマップの一例を示す説明図。 第4実施例の発電特性回復運転の制御手順を示す説明図。 二次電池の準備処理の処理手順を示す説明図。
A.第1実施例:
 図1は本発明の一実施例としての燃料電池システムの構成を示す概略図である。この燃料電池システム100は、燃料電池車両などに搭載され、運転者からの要求に応じて、駆動力として用いられる電力を出力する。燃料電池システム100は、燃料電池10と、制御部20と、カソードガス供給部30と、カソードガス排出部40と、アノードガス供給部50と、アノードガス循環排出部60と、冷媒供給部70とを備える。
 燃料電池10は、反応ガスとして水素(アノードガス)と空気(カソードガス)の供給を受けて発電する固体高分子形燃料電池である。燃料電池10は、単セルとも呼ばれる複数の発電体11が積層されたスタック構造を有する。各発電体11は、電解質膜の両面に電極を配置した発電体である膜電極接合体(図示せず)と、膜電極接合体を狭持する2枚のセパレータ(図示せず)とを有する。
 ここで、電解質膜は、湿潤状態で良好なプロトン伝導性を示す固体高分子薄膜によって構成することができる。また、電極は、発電反応を促進させるための触媒が担持された導電性粒子によって構成することができる。触媒としては、例えば、白金(Pt)を採用することができ、導電性粒子としては、例えば、カーボン(C)粒子を採用することができる。
 制御部20は、中央処理装置と主記憶装置とを備えるマイクロコンピュータによって構成されている。制御部20は、出力電力の要求を受け付け、その要求に応じて、以下に説明する各構成部を制御し、燃料電池10に発電させる。
 カソードガス供給部30は、カソードガス配管31と、エアコンプレッサ32と、エアフロメータ33と、開閉弁34と、加湿部35とを備える。カソードガス配管31は、燃料電池10のカソード側に接続された配管である。エアコンプレッサ32は、カソードガス配管31を介して燃料電池10と接続されており、外気を取り込んで圧縮した空気を、カソードガスとして燃料電池10に供給する。
 エアフロメータ33は、エアコンプレッサ32の上流側において、エアコンプレッサ32が取り込む外気の量を計測し、制御部20に送信する。制御部20は、この計測値に基づいて、エアコンプレッサ32を駆動することにより、燃料電池10に対する空気の供給量を制御する。
 開閉弁34は、エアコンプレッサ32と燃料電池10との間に設けられており、カソードガス配管31における供給空気の流れに応じて開閉する。具体的には、開閉弁34は、通常、閉じた状態であり、エアコンプレッサ32から所定の圧力を有する空気がカソードガス配管31に供給されたときに開く。
 加湿部35は、エアコンプレッサ32から送り出された高圧空気を加湿する。制御部20は、電解質膜の湿潤状態を保持して良好なプロトン伝導性を得るために、加湿部35によって、燃料電池10に供給される空気の加湿量を制御し、燃料電池10内部の湿潤状態を調整する。なお、加湿部35は、カソード排ガス配管41と接続されており、排ガス中の水分を高圧空気の加湿に用いる。
 カソードガス排出部40は、カソード排ガス配管41と、調圧弁43と、圧力計測部44とを備える。カソード排ガス配管41は、燃料電池10のカソード側に接続された配管であり、カソード排ガスを燃料電池システム100の外部へと排出する。調圧弁43は、カソード排ガス配管41におけるカソード排ガスの圧力(燃料電池10のカソード側の背圧)を調整する。圧力計測部44は、調圧弁43の上流側に設けられており、カソード排ガスの圧力を計測し、その計測値を制御部20に送信する。制御部20は、圧力計測部44の計測値に基づいて調圧弁43の開度を調整する。
 アノードガス供給部50は、アノードガス配管51と、水素タンク52と、開閉弁53と、レギュレータ54と、水素供給装置55と、圧力計測部56とを備える。水素タンク52は、アノードガス配管51を介して燃料電池10のアノードと接続されており、タンク内に充填された水素を燃料電池10に供給する。なお、燃料電池システム100は、水素タンク52に換えて、炭化水素系の燃料を改質して水素を生成する改質部を、水素の供給源として備えているものとしても良い。
 開閉弁53と、レギュレータ54と、水素供給装置55と、圧力計測部56とは、アノードガス配管51に、この順序で、上流側(水素タンク52側)から設けられている。開閉弁53は、制御部20からの指令により開閉し、水素タンク52から水素供給装置55の上流側への水素の流入を制御する。レギュレータ54は、水素供給装置55の上流側における水素の圧力を調整するための減圧弁であり、その開度が制御部20によって制御されている。
 水素供給装置55は、例えば、電磁駆動式の開閉弁であるインジェクタによって構成することができる。圧力計測部56は、水素供給装置55の下流側の水素の圧力を計測し、制御部20に送信する。制御部20は、圧力計測部56の計測値に基づき、水素供給装置55を制御することによって、燃料電池10に供給される水素量を制御する。
 アノードガス循環排出部60は、アノード排ガス配管61と、気液分離部62と、アノードガス循環配管63と、水素循環用ポンプ64と、アノード排水配管65と、排水弁66と、圧力計測部67とを備える。アノード排ガス配管61は、燃料電池10のアノードの出口と気液分離部62とを接続する配管であり、発電反応に用いられることのなかった未反応ガス(水素や窒素など)を含むアノード排ガスを気液分離部62へと誘導する。
 気液分離部62は、アノードガス循環配管63と、アノード排水配管65とに接続されている。気液分離部62は、アノード排ガスに含まれる気体成分と水分とを分離し、気体成分については、アノードガス循環配管63へと誘導し、水分についてはアノード排水配管65へと誘導する。
 アノードガス循環配管63は、水素供給装置55より下流においてアノードガス配管51に接続されている。アノードガス循環配管63には、水素循環用ポンプ64が設けられており、この水素循環用ポンプ64によって、気液分離部62において分離された気体成分に含まれる水素は、アノードガス配管51へと送り出される。このように、この燃料電池システム100では、アノード排ガスに含まれる水素を循環させて、再び燃料電池10に供給することにより、水素の利用効率を向上させている。
 アノード排水配管65は、気液分離部62において分離された水分を燃料電池システム100の外部へと排出するための配管である。排水弁66は、アノード排水配管65に設けられており、制御部20からの指令に応じて開閉する。制御部20は、燃料電池システム100の運転中は、通常、排水弁66を閉じておき、予め設定された所定の排水タイミングや、アノード排ガス中の不活性ガスの排出タイミングで排水弁66を開く。
 アノードガス循環排出部60の圧力計測部67は、アノード排ガス配管61に設けられている。圧力計測部67は、燃料電池10の水素マニホールドの出口近傍において、アノード排ガスの圧力(燃料電池10のアノード側の背圧)を計測し、制御部20に送信する。
 冷媒供給部70は、冷媒用配管71と、ラジエータ72と、三方弁73と、冷媒循環用ポンプ75と、2つの冷媒温度計測部76a,76bとを備える。冷媒用配管71は、燃料電池10を冷却するための冷媒を循環させるための配管であり、上流側配管71aと、下流側配管71bと、バイパス配管71cとで構成される。
 上流側配管71aは、燃料電池10に設けられた冷媒用の出口マニホールドとラジエータ72の入口とを接続する。下流側配管71bは、燃料電池10に設けられた冷媒用の入口マニホールドとラジエータ72の出口とを接続する。バイパス配管71cは、一端が、三方弁73を介して上流側配管71aと接続され、他端が、下流側配管71bに接続されている。制御部20は、三方弁73の開閉を制御することにより、バイパス配管71cへの冷媒の流入量を調整して、ラジエータ72への冷媒の流入量を制御する。
 ラジエータ72は、冷媒用配管71に設けられている。ラジエータ72は、冷媒用配管71を流れる冷媒と外気との間で熱交換させることにより、冷媒を冷却する。冷媒循環用ポンプ75は、下流側配管71bにおいて、バイパス配管71cの接続箇所より下流側(燃料電池10の冷媒入口側)に設けられており、制御部20の指令に基づき駆動する。
 2つの冷媒温度計測部76a,76bはそれぞれ、上流側配管71aと、下流側配管71bとに設けられており、それぞれの計測値を制御部20へと送信する。制御部20は、各冷媒温度計測部76a,76bのそれぞれの計測値の差から燃料電池10の運転温度を検出する。また、制御部20は、検出した燃料電池10の運転温度に基づき、冷媒循環用ポンプ75の回転数を制御して、燃料電池10の運転温度を調整する。
 燃料電池システム100は、さらに、燃料電池車両の車両情報を取得するための、外気温センサ101や、車速センサ102を備える。外気温センサ101は、燃料電池車両外部の気温を検出し、制御部20に送信する。車速センサ102は、燃料電池車両の現在の速度を検出し、制御部20に送信する。制御部20は、これらのセンサから得られた情報を適宜、燃料電池10の出力制御のために利用する。
