WO2013031046A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2013031046A1
WO2013031046A1 PCT/JP2012/001333 JP2012001333W WO2013031046A1 WO 2013031046 A1 WO2013031046 A1 WO 2013031046A1 JP 2012001333 W JP2012001333 W JP 2012001333W WO 2013031046 A1 WO2013031046 A1 WO 2013031046A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
length
collision wall
side end
stabilizer
Prior art date
Application number
PCT/JP2012/001333
Other languages
English (en)
French (fr)
Inventor
敬英 田所
池田 尚史
慎悟 濱田
代田 光宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201290000786.1U priority Critical patent/CN204063280U/zh
Priority to JP2013531003A priority patent/JP5744209B2/ja
Publication of WO2013031046A1 publication Critical patent/WO2013031046A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall

Definitions

  • the present invention relates to an air conditioner, and more particularly to a separate type air conditioner indoor unit having an indoor unit and an outdoor unit.
  • An indoor unit of an air conditioner is installed indoors (in a house, office, etc.) that performs air conditioning.
  • the indoor air sucked from the suction port is heat-exchanged with a refrigerant circulating in the refrigeration cycle by a heat exchanger, In the heating operation, the indoor air is warmed, and in the cooling operation, the indoor air is cooled and blown into the room again from the air outlet.
  • a blower and a heat exchanger are installed inside the indoor unit body. Stored.
  • cross-flow fans cross-flow fans, cross-flow fans, cross-flow fans, etc.
  • blowers for wall-hanging types with long and narrow outlets and ceiling-mounted types with one-way blowing. It is well known that it is also used.
  • a heat exchanger is arranged upstream of the once-through fan for the air flow from the inlet to the outlet of the indoor unit of the air conditioner, that is, a heat exchanger is arranged between the inlet and the once-through fan.
  • An outlet is located downstream of the fan.
  • the length in the longitudinal direction of the blowout port of the indoor unit is substantially the same as the overall length in the longitudinal direction (rotation axis direction) of the cross-flow fan, and the cross-flow fan is provided with a predetermined space on the outside in the longitudinal direction at both ends of the cross-flow fan.
  • a support portion and a drive motor for supporting the rotating shaft are arranged.
  • a cross-flow fan (hereinafter abbreviated as “fan”) is formed by inclining a plurality of blades whose transverse section is curved in a substantially arc shape on a support plate that is an annular (ring-shaped) flat plate having an outer diameter and an inner diameter by a predetermined angle.
  • a plurality of impellers fixed concentrically and annularly are connected in the rotational axis direction.
  • each impeller In the direction of the rotation axis, a disk-shaped fan end plate to which a rotation shaft supported by the bearing unit of the indoor unit body is attached is fixed to the blade tip of the impeller alone at one end, and the other end Unlike the other support plates, each impeller has a fan end plate with a boss provided with a boss portion at the center to which a motor rotation shaft of a drive motor is attached and fixed.
  • the fan rotates around the rotation axis that is the center of the rotation axis.
  • the blade is inclined so that its outer peripheral tip is located forward in the rotational direction.
  • a single impeller connected in the direction of the rotation axis is called a series of fans.
  • each of the impellers positioned at both ends of the fan in the rotation axis direction is referred to as an end portion series.
  • the room air With the rotation of the fan, the room air is sucked into the indoor unit body of the air conditioner from the suction port, becomes conditioned air whose temperature is adjusted as described above when passing through the heat exchanger, crosses the fan, Blows out in the direction of rotation from the fan. After that, the airflow passage formed between the front-side stabilizer and the rear-side rear guide portion gradually spreads and flows from the air outlet formed in the lower part of the indoor unit body into the room.
  • the airflow crossing the fan causes the plurality of blades constituting the fan to pass through the upstream suction area and the downstream blowing area when the fan rotates. Due to the structure of such a once-through fan, it is known that a vortex is generated in the vicinity of a stabilizer that is arranged on the front side with respect to the blowing direction of the airflow of the fan and divides the suction area and the blowing area.
  • Both ends of the fan in the direction of the rotation axis are fan end plates (support plates) that make up a single impeller as a rotating body, and the sides of the air path so as to face the fan end plates outside the fan end plates.
  • the side wall which comprises is arrange
  • the space formed between the fan end plate and the side wall facing the fan end plate is located outside both ends of the fan in the rotation axis direction, and is a pressure loss when the airflow passes through the heat exchanger.
  • the pressure atmosphere is lower than atmospheric pressure.
  • the upper side of the outlet is connected to the stabilizer, and the lowest pressure is caused by the vortex generated in the vicinity of the stabilizer, and the difference from the atmospheric pressure is the largest, so reverse suction occurs from the lower side connected to the rear guide part.
  • the fan gradually moves from the fan outlet to the ventilation passage of the casing outlet.
  • the side wall shape is changed so as to reduce the ventilation path in the rotation axis direction (see, for example, Patent Document 1).
  • a backflow prevention plate is provided at both ends of the fan in the rotation axis direction so as to cover the blowout portion in the vicinity of the suction portion, and further, the draft resistance is reduced as a chamfered shape (for example, see Patent Document 2) .
  • JP-A-8-121395 (columns 0013 to 0023, FIG. 1)
  • Japanese Patent Laid-Open No. 2001-201078 (columns 0030 to 0035, FIG. 2)
  • a backflow prevention plate is provided at both ends in the rotation axis direction of the fan so as to cover the blowout part in the vicinity of the suction part, and the airflow resistance is reduced as a chamfered shape
  • a stabilizer that has a low pressure due to the vortex A chamfer is also provided on the side. For this reason, there is a problem that the space between the backflow prevention plate and the fan is widened by the chamfer and the room air is easily sucked into the interior of the indoor unit from the outlet.
  • the present invention has been made in order to solve the above-described problems, and performs reverse suction at both ends in the longitudinal direction of the air outlet, particularly on the stabilizer side of the air outlet, which is the part where the pressure is the lowest due to the vortex.
  • An object of the present invention is to obtain an air conditioner that can prevent power consumption and noise.
  • An air conditioner according to the present invention is provided at an upper portion of an air conditioner main body, a suction port for sucking indoor air, a heat exchanger for exchanging heat with the indoor air sucked from the suction port, and the air conditioner main body
  • a blower outlet that extends in the longitudinal direction in the left-right direction of the main body of the air conditioner and blows out the room air heat-exchanged by the heat exchanger into the room, the heat exchanger, and the blower outlet
  • a cross-flow fan that blows the room air from the suction port to the blow-out port and both ends of the cross-flow fan.
  • the cross-flow fan includes a fan extension extending from both longitudinal ends of the blow-out port in the direction of the rotation axis, and a front side of the blow-off air path that guides the room air blown from the cross-flow fan to the blow-out port.
  • a collision wall with which the room air blown out from and collides, and a facing surface that is one surface of the collision wall and faces the fan extension, and the facing surface is located on the rear guide portion side.
  • the length in the rotational axis direction of the part side end is configured to be shorter than the length in the rotational axis direction of the stabilizer side end located on the stabilizer side.
  • the air flow from the end of the cross-flow fan collides against the collision wall to create a stagnation pressure higher than the atmospheric pressure, so that the room air is blown from the outside of the indoor unit. Prevent reverse suction from entering the interior of the indoor unit through the exit.
  • stagnation pressure higher than atmospheric pressure is formed for the airflow near the stabilizer where the vortex is generated, with a width (length in the direction of the rotation axis) that can sufficiently prevent reverse suction, and against the airflow far from the vortex
  • FIG. 4 is a longitudinal sectional view taken along line QQ in FIG. 1 according to the first embodiment.
  • 3A and 3B are schematic views showing the cross-flow fan according to Embodiment 1, in which FIG. 3A is a side view of the cross-flow fan, and FIG. 3B is a cross-sectional view taken along the line U-U in FIG.
  • FIG. 4 is an enlarged perspective view showing a fan formed by fixing five impellers (units) in the rotation axis direction according to the first embodiment (FIG. 4A), and an explanatory view showing a support plate (FIG. 4 (b)).
  • FIG. 6 is a perspective view (FIG. 6A) and a top view (FIG. 6B) showing a collision wall according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing a collision wall according to the first embodiment.
  • FIG. 6 is an explanatory diagram illustrating a cross-sectional shape of a collision wall according to the first embodiment.
  • FIG. 6 is a cross-sectional view taken along the line WW in FIG. 5 according to the first embodiment.
  • FIG. 4 is a graph illustrating the position in the depth direction AY on the horizontal axis and the length in the rotation axis direction AX of the opposing surface of the collision wall on the horizontal axis according to the first embodiment. It is explanatory drawing which concerns on Embodiment 1 and shows the airflow in the indoor unit main body by a cross-flow fan. It is a graph which shows the wind speed of the airflow which blows off from the fan which concerns on Embodiment 1, a horizontal axis shows the position of the depth direction AY, and a vertical axis
  • shaft shows a wind speed.
  • FIG. 3 is a schematic diagram illustrating a simplified internal configuration of the indoor unit at the stabilizer side end according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a simplified internal configuration of the indoor unit at the stabilizer side end according to the first embodiment.
  • FIG. 14 is an explanatory diagram illustrating, in an enlarged manner, a vicinity of a collision wall at a right end portion in FIG. 13 according to the first embodiment.
  • FIG. 4 is a cross-sectional view according to the first embodiment, passing through the fan center side end Hb at the position 20a of the indoor unit and perpendicular to the rotation axis.
  • FIG. 6 is an explanatory diagram illustrating, in an enlarged manner, a vicinity of a collision wall at a right end portion of an indoor unit at a rear guide side end portion according to the first embodiment.
  • FIG. 10 is a perspective view illustrating another configuration example of the collision wall according to the first embodiment.
  • FIG. 10 is a perspective view illustrating another configuration example of the collision wall according to the first embodiment.
  • FIG. 4 is a cross-sectional view according to the first embodiment, passing through the fan center side end Hb at the position 20a of the indoor unit and perpendicular to the rotation axis.
  • 4 is a graph illustrating the position in the depth direction AY on the horizontal axis and the length in the rotation axis direction AX of the opposing surface of the collision wall on the horizontal axis according to the first embodiment.
  • 3 is a cross-sectional view showing a collision wall 18 according to Embodiment 1.
  • FIG. It is a perspective view which expands and shows the collision wall which concerns on Embodiment 2 of this invention.
  • FIG. 10 is an explanatory diagram illustrating a cross-sectional shape of a collision wall according to the second embodiment.
  • FIG. 10 is a top view showing a collision wall according to the third embodiment.
  • FIG. 14 is a graph showing a facing surface ratio (a length of a facing surface (LU) / a length of a bottom surface (LD)) with respect to a depth direction AY of a collision wall according to Embodiment 3.
  • FIG. 10 is a top view showing a collision wall according to the third embodiment.
  • FIG. 10 is an explanatory diagram illustrating a cross-sectional shape of a collision wall according to the third embodiment. It is explanatory drawing in connection with Embodiment 4 of this invention and explaining the angle of the inclined surface of the collision wall in the position 20a.
  • FIG. 10 is an explanatory diagram for explaining an angle of an inclined surface of a collision wall at a rear guide side end portion according to the fourth embodiment.
  • 24 is a graph illustrating an angle ⁇ of the inclined surface of the collision wall with respect to the position in the depth direction AY according to the fourth embodiment.
  • FIG. Embodiment 1 of the present invention will be described below with reference to the drawings.
  • 1 is an external perspective view showing an indoor unit 1 of an air conditioner equipped with a cross-flow fan 8 according to Embodiment 1
  • FIG. 2 is a longitudinal sectional view taken along line QQ in FIG. The flow of air is indicated by white arrows in FIG. 1 and indicated by dotted arrows in FIG.
  • An air conditioner actually constitutes a refrigeration cycle with an indoor unit and an outdoor unit, but here it relates to the configuration of the indoor unit, and the outdoor unit is omitted. As shown in FIGS.
  • an indoor unit (hereinafter, referred to as an indoor unit) 1 of an air conditioner has an elongated, substantially rectangular parallelepiped shape that extends in the left-right direction when viewed from the front, and is installed on a wall of a room.
  • the upper part 1a of the indoor unit 1 main body is provided with a suction grill 2 that serves as a suction port for sucking indoor air, an electrostatic precipitator 5 that electrostatically collects dust and collects dust, and a mesh-like filter 6 that removes dust.
  • the heat exchanger 7 having a configuration in which the pipe 7 b penetrates through the plurality of aluminum fins 7 a arranged in parallel is arranged on the front side and the upper side of the cross-flow fan 8 so as to surround the fan 8.
  • the front surface 1b of the indoor unit 1 main body is covered with a front panel, and a blower outlet 3 is provided at the lower part of the indoor unit 1 main body, so that the indoor air heat-exchanged by the heat exchanger 7 blows out from the blower outlet 3 into the room. Is done.
  • the blower outlet 3 is comprised by the opening extended elongate considering the left-right direction of the indoor unit 1 main body as a longitudinal direction.
  • the air outlet 3 is provided so that the longitudinal direction of the air outlet 3 coincides with the left-right direction of the main body of the indoor unit 1.
  • the cross-flow fan 8 that is a blower is provided between the heat exchanger 7 and the blower outlet 3 so that the left-right direction (longitudinal direction) of the main body of the indoor unit 1 is the rotation axis direction, and is driven by a motor 16 (see FIG. 3). It is rotationally driven and blows room air from the inlet 2 to the outlet 3.
  • a stabilizer 9 and a rear guide part 10 for separating the suction area E1 and the blowing area E2 from the fan 8 are provided inside the indoor unit 1 main body.
  • the stabilizer 9 constitutes the front side of the blowout air passage 11 that guides the room air blown from the cross-flow fan 8 to the blowout port 3, and the rear guide portion 10 is, for example, a spiral shape and constitutes the back side of the blowout air passage 11.
  • the rear guide portion 10 has a gentler curved surface than the front-side stabilizer 9, and the blowout air passage 11 has a shape that gradually widens toward the blowout port 3.
  • Up and down wind direction vanes 4a and left and right wind direction vanes 4b are rotatably attached to the air outlet 3 to change the air blowing direction into the room.
  • O indicates the rotation center of the fan 8
  • E1 is a suction area of the fan 8
  • E2 is a blowout area located on the opposite side of the rotation center O from the suction area E1.
  • the suction region E1 and the blowout region E2 of the fan 8 are separated by the tongue portion 9a of the stabilizer 9 and the upstream end portion 10a of the air flow of the rear guide portion 10.
  • RO indicates the rotation direction of the fan 8.
  • FIG. 3A and 3B are schematic views showing the cross-flow fan 8 according to the first embodiment.
  • FIG. 3A is a side view of the cross-flow fan
  • FIG. 3B is a cross-sectional view taken along the line UU in FIG. is there.
  • the lower half of FIG. 3B shows a state where a plurality of wings on the other side can be seen, and the upper half shows one wing 13.
  • FIG. 4A is an enlarged perspective view showing the fan 8 formed by fixing five impellers 14 in the rotation axis direction AX
  • FIG. 4B is an explanatory view showing the support plate 12.
  • the motor 16 and the motor shaft 16 a are omitted, and the impeller portion is shown as the cross-flow fan 8.
  • the number of impellers 14 constituting the fan 8 and the number of blades 13 constituting one impeller 14 may be any number, and the number is not limited.
  • the cross-flow fan 8 has a plurality of, for example, five impellers 14 in the rotation axis direction AX (longitudinal direction).
  • An annular support plate 12 is disposed at one end of the impeller 14, and a plurality of blades 13 extending in the rotation axis direction AX are disposed along the outer periphery of the support plate 12.
  • a support plate for a single impeller 14 that includes a plurality of impellers 14 formed of a thermoplastic resin such as AS resin or ABS resin in the rotation axis direction AX, and the tip of the blade 13 is disposed next by ultrasonic welding or the like. 12 is connected.
  • the fan end plate 12b located at the other end is not provided with the blades 13 and has a disk shape.
  • a fan shaft 15a is provided at the center of a support plate 12a (hereinafter referred to as a fan end plate) located at one end in the rotational axis direction AX, and a fan boss 15b is provided at the center of the fan end plate 12b located at the other end.
  • the fan boss 15b and the motor shaft 16a of the motor 16 are fixed with screws or the like. That is, the fan end plates 12a and 12b positioned at both ends of the fan 8 in the rotation axis direction AX have a disk shape, and the fan shaft 15a and the fan boss 15b are formed in the central portion where the rotation axis 17 is positioned.
  • the support plate 12 excluding both ends has an annular space at the center where the rotation axis 17 serving as the center of rotation is located, and has an inner diameter K1 and an outer diameter K2 as shown in FIG. 4B.
  • the alternate long and short dash line is a virtual rotation axis that connects the motor shaft 16a and the fan shaft 15a and indicates the rotation center O.
  • the rotation axis 17 is referred to as the rotation axis 17.
  • the direction in which is extended is the rotation axis direction AX.
  • a single impeller is referred to as a ream 14 and a ream located at both ends in the rotational axis direction AX is referred to as an end ream 14a.
  • FIG. 5 is a perspective view of the indoor unit 1 main body of the air conditioner according to the present embodiment as viewed obliquely from below.
  • the vertical wind direction vane 4 a and the left and right wind direction vane 4 b are removed, and a part of the fan 8 can be seen through the air outlet 3.
  • the length L2 in the rotation axis direction AX of the fan 8 is configured to be longer than the length L1 in the longitudinal direction of the air outlet 3 of the indoor unit (L2> L1).
  • This blower outlet 3 is opened so that the longitudinal direction thereof coincides with the left-right direction of the main body of the indoor unit 1.
  • both end part 14a of the fan 8 is each extended from the both ends of the blower outlet 3, and this extension part, ie, both end part 14a of the fan 8, does not face the blower outlet 3.
  • This portion is referred to as a fan extension 8a.
  • the collision wall 18 which the blowing airflow which blows off from the fan extension part 8a collides is provided in the indoor unit 1 main body facing the fan extension part 8a.
  • the side walls 30 are provided at both ends of the fan 8 at positions separated from the fan end plates 12a and 12b by a predetermined distance so as to extend substantially parallel to the fan end plates 12a and 12b. Left and right side surfaces of the air path extending from the air inlet 2 to the air outlet 3 are configured.
  • the rear side of the blowout air passage 11 is connected to the outlet 3 as shown in FIG.
  • the rear guide portion 10 is formed in a spiral shape from the most upstream side 10a of the rear guide portion 10 to the outlet 3 so that the distance from the outer periphery of the impeller of the fan 8 to the rear guide portion 10 is gradually increased. It is a simple configuration.
  • the front side of the blowout air passage 11 is composed of a stabilizer 9. The airflow accelerated and blown to the front side of the fan 8 by the rotation of the fan 8 flows in a curved manner through the blowout air passage 11 and blown out from the blowout port 3 to the front side.
  • FIG. 6 to 9 are views for explaining the shapes of the collision walls 18 provided at both ends of the indoor unit 1.
  • FIG. 6 illustrates the collision walls 18 provided at both ends of the interior of the indoor unit 1 main body.
  • FIG. 6 is an enlarged perspective view (FIG. 6 (a)) and a top view (FIG. 6 (b)) showing the collision wall 18 provided at one end on the right side in FIG. 5.
  • FIG. 7 is an explanatory view showing the collision wall 18, and FIGS. 8A and 8B are views in which the collision wall 18 is cut along a plane perpendicular to the surface of the fan end plate 12 b of the end link 14 a and including the rotation axis 17.
  • FIG. 8A is a cross-sectional view of the stabilizer-side end portion 19a disposed on the stabilizer 9 side
  • FIG. 8B is a rear-guide portion side end disposed on the rear guide portion 10 side.
  • the cross section in the part 19b is shown.
  • FIG. 9 is a cross-sectional view taken along the line WW in FIG. 5 and shows a vertical cross section perpendicular to the rotation axis 17 of the indoor unit 1 in a portion including the collision wall 18 in the vicinity of the fan end plate 12b.
  • the rear guide portion 10 in the cross section of the fan extension portion 8a, the stabilizer 9, and the collision wall 18 form a wall with respect to the airflow blown from the fan extension portion 8a, and are indicated by oblique lines.
  • the facing surface 18a of the collision wall 18 is a surface facing the fan extension 8a substantially in parallel, and the airflow blown from the fan extension 8a collides with the facing surface 18a.
  • the rear surface of the blowout air passage 11 is configured halfway upstream of the rear guide portion 10, but as shown in FIG. 9, from the rear guide portion side end portion 19b (described later) on the way. It faces the facing surface 18 a of the collision wall 18, is not connected to the opening such as the blowout port 3, and continues to the stabilizer 9.
  • the side where the air outlet 3 is located is referred to as the front side
  • the side where the rear guide part 10 is located is referred to as the back side
  • the collision wall 18 connects the stabilizer side end portion 19a disposed on the stabilizer 9 side and the rear guide portion side end portion 19b disposed on the rear guide portion 10 side of the fan extension portion 8a.
  • a region where the air flow blown from the fan extension 8a collides with the collision wall 18 in the blowing region E2 (see FIG. 2) indicating a region where the air flow is blown from the fan 8 is defined as a collision region E3.
  • the dotted line indicates the fan 8 and the fan end plate 12b
  • the dotted line indicates the fan end plate 12b
  • the shape of the collision wall 18 is such that the length of the facing surface 18a at the rear guide side end 19b is the length of the facing side at the stabilizer side end 19a. It is configured to be shorter than the length of 18a.
  • the collision walls 18 provided at the left and right ends are formed integrally with the left and right side walls 30, for example, and are connected to the side walls 30, and extend inward in the left-right direction with the side walls 30 as one end. Therefore, in the top view (FIG. 6B) showing the facing surface 18a of the collision wall 18, it is substantially trapezoidal.
  • the edge located outside in the left-right direction of the indoor unit 1 main body is the fan outer edge Ha
  • the edge located inside in the left-right direction of the indoor unit 1 main body is the fan inner edge.
  • Hb As shown in FIG. 6 (b), the trapezoidal facing surface 18a viewed from above is such that the rear guide side end 19b as the upper base and the stabilizer side end 19a as the lower base are substantially parallel to each other.
  • the fan outer edge Ha which is one side, is a connecting portion between the side wall 30 and the collision wall 18 and is substantially perpendicular to the rear guide side end 19b (upper bottom) and the stabilizer side end 19a (lower bottom). Interact with.
  • the fan inner edge Hb which is the other side, is inclined because the length of the stabilizer side end 19a in the rotation axis direction AX is longer than the length of the rear guide portion side end 19b in the rotation axis direction AX. ing.
  • the length of the opposing surface 18a between the stabilizer side end 19a and the decrease start position 19c (details will be described later) in the rotation axis direction AX is the same.
  • the length of the stabilizer side end 19a of the opposing surface 18a in the rotational axis direction AX, and the rear guide of the opposing surface 18a is the length from the fan end plates 12a and 12b of the facing surface 18a facing the fan extension 8a substantially parallel to the rotational axis 17. That is, as shown in FIGS. 8A and 8B, the length (Na) in the rotation axis direction AX of the opposing surface 18a from the fan end plate 12b of the stabilizer side end 19a> the rear guide side end 19b.
  • the length (Nb) in the rotation axis direction AX of the facing surface 18a from the fan end plate 12b is uneven in the rotational axis direction AX for convenience of configuration, the length of the stabilizer side end 19a of the opposing surface 18a in the rotational axis direction AX, and the rear guide of the opposing surface 18a.
  • the length of the part-side end 19b in the rotational axis direction AX is the length from the fan end plates 12a
  • the rear guide part side end 19b of the collision wall 18 is smoothly connected to the rear guide part 10, so that the collision wall 18 actually rises from the rear guide part 10 at the extreme end.
  • the height of is zero.
  • the rear guide portion side end portion 19b is in the vicinity of the end portion where the collision wall 18 is connected to the rear guide portion 10, and the distance between the facing surface 18a and the bottom surface 18b is large to some extent. It is a position having a thickness.
  • the cross-sectional shape of the collision wall 18 is a polygonal shape, in this case, a quadrangle.
  • the four sides of the quadrangle are a part of the inner surface of the facing surface 18a, the bottom surface 18b, the collision wall side surface 18c, and the side wall 30.
  • the facing surface 18a is one surface of the collision wall 18, and is parallel to the rotation axis 17 and faces the fan extension 8a of the end link 14a.
