WO2013080241A1 - 多翼ファン及びこれを備えた空気調和機 - Google Patents

多翼ファン及びこれを備えた空気調和機 Download PDF

Info

Publication number
WO2013080241A1
WO2013080241A1 PCT/JP2011/006594 JP2011006594W WO2013080241A1 WO 2013080241 A1 WO2013080241 A1 WO 2013080241A1 JP 2011006594 W JP2011006594 W JP 2011006594W WO 2013080241 A1 WO2013080241 A1 WO 2013080241A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
diameter portion
blade
multiblade fan
ring
Prior art date
Application number
PCT/JP2011/006594
Other languages
English (en)
French (fr)
Inventor
岩瀬 拓
尾原 秀司
米山 裕康
岸谷 哲志
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to JP2013546828A priority Critical patent/JP5879363B2/ja
Priority to PCT/JP2011/006594 priority patent/WO2013080241A1/ja
Priority to CN201180075104.3A priority patent/CN103958900B/zh
Publication of WO2013080241A1 publication Critical patent/WO2013080241A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type

Definitions

  • the present invention relates to a multiblade fan and an air conditioner equipped with the same.
  • Multi-blade fans used in air conditioners and the like are required to have low noise and high efficiency.
  • Patent Document 1 JP-A-2006-307650
  • the length of the blade is shortened on the suction port side and gradually increased toward the opposite side of the suction port to stabilize the air flow in the casing. Describes a technique that can improve the suction performance and reduce noise by reducing the separation of air generated on the back surface of the blade by using a flat portion.
  • Patent Document 2 JP-A-2000-291590
  • the opening diameter dimension of the suction port is set to be larger than the minimum inner diameter dimension of the fan, and an inclined portion is formed on the suction port side of the blade, so that a side stream that has been an unstable vortex in the past is formed. Since air is sucked into the mainstream air and concentrated together with the mainstream air on the inner diameter portion of the fan, a technique that can reduce interference between the sidestream air and the mainstream air is described.
  • FIG. 14 shows the flow field in the vicinity of the planar bell mouth 56 passing through the rotation axis O in the conventional multiblade fan
  • FIG. 15 shows the flow field between the blades in the vicinity of the ring 59 in the plane perpendicular to the rotation axis O in the conventional multiblade fan. Show.
  • the flow P in the direction along the casing wall surface and the flow Q in the direction of the rotation axis O merge as shown in FIG. 14 near the bell mouth 56, and the flow direction changes abruptly as the flow R.
  • the flow direction changes abruptly like the flow S because the blades impart momentum to the flow between the blades.
  • the flow direction has changed simultaneously on the plane passing through the rotation axis O shown in FIG. 14 and the plane perpendicular to the rotation axis O shown in FIG. If the flow direction suddenly changes at the same time on these different planes, there is a problem that the flow is disturbed and lost, leading to a reduction in noise and efficiency of the multiblade fan.
  • Patent Document 1 no consideration is given to a sudden change in the direction of simultaneous flow in a plane passing through the rotation axis and in a plane perpendicular to the rotation axis in the vicinity of the bell mouth.
  • the multiblade fan described in Patent Document 1 achieves low noise and high efficiency by devising the shape of the blade, but there is no description regarding the relationship between the shape of the blade and the suction port.
  • the inlet is not bell mouth shaped.
  • Patent Document 2 defines the positional relationship between the minimum inner diameter of the impeller and the opening diameter of the suction port, but there is no description regarding the relationship between the shape of the blade and the suction port.
  • the present invention provides a multiblade fan that suppresses the sudden change of the flow direction in the plane passing through the rotation axis in the vicinity of the bell mouth and the plane perpendicular to the rotation axis at the same time, and achieves low noise and high efficiency.
  • the purpose is to provide.
  • the present application includes a plurality of means for solving the above-described problems.
  • an impeller having a plurality of blades arranged on the circumference is accommodated in the casing, and the inner peripheral wall surface of the casing.
  • An air passage for guiding air from the suction port to the discharge port is formed by rotation of the impeller between the blade and the impeller, and the suction port is formed substantially concentrically with the circumference.
  • a bell mouth is provided from the edge of the suction port toward the inner peripheral wall surface of the casing, and the plurality of wings are shaped to turn the air flow between the wings, and the air flow between the wings turns.
  • the multiblade fan is characterized in that the position is on the outer peripheral side with respect to the inner diameter of the bell mouth.
  • each end of the plurality of blades is connected by a ring-shaped ring portion that is arranged substantially concentrically with the circumference, and a disk shape is provided so as to oppose the ring portion and the impeller in the rotational axis direction.
  • the main plate is fixed to the opposite side of the end of the plurality of blades by the main plate, and the position where the air flow between the blades turns is from the ring portion to the main plate in each of the plurality of blades. It is desirable to be a multiblade fan that is on the same line.
  • the plurality of blades are composed of an inner diameter portion on the inner periphery side and an outer diameter portion on the outer periphery side, and the inner diameter portion and the outer diameter portion have different curvatures, and the inflection points where the curvature changes are described above. It is desirable to be a multiblade fan in which the air flow between the blades is turned.
  • Each end of the plurality of blades is connected by a ring-shaped ring portion that is arranged substantially concentrically with the circumference, and the disk is arranged so as to face the ring portion and the rotation axis direction of the impeller.
  • the main plate is disposed, the opposite side of the plurality of blades to the end portion is fixed by the main plate, and the plurality of blades are configured such that the blade length increases from the ring portion side to the main plate side.
  • a multiblade fan is desirable. It is desirable that the multi-blade fan is configured such that the blade length of the inner diameter portion is longer than the blade length of the outer diameter portion.
  • the multi-blade fan is configured such that the curvature of the inner diameter portion is larger than the curvature of the outer diameter portion.
  • Each end of the plurality of blades is connected by a ring-shaped ring portion that is arranged substantially concentrically with the circumference, and the disk is arranged so as to face the ring portion and the rotation axis direction of the impeller.
  • a plurality of blades are fixed to the side opposite to the ends of the plurality of blades, and the plurality of blades includes an inner diameter portion on the inner peripheral side and an outer shape portion on the outer peripheral side.
  • the outer diameter portion have different curvatures, and the air flow between the blades is diverted at an inflection point at which the curvature changes, and the plurality of blades further include the inner diameter portion on the ring side. It is desirable that the multi-blade fan is configured such that the blade length is greater than or substantially the same as the blade length of the outer diameter portion.
  • a housing having a suction port and a blowout port, a heat exchanger disposed in the housing, and disposed on the upstream side or the downstream side of the heat exchanger, sucking air outside the housing from the suction port,
  • the multi-blade fan is preferably an air conditioner that is the above-described multi-blade fan.