 図2は、燃料電池システム100の電気的構成を示す概略図である。燃料電池システム100は、二次電池81と、DC/DCコンバータ82と、DC/ACインバータ83とを備える。また、燃料電池システム100は、セル電圧計測部91と、電流計測部92と、インピーダンス計測部93と、SOC検出部94と、開閉スイッチ95と、を備える。
 燃料電池10は、直流配線DCLを介してDC/ACインバータ83に接続されており、DC/ACインバータ83は、燃料電池車両の駆動力源であるモータ200に接続されている。二次電池81は、DC/DCコンバータ82を介して、直流配線DCLに接続されている。
 二次電池81は、燃料電池10の補助電源として機能する。二次電池81は、例えばリチウムイオン電池で構成することができる。制御部20は、DC/DCコンバータ82を制御することにより、燃料電池10の電流・電圧と、二次電池81の充放電とを制御し、直流配線DCLの電圧レベルを可変に調整する。
 二次電池81には、SOC検出部94が接続されている。SOC検出部94は、二次電池81の充電状態であるSOC(State of Charge)を検出し、制御部20に送信する。ここで、二次電池81のSOCとは、二次電池81の充電容量に対する二次電池81の充電残量(蓄電量)の比率を意味する。SOC検出部94は、二次電池81の温度や電力、電流を計測することにより、二次電池81のSOCを検出する。
 制御部20は、SOC検出部94の検出値に基づき、二次電池81のSOCが所定の範囲内に収まるように、二次電池81の充放電を制御する。具体的には、制御部20は、SOC検出部94から取得した二次電池81のSOCが予め設定された下限値より低い場合には、燃料電池10の出力する電力によって、二次電池81を充電する。また、二次電池81のSOCが予め設定された上限値より高い場合には、二次電池81に放電させる。
 DC/ACインバータ83は、燃料電池10と二次電池81とから得られた直流電力を交流電力へと変換し、モータ200に供給する。そして、モータ200によって回生電力が発生する場合には、DC/ACインバータ83が、その回生電力を直流電力に変換する。直流電力に変換された回生電力は、DC/DCコンバータ82を介して二次電池81に蓄電される。
 セル電圧計測部91は、燃料電池10の各発電体11と接続されており、各発電体11の電圧(セル電圧)を計測する。セル電圧計測部91は、その計測結果を制御部20に送信する。制御部20は、セル電圧計測部91の計測結果に基づき、燃料電池10が出力する電圧を取得する。
 電流計測部92は、直流配線DCLに接続されており、燃料電池10の出力する電流値を計測し、制御部20に送信する。制御部20は、セル電圧と電流の実測値と目標値(制御値)との間に差が生じている場合には、その差が低減されるように、それらの制御値を修正する、いわゆるフィードバック制御を実行する。
 インピーダンス計測部93は、燃料電池10に接続されている。インピーダンス計測部93は、燃料電池10に交流電流を印加することにより、燃料電池10全体のインピーダンスを測定し、制御部20へと送信する。制御部20は、インピーダンス計測部93の計測結果に基づき、燃料電池10の電解質膜の湿潤状態を管理する。開閉スイッチ95は、直流配線DCLに設けられており、制御部20の指令に基づき、燃料電池10および二次電池81と、モータ200との間の電気的接続を制御する。
 図3は、燃料電池システム100の制御部20によるシステム制御の制御手順を示すフローチャートである。制御部20は、燃料電池システム100が起動すると、運転者からの燃料電池車両に対する駆動要求に基づいて燃料電池10に発電させる通常運転の実行を開始する(ステップS10)。
 図4は、通常運転の実行時における燃料電池システム100の出力制御を説明するための説明図である。図4には、燃料電池10の電流-電圧特性(I-V特性)を示すグラフGI-Vと、電流-電力特性(I-P特性)を示すグラフGI-Pとを、左右の縦軸をそれぞれ電圧と電力とし、横軸を電流として示してある。通常、燃料電池の発電特性は、I-V特性やI-P特性によって表すことができる。燃料電池のI-V特性は、電流の増加に従って下降する横S字状のなだらかな曲線グラフとして表され、燃料電池のI-P特性は、上に凸の曲線グラフとして表される。
 制御部20は、燃料電池10についてのI-V特性およびI-P特性などの発電特性を表す情報を、燃料電池10の制御用情報として予め記憶している。なお、燃料電池10のI-V特性およびI-P特性は、燃料電池10の運転温度など、その運転条件に応じて変化するため、制御部20は、それらの運転条件ごとの制御用情報を有していることが好ましい。
 制御部20は、燃料電池10のI-P特性に基づいて、要求電力Ptに対して燃料電池10が出力すべき目標電流Itを取得する。そして、制御部20は、燃料電池10のI-V特性に基づいて、目標電流Itを出力するための燃料電池10の目標電圧Vtを取得する。制御部20は、DC/DCコンバータ82に直流配線DCLの電圧を目標電圧Vtに設定させることにより、燃料電池10および二次電池81に要求電力Ptを出力させる。
 ステップS20(図3)では、制御部20は、通常運転の実行中に、所定のタイミングで、燃料電池10の運転温度を検出し、燃料電池10が高温状態であるか否かを判定する。ここで、本明細書において、「高温状態」とは、燃料電池10の運転温度が予め設定された閾値(例えば、約90℃程度)より高くなっている状態を意味する。
 制御部20は、燃料電池10が高温状態ではなかった場合には、通常運転の制御(ステップS10)を継続し、燃料電池10が高温状態である場合には、高温運転を開始する(ステップS25)。制御部20は、高温運転として、燃料電池10の運転温度の上昇や、電解質膜の乾燥を抑制するための制御を行う。具体的には、燃料電池10に対する冷媒の供給流量を増大させる制御や、反応ガスの加湿度を上昇させる制御を行う。ここで、この高温運転では、燃料電池10の出力制御は、通常運転時と同様に実行されるが、燃料電池10の発電性能は、運転温度の上昇とともに低下してしまうことが知られている。
 図5は、運転温度の上昇に伴う燃料電池の発電性能の低下を説明するための説明図である。図5には、通常の運転温度(例えば、60℃~80℃程度)における燃料電池のI-V特性の一例を示すグラフI-Vnと、高温状態(例えば、90℃以上)における燃料電池のI-V特性の一例を示すグラフI-Vdとを、縦軸を電圧とし、横軸を電流として示してある。
 一般に、燃料電池のI-V特性は、燃料電池の運転温度の上昇とともに、その特性をあらわす曲線グラフが下降する方向に変化する傾向にある。そして、I-V特性を示すグラフが下降するほど、燃料電池の発電効率は低下し、発熱を生じやすい発電状態となる。そのため、I-V特性を示すグラフが著しく下降しているような発電状態では、電解質膜の乾燥や、触媒の酸化が促進され、燃料電池は、発電特性に従って電流を増大させて電力を増大させることが困難な限界状態となる(破線で図示)。この状態で、燃料電池に、さらに負荷をかけると、燃料電池の不可逆的な劣化を生じる可能性もある。
 そこで、本実施例の燃料電池システム100では、制御部20は、高温運転の実行中に、所定のタイミングで、燃料電池10の発電性能が著しく低下した限界状態にないかを判定する(図3のステップS30)。この判定処理では、制御部20は、例えば、燃料電池10の所定の電流に対するセル電圧が所定の閾値よりも低下したときに、燃料電池10の発電状態が限界状態であると判定しても良い。また、燃料電池10のインピーダンスに基づき取得したセル抵抗が著しく増大したときに、燃料電池10の発電状態が限界状態であると判定しても良い。
 制御部20は、燃料電池10の発電状態が限界状態でないと判定した場合には、高温運転の制御を継続する(ステップS25)。また、高温運転の実行中に、燃料電池10の運転温度が低下し、高温状態から回復したときには、通常運転に復帰する(破線矢印で図示)。
 一方、制御部20は、ステップS30において、燃料電池10の発電状態が限界状態であると判定した場合には、燃料電池10の劣化を回避するための劣化回避運転を開始する(ステップS40)。この劣化回避運転では、燃料電池10の出力制御が制限される。具体的には、制御部20は、燃料電池10の出力電力を所定の限界値で制限する。より具体的には、制御部20は、燃料電池10の電圧を所定の限界電圧Vlimに制限し、燃料電池10の電流を所定の限界電流Ilimに制限する。なお、この劣化回避運転の実行中には、要求電力に対する不足分を二次電池81が補償する。
 ここで、この劣化回避運転の実行中であっても、二次電池81によって補償できる電力を超える電力が要求されるなど、燃料電池10の電圧をさらに上昇させる必要がある要求がなされる場合がある。また、燃料電池システムの内部的な要求により、燃料電池10の電圧をさらに上昇させる必要が生じる場合がある。
 本実施例の燃料電池システム100では、劣化回避運転の継続中に、燃料電池10の電圧を上昇させる必要のある要求を検出した場合には(ステップS50)、その要求を無効とせず、発電特性回復運転の実行を開始する(ステップS60)。この発電特性回復運転は、以下に説明する一時的電圧低下処理を所定の周期で、所定の回数、繰り返して実行することにより、燃料電池10の発電性能を一時的に向上させる運転である。