  • the bottom surface 18 b is a surface facing the facing surface 18 a on the side opposite to the fan extension portion 8 a, and is connected to the rear guide portion 10 constituting the back side of the blowing air passage 11.
  • the collision wall side surface 18 c faces inward in the left-right direction of the main body of the indoor unit 1, and is a surface connecting the facing surface 18 a and the bottom surface 18 b, and faces the blowout air path 11.
  • Nb ⁇ Na described above is a quadrangle in a cross section at each position in the depth direction AY, and the length of one side representing the opposing surface 18a is such that the length of the rear guide side end 19b is longer than the length of the stabilizer side end 19a. Is also short.
  • the height of the collision wall 18, that is, the distance between the facing surface 18 a and the bottom surface 18 b, is such that the distance between the outer periphery of the fan 8 and the rear guide portion 10 (the distance in the radial direction of the fan 8) gradually increases. Therefore, the stabilizer side end portion 19a is larger than the rear guide portion side end portion 19b.
  • the length in the rotation axis direction AX of the facing surface 18a facing the end portion 14a of the collision wall 18 is configured to change smoothly in the depth direction AY of the collision wall 18 as shown by a curve I1 in FIG. Yes.
  • FIG. 10 is a graph in which the horizontal axis indicates the position in the depth direction AY, and the vertical axis indicates the length of the facing surface 18a of the collision wall 18 in the rotational axis direction AX.
  • the length of the opposing surface 18a of the collision wall 18 in the rotation axis direction AX is the maximum length (Na) of the stabilizer side end 19a and the length (Nb) of the rear guide side end 19b.
  • the length is such that Na and Nb are smoothly connected by a substantially straight line.
  • the rotation direction of the opposing surface 18a Let AX have the same length. That is, a decrease start position 19c is provided at a position between the stabilizer side end 19a and the rear guide part side end 19b of the collision wall 18 in the depth direction AY, and the length of the opposing surface 18a in the rotation axis direction AX is set on the stabilizer side.
  • the decrease start means the decrease start of the length in the rotation axis direction AX on the facing surface 18a
  • the decrease start position 19c is in the middle between the stabilizer side end portion 19a and the rear guide portion side end portion 19b. This is a start position on the stabilizer side when the length of the opposing surface 18a in the rotation axis direction AX is shortened.
  • the outer diameter K2 (see FIG. 4) of the annular support plate 12 fixed to the blade 13 at the end of the impeller 14 is ⁇ 110 mm and the inner diameter K1 (see FIG. 4) is ⁇ 60 mm.
  • 35 wings 13 are fixed on the top.
  • the longitudinal length L1 of the outlet 3 is 610 mm
  • the total length L2 of the fan 8 in the rotation axis direction AX is 640 mm.
  • the collision wall 18 has a length Na in the rotational axis direction AX of the opposing surface 18a of the collision wall 18 from the fan end plates 12a and 12b at the stabilizer side end 19a, 15 mm, and a fan end at the rear guide side end 19b.
  • the length Nb in the rotation axis direction AX of the facing surface 18a of the collision wall 18 from the plates 12a and 12b is 5 mm.
  • S in FIG. 8 indicates a space formed between the fan end plates 12 a and 12 b at both ends of the fan 8 and the side wall 30.
  • the length of the space S in the rotation axis direction AX is, for example, 10 mm.
  • the length of the end portion 14a in the rotational axis direction AX is 25 mm at the end portion 14a at one end and 70mm at the end portion 14a at the other end, and the rotation of the other portions 14 excluding the two end portions 14a.
  • the axial direction AX length is approximately 80 mm.
  • the distance a from the outer periphery of the impeller to the surface of the collision wall 18 in the fan extension 8a is about 5 mm.
  • the length in the depth direction AY of the facing surface 18a of the collision wall 18 (the length along the curved surface from the stabilizer side end 19a to the rear guide side end 19b) is set to 200 mm, and the length on the stabilizer side is the same.
  • the length (the length along the curved surface from the stabilizer side end 19a to the decrease start position 19c) is 20 mm.
  • FIG. 11 is an explanatory view showing an air flow in the main body of the indoor unit 1 by the cross-flow fan 8.
  • a vortex (circulation vortex) F ⁇ b> 1 is generated in the vicinity of the stabilizer 9 inside the cross-flow fan 8 as the airflow passes.
  • the area E4 around the vortex F1 has the lowest atmospheric pressure (Pmin) in the indoor unit 1 and the largest difference from the atmospheric pressure (P0). For this reason, reverse suction is more likely to occur on the stabilizer side (Ga) of the outlet 3 from which the airflow passing around the vortex F1 blows out than on the rear guide part side (Gb).
  • the wind speed of the airflow which blows off from the fan 8 is shown in FIG. In FIG.
  • the horizontal axis indicates the position in the depth direction AY
  • the vertical axis indicates the wind speed of the blown airflow.
  • J1 and J2 indicate the wind speeds of the airflows J1 and J2 shown in FIG. Due to the shape of the air passage and the characteristics of the cross-flow fan 8, the wind speed of the airflow flowing through the blowout air passage 11 is small on the stabilizer side, and the wind speed increases toward the rear guide portion side, so that the center between the stabilizer side and the rear guide portion side is large. The wind speed is the largest in the vicinity and further decreases toward the rear guide part. This distribution of wind speed means that the fan 8 does not uniformly give energy to the entire airflow.
  • the wind speed of the airflow is low and the energy is not sufficient.
  • reverse suction in which room air flows into the indoor unit 1 through the air outlet 3 is more likely to occur on the stabilizer side (Ga) than on the rear guide part side (Gb).
  • FIG. 13 is a schematic diagram showing a simplified internal configuration of the indoor unit 1 at the stabilizer-side end 19a. According to the airflow direction (dotted arrow), the suction port 2, the heat exchanger 7, the fan 8, and the outlet 3 are arranged. Simplified relationship. Further, FIG. 14 is an explanatory diagram showing an enlargement of the vicinity of the collision wall 18 at the right end portion in FIG.
  • both end portions 14a of the fan 8 have fan extension portions 8a that are extended from both end portions in the longitudinal direction of the outlet 3 and face the facing surface 18a of the collision wall 18 on the outlet side.
  • the blowing area E2 facing the collision wall 18 is referred to as a collision area E3.
  • the portion excluding the fan extension 8a that is, the central portion in the rotational axis direction AX of the fan 8 is arranged to face the air outlet 3 formed of an opening in the blowout region E2. Is done.
  • the positions of both fan end plates 12a and 12b are the positions of the fan end surfaces that are outward faces of the fan end plates 12a and 12b facing the outside of the main body of the indoor unit 1, for example.
  • the air conditioner is operated, and the fan 8 is rotated by the motor 16.
  • the cross-flow fan 8 rotates in the RO direction (see FIG. 2)
  • the indoor air is sucked from the suction port 2 provided at the top of the main body of the indoor unit 1 and flows through the pipe 7 b when passing through the heat exchanger 7. Heat exchange with refrigerant. Then, it becomes an air-conditioned air stream A and blows out into the room from the outlet 3 through the cross-flow fan 8.
  • frictional resistance pressure loss
  • the atmospheric pressure Pe1 is lower than the atmospheric pressure P0.
  • the space S is a space that is continuous with the suction region E1 and has the same pressure atmosphere, and therefore has a pressure Pe1 ( ⁇ atmospheric pressure P0) equivalent to that of the suction region E1. Focusing on the blowout side of the end link 14a, the airflow Aa blown to a location facing the collision wall 18 hits the collision wall 18, and the wind speed energy is converted into pressure energy, so that the stagnation pressure is applied to the collision area E3. P1a is generated. As the rotation of the fan 8 increases, the wind speed Va of the airflow Aa increases and the stagnation pressure P1a increases. If the wind speed Va is equal to or higher than a predetermined value, the stagnation pressure P1a is higher than the atmospheric pressure P0. The wind speed Va when the stagnation pressure P1a becomes higher than the atmospheric pressure P0 varies depending on the pressure loss of the mounted heat exchanger or the like.
  • the rotation speed of the cross-flow fan 8 mounted in the indoor unit 1 of the air conditioner is set according to the operation mode such as weak cooling or strong cooling.
  • the length Na in the rotation axis direction AX of the facing surface 18a at the side end 19a is determined. If the stabilizer side end 19a of the collision wall 18 having the dimensions determined in this way is provided, the collision area E3 of the end series 14a of the fan 8 is swallowed during the operation of the indoor unit 1, that is, when the fan 8 rotates.
  • the space can be a pressure P1a (> atmospheric pressure P0).
  • a pressure difference is formed by setting the collision area E3 leading to the space S to the stagnation pressure P1a> atmospheric pressure P0, and the stagnation pressure P1a blocks the inflow of room air at the atmospheric pressure P0. For this reason, it is possible to prevent reverse suction in which room air flows from the outside of the indoor unit 1 through the air outlet 3 into the space S having a low pressure inside the indoor unit 1.
  • reverse suction can be prevented by creating a stagnation pressure P1a larger than the atmospheric pressure P0 between the fan 8 and the collision wall 18 at the stabilizer side end 19a where reverse suction is likely to occur.
  • a collision wall 18 having a facing surface 18a having a uniform width in the rotation axis direction AX is provided from the stabilizer-side end 19a to the rear guide-side end 19b in the depth direction AY. Since the air flow resistance increases, the load on the fan 8 increases, leading to an increase in energy loss and noise.
  • the rotation axis direction AX of the facing surface 18a that is the surface facing the fan 8 is used. Is made shorter than the stabilizer-side end 19a. Then, the length in the rotational axis direction AX from the fan end plate 12b of the face 18a facing the fan of the collision wall 18 is smoothly reduced from the stabilizer side end 19a toward the rear guide side end 19b.
  • FIG. 15 is a longitudinal sectional view showing the indoor unit 1, and shows a cross section passing through the fan inner end Hb at the position 20 a and perpendicular to the rotation axis 17.
  • the rear guide portion 10, the stabilizer 9, and a part of the collision wall 18 constitute a wall with respect to the airflow, and are indicated by oblique lines.
  • a collision wall 18 is formed in a portion closer to the stabilizer side end portion 19a than the position 20a, and a blowout air passage 11 is formed in a portion closer to the rear guide portion side end portion 19b than the position 20a.
  • the airflow blown between the position 20a and the rear guide side end 19b in the depth direction AY flows into the blowout air passage 11 and flows into the indoor unit. 1 becomes an air flow to the outside.
  • the air flow blown between the position 20a and the stabilizer side end 19a in the depth direction AY collides with the collision wall 18 to form a stagnation pressure, thereby preventing reverse suction.
  • a cross section that passes through the fan inner end Hb of the stabilizer side end 19a of the collision wall 18 and is perpendicular to the rotation axis 17 constitutes the blowout air passage 11 similar to that in FIG.
  • the collision wall 18 is not formed on the inner side, and all the airflow is generated.
  • FIG. 16 is an explanatory view showing, in an enlarged manner, the vicinity of the collision wall 18 at the right end portion of the rear guide portion side end portion 19b.
  • the collision wall 18 of the rear guide portion side end 19b has a length Nb of the facing surface 18a in the rotation axis direction AX that is shorter than the length Na of the stabilizer side end portion 19a and faces the end portion 14a. The width is narrow. For this reason, as shown in FIG.
  • the length of the high-pressure part P1b in the rotation axis direction AX due to the collision of the airflow is narrow, but it is far from the circulation vortex F1 and is difficult to reversely absorb compared to the stabilizer 9 side. Therefore, this level can provide a sufficient effect for reverse suction.
  • the width of the facing surface 18a of the collision wall 18 is narrowed, the air current Aaa collides with the facing surface 18a of the collision wall 18 in the air flow A blown out from the fan 8 near the rear guide portion 10, and the stagnation pressure P1b is set. create.
  • the airflow Aab flowing inward in the left-right direction is blown out of the indoor unit 1 through the blowout air passage 11 and the blowout port 3 without colliding with the collision wall 18.
  • the air flow can be ensured by making the length of the facing surface 18a of the collision wall 18 shorter than the stabilizer side end 19a.
  • a length (spinning axis direction AX) at which the stagnation pressure necessary to prevent the occurrence of reverse suction at that position is obtained.
  • the collision wall 18 having an opposing surface 18a having a length of 1 mm is formed.
  • the airflow blown out from the fan 8 does not collide with the collision wall 18 and flows to the outlet 3 as a blown airflow. Therefore, at all positions from the stabilizer side end portion 19a to the rear guide side end portion 19b, compared with the collision wall 18 in which the length in the rotation axis direction AX of the facing surface 18a is the same, the same fan rotation speed is obtained. On the other hand, the air volume increases and the power consumption can be reduced. Furthermore, noise associated with the collision of airflow can be reduced.
  • the stabilizer side of the collision wall 18 is stable so that the stagnation pressure P1a higher than the atmospheric pressure P0 can be stably obtained near the both ends of the air outlet 3 at the wind speed when operating at the lowest rotational speed.
  • the length Na in the rotation axis direction AX of the facing surface 18a at the end 19a and the decrease start position 19c are determined.
  • the length Nb of the opposing surface 18a in the rotation guide line direction AX in the rear guide part side edge part 19b should just be set by the width
  • variety of the range of Na> Nb> 0.
  • the suction port 2 provided in the upper part of the main body of the air conditioner 1 and sucks room air
  • the heat exchanger 7 that exchanges heat with the room air sucked from the suction port 2
  • a blower outlet 3 provided in the lower part of the air conditioner 1 main body so as to extend in the longitudinal direction in the left-right direction of the air conditioner 1 main body, and blows indoor air heat-exchanged by the heat exchanger 7 into the room
  • the cross flow fan 8 is provided between the air outlet 7 and the air outlet 3 so that the left-right direction of the air conditioner 1 body is the rotation axis direction AX, and blows room air from the suction port 2 to the air outlet 3.
  • a fan extension portion is provided to connect the stabilizer 9 and the rear guide portion 10 to the riser 9, the rear guide portion 10 constituting the rear side of the blowout air passage 11, and both ends of the main body of the air conditioner 1, respectively.
  • the 8a includes a collision wall 18 on which indoor air blown out from 8a collides, and a facing surface 18a that is one surface of the collision wall 18 and faces the fan extension 8a, and the facing surface 18a is located on the rear guide portion 9 side.
  • the length of the rear guide part side end 19b in the rotational axis direction AX is configured to be shorter than the length of the stabilizer side end part 19a positioned on the stabilizer 9 side in the rotational axis direction AX.
  • the air flow from the end portion 14a of the fan 8 collides with the collision wall 18 to create a stagnation pressure higher than the atmospheric pressure. Air is prevented from reverse suction entering from the outside of the indoor unit 1 inside the indoor unit 1 through the air outlet 3.
  • the length from the stabilizer side end 19a to the decrease start position 19c in the rotation axis direction AX length of the facing surface 18a of the collision wall 18 was made constant with Na.
  • the stagnation pressure P1 formed in the collision area E3 that leads to the space S is sufficiently wide to block the inflow of room air due to reverse suction (
  • it can be formed with a length in the rotation axis direction AX) and a length in the depth direction AY. Therefore, it is possible to reliably prevent reverse suction from occurring on the stabilizer side where reverse suction is likely to occur.
  • the decrease start position 19c is a position that is about 10% of the length of the collision wall 18 in the depth direction from the stabilizer side end 19a, but is not limited thereto. As shown in FIG. 11, a position where a straight line Z connecting the rotation center O of the fan 8 and Gb on the rear guide portion 10 side of the blower outlet 3 intersects the facing surface 18 a of the collision wall 18, a reduction start position 19 c in FIG. 11. However, it is preferable that the position be closer to the rear guide part side end 19b than this position. This is because the portion from the stabilizer side end 19a to the decrease start position 19c is close to the region E4 where the pressure is low due to the vortex F1, and reverse suction is likely to occur.
  • the collision wall 18 has the decrease start position 19c that is the start position on the stabilizer 9 side when the length of the facing surface 18a in the rotation axis direction AX is shortened, the stabilizer side end 19a and the rear guide part side.
  • the reverse suction is likely to occur. Since the stagnation pressure having a sufficient width in the rotation axis direction AX is formed at the reduction start position 19c from the stabilizer side end portion 19a as compared with other portions of the collision wall 18, reverse suction can be surely prevented.
  • FIG. 17 is a perspective view showing a configuration example of another shape of the collision wall 18.
  • the collision wall 18 shown in FIG. 7 at each position in the depth direction AY from the stabilizer side end portion 19a to the rear guide portion side end portion 19b, the collision wall 18 is formed on a plane that is perpendicular to the fan end plate 12b and includes the rotation axis 17.
  • the cross section when cut is a polygonal shape, for example, a quadrilateral shape.
  • the collision wall 18 shown in FIG. 18 cuts the collision wall 18 in a plane perpendicular to the fan end plate 12b and at a vertical plane at each position in the depth direction AY from the stabilizer-side end 19a to the rear guide-side end 19b.
  • the cross section is a polygonal shape, for example, a quadrilateral shape. Therefore, a cross section passing through the fan inner end Hb at the position 20a and perpendicular to the rotation axis 17 is shown in FIG. Also in this shape, the length in the rotation axis direction AX of the facing surface 18a of the collision wall 18 at the rear guide side end 19b is equal to the rotation axis direction AX of the facing surface 18a of the collision wall 18 in the stabilizer side end 19a. It is configured to be shorter than the length.
  • the stabilizer side end 19a can form a stagnation pressure with a width sufficient to prevent reverse suction in the rotational axis direction AX, particularly at both ends of the fan where the reverse suction is likely to occur and on the stabilizer side (Ga). Therefore, indoor air can be prevented from flowing into the interior of the indoor unit 1 through both the left and right ends of the air outlet 3 and the upper side of the air outlet 3 in the vicinity of the stabilizer 9.
  • FIG. 15 and FIG. 18 of the cross section perpendicular to the rotation axis 17 at the position 20a a straight line (FIG. 15) connecting the position 20a and the rotation center O and a vertical line (FIG. 18) passing through the position 20a
  • the airflow flowing through the blowout air passage 11 is different. That is, the airflow flowing in the blowout air passage 11 at each position upstream of the stabilizer side end 19a increases by the space D shown in FIG. For this reason, in the configuration of FIG. 18, the air volume can be increased compared to the configuration of FIG. 15, and low power and low noise can be realized.
  • FIG. 19 relates to the shape of the collision wall 18 according to the first embodiment, and is a graph showing the length of the surface 18a of the collision wall 18 facing the fan 8 in the rotation axis direction AX.
  • the horizontal axis indicates the position in the depth direction AY
  • the vertical axis indicates the length in the rotation axis direction AX of the facing surface 18a.
  • the length of the facing surface 18a in the rotation axis direction AX is the length of the fan 8 from the fan end plates 12a and 12b.
  • the change from the stabilizer side end 19a upstream to the rear guide side end 19b is not linear as shown in FIG.
  • a stepped shape, a concave or convex curved shape, a wavy shape, or the like may be used.
  • the same effect can be obtained even if the curve I2 is changed to a stepped shape in FIG. 19 or a gently convex curve I3.
  • FIG. 20 is a cross-sectional view showing the collision wall 18 according to the first embodiment, and shows, for example, the collision wall 18 disposed at the right end toward the outlet 3.
  • this cross section may be a cross section taken along a plane perpendicular to the fan end plate 12b and including the rotation axis 17, or a cross section taken along a plane perpendicular to the fan end plate 12b and perpendicular to the fan end plate 12b. Since the left side of the collision wall side surface 18 c is the blowout air passage 11 following the air outlet 3, the collision wall side surface 18 c constitutes the side surface of the blowout air passage 11.
  • the collision wall 18 described so far has substantially the same length in the rotation axis direction AX of the opposing surface 18a and the bottom surface 18b of the collision wall, and the opposing surface 18a and the bottom surface 18b
  • the angle ⁇ is an angle formed from the facing surface 18a of the collision wall in the clockwise direction (counterclockwise direction at the left end of the outlet 3) to the collision wall side surface 18c.
  • the length of the facing surface 18a in the rotation axis direction AX is configured to be shorter than the bottom surface 18b, and the collision wall side surface 18c, the facing surface 18a, May be configured to be an obtuse angle (> 90 °).
  • FIG. 20A among the airflows that flow so as to collide with the facing surface 18a, the airflow that collides with the corners of the facing surface 18a and the collision wall side surface 18c is shown in FIG. 20D.
  • the vortex F2 is likely to occur near the collision wall side surface 18c.
  • an obtuse angle is formed at an angle ⁇ (> 90 °), and the airflow that collides with the corners of the opposed surface 18a and the collision wall side surface 18c is gently inclined and flows to the collision wall side surface 18c. Therefore, it is difficult to generate the vortex F2 at this portion. In this way, energy loss and noise can be reduced by suppressing peeling and disturbance, and low power and low noise can be achieved.
  • the length of the facing surface 18a in the rotational axis direction AX is longer than the bottom surface 18b, and the angle ⁇ between the collision wall side surface 18c and the bottom surface 18b is an obtuse angle ( ⁇ 90). °).
  • the vortex F2 is likely to be formed in the vicinity of the collision wall side surface 18c, but in the rotation axis direction AX of the blowout air passage 11 than in FIGS. 20A and 20B.
  • the length can be increased.
  • the air volume determined by the wind speed X wind path area can be increased.
  • the length of the opposing surface 18a in the rotation axis direction AX can be made longer than in FIGS. 20 (a) and 20 (b). For this reason, it is the structure which can enlarge the width
  • the stagnation pressure can be formed between the facing surface 18a and the fan 8, so that the room air outside the indoor unit 1 can be formed. Can prevent reverse suction from entering the space S (see FIGS. 14 and 16) at both ends of the fan 8 through the air outlet 3.
  • the cross-sectional shape of the collision wall 18 from the stabilizer side end portion 19a to the rear guide portion side end portion 19b is one of FIGS. 20 (a), (b), and (c).
  • the configuration is not limited to one, and may be combined.
  • the opposing surface 18a is lengthened or the blowing air passage 11 is widened, and at positions 20a and 20b in the depth direction AY, FIG. 20A and 20B, and in the vicinity of the rear guide portion side end 19b, the length of the opposing surface 18a in the rotation axis direction AX is short, so that FIG. 20B may be used.
  • the wind speed of the airflow blown out from the fan 8 is the stabilizer side end 19a. Bigger than It is effective to prevent the vortex F2 by making the corner at an obtuse angle as shown in FIG. 20B to prevent the vortex F2 at a portion where the wind speed is high, thereby reducing energy loss and noise due to the vortex F2.
  • the cross-sectional shape of the collision wall 18 is a polygonal shape, basically a quadrangle, and the corner formed by the surface 18a of the collision wall 18 facing the fan 8 and the side surface 18c of the collision wall is a straight line or a curve. It is characterized by having a shape that has been cut away, that is, a shape having a so-called chamfered portion.
  • the cross section at this time may also be a cross section when cut along a plane perpendicular to the fan end plates 12a and 12b and including the rotation axis 17, or a cross section when cut along a plane perpendicular to the fan end plates 12a and 12b.
  • the same reference numerals as those in the first embodiment denote the same or corresponding parts.
  • FIG. 21 is an enlarged perspective view showing the collision wall 18 according to Embodiment 2 of the present invention.
  • the collision wall 18 is arranged at the right end of the indoor unit 1 main body.
  • the dotted line indicates the fan end plate 12b.
  • the collision wall 18 that is provided so as to connect the stabilizer 9 and the rear guide portion 10 to both ends of the main body of the indoor unit 1 and has the facing surface 18 a facing the fan 8 is provided on the stabilizer side. From the end 19a to the rear guide part side end 19b, the outer periphery of the fan extension 8a in the blowing area E2 is surrounded.
  • a similar collision wall 18 is disposed at the left end portion of the air outlet 3 whose longitudinal direction extends to the left and right, but has a horizontally reversed shape.
  • Embodiment 2 is characterized in that an inclined surface is formed by cutting off a corner of the fan inner edge Hb of the facing surface 18a facing the fan 8 to form an inclined surface 21.
  • the inclined surface 21 is not formed from the stabilizer side end portion 19a to the decrease start position 19c, and the rear guide portion side end portion 19b is formed with the inclined surface 21 shaped so as to cut off the corner of the fan inner edge Hb.
  • a surface surrounded by a one-dotted line shown at positions 19b, 20a, and 20b shows a cross section when the collision wall 18 is cut along a plane perpendicular to the fan end plate 12b.
  • FIG. 22 is an explanatory view showing a cross-sectional shape when the collision wall 18 is cut along a plane perpendicular to the fan end plate 12b.