  • FIG. 1 is a perspective view of a multiblade fan according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of a plane passing through the rotation axis of the multiblade fan according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of a blade in the vicinity of a ring in a plane perpendicular to the rotation axis of the multiblade fan in the first embodiment.
  • FIG. 9 is a blade cross-sectional view of a plane perpendicular to the rotation axis of the multiblade fan in the third embodiment.
  • FIG. 10 is a blade cross-sectional view in the vicinity of a hub in a plane perpendicular to the rotation axis of the multiblade fan in the fourth embodiment. Flow between blades in Example 4. Inter-blade flow when the blade length S1 of the inner diameter portion ⁇ the blade length St of the outer diameter portion.
  • FIG. 10 is a projection view of blade cross sections near a ring and a hub in a plane perpendicular to the rotation axis of a multiblade fan in Embodiment 5. The performance comparison of the multiblade fan in Example 5 and the conventional multiblade fan.
  • FIG. Flow field near a bellmouth on a plane passing through the rotation axis of a conventional multiblade fan. Flow field between blades near a ring in a plane perpendicular to the rotation axis in a conventional multiblade fan.
  • FIG. 1 is a perspective view of a multiblade fan 51 of the present embodiment.
  • This multi-blade fan 51 surrounds an impeller 54 in which a plurality of blades 1 are arranged in a cylindrical shape on the outer periphery of a disk-shaped main plate 3 (hub), and surrounds the impeller 54, so that air to the multi-blade fan 51 is It is composed of a suction casing 63 and a scroll casing 55 having a discharge passage for air discharged from the impeller 54 and a motor (not shown) for driving the impeller 54 to rotate.
  • the scroll casing 55 has a structure in which the impeller 54 can be incorporated by dividing the scroll casing 55 vertically.
  • the bell mouth 4 constituting the suction port 63 is provided on both side surfaces of the scroll casing 55, and a tongue 58 serving as a boundary between the discharge side and the suction side is provided at the lower part of the discharge port 57 provided on the front surface.
  • This figure shows a multi-blade fan that sucks air from both sides, but this is also applicable to a multi-blade fan that sucks air from only one side by providing the suction port 63 on one side and closing the opposite side.
  • the embodiment can be applied.
  • a plurality of blades 1 are arranged side by side in the rotation direction around the rotation shaft 5, and fixed to the main plate 3 (one formed integrally with the hub and fixed to the shaft) at the center.
  • the main plate 3 has suction ports 63 on both sides as shown in FIG. 1, the main plate 3 is arranged in the center of the rotating shaft 5 so as to face the respective suction ports 63 and is configured in a disk shape. is there.
  • Reference numeral 2 denotes a ring, which is configured in a ring shape substantially concentric with the suction port 63 from the main plate 3 to the suction port 63 side, and fixes each end of the blade fixed by the main plate 3 on the opposite side to the main plate 3.
  • FIG. 2 shows a cross-sectional view of the multiblade fan 51 cut from a plane perpendicular to the rotation axis of the impeller 54 and viewed from the suction port 63 side (bell mouth 4 side).
  • the scroll casing 55 except for the vicinity of the discharge port 57, scrolls a point on the straight line Z that is centered on the rotation shaft 5 of the impeller 54 and perpendicular to the discharge port upper surface 57a of the scroll casing 55 and passes through the rotation shaft of the impeller 54.
  • It has a shape along a logarithmic spiral having a constant expansion angle, which is the starting point 60 of the spiral of the casing, and is configured such that the space gradually expands from the tongue 58 toward the discharge port 57.
  • the tongue 58 is formed as an arc that contacts the spiral of the scroll casing 55 at the end 61 of the tongue at a predetermined angle ⁇ from the straight line Z, and further contacts the discharge port lower surface 57b.
  • FIG. 3 is a cross-sectional view of a plane passing through the rotary shaft 5 of the multiblade fan 51 in the present embodiment.
  • the upper portion is the suction port 63, and only one suction port 63 is shown in this figure, but a double-sided suction multi-blade fan having a suction port in the lower portion may also be used.
  • 3 shows only one side of the suction port (upper part of FIG. 3), but when the suction port is provided on both sides as in FIG. 1, the ring 2 is provided on both sides in the direction of the rotating shaft 5.
  • Reference numeral 9 denotes an inflection point of the wing 1, which is positioned on the outer peripheral side (right side in FIG. 3) from the inner diameter of the bell mouth 4. Details will be described later.
  • FIG. 4 is a view showing the blade 1 near the ring in a plan view perpendicular to the axial direction of the rotary shaft 5 of the multiblade fan 51 in the first embodiment.
  • D1 is the inner diameter of the impeller 54
  • D2 is the outer diameter of the impeller 54
  • 6 indicates the rotational direction of the impeller.
  • the blade 1 is composed of an inner diameter portion 7 and an outer diameter portion 8 through an inflection point 9.
  • R1 is the curvature of the inner diameter portion 7 of the blade 1
  • R2 is the curvature of the outer diameter portion 8 of the blade 1.
  • the curvatures R1 and R2 are defined by the wing camber line 10, and the curvature R1 is not equal to the curvature R2.
  • the shapes of the inner diameter portion 7 and the outer diameter portion 8 are configured to share different roles.
  • the shape of the inner diameter portion 7 is set to an angle that matches the direction of the flow flowing from the blade inlet.
  • the shape of the outer diameter portion 8 is configured to have an angle that gives the flow a momentum for satisfying the flow rate and pressure required by the multiblade fan.
  • this condition can be satisfied by setting the curvature R1> the curvature R2.
  • the flow is appropriately turned in the vicinity of the inflection point 9 like the flow Y, that is, at the inner diameter portion 7 (curvature R1) of the blade inlet, it matches the direction of the air flow. Disturbance and loss can be reduced, and furthermore, the required flow rate and pressure can be satisfied at the outer diameter portion 8 (curvature R2).
  • the position of the inflection point 9 is further positioned on the outer peripheral side than the inner diameter of the bell mouth. That is, the inflection point diameter Di is larger than the bellmouth inner diameter Db.
  • the inflection point diameter Di is larger than the bellmouth inner diameter Db.
  • the impeller 54 in which the plurality of blades 1 are arranged on the circumference is accommodated in the casing (scroll casing 55), and the casing (scroll casing 55).
  • An air passage for guiding air from the suction port 63 to the discharge port 57 is formed by rotation of the impeller 54 between the inner peripheral wall surface and the impeller 54.
  • the suction port 63 is formed substantially concentrically with the circumference of the impeller 54, and the bell mouth 4 is provided from the edge of the suction port 63 toward the inner peripheral wall surface of the casing (scroll casing 55).
  • the plurality of blades 1 have a shape in which the air flow between the blades is turned, and the position where the air flow between the blades turns is on the outer peripheral side with respect to the inner diameter Db of the bell mouth 4. is there.
  • the plurality of blades 1 are composed of an inner diameter portion 7 on the inner peripheral side and an outer diameter portion 8 on the outer peripheral side, and the inner diameter portion 7 and the outer diameter portion 8 have different curvatures (R1 ⁇ R2), respectively. At the inflection point 9 where the angle changes, the air flow between the blades turns.
  • FIG. 5 is a cross-sectional view of a plane passing through the rotating shaft 5 of the multiblade fan 51 in this embodiment.
  • 11 is a line connecting inflection points 9 from the ring 2 side to the main plate 3 side.
  • the inflection point diameter Di of the line 11 is the same from the ring 2 to the main plate 3.