 図6(A)~(C)は、一時的電圧低下処理による燃料電池の発電性能の一時的向上を説明するための説明図である。図6(A),(B)のグラフは実験により得られたものである。図6(A)は、燃料電池の電流の時間変化を示すグラフであり、図6(B)は、燃料電池の電圧の時間変化を示すグラフである。図6(A),(B)のグラフはそれぞれ、時間軸を互いに対応させて図示してある。
 この実験では、時刻t1~t2の間に、燃料電池の電流を、I1からI2に増大させ、I2で一時的に保持した後、再びI1まで低下させた(図6(A))。このとき、燃料電池の電圧は、電流の増大に伴って、V1からV2まで低下したが、電流を元の電流値I1に復帰させたとき(時刻t2)には、元の電圧V1よりも高い電圧V3となり、その後も元の電圧V1より高い電圧がしばらく維持された(図6(B))。
 図6(C)は、一時的に電圧を低下させた後の電圧の上昇を燃料電池のI-V特性によって説明するための説明図である。図6(C)には、時刻t1(燃料電池の電圧を低下させる前)における燃料電池のI-V特性を示すグラフを破線で図示し、時刻t2(燃料電池の電圧を回復させた後)における燃料電池のI-V特性を示すグラフを実線で図示してある。
 図6(A),(B)に示されたように、一時的に電流を増大させた後に、燃料電池の電流と電圧とが対応しなくなったのは、図6(C)に示すように、燃料電池のI-V特性が回復する方向に変化したためである。このI-V特性の変化は、一時的な電流の増大によって、燃料電池内部の水分の増加がもたらされ、電解質膜の乾燥領域の減少や、触媒の酸化被膜の減少/活性化などが促進されたためである。なお、ここまでの説明からも理解できるとおり、一時的電圧低下処理の実行前後における、ある電流に対する電圧の上昇量(図6では、電流I1に対してV3-V1として得られる量)は、燃料電池の発電性能の向上の度合いを示す値であると解釈できる。
 このように、燃料電池の電圧を一時的に低下させて、燃料電池の発電特性(I-V特性)に基づいた一時的な電流の増大を生じさせる一時的電圧低下処理を実行することにより、燃料電池の発電特性を回復させ、燃料電池の発電性能を向上させることができる。ただし、この発電特性の回復変化による発電性能の向上は、一時的なものであり、燃料電池の電圧は、電流を一定に保持していても、時間の経過とともに次第に低下する。従って、所望の発電性能の向上を得るためには、一時的電圧低下処理を、繰り返し実行することが望ましい。
 図7(A),(B)は、発電特性回復運転における燃料電池10の出力制御を説明するための説明図である。図7(A)には、縦軸を電圧とし、横軸を時間として、発電特性回復運転の実行開始前後における燃料電池10の電圧の時間変化の一例を示すグラフを図示してある。また、図7(B)には、縦軸を電流とし、横軸を時間として、図7(A)と時間軸を対応させて、燃料電池10の電流の時間変化の一例を示すグラフを図示してある。
 ここで、劣化回避運転において燃料電池10が限界電圧Vlimおよび限界電流Ilimを出力しているときに、制御部20が、燃料電池10の電圧を目標電圧Vtまで上昇させる要求を検出したものとする(図3のステップS40,S50)。制御部20は、発電特性回復運転として、以下のように燃料電池10の出力制御を実行する(ステップS60)。
 制御部20は、燃料電池10の電圧を、制限電圧VlimからVcまで低下させ、電流をIlimからIcへと増大させる(時刻t1a)。そして、低下後の電圧Vcで所定の期間保持した後、電流が元のIlimに戻るように、電圧を、元の限界電圧Vlimよりも高いVpまで上昇させる(時刻t1b)。
 以後、本明細書では、一時的電圧低下処理後の上昇電圧Vpと、一時的電圧低下処理実行前の元の電圧Vlimとの差、即ち、一時的電圧低下処理による電圧の上昇量を「電圧上昇量ΔV」と呼ぶ(ΔV=Vp-Vlim)。本実施例の燃料電池システム100では、目標電圧Vtに基づいて上昇電圧Vpを設定するとともに、電圧上昇量ΔVの目標値(目標上昇量ΔV)を設定し、目標上昇量ΔVを得るための一時的電圧低下処理の処理条件を決定するが、詳細は後述する。
 なお、上記の「上昇電圧Vp」が、特許請求の範囲における「目標電圧」に相当し、「目標上昇量ΔV」が、特許請求の範囲における「目標電圧上昇量」に相当する。
 時刻t1b~t2aでは、制御部20は、燃料電池10から流出する電流がIlimで保持されるように制御する。しかし、前記したとおり、燃料電池10の発電性能の向上は一時的なものであるため、制御部20は、予め設定された速度で、電圧をVpから徐々に低下させる。以後、制御部20は、燃料電池10の電圧の時間平均が目標電圧Vtとなるように、時刻t1a~t1bの期間と同様な一時的電圧低下処理を、所定の回数、一定の周期Tで繰り返す。
 このように、本実施例の燃料電池システム100では、発電特性回復運転において、上述したような一時的に電圧を低下させる一時的電圧低下処理を繰り返し実行することにより、燃料電池10の電圧を、限界電圧Vlimから、さらに上昇させることができる。発電特性回復運転は、具体的には、以下のような手順で実行される。
 図8は、発電特性回復運転の具体的な制御手順を示すフローチャートである。ステップS100では、制御部20は、要求されている電圧(目標電圧Vt)に基づいて、一時的電圧低下処理後の上昇電圧Vpを設定するとともに、一時的電圧低下処理によって上昇させるべき電圧の上昇量である目標上昇量ΔVを設定する。具体的には、制御部20は、目標電圧Vtと、予め設定されている一時的電圧低下処理を繰り返す周期Tとに基づいて、上昇電圧Vpや目標上昇量ΔVを設定する。制御部20は、予め準備された関係を用いて、目標電圧Vtに対する上昇電圧Vpや目標上昇量ΔVを設定しても良い。
 ステップS110では、制御部20は、目標上昇量ΔVに基づき、一時的電圧低下処理における燃料電池10の最低電圧(電圧低下の目標値)である低下後電圧Vcを、一時的電圧低下処理の処理条件として決定する。具体的には、制御部20は、以下のように低下後電圧Vcを取得する。
 図9は、本発明の発明者が実験によって得たグラフであり、所定の電流に対する電圧が、一時的電圧低下処理を実行した後に上昇した量(電圧上昇量)と、一時的電圧低下処理における電圧の低下量(電圧低下量)との関係を示すグラフである。本発明の発明者は、燃料電池に電流密度0.25A/cm2,0.5A/cm2,1A/cm2で発電させているときにそれぞれ、一時的電圧低下処理を電圧低下量を変えて実行し、前記の元の電流密度にそれぞれ回復させたときの電圧の上昇量を計測した。そして、各計測値のプロットから、図9に示す破線の直線グラフG1が得られた。
 本発明の発明者は、この実験により、一時的電圧低下処理における電圧低下量と、一時的電圧低下処理によって得られる電圧上昇量との間には、電圧低下量が大きいほど、電圧上昇量がほぼ一定の割合で増大する線形関係があることを見出した。そして、その線形関係は、燃料電池の電流の値にかかわらず、ほぼ一定の関係として得られることを見出した。
 ここで、制御部20は、図9と同様な電圧低下量と電圧上昇量との関係を表すマップを予め格納している。ステップS110では、そのマップを用いて、目標上昇量ΔVに対する電圧低下量Vdを取得し、電圧低下量Vdと現在の電圧Viとから、一時的電圧低下処理における電圧低下の目標値である低下後電圧Vc(Vc=Vi-Vd)を取得する。
 ステップS120では、燃料電池10の電圧を、ステップS110で決定した低下後電圧Vcまで一時的に、所定の一定期間だけ低下させる一時的電圧低下処理を、予め設定された周期Tで、所定の回数、繰り返し実行する。これによって、図7で説明したように、燃料電池10の電圧を限界電圧Vlimから上昇させることができ、一時的電圧低下処理が繰り返し実行されている期間の燃料電池10の電圧の時間平均をとったときに、目標電圧Vtが得られる。
 ステップS130では、制御部20は、一時的電圧低下処理によって適正な電圧上昇量が得られたか否かの判定を行う。具体的には、制御部20は、燃料電池10の上昇後の電圧を計測し、目標値である目標上昇量ΔVと、実際に電圧が上昇した量との間の誤差を算出し、その誤差が予め設定された許容範囲(例えば、±10%程度)にあるか否かを判定する。
 制御部20は、誤差が許容範囲から外れている場合には、その誤差が低減されるように、図9で説明したマップを補正する(ステップS140)。具体的には、一時的電圧低下処理実行後に得られた実際の電圧の上昇量を反映させて、マップが表すグラフをシフトさせる。あるいは、制御部20は、マップが表すグラフの勾配を変化させても良い。
 制御部20は、ステップS120の一時的電圧低下処理において、目標上昇量ΔVとして適正な値が得られていた場合、または、ステップS130におけるマップの補正が完了した場合には、発電特性回復運転を終了する。そして、再び、燃料電池10の電圧の上昇が必要になるまで、劣化回避運転を実行する(ステップS40)。なお、劣化回避運転の実行中に、燃料電池10の発電性能が限界状態から回復した場合には、制御部20は、ステップS25の高温運転に復帰し、さらに、燃料電池10が高温状態でなくなっているときには、通常運転へと復帰する(破線矢印で図示したフロー)。