  • FIG. 22 (a) is a stabilizer side end 19a (or a decrease start position 19c).
  • 22 (b) is a position 20a
  • FIG. 22 (c) is a cross-section at the rear guide side end 19b.
  • FIG. 23 is a top view (FIG. 23A) and a cross-sectional view (FIG. 23B) showing the collision wall 18 according to the second embodiment.
  • FIG. 23B shows a cross section taken along line W20a-W20a in FIG.
  • the height of the collision wall 18, that is, the distance between the opposing surface 18 a and the bottom surface 18 b, is gradually increased by the distance between the outer periphery of the fan 8 and the rear guide portion 10 (the radial distance of the fan 8). Since it is large, the stabilizer side end 19a located downstream with respect to the airflow is larger than the rear guide part side end 19b located upstream.
  • the collision wall 18 is configured to be connected at one end to the side wall 30 that forms the blowout air passage 11, but the length LD of the bottom surface 18b of the collision wall 18 in the rotation axis direction AX and the opposing surface 18a. Is expressed by the length from the outward surface of the fan end plate 12b (or the fan end plate 12a in the case of the collision wall 18 at the left end). Further, regarding the length of the opposing surface 18a in the rotation axis direction AX, the length of the rear guide portion side end 19b located on the rear guide portion 10 side is larger than the length of the stabilizer side end portion 19a located on the stabilizer 9 side. Also short.
  • the start position on the stabilizer side when the length (LU) of the rotation surface direction AX of the facing surface 18a is shortened is set as a decrease start position 19c, and from the stabilizer side end 19a to the decrease start position 19c, the counter surface 18a
  • the length (LU) is the same.
  • the opposing surface 18a of the collision wall 18 facing the fan 8 is the length from the fan end plate 12b in the rotational axis direction AX at the stabilizer side end portion 19a (LU19a)> the rear guide side end as in the first embodiment.
  • the length between them is LU19a> LU20a> LU19b.
  • the length (LD) from the fan end plate 12b of the bottom surface 18b of the collision wall 18 to the side surface 18c of the collision wall is the same from the stabilizer side end 19a to the rear guide side end 19b.
  • the length (LD19a) of the bottom surface 18b from the fan end plate 12b to the collision wall side surface 18c in the rotation axis direction AX at the stabilizer side end 19a (or the decrease start position 19c) the fan end in the rotation axis direction AX at the position 20a.
  • the facing surface length (LU) / bottom surface length (LD) is referred to as a facing surface ratio (LU / LD), and the facing surface ratio (LU / LD) with respect to the position in the depth direction AY is the rear guide side end.
  • 19b is smaller than the stabilizer side end 19a, and is configured to satisfy the following expression (1).
  • LU19a / LD19a ( 1) > LU20a / LD20a > LU19b / LD19b (1)
  • FIG. 24 relates to the second embodiment, and shows the facing surface length (LU) / bottom surface length (LD) from the fan end plate 12b in the rotation axis direction AX with respect to the facing surface 18a and the bottom surface 18b of the collision wall 18. It is a graph.
  • the horizontal axis indicates the position in the depth direction AY.
  • An inclined surface is formed on the fan inner edge Hb between the reduction start position 19c and the rear guide side end 19b so that the facing surface ratio (LU / LD) with respect to the position in the depth direction AY satisfies the expression (1).
  • 21 is provided.
  • An angle ⁇ between the opposing surface 18a and the inclined surface 21 in the clockwise direction is an obtuse angle.
  • the length LU19a at the stabilizer side end 19a is the longest, and the rear guide side
  • the length LU19b at the end 19b is the shortest. Therefore, as in the first embodiment, at the stabilizer side end 19a, a stagnation pressure larger than atmospheric pressure is formed in the collision area E3 (see FIG. 16) of the collision wall 18 with a sufficient width, and the room air is in the area S. By blocking the reverse flow, reverse suction can be prevented.
  • the rear guide portion side end 19b far from the circulating vortex F1 inside the fan forms a wide inclined surface 21 in the rotation axis direction AX, whereby the fan of the end link 14a.
  • 60% of the blown airflow blown out from the extension 8a blows out to the inclined surface 21 and is smoothly guided to the blowout port 3 to become a blown airflow.
  • 40% on the fan end plate 12b side collides with the facing surface 18a to form a stagnation pressure in the collision area E3, leading to the space S.
  • a pressure difference is formed by setting the collision area E3 to the stagnation pressure P1> atmospheric pressure P0, and the stagnation pressure P1 blocks the inflow of room air at the atmospheric pressure P0. For this reason, it is possible to prevent reverse suction in which room air flows from the outside of the indoor unit 1 through the air outlet 3 into the space S having a low pressure inside the indoor unit 1.
  • the clockwise angle ⁇ from the facing surface 18a of the inclined surface 21 was set to 110 ° to 160 °. This angle is not limited to this range, and any angle may be used as long as the airflow smoothly flows along the inclined surface 21.
  • the opposing surface 18a of the collision wall 18 is made sufficiently long as necessary to block the reverse suction in the rotation axis direction AX.
  • the length of the opposing surface 18a in the rotation axis direction AX is made shorter than that of the stabilizer 9 side (Ga).
  • a part of the blowing airflow blown out from the extension portion 8a flows into the blowout port 3 and becomes a blowing airflow.
  • the length of the opposing surface 18a in the rotational axis direction AX is compared with a configuration in which the length LU19a is the same as the stabilizer side end 19a from the stabilizer side end 19a to the rear guide side end 19b, as shown in FIG. If the inclined surface 21 is formed, the air volume increases with respect to the same fan rotation speed, power consumption can be reduced, and energy saving can be achieved. Furthermore, since all the airflows blown out from the fan extension 8a do not collide with the facing surface 18a, it is possible to reduce the noise accompanying the airflow collision.
  • the inclined surface 21 may be provided on the fan inner edge Hb of the facing surface 18a from the stabilizer side end 19a to the decrease start position 19c. This portion is a portion close to the stabilizer 9 and easily absorbs reversely. Therefore, it is preferable to form the stagnation pressure with a sufficient width (length in the rotation axis direction AX).
  • an inclined surface 21 may be provided that has a gently inclined angle ⁇ close to 180 °. Providing the inclined surface 21 can reduce the occurrence of disturbance as shown in FIG.
  • the length LD of the bottom surface 18b of the collision wall 18 in the rotation axis direction AX is the same from the stabilizer side end 19a to the rear guide side end 19b. That is, the length in the left-right direction of the blown air passage 11 through which the blown airflow blown from the fan 8 passes is substantially the same up to the blowout port 3. For this reason, there is little pressure loss and disturbance, and a stable blowing airflow can be obtained.
  • the bottom surface has a stable configuration even at a position where the length of the facing surface 18a in the rotation axis direction AX is short, for example, at the positions 20a and 19b.
  • the length LU19b from the fan end plate 12b in the rotation axis direction AX of the facing surface 18a can be set to zero at the rear guide side end 19b.
  • the opposed surface 18a may be eliminated at a portion where reverse suction is unlikely to occur, and all of the airflow blown from the fan extension 8a of the end link 14a may be used as the blown airflow.
  • the air volume can be increased and the power consumption can be reduced as compared with the case where the opposed surface 18a is formed at the rear guide portion side end portion 19b.
  • the facing surface ratio (LU / LD) is changed so as to gradually decrease from the reduction start position 19c to the rear guide portion side end 19b, but is not limited thereto.
  • it may be changed stepwise.
  • the inclined surface 21 in the explanatory diagram is a flat surface, it is not limited to a flat surface, and may be a curved surface that is convex inwardly in the left-right direction, that is, on the side of the blowing air passage 11.
  • the rear guide portion side end located on the rear guide portion 10 side with respect to the length (LU) of the facing surface 18a of the collision wall 18 in the rotation axis direction AX.
  • the length (LU19b) in the rotational axis direction AX of the portion 19b is configured to be shorter than the length (LU19a) in the rotational axis direction AX of the stabilizer side end 19a located on the stabilizer 9 side.
  • the blown airflow from the end portion 14 a of the fan 8 collides with the collision wall 18 to create a stagnation pressure higher than the atmospheric pressure.
  • the collision wall 18 comprises polygonal shape, and the opposing surface 18a.
  • a fan end plate 12a in the rotational axis direction AX having a bottom surface 18b opposite to the opposing surface 18a on the opposite side of the fan extension 8a, a collision wall side surface 18c connecting the opposing surface 18a and the bottom surface 18b on the inner side in the left-right direction,
  • a surface connected to the facing surface 18a on the inner side in the left-right direction Is formed by an inclined surface that intersects with the opposing surface 18a at an obtuse angle, so that the fan inner edge Hb of the collision wall 18 is separated or disturbed in the vicinity of the corner as compared to a corner that intersects at a right angle. It is possible to suppress the occurrence of noise and to reduce power consumption and noise.
  • Embodiment 3 the configuration in which the rear guide side end 19b is shorter than the stabilizer side end 19a with respect to the length in the rotation axis direction AX of the facing surface 18a of the collision wall 18 is the first and second embodiments. It is the same.
  • the length (LD) of the bottom surface 18b from the fan end plate 12b from the stabilizer side end portion 19a to the rear guide portion side end portion 19b is the same as that of the stabilizer side end portion 19a.
  • the difference between the length of the opposing surface 18a and the length of the bottom surface 18b was formed by providing the inclined surface 21 at the fan inner edge Hb to form a smoothly flowing air flow.
  • the length of the bottom surface 18b from the fan end plate 12b is changed from the stabilizer side end portion 19a (or the decrease start position 19c) to the rear guide portion side end portion 19b in the depth direction AY.
  • the length of the bottom surface 18b is different from the length of the opposing surface 18a at that position.
  • the length of the bottom surface 18b from the fan end plate 12b is the longest at the stabilizer side end 19a (or the decrease start position 19c), and the length of the bottom surface 18b from the fan end plate 12b is at the rear guide portion side end 19b. The shortest.
  • FIG. 25 is an explanatory view showing a cross-sectional shape when the collision wall 18 is cut along a plane perpendicular to the fan end plate 12b.
  • FIG. 25 (a) shows a stabilizer side end 19a, a decrease start position 19c, and FIG. b) is a position 20a, and FIG. 25 (c) is a cross section at the rear guide portion side end portion 19b.
  • FIG. 26 is a top view showing the collision wall 18 according to the third embodiment. As shown in the figure, the length (LD) from the fan end plate 12b of the bottom surface 18b of the collision wall 18 to the side wall 18c of the collision wall is changed from the stabilizer side end 19a to the rear guide part side end 19b.
  • the opposing surface 18a of the collision wall 18 facing the fan 8 is the length from the fan end plate 12b in the rotation axis direction AX at the stabilizer side end 19a (LU19a)> the rear guide side end 19b, as in the first embodiment. Is a length (LU19b) from the fan end plate 12b in the rotation axis direction AX.
  • the facing surface ratio (LU / LD) which is the length (LU) of the facing surface 18a with respect to the length (LD) of the bottom surface 18b is constant. Therefore, the relationship of the formula (2) is satisfied with respect to the facing surface ratio (LU / LD) at each position of the collision wall 18.
  • FIG. 27 shows an example of a configuration that satisfies the formula (2).
  • the vertical axis relates to the facing surface ratio (LU / LD), which is the length of the facing surface 18a with respect to the length of the bottom surface 18b of the collision wall 18. It is a graph which shows the opposing surface length (LU) / bottom surface length (LD) from the fan end plate 12b of the rotation axis direction AX.
  • the horizontal axis indicates the depth direction AY.
  • the length of the facing surface 18a and the length of the bottom surface 18b at each position in the depth direction AY from the stabilizer 9 side to the rear guide portion 10 side are set so as to satisfy this facing surface ratio (LU / LD).
  • the surface connected to the inside of the rotation axis direction AX of the opposing surface 18a within the range of the difference between the length of the opposing surface 18a and the length of the bottom surface 18b is defined as the inclined surface 21.
  • the inclined surface 21 is provided on the fan inner edge Hb of the rear guide side end 19b from the decrease start position 19c.
  • the inclined surface 21 is a surface that intersects the opposing surface 18a at an obtuse angle of ⁇ > 90 °.
  • LU / LD 1 from the stabilizer side end 19a to the decrease start position 19c
  • LU / LD 0.8 from the decrease start position 19c to the rear guide side end 19b is constant.
  • the boundary between the corner portion and the inclined surface 21 formed on the fan inner edge portion Hb at the decrease start position 19c needs to have a certain length on the rear guide portion 10 side in the depth direction AY, and is formed naturally and smoothly. Is preferred.
  • the length (LD19b) in the rotational axis direction AX of the bottom surface 18b is shorter than the length (LD19a) of the stabilizer side end 19a at the rear guide side end 19b far from the circulation vortex F1. It is characterized by.
  • FIGS. 22B and 22C of the second embodiment are compared with FIGS. 25B and 25C, respectively, in FIG. 25B and FIG.
  • the airflow flowing through the portion where the length of the bottom surface 18b of the collision wall 18 is shorter than the configuration of FIGS. 22B and 22C does not collide with the collision wall 18.
  • the air is smoothly guided to the air outlet 3 through the inside of the collision wall side surface 18c. That is, the length in the rotation axis direction AX of the blowing air passage 11 in the blowing area E2 is increased by the amount corresponding to the shortening of the length in the rotation axis direction AX of the bottom surface 18b. For this reason, ventilation resistance can be made smaller than the structure of FIG. 22, and an air volume can be increased.
  • the air volume can be increased, and when compared with the same air volume, the input can be reduced, so that power consumption can be reduced and energy can be saved.
  • a collision sound can also be reduced.
  • the length of the bottom surface 18b of the collision wall 18 in the rotation axis direction AX will be described. If the length of the bottom surface 18b is too long, the length of the blowing air passage 11 in the rotation axis direction AX is shortened, and the air volume of the blowing airflow is reduced. On the other hand, if the length of the bottom surface 18b is too short, the length of the blowout air passage 11 in the rotation axis direction AX is made longer than necessary, and the speed of the blown airflow is lowered to obtain a sufficient wind speed at the blowout port 3. It becomes impossible.
  • the room air may flow backward from the outside of the indoor unit 1 main body through the air outlet 3 to the air outlet region E ⁇ b> 2.
  • a stagnation pressure higher than the atmospheric pressure is formed on the facing surface 18a by the collision wall 18 and the backflowed room air is prevented from entering the space S, but the room air that has flowed back from the outlet 3 to the outlet area E2 is prevented. Even if it flows out of the indoor unit 1 again due to the stagnation pressure, a loss is caused.
  • the rotational axis direction AX of the bottom surface 18b of the stabilizer side end 19a of the collision wall 18 is obtained so that a wind speed at which the reverse suction does not occur at the outlet 3 with the wind speed when operating at the lowest rotational speed is obtained.
  • the inclined surface 21 is provided from the reduction start position 19c to the fan inner edge Hb of the rear guide portion side end 19b.
  • production of the vortex F2 (refer FIG.20 (d)) caused by the airflow which flows into a corner
  • the facing surface ratio (LU19b / LD19b) of the rear guide portion side end 19b may be less than the facing surface ratio (LU19a / LD19a) of the stabilizer side end 19a.
  • FIG. 28 is a top view showing the collision wall 18 according to the third embodiment.
  • the ratio of the airflow that flows through the inclined surface 21 to the blowout air passage 11 can be made larger than the ratio of the airflow that collides with the facing surface 18a of the collision wall 18. It is possible to further reduce the energy loss and the collision sound that are generated when the airflow blown out from 8 collides with the collision wall 18.
  • FIGS. 29 (a) and 29 (b) show other examples of the configuration of the collision wall 18 according to the third embodiment.
  • the fan at the stabilizer side end 19a (similar to the decrease start position 19c) of the collision wall 18 is shown in FIGS.
  • a cross section perpendicular to the end plate 12b is shown.
  • This configuration example is characterized in that the length LU19a of the facing surface 18a> the length LD19a of the bottom surface 18b.
  • the shape of the collision wall 18 at the rear guide side end 19b and the position 20a therebetween is the same as the shape shown in FIGS.
  • the relationship of the expression (3) is satisfied with respect to the facing surface ratio (LU / LD) at each position of the collision wall 18.
  • the surface 18 a facing the fan 8 forms a stagnation pressure P ⁇ b> 1 a in the collision area E ⁇ b> 3 as shown in FIG. 14, and the room air passes from the outside of the indoor unit 1 through the outlet 3 into the space S. Prevent backflow.
  • the stabilizer side end 19a which is the part where the pressure becomes low by the vortex F1 generated inside the fan 8, and the collision wall 18 in the vicinity thereof, for example, the collision wall from the stabilizer side end 19a to the decrease start position 19c, perform reverse suction.
  • the shape is such that the stagnation pressure is prevented.
  • FIG. 29A since the length (LU19a) of the opposing surface 18a in the rotation axis direction AX is long, a stagnation pressure having a width necessary to prevent reverse suction can be formed at both ends of the fan 8.
  • the length of the bottom surface 18b in the rotation axis direction AX from the fan end plate 12b is shorter than that of the facing surface 18a, the length of the blowout air passage 11 in the left-right direction (rotation axis direction AX) becomes longer.
  • the area of the blowing air passage 11 is increased, and the air volume of the blowing airflow is increased.
  • the length of the bottom surface 18b (LD 19a) provides a wind speed that does not cause reverse suction even when the rotational speed of the fan 8 is low. Length.
  • the length of the facing surface 18a in the rotation axis direction AX is shorter than that of the stabilizer side end portion 19a.
  • FIG. 29B shows a configuration in which the inclined surface 21 is a surface connected inward in the rotation axis direction AX of the facing surface 18a of FIG.
  • the airflow flowing in the corners of the facing surface 18 a is smoothly along the inclined surface 21 by the inclined surface 21 formed on the fan inner edge Hb of the facing surface 18 a of the collision wall 18. It flows and is guided to the downstream outlet 3. For this reason, it can suppress that the disturbance shown in FIG.20 (d) arises.
  • the collision wall 18 has a polygonal shape in a cross section obtained by cutting the collision wall 18 along a plane perpendicular to the disk-shaped fan end plates 12a and 12b provided at both ends of the cross-flow fan 8.
  • the fan end in the rotation axis direction AX has a facing surface 18a, a bottom surface 18b facing the facing surface 18a on the side opposite to the fan extension 8a, and a collision wall side surface 18c connecting the facing surface 18a and the bottom surface 18b on the inner side in the left-right direction.
  • the facing surface ratio obtained by LU / LD is as follows:
  • the reverse suction is prevented by the opposing surface ratio (LU19b / LD19b) of the rear guide side end 19b being less than the opposing surface ratio (LU19a / LD19a ( ⁇ 1)) of the stabilizer side end 19a.
  • the air flow can be ensured and the air flow can be smoothly guided to the air outlet 3 by the inclined surface 21 of the fan inner edge Hb of the facing surface 18a, thereby preventing the reverse suction and reducing the energy loss due to the air current collision. This has the effect of reducing power consumption.
  • a surface connected to the facing surface 18a on the inner side in the left-right direction Is formed by an inclined surface that intersects with the opposing surface 18a at an obtuse angle, so that the fan inner edge Hb of the collision wall 18 is separated or disturbed in the vicinity of the corner as compared to a corner that intersects at a right angle. It is possible to suppress the occurrence of noise and to reduce power consumption and noise.
  • FIGS. 20 (a) and (b) in the first embodiment FIGS. 22 (b) and (c) in the second embodiment
  • an angle formed with the inclined surface 21 clockwise from the facing surface 18 a is an angle ⁇ .
  • the collision wall 18 at the right end portion is reversed left and right, and therefore the angle formed with the inclined surface 21 counterclockwise from the facing surface 18 a is defined as an angle ⁇ . .
  • FIG. 30 is a cross-sectional view (FIG. 30 (a)) showing the collision wall 18 at the position 20a and an explanatory view (FIG. 30 (b)) for explaining the angle ⁇ .
  • FIG. 31 is a sectional view showing the collision wall 18 at the rear guide portion side end 19b (FIG. 31A) and an explanatory view explaining the angle ⁇ (FIG. 31B).
  • the angle ⁇ (20a) is 150 ° C.
  • the angle ⁇ (19b) is 120 °.
  • the position in FIG. 30 is between the stabilizer side end 19a and the rear guide part side end 19b, and is more stabilizer than the rear guide part side end 19b shown in FIG. Any position may be used as long as the position is on the 9 side. For example, the case of the position 20a will be described.
  • the airflow flows perpendicularly to the facing surface 18 a of the collision wall 18, but the airflow B flowing on the inclined surface 21 is the inclined surface 21 on the inclined surface 21.
  • a component (B 1) perpendicular to the component and a component (B 2) parallel to the inclined surface 21.
  • the component (B2) parallel to the inclined surface 21 flows from the collision wall side surface 18c to the outlet 3 along the inclined surface 21.
  • the component (B1) perpendicular to the inclined surface 21 collides with the inclined surface 21 and the energy of the wind speed is converted into pressure energy, forming a stagnation pressure on the inclined surface 21, and the opposing surface 18a following the inclined surface 21.
  • FIG. 31B It acts to assist the formation of stagnation pressure.
  • the airflow B flowing through the inclined surface 21 is decomposed into a component (B1) perpendicular to the inclined surface and a component (B2) parallel to the inclined surface.
  • the component (B2) parallel to the inclined surface flows along the inclined surface 21 to the collision wall side surface 18c.
  • the component (B1) perpendicular to the inclined surface collides with the inclined surface 21 and tries to form a stagnation pressure with the inclined surface 21.
  • the inclined surfaces 21 (20a) and 21 (19b) are inclined.
  • the airflow perpendicular to the surface is component B1 (20a)> component B1 (19b). That is, on the side of the stabilizer 9 where reverse suction is likely to occur, a stagnation pressure larger than that of the rear guide portion side end portion 19b is formed on the inclined surface 21, so that reverse suction can be reliably prevented.
  • FIG. 32 is a graph showing the position in the depth direction on the horizontal axis and the angle ⁇ of the inclined surface 21 on the vertical axis. Since the decrease start position 19c from the stabilizer side end portion 19a has no inclined portion, the angle ⁇ at the stabilizer side end portion 19a is 180 °, and the angle ⁇ at the rear guide portion side end portion 19b is 120 °. In the positions 20a and 20b, the angle ⁇ is smoothly reduced in a substantially straight line. As the angle ⁇ decreases, the stagnation pressure generated between the inclined surface 21 decreases.
  • FIG. 32 is an example, and the present invention is not limited to this. That is, it is not necessary to gradually change the angle ⁇ into a linear shape. For example, it may be changed to a stepped shape or a curved shape.
  • the structure which has the inclined surface 21 in this fan inner edge part Hb is applied to all shown in Embodiment 2, Embodiment 3.
  • FIG. 10 even when the inclined surface 21 is not formed, the present invention is applied to the case where the opposing surface 18a of the collision wall 18 and the collision wall side surface 18c have an angle larger than 90 °.
  • the distance between the rear guide portion 10 that forms the blowout air passage 11 and the outer periphery of the fan 8 is actually short at the rear guide portion side end portion 19b.
  • the length of the collision wall side surface 18c formed in the blowing air path 11 between the outer periphery is shortened. That is, as shown in FIG.
  • the collision wall side surface 18 c may be regarded as the inclined surface 21.
  • the corner portion of the fan inner edge Hb of the facing surface 18a is formed with a curved surface so as to be a smooth surface with respect to the air current, and the air flow is disturbed by the corner portion. May be suppressed.
  • the rear guide part 10 the side wall 30, and the collision wall 18 are actually molded by injection molding or the like, almost all corners are configured to have a slightly rounded shape.
  • the cross-section obtained by cutting the collision wall 18 along a plane perpendicular to the disk-shaped fan end plates 12a and 12b provided at both ends of the cross-flow fan 8 is connected to the facing surface 18a on the inner side in the left-right direction.
  • the surface to be formed is an inclined surface that intersects at an obtuse angle with respect to the facing surface 18a. It is possible to suppress the occurrence of peeling and turbulence, and to achieve an effect of reducing power consumption and noise.
  • the inclined surface 21 provided on the rear guide portion 10 side is configured to be smaller than the inclined surface 21 provided on the stabilizer 9 side, thereby stabilizing the stabilizer.
  • the side end 19a forms a stagnation pressure with a width (length in the rotation axis direction AX) necessary to prevent reverse suction
  • the rear guide side end 19b forms a stagnation pressure and increases the air flow.
  • the length of the opposing surface 18a in the rotation axis direction AX is constant from the stabilizer side end 19a to the decrease start position 19c, but the present invention is not limited to this.
  • the decrease start position You may reduce the length of the opposing surface 18a rotation axis direction AX from the stabilizer side edge part 19a, without providing 19c.