  • the multiblade fan 51 of the present embodiment has a ring-shaped ring portion (ring 2) in which the respective end portions of the plurality of blades 1 are arranged substantially concentrically with the circumference of the impeller 54. ), And a disk-shaped main plate 3 is disposed so as to face the ring portion (ring 2) and the rotation axis direction of the 54 impeller, and the main plate 3 fixes the end opposite to the ends of the plurality of blades 1, The position where the air flow in between is turned is on the same line from the ring portion (ring 2) to the main plate 3 in each of the plurality of blades 1. By doing so, the manufacturing cost of the multiblade fan 51 can be reduced, and when combined with the configuration of the first embodiment, it is possible to further reduce noise and increase efficiency.
  • FIG. 6 is a cross-sectional view of a plane passing through the rotation shaft 5 of the multiblade fan 51 in this embodiment.
  • FIG. 7 is a blade cross-sectional view of a plane perpendicular to the rotating shaft 5 of the multiblade fan 51 in this embodiment.
  • 7A is a blade cross section on the main plate 3 side
  • FIG. 7B is a blade cross section on the ring 2 side.
  • Sh represents the blade length on the main plate 3 side
  • Sr represents the blade length on the ring 2 side.
  • Wing length is defined as the length along the wing.
  • each end portion of the plurality of blades 1 is connected by the ring-shaped ring portion (ring 2) arranged substantially concentrically with the circumference, and the ring portion ( A disc-shaped main plate 3 is arranged so as to face the ring 2) and the direction of the rotation axis 5 of the impeller 54.
  • the main plate 3 fixes the ends opposite to the ends of the plurality of blades 1. The blade length is increased from the portion (ring 2) side to the main plate 3 side.
  • the blade length Sh on the main plate side is increased, and the blade 1 gives momentum to the flow. Therefore, when the rotation speed is not increased, the magnitude of the momentum given is the blade length. The longer it is, the bigger. Therefore, it is possible to increase the flow rate and pressure of the multiblade fan without increasing the rotational speed of the impeller.
  • the blade length is defined by the length along the blade, but the same effect can be obtained by defining the blade length by connecting the leading edge and the trailing edge with a straight line, so-called chord length. .
  • FIG. 8 is a blade cross-sectional view of a plane perpendicular to the rotating shaft 5 of the multiblade fan 51 in this embodiment.
  • Other basic configurations are the same as those shown in FIGS. 1 to 4, and a detailed description thereof is omitted here.
  • FIG. 8 is an arbitrary blade cross section from the main plate 3 to the ring 2.
  • Sl indicates the blade length of the inner diameter portion 7
  • St indicates the blade length of the outer diameter portion 8.
  • Wing length is defined as the length along the wing.
  • FIG. 9 shows the flow between the blades in this embodiment.
  • FIG. 9 shows the flow between blades when the flow rate is smaller than the design flow rate, that is, in the low flow rate region.
  • the flow at the blade inlet does not follow the shape (angle) of the blade of the inner diameter portion 7. Therefore, the flow is separated as shown in FIG.
  • the flow U is separated on the suction surface 12 side.
  • the blade length S1 of the inner diameter portion 7> the blade length St of the outer diameter portion 8 the separated flow is reattached at the point S and the region A where the separation occurs is narrowed. Between one wing, the flow can flow along the wing.
  • FIG. 10 shows the flow between the blades when the blade length S1 of the inner diameter portion ⁇ the blade length St of the outer diameter portion.
  • the region B separated by the flow V has an influence even between the blades of the outer diameter portion 8. For this reason, the flow between the blades of the outer diameter portion 8 cannot be effectively ensured, so that noise increases and efficiency decreases.
  • the blade length is defined as the length along the blade.
  • the blade length is defined as the blade length obtained by connecting the leading edge and the inflection point and the inflection point and the trailing edge with a straight line, so-called chord length.
  • chord length so-called chord length
  • FIG. 11 is a projection view of blade cross sections near the ring 2 and the main plate 3 in the plane perpendicular to the rotation axis 5 of the multiblade fan 51 in the fifth embodiment.
  • Example 5 is a case where Example 2, Example 3 and Example 4 are combined.
  • the blade length Srl of the inner diameter portion on the ring 2 side ⁇ the blade length Srt of the outer diameter portion on the ring side
  • the blade length Shl of the inner diameter portion on the main plate side > the blade length Sht on the outer diameter portion of the main plate side.
  • the main plate side blade length Sh > the ring side blade length Sr.
  • Example 3 and Example 4 When Example 3 and Example 4 are combined, the blade length of the inner diameter tends to increase on both the ring side Srl and the main plate side Shl. On the other hand, since it is necessary to turn the flow by the blade 8 at the outer diameter portion, it is necessary to secure the blade lengths Srt and Sht at the outer diameter portion. As a result, when Example 4 and Example 5 are combined, the blade lengths Sr and Sh on the ring side and main plate side will increase.
  • An increase in blade length has the advantage that the flow direction and flow rate and pressure can be increased, but on the other hand, an increase in blade length increases the blade mass.
  • the increase in wing mass also causes an increase in cost.
  • the ring side of the blade 1 is more susceptible to the centrifugal force due to the rotation of the impeller than the main plate side and is likely to be deformed. When the rotational speed of the impeller is large, the amount of deformation becomes large, so the gap between the blade and the scroll casing is narrowed, and in the worst case, the blade and the scroll casing may come into contact with each other.
  • the blade length Srl of the ring-side inner diameter portion is increased. This is the minimum necessary.
  • FIG. 12 is a diagram showing the results of comparing the performance of the multiblade fan in Example 5 and the conventional multiblade fan.
  • the conventional multiblade fan has the shape shown in FIGS. As shown in FIG. 12, it was confirmed that the operating flow rate was reduced by 5.5 dB in noise and 16% in power consumption as compared with the conventional multi-blade fan.
  • FIG. 13 is a cross-sectional view of the air conditioner according to the sixth embodiment.
  • This air conditioner is an indoor unit of an air conditioner called a ceiling-suspended type, and includes a scroll casing 55 installed on a partition plate 32 provided in a casing 31 and an impeller 54 disposed in the scroll casing 55.
  • a heat exchanger 37 and a drain pan 38 for receiving condensed water generated in the heat exchanger 37, and an air outlet 40 provided with a wind direction plate 39 for changing the direction of the blown air. I have.
  • the impeller 54 is rotated by a motor so that indoor air is sucked from the bell mouth 4 of the scroll casing 55 through the filter 35 provided on the suction grill 36 and is boosted by the multiblade fan 51. After being blown out from the outlet of the scroll casing 55 and cooled or overheated by the heat exchanger 37, it is blown out into the room through the outlet 40.
  • the multiblade fan 51 described in any of the first to fifth embodiments is used as the multiblade fan 51, an air conditioner with low noise and high efficiency can be obtained.
  • the ceiling-suspended indoor unit has been described.
  • the present invention is a technology that can be used in common as long as the air conditioner is of any other type or outdoor unit and uses a multi-blade fan. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 ベルマウス付近における回転軸を通る平面と回転軸に垂直な平面での流れの向きの急激な変化が同時に起こることを抑制し、低騒音、高効率化を図る多翼ファンを提供する。 ケーシング内に、複数の翼を円周上に配置した羽根車が収容されるとともに、前記ケーシングの内周壁面と前記羽根車との間に前記羽根車の回転により吸込口から吐出口へ空気を導くための風路が形成され、前記吸込口は、前記円周とほぼ同心円状に形成されるとともに、該吸込口の縁部から前記ケーシングの内周壁面に向かってベルマウスが設けられ、前記複数の翼は、翼間の空気の流れが転向する形状であり、該翼間の空気の流れが転向する位置が前記ベルマウスの内径よりも外周側である多翼ファン。