 以上のように、本実施例の燃料電池システム100であれば、燃料電池10が高温状態となって発電性能が低下し、限界域まで到達してしまった後であっても、発電特性回復運転によって、燃料電池10の電圧を目標電圧まで到達させることが可能である。従って、高温状態における燃料電池10の制御性が向上する。また、発電特性回復運転では、目標電圧に応じて一時的電圧低下処理の処理条件が設定されるため、燃料電池10の電圧を適切に制御することが可能である。さらに、一時的電圧低下処理によって実際に上昇した電圧の上昇量が、処理条件を設定するためのマップにフィードバックされるため、燃料電池10の制御性をより向上させることが可能である。
B.第2実施例:
 図10は本発明の第2実施例としての燃料電池システムが実行する発電特性回復運転の制御手順を示すフローチャートである。図10は、ステップS110に換えてステップS111が設けられている点以外は、図8とほぼ同じである。なお、第2実施例の燃料電池システムの構成は、第1実施例の燃料電池システムの構成とほぼ同じである(図1,図2)。また、第2実施例の燃料電池システムにおける制御部20によるシステム制御の手順は、第1実施例で説明した手順と同様である(図3)。
 第2実施例の発電特性回復運転では、制御部20は、ステップS110において、目標上昇量ΔVを取得した後、その目標上昇量ΔVに基づいて、一時的電圧低下処理における電圧の回復速度である電圧上昇速度Vrvを設定する(ステップS111)。制御部20は、電圧上昇速度Vrvの設定値を取得するために、以下に説明する、一時的電圧低下処理において電圧を回復させるときの電圧の上昇速度(電圧上昇速度)と、電圧上昇量との関係を利用する。
 図11は、本発明の発明者が実験によって得たグラフであり、燃料電池に対して、一時的電圧低下処理を実行したときの、電圧上昇速度と、電圧上昇量との関係を示すグラフである。図11には、左側の縦軸をセル電圧とし、右側の縦軸を電流密度とし、横軸を時間として、下段に、電流密度の時間変化を示すグラフGI1~GI3を示し、上段に、電圧の時間変化を示すグラフGV1~GV3を示してある。
 このグラフに示されているように、電流密度をIhighからIlowに低下させたときの電流密度の低下速度が小さいほど、即ち、電圧の上昇速度が大きいほど、変化後の電圧の値が高くなった。このことから、本発明の発明者は、一時的電圧低下処理では、電圧の回復速度が大きいほど、電圧上昇量が大きくなることを見出した。即ち、本発明の発明者は、一時的電圧低下処理では、電圧の上昇速度が大きいほど、燃料電池の性能の向上の度合いが高くなることを見出した。そこで、第2実施例の燃料電池システムでは、制御部20は、一時的電圧低下処理の処理条件の設定のために、以下のようなマップを用いる。
 図12は、ステップS111において、制御部20が、目標上昇量ΔVに基づいて電圧の上昇速度Vrvを取得するために用いるマップの一例を示す説明図である。図12には、ステップS111で用いられるマップを、縦軸を電圧上昇量とし、横軸を電圧上昇速度とするグラフとして示してある。このマップは、電圧上昇量が大きいほど、電圧上昇速度が大きくなり、電圧上昇量が大きいほど、電圧上昇速度の変化率が小さくなるように設定されている。
 制御部20は、このマップを用いて、目標上昇量ΔVに対する電圧上昇速度Vrvを取得する(ステップS111)。そして、一時的電圧低下処理として、燃料電池10の電圧を所定の低下後電圧Vcまで低下させて、所定の期間、低下後電圧Vcで保持した後、電圧上昇速度Vrvで燃料電池の電圧を回復させる(ステップS120)。なお、第2実施例の燃料電池システム100では、一時的電圧低下処理を所定の周期Tで実行できるように、電圧上昇速度Vrvに応じて、一時的電圧低下処理の実行間隔(電圧上昇後から再び電圧が低下されるまでの時間間隔)が調整されるものとしても良い。
 以上のように、第2実施例の燃料電池システムでは、予め取得した関係を用いて、所望の電圧上昇量に基づき、一時的電圧低下処理の処理条件の1つである電圧上昇速度を設定することにより、燃料電池10の所望の発電特性の回復を得ることができる。従って、高負荷運転時における燃料電池10の制御性が向上する。なお、第2実施例の燃料電池システムでは、予め取得した関係を用いて、所望の電圧上昇量に基づいて、一時的電圧低下処理における電流の低下速度が設定されているものと解釈することも可能である。
C.第3実施例:
 図13は、本発明の第3実施例としての燃料電池システムにおいて制御部20が実行するシステム制御の制御手順を示すフローチャートである。図13は、ステップS24が追加されている点以外は、図3とほぼ同じである。図14は、第3実施例の燃料電池システムにおける発電特性回復運転の制御手順を示すフローチャートである。
 図14は、ステップS105が追加されている点と、ステップS110に換えてステップS112が設けられている点以外は、図8とほぼ同じである。なお、第3実施例の燃料電池システムの構成は、第1実施例の燃料電池システム100の構成とほぼ同じである(図1,図2)。第3実施例の燃料電池システムでは、目標上昇量ΔVと、燃料電池10が高温状態である間の累積時間(燃料電池10が高温状態に曝された累積時間)とに基づいて、一時的電流低下処理の処理条件が設定される。具体的には以下の通りである。
 制御部20は、通常運転の実行時に、燃料電池10が高温状態であることを検出した場合には、燃料電池10が高温状態である間の累積時間(以下、「高温継続時間」と呼ぶ)の計測を開始した後、高温運転を開始する(ステップS24,S25)。この高温継続時間は、以下に説明するように、発電特性回復運転において、一時的電圧低下処理の処理条件の設定に用いられる。なお、高温計測時間は、燃料電池10の運転温度が低下し、高温状態でなくなってから所定の時間が経過したときにリセットされても良い。
 発電特性回復運転(図14)では、制御部20は、ステップS100において、目標上昇量ΔVを取得した後、現在の高温継続時間を、一時的電圧低下処理を実行する直前の燃料電池10の運転状態として取得する(ステップS105)。そして、ステップS112では、所定の関係を用いて、目標上昇量ΔVと、高温継続時間とに基づいて、一時的電圧低下処理における低下後電圧Vcを決定する。
 図15は、本発明の発明者の実験により得られたグラフであり、燃料電池に対して、高温継続時間ごとに、一定の処理条件で一時的電圧低下処理を実行したときの計測結果を、縦軸を電圧上昇量とし、横軸を高温継続時間として示したグラフである。なお、実線グラフG1は、一時的電圧低下処理において低下後電圧Vcを保持した期間を、破線グラフG2のときよりも長く設定したときのグラフである。
 一時的電圧低下処理の処理条件を一定にした場合、一時的電圧低下処理による電圧上昇量は、高温継続時間が長くなるほど大きくなる。そして、電圧上昇量の増加率は、高温継続時間が長くなるほど低下し、高温継続時間がある値を超えると電圧上昇量は最大値に収束する。
 本発明の発明者は、この高温継続時間と、電圧上昇量との関係は、一時的電圧処理における最低電圧である低下後電圧ごとに取得できることを見出した。第3実施例の燃料電池システムでは、そうした高温継続時間と、電圧上昇量と、低下後電圧との関係を表したマップとを用いて、高温継続時間Tdと、目標上昇量ΔVとに基づいて、一時的電圧低下処理の処理条件である低下後電圧Vcを決定する。
 図16は、ステップS112において、一時的電圧低下処理の処理条件を決定するために用いるマップの一例を示す模式図である。第3実施例の燃料電池システムでは、制御部20は、低下後電圧Vc(Vc=v1,v2,v3,…,vn-1,vn)ごとの高温継続時間と電圧上昇量との関係を表すマップを予め記憶している。
 ステップS112では、制御部20は、ステップS105で取得した高温継続時間Tdに対して目標上昇量ΔVが得られるマップを選択し、そのマップに対応する低下後電圧Vcを取得する。そして、その低下後電圧Vcを一時的電圧低下処理の処理条件として決定する。なお、図16のマップは、一時的電圧低下処理を実行した後に計測される燃料電池10の電圧上昇量の実測値に基づいて補正される(ステップS140)。
 以上のように、第3実施例の燃料電池システムであれば、目標上昇量ΔVに加えて、一時的電圧低下処理の実行直前における高温継続時間Tdに基づいて、適切な一時的電圧低下処理の処理条件を設定することができる。従って、高負荷運転時における燃料電池10の制御性が向上する。
C1.第3実施例の他の構成例:
 上記の第3実施例では、目標上昇量ΔVと、高温継続時間Tdとに基づいて、一時的電圧低下処理の処理条件として、低下後セル電圧Vcを決定していた。しかし、図15のグラフに示したとおり、一時的電圧低下処理の実行後の電圧上昇量は、一時的電圧低下処理において低下後電圧Vcを保持した時間(低電圧保持期間)が長いほど大きくなった。この関係を利用することにより、制御部20は、目標上昇量ΔVと、高温継続時間Tdとに基づいて、一時的電圧低下処理における低電圧保持期間を決定することも可能である。
D.第4実施例:
 図17は、本発明の第4実施例としての燃料電池システムにおいて実行される発電特性回復運転の処理手順を示すフローチャートである。第4実施例の燃料電池システムでは、燃料電池10の運転状態として、カソード触媒の現在の触媒利用率ψiを取得し、その触媒利用率ψiと、目標上昇量ΔVとに基づいて、一時的電圧低下処理の処理条件を決定する。なお、第4実施例の燃料電池システムの構成は第1実施例の燃料電池システムの構成とほぼ同じである(図1,図2)。また、第4実施例の燃料電池システムにおいて制御部20が実行するシステム制御の制御手順は、第1実施例で説明した制御手順と同様である(図3)。
 第4実施例の燃料電池システムでは、燃料電池10が高温状態において限界状態にあると判定され、さらに、燃料電池10に対して電圧の上昇要求がなされたときに、以下に説明する発電特性回復運転を実行する。ステップS200では、第1実施例で説明したステップS100(図8)と同様に、現在の燃料電池10の電圧と、目標電圧Vtと、予め設定された一時的電圧低下処理の実行周期Tとに基づき、一時的電圧低下処理における目標上昇量ΔVを設定する。
 ステップS210では、制御部20は、燃料電池10の現在のカソード電位φiを取得する。カソード電位φiは、燃料電池10の現在のセル電圧Vciと、インピーダンス計測部93の計測値から取得できる燃料電池10のセル抵抗Rと、燃料電池10の現在の電流密度Iを用いて、下記の数式(1)から取得することができる。
 φi=Vci+I×R …(1)
 図18は、カソード電位と触媒利用率との関係を表すマップの一例を示す説明図である。このマップは、燃料電池システムの起動時に、制御部20が、LSV(Linear Sweep Voltammetry)によって取得するものとしても良いし、制御部20の記憶部に予め格納されているものとしても良い。カソード電位と触媒利用率との関係は、通常、カソード電位が高いほど、触媒利用率が低下する横S字状のなだらかな曲線グラフとして表すことができ、カソード電位と触媒利用率とは、互いに一意に求めることができる。
 ステップS220では、制御部20は、このマップを用いて、現在のカソード電位φiに対する現在の触媒利用率ψiを取得する(破線矢印で図示)。ステップS230では、ターフェルの式に基づく下記の数式(2)に、現在の触媒利用率ψiと、目標上昇量ΔVと、セル抵抗Rと、燃料電池10の現在の運転温度Tとを代入し、一時的電圧低下処理後の触媒利用率の目標値である目標触媒利用率ψtを取得する。
 ΔV=(R×T/α×F)×ln(ψt/ψi)…(2)
ここで、αはカソード反応の移動係数であり、通常、0.5~1.0の間の値となる。Fはファラデー定数である。
 ステップS240では、図18で説明したマップを再び用いて、目標触媒利用率ψtに対する目標カソード電位φtを取得する(図18において一点鎖線の矢印で図示)。ステップS250では、取得した目標カソード電位φtと、燃料電池10のセル抵抗Rと、電流密度Iとを、下記の数式(3)に代入して、一時的電圧低下処理における低下後電圧Vcを取得する。
 Vc=φt-I×R …(3)
 ステップS260では、ステップS250で取得した低下後電圧Vcを所定の期間保持する一時的電圧低下処理を、所定の周期Tで、所定の回数、繰り返して実行する。そして、ステップS270では、一時的電圧低下処理における燃料電池10の実際の電圧上昇量を計測し、目標値である目標上昇量ΔVとの間の誤差を算出する。制御部20は、その誤差が予め設定された許容範囲(例えば、±10%程度)から外れている場合には、図18で説明したマップを補正する(ステップS280)。
 以上のように、第4実施例の燃料電池システムでは、目標電圧から取得できる目標上昇量ΔVと、一時的電圧低下処理の実行直前における燃料電池10の運転状態を示す触媒利用率ψiと、に基づいて、一時的電圧低下処理の処理条件である低下後電圧Vcを決定する。ここで、一時的電圧低下処理によって燃料電池10の発電特性が回復する理由の1つは、一時的な電流の増大によって、触媒の酸化被膜が減少し、触媒利用率が向上するためである。従って、触媒利用率に基づいて一時的電圧低下処理の処理条件を設定することによって、より直接的に、燃料電池10における発電性能の向上の度合いを制御することができ、燃料電池10の出力制御がより高い精度で可能となる。
E.第5実施例:
 図19は、第4実施例の燃料電池システムにおいて実行される発電特性回復運転の制御手順を示すフローチャートである。図19は、ステップS115が追加されている点以外は、図8とほぼ同じである。なお、第5実施例の燃料電池システムの構成は、第1実施例の燃料電池システム100の構成とほぼ同じである(図1,図2)。また、第4実施例の燃料電池システムにおいて制御部20が実行するシステム制御の制御手順は、第1実施例で説明した手順と同様である(図3)。
 ここで、一時的電圧低下処理を実行する際には、二次電池81の出力によって、燃料電池10の出力不足が補償される場合がある。しかし、既に説明したとおり、二次電池81のSOCには下限値が予め設定されているため、二次電池81のSOCが著しく低い場合には、一時的電圧低下処理の実行の際の二次電池81による補償が困難となってしまう可能性がある。そこで、第5実施例の燃料電池システムでは、ステップS110において、一時的電圧低下処理の処理条件を設定した後に、一時的電圧低下処理が繰り返し実行されている間の二次電池81による補償を確保するための準備処理を実行する(ステップS115)。
 図20は、ステップS115における二次電池81の準備処理の処理手順を示すフローチャートである。ステップS300では、制御部20は、一時的電圧低下処理の処理条件に基づいて、二次電池81による出力補償が必要であるか否かの判定処理を実行する。具体的には、制御部20は、燃料電池10に現在要求されている電力(要求電力)と、一時的電圧低下処理が繰り返し実行されている間に燃料電池10が出力できるであろう電力とを比較する。そして、要求電力に対して、一時的電圧低下処理が繰り返し実行されている間の燃料電池10の出力電力が不足するか否かを判定する。
 二次電池81による出力補償が必要であると判定した場合には、制御部20は、二次電池81の現在のSOCを検出する(ステップS310)。一方、二次電池81による出力補償が必要でないと判定した場合には、制御部20は、発電特性回復運転に戻り、一時的電圧低下処理を所定の周期Tで、所定の回数、繰り返し実行する(図19のステップS120)。
 ステップS320(図20)では、制御部20は、現在の二次電池81のSOCに基づいて、一時的電圧低下処理の実行中に不足する電力を二次電池81が補償できるか否かを判定する。即ち、二次電池81に、その不足電力を出力させた場合に、二次電池81のSOCが下限値より低くならないかを判定する。制御部20は、二次電池81による補償が可能であると判定した場合には、発電特性回復運転に戻り、一時的電圧低下処理の実行を開始する(図19のステップS120)。
 ステップS330(図20)以降の処理では、制御部20は、一時的電圧低下処理の実行を確保するために、二次電池81の出力制限を緩やかにする処理、または、一時的電圧低下処理の処理条件を変更する処理のいずれかを実行する。具体的には、以下の通りである。
 制御部20は、二次電池81に不足電力を補償させると、二次電池81のSOCが下限値より低くなってしまうと判定した場合には、その下限値をより低い値に再設定することにより、二次電池81による補償が可能となるか否かを判定する(ステップS330)。即ち、二次電池81のSOCの下限値を予め規定された、初期設定の下限値より低い第2の下限値に再設定し、二次電池81に一時的電圧低下処理における不足電力を補償させた場合に、二次電池81のSOCが、第2の下限値より低くなるか否かを判定する。
 制御部20は、二次電池81のSOCの下限値の変更により、一時的電圧低下処理における不足電力の補償が可能となると判定した場合には、二次電池81のSOCの下限値を第2の下限値に変更する(ステップS340)。ここで、二次電池81のSOCの下限値は、二次電池81の蓄電量不足による劣化を防止するために設定された値である。しかし、燃料電池10の発電性能が向上すれば、二次電池81にかかる負荷も低減されることから、第4実施例の燃料電池システムでは、二次電池81のSOCの制限を、あえて一時的に緩和することにより、一時的電圧低下処理の実行を確保する。
 制御部20は、二次電池81のSOCの下限値を変更しても、一時的電圧低下処理における不足電力の補償はできないと判定した場合には、一時的電圧低下処理の処理条件を変更する(ステップS350)。具体定期には、一時的電圧低下処理の実行中における不足電力が低減されるように、低下後電圧Vcの値を上昇させる補正を実行する。制御部20は、SOCの下限値の変更、または、低下後電圧Vcの変更を実行した後に、発電特性回復運転に戻り、一時的電圧低下処理の実行を開始する(図19のステップS120)。
 以上のように、第5実施例の燃料電池システムでは、二次電池81による電力の補償が可能になるように予め準備することにより、一時的電圧低下処理の実行を確保する。従って、高負荷運転時における燃料電池10の発電性能を確実に向上させることができる。