Abstract

 貫流ファン8の回転軸線方向AXの長さは吹出口3の長手方向長さよりも長く、貫流ファン8が吹出口3の両端から回転軸線方向AXに延長する延長部8a、及び空気調和機本体に設けられ、貫流ファン8のファン延長部8aから吹出される吹出気流が衝突する衝突壁18を備える。さらに、衝突壁18の対向面18aの回転軸線方向AXの長さについて、リアガイド部側端部19bの対向面LU19bの長さを、スタビライザー側端部19aの対向面の長さLU19aよりも短く構成する。

Description

空気調和機
 本発明は空気調和機に関し、特に室内機と室外機を有するセパレート型の空気調和機の室内機に関するものである。
 空気調和機の室内機は、空気調和を行う屋内(家屋や事務所等の室内)に設置され、吸込口から吸い込んだ室内空気を熱交換器にて冷凍サイクルを循環する冷媒と熱交換させ、暖房運転であればその室内空気を暖め、冷房運転であればその室内空気を冷やして、吹出口より再び室内へと送風するものであり、そのために室内機本体内部に、送風機と熱交換器を収納している。
 空気調和機の室内機には多様な形態が存在するが、吹出口が細長い壁掛けタイプや一方向吹き出しの天井埋め込みタイプなどには、送風機として、貫流ファン(クロスフローファンや横流ファン、横断流ファンとも呼ばれる)が用いられることがよく知られている。空気調和機の室内機の吸込口から吹出口に至る空気流に対して、貫流ファンの上流側に熱交換器が配置され、即ち吸込口と貫流ファンの間に熱交換器が配置され、貫流ファンの下流側に吹出口が位置する。室内機の吹出口の長手方向の長さは貫流ファンの長手方向(回転軸線方向)の全長と略同様であり、貫流ファンの両端部の長手方向外側には、所定の空間を空けて貫流ファンの回転軸を支持する支持部及び駆動モータなどが配置される。
 貫流ファン(以下、ファンと略す)は、外径と内径を有する環状(リング状)の平板である支持板に、横断面が略円弧状に湾曲している複数の翼を所定角度傾斜させて同心環状に固着して成る羽根車単体を、回転軸線方向に複数連結して構成される。回転軸線方向で、一方の端部の羽根車単体の羽根先端には、室内機本体の軸受部に支持される回転軸が取り付けられた円板状のファン端板が固着され、他方の端部の羽根車単体は、他の部分の支持板とは異なり、駆動モータのモータ回転軸が取り付け固定されるボス部を中央に備えたボス付ファン端板を有している。駆動モータが回転駆動することで、ファンは回転軸の中心である回転軸線周りに回転する。翼は回転方向前方にその外周側先端が位置するように傾斜している。
 以下、説明のため回転軸線方向に連なる羽根車単体をファンの連と呼ぶ。また、回転軸線方向でファンの両端部に位置する羽根車単体をそれぞれ端部連と呼ぶ。
 ファンの回転に伴い、室内空気が吸込口から空気調和機の室内機本体へ吸い込まれ、熱交換器を通過する際に上記のとおり温度調節された調和空気となって、ファンを横切った後、ファンから回転方向に吹き出される。その後、前面側のスタビライザーと背面側のリアガイド部間に形成される吹出風路を徐々に広がって流れ、室内機本体の下部に形成される吹出口から室内へと吹き出される。
 ファンを横切る気流に対し、ファン回転時にファンを構成する複数の翼は、上流側の吸込領域と下流側の吹出領域を通過する。このような貫流ファンの構成上、ファンの気流の吹き出し方向に対して前面側に配置され、吸込領域と吹出領域を分割するスタビライザー付近に、渦が発生することが知られている。
 室内機の内部では、吸い込まれた室内空気が熱交換器を通過する際に空気に摩擦抵抗(圧力損失)が働くことと、前述のファン回転時にファン内部に渦が発生することから、室内機の内部の気圧は大気圧よりも低くなる。これに対し、ファンは気流を加速して大気圧に打ち勝つエネルギーを与えて吹出口から吹き出している。ところが、ファンから大気圧に打ち勝つだけの十分なエネルギーが気流に供給されない場合には、室内機内の吹出口付近の気圧が大気圧よりも低くなる。また、十分なエネルギーを供給しても、吹出口に均等に気流が流れていくわけではなく、風路の端部では、壁との摩擦によって気流が乱れ、吹出口に向かって気流が滑らかに流れない場合がある。これらの場合に、吹出口から室内機の内部に室内空気が吸い込まれる現象が生じ、この現象を逆吸いと称する。
 左右方向に伸びる略長方形状の吹出口において、左右方向の両端部付近、及び上下方向の上側で逆吸いが発生しやすくなる。その理由は以下のとおりである。
 ファンの回転軸線方向の両端部は、回転体である羽根車単体を構成するファン端板(支持板)と、このファン端板の外側でファン端板に対向するように、風路の側面を構成する側壁が配置されている。このファン端板と側壁との間は、5mm程度の距離が離れており、両者が接触し回転摩擦が生じてしまうことを防いでいる。ところが、ファン端板とこのファン端板に対向する側壁の間に形成される空間は、ファンの回転軸線方向の両端部の外側に位置し、気流が熱交換器を通過する時の圧力損失で大気圧よりも低い圧力雰囲気である。そのため、室内機の外部の大気圧との圧力差によって、吹出口の両端部付近で逆吸いが生じやすいと考えられる。また、吹出口の上側はスタビライザーに接続され、前述のスタビライザー付近に発生する渦によって最も低圧となり、大気圧との差が最も大きくなるので、リアガイド部に接続する下側よりも逆吸いが生じやすい。
 逆吸いが発生すると、逆流発生による気流の乱れによって、ファン全体として風量が減少してファン性能の低下を招いたり、騒音の増加を招く。さらに冷房運転時に逆吸いが発生すると、逆吸いによって室内機内部に入り込んだ高湿度の室内空気が室内機内部の低温壁面に接触して結露し、その結露水がその後水滴となって室内に飛散する(これを露飛びと称する)恐れがある。また、吹き出しや吸い込みを繰り返す非定常現象が発生することもあり、騒音が増加する。
 特に、例えば吸込口にホコリが堆積するなどによって通風抵抗が大きくなると、ファンから空気に十分なエネルギーが供給されにくくなって逆吸いが発生しやすくなる。
 上記のような逆吸いが発生しやすい部分である、ファンの回転軸線方向の両端部の流量性能の向上を図る構成として、ファンの吹出し部から筐体の吹出し部の通風路において徐々にファンの回転軸線方向の通風路を縮小するように側壁形状を変化させた事例がある(例えば、特許文献1参照)。また、ファンの回転軸線方向の両端部に、吸込部近傍の吹出部を覆うように逆流防止板を設け、さらに面取りした形状として通風抵抗の減少を図る事例がある(例えば、特許文献2参照)。
特開平8-121395号公報(0013~0023欄、図1) 特開2001-201078号公報(0030~0035欄、図2)
 ファンの吹出し部から筐体の吹出し部の通風路において徐々にファンの回転軸線方向の通風路を縮小するように側壁形状を変化させた事例では、通風路を縮小することにより著しい失速を防ぎ、さらには側壁から著しい剥離が発生するのを防ぎ、滑らかな流れ場を形成しようとしている。ところがファン端部と側壁との回転摩擦の発生をなくすために、回転するファンと固定部である空気調和機の室内機本体の側壁との隙間をゼロにすることはできない。このため、室内空気が吹出口から縮小された通風路を通って室内機の内部に流入する逆吸いを防止することは困難であるという課題があった。また、渦によって最も低圧となる部分である吹出口の上側に関しては、なんら考慮されていない。
 また、ファンの回転軸線方向の両端部に、吸込部近傍の吹出部を覆うように逆流防止板を設け、さらに面取りした形状として通風抵抗の減少を図る構成では、渦のために低圧になるスタビライザー側にも面取り部が設けられる。このため、逆流防止板とファンとの間が面取り分だけ広くなって室内空気が吹出口から室内機の内部に吸い込まれやすくなるという課題があった。
 本発明は、上記のような課題を解決するためになされたものであり、吹出口の長手方向の両端部で、特に渦によって最も低圧となる部分である吹出口のスタビライザー側で、逆吸いを防止できると共に、低電力化及び低騒音化を実現できる空気調和機を得ることを目的とする。
 本発明に係る空気調和機は、空気調和機本体の上部に設けられ室内空気を吸い込む吸込口と、この吸込口から吸い込まれた前記室内空気と熱交換する熱交換器と、前記空気調和機本体の下部に該空気調和機本体の左右方向に長手方向を伸ばすように設けられ、前記熱交換器にて熱交換された前記室内空気を室内へ吹き出す吹出口と、前記熱交換器と前記吹出口の間に前記空気調和機本体の左右方向を回転軸線方向とするように設けられ、前記吸込口から前記吹出口へ前記室内空気を送風する貫流ファンと、前記貫流ファンの両端部のそれぞれにあって前記貫流ファンが前記吹出口の長手方向の両端から前記回転軸線方向に延長されてなるファン延長部と、前記貫流ファンから吹き出す前記室内空気を前記吹出口に導く吹出風路の前面側を構成するスタビライザーと、前記吹出風路の背面側を構成するリアガイド部と、前記空気調和機本体の両端部のそれぞれに前記スタビライザーと前記リアガイド部とを接続するように設けられ、前記ファン延長部から吹き出される前記室内空気が衝突する衝突壁と、前記衝突壁の一面であって前記ファン延長部に向かい合う対向面と、を備え、前記対向面は、前記リアガイド部側に位置するリアガイド部側端部の前記回転軸線方向の長さが、前記スタビライザー側に位置するスタビライザー側端部の前記回転軸線方向の長さよりも短く構成されていることを特徴とする。
 本発明によれば、吹出口の両端部付近では、貫流ファンの端部連からの吹出気流を衝突壁に衝突させて大気圧より高い淀み圧を作るので、室内空気が室内機の外部から吹出口を通って室内機の内部に進入する逆吸いを防止する。さらに、渦の発生するスタビライザー付近の気流に対しては、大気圧よりも高い淀み圧を、逆吸いを十分に防止できる幅(回転軸線方向の長さ)で形成し、渦から遠い気流に対しては渦の発生する付近の気流に対する淀み圧よりも狭い幅で淀み圧を形成することで、衝突壁によるエネルギー損失の増大を抑制して、低電力化及び低騒音化を実現することができる。
本発明の実施の形態1に係る貫流ファンが搭載された空気調和機の室内機を示す外観斜視図である。 実施の形態1に係り、図1のQ-Q線における縦断面図である。 実施の形態1に係る貫流ファンを示す概略図であり、図3(a)は貫流ファンの側面図、図3(b)は図3(a)のU-U線断面図である。 実施の形態1に係り、5個の羽根車単体(連)を回転軸線方向に固定してなるファンを拡大して示す斜視図(図4(a))、及び支持板を示す説明図(図4(b))である。 実施の形態1に係る空気調和機の室内機を斜め下方から見た斜視図である。 実施の形態1に係る衝突壁を示す斜視図(図6(a))、及び上面図(図6(b))である。 実施の形態1に係る衝突壁を示す説明図である。 実施の形態1に係り、衝突壁の断面形状を示す説明図である。 実施の形態1に係り、図5のW-W線断面図である。 実施の形態1に係り、横軸に奥行き方向AYの位置、縦軸に衝突壁の対向面の回転軸線方向AXの長さを示すグラフである。 実施の形態1に係り、貫流ファンによる室内機本体内の気流を示す説明図である。 実施の形態1に係るファンから吹出す気流の風速を示すグラフであり、横軸に奥行き方向AYの位置、縦軸に風速を示す。 実施の形態1に係り、スタビライザー側端部における室内機の内部構成を簡略化して示す模式図である。 実施の形態1に係り、図13の向かって右端部の衝突壁付近を拡大して示す説明図である。 実施の形態1に係り、室内機の位置20aのファン中央側端部Hbを通り、回転軸線に垂直な断面図である。 実施の形態1に係り、リアガイド部側端部における室内機の右端部の衝突壁付近を拡大して示す説明図である。 実施の形態1に係り、衝突壁の他の構成例を示す斜視図である。 実施の形態1に係り、室内機の位置20aのファン中央側端部Hbを通り、回転軸線に垂直な断面図である。 実施の形態1に係り、横軸に奥行き方向AYの位置、縦軸に衝突壁の対向面の回転軸線方向AXの長さを示すグラフである。 実施の形態1に係る衝突壁18を示す断面図である。 本発明の実施の形態2に係る衝突壁を拡大して示す斜視図である。 実施の形態2に係り、衝突壁の断面形状を示す説明図である。 実施の形態2に係り、衝突壁を示す上面図(図23(a))、及び断面図(図23(b))である。 実施の形態2に係る衝突壁の奥行き方向AYに対する対向面比(対向面の長さ(LU)/底面の長さ(LD))を示すグラフである。 本発明の実施の形態3に係り、衝突壁の断面形状を示す説明図である。 実施の形態3に係り、衝突壁を示す上面図である。 実施の形態3に係る衝突壁の奥行き方向AYに対する対向面比(対向面の長さ(LU)/底面の長さ(LD))を示すグラフである。 実施の形態3に係り、衝突壁を示す上面図である。 実施の形態3に係り、衝突壁の断面形状を示す説明図である。 本発明の実施の形態4に係り、位置20aにおける衝突壁の傾斜面の角度を説明する説明図である。 実施の形態4に係り、リアガイド部側端部における衝突壁の傾斜面の角度を説明する説明図である。 実施の形態4に係り、奥行き方向AYの位置に対する衝突壁の傾斜面の角度θを示すグラフである。
実施の形態1.
 以下、本発明の実施の形態1について、図に基づいて説明する。図1は実施の形態1に係る貫流ファン8が搭載された空気調和機の室内機1を示す外観斜視図、図2は図1のQ-Q線における縦断面図である。空気の流れを、図1では白抜き矢印で示し、図2では点線矢印で示す。空気調和機は実際には室内機と室外機とで冷凍サイクルを構成するが、ここでは室内機の構成に関するものであり、室外機に関しては省略する。図1及び図2に示すように、空気調和機の室内機(以下、室内機と記す)1は、正面から見て、左右方向に伸びる細長い略直方体形状であり、部屋の壁に設置される。室内機1本体の上部1aには、室内空気が吸い込まれる吸込口となる吸込グリル2、ホコリを静電させ集塵する電気集塵器5、ホコリを除塵する網目状のフィルタ6が配設される。さらに、並列される複数のアルミフィン7aに配管7bが貫通する構成の熱交換器7が、貫流ファン8の正面側と上部側に、ファン8を囲むように配置される。また、室内機1本体の前面1bは前面パネルで覆われ、室内機1本体の下部には吹出口3が設けられ、熱交換器7で熱交換された室内空気が吹出口3から室内へ吹き出される。吹出口3は室内機1本体の左右方向を長手方向として細長く伸びる開口で構成される。即ち、吹出口3の長手方向が室内機1本体の左右方向と一致するように吹出口3が設けられる。送風機である貫流ファン8は、熱交換器7と吹出口3の間に、室内機1本体の左右方向(長手方向)を回転軸線方向とするように設けられ、モータ16(図3参照)で回転駆動されて吸込口2から吹出口3へ室内空気を送風する。室内機1本体の内部には、ファン8に対して吸込領域E1と吹出領域E2を分離するスタビライザー9及びリアガイド部10を有する。スタビライザー9は貫流ファン8から吹き出す室内空気を吹出口3に導く吹出風路11の前面側を構成し、リアガイド部10は、例えば渦巻状であり、吹出風路11の背面側を構成する。前面側のスタビライザー9よりもリアガイド部10の方が緩やかな曲面であり、吹出風路11は吹出口3に向かって徐々に広がる形状である。吹出口3には上下風向ベーン4a、左右風向ベーン4bが回動自在に取り付けられ、室内への送風方向を変化させる。図中、Oはファン8の回転中心を示し、E1はファン8の吸込領域、E2は回転中心Oに対して吸込領域E1と反対側に位置する吹出領域である。スタビライザー9の舌部9aとリアガイド部10の空気流の上流側端部10aとで、ファン8の吸込領域E1と吹出領域E2が分離されている。また、ROはファン8の回転方向を示す。
 図3は実施の形態1に係る貫流ファン8を示す概略図であり、図3(a)は貫流ファンの側面図、図3(b)は図3(a)のU-U線断面図である。図3(b)の下半分は向こう側の複数枚の翼が見えている状態を示し、上半分は1枚の翼13を示している。図4(a)は5個の羽根車単体14を回転軸線方向AXに固定してなるファン8を拡大して示す斜視図、図4(b)は支持板12を示す説明図である。図4では、モータ16やモータシャフト16aを省略して羽根車の部分を貫流ファン8として示す。ファン8を構成する羽根車単体14の数や1つの羽根車単体14を構成する翼13の数はいくつでもよく、この個数で限定されるものではない。
 図3、図4に示すように、貫流ファン8は、回転軸線方向AX(長手方向)に複数、例えば5個の羽根車単体14を有する。羽根車単体14の一端に環状の支持板12が配設され、回転軸線方向AXに伸びる複数の翼13が支持板12の外周に沿って配設される。例えばAS樹脂やABS樹脂などの熱可塑性樹脂で成形された羽根車単体14を回転軸線方向AXに複数個備え、超音波溶着などによって翼13の先端を隣に配置する羽根車単体14の支持板12に連結する。そして他端に位置するファン端板12bには翼13が設けられておらず、円板形状である。回転軸線方向AXの一端に位置する支持板12a(以下、ファン端板と記す)の中心にファンシャフト15aが設けられ、他端に位置するファン端板12bの中心にファンボス15bが設けられる。そして、ファンボス15bとモータ16のモータシャフト16aがネジ等で固定される。即ち、ファン8の回転軸線方向AXの両端に位置するファン端板12a、12bは円板形状であり、回転軸線17が位置する中央部分にファンシャフト15a及びファンボス15bが形成される。両端を除く支持板12は、回転中心となる回転軸線17が位置する中央部分が空間の環状で、図4(b)に示すように内径K1と外径K2を有する。ここで、図3(b)、図4(b)で、一点鎖線はモータシャフト16aとファンシャフト15aを結び、回転中心Oを示す仮想回転軸線であり、ここでは回転軸線17とし、回転軸線17の伸びる方向が回転軸線方向AXである。また、1つの羽根車単体を連14と称し、回転軸線方向AXの両端部に位置する連を端部連14aと称する。
 図5は本実施の形態に係る空気調和機の室内機1本体を斜め下方から見た斜視図である。この図では説明をわかりやすくするために、上下風向ベーン4a及び左右風向ベーン4bは取り除いて示しており、吹出口3を通してファン8の一部が見えている。室内機の吹出口3の長手方向の長さL1に比べて、ファン8の回転軸線方向AXの長さL2が長く構成される(L2>L1)。この吹出口3は、その長手方向が室内機1本体の左右方向と一致するように開口している。そして、ファン8の両方の端部連14aの一部は吹出口3の両端からそれぞれ延長され、この延長部を、即ちファン8の両方の端部連14aで、吹出口3に面していない部分を、ファン延長部8aと称する。そして、ファン延長部8aから吹き出される吹出気流が衝突する衝突壁18をファン延長部8aに対向する室内機1本体に設ける。また、側壁30は、ファン8の両端部に、ファン端板12a、12bと所定の距離だけ離れた位置に、ファン端板12a、12bに略平行に伸びるように設けられ、室内機1の内部の吸込口2から吹出口3に至る風路の左右の両側面を構成している。
 ファン8の回転軸線方向AXで両端のファン延長部8aを除く部分、即ちファン8の回転軸線方向AXの中央部分では、図2に示すように、吹出風路11の背面側は吹出口3に至るまでリアガイド部10で構成され、リアガイド部10の最も上流側10aから吹出口3まで渦巻き形状をなし、徐々にファン8の羽根車の外周からリアガイド部10までの距離が大きくなるような構成である。吹出風路11の前面側はスタビライザー9で構成される。ファン8の回転によって、ファン8の前面側に加速されて吹き出された気流は、吹出風路11を曲線を描いて流れ、吹出口3から前面側に吹き出される。
 図6~図9は室内機1の両端部に設けられた衝突壁18の形状を説明する図であり、図6は、室内機1本体内部の両端部のそれぞれに設けられた衝突壁18を示し、図5に向かって右側の一端に設けられた衝突壁18を拡大して示す斜視図(図6(a))及び上面図(図6(b))である。図7は衝突壁18を示す説明図、図8(a)、(b)は、端部連14aのファン端板12bの面に垂直で、回転軸線17を含む平面で衝突壁18を切断したときの断面図であり、図8(a)はスタビライザー9側に配設されるスタビライザー側端部19aにおける断面、図8(b)はリアガイド部10側に配設されるリアガイド部側端部19bにおける断面を示す。また、図9は図5のW-W線断面図であり、ファン端板12b近傍における衝突壁18を含む部分の室内機1の回転軸線17に垂直な縦断面を示す。図9において、ファン延長部8aにおける断面では、リアガイド部10、スタビライザー9、及び衝突壁18は、ファン延長部8aから吹き出す気流に対して壁を構成しており、斜線で示す。