Description

多翼ファン及びこれを備えた空気調和機
 本発明は、多翼ファン及びこれを備えた空気調和機に関する。
 空気調和装置などに用いられる多翼ファンは、低騒音・高効率化が要求される。本技術分野の背景技術として、特開2006-307650号公報(特許文献1)がある。この公報には、翼の長さを、吸込口側を短く、吸込口と反対側に向けて順次長くしてケーシング内の空気流れを安定させ、翼の外周寄りを曲面部とし、内周寄りは平面部とすることで羽根の背面に生じる空気の剥離を低減させることで、吸込性能を向上できると共に、騒音を低減できる技術が記載されている。
 また、特開2000-291590号公報(特許文献2)がある。この公報には、吸込口の開口径寸法をファンの最小内径寸法より大きく設定するとともに、ブレードのうち吸込口側に傾斜部を形成することにより、従来では不安定な渦となっていた副流空気が、主流空気に吸引されて主流空気と共にファンの内径部に集約されるため、副流空気と主流空気との干渉を低減できる技術が記載されている。
特開2006-307650号公報 特開2000-291590号公報
 図14に従来の多翼ファンにおける回転軸Oを通る平面のベルマウス56付近の流れ場、図15に従来の多翼ファンにおける回転軸Oに垂直な平面のリング59付近の翼間流れ場を示す。多翼ファンではベルマウス56付近で、図14に示すようにケーシング壁面に沿う方向の流れPと回転軸O方向の流れQが合流し、流れRのように流れの向きが急激に変化する。
 一方で、図15に示すように、翼間では翼が流れに運動量を与えるために流れSのように流れの向きが急激に変化する。そのため従来の多翼ファンでは、図14に表される回転軸Oを通る平面と、図15に表される回転軸Oに垂直な平面と、において同時に流れの向きが変化していた。このような異なる平面で同時に流れの向きが急激に変化すると、流れの乱れと損失の原因となり、多翼ファンの騒音・効率低下を招くという問題があった。
 上記特許文献1及び2では、ベルマウス付近における回転軸を通る平面と回転軸に垂直な平面での同時的な流れの向きの急激な変化に関する考慮はされていない。特許文献1に記載の多翼ファンは、翼の形状を工夫することにより低騒音・高効率化を実現するものであるが、翼の形状と吸込口の関係に関する記述はない。さらに吸込口はベルマウス形状ではない。特許文献2は羽根車の最小内径寸法と吸込口の開口径寸法の位置関係を規定しているが、翼の形状と吸込口の関係に関する記述はない。
 そこで本発明は、ベルマウス付近における回転軸を通る平面と回転軸に垂直な平面での流れの向きの急激な変化が同時に起こることを抑制し、低騒音、高効率化を図る多翼ファンを提供することを目的とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、ケーシング内に、複数の翼を円周上に配置した羽根車が収容されるとともに、前記ケーシングの内周壁面と前記羽根車との間に前記羽根車の回転により吸込口から吐出口へ空気を導くための風路が形成され、前記吸込口は、前記円周とほぼ同心円状に形成されるとともに、該吸込口の縁部から前記ケーシングの内周壁面に向かってベルマウスが設けられ、前記複数の翼は、翼間の空気の流れが転向する形状であり、該翼間の空気の流れが転向する位置が前記ベルマウスの内径よりも外周側であることを特徴とする多翼ファンである。
 また、複数の翼のそれぞれの端部は、前記円周とほぼ同心円状に配置されたリング状のリング部により連結され、該リング部と前記羽根車の回転軸方向に対向するように円盤状の主板が配置され、該主板により前記複数の翼の前記端部と反対側が固定され、前記翼間の空気の流れが転向する位置が、前記複数の翼のそれぞれにおける前記リング部から前記主板にかけて同一線上にある多翼ファンであることが望ましい。 
 また、前記複数の翼は、内周側の内径部と外周側の外径部とから構成され、該内径部と外径部とはそれぞれ曲率が異なり、該曲率が変化する変曲点において前記翼間の空気の流れが転向する多翼ファンであることが望ましい。
 また、前記複数の翼のそれぞれの端部は、前記円周とほぼ同心円状に配置されたリング状のリング部により連結され、該リング部と前記羽根車の回転軸方向に対向するように円盤状の主板が配置され、該主板により前記複数の翼の前記端部と反対側が固定され、前記複数の翼は、前記リング部側から前記主板側にかけて翼長さが長くなるように構成された多翼ファンであることが望ましい。 
 前記内径部の翼長さの方が前記外径部の翼長さよりも長くなるように構成された多翼ファンであることが望ましい。
 また、前記外径部の曲率よりも前記内径部の曲率の方が大きくなるように構成された多翼ファンであることが望ましい。 
 また、前記複数の翼のそれぞれの端部は、前記円周とほぼ同心円状に配置されたリング状のリング部により連結され、該リング部と前記羽根車の回転軸方向に対向するように円盤状の主板が配置され、該主板により前記複数の翼の前記端部と反対側が固定され、前記複数の翼は、内周側の内径部と外周側の外形部とから構成され、該内径部と外径部とはそれぞれ曲率が異なり、該曲率が変化する変曲点において前記翼間の空気の流れが転向するように構成され、さらに前記複数の翼は、前記リング側における前記内径部の翼長さが前記外径部の翼長さよりも大きいか、又はほぼ同一となるように構成される多翼ファンであることが望ましい。
 また、吸込口及び吹出口を有する筐体と、該筐体内に配置された熱交換器と、該熱交換器の上流側または下流側に配置され、筐体外部の空気を吸込口より吸い込み、吐出口から吹き出す多翼ファンと、を備えた空気調和機において、前記多翼ファンは、上記した多翼ファンである空気調和機であることが望ましい。
 本発明によれば、多翼ファン及びこれを用いた空気調和機の低騒音・高効率化を実現できる。
実施例1の多翼ファンの斜視図。 実施例1の多翼ファンを羽根車の回転軸に垂直な平面で切断した断面図。 実施例1における多翼ファンの回転軸を通る平面の断面図。 実施例1における多翼ファンの回転軸に垂直な平面のリング付近の翼断面図。 実施例2における多翼ファンの回転軸を通る平面の断面図。 実施例3における多翼ファンの回転軸を通る平面の断面図。 実施例3における多翼ファンの回転軸に垂直な平面の翼断面図。 実施例4における多翼ファンの回転軸に垂直な平面のハブ付近の翼断面図。 実施例4における翼間流れ。 内径部の翼長さSl<外径部の翼長さStの場合の翼間流れ。 実施例5における多翼ファンの回転軸に垂直な平面のリング付近とハブ付近の翼断面の投影図。 実施例5における多翼ファンと従来の多翼ファンの性能の比較。 実施例6における空気調和機の断面図。 従来の多翼ファンにおける回転軸を通る平面のベルマウス付近の流れ場。 従来の多翼ファンにおける回転軸に垂直な平面のリング付近の翼間流れ場。
 以下、本発明の実施例について図面を用いて説明する。
 本発明の実施例1を図1~図4を用いて説明する。 
 本実施例の多翼は幅広く製品に適用されるものであり、たとえば室内機と室外機を備えた空気調和機などにおける室内機に搭載される。 