F.変形例:
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
F1.変形例1:
 上記の各実施例では、燃料電池システムが燃料電池車両に搭載されていた。しかし、各実施例の燃料電池システムは、燃料電池車両に搭載されていなくとも良い。燃料電池システムは、外部からの要求に応じた電力を供給する電力供給源として、他の装置やシステム等に搭載されても良い。
F2.変形例2:
 上記の各実施例では、制御部20は、目標上昇量ΔVに基づいて、一時的電圧低下処理の処理条件として、低下後電圧Vcや、電圧上昇速度Vrv、低電圧保持期間を設定していた。しかし、目標上昇量ΔVと一時的電圧低下処理実行後の上昇電圧Vpとは一意の関係であるため、一時的電圧低下処理実行後の目標電圧である上昇電圧Vpに基づき、一時的電圧低下処理の処理条件を設定していると解釈することができる。従って、制御部20は、上記実施例で説明したマップに換えて予め準備された上昇電圧Vpと一時的電圧低下処理の処理条件との関係を表したマップを用いても良い。なお、制御部20は、予め準備された目標電圧Vtと一時的電圧低下処理の処理条件との間の関係を用いて、目標電圧Vtに基づき、一時的電圧低下処理の処理条件を設定しても良い。
 また、制御部20は、一時的電圧低下処理の処理条件として、他の処理条件を設定しても良い。制御部20は、例えば、上昇電圧Vpや目標上昇量ΔVに基づいて、一時的電圧低下処理を繰り返し実行する際の周期Tを設定しても良い。また、制御部20は、上昇電圧Vpや目標上昇量ΔVに基づいて、複数の処理条件を設定しても良い。例えば、制御部20は、上昇電圧Vpや目標上昇量ΔVに基づいて、低下後電圧Vcと、電圧上昇速度Vrvとを設定しても良い。
F3.変形例3:
 上記第3実施例では、一時的電圧低下処理の実行直前における燃料電池10の運転状態として、高温継続時間Tdを検出し、目標上昇量ΔVと、高温継続時間Tdとに基づいて、一時的電圧低下処理の処理条件を決定していた。しかし、一時的電圧低下処理の処理条件を決定するために検出する燃料電池10の運転状態は、他の要素であっても良い。具体的には、以下のようなものがある。
  ・セル電圧
  ・インピーダンス
  ・電流密度
  ・反応ガスのストイキ比
  ・入口圧、または、出口圧(背圧)
 ここで、上記の「ストイキ比」とは、燃料電池の発電量に対して理論的に必要なカソードガスの量(カソードガスの理論的消費量)に対する実際のカソードガスの供給量の比を意味する。また、「入口圧」とは、燃料電池10の反応ガスの供給側における圧力を意味し、「出口圧(背圧)」とは、燃料電池10の反応ガスの排出側における圧力を意味する。
 なお、一時的電圧低下処理の処理条件は、一時的電圧低下処理実行後の目標電圧である上昇電圧Vpと、上記の燃料電池10の運転状態の要素のうちの少なくとも1つとに基づいて決定されれば良い。一時的電圧低下処理の処理条件は、例えば、上昇電圧Vpと、高温継続時間Tdと、セル電圧との組み合わせに基づいて決定されても良く、更に多次元的な要素の組み合わせによって決定されても良い。
F4.変形例4:
 上記の各実施例では、燃料電池10の高温状態を検出した後、高温運転を開始し(ステップS25)、燃料電池10の劣化回避運転(ステップS40)の実行中に、発電特性回復運転(ステップS60)を開始していた。しかし、燃料電池10の高温状態の検出は省略されても良いし、高温運転の実行や劣化回避運転の実行も省略されても良い。制御部20は、例えば、燃料電池10の電解質膜の乾燥や発電性能の低下が検出されたときに、発電特性回復運転を実行しても良い。
F5.変形例5:
 上記の各実施例では、一時的電圧低下処理条件の決定の際に、制御部20は、目標上昇量ΔVと一時的電圧低下処理の処理条件との関係を表したマップや、目標上昇量ΔVと、燃料電池10の運転状態と、一時的電圧低下処理の処理条件と、の関係を表したマップを用いていた。しかし、制御部20は、そうしたマップを用いなくとも良く、例えば予め設定された数式や関数などの対応関係を用いて、目標上昇量ΔVや、燃料電池10の運転状態に基づいて、一時的電圧低下処理の処理条件を設定しても良い。また、制御部20は、そうしたマップや数式などによって表される関係を用いなくとも良い。制御部20は、少なくとも、一時的電圧低下処理実行後の目標電圧である上昇電圧Vp(上昇電圧Vpから一意に求められる値を含む)に基づいて、一時的電圧低下処理の処理条件を設定すれば良い。
F6.変形例6:
 上記の各実施例では、一時的電圧低下処理を実行した後の電流を、電圧の低下を開始する直前の電流と同じとなるように制御していた。しかし、一時的電圧低下処理の実行後の電流は、電圧の低下を開始する直前の電流と異なる電流に制御されても良い。
F7.変形例7:
 上記第5実施例では、制御部20は、ステップS340において、二次電池81のSOCの下限値を低下させていた。しかし、制御部20は、ステップS340において、二次電池81のSOCの制限自体を解除しても良い。
F8.変形例8:
 上記の各実施例では、一時的電圧低下処理を実行した後に、燃料電池10の電圧の実測値と、目標上昇量ΔVとに基づいて、マップの補正を実行していた。しかし、マップの補正処理は省略されても良い。
  10…燃料電池
  11…発電体
  20…制御部
  30…カソードガス供給部
  31…カソードガス配管
  32…エアコンプレッサ
  33…エアフロメータ
  34…開閉弁
  35…加湿部
  40…カソードガス排出部
  41…カソード排ガス配管
  43…調圧弁
  44…圧力計測部
  50…アノードガス供給部
  51…アノードガス配管
  52…水素タンク
  53…開閉弁
  54…レギュレータ
  55…水素供給装置
  56…圧力計測部
  60…アノードガス循環排出部
  61…アノード排ガス配管
  62…気液分離部
  63…アノードガス循環配管
  64…水素循環用ポンプ
  65…アノード排水配管
  66…排水弁
  67…圧力計測部
  70…冷媒供給部
  71…冷媒用配管
  71a…上流側配管
  71b…下流側配管
  71c…バイパス配管
  72…ラジエータ
  73…三方弁
  75…冷媒循環用ポンプ
  76a,76b…冷媒温度計測部
  81…二次電池
  82…DC/DCコンバータ
  83…DC/ACインバータ
  91…セル電圧計測部
  92…電流計測部
  93…インピーダンス計測部
  94…SOC検出部
  95…開閉スイッチ
 100…燃料電池システム
 101…外気温センサ
 102…車速センサ
 200…モータ
 DCL…直流配線

Claims (8)

  1.  燃料電池システムであって、
     燃料電池と、
     前記燃料電池の電圧を制御する制御部と、
    を備え、
     前記制御部は、前記燃料電池の所定の電流に対する電圧の目標値である目標電圧に基づいて、電流と電圧の関係として表される前記燃料電池の発電特性を変化させるための処理条件を設定し、
     前記制御部は、前記燃料電池の電圧を前記燃料電池の発電特性に基づいて一時的に低下させることにより、前記燃料電池の一時的な電流の増大を生じさせて、前記燃料電池の発電特性を変化させる一時的電圧低下処理を、前記処理条件に従って実行する、燃料電池システム。
  2.  請求項1記載の燃料電池システムであって、
     前記制御部は、前記一時的電圧低下処理を実行したときに、前記燃料電池の所定の電流に対する電圧が前記発電特性の変化により上昇する量と、前記一時的電圧低下処理の処理条件と、の関係を、予め取得しており、
     前記制御部は、前記関係を用いて、前記処理条件を、現在の前記所定の電流に対する電圧と前記目標電圧との差である目標電圧上昇量に基づいて設定する、燃料電池システム。
  3.  請求項2記載の燃料電池システムであって、
     前記処理条件は、
      前記一時的電圧低下処理における最低電圧と、
      前記一時的電圧低下処理において最低電圧を保持した期間と、
      前記一時的電圧低下処理において電圧を回復させるときの電圧の上昇速度と、
     のうちの少なくとも1つである、燃料電池システム。
  4.  請求項2または請求項3記載の燃料電池システムであって、さらに、
     前記一時的電圧低下処理を実行する直前の前記燃料電池の運転状態を検出する運転状態検出部を備え、
     前記制御部は、
      前記一時的電圧低下処理を実行したときに、前記燃料電池の所定の電流に対する電圧が前記発電特性の変化により上昇する量と、前記燃料電池の運転状態と、前記一時的電圧低下処理の処理条件と、の関係を、予め取得しており、
      前記関係を用いて、前記燃料電池の運転状態と、前記目標電圧と、に基づいて、前記処理条件を設定する、燃料電池システム。
  5.  請求項4記載の燃料電池システムであって、
     前記一時的電圧低下処理を実行する直前の前記燃料電池の運転状態は、
      前記燃料電池が所定の温度よりも高い高温状態にある期間の累積時間と、