 図8に示す断面において、衝突壁18の対向面18aはファン延長部8aに略平行に向かい合う面であり、ファン延長部8aから吹き出す気流は対向面18aに衝突する。ファン延長部8aでは、吹出風路11の背面は、途中までリアガイド部10の上流側で構成されるが、図9に示すように途中のリアガイド部側端部19b(説明は後述)から衝突壁18の対向面18aに対向し、吹出口3のような開口に接続されず、スタビライザー9に続く。ここで、室内機1本体の奥行き方向AYで、吹出口3の位置する側を前面側、リアガイド部10の位置する側を背面側と称し、衝突壁18のファン延長部8aに対向する対向面18aにおいて、スタビライザー9に接続する前面側をスタビライザー側端部19a、リアガイド部10に接続する背面側をリアガイド部側端部19bとする。即ち、衝突壁18は、スタビライザー9側に配設されるスタビライザー側端部19aとリアガイド部10側に配設されるリアガイド部側端部19bとを接続するように、ファン延長部8aの外周を囲んで設けられ、ファン延長部8aから吹き出される室内空気が衝突する対向面18aを有する構成である。そして、ファン8の羽根車の外周から衝突壁18の対向面18aまでの距離(ファン8の半径方向の距離)は、図9にて符号アで示すように、リアガイド部10の最も上流側10aから衝突壁18(リアガイド部側端部19bからスタビライザー側端部19a)を経てスタビライザー9に続く部分まで略同じである。また、ファン延長部8aから吹き出される吹出気流が、衝突壁18に衝突する衝突領域を領域E3で示す。即ち、ファン8から気流が吹き出される領域を示す吹出領域E2(図2参照)のうち、ファン延長部8aから吹き出される気流が、衝突壁18に衝突する領域を衝突領域E3とする。この衝突領域E3は吹出領域E2の一部となる。
 図6において点線はファン8及びファン端板12bを示し、図7において点線はファン端板12bを示す。衝突壁18の形状は、図6、図7に示すように、回転軸線方向AXの長さにおいて、リアガイド部側端部19bにおける対向面18aの長さが、スタビライザー側端部19aにおける対向面18aの長さよりも短く構成される。左右の両端部に設けられる衝突壁18は、例えば左右の側壁30と一体に成形されるため側壁30に接続しており、側壁30を一端として左右方向の内側に伸びている。従って、衝突壁18の対向面18aを示す上面図(図6(b))では、略台形状である。ここで、対向面18aにおいて、室内機1本体の左右方向で外側に位置する縁部をファン外側縁部Ha、逆に室内機1本体の左右方向で内側に位置する縁部をファン内側縁部Hbとする。図6(b)に示すように、上から見た台形状の対向面18aは、上底であるリアガイド部側端部19bと下底であるスタビライザー側端部19aは互いに略平行を成し、一方の辺であるファン外側縁部Haは側壁30と衝突壁18との接続部であり、リアガイド部側端部19b(上底)とスタビライザー側端部19a(下底)とに略直角に交わる。また、他方の辺であるファン内側縁部Hbは、スタビライザー側端部19aの回転軸線方向AXの長さがリアガイド部側端部19bの回転軸線方向AXの長さよりも長いために、傾斜している。スタビライザー側端部19aと減少開始位置19c(詳細については後述する)間の対向面18aの回転軸線方向AXの長さは同じである。
 なお、構成の都合上、側壁30が回転軸線方向AXに凹凸を成す場合もあるので、上記の対向面18aのスタビライザー側端部19aの回転軸線方向AXの長さ、及び対向面18aのリアガイド部側端部19bの回転軸線方向AXの長さとは、ファン延長部8aに対して回転軸線17と略平行に向かい合っている対向面18aのファン端板12a、12bからの長さとする。即ち、図8(a)、(b)に示すように、スタビライザー側端部19aのファン端板12bからの対向面18aの回転軸線方向AXの長さ(Na)>リアガイド部側端部19bのファン端板12bからの対向面18aの回転軸線方向AXの長さ(Nb)である。
 また、前述のように、衝突壁18のリアガイド部側端部19bでは、リアガイド部10に滑らかに接続するため、実際には、衝突壁18は最端部においてリアガイド部10からの立ち上がりの高さがゼロとなる。ここでは、説明をわかりやすくするために、リアガイド部側端部19bは、衝突壁18がリアガイド部10に接続する最端部近傍で、対向面18aと底面18bとの距離がある程度の大きさを有する位置とする。
 図7に示すように、ファン端板12bに垂直で回転軸線17を含む平面で衝突壁18を切断した時の断面(例えばスタビライザー側端部19aにおける平面C1での断面や、位置20aにおける平面C2での断面)では、図8に示すように衝突壁18の断面形状は多角形状、ここでは四角形を成す。四角形の4辺は、対向面18a、底面18b、衝突壁側面18c、側壁30の内側の面の一部である。対向面18aは衝突壁18の一面であって、回転軸線17に平行で端部連14aのファン延長部8aに向かい合っている。底面18bは、ファン延長部8aと反対側で対向面18aに対向する面であり、吹出風路11の背面側を構成するリアガイド部10に接続する。衝突壁側面18cは、室内機1本体の左右方向の内側に向き、対向面18aと底面18bとを接続する面であり、吹出風路11に面している。上記したNb<Naは、奥行き方向AYの各位置での断面における四角形で、対向面18aを表す一辺の長さについて、リアガイド部側端部19bの長さがスタビライザー側端部19aの長さよりも短いということである。
 なお、衝突壁18の高さ、即ち対向面18aと底面18bとの距離は、ファン8の外周とリアガイド部10との間の距離(ファン8の半径方向の距離)が徐々に大きくなっているので、スタビライザー側端部19aでリアガイド部側端部19bよりも大きくなる。
 衝突壁18の端部連14aに向かい合う対向面18aの回転軸線方向AXの長さは、図10に曲線I1で示すように、衝突壁18の奥行き方向AYで滑らかに変化するように構成している。図10は横軸に奥行き方向AYの位置、縦軸に衝突壁18の対向面18aの回転軸線方向AXの長さを示すグラフである。曲線I1に示すように、衝突壁18の対向面18aの回転軸線方向AXの長さは、スタビライザー側端部19aの長さ(Na)を最大、リアガイド部側端部19bの長さ(Nb)を最小として、途中の奥行き方向AYの位置20a、20bではNaとNbとを滑らかに略直線で結ぶ長さとする。この構成例では、スタビライザー側端部19aから奥行き方向の全体の長さの10%程度の間(図10ではスタビライザー側端部19aから減少開始位置19cの間)は、対向面18aの回転軸線方向AXの長さを同じとする。即ち、奥行き方向AYで衝突壁18のスタビライザー側端部19aとリアガイド部側端部19bの間の位置に減少開始位置19cを設け、対向面18aの回転軸線方向AXの長さについて、スタビライザー側端部19aから減少開始位置19cまでの長さを同じ(=Na)とし、減少開始位置19cからリアガイド部側端部19bに向かって、対向面18aの回転軸線方向AXの長さを滑らかに減少させる。ここで、減少開始とは、対向面18aにおける回転軸線方向AXの長さの減少開始を意味し、減少開始位置19cは、スタビライザー側端部19aとリアガイド部側端部19bの間の途中に設けられ、対向面18aの回転軸線方向AXの長さを短くするときのスタビライザー側の開始位置である。
 以下、本実施の形態で用いたファンの各長さの一例を示す。
 羽根車単体14の端部で翼13に固定されている環状の支持板12の外径K2(図4参照)をΦ110mm、内径K1(図4参照)をΦ60mmとし、この支持板12の円周上に例えば35枚の翼13が固定されている。また、回転軸線方向AXでは、吹出口3の長手方向長さL1=610mm、ファン8の回転軸線方向AXの全長L2=640mmである。衝突壁18は、スタビライザー側端部19aにおいて、ファン端板12a、12bからの衝突壁18の対向面18aの回転軸線方向AXの長さNaは15mm、リアガイド部側端部19bにおいて、ファン端板12a、12bからの衝突壁18の対向面18aの回転軸線方向AXの長さNbは5mmである。また、図8におけるSは、ファン8の両端のファン端板12a、12bと側壁30の間にできる空間を示している。空間Sの回転軸線方向AXの長さは、例えば10mmである。さらに、端部連14aの回転軸線方向AXの長さは、一端の端部連14aで25mm、他端の端部連14aで70mmとし、2つの端部連14aを除く他の連14の回転軸線方向AX長さを略80mmとする。また、ファン延長部8aにおける羽根車の外周から衝突壁18の表面までの距離アは、5mm程度である。また、衝突壁18の対向面18aの奥行き方向AYの長さ(スタビライザー側端部19aからリアガイド部側端部19bまでの曲面に沿った長さ)を200mmとし、スタビライザー側の長さを同一とする部分の長さ(スタビライザー側端部19aから減少開始位置19cまでの曲面に沿った長さ)を20mmとする。
 図11は貫流ファン8による室内機1本体内の気流を示す説明図である。貫流ファン8の内部でスタビライザー9付近には気流の通過に伴う渦(循環渦)F1が発生する。渦F1の周囲である領域E4は室内機1内で最も気圧が低くなり(Pmin)、大気圧(P0)との差が最も大きくなる。このため、渦F1周辺を通る気流が吹き出す吹出口3のスタビライザー側(Ga)の方がリアガイド部側(Gb)よりも逆吸いが発生しやすい。
 また、ファン8から吹き出す気流の風速を図12に示す。図12は横軸に奥行き方向AYの位置、縦軸に吹出気流の風速を示す。図中、J1、J2は図11に示した気流J1、J2の風速を示している。風路の形状と貫流ファン8の特性から、吹出風路11を流れる気流の風速は、スタビライザー側で小さく、リアガイド部側に向かって風速が大きくなり、スタビライザー側とリアガイド部側との中央付近で最も大きく、さらにリアガイド部側に向かって風速が小さくなる。このように風速に分布があるということは、ファン8によって気流全体に均一にエネルギーが与えられるのではないということである。特にスタビライザー側では気流の風速が低く、エネルギーが十分ではない。これも加わって、室内空気が吹出口3を通って室内機1内に流入する逆吸いが、リアガイド部側(Gb)よりもスタビライザー側(Ga)で起こりやすくなる。
 以下、図13、図14に基づいて、逆吸いの発生しやすいスタビライザー側(Ga)、即ちスタビライザー側端部19a近傍の衝突壁18の作用について説明する。図13は、スタビライザー側端部19aにおける室内機1の内部構成を簡略化して示す模式図であり、気流方向(点線矢印)に従って、吸込口2、熱交換器7、ファン8、吹出口3の関係を簡略化して示す。また、図14は図13の向かって右端部の衝突壁18付近を拡大して示す説明図である。
 回転軸線方向AXで、ファン8の両端部連14aは、吹出口3の長手方向の両端部よりも延長されたファン延長部8aを有し、吹出側で衝突壁18の対向面18aに対向する。この衝突壁18に対向する吹出領域E2を衝突領域E3と称している。一方、ファン8の回転軸線方向AXで、ファン延長部8aを除く部分、即ちファン8の回転軸線方向AXの中央部分は、吹出領域E2では開口で構成される吹出口3に対向して配設される。ここで、両ファン端板12a、12bの位置は、例えばファン端板12a、12bの室内機1本体の外側に向く外向面であるファン端面の位置とする。
 空気調和機が運転され、モータ16によってファン8が回転される。貫流ファン8がRO方向(図2参照)に回転することにより、室内空気が室内機1本体の上部に設けられる吸込口2から吸い込まれ、熱交換器7を通過する際に配管7b内を流れる冷媒と熱交換される。そして空気調和された気流Aとなり貫流ファン8を通って吹出口3から室内へ吹き出される。ここで、吸込口2から吸い込まれた室内空気が熱交換器7を通過する際に摩擦抵抗(圧力損失)が生じるため、図14に示すように、貫流ファン8に流入する時の吸込領域E1の気圧Pe1は、大気圧P0よりも低くなる。空間Sは、吸込領域E1と連続する空間であり、同じ圧力雰囲気であるので、吸込領域E1と同等の気圧Pe1(<大気圧P0)である。また、端部連14aの吹き出し側に着目すると、衝突壁18に対向する場所に吹き出した気流Aaは衝突壁18に当たり、風速のエネルギーが圧力のエネルギーに変換されて、衝突領域E3には淀み圧P1aが発生する。ファン8の回転が速くなるにつれて気流Aaの風速Vaが大きくなり、淀み圧P1aは高くなる。風速Vaが所定の値以上であれば、淀み圧P1aが大気圧P0よりも高くなる。この淀み圧P1aが大気圧P0より高くなるときの風速Vaは、搭載する熱交換器などの圧力損失に応じて異なる。
 空気調和機の室内機1に搭載される貫流ファン8は、例えば弱冷房、強冷房などの運転モードに応じて運転する回転数が設定される。最も低い回転数で運転する時の風速で、大気圧P0より高い淀み圧P1aが得られるように、衝突壁18とファン8の外周との間隔ア(図9参照)、及び衝突壁18のスタビライザー側端部19aにおける対向面18aの回転軸線方向AXの長さNaを決定する。こうして決定された寸法を有して衝突壁18のスタビライザー側端部19aを設ければ、室内機1の運転中、即ちファン8の回転時には、ファン8の端部連14aの衝突領域E3を淀み圧P1a(>大気圧P0)の空間とすることができる。空間Sに通じる衝突領域E3を淀み圧P1a>大気圧P0とすることで圧力差を形成し、淀み圧P1aが大気圧P0の室内空気の流入を遮断する。このため、吹出口3を通って室内機1の外部から室内機1の内部の圧力の低い空間Sへ室内空気が流入する逆吸いが発生するのを防止できる。特に、逆吸いの発生しやすいスタビライザー側端部19aにおいて、ファン8と衝突壁18との間に大気圧P0よりも大きい淀み圧P1aを作ることで、逆吸いを防止できる。
 ところが、衝突壁18への衝突流は、室内機1外への送風気流にならないため、淀み圧P1aを大気圧P0より過剰に大きくすることは、送風する目的から考慮すると損失になる。即ち、奥行き方向AYでスタビライザー側端部19aからリアガイド部側端部19bに至るまで、回転軸線方向AXに一様の幅の対向面18aを有する衝突壁18を設けて吹出気流を衝突壁18に衝突させることは、通風抵抗を大きくすることになるので、ファン8にとって負荷が大きくなり、エネルギー損失や騒音の増加につながる。
 このため、実施の形態1では、逆吸い防止と送風のバランスを考慮し、衝突壁18のリアガイド部側端部19bの形状において、ファン8に向かい合う面である対向面18aの回転軸線方向AXの長さ(左右方向の幅)をスタビライザー側端部19aよりも短くする。そして、スタビライザー側端部19aからリアガイド部側端部19bに向かって、衝突壁18のファンとの対向面18aのファン端板12bからの回転軸線方向AXの長さを滑らかに減少させる。
 ここで、例えば、奥行き方向AYで、減少開始位置19cとリアガイド部側端部19bの間の位置20aにおける気流について説明する。図15は室内機1を示す縦断面図であり、位置20aのファン内側端部Hbを通り、回転軸線17に垂直な断面を示す。図9と同様、この断面では、リアガイド部10、スタビライザー9、及び衝突壁18の一部は、気流に対して壁を構成しており、斜線で示す。位置20aよりもスタビライザー側端部19aに近い部分には衝突壁18が形成され、位置20aよりもリアガイド部側端部19bに近い部分には吹出風路11が形成される。このため、ファン8のファン延長部8aから吹き出される気流のうち、奥行き方向AYで位置20aとリアガイド部側端部19bの間に吹き出される気流は、吹出風路11に流れて室内機1外への送風気流になる。一方、奥行き方向AYで位置20aとスタビライザー側端部19aの間に吹き出す気流は、衝突壁18に衝突して淀み圧を形成し、逆吸いを防止する。
 上記では、位置20aにおける気流について説明したが、回転軸線方向AXで、両端部のファン端板12a、12b側から見ていくと、ファン端板12a、12b側では図9に示す断面となり、奥行き方向AYでスタビライザー側端部19aとリアガイド部側端部19bの間に吹き出す気流は、全て衝突壁18に衝突して淀み圧を形成し、逆吸いを防止する。回転軸線17に垂直な断面が、ファン端板12a、12bから内側の位置になるにつれて、リアガイド部側端部19bの方から吹出風路11が形成され、ファン延長部8aから吹き出す吹出気流の一部が、室内機1外への送風気流になる。そして、衝突壁18のスタビライザー側端部19aのファン内側端部Hbを通り、回転軸線17に垂直な断面は、図11と同様の吹出風路11を構成し、これよりも回転軸線方向AXの内側には衝突壁18が形成されておらず、全て送風気流となる。
 次に、リアガイド部側端部19b近傍の衝突壁18の作用について説明する。図16は、リアガイド部側端部19bにおける右端部の衝突壁18付近を拡大して示す説明図である。リアガイド部側端部19bの衝突壁18は、回転軸線方向AXの対向面18aの長さNbが、スタビライザー側端部19aの長さNaよりも短く、端部連14aと向かい合う対向面18aの幅が狭い。このため、図16に示すように気流が衝突することによる高圧部P1bの回転軸線方向AXの長さは狭くなるが、循環渦F1から遠く、スタビライザー9側に比べて逆吸いしにくい場所であるため、逆吸いに対してはこの程度で十分な効果が得られる。ここでは、衝突壁18の対向面18aの幅を狭くしたため、リアガイド部10付近でファン8から吹き出した気流Aのうち、気流Aaaは衝突壁18の対向面18aと衝突し、淀み圧P1bを作る。一方、左右方向で内側に流れる気流Aabは衝突壁18に衝突せずに吹出風路11、及び吹出口3を通って室内機1の外へ吹き出す。このように、この部分では衝突壁18の対向面18aの長さをスタビライザー側端部19aよりも短くすることで、送風気流を確保することができる。
 即ち、スタビライザー側端部19aからリアガイド側端部19bまでの奥行き方向AYの各位置において、その位置で逆吸いの発生を防止するのに必要な淀み圧が得られる長さ(回転軸線方向AXの長さ)の対向面18aを有する衝突壁18を形成する。このように形成すると、スタビライザー側端部19aの対向面18aの長さ(回転軸線方向AXの長さ)が最も長く、リアガイド側端部19bに向かって、必要な対向面18aの長さ(回転軸線方向AXの長さ)は短くなる。この短くした部分では、ファン8から吹き出した気流は衝突壁18に衝突することなく、送風気流として吹出口3に流れる。
 従って、スタビライザー側端部19aからリアガイド側端部19bまでの全ての位置で、対向面18aの回転軸線方向AXの長さを同じに形成した衝突壁18と比較して、同じファン回転数に対して風量が増加し、消費電力を低減することができる。さらに気流の衝突に伴う騒音を低減することもできる。
 前に述べたように、最も低い回転数で運転する時の風速で、吹出口3の両端部付近に大気圧P0より高い淀み圧P1aが安定して得られるように、衝突壁18のスタビライザー側端部19aにおける対向面18aの回転軸線方向AXの長さNaや減少開始位置19cを決定する。そして、リアガイド部側端部19bにおける対向面18aの回転軸線方向AXの長さNbは、Na>Nb≧0の範囲の幅で、設定すればよい。
 以上のように、実施の形態1では、空気調和機1本体の上部に設けられ室内空気を吸い込む吸込口2と、この吸込口2から吸い込まれた室内空気と熱交換する熱交換器7と、空気調和機1本体の下部に空気調和機1本体の左右方向に長手方向を伸ばすように設けられ、熱交換器7にて熱交換された室内空気を室内へ吹き出す吹出口3と、熱交換器7と吹出口3の間に空気調和機1本体の左右方向を回転軸線方向AXとするように設けられ、吸込口2から吹出口3へ室内空気を送風する貫流ファン8と、貫流ファン8の両端部のそれぞれにあって貫流ファン8が吹出口3の長手方向の両端から回転軸線方向AXに延長されてなるファン延長部8aと、貫流ファン8から吹き出す室内空気を吹出口3に導く吹出風路11の前面側を構成するスタビライザー9と、吹出風路11の背面側を構成するリアガイド部10と、空気調和機1本体の両端部のそれぞれにスタビライザー9とリアガイド部10とを接続するように設けられ、ファン延長部8aから吹き出される室内空気が衝突する衝突壁18と、衝突壁18の一面であってファン延長部8aに向かい合う対向面18aと、を備え、対向面18aは、リアガイド部9側に位置するリアガイド部側端部19bの回転軸線方向AXの長さが、スタビライザー9側に位置するスタビライザー側端部19aの回転軸線方向AXの長さよりも短く構成されていることにより、吹出口3の両端部付近では、ファン8の端部連14aからの吹出気流を衝突壁18に衝突させて大気圧より高い淀み圧を作るので、吹出口3の左右方向の両端部において室内空気が室内機1の外部から吹出口3を通って室内機1の内部に進入する逆吸いを防止できる。このため、逆吸いの発生によって生じていたファン性能の低下や騒音の増加や露飛びなどを防止できる。さらに、渦F1の発生するスタビライザー9付近の気流に対しては、逆吸いを防止するのに必要な幅(回転軸線方向AXの長さ)の淀み圧を衝突領域E3に形成し、渦F1から遠い気流に対しては渦F1の発生する付近の気流に対する淀み圧よりも狭い幅で淀み圧を形成することで、逆吸いを防止でき、且つ吹出気流が衝突壁18に衝突することによるエネルギー損失の増加を抑制して、低電力化及び低騒音化を実現することができる。
 また、衝突壁18の対向面18aの回転軸線方向AX長さにおいて、スタビライザー側端部19aから減少開始位置19cまでの長さを、Naで一定にした。このため、渦F1が発生するスタビライザー9付近の気流に対しては、空間Sに通じる衝突領域E3に形成する淀み圧P1を、逆吸いによる室内空気の流入を遮断することができる十分な幅(ここでは回転軸線方向AXの長さ)及び奥行き方向AYの長さで形成できる。従って、逆吸いの発生しやすいスタビライザー側で逆吸いが発生するのを確実に防止できる。この減少開始位置19cは、スタビライザー側端部19aから衝突壁18の奥行き方向の長さの10%程度の位置としたが、これに限るものではない。図11に示すように、ファン8の回転中心Oと吹出口3のリアガイド部10側であるGbを結ぶ直線Zが衝突壁18の対向面18aと交差する位置、図11では減少開始位置19cで示しているが、この位置よりもリアガイド部側端部19bに近い位置とするのが好ましい。スタビライザー側端部19aから減少開始位置19cまでは渦F1のために低圧になる領域E4に近く、逆吸いが起こりやすいためである。