 図1に本実施例の多翼ファン51の斜視図を示す。この多翼ファン51は円板状の主板3(ハブ)の外周部に複数の翼1を円筒状に配置した羽根車54と、羽根車54の回りを囲み、多翼ファン51への空気の吸込口63と羽根車54から吐き出された空気の吐出流路を備えたスクロールケーシング55と羽根車54を回転駆動させるための図示しないモータとで構成される。ここでスクロールケーシング55は上下に分割することで羽根車54が組み込みできる構造となっている。スクロールケーシング55の両側面には吸込口63を構成するベルマウス4が設けられており、また正面に設けられた吐出口57の下部には吐出側と吸入側との境界となる舌部58が設けられている。なお、この図は両側面から空気を吸い込む形式の多翼ファンであるが、吸込口63を片側のみに設け、反対側の側面は塞いで片側からのみ空気を吸い込む形式の多翼ファンについても本実施例の適用が可能である。
 翼1は回転軸5を中心として回転方向に複数枚、並んで配置され、中央部で主板3(ハブと一体に成形されシャフトに固定されるもの)に固定される。この主板3は図1に示されるように両側に吸込口63がある場合には、それぞれの吸込口63と対向するようにたとえば回転軸5の中央部に配置され円盤形状で構成されるものである。2はリングであり、主板3から吸込口63側に吸込口63とほぼ同心円状のリング形状で構成され、主板3で固定された翼のそれぞれ端部を主板3と反対側にて固定する。
 図2に多翼ファン51を羽根車54の回転軸に垂直な平面で切断し、吸込口63側(ベルマウス4側)から見た断面図を示す。スクロールケーシング55はその吐出口57近傍を除いて、羽根車54の回転軸5を中心とし、スクロールケーシング55の吐出口上面57aに垂直で羽根車54の回転軸を通る直線Z上の点をスクロールケーシングの螺旋の起点60とする一定の拡大角を持った対数螺旋に沿った形状となっており、舌部58から吐出口57に向かって空間が徐々に拡大するように構成されている。ここで舌部58は直線Zから所定の角度θとなる舌部の端点61でスクロールケーシング55の螺旋と接し、更に吐出口下面57bとも接する円弧として形成される。
 図3は本実施例における多翼ファン51の回転軸5を通る平面の断面図である。なお、図3において、上部が吸込口63であり、この図では片側の吸込口63しか示していないが、下部にも吸込口を有する両側吸込みの多翼ファンであってもよい。また図3では片側の吸込口(図3の上部)しか示していないが図1のように両側に吸込口を有する場合にはリング2を回転軸5方向の両側に有する。9は翼1の変曲点を示し、ベルマウス4の内径よりも外周側(図3の右側)に位置するようにしている。詳細は後で説明する。
 図4は実施例1における多翼ファン51の回転軸5の軸線方向と垂直な平面図のうちリング付近の翼1を示す図である。D1は羽根車54の内径、D2は羽根車54の外径であり、6は羽根車の回転方向を示す。翼1は内径部7と外径部8とから変曲点9を介して構成される。R1は翼1の内径部7の曲率、R2は翼1の外径部8の曲率である。曲率R1とR2は翼のキャンバー線10で定義され、曲率R1≠曲率R2とする。
 本実施例において、内径部7と外径部8の形状はそれぞれに異なる役割分担をさせるように構成する。具体的には、内径部7の形状は翼入口から流入する流れの向きに合わせた角度になるようにする。一方で外径部8の形状は多翼ファンが必要とされる流量と圧力を満足するための運動量を流れに与える角度に構成する。ここでは図2に示すように曲率R1>曲率R2とすることで、この条件を満足することができる。これにより翼間では変曲点9付近で流れは流れYのように適正に転向する、すなわち、翼入口の内径部7(曲率R1)においては空気の流れの向きと合っているため、流れの乱れと損失を低減し、さらに外径部8(曲率R2)において必要な流量と圧力を満足することができるものである。
 ここで本実施例においては、さらに変曲点9の位置がベルマウス内径よりも外周側に位置するようにする。すなわち変曲点の径Diはベルマウス内径Dbよりも大きくするものである。このように変曲点の径Di>ベルマウス内径Dbとすることにより、図3の流れXと図4の流れYは同時に変化せずに、流れX⇒流れYの順番で変化する。これにより、流れXと流れYが同時的に変化する従来の多翼ファンに比べて流れの乱れと損失が低減するため、多翼ファンの低騒音・高効率化を実現できる。
 以上に説明したように本実施例の多翼ファンは、ケーシング(スクロールケーシング55)内に、複数の翼1を円周上に配置した羽根車54が収容されるとともに、ケーシング(スクロールケーシング55)の内周壁面と羽根車54との間に羽根車54の回転により吸込口63から吐出口57へ空気を導くための風路が形成される。また吸込口63は、羽根車54の円周とほぼ同心円状に形成されるとともに、吸込口63の縁部からケーシング(スクロールケーシング55)の内周壁面に向かってベルマウス4が設けられる。そして複数の翼1は、翼間の空気の流れが転向する形状であり、翼間の空気の流れが転向する位置がベルマウス4の内径Dbよりも外周側であることを特徴とするものである。
 また、複数の翼1は、内周側の内径部7と外周側の外径部8とから構成され、該内径部7と外径部8とはそれぞれ曲率が異なり(R1≠R2)、曲率が変化する変曲点9において翼間の空気の流れが転向するものである。
 本実施例について図5を用いて説明する。 
 図5は本実施例における多翼ファン51の回転軸5を通る平面の断面図である。その他の基本的な構成は図1と同様であり、ここでの詳細な説明は省略する。11は変曲点9をリング2側から主板3側にかけてつなげた線である。線11の変曲点の径Diはリング2から主板3にかけて同一とする。このような構成とすることにより、翼の断面形状が2次元的になるので羽根車54を金型により一体成型することが可能になる。具体的には、金型を回転軸と平行な金型の抜き方向αに抜くことが可能となる。これにより、複雑な金型を用いることなく低コストで羽根車54を製作できる。
 以上に説明したように、本実施例の多翼ファン51は、複数の翼1のそれぞれの端部が、羽根車54の円周とほぼ同心円状に配置されたリング状のリング部(リング2)により連結され、リング部(リング2)と54羽根車の回転軸方向に対向するように円盤状の主板3が配置され、主板3により複数の翼1の端部と反対側が固定され、翼間の空気の流れが転向する位置が、複数の翼1のそれぞれにおけるリング部(リング2)から主板3にかけて同一線上にある。このようにすることで多翼ファン51の製造コストを低減することができ、実施例1の構成と組み合わせれば、さらに低騒音・高効率化を図ることが可能である。
 本実施例では、多翼ファン51の低騒音・高効率化に加えて、羽根車54の回転数を増加することなく流量と圧力を増加できる実施例について説明する。 
 図6は本実施例における多翼ファン51の回転軸5を通る平面の断面図である。図7は本実施例における多翼ファン51の回転軸5に垂直な平面の翼断面図である。図7(a)は主板3側の翼断面、図7(b)はリング2側の翼断面である。Shは主板3側の翼長さ、Srはリング2側の翼長さを示す。翼長さは翼に沿った長さで定義する。図6及び図7において、主板側の翼長さSh>リング側の翼長さSrとする。その他の基本的な構成は図1~図4と同様であり、ここでの詳細な説明は省略する。 
 以上の通り、本実施例の多翼ファンは、複数の翼1のそれぞれの端部は、円周とほぼ同心円状に配置されたリング状のリング部(リング2)により連結され、リング部(リング2)と羽根車54の回転軸5方向に対向するように円盤状の主板3が配置され、該主板3により複数の翼1の端部と反対側が固定され、複数の翼1は、リング部(リング2)側から主板3側にかけて翼長さが長くなるように構成されたものである。
 このような構成とすることにより、主板側の翼長さShを長くなり、翼1は流れに運動量を与えることから、回転数を増加しない場合には与えられる運動量の大きさは翼長さが長いほど大きい。そのため羽根車の回転数を増加することなく多翼ファンの流量と圧力を増加することが可能である。 
 なお、本実施例では翼長さを翼に沿った長さで定義したが、前縁と後縁を直線で結んだ翼長さ、いわゆる翼弦長で定義しても同様の効果が得られる。
 本実施例では、多翼ファンの低騒音・高効率化に加えて、低流量域への動作流量範囲を拡大できる実施例について説明する。 
 図8は本実施例における多翼ファン51の回転軸5に垂直な平面の翼断面図である。その他の基本的な構成は図1~図4と同様であり、ここでの詳細な説明は省略する。図8は主板3からリング2にかけての任意の翼断面である。Slは内径部7の翼長さ、Stは外径部8の翼長さを示す。翼長さは翼に沿った長さで定義する。図8において内径部7の翼長さSl>外径部8の翼長さStとする。
 図9に本実施例における翼間流れを示す。図9は設計流量よりも流量が小さい場合、すなわち、低流量域での翼間流れを示す。設計流量から動作流量が低流量域に変化する場合には、翼入口での流れは内径部7の翼の形状(角度)に沿わなくなる。そのため図9に示すように流れは剥離する。低流量域の図9の場合、流れUは負圧面12側で剥離する。しかし、内径部7の翼長さSl>外径部8の翼長さStとすることにより、剥離した流れは点Sで再付着して剥離する領域Aは狭くなり、外径部8の翼1の翼間では流れは翼に沿って流れることができる。
 図10に内径部の翼長さSl<外径部の翼長さStの場合の翼間流れを示す。図10では流れVにより剥離する領域Bは外径部8の翼間にまで影響を及ぼす。そのため外径部8の翼間の流れが有効に確保できなくなるため騒音が増大し効率が低下する。 
 以上により内径部の翼長さSl>外径部の翼長さStとすることにより、動作流量が低流量域に変化した場合での低騒音・高効率の効果を得ることができる。 
 なお、本実施例では翼長さを翼に沿った長さで定義したが、前縁と変曲点及び変曲点と後縁を直線で結んだ翼長さ、いわゆる翼弦長で定義しても同様の効果が得られる。
 本実施例では、多翼ファンの低騒音・高効率化に加えて、低コスト化と強度信頼性を考慮した実施例について説明する。 
 図11に実施例5における多翼ファン51の回転軸5に垂直な平面のリング2付近と主板3付近の翼断面の投影図である。実施例5は実施例2、実施例3及び実施例4を組み合わせた事例である。図11において、リング2側内径部の翼長さSrl≒リング側外径部の翼長さSrt、主板側内径部の翼長さShl>主板側外径部の翼長さShtとする。更に主板側翼長さSh>リング側翼長さSrとする。図11では内径部7の翼長さと外径部8の翼長さの和が全体の翼長さである。すなわち、Sr=Srl+Srt、Sh=Shl+Shtとする。また、実施例2により変曲点9を主板3からリング2にかけてつなげた線11の径Diはリング2から主板3にかけて同一とする。図11では外径D2もリングから主板にかけて同一とするのでSrt=Shtである。
 実施例3と実施例4を組み合わせると、内径部の翼長さはリング側Srlと主板側Shlの両方が増加する傾向となる。一方で、外径部の翼8により流れを転向させる必要があるため、外径部の翼長さSrtとShtの長さも確保する必要がある。その結果、実施例4と実施例5を組み合わせるとリング側と主板側の翼長さSrとShは増加することになる。
 翼長さの増加は流れの向きを流量と圧力を増加できる利点があるが、その反面、翼長さの増加は翼の質量が増加する。翼の質量増加はコスト増加の要因ともなる。さらに翼1のリング側は主板側に比べて羽根車の回転による遠心力の影響を受けやすく変形しやすい。羽根車の回転数が大きい場合には変形量が大きくなるため、翼とスクロールケーシングとの間の隙間が狭まり、最悪の場合、翼とスクロールケーシングとが接触する可能性がある。
 本実施例はこのようなコスト増加を抑制し、強度信頼性を確保しつつ、翼間での流れの剥離を再付着させる作用を得るために、リング側内径部の翼長さSrlの増加を必要最低限にとどめたものである。
 図12は実施例5における多翼ファンと従来の多翼ファンの性能を比較した結果を示す図である。従来の多翼ファンは図14、図15に示す形状である。図12により動作流量において従来の多翼ファンに比べて騒音で5.5dB低減、消費電力で16%低減の効果が得られたことを確認した。
 本実施例では、実施例1~5のいずれかの要件を備えた多翼ファンを用いた空気調和機について説明する。 
 図13は実施例6における空気調和機の断面図である。この空気調和機は天井吊下げ形と呼ばれる空気調和機の室内機で、筐体31内に設けられた仕切り板32に設置されたスクロールケーシング55とスクロールケーシング55内に配置された羽根車54と羽根車54の中心に回転軸を設置した図示しないモータとで構成される多翼ファン51を備えている。また、多翼ファン51の上流側には空気の吸込口となるフィルタ35と吸込みグリル36が配置されている。多翼ファン51の下流側には熱交換器37と熱交換器37に生じる結露水を受けるためのドレンパン38とを備え、吹き出し空気の向きを変えるための風向板39を配置した吹出口40を備えている。
 この空気調和機は、モータで羽根車54を回転させることで、室内空気を吸込みグリル36に設けられたフィルタ35を通してスクロールケーシング55のベルマウス4から吸込み、多翼ファン51にて昇圧された後、スクロールケーシング55の吐出口から吹き出し、熱交換器37で冷却又は過熱された後、吹出口40から室内に吹き出される。ここで、多翼ファン51には実施例1~5のいずれかに記載の多翼ファン51を用いているため、低騒音・高効率な空気調和機を得ることができる。
 なお、本実施例では天井吊下げ形の室内機について説明したが、空気調和機は他の型式でも、室外機でも、多翼ファンを用いるものであれば本発明は共通して使用できる技術である。
 また、以上に説明した実施例1~6については、それぞれの実施例の構成を組み合わせることにより、それぞれの実施例で得られる効果が相乗的に得られることは明らかである。
1、53 翼
2、59 リング
3、52 主板
4、56 ベルマウス
5、O 回転軸
6、62 羽根車の回転方向
7 内径部
8 外径部
9 変曲点
10 キャンバー線
11 変曲点9をリング側から主板側にかけてつなげた線
12 負圧面
31 筐体
32 仕切り板
35 フィルタ
36 吸込みグリル
37 熱交換器
38 ドレンパン
39 風向板
40 吹出口
44 電気品箱
51 多翼ファン
54 羽根車
55 スクロールケーシング
57 吐出口
58 舌部
60 スクロールケーシングの螺旋の起点
61 舌部の端点
P、Q、R、U、V、X、Y 流れ
D1 羽根車内径
D2 羽根車外径
R1 内径部7の曲率
R2 外径部8の曲率
Di 変曲点の径
Db ベルマウスの径
α 金型の抜き方向
Sr リング側の翼長さ
Sh 主板側の翼長さ
Sl 内径部の翼長さ
St 外径部の翼長さ
A、B 剥離する領域
Srl リング側内径部の翼長さ
Srt リング側外径部の翼長さ
Shl 主板側内径部の翼長さ
Sht 主板側外径部の翼長さ

Claims (10)

  1.  ケーシング内に、複数の翼を円周上に配置した羽根車が収容されるとともに、
     前記ケーシングの内周壁面と前記羽根車との間に前記羽根車の回転により吸込口から吐出口へ空気を導くための風路が形成され、
     前記吸込口は、前記円周とほぼ同心円状に形成されるとともに、該吸込口の縁部から前記ケーシングの内周壁面に向かってベルマウスが設けられ、
     前記複数の翼は、翼間の空気の流れが転向する形状であり、該翼間の空気の流れが転向する位置が前記ベルマウスの内径よりも外周側であることを特徴とする多翼ファン。
  2.  請求項1に記載の多翼ファンにおいて、
     前記複数の翼のそれぞれの端部は、前記円周とほぼ同心円状に配置されたリング状のリング部により連結され、
     該リング部と前記羽根車の回転軸方向に対向するように円盤状の主板が配置され、該主板により前記複数の翼の前記端部と反対側が固定され、
     前記翼間の空気の流れが転向する位置が、前記複数の翼のそれぞれにおける前記リング部から前記主板にかけて同一線上にあることを特徴とする多翼ファン。
  3.  請求項1又は2に記載の多翼ファンにおいて、
     前記複数の翼は、内周側の内径部と外周側の外径部とから構成され、
     該内径部と外径部とはそれぞれ曲率が異なり、該曲率が変化する変曲点において前記翼間の空気の流れが転向することを特徴とする多翼ファン。
  4.  請求項1に記載の多翼ファンにおいて、
     前記複数の翼のそれぞれの端部は、前記円周とほぼ同心円状に配置されたリング状のリング部により連結され、
     該リング部と前記羽根車の回転軸方向に対向するように円盤状の主板が配置され、該主板により前記複数の翼の前記端部と反対側が固定され、
     前記複数の翼は、前記リング部側から前記主板側にかけて翼長さが長くなるように構成されたことを特徴とする多翼ファン。
  5.  請求項2に記載の多翼ファンにおいて、
     前記複数の翼は、前記リング部側から前記主板側にかけて翼長さが長くなるように構成されたことを特徴とする多翼ファン。
  6.  請求項3に記載の多翼ファンにおいて、
     前記内径部の翼長さの方が前記外径部の翼長さよりも長くなるように構成されたことを特徴とする多翼ファン。
  7.  請求項3に記載の多翼ファンにおいて、
     前記外径部の曲率よりも前記内径部の曲率の方が大きくなるように構成されたことを特徴とする多翼ファン。
  8.  請求項6に記載の多翼ファンにおいて、
     前記外径部の曲率よりも前記内径部の曲率の方が大きくなるように構成されたことを特徴とする多翼ファン。
  9.  請求項1又は2に記載の多翼ファンにおいて、
     前記複数の翼のそれぞれの端部は、前記円周とほぼ同心円状に配置されたリング状のリング部により連結され、
     該リング部と前記羽根車の回転軸方向に対向するように円盤状の主板が配置され、該主板により前記複数の翼の前記端部と反対側が固定され、
     前記複数の翼は、内周側の内径部と外周側の外形部とから構成され、
     該内径部と外径部とはそれぞれ曲率が異なり、該曲率が変化する変曲点において前記翼間の空気の流れが転向するように構成され、
     さらに前記複数の翼は、前記リング側における前記内径部の翼長さが前記外径部の翼長さよりも大きいか、又はほぼ同一となるように構成されることを特徴とする多翼ファン。
  10.  吸込口及び吹出口を有する筐体と、
     該筐体内に配置された熱交換器と、
     該熱交換器の上流側または下流側に配置され、筐体外部の空気を吸込口より吸い込み、吐出口から吹き出す多翼ファンと、を備えた空気調和機において、
     前記多翼ファンは、請求項1から9の何れかに記載の多翼ファンであることを特徴とする空気調和機。
PCT/JP2011/006594 2011-11-28 2011-11-28 多翼ファン及びこれを備えた空気調和機 WO2013080241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013546828A JP5879363B2 (ja) 2011-11-28 2011-11-28 多翼ファン及びこれを備えた空気調和機
PCT/JP2011/006594 WO2013080241A1 (ja) 2011-11-28 2011-11-28 多翼ファン及びこれを備えた空気調和機
CN201180075104.3A CN103958900B (zh) 2011-11-28 2011-11-28 多叶片风扇及具备该多叶片风扇的空气调节器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006594 WO2013080241A1 (ja) 2011-11-28 2011-11-28 多翼ファン及びこれを備えた空気調和機

Publications (1)

Publication Number Publication Date
WO2013080241A1 true WO2013080241A1 (ja) 2013-06-06

Family

ID=48534777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006594 WO2013080241A1 (ja) 2011-11-28 2011-11-28 多翼ファン及びこれを備えた空気調和機

Country Status (3)

Country Link
JP (1) JP5879363B2 (ja)
CN (1) CN103958900B (ja)
WO (1) WO2013080241A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6667745B1 (ja) * 2019-06-20 2020-03-18 三菱電機株式会社 遠心ファンおよび回転電機
TWI747758B (zh) * 2020-10-23 2021-11-21 日商三菱電機股份有限公司 多葉離心式送風機
KR20230046135A (ko) * 2021-09-29 2023-04-05 대륜산업 주식회사 환기팬 임펠러
EP4234945A4 (en) * 2020-10-22 2023-12-13 Mitsubishi Electric Corporation CENTRIFUGAL BLOWER AND AIR CONDITIONING
EP4234944A4 (en) * 2020-10-22 2023-12-13 Mitsubishi Electric Corporation CENTRIFUGAL BLOWER AND AIR CONDITIONING DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6634929B2 (ja) * 2015-12-16 2020-01-22 株式会社デンソー 遠心送風機
WO2020008519A1 (ja) * 2018-07-03 2020-01-09 三菱電機株式会社 多翼送風機及び空気調和装置
JP7471319B2 (ja) * 2019-12-23 2024-04-19 三菱電機株式会社 多翼送風機、及び空気調和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893695A (ja) * 1994-09-22 1996-04-09 Daikin Ind Ltd ファンケーシング
JP2000009094A (ja) * 1998-06-29 2000-01-11 Matsushita Electric Ind Co Ltd 羽根車
JP2000291590A (ja) * 1998-04-10 2000-10-17 Denso Corp 遠心式送風機
JP2006283687A (ja) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd 多翼ファン
JP2011226409A (ja) * 2010-04-21 2011-11-10 Daikin Industries Ltd 多翼ファン及びこれを備えた空気調和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299409B1 (en) * 1998-04-10 2001-10-09 Denso Corporation Centrifugal type blower unit
WO2004097225A1 (ja) * 2003-05-01 2004-11-11 Daikin Industries, Ltd. 多翼遠心送風機
JP3969354B2 (ja) * 2003-06-23 2007-09-05 松下電器産業株式会社 遠心ファンおよびその用途
JP2006077723A (ja) * 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd 多翼ファン
CN101360916B (zh) * 2006-03-17 2012-09-26 松下电器产业株式会社 多叶片风扇
AU2007234497B8 (en) * 2007-01-29 2010-07-01 Mitsubishi Electric Corporation Multiblade centrifugal blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0893695A (ja) * 1994-09-22 1996-04-09 Daikin Ind Ltd ファンケーシング
JP2000291590A (ja) * 1998-04-10 2000-10-17 Denso Corp 遠心式送風機
JP2000009094A (ja) * 1998-06-29 2000-01-11 Matsushita Electric Ind Co Ltd 羽根車
JP2006283687A (ja) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd 多翼ファン
JP2011226409A (ja) * 2010-04-21 2011-11-10 Daikin Industries Ltd 多翼ファン及びこれを備えた空気調和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6667745B1 (ja) * 2019-06-20 2020-03-18 三菱電機株式会社 遠心ファンおよび回転電機
WO2020255331A1 (ja) * 2019-06-20 2020-12-24 三菱電機株式会社 遠心ファンおよび回転電機
EP4234945A4 (en) * 2020-10-22 2023-12-13 Mitsubishi Electric Corporation CENTRIFUGAL BLOWER AND AIR CONDITIONING
EP4234944A4 (en) * 2020-10-22 2023-12-13 Mitsubishi Electric Corporation CENTRIFUGAL BLOWER AND AIR CONDITIONING DEVICE
TWI747758B (zh) * 2020-10-23 2021-11-21 日商三菱電機股份有限公司 多葉離心式送風機
KR20230046135A (ko) * 2021-09-29 2023-04-05 대륜산업 주식회사 환기팬 임펠러
KR102617365B1 (ko) 2021-09-29 2023-12-21 대륜산업 주식회사 환기팬 임펠러

Also Published As

Publication number Publication date
JP5879363B2 (ja) 2016-03-08
CN103958900B (zh) 2017-05-03
CN103958900A (zh) 2014-07-30
JPWO2013080241A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP5879363B2 (ja) 多翼ファン及びこれを備えた空気調和機
JP3698150B2 (ja) 遠心送風機
WO2009139422A1 (ja) 遠心送風機
WO2017026150A1 (ja) 送風機およびこの送風機を搭載した空気調和装置
JP2011089460A (ja) ターボ型流体機械
JP2007127089A (ja) 遠心送風機及びこれを備えた空気調和装置
WO2014125710A1 (ja) 車両用空気調和装置の室外冷却ユニット
WO2017026143A1 (ja) 送風機および空気調和装置
US11808270B2 (en) Impeller, multi-blade air-sending device, and air-conditioning apparatus
WO2014141613A1 (ja) 送風装置
WO2013031046A1 (ja) 空気調和機
JP2013050031A (ja) 多翼送風機および空気調和機
KR102562563B1 (ko) 터보팬 및 이를 갖는 에어컨
JP2008223741A (ja) 遠心送風機
JPWO2020008519A1 (ja) 多翼送風機及び空気調和装置
CN109958633B (zh) 多叶片离心风机
WO2015079670A1 (ja) 送風機
JPWO2019035153A1 (ja) 羽根車、送風機、及び空気調和装置
WO2017119229A1 (ja) 圧縮機
JP2007285164A (ja) シロッコファン及び空気調和機
JP2006125229A (ja) シロッコファン
JP6044165B2 (ja) 多翼ファン及びこれを備える空気調和機の室内機
JP6330738B2 (ja) 遠心送風機及びこれを用いた空気調和機
WO2024084537A1 (ja) 送風装置
JP2013124575A (ja) ターボファン、空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876821

Country of ref document: EP

Kind code of ref document: A1