      前記燃料電池の電極に担持された触媒の状態を示す触媒利用率と、
     のうちの少なくとも1つである、燃料電池システム。
  6.  請求項2から5のいずれか一項に記載の燃料電池システムであって、さらに、
     前記燃料電池の電圧を計測する電圧計測部を備え、
     前記制御部は、前記一時的電圧低下処理実行後の前記燃料電池の電圧の計測値と、前記目標電圧との差が低減されるように、前記関係の補正を実行する、燃料電池システム。
  7.  請求項1から6のいずれか一項に記載の燃料電池システムであって、さらに、
     前記制御部によって充放電が制御され、前記一時的電圧低下処理において、前記燃料電池の出力電力を補助する二次電池を備え、
     前記制御部は、前記二次電池の放電を制限する閾値である前記二次電池の充電状態の下限値を予め設定し、前記二次電池の充電状態が前記下限値より小さくならないように、前記二次電池の充電状態を管理しており、
     前記制御部は、前記一時的電圧低下処理を実行する際に、前記下限値を低下させることにより、前記二次電池の放電を制限する条件を緩やかにする、燃料電池システム。
  8.  燃料電池システムの制御方法であって、
    (a)コンピュータが、燃料電池の所定の電流に対する電圧の目標値である目標電圧に基づいて、電流と電圧との関係として表される前記燃料電池の発電特性を変化させるための処理条件を設定する工程と、
    (b)コンピュータが、前記燃料電池の電圧を前記燃料電池の発電特性に基づいて一時的に低下させることにより、前記燃料電池の一時的な電流の増大を生じさせて、前記燃料電池の発電特性を変化させる一時的電圧低下処理を、前記目標電圧に基づいて設定した処理条件によって実行する工程と、
    を備える、制御方法。
PCT/JP2012/007266 2011-11-28 2012-11-13 燃料電池システムおよび燃料電池システムの制御方法 WO2013080463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12853089.6A EP2787566A4 (en) 2011-11-28 2012-11-13 FUEL CELL SYSTEM AND METHOD FOR CONTROLLING FUEL CELL SYSTEM
CN201280058319.9A CN103959528A (zh) 2011-11-28 2012-11-13 燃料电池系统及燃料电池系统的控制方法
US14/360,368 US20140335433A1 (en) 2011-11-28 2012-11-13 Fuel cell system and control method of fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011259040A JP5817472B2 (ja) 2011-11-28 2011-11-28 燃料電池システムおよび燃料電池システムの制御方法
JP2011-259040 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013080463A1 true WO2013080463A1 (ja) 2013-06-06

Family

ID=48534963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007266 WO2013080463A1 (ja) 2011-11-28 2012-11-13 燃料電池システムおよび燃料電池システムの制御方法

Country Status (5)

Country Link
US (1) US20140335433A1 (ja)
EP (1) EP2787566A4 (ja)
JP (1) JP5817472B2 (ja)
CN (1) CN103959528A (ja)
WO (1) WO2013080463A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160380295A1 (en) * 2015-06-26 2016-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell
CN106663829A (zh) * 2014-08-08 2017-05-10 日产自动车株式会社 燃料电池系统以及燃料电池系统的控制方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133365B2 (ja) * 2014-08-01 2017-05-24 本田技研工業株式会社 燃料電池システムの運転方法
CN104617319B (zh) * 2015-01-26 2017-02-22 西南交通大学 Pemfc电堆电流加载方法
DE102015207600A1 (de) * 2015-04-24 2016-10-27 Volkswagen Aktiengesellschaft Verfahren zum Steuern eines Betriebspunktwechsels eines Brennstoffzellenstapels sowie Brennstoffzellensystem
CN107615544B (zh) * 2015-05-21 2018-11-27 日产自动车株式会社 电力调整系统及其控制方法
KR101703607B1 (ko) * 2015-07-08 2017-02-22 현대자동차 주식회사 촉매 활성화 시동 장치 및 이를 이용한 촉매 활성화 시동 방법
JP6483581B2 (ja) * 2015-09-24 2019-03-13 株式会社Subaru 充電装置
DE102015117240A1 (de) 2015-10-09 2017-04-13 Volkswagen Ag Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem und Fahrzeug
JP6432561B2 (ja) * 2016-06-08 2018-12-05 トヨタ自動車株式会社 燃料電池システム
JP6758606B2 (ja) * 2016-12-27 2020-09-23 トヨタ自動車株式会社 燃料電池システム
EP3664203A4 (en) * 2017-07-31 2020-09-09 Nissan Motor Co., Ltd. POWER SUPPLY SYSTEM AND CONTROL PROCEDURES FOR IT
WO2019138805A1 (ja) * 2018-01-12 2019-07-18 三菱自動車工業株式会社 車両の制御装置
CN110112441B (zh) * 2018-02-01 2021-03-02 郑州宇通客车股份有限公司 一种燃料电池系统的高电位控制方法及装置
KR20200111306A (ko) * 2019-03-18 2020-09-29 현대자동차주식회사 연료전지 스택의 운전 제어방법 및 제어시스템
DE102020102692A1 (de) 2020-02-04 2021-08-05 Audi Aktiengesellschaft Verfahren zum Betreiben eines Brennstoffzellensystems sowie Brennstoffzellensystem und Kraftfahrzeug mit einem Brennstoffzellensystem
JP7302528B2 (ja) * 2020-05-15 2023-07-04 トヨタ自動車株式会社 燃料電池システム
CN111942234B (zh) * 2020-08-20 2022-03-04 中车大同电力机车有限公司 机车动力装置的控制方法、机车动力装置和机车
CN112316569A (zh) * 2020-10-15 2021-02-05 东风汽车集团有限公司 一种分离效率可调的燃料电池气液分离器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129252A (ja) 2003-10-21 2005-05-19 Nissan Motor Co Ltd 燃料電池システム
JP2009170409A (ja) * 2007-12-18 2009-07-30 Commissariat A L'energie Atomique 温度を低下させることによる回復ステップを備える燃料電池の使用方法
JP2009187883A (ja) * 2008-02-08 2009-08-20 Toshiba Fuel Cell Power Systems Corp 燃料電池システムの電池特性回復操作方法
JP2010027298A (ja) * 2008-07-16 2010-02-04 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその性能回復方法並びに性能回復プログラム
JP2010027297A (ja) 2008-07-16 2010-02-04 Nissan Motor Co Ltd 燃料電池システム、燃料電池の運転方法、および燃料電池自動車