 以上のように、衝突壁18は、対向面18aの回転軸線方向AXの長さを短くするときのスタビライザー9側の開始位置である減少開始位置19cを、スタビライザー側端部19aとリアガイド部側端部19bの間の途中に有し、対向面18aの回転軸線方向AXの長さについて、スタビライザー側端部19aから減少開始位置19cまでの長さを同じにすることにより、逆吸いの起こりやすいスタビライザー側端部19aから減少開始位置19cで、衝突壁18の他の部分よりも回転軸線方向AXに十分な幅の淀み圧を形成するので、確実に逆吸いを防止できる。
 なお、図17は衝突壁18の他の形状の構成例を示す斜視図である。図7に示す衝突壁18では、スタビライザー側端部19aからリアガイド部側端部19bまでの奥行き方向AYの各位置において、ファン端板12bに垂直で回転軸線17を含む平面で衝突壁18を切断したときの断面が、多角形状、例えば四角形を成すような形状である。図18に示す衝突壁18は、スタビライザー側端部19aからリアガイド部側端部19bまでの奥行き方向AYの各位置において、ファン端板12bに垂直で且つ鉛直な平面で衝突壁18を切断したときの断面が多角形状、例えば四角形をなすような形状である。このため、位置20aのファン内側端部Hbを通り、回転軸線17に垂直な断面は、図18のように示される。この形状の場合にも、リアガイド部側端部19bにおける衝突壁18の対向面18aの回転軸線方向AXの長さは、スタビライザー側端部19aにおける衝突壁18の対向面18aの回転軸線方向AXの長さよりも短く構成される。このため、スタビライザー側端部19aでは回転軸線方向AXに逆吸いを防止できるだけの十分な幅で淀み圧を形成でき、特に逆吸いの起こりやすいファンの両端部で且つスタビライザー側(Ga)に淀み圧を形成できるので、吹出口3の左右方向の両端部且つスタビライザー9付近である吹出口3の上側を通って室内機1の内部に室内空気が流入するのを防止できる。
 さらに、位置20aにおける回転軸線17に垂直な断面の図15と図18を比較すると、位置20aと回転中心Oを結ぶ直線(図15)と、位置20aを通る鉛直線(図18)とで、吹出風路11に流れる気流が異なる。即ち、スタビライザー側端部19aよりも上流側の各位置で吹出風路11に流れる気流が図18に示す空間Dだけ多くなる。このため、図18の構成では、風量を図15の構成よりも多くでき、低電力化及び低騒音化を実現することができる。
 図19は実施の形態1に係る衝突壁18の形状に係り、衝突壁18のファン8との対向面18aの回転軸線方向AXの長さを示すグラフである。横軸に奥行き方向AYの位置、縦軸に対向面18aの回転軸線方向AXの長さを示す。ここで、対向面18aの回転軸線方向AXの長さとは、ファン8のファン端板12a、12bからの長さとする。衝突壁18の対向面18aの回転軸線方向AXの長さにおいて、スタビライザー側端部19aよりも上流側では、リアガイド部側端部19bに至る変化は図10に示すように直線状でなくてもよく、階段状や凹や凸の曲線状、波状などでもよい。例えば図19における階段状に変化させた曲線I2や、緩やかな凸状の曲線I3のように変化させても、同様の効果を奏する。
 図20は、実施の形態1に係る衝突壁18を示す断面図であり、例えば吹出口3の向かって右側の端部に配置する衝突壁18を示す。吹出口3の向かって左側の端部に配置する衝突壁18も同様であり、この右側の衝突壁を左右反転させればよい。また、この断面は、ファン端板12bに垂直で回転軸線17を含む平面で切断したときの断面でもよく、ファン端板12bに垂直で且つ鉛直な平面で切断したときの断面でもよい。衝突壁側面18cの左側は吹出口3に続く吹出風路11であるので、衝突壁側面18cは吹出風路11の側面を構成する。これまで説明してきた衝突壁18は、図20(a)に示すように、衝突壁の対向面18aと底面18bの回転軸線方向AXの長さを略同じ長さとし、対向面18aと底面18bを接続する衝突壁側面18cは対向面18aに対してθ=90°を成す形状である。ここで、角度θは、衝突壁の対向面18aから時計回り方向(吹出口3の左側の端部では反時計回り方向)に衝突壁側面18cまでの成す角度である。
 衝突壁18の他の構成例として、図20(b)に示すように、回転軸線方向AXの対向面18aの長さを底面18bよりも短く構成して、衝突壁側面18cと対向面18aとの成す角度θが、鈍角(>90°)になるように構成してもよい。図20(a)では、対向面18aに衝突するように流れる気流のうち、対向面18aと衝突壁側面18cの角部に衝突する気流は、図20(d)に示すように、この角部で乱れて衝突壁側面18cの付近で渦F2を生じやすい。図20(b)では、角度θ(>90°)で鈍角を成しており、対向面18aと衝突壁側面18cの角部に衝突する気流は、なだらかに傾斜して衝突壁側面18cに流れるので、この部分で渦F2ができにくい。このように、剥離や乱れを抑制することでエネルギー損失や騒音の低減し、低電力化及び低騒音化を図ることができる。
 また、図20(c)に示すように、回転軸線方向AXの対向面18aの長さを底面18bよりも長く構成して、衝突壁側面18cを底面18bとの成す角度θが鈍角(<90°)になるように構成してもよい。この構成では、図20(a)と同様、衝突壁側面18cの付近で渦F2ができやすい構成ではあるが、図20(a)、(b)よりも吹出風路11の回転軸線方向AXの長さを長くすることができる。このため、風速X風路面積で決定される風量を大きくすることができる。また言い換えると、図20(a)、(b)よりも対向面18aの回転軸線方向AXの長さを長くできる。このため、対向面18aに形成される淀み圧の回転軸線方向AXの幅を大きくできる構成である。
 図20(a)~(c)のいずれの衝突壁18の形状であっても、対向面18aとファン8との間に淀み圧を形成することができるので、室内機1の外部の室内空気が吹出口3を通ってファン8の両端部の空間S(図14、図16参照)に侵入する逆吸いを防止できる。
 なお、衝突壁18の奥行き方向AYで、スタビライザー側端部19aからリアガイド部側端部19bまでの衝突壁18の断面形状は、図20(a)、(b)、(c)のいずれか1つの構成に限るものではなく、組み合わせて構成してもよい。例えば、スタビライザー側端部19a付近では図20(a)や図20(c)として対向面18aを長くしたり吹出風路11が広くなるようにし、奥行き方向AYの位置20aや20bでは、図20(a)や図20(b)の形状とし、リアガイド部側端部19bに近いところでは、対向面18aの回転軸線方向AXの長さが短いので、図20(b)としてもよい。
 なお、スタビライザー側端部19aからリアガイド部側端部19bにおいて、中央部分からリアガイド部側端部19bでは、図12に示すように、ファン8から吹き出した気流の風速がスタビライザー側端部19aに比べて大きい。風速の大きい部分で角部を図20(b)に示すように鈍角にして渦F2を防止することは、渦F2によるエネルギー損失や騒音を低減することができ、効果的である。
実施の形態2.
 以下、本発明の実施の形態2について図に基づいて説明する。この実施の形態は、衝突壁18の断面形状を多角形状、基本的には四角形とし、衝突壁18のファン8との対向面18aと衝突壁側面18cで形成される角部を直線又は曲線で削り取った形状、いわゆる面取り部を有する形状とすることを特徴とする。このときの断面も、ファン端板12a、12bに垂直且つ回転軸線17を含む平面で切断したときの断面でもよく、ファン端板12a、12bに垂直且つ鉛直な平面で切断したときの断面でもよい。実施の形態2に係る各図において、実施の形態1と同一符号は同一、または相当部分を示す。
 図21は、本発明の実施の形態2に係る衝突壁18を拡大して示す斜視図であり、例えば室内機1本体の向かって右側の端部に配置する衝突壁18である。図において、点線はファン端板12bを示す。室内機1本体の両端部のそれぞれにスタビライザー9とリアガイド部10とを接続するように設けられ、ファン8に向かい合う対向面18aを有する衝突壁18は、図9に示したように、スタビライザー側端部19aからリアガイド部側端部19bに亘って、吹出領域E2のファン延長部8aの外周を囲む形状である。長手方向が左右に伸びる吹出口3の左側の端部には同様の衝突壁18を配置するが、左右反転した形状となる。
 実施の形態2では、ファン8と向かい合う対向面18aのファン内側縁部Hbの角部を切り取って、傾斜面を作成し、傾斜面21とすることを特徴とする。ここでは例えばスタビライザー側端部19aから減少開始位置19cまでは傾斜面21を形成せず、リアガイド部側端部19bではファン内側縁部Hbの角を大きく切り取るような形状の傾斜面21を形成する。位置19b、20a、20bに示す一点差線で囲まれた面は、ファン端板12bに垂直な平面で衝突壁18を切断したときの断面を示す。
 図22は、衝突壁18をファン端板12bに垂直な平面で切断したときの断面形状を示す説明図であり、図22(a)はスタビライザー側端部19a(または減少開始位置19c)、図22(b)は位置20a、図22(c)はリアガイド部側端部19bにおける断面である。また、図23は、実施の形態2に係り、衝突壁18を示す上面図(図23(a))、及び断面図(図23(b))である。図23(b)は、図23(a)におけるW20a-W20a線断面を示す。
 前述のように、衝突壁18の高さ、即ち対向面18aと底面18bとの距離は、ファン8の外周とリアガイド部10との間の距離(ファン8の半径方向の距離)が徐々に大きくなっているので、気流に対して下流に位置するスタビライザー側端部19aでは、上流に位置するリアガイド部側端部19bよりも大きくなる。
 実施の形態1と同様、衝突壁18は一端では吹出風路11を形成する側壁30に接続して構成されるが、回転軸線方向AXの衝突壁18の底面18bの長さLDや対向面18aである上面の長さLUを表す場合には、ファン端板12b(左側端部の衝突壁18の場合にはファン端板12a)の外向面からの長さで表す。また、対向面18aの回転軸線方向AXの長さに関しては、リアガイド部10側に位置するリアガイド部側端部19bの長さが、スタビライザー9側に位置するスタビライザー側端部19aの長さよりも短い。そして、対向面18aの回転軸方向AXの長さ(LU)を短くするときのスタビライザー側の開始位置を減少開始位置19cとし、スタビライザー側端部19aから減少開始位置19cまでは、対向面18aの長さ(LU)を同じとする。従って、衝突壁18のファン8と向かい合う対向面18aは、実施の形態1と同様、スタビライザー側端部19aにおける回転軸線方向AXのファン端板12bからの長さ(LU19a)>リアガイド部側端部19bにおける回転軸線方向AXのファン端板12bからの長さ(LU19b)である。さらに、スタビライザー側端部19a(または減少開始位置19c)とリアガイド部側端部19bの間の位置20aでは、その間の長さとし、LU19a>LU20a>LU19bとする。
 また、この構成例は、スタビライザー側端部19aからリアガイド部側端部19bに亘って、衝突壁18の底面18bのファン端板12bから衝突壁側面18cまでの長さ(LD)は同じとする。即ち、スタビライザー側端部19a(または減少開始位置19c)における回転軸線方向AXのファン端板12bから衝突壁側面18cまでの底面18bの長さ(LD19a)=位置20aにおける回転軸線方向AXのファン端板12bから衝突壁側面18cまでの底面18bの長さ(LD20a)=リアガイド部側端部19bにおける回転軸線方向AXのファン端板12bから底面18bの衝突壁側面18cまでの長さ(LD19b)である。
 また、対向面長さ(LU)/底面長さ(LD)を対向面比(LU/LD)と称し、奥行き方向AYの位置に対する対向面比(LU/LD)は、リアガイド部側端部19bでスタビライザー側端部19aよりも小さく、以下の式(1)を満足するように構成される。
 LU19a/LD19a(=1)
    > LU20a/LD20a
    > LU19b/LD19b  ・・・(1)
 図24は、実施の形態2に係り、衝突壁18の対向面18a及び底面18bに関し、回転軸線方向AXのファン端板12bからの対向面長さ(LU)/底面長さ(LD)を示すグラフである。横軸は奥行き方向AYの位置を示す。この奥行き方向AYの位置に対する対向面比(LU/LD)が式(1)を満足するように、減少開始位置19cからリアガイド部側端部19bの間で、ファン内側縁部Hbに傾斜面21が設けられている。対向面18aから時計回りに傾斜面21との間の角度θを鈍角とする。なお、スタビライザー側端部19aから減少開始位置19cの間は、底面18bの回転軸線方向AXの長さ(LD)及び対向面18aの回転軸線方向AXの長さ(LU)を同じとし、LD19a=LD19c=LU19a=LU19cである。
 減少開始位置19cからリアガイド部側端部19bにおいて、対向面比(LU/LD)の一例は、次のとおりである。
 スタビライザー側端部19a、減少開始位置19cで、LU19a/LD19a=LU19c/LD19c=1、位置20aで、LU20a/LD20a=0.8、リアガイド部側端部19bで、LU19b/LD19b=0.6とする。そして、対向面18aと底面18bとの長さの差の範囲内で、左右方向(回転軸線方向AX)の内側で対向面18aに接続される面を傾斜面21で構成する。
 図22、図23に示すように、回転軸線方向AXで、対向面18aのファン端板12bからの長さLUにおいて、スタビライザー側端部19aでの長さLU19aを最も長くし、リアガイド部側端部19bでの長さLU19bを最も短くしている。このため、実施の形態1と同様、スタビライザー側端部19aにおいて、衝突壁18の衝突領域E3(図16参照)に大気圧よりも大きな淀み圧を十分な幅で形成し、室内空気が領域Sに逆流するのを遮断することで、逆吸いを防止できる。特に、スタビライザー側端部19aから減少開始位置19cまでは傾斜面21を形成していないので、逆吸いが起こりやすいスタビライザー9付近では、長さLU19aの対向面18aの全面で淀み圧を形成し、逆吸いを確実に防止する。
 また、図22(b)に示すように、スタビライザー側端部19aとリアガイド部側端部19bの間の位置20aでは、端部連14aのファン延長部8aから吹き出した吹出気流の例えば内側の20%は傾斜面21に吹き出し、傾斜面21に沿って吹出口3に滑らかに導かれて送風気流となる。そして、端部連14aのファン延長部8aから吹き出した吹出気流のファン端板12b側の80%が衝突壁18に衝突して淀み圧の形成に作用する。
 さらに、図22(c)に示すように、ファン内部の循環渦F1から遠いリアガイド部側端部19bでは、回転軸線方向AXに広い傾斜面21を構成することで、端部連14aのファン延長部8aから吹き出した吹出気流の例えば内側の60%は傾斜面21に吹き出し、吹出口3に滑らかに導かれて送風気流となる。そして、端部連14aのファン延長部8aから吹き出した吹出気流のうち、ファン端板12b側の40%は、対向面18aに衝突して衝突領域E3に淀み圧を形成し、空間Sに通じる衝突領域E3を淀み圧P1>大気圧P0とすることで圧力差を形成し、淀み圧P1が大気圧P0の室内空気の流入を遮断する。このため、吹出口3を通って室内機1の外部から室内機1の内部の圧力の低い空間Sへ室内空気が流入する逆吸いが発生するのを防止できる。
 なお、傾斜面21の対向面18aからの時計回りの角度θは、110°~160°とした。この角度はこの範囲に限るものではなく、気流が滑らかに傾斜面21に沿って滑らかに流れるような角度であればよい。
 このように、逆吸いの起こりやすいスタビライザー9側(Ga:図15、図18参照)では、衝突壁18の対向面18aを回転軸線方向AXに逆吸いを遮断するのに必要なだけ十分長くすることで、回転軸線方向AXに必要な幅(回転軸線方向AXの長さ)で淀み圧を形成し、室内空気の吹出口からの進入を遮断して逆吸いを防止できる。さらに逆吸いの起こりにくいリアガイド部10側(Gb:図15、図18参照)では、対向面18aの回転軸線方向AXの長さを、スタビライザー9側(Ga)よりも短くすることで、ファン延長部8aから吹き出した吹出気流の一部が吹出口3に流れて送風気流になる。対向面18aの回転軸線方向AXの長さを、スタビライザー側端部19aからリアガイド部側端部19bまで、スタビライザー側端部19aと同じ長さLU19aとした構成と比較すると、図22に示すように傾斜面21を形成すれば、同じファン回転数に対して風量が増加し、消費電力を低減でき省エネルギー化を図ることができる。さらに、ファン延長部8aから吹き出した全ての吹出気流が対向面18aに衝突しないので、気流の衝突に伴う騒音を低減することができる。
 また、ファン8に向かい合う対向面18aの内側に接続される面を傾斜面21とすることで、ファン延長部8aから吹き出される空気の一部が衝突壁18に当たっても、その空気は傾斜面21に沿って流れ、図20(d)のように剥離が形成されることなく滑らかに吹出口3に流れる。これにより、騒音を低減でき、空気の通風抵抗が低減されるので、風速(風量)が低下するのを防止でき、低電力化を図ることができる。
 なお、スタビライザー側端部19aから減少開始位置19cまでの対向面18aについても、ファン内側縁部Hbに傾斜面21を設けてもよい。この部分は、スタビライザー9に近い部分であり逆吸いが起こりやすいので、十分な幅(回転軸線方向AXの長さ)で淀み圧を形成するのが好ましいが、対向面18aと傾斜面21とのなす角度θが、例えば180°に近い緩やかに傾斜する傾斜面21を設けてもよい。傾斜面21を設けることで、図20(d)のような乱れの発生を低減できる。
 また、実施の形態2では図22に示すように、衝突壁18の底面18bの回転軸線方向AXの長さLDを、スタビライザー側端部19aからリアガイド部側端部19bまで、同じとした。即ち、ファン8から吹き出した吹出気流が通る吹出風路11の左右方向の長さは吹出口3まで略同一である。このため、圧力損失や乱れも少なく、安定した吹出気流が得られる。対向面18aの回転軸線方向AXの長さが短い位置、例えば位置20a、19bでも底面は安定した構成である。また、リアガイド部側端部19bにおいて、対向面18aの回転軸線方向AXのファン端板12bからの長さLU19bをゼロに構成することもできる。このように、逆吸いが起こる可能性の低い部分で対向面18aをなくして、端部連14aのファン延長部8aから吹出気流の全てを送風気流としてもよい。これにより、リアガイド部側端部19bで対向面18aが形成される場合よりも風量を増加させることができ、消費電力を低減できる。
 なお、図24では減少開始位置19cからリアガイド部側端部19bに至るまで、対向面比(LU/LD)を徐々に減少するように変化させたが、これに限るものではない。例えば、階段状に変化させてもよい。また、説明図中の傾斜面21は平面としたが、平面に限らず左右方向の内側、即ち吹出風路11側に凸な曲面であってもよい。
 以上のように、実施の形態2でも実施の形態1と同様、衝突壁18の対向面18aの回転軸線方向AXの長さ(LU)について、リアガイド部10側に位置するリアガイド部側端部19bの回転軸線方向AXの長さ(LU19b)が、スタビライザー9側に位置するスタビライザー側端部19aの回転軸線方向AXの長さ(LU19a)よりも短く構成されていることにより、吹出口3の両端部付近では、ファン8の端部連14aからの吹出気流を衝突壁18に衝突させて大気圧より高い淀み圧を作るので、吹出口3の左右方向の両端部において室内空気が室内機1の外部から吹出口3を通って室内機1の内部に進入する逆吸いを防止できる。このため、逆吸いの発生によって生じていたファン性能の低下や騒音の増加や露飛びなどを防止できる。さらに、渦F1の発生するスタビライザー9付近の気流に対しては、逆吸いを防止するのに必要な幅(回転軸線方向AXの長さ)の淀み圧を衝突領域E3に形成し、渦F1から遠い気流に対しては渦F1の発生する付近の気流に対する淀み圧よりも狭い幅で淀み圧を形成することで、逆吸いを防止でき、且つ吹出気流が衝突壁18に衝突することによるエネルギー損失の増加を抑制して、低電力化及び低騒音化を実現することができる。
 さらに、貫流ファン7の両端に設けられている円板形状のファン端板12a、12bに垂直な平面で衝突壁18を切断した断面にて、衝突壁18は多角形状を成し、対向面18a、ファン延長部8aと反対側で対向面18aに対向する底面18b、左右方向の内側で対向面18aと底面18bとを結ぶ衝突壁側面18cを有し、回転軸線方向AXにおけるファン端板12a、12bからの対向面18aの長さをLU、回転軸線方向AXにおけるファン端板12a、12bからの底面18bの長さをLDとした場合に、LU/LDで求まる対向面比について、リアガイド部側端部19bの対向面比(LU19b/LD19b)をスタビライザー側端部19aの対向面比(LU19a/LD19a(=1))未満としたので、逆吸いを防止できる共に送風気流を確保し、特に傾斜面21によって気流を滑らかに吹出口3に導くことで、気流衝突によるエネルギー損失を低減して低電力化でき、さらに衝突壁18との衝突音を低減できる効果がある。
 また、貫流ファン8の両端に設けられている円板形状のファン端板12a、12bに垂直な平面で衝突壁18を切断した断面にて、左右方向の内側で対向面18aに接続される面は、対向面18aに対して鈍角で交わる傾斜面で構成されることにより、衝突壁18のファン内側縁部Hbを直角に交わる角部とした場合と比較して、角部付近で剥離や乱れが生じるのを抑制でき、低電力化及び低騒音化を図ることができる効果がある。
実施の形態3.
 実施の形態3でも、衝突壁18の対向面18aの回転軸線方向AXの長さについて、リアガイド部側端部19bを、スタビライザー側端部19aよりも短くする構成は、実施の形態1、2と同様である。実施の形態1では、衝突壁18の形状において、対向面18aと底面18bの長さを同じとし、対向面18aと底面18bを接続する衝突壁側面18cと対向面18aとの成す角度θ=90°の場合について述べた。また、実施の形態2では、スタビライザー側端部19aからリアガイド部側端部19bに亘って、底面18bのファン端板12bからの長さ(LD)を、スタビライザー側端部19aと同じ長さとし、対向面18aの長さと底面18bとの長さの差を、ファン内側縁部Hbに傾斜面21を設けて滑らかに流れる気流を形成した。実施の形態3では、底面18bのファン端板12bからの長さを、奥行き方向AYでスタビライザー側端部19a(または減少開始位置19c)からリアガイド部側端部19bまで、変化させる。ここで、底面18bの長さは、その位置の対向面18aの長さとは異なる長さとする。ただし、スタビライザー側端部19a(または減少開始位置19c)で底面18bのファン端板12bからの長さを最も長くし、リアガイド部側端部19bで底面18bのファン端板12bからの長さを最も短くする。
 図25は、衝突壁18をファン端板12bに垂直な平面で切断したときの断面形状を示す説明図であり、図25(a)はスタビライザー側端部19a及び減少開始位置19c、図25(b)は位置20a、図25(c)はリアガイド部側端部19bにおける断面である。また、図26は、実施の形態3に係り、衝突壁18を示す上面図である。図に示すように、スタビライザー側端部19aからリアガイド部側端部19bに亘って、衝突壁18の底面18bのファン端板12bから衝突壁側面18cまでの長さ(LD)を変化させて構成し、少なくともスタビライザー側端部19a及び減少開始位置19cにおける長さ(LD19a)>リアガイド部側端部19bにおける長さ(LD19b)とする。衝突壁18のファン8と向かい合う対向面18aは、実施の形態1と同様、スタビライザー側端部19aにおける回転軸線方向AXのファン端板12bからの長さ(LU19a)>リアガイド部側端部19bにおける回転軸線方向AXのファン端板12bからの長さ(LU19b)である。
 さらにこの構成では、底面18bの長さ(LD)に対する対向面18aの長さ(LU)である対向面比(LU/LD)を一定とする。従って、衝突壁18の各位置における対向面比(LU/LD)について、式(2)の関係を満足している。
 LU19a/LD19a(=1)
    =LU19c/LD19c
    > LU20a/LD20a
    = LU19b/LD19b  ・・・(2)
 また、図27は、式(2)を満足する構成の一例を示し、縦軸は衝突壁18の底面18bの長さに対する対向面18aの長さである対向面比(LU/LD)に関し、回転軸線方向AXのファン端板12bからの対向面長さ(LU)/底面長さ(LD)を示すグラフである。横軸は奥行き方向AYを示す。この対向面比(LU/LD)を満足するように、スタビライザー9側からリアガイド部10側の奥行き方向AYの各位置における対向面18aの長さ及び底面18bの長さを設定する。さらに、対向面18aの長さと底面18bの長さの差の範囲内で、対向面18aの回転軸線方向AXの内側に接続する面を傾斜面21とする。例えば、傾斜面21が減少開始位置19cからリアガイド部側端部19bのファン内側縁部Hbに設けられている。この傾斜面21は対向面18aに対してθ>90°の鈍角で交わる面とする。この構成例では、傾斜面21を設けた位置で、対向面比LU/LDを一定とし、例えば対向面比LU/LD=0.8とする。スタビライザー側端部19aから減少開始位置19cまでは、LU/LD=1とし、減少開始位置19cからリアガイド部側端部19bまでは、LU/LD=0.8として一定とする。ただし、成形上、減少開始位置19cからすぐに所定の対向面比にすることは困難である。減少開始位置19cのファン内側縁部Hbに形成される角部と傾斜面21との境界は、奥行き方向AYでリアガイド部10側にある程度の長さが必要であり、自然に滑らかに形成するのが好ましい。
 図11で示したように、ファン内部の循環渦F1に近い部分に逆吸いが起こりやすい。実施の形態3では、循環渦F1から遠いリアガイド部側端部19bでは、底面18bの回転軸線方向AXの長さ(LD19b)をスタビライザー側端部19aの長さ(LD19a)よりも短くすることを特徴とする。例えば、実施の形態2の図22(b)、(c)と図25(b)、(c)とをそれぞれ比較すると、図25(b)、(c)では、端部連14aのファン延長部8aから吹き出した吹出気流のうち、図22(b)、(c)の構成よりも衝突壁18の底面18bの長さを短くした部分に流れる気流は、衝突壁18に衝突することなく、衝突壁側面18cの内側を通って吹出口3に滑らかに導かれる。即ち、底面18bの回転軸線方向AXの長さを短くした分だけ、吹出領域E2の吹出風路11の回転軸線方向AXの長さが長くなる。このため、通風抵抗を図22の構成よりも小さくでき、風量を増加できる。入力が同一の場合を比較すると、風量を多くでき、同一風量で比較すると、入力を小さくできるので、消費電力を低減して、省エネルギー化できる。また、衝突壁18に衝突する気流が少なくなるので、衝突音も低減できる。
 ここで、衝突壁18の底面18bの回転軸線方向AXの長さについて、説明する。この底面18bの長さは、長すぎると吹出風路11の回転軸線方向AXの長さを短くし、吹出気流の風量を低下させることになる。一方、底面18bの長さは、短すぎると吹出風路11の回転軸線方向AXの長さを必要以上に長くし、吹出気流の速度が低下して吹出口3で十分な速度の風速が得られなくなる。吹出口3で十分な風速が得られない場合には、やはり、室内機1本体の外側から吹出口3を通って吹出領域E2に室内空気が逆流する恐れがある。衝突壁18によって大気圧よりも高い淀み圧が対向面18aに形成されており、逆流した室内空気が空間Sに入り込むことは防止されるが、吹出口3から吹出領域E2に逆流した室内空気が淀み圧によって再び室内機1外に流れ出るとしても、損失を招くことになる。このため、最も低い回転数で運転する時の風速で、吹出口3で逆吸いが起こらない程度の風速が得られるように、衝突壁18のスタビライザー側端部19aにおける底面18bの回転軸線方向AXの長さを決定する。このように衝突壁18のスタビライザー側端部19aを設ければ、室内機1の運転中、即ちファン8の回転時には、吹出口3で十分な風速を得ることができる。即ち、逆吸いの発生しやすいスタビライザー側端部19aにおいて、ファン8と衝突壁18との間に大気圧P0よりも大きい淀み圧P1aを形成すると共に、衝突壁側面18c付近で十分な風速の気流を吹き出すことで、確実に逆吸いを防止できる。
 実施の形態3では、減少開始位置19cからリアガイド部側端部19bのファン内側縁部Hbに傾斜面21が設けられている。この傾斜面21によって、角部に流れる気流が原因となる渦F2(図20(d)参照)の発生を抑制し、通風抵抗を減少できる。
 なお、位置20aにおける対向面比(LD20a/LD20a)とリアガイド部側端部19bにおける対向面比(LU19b/LD19b)を同一とし、LU20a/LD20a=LU19b/LD19bを一定としたが、これに限るものではない。リアガイド部側端部19bの対向面比(LU19b/LD19b)を、スタビライザー側端部19aの対向面比(LU19a/LD19a)未満とすればよい。LU19a/LD19a>LU19b/LD19bの構成の一例を図28に示す。図28は、実施の形態3に係る衝突壁18を示す上面図であり、例えば、スタビライザー側端部19aの対向面比(LU19a/LD19a)=1、リアガイド部側端部19bの対向面比(LU19b/LD19b)=0.25とする。底面の長さ(LD)に対する対向面の長さ(LU)の対向面比を、スタビライザー9側よりもリアガイド部10側で小さくなるように構成するということは、同一底面の長さで比較すると、LU19a/LD19a=LU19b/LD19bとしたときよりもリアガイド部10側で対向面18aの長さを短くできる。逆吸いが起こりにくいリアガイド部側端部19bで、傾斜面21を通って吹出風路11に流れる気流の割合を、衝突壁18の対向面18aに衝突する気流の割合よりも多くでき、ファン8から吹き出した気流が衝突壁18に衝突することで生じるエネルギー損失及び衝突音をさらに低減できる。
 図29(a)、(b)はそれぞれ実施の形態3に係る衝突壁18の他の構成例を示すものであり、衝突壁18のスタビライザー側端部19a(減少開始位置19cと同様)のファン端板12bに垂直な断面を示す。この構成例は、対向面18aの長さLU19a>底面18bの長さLD19aとすることを特徴とする。リアガイド部側端部19bや、その間の位置20aにおける衝突壁18の形状は、図22や図25で示した形状と同様とする。この構成では、衝突壁18の各位置における対向面比(LU/LD)について、式(3)の関係を満足している。
 LU19a/LD19a(>1)
    > LU20a/LD20a
    ≧ LU19b/LD19b  ・・・(3)
 衝突壁18において、ファン8との対向面18aは図14に示すように、衝突領域E3に淀み圧P1aを形成して、室内機1の外部から吹出口3を通って空間Sに室内空気が逆流するのを防ぐ。ファン8の内部に発生する渦F1によって最も低圧になる部分であるスタビライザー側端部19a及びこの近傍の衝突壁18、例えばスタビライザー側端部19aから減少開始位置19cまでの衝突壁は、逆吸いを防止する淀み圧を確実に形成する形状とする。図29(a)は、対向面18aの回転軸線方向AXの長さ(LU19a)を長く構成したので、ファン8の両端部に逆吸いを防止するのに必要な幅の淀み圧を形成できる。
 一方、底面18bのファン端板12bからの回転軸線方向AXの長さを、対向面18aよりも短くしたので、吹出風路11の左右方向(回転軸線方向AX)の長さが長くなる。吹出風路11の面積が大きくなって吹出気流の風量が多くなる。ただし、前述のように、逆吸いが起こりやすいスタビライザー側端部19a近傍において、底面18bの長さ(LD19a)は、ファン8の回転数が低いときでも逆吸いが起こらない程度の風速が得られる長さとする。
 なお、実施の形態1、2と同様、リアガイド部側端部19bに近い部分は、逆吸いが起こりにくいので、対向面18aの回転軸線方向AXの長さをスタビライザー側端部19aよりも短くすることで、気流の一部によってこの位置で逆吸い防止に必要な淀み圧を形成すると共に、気流の他部を送風気流とし、エネルギー損失及び衝突音を低減できる。
 図29(b)は、図29(a)の対向面18aの回転軸線方向AXで内側に接続される面を傾斜面21とする構成である。図29(b)の構成では、衝突壁18の対向面18aのファン内側縁部Hbに形成される傾斜面21によって、対向面18aの角部に流れる気流は、傾斜面21に沿って滑らかに流れて下流の吹出口3に導かれる。このため、図20(d)に示した乱れが生じるのを抑制できる。
 以上のように、貫流ファン8の両端に設けられている円板形状のファン端板12a、12bに垂直な平面で衝突壁18を切断した断面にて、衝突壁18は多角形状を成し、対向面18a、ファン延長部8aと反対側で対向面18aに対向する底面18b、左右方向の内側で対向面18aと底面18bとを結ぶ衝突壁側面18cを有し、回転軸線方向AXにおけるファン端板12a、12bからの対向面18aの長さをLU、回転軸線方向AXにファン端板12a、12bからの底面18bの長さをLDとした場合に、LU/LDで求まる対向面比について、リアガイド部側端部19bの対向面比(LU19b/LD19b)がスタビライザー側端部19aの対向面比(LU19a/LD19a(≧1))未満であることにより、逆吸いを防止できる共に送風気流を確保し、特に対向面18aのファン内側縁部Hbの傾斜面21によって気流を滑らかに吹出口3に導くことで、逆吸いを防止できると共に気流衝突によるエネルギー損失を低減して消費電力を低くできる効果がある。
 また、貫流ファン8の両端に設けられている円板形状のファン端板12a、12bに垂直な平面で衝突壁18を切断した断面にて、左右方向の内側で対向面18aに接続される面は、対向面18aに対して鈍角で交わる傾斜面で構成されることにより、衝突壁18のファン内側縁部Hbを直角に交わる角部とした場合と比較して、角部付近で剥離や乱れが生じるのを抑制でき、低電力化及び低騒音化を図ることができる効果がある。
実施の形態4.
 以下、本発明の実施の形態4について、図に基づいて説明する。実施の形態4では、実施の形態1における図20(a)、(b)や、実施の形態2における図22(b)、(c)や、実施の形態3における図25(b)、(c)に示すように、左右方向(回転軸線方向AX)の内側で衝突壁18の対向面18aに接続される面が、対向面18aに対して鈍角で交わる傾斜面21を有する構成に関する。衝突壁18の対向面18aと傾斜面21との成す角度を角度θとし、この角度θについて説明する。ここで、室内機1の右端部に設ける衝突壁18の場合、対向面18aから時計回りで傾斜面21と成す角度を角度θとする。室内機1の左端部に設ける衝突壁18の場合には、右端部の衝突壁18を左右反転した形状になるので、対向面18aから反時計回りで傾斜面21と成す角度を角度θとする。
 図30は位置20aにおける衝突壁18を示す断面図(図30(a))と角度θを説明する説明図(図30(b))である。また、図31はリアガイド部側端部19bにおける衝突壁18を示す断面図(図31(a))と角度θを説明する説明図(図31(b))である。位置20aにおける対向面18aと傾斜面21との成す角度θ(20a)>リアガイド部側端部19bにおける対向面18aと傾斜面21との成す角度θ(19b)とする。例えば、角度θ(20a)を150℃、角度θ(19b)を120°とする。ここで、対向面18aの奥行き方向AYの位置について、図30における位置は、スタビライザー側端部19aとリアガイド部側端部19b間で、図31に示すリアガイド部側端部19bよりもスタビライザー9側の位置であればどこでもよく、ここでは例えば位置20aの場合について説明する。
 位置20aにおいて、図30(b)に示すように、気流は衝突壁18の対向面18aに垂直に流入するのであるが、傾斜面21に流れてくる気流Bは、傾斜面21では傾斜面21に垂直な成分(B1)と、傾斜面21に平行な成分(B2)に分解される。傾斜面21に平行な成分(B2)は、傾斜面21に沿って衝突壁側面18cから吹出口3に流れていく。一方、傾斜面21に垂直な成分(B1)は、傾斜面21に衝突して風速のエネルギーが圧力のエネルギーに変換され、傾斜面21に淀み圧を形成し、傾斜面21に続く対向面18aの淀み圧の形成を補助するように作用する。
 図31(b)も同様であり、傾斜面21に流れる気流Bは、傾斜面21では傾斜面に垂直な成分(B1)と、傾斜面に平行な成分(B2)に分解される。傾斜面に平行な成分(B2)は、傾斜面21に沿って衝突壁側面18cに流れていく。一方、傾斜面に垂直な成分(B1)は、傾斜面21と衝突して傾斜面21との間で淀み圧を形成しようとする。
 角度θ(20a)>角度θ(19b)としているので、気流B(20a)と気流B(19b)とが同一の大きさの場合、傾斜面21(20a)と傾斜面21(19b)の傾斜面に垂直な気流は、成分B1(20a)>成分B1(19b)である。即ち、逆吸いの起こりやすいスタビライザー9側では、リアガイド部側端部19bよりも大きな淀み圧が傾斜面21に形成され、確実に逆吸いを防止できる。
 一方、角度θ(20a)>角度θ(19b)としているので、気流B(20a)と気流B(19b)とが同一の大きさの場合、傾斜面21(20a)と傾斜面21(19b)の傾斜面に平行な気流は、成分B2(20a)<成分B2(19b)である。即ち、逆吸いの起こりにくく低い淀み圧で十分であるリアガイド部側端部19bでは、スタビライザー側端部19aよりも送風気流に作用する成分B2が大きくなる。従って、角度θをスタビライザー側端部19aと同じに構成した場合よりも、気流が衝突壁18に衝突することによるエネルギー損失の増加を抑制でき、消費電力の抑制を図ることができる。また、衝突による騒音も抑制できる。
 図32は、横軸に奥行き方向の位置、縦軸に傾斜面21の角度θを示すグラフである。スタビライザー側端部19aから減少開始位置19cは傾斜部がないので、スタビライザー側端部19aにおける角度θは180°であり、リアガイド部側端部19bにおける角度θは、120°とし、その間の位置、位置20a、位置20bでは、略直線状に滑らかに角度θを減少する。角度θが小さくなるにつれて、傾斜面21との間にできる淀み圧は減少する。即ち、奥行き方向AYの位置がリアガイド部10側(リアガイド部側端部19b)に進むにつれて、送風気流が多くなるので、逆吸いが起こりにくい位置で風速のエネルギーはそのまま送風に働く。これと同時に、衝突壁18と衝突する気流が減少するので、気流衝突によるエネルギー損失及び衝突音を低減できる。
 一方、奥行き方向AYの位置がスラビライザー9側(スタビライザー側端部19a)に進むにつれて、送風気流が減少して衝突壁18と衝突する気流が増加する。このため、逆吸いの起こりやすいスタビライザー9側で逆吸いを確実に防止できる。
 図32は一例であり、これに限るものではない。即ち、角度θを徐々に直線状に変化させなくてもよい。例えば階段状や曲線状に変化させてもよい。
 なお、このファン内側縁部Hbに傾斜面21を有する構成は、実施の形態2、実施の形態3で示した全てに適用されるものである。また、傾斜面21が形成されていなくても、衝突壁18の対向面18aと衝突壁側面18cが90°より大きい角度を成す形状の場合に適用される。図9に示すように、実際にはリアガイド部側端部19bでは、吹出風路11を形成するリアガイド部10とファン8の外周との距離が近いので、リアガイド部10とファン8の外周との間の吹出風路11に形成される衝突壁側面18cの長さは短くなる。即ち、図31(a)のように、角度θの小さい傾斜面21を構成しようとすると、衝突壁側面18cに接続する前に底面18bの位置になる可能性が高い。この場合には、衝突壁側面18cを傾斜面21と見なしてもよい。
 これまでの説明では、スタビライザー側端部19aから減少開始位置19cまでは、ファン内側縁部Hbで傾斜を設けない形状について述べてきた。ただし、スタビライザー側端部19aのファン内側縁部Hbを90°にしていることで、この角部が気流の乱れの大きな原因となる場合には、この角部に傾斜部を設けてもよい。衝突壁18のファン8との対向面18aの回転軸線方向AXに十分な長さがあれば、対向面18aのファン内側縁部Hbに傾斜を設けても、対向面18aと傾斜面に衝突する気流で、逆吸いを防止できる十分な淀み圧を形成できる。
 また、スタビライザー側端部19aから減少開始位置19cまでは、対向面18aのファン内側縁部Hbの角部を曲面で形成することで、気流に対して滑らかな面とし、角部による気流の乱れを抑制してもよい。実際に射出成型などでリアガイド部10や側壁30や衝突壁18を成型する際には、ほとんど全ての角部が若干丸みを有する形状で構成される。
 以上のように、貫流ファン8の両端に設けられている円板形状のファン端板12a、12bに垂直な平面で衝突壁18を切断した断面にて、左右方向の内側で対向面18aに接続される面は、対向面18aに対して鈍角で交わる傾斜面で構成されることにより、衝突壁18のファン内側縁部Hbを直角に交わる角部とした場合と比較して、角部付近で剥離や乱れが生じるのを抑制でき、低電力化及び低騒音化を図ることができる効果がある。
 また、傾斜面21と対向面18aとの間の角度θについて、リアガイド部10側に設けられる傾斜面21の方が、スタビライザー9側に設けられる傾斜面21より小さく構成されることにより、スタビライザー側端部19aでは逆吸いを防止するのに必要な幅(回転軸線方向AXの長さ)で淀み圧を形成し、リアガイド部側端部19bでは淀み圧を形成すると共に送風気流を多くして風量を多くし、逆吸いを防止できると共に低電力化及び低騒音化を図ることができる効果がある。
 なお、実施の形態1~実施の形態4において、スタビライザー側端部19aから減少開始位置19cまでは、対向面18aの回転軸線方向AXの長さを一定としたが、これに限るものではない。スタビライザー側端部19aで逆吸いを防止できる十分な淀み圧が得られ、この部分からリアガイド部側端部19bに向かった位置20a付近でも十分な淀み圧が得られる場合には、減少開始位置19cを設けずに、スタビライザー側端部19aから対向面18a回転軸線方向AXの長さを減少させてもよい。
 1 室内機(空気調和機)、 2 吸込みグリル、 3 吹出口、 4 風向ベーン、 5 電気集塵器、 6 フィルタ、 7 熱交換器、 8 貫流ファン(羽根車)、 8a ファン延長部、 9 スタビライザー、 10 リアガイド部、 11 吹出風路、 12 支持板、 12a、12b ファン端板、 13 翼、 14 連(羽根車単体)、 14a 端部連、 15 ファンボス、 16 モータ、 17 回転軸線、 18 衝突壁、 18a 対向面、 18b 底面、 18c 衝突壁側面、 19a スタビライザー側端部、 19b リアガイド部側端部、 19c 減少開始位置、 21 傾斜面、 30 側壁。

Claims (7)

  1.  室内空気を吸い込む吸込口、前記吸込口から吸い込まれた前記空気を室内へ吹き出す吹出口、及び前記吸込口から吸い込まれた前記空気を前記吹出口へ導く吹出風路、を有した室内機本体と、
    前記室内機本体内にあって、前記吸込口から吸い込まれた前記空気と熱交換する熱交換器と、
    前記室内機本体内にあって、前記吸込口から前記吹出口へ前記空気を送風する貫流ファンと、を備え、
    前記室内機本体の正面から見て、前記吹出風路の前面は、前記貫流ファンにより送風された前記空気を前記吹出口に導くスタビライザーにより構成され、前記吹出風路の背面は、前記貫流ファンにより送風された前記空気を前記吹出口に導くリアガイドにより構成されており、
    前記室内機本体の正面から見て、前記吹出風路の左右の端部には、前記スタビライザーと前記リアガイドとを接続するように設けられ、前記貫流ファンの左右の端部と対向する対向面を有した衝突壁が設けられており、
    前記対向面は、前記リアガイド側に位置するリアガイド側端部の前記貫流ファンの回転軸線方向の長さが、前記スタビライザー側に位置するスタビライザー側端部の前記回転軸線方向の長さよりも短く構成されていることを特徴とする空気調和機。
  2.  前記貫流ファンの前記左右端部の端面には円板形状の端板が設けられており、
    前記衝突壁は、前記対向面、前記貫流ファンと反対側に位置し前記対向面と対向する底面、前記吹出風路の内側で前記対向面と前記底面とを結ぶ衝突壁側面を有し、前記回転軸線方向における前記端板からの前記対向面の長さをLU、前記回転軸線方向における前記端板からの前記底面の長さをLDとした場合に、LU/LDで求まる対向面比は、前記リアガイド側端部の前記対向面比が前記スタビライザー側端部の前記対向面比未満であることを特徴とする請求項1記載の空気調和機。
  3.  前記衝突壁は、前記対向面の前記回転軸線方向の長さを短くするときの減少開始位置を、前記スタビライザー側端部と前記リアガイド側端部の間の途中に有し、
     前記スタビライザー側端部から前記減少開始位置までは、前記対向面の前記回転軸線方向の長さを同じ長さにしたことを特徴とする請求項1または請求項2記載の空気調和機。
  4.  前記貫流ファンの前記左右端部の端面には円板形状の端板が設けられており、
    前記端板に直交する平面で前記衝突壁を切断した断面において、前記吹出風路の内側で前記対向面に接続される面は、前記対向面に対して鈍角で交わる傾斜面で構成されることを特徴とする請求項1~3のいずれか一項に記載の空気調和機。
  5.  前記傾斜面と前記対向面との間の角度θについて、前記リアガイド側に設けられる前記傾斜面の角度θの方が、前記スタビライザー側に設けられる前記傾斜面の角度θより小さいことを特徴とする請求項4記載の空気調和機。
  6. 前記端板に直交する平面で前記衝突壁を切断した断面は、多角形状であることを特徴とする請求項2、4又は5に記載の空気調和機。
  7. 前記吹出口は、前記室内機本体の正面から見て、前記室内機本体の左右方向に沿って形成されていることを特徴とする請求項1~6のいずれか一項に記載の空気調和機。
PCT/JP2012/001333 2011-08-31 2012-02-28 空気調和機 WO2013031046A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201290000786.1U CN204063280U (zh) 2011-08-31 2012-02-28 空气调节机
JP2013531003A JP5744209B2 (ja) 2011-08-31 2012-02-28 空気調和機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188763 2011-08-31
JP2011-188763 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031046A1 true WO2013031046A1 (ja) 2013-03-07

Family

ID=47755582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001333 WO2013031046A1 (ja) 2011-08-31 2012-02-28 空気調和機

Country Status (3)

Country Link
JP (1) JP5744209B2 (ja)
CN (1) CN204063280U (ja)
WO (1) WO2013031046A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145692A (ja) * 2015-02-09 2016-08-12 シャープ株式会社 空気調和機
JP2018035745A (ja) * 2016-08-31 2018-03-08 日立ジョンソンコントロールズ空調株式会社 空気調和機
JPWO2018042689A1 (ja) * 2016-08-29 2019-06-24 シャープ株式会社 空気調和機
JP2020003103A (ja) * 2018-06-26 2020-01-09 三菱重工サーマルシステムズ株式会社 空調用室内ユニット

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634384B2 (en) * 2015-08-24 2020-04-28 Mitsubishi Electric Corporation Indoor unit of air-conditioning apparatus
CN112360778A (zh) * 2016-09-16 2021-02-12 松下知识产权经营株式会社 气幕装置
WO2019155664A1 (ja) * 2018-02-06 2019-08-15 シャープ株式会社 空気調和機
JP7090738B2 (ja) * 2018-11-29 2022-06-24 三菱電機株式会社 室内機および空気調和機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139890U (ja) * 1980-03-24 1981-10-22
JPH08121396A (ja) * 1994-10-28 1996-05-14 Matsushita Electric Ind Co Ltd 送風機
JP2000291973A (ja) * 1999-02-02 2000-10-20 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JP2001201078A (ja) * 2000-01-19 2001-07-27 Mitsubishi Heavy Ind Ltd 室内ユニット及び空気調和機
JP2009250601A (ja) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp クロスフローファン及びこれを備えた空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139890U (ja) * 1980-03-24 1981-10-22
JPH08121396A (ja) * 1994-10-28 1996-05-14 Matsushita Electric Ind Co Ltd 送風機
JP2000291973A (ja) * 1999-02-02 2000-10-20 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JP2001201078A (ja) * 2000-01-19 2001-07-27 Mitsubishi Heavy Ind Ltd 室内ユニット及び空気調和機
JP2009250601A (ja) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp クロスフローファン及びこれを備えた空気調和機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145692A (ja) * 2015-02-09 2016-08-12 シャープ株式会社 空気調和機
JPWO2018042689A1 (ja) * 2016-08-29 2019-06-24 シャープ株式会社 空気調和機
JP2018035745A (ja) * 2016-08-31 2018-03-08 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2020003103A (ja) * 2018-06-26 2020-01-09 三菱重工サーマルシステムズ株式会社 空調用室内ユニット
JP7191554B2 (ja) 2018-06-26 2022-12-19 三菱重工サーマルシステムズ株式会社 空調用室内ユニット

Also Published As

Publication number Publication date
JP5744209B2 (ja) 2015-07-08
CN204063280U (zh) 2014-12-31
JPWO2013031046A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5744209B2 (ja) 空気調和機
JP5369141B2 (ja) 空気調和機
JP5178816B2 (ja) 空気調和機
US9267511B2 (en) Turbofan and indoor unit of air-conditioning apparatus including the same
US9382913B2 (en) Fan, molding die, and fluid feeder
WO2012002080A1 (ja) ファン、成型用金型および流体送り装置
TWI513908B (zh) Cross flow fan, forming mold and fluid feeding device
WO2014080899A1 (ja) 空気調和機
JP2016142431A (ja) 空気調和機
JP5837235B2 (ja) 空気調和機の室外ユニット
KR20140015945A (ko) 공기조화기
WO2020008519A1 (ja) 多翼送風機及び空気調和装置
JP2013096378A (ja) 遠心送風機
WO2013080395A1 (ja) 空気調和機
JP5083349B2 (ja) 空気調和機の室内機
JP6398086B2 (ja) 送風機およびこれを用いた空気調和機
JP2009281215A (ja) 空気調和機用室内機
JP2014031951A (ja) 空気調和機
JP4775867B1 (ja) ファン、成型用金型および流体送り装置
KR20140014409A (ko) 공기조화기의 실내기
JP2012107848A (ja) 空気調和機の室内ユニット
JP2018035745A (ja) 空気調和機
JP4906010B2 (ja) ファン、成型用金型および流体送り装置
WO2018042689A1 (ja) 空気調和機
JP7103465B1 (ja) 送風機および室内機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290000786.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827855

Country of ref document: EP

Kind code of ref document: A1