JP2010027328A (ja) * 2008-07-17 2010-02-04 Toyota Motor Corp 燃料電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472090B1 (en) * 1999-06-25 2002-10-29 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
DE10053851A1 (de) * 2000-10-30 2002-05-08 Siemens Ag Verfahren zur Regenerierung von CO-Vergiftungen bei HT-PEM-Brennstoffzellen
JP4135139B2 (ja) * 2002-10-30 2008-08-20 日産自動車株式会社 燃料電池の発電量制御装置
JP2004265692A (ja) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd 燃料電池システム
JP2006147404A (ja) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd 燃料電池システム
JP2007103115A (ja) * 2005-10-03 2007-04-19 Nissan Motor Co Ltd 燃料電池システム
JP5071879B2 (ja) * 2005-12-07 2012-11-14 トヨタ自動車株式会社 燃料電池システム
JP4577625B2 (ja) * 2007-12-20 2010-11-10 トヨタ自動車株式会社 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129252A (ja) 2003-10-21 2005-05-19 Nissan Motor Co Ltd 燃料電池システム
JP2009170409A (ja) * 2007-12-18 2009-07-30 Commissariat A L'energie Atomique 温度を低下させることによる回復ステップを備える燃料電池の使用方法
JP2009187883A (ja) * 2008-02-08 2009-08-20 Toshiba Fuel Cell Power Systems Corp 燃料電池システムの電池特性回復操作方法
JP2010027298A (ja) * 2008-07-16 2010-02-04 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその性能回復方法並びに性能回復プログラム
JP2010027297A (ja) 2008-07-16 2010-02-04 Nissan Motor Co Ltd 燃料電池システム、燃料電池の運転方法、および燃料電池自動車
JP2010027328A (ja) * 2008-07-17 2010-02-04 Toyota Motor Corp 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787566A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663829A (zh) * 2014-08-08 2017-05-10 日产自动车株式会社 燃料电池系统以及燃料电池系统的控制方法
US20170222238A1 (en) * 2014-08-08 2017-08-03 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system
EP3179546A4 (en) * 2014-08-08 2017-12-20 Nissan Motor Co., Ltd Fuel cell system and control method for fuel cell system
US10714776B2 (en) 2014-08-08 2020-07-14 Nissan Motor Co., Ltd. Fuel cell system and control method for fuel cell system
US20160380295A1 (en) * 2015-06-26 2016-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell
US10340542B2 (en) * 2015-06-26 2019-07-02 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method of fuel cell

Also Published As

Publication number Publication date
EP2787566A4 (en) 2015-06-03
EP2787566A1 (en) 2014-10-08
CN103959528A (zh) 2014-07-30
JP2013114855A (ja) 2013-06-10
JP5817472B2 (ja) 2015-11-18
US20140335433A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5817472B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5920525B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5051273B2 (ja) 燃料電池システムおよびその制御方法
AU2011259799B2 (en) Fuel cell system and control method therefor
CA2786027C (en) Method of estimating amount of liquid water in fuel cell, method of estimating amount of liquid water discharged from fuel cell, estimation apparatus of liquid water amount in fuel cell and fuel cell system
JP4407750B2 (ja) 燃料電池システム及びその制御方法。
US8420268B2 (en) Fuel cell system
KR101829105B1 (ko) 연료 전지 시스템, 건조 정도 취득 방법
KR101135659B1 (ko) 연료전지 시스템
JP2013101844A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2020017420A (ja) 燃料電池システム
US7947403B2 (en) Fuel cell system
JP2012003957A (ja) 燃料電池システムおよび燃料電池に対するカソードガスの供給量を制御する方法、燃料電池に供給されるカソードガスの供給量を測定する方法
JP2009026736A (ja) 燃料電池システム
CN101326666B (zh) 燃料电池系统和移动体
JP2014212018A (ja) 燃料電池システム、方法
JP2008034309A (ja) 燃料電池システム
JP5742767B2 (ja) 燃料電池システムおよびその制御方法、触媒被毒に起因する燃料電池の発電性能の低下の検出方法
JP5720584B2 (ja) 燃料電池システムおよびその制御方法
JP2013134866A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2015219970A (ja) 燃料電池システム
JP2009158165A (ja) 燃料電池システム及びその制御方法
JP2015095306A (ja) 燃料電池システムおよび燃料電池車両、燃料電池システムの制御方法
JP2012003956A (ja) 燃料電池システムおよび燃料電池に対するカソードガスの供給量を制御する方法、燃料電池に供給されるカソードガスの供給量を測定する方法
JP2015095305A (ja) 燃料電池システムおよび燃料電池の劣化の進行度合いを検出する装置、燃料電池の劣化の進行度合いを検出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853089

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012853089

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012853089

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14360368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE