WO2013079633A1 - Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich - Google Patents

Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich Download PDF

Info

Publication number
WO2013079633A1
WO2013079633A1 PCT/EP2012/074032 EP2012074032W WO2013079633A1 WO 2013079633 A1 WO2013079633 A1 WO 2013079633A1 EP 2012074032 W EP2012074032 W EP 2012074032W WO 2013079633 A1 WO2013079633 A1 WO 2013079633A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
molding compositions
compositions according
potassium
Prior art date
Application number
PCT/EP2012/074032
Other languages
English (en)
French (fr)
Inventor
Michael Erkelenz
Hans Franssen
Helmut Werner Heuer
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Priority to US14/361,011 priority Critical patent/US20150011689A1/en
Priority to EP12791796.1A priority patent/EP2785782B1/de
Priority to KR1020147017536A priority patent/KR20140105492A/ko
Priority to CN201280059436.7A priority patent/CN104039881A/zh
Publication of WO2013079633A1 publication Critical patent/WO2013079633A1/de
Priority to US14/922,513 priority patent/US20160040010A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof

Definitions

  • the present invention relates to glass fiber reinforced polycarbonate compositions having high stiffness, improved thermal and rheological behavior in combination with improved flame retardance and significantly increased Vicat temperature. Furthermore, the present invention relates to the use of the compositions of the invention for the production of thin-walled housing parts or switch boxes in the EE (electrical / electronics) and IT (information technology) area.
  • EE electrical / electronics
  • IT information technology
  • molding compounds are particularly suitable for components that meet the fire classification UL94 V0 with a wall thickness of 1.2 mm to 1, 5 mm.
  • the object of the present invention was thus fiberglass-reinforced polycarbonate compositions with a combination of high rigidity and toughness in axial and biaxial behavior, good thermal and rheological behavior and a flame retardance of UL94 V0 at 1.2 mm and 1.5 mm wall thickness and increased Vicat temperature which do not have the disadvantages of the compositions known from the prior art.
  • the compositions are suitable for the production of frames for LCD screens and housing parts for the RE market.
  • the compositions should have an HDT edgewise and flatwise of> 135 ° C.
  • the molding compositions thus composed are characterized by good mechanical properties as well as good toughness and good theological and thermal behavior with improved flame retardance and high Vicattemperatur.
  • the invention provides flame-retardant, thermoplastic molding compositions containing
  • F 0.05% by weight to 5.00% by weight, preferably 0.10% by weight to 1.00% by weight, particularly preferably 0.10% by weight to 0.80% by weight of at least one antidripping agent.
  • G 0 to 10.00 parts by weight, preferably 0.10 to 8.00 parts by weight, particularly preferably 0.20 to 3.00 parts by weight of further customary additives, where the sum of the parts by weight of components A ) to G) adds up to 100 parts by weight.
  • the composition consists of the components A) - G).
  • Polycarbonates in the context of the present invention are both homopolycarbonates and copolycarbonates;
  • the polycarbonates may be linear or branched in a known manner.
  • the preparation of the polycarbonates is carried out in a known manner from diphenols, carbonic acid derivatives, optionally chain terminators and branching agents.
  • Diphenols suitable for the preparation of the polycarbonates are, for example, hydroquinone, resorcinol, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes,
  • Preferred diphenols are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) -propane, 2,4-bis-
  • diphenols are 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro 4-hydroxyphenyl) -propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) -propane, 1,1-bis (4-hydroxyphenyl) -cyclohexane and 1,1-bis (4 -hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • Suitable carbonic acid derivatives are, for example, phosgene or diphenyl carbonate.
  • Suitable chain terminators used in the preparation of the polycarbonates useful in this invention are monophenols of formula (I).
  • R 1 and R 2 independently of one another are hydrogen, C 1 -C 18 -alkyl, C 6 -C 12 -aryl, phenyl-C 1 -C 6 -alkyl or naphthyl-C 1 -C 6 -alkyl, but preferably R 1 and R 2 are not simultaneously hydrogen.
  • R 1 and R 2 independently of one another are more preferably hydrogen or alkyl of 1 to 8, more preferably of 1 to 4 carbon atoms, with the proviso that R 1 and R 2 are not simultaneously hydrogen.
  • Very particular preference is given to tert-butylphenol or n-butylphenol, in particular p-tert.
  • Suitable monophenols are, for example, phenol itself, alkylphenols such as cresols, p-tert.
  • Preferred chain terminators are also the phenols which are mono- or polysubstituted by C 1 to C 30 -alkyl radicals, linear or branched, for example stearyl radicals, preferably unsubstituted or substituted by tert-butyl. Particularly preferred as chain terminators p-tert. Butylphenol. In an alternative embodiment, it is also possible to use mixtures of chain terminators according to the invention, for example p-tert-butylphenol and phenol in a molar ratio of 9: 1 to 1: 9, preferably 9: 1.
  • the amount of chain terminator to be used is preferably from 0.1 to 5 mol%, based on mols of diphenols used in each case.
  • the addition of the chain terminators can be carried out before, during or after the reaction with a Kohleklarederivat.
  • Suitable branching agents are the trifunctional or more than trifunctional compounds known in polycarbonate chemistry, especially those having three or more than three phenolic OH groups.
  • Suitable branching agents are, for example, phloroglucinol, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptene-2, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) heptane , 1, 3,5-tri (4-hydroxyphenyl) -benzene, 1,1,1-tris (4-hydroxyphenyl) -ethane, tri- (4-hydroxyphenyl) -phenylmethane, 2,2-bis- [4 , 4-bis (4-hydroxyphenyl) cyclohexyl] propane, 2,4-bis (4-hydroxyphenylisopropyl) phenol, 2,6-bis (2-hydroxy-5'-methyl-benzyl) -4 -methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphen
  • the amount of optionally used branching agent is preferably 0.05 mol% to 2.00 mol%, based in turn on moles of diphenols used in each case.
  • the branching agents may be presented either with the diphenols and the chain terminators in the aqueous alkaline phase, or may be added dissolved in an organic solvent prior to phosgenation. In the case of the transesterification process, the branching agents are used together with the diphenols.
  • the aromatic polycarbonates of the present invention have weight average molecular weights Mw (determined by gel permeation chromatography and polycarbonate standard calibration) of between 5000 and 200,000 g / mol, preferably between 18,000-36,000 g / mol, more preferably between 22,000-34,000 g / mol, even more preferably between 24,000 - 32,000 g / mol, and more preferably between 26,000-32,000 g / mol.
  • Particularly preferred polycarbonates are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on 1,3-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and the copolycarbonates based on the two monomers bisphenol A and I, l -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane each with p-tert-butylphenol end groups (BUP).
  • Suitable flame retardants in the context of the present invention include Alkali sans. Alkaline earth salts of aliphatic and aromatic sulfonic acid, sulfonamide and sulfonimide derivatives, e.g. Potassium perfluorobutanesulfonate, potassium diphenyl sulfone sulfonate, N- (p-tolylsulfonyl) -p-toluenesulfimide potassium salt, N- (N'-benzylaminocabonyl) sulfanylimide potassium salt.
  • Alkali Alkaline earth salts of aliphatic and aromatic sulfonic acid, sulfonamide and sulfonimide derivatives, e.g. Potassium perfluorobutanesulfonate, potassium diphenyl sulfone sulfonate, N- (p-tolylsulfonyl) -p-toluenes
  • Salts which may optionally be used in the molding compositions according to the invention are, for example: sodium or potassium perfluorobutanesulfate, sodium or potassium perfluoromethanesulfonate, sodium or potassium perfluorooctane sulfate, sodium or potassium 2,5-dichlorobenzenesulfate, sodium or potassium 2,4,5 trichlorobenzene sulfate, sodium or
  • Potassium methylphosphonate sodium or potassium (2-phenyl-ethylene) phosphonate, sodium or potassium pentachlorobenzoate, sodium or potassium 2,4,6-trichlorobenzoate, sodium or potassium 2,4-dichlorobenzoate, lithium phenylphosphonate, sodium or potassium diphenylsulfone sulfonate, sodium or potassium 2-formylbenzenesulfonate, sodium or potassium (N-benzenesulfonyl) benzenesulfonamide.
  • Potassium nona-fluoro-1-butanesulfonate is i.a. as Bayowet® C4 (Lanxess, Leverkusen, Germany, CAS No. 29420-49-3), RM64 (Miteni, Italy) or as 3M TM perfluorobutanesulfonyl fluoride FC-51 (3M company, USA). Likewise suitable are mixtures of the salts mentioned. Potassium nona-fluoro-l-butanesulfonate is particularly preferably used.
  • UV (ultraviolet) stabilizers in the context of the present invention have the lowest possible transmission below 400 nm and the highest possible transmission above 400 nm.
  • Particularly suitable ultraviolet absorbers for use in the composition according to the invention are benzotriazoles, triazines, benzophenones and / or arylated cyanoacrylates.
  • Particularly useful ultraviolet absorbers are hydroxy-benzotriazoles, such as 2- (3 ', 5'-bis (l, l-dimethylbenzyl) -2'-hydroxyphenyl) benzotriazole (Tinuvin ® 234, BASF, Ludwigshafen, Germany), 2 - (2'-hydroxy-5 '- (tert-octyl) phenyl) benzotriazole (Tinuvin ® 329, BASF, Ludwigshafen, Germany), 2- (2'-hydroxy-3' - (2-butyl) -5 ' - (tert-butyl) phenyl) benzotriazole -2-hydroxy-5-tert-octyl) methane (Tinuvin ® 350, BASF, Ludwigshafen, Germany), bis (3- (2H-benzotriazolyl), (Tinuvin ® 360, BASF, Ludwigshafen, Germany), (2- (4,6-diphenyl-l, 3,5-triazin-2-yl) -5-
  • Fillers in the context of the present invention are glass fibers
  • chopped glass fibers made from M, E, A, S, R or C glass are used, with E, or C glass being more preferred.
  • the diameter of the fibers is preferably 5 to 25 ⁇ , more preferably 6 to 20 ⁇ , particularly preferably 7 to 17 ⁇ .
  • the chopped glass fibers preferably have a length of 3 mm to 6 mm before compounding.
  • the glass fibers used are characterized in that the selection of the fiber is not limited by the interaction characteristic of the fiber with the polycarbonate matrix.
  • the mold release agents E) used are esters of aliphatic long-chain carboxylic acids with monohydric or polyhydric aliphatic and / or aromatic hydroxy compounds.
  • Particularly preferably used aliphatic carboxylic acid esters are compounds of the general formula (III):
  • R4 is an aliphatic saturated or unsaturated, linear, cyclic or branched alkyl radical and R5 an alkylene radical of a monohydric to trihydric aliphatic alcohol R5- (OH) o + p.
  • C1-C18 alkyl radicals are particularly preferred.
  • C 1 -C 18 -alkyl is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, neo-pentyl, 1-ethylpropyl, cyclohexyl, cyclopentyl, n-hexyl, 1,1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbut
  • Alkylene represents a straight-chain, cyclic, branched or unbranched C1-C18 alkylene radical.
  • C 1 -C 18 -alkylene is, for example, methylene, ethylene, n-propylene, isopropylene, n-butylene, n-pentylene, n-hexylene, n-heptylene, n-octylene, n-nonylene, n-decylene, n - Dodecylene, n-tridecylene, n-tetradecylene, n-hexadecylene or n-octadecylene.
  • Aliphatic carboxylic esters which are suitable according to the invention include, for example: glycerol monostearate, palmityl palmitate and stearyl stearate. It is also possible to use mixtures of different carboxylic acid esters of the formula (III). Preferred carboxylic acid esters are esters of pentaerythritol, glycerol, trimethylolpropane, propanediol, stearyl alcohol, cetyl alcohol or myristyl alcohol with myristic, palmitic, stearic or montanic acid and mixtures thereof.
  • pentaerythritol tetrastearate stearyl stearate and propanediol distearate, or mixtures thereof, and most preferably pentaerythritol tetrastearate.
  • component (F) it is additionally possible to add polytetrafluoroethylene (PTFE) to the molding compositions.
  • PTFE polytetrafluoroethylene
  • PTFE blends such as Metablen® A-3800 (about 40% PTFE CAS 9002-84-0 and about 60% methyl methacrylate / butyl acrylate copolymer CAS 25852-37-3 from Misubishi Rayon) or Blendex® B449 (about 50% PTFE and about 50% SAN [aus
  • Blendex® B449 is used
  • PTFE may optionally be used in amounts of 0.05% by weight to 5% by weight, preferably 0.1% by weight to 1.0% by weight, more preferably 0.1% by weight. > to 0.5 wt.%> in each case based on the total composition calculated on pure PTFE.
  • the polymer compositions according to the invention may optionally contain further customary polymer additives as component G), such as e.g. the antioxidants described in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 or "Plastics Additives Handbook", Hans Zweifel, 5th Edition 2000, Hanser Verlag, Kunststoff), different from B) Flame retardants, optical brighteners and light scattering agents in the usual amounts for the respective thermoplastics.
  • component G such as e.g. the antioxidants described in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 or "Plastics Additives Handbook", Hans Zweifel, 5th Edition 2000, Hanser Verlag, Kunststoff), different from B) Flame retardants, optical brighteners and light scattering agents in the usual amounts for the respective thermoplastics.
  • polymer compositions of the invention may contain pigments and / or dyes in the usual amounts as component G).
  • Preferred thermal stabilizers according to component (G) are triphenylphosphine, tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168), tetrakis (2,4-di-tert-butylphenyl) - [I, l biphenyl] -
  • Irganox B900 mixture of Irganox 168 and Irganox 1076 in the ratio 1: 3
  • the preparation of the polymer compositions according to the invention comprising the components A) to G) is carried out by conventional incorporation methods by combining, mixing and homogenizing the individual components, wherein in particular the homogenization preferably takes place in the melt under the action of shear forces.
  • the merging and mixing takes place before the melt homogenization using powder premixes.
  • premixes of granules or granules and powders with the additives according to the invention. It is also possible to use premixes which have been prepared from solutions of the mixture components in suitable solvents, optionally homogenizing in solution and subsequently removing the solvent.
  • the additives of the composition according to the invention can be introduced by known methods or as a masterbatch.
  • masterbatches are particularly preferred for introducing the additives, in particular masterbatches based on the respective polymer matrix being used.
  • composition can be combined, mixed, homogenized and then extruded in conventional equipment such as screw extruders (for example twin-screw extruder, ZSK), kneaders, Brabender or Banbury mills.
  • screw extruders for example twin-screw extruder, ZSK
  • kneaders for example twin-screw extruder, ZSK
  • kneaders for example twin-screw extruders
  • Brabender Banbury mills.
  • the extrudate After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed.
  • the merging and mixing of a premix in the melt can also be done in the plasticizing of an injection molding machine.
  • the melt is transferred in the subsequent step directly into a shaped body.
  • the production of the plastic molded parts can preferably be effected by injection molding.
  • the plastic composition according to the invention is applied in one or more layer (s) on a molded article made of a plastic.
  • the application can be done at the same time as or immediately after the molding of the molding, for example by injection molding a film, coextrusion or multi-component injection molding.
  • the application can also be done on the finished shaped body, e.g. by lamination with a film, encapsulation of an existing molding or by coating from a solution.
  • compositions according to the invention for producing thin-walled, rigid components, in particular frame components for LCD / LED devices, in the EE and IT sectors.
  • Component Al for producing thin-walled, rigid components, in particular frame components for LCD / LED devices, in the EE and IT sectors.
  • Linear polycarbonates based on bisphenol A with an MVR of 8 (according to ISO 1133, at 300 ° C and 1.2 kg load).
  • Potassium perfluoro-1-butanesulfonate commercially available as Bayowet® C4 from Lanxess, Leverkusen, Germany, CAS no. 29420-49-3.
  • Component D-1 CS 7968 cut short glass fibers (bonding) of the company Lanxess AG with an average fiber diameter of 11 ⁇ and an average fiber length of 4.5 mm.
  • Pentaerythritol tetrastearate as lubricant / release agent Component F
  • Polytetrafluoroethylene (Blendex® B449 (about 50% PTFE and about 50% SAN [from 80% styrene and 20% acrylonitrile] from Chemtura).
  • the impact strength according to Charpy was measured according to ISO 179 / leU on single-sided test bars measuring 80 x 10 x 4 mm at RT and -40 ° C.
  • the Vicat B / 50 as a measure of the heat resistance is determined according to ISO 306 on specimens of dimensions 80 x 10 x 4 mm with a stamping load of 50 N and a heating rate of 50 ° C / h.
  • the average particle size dso is the diameter, above and below which each 50 wt .-% of the particles are.
  • the maximum particle size d95 is the diameter below which 95% by weight of the particles lie.
  • the corresponding diameters were determined by air classification.
  • the fire behavior is measured according to UL 94V on rods measuring 127 mm x 12.7 mm x 1.0 mm, 127 x 12.7 x 1.2 mm, 127 x 12.7 x 1.5 mm.
  • the fire behavior is measured according to UL 94 5V on bars measuring 127 mm x 12.7 mm x 3.0 mm and plates measuring 105 mm x 105 mm x 3.0 mm.
  • Failed means failed in bar and panel testing, class A consisted of consist of bar and panel testing.
  • Class B passed means pass the bar exam and fail the plate exam.
  • the modulus of elasticity and the elongation at break were measured according to ISO 527 on a single-sided molded-on rod with a core measuring 80 ⁇ 10 ⁇ 4 mm.
  • melt volume rate (MVR) is carried out according to ISO 1133 (at 300 ° C, 1.2 kg).
  • the characteristic values of the penetration test are determined at -20 ° C according to ISO 6603-2 on test plates of 60mm x 60mm x 2mm.
  • the determination of the HDT-A edgwise was carried out according to ISO 75 with a contact force of 1.80 MPa on a test specimen of dimensions 120 mm x 10 mm x 4 mm at the 4 mm edge with a span of 100 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft glasfaserverstärkte Polycarbonatzusammensetzungen mit hoher Steifigkeit, verbessertem thermischen und rheologischem Verhalten in Kombination mit verbesserten Flammschutzeigenschaften und signifikant erhöhter Vicat-Temperatur. Weiterhin betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen Zusammensetzungen zur Herstellung von dünnwandigen Gehäuseteilen oder Schalterkästen im EE-(Elektro/Elektronik) und IT-(Informationstechnologie)Bereich.

Description

UV-Stabilisierte, glasfaserverstärkte, flammgeschützte Polycarbonate für den EE- und IT- Bereich
Die vorliegende Erfindung betrifft glasfaserverstärkte Polycarbonatzusammensetzungen mit hoher Steifigkeit, verbessertem thermischen und rheologischem Verhalten in Kombination mit verbesserten Flammschutzeigenschaften und signifikant erhöhter Vicat-Temperatur. Weiterhin betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen Zusammensetzungen zur Herstellung von dünnwandigen Gehäuseteilen oder Schalterkästen im EE- (Elektro/Elektronik) und IT-(Informationstechnologie)Bereich.
Diese Formmassen eignen sich insbesondere für Bauteile, die bei einer Wandstärke von 1,2 mm bis 1 ,5 mm die Brandschutzklassifikation UL94 V0 erfüllen.
Aufgabe der vorliegenden Erfindung war es somit glasfaserverstärkte Polycarbonatzusammensetzungen mit einer Kombination aus hoher Steifigkeit und Zähigkeit in axialem und biaxialem Verhalten, gutem thermischen und rheologische Verhalten und einer Flammwidrigkeit von UL94 V0 bei 1,2 mm und 1,5 mm Wandstärke und erhöhter Vicat- Temperatur bereitzustellen, die die Nachteile der aus dem Stand der Technik bekannten Zusammensetzungen nicht aufweisen. Insbesondere eignen sich die Zusammensetzungen zur Herstellung von Rahmen für LCD-Bildschirmen und Gehäuseteilen für den EE-Markt. Darüber hinaus sollten die Zusammensetzungen ein HDT-A edgewise und flatwise von > 135°C aufweisen.
Überraschenderweise wurde nun gefunden, dass die oben genannten Eigenschaften erhalten werden, wenn Polycarbonatzusammensetzungen gemäß Anspruch 1 der vorliegenden Erfindung eingesetzt werden.
Die so zusammengesetzten Formmassen zeichnen durch gute mechanische Eigenschaften sowie eine gute Zähigkeit und gutes Theologisches und thermisches Verhalten bei verbesserter Flammwidrigkeit und hoher Vicattemperatur aus.
Gegenstand der Erfindung sind flammwidrige, thermoplastische Formmassen enthaltend
A) 41,500 bis 94,899 Gew. -Teile, vorzugsweise 60,000 bis 93,000 Gew. -Teile, besonders bevorzugt 74,000 bis 90,000Gew. -Teile mindestens eines aromatischen, mit Phenolen gecapten Polycarbonats,
B) 0,001 bis 1,000 Gew. -Teile, bevorzugt 0,050 bis 0,800 Gew. -Teile, weiter bevorzugt 0,100 bis 0,600 Gew. -Teile, besonders bevorzugt 0,100 bis 0,300 Gew. -Teile, mindestens eines Flammschutzmittels, C) 0,05 bis 1,50 Gew. -Teilen, bevorzugt 0,10 bis 1,00 Gew. -Teilen, weiter bevorzugt 0,15 bis 0,90 Gew. -Teilen, weiter bevorzugt von 0,15 bis 0,50 Gew. -Teilen, mindestens eines UV- Absorbers, vorzugsweise Tinuvin 312, Tinuvin 360 und Tinuvin 329, besonders bevorzugt Tinuvin 312,
D) 5,0 bis 40,0 Gew. -Teilen, bevorzugt 6,0 bis 30,0 Gew. -Teilen, weiter bevorzugt 7,0 bis 20,0 Gew. -Teilen, mindestens einer Glasfaser,
E) 0,00 Gew. -Teile bis 1,00 Gew. -Teile, weiter bevorzugt 0,10 Gew. -Teile bis 0,75 Gew.- Teile, besonders bevorzugt 0,15 Gew. -Teile bis 0,60 Gew. -Teile, und ganz besonders bevorzugt 0,20 Gew. -Teile bis 0,50 Gew. -Teile mindestens eines Entformungsmittels,
F) 0,05 Gew.% bis 5,00 Gew.%, bevorzugt 0,10 Gew.% bis 1,00 Gew.%, besonders bevorzugt 0,10 Gew.% bis 0,80 Gew.% mindestens eines Antidrippingmittels.
G) 0 bis 10,00 Gew. -Teile, bevorzugt 0,10 bis 8,00 Gew.-Teile, besonders bevorzugt 0,20 bis 3,00 Gew.-Teile weitere übliche Additive, wobei die Summe der Gewichtsteile der Komponenten A) bis G) sich zu 100 Gewichtsteilen addiert.
In einer bevorzugten Ausführungsform besteht die Zusammensetzung aus den Komponenten A) - G).
Ferner können in der vorliegenden Erfindung genannten bevorzugte Ausführungsformen miteinander kombiniert werden und sind nicht ausschließlich als alleinstehende Modifikation anzusehen.
Komponente A)
Polycarbonate im Sinn der vorliegenden Erfindung sind sowohl Homopolycarbonate als auch Copolycarbonate; die Polycarbonate können in bekannter Weise linear oder verzweigt sein.
Die Herstellung der Polycarbonate erfolgt in bekannter Weise aus Diphenolen, Kohlensäurederivaten, gegebenenfalls Kettenabbrechern und Verzweigern.
Einzelheiten der Herstellung von Polycarbonaten sind in vielen Patentschriften seit etwa 40 Jahren niedergelegt. Beispielhaft sei hier auf Schnell, "Chemistry and Physics of Polycarbonates", Polymer Reviews, Volume 9, Interscience Publishers, New York, London, Sydney 1964, auf D. Freitag, U. Grigo, P.R. Müller, H. Nouvertne, BAYER AG, "Polycarbonates" in Encyclopedia of Polymer Science and Engineering, Volume 11, Second Edition, 1988, Seiten 648-718 und schliesslich auf Dres. U. Grigo, K. Kirchner und P.R. Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag München, Wien 1992, Seiten 117-299 verwiesen.
Für die Herstellung der Polycarbonate geeignete Diphenole sind beispielsweise Hydrochinon, Resorcin, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis(hydroxyphenyl)-cycloalkane,
Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis- (hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, alpha - alpha '-Bis-(hydroxyphenyl)- diisopropylbenzole, Phtalimidine abgeleitet von Isatin- oder Phenolphthaleinderivaten sowie deren kernalkylierte, kernarylierte und kernhalogenierte Verbindungen. Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-
(4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(4-hydroxyphenyl)-p-diisopropylbenzol, 2,2-Bis-(3 - methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4- hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4- hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(3,5- dimethyl-4-hydroxyphenyl)-p-diisopropylbenzol, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan,
2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan und 1 , 1 -Bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexan.
Besonders bevorzugte Diphenole sind 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dimethyl-4- hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4- hydroxyphenyl)-propan, l,l-Bis-(4-hydroxyphenyl)-cyclohexan und 1 , 1 -Bis-(4-hydroxyphenyl)- 3,3,5 -trimethylcyclohexan.
Diese und weitere geeignete Diphenole sind z.B. in US-A 3 028 635, US-A 2 999 825, US-A 3 148 172, US-A 2 991 273, US-A 3 271 367, US-A 4 982 014 und US-A 2 999 846, in DE-A 1 570 703, DE-A 2063 050, DE-A 2 036 052, DE-A 2 211 956 und DE-A 3 832 396, in FR-A 1 561 518, in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964" sowie in JP-A 62039/1986, JP-A 62040/1986 und JP- A 105550/1986 beschrieben.
Im Fall der Homopolycarbonate ist nur ein Diphenol eingesetzt, im Fall der Copolycarbonate sind mehrere Diphenole eingesetzt.
Geeignete Kohlensäurederivate sind beispielsweise Phosgen oder Diphenylcarbonat.
Geeignete Kettenabbrecher, die bei der Herstellung der erfindungsgemß verwendbaren Polycarbonate eingesetzt werden, sind Monophenole gemäß Formel (I).
Figure imgf000005_0001
in der
Rl und R2 unabhängig von einander für Wasserstoff, Cl-C18-Alkyl, C6-C12 Aryl, Phenyl-Cl-C6 Alkyl oder Naphthyl-Cl-C6-alkyl stehen, wobei vorzugsweise Rl und R2 jedoch nicht gleichzeitig Wasserstoff sind.
In Formel 1 stehen Rl und R2 unabhängig voneinander weiter bevorzugt für Wasserstoff oder Alkyl mit 1 bis 8, besonders bevorzugt mit 1 bis 4 Kohlenstoffatomen, mit der Maßgabe, dass Rl und R2 nicht gleichzeitig Wasserstoff sind. Ganz besonders bevorzugt ist tert.-Butylphenol oder n- Butylphenol, insbesondere p-tert. Butylphenol. Geeignete Monophenole sind beispielsweise Phenol selbst, Alkylphenole wie Kresole, p-tert. - Butylphenol, Cumylphenol, p-n-Octylphenol, p-iso-Octylphenol, p-n-Nonylphenol und p-iso- Nonylphenol, Halogenphenole wie p-Chlorphenol, 2,4-Dichlorphenol, p-Bromphenol und 2,4,6- Tribromphenol, 2,4,6-Trijodphenol, p- Jodphenol, sowie deren Mischungen.
Bevorzugte Kettenabbrecher sind ferner die Phenole welche ein oder mehrfach mit Cl bis C30- Alkylresten, linear oder verzweigt, z.B. Stearylreste, bevorzugt unsubstituiert oder mit tert.-Butyl substituiert sind. Besonders bevorzugt als Kettenabbrecher ist p-tert. -Butylphenol. In einer alternativen Ausführungsform können auch Gemische von erfindungsgemäßen Kettenabbrechern eingesetzt werden, z.B. p-tert.-Butylphenol und Phenol im Mol- Verhältnis 9: 1 bis 1 :9, vorzugsweise 9: 1.
Die Menge an einzusetzendem Kettenabbrecher beträgt bevorzugt 0,1 bis 5 Mol%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Umsetzung mit einem Kohlesäurederivat erfolgen.
Geeignete Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als trifunktionellen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH- Gruppen. Geeignete Verzweiger sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri(4-hydroxyphenyl)-heptan, 1 ,3,5-Tri(4- hydroxyphenyl)-benzol, 1,1,1 -Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4-hydroxyphenylisopropyl)- phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-hydroxyphenyl)-2-(2,4- dihydroxyphenyl)-propan, Hexa-(4(4-hydroxyphenylisopropyl)-phenyl)-orthoterephthalsäureester, Tetra-(4-hydroxyphenyl)-methan, Tetra-(4-(4-hydroxyphenylisopropyl)-phenoxy)-methan und 1,4- Bis-((4',4"-dihydroxytriphenyl)-methyl)-benzol sowie 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt bevorzugt 0,05 Mol- % bis 2,00 Mol%, bezogen wiederum auf Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können entweder mit den Diphenolen und den Kettenabbrechern in der wässrig alkalischen Phase vorgelegt werden, oder in einem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden. Im Fall des Umesterungsverfahrens werden die Verzweiger zusammen mit den Diphenolen eingesetzt. Die aromatischen Polycarbonate der vorliegenden Erfindung besitzen Gewichtsmittelmolekulargewichte Mw (ermittelt durch Gelpermeationschromatographie und Eichung mit Polycarbonatstandard) zwischen 5000 und 200.000 g/mol, vorzugsweise zwischen 18.000-36.000 g/mol, weiter bevorzugt zwischen 22.000-34.000 g/mol, noch weiter bevorzugt zwischen 24.000- 32.000 g/mol, und besonders bevorzugt zwischen 26.000-32.000 g/mol. Besonders bevorzugte Polycarbonate sind das Homopolycarbonat auf Basis von Bisphenol A, das Homopolycarbonat auf Basis von l,3-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und die Copolycarbonate auf Basis der beiden Monomere Bisphenol A und l,l-Bis-(4-hydroxyphenyl)- 3,3,5-trimethylcyclohexan jeweils mit p-tert.-Butylphenol-Endgruppen (BUP). Komponente B)
Geeignete Flammschutzmittel im Sinne der vorliegenden Erfindung sind unter anderem Alkalibzw. Erdalkalisalze von aliphatischen bzw. aromatischen Sulfonsäure-, Sulfonamid- und Sulfonimidderivaten z.B. Kaliumperfluorbutansulfonat, Kaliumdiphenyl-sulfonsulfonat, N-(p- tolylsulfonyl-)-p-toluolsulfimid-Kaliumsalz, N-(N'-Benzylaminocabonyl)-sulfanylimid- Kaliumsalz.
Salze die gegebenenfalls in den erfindungsgemäßen Formmassen verwendet werden können, sind beispielsweise: Natrium- oder Kaliumperfluorbutansulfat, Natrium- oder Kaliumperfluormethansulfonat, Natrium- oder Kaliumperfluoroctansulfat, Natrium- oder Kalium- 2,5-dichlorbenzolsulfat, Natrium- oder Kalium-2,4,5-trichlorbenzolsulfat, Natrium- oder
Kaliummethylphosphonat, Natrium- oder Kalium-(2-phenyl-ethylen)-phosphonat, Natrium- oder Kaliumpentachlorbenzoat, Natrium- oder Kalium-2,4,6-trichlorbenzoat, Natrium- oder Kalium-2,4- dichlorbenzoat, Lithiumphenylphosphonat, Natrium- oder Kalium- diphenylsulfonsulfonat, Natrium- oder Kalium-2-formylbenzolsulfonat, Natrium- oder Kalium-(N-benzolsulfonyl)- benzolsulfonamid. Trinatrium- oder Trikalium-hexafluoroaluminat, Dinatrium- oder Dikaliumhexafluorotitanat, Dinatrium- oder Dikalium-hexafluorosilikat, Dinatrium- oder Dikaliumhexafluorozirkonat, Natrium- oder Kalium-pyrophosphat, Natrium- oder Kaliummetaphosphat, Natrium- oder Kaliumtetrafluoroborat, Natrium- oder Kaliumhexafluorophosphat, Natrium- oder Kalium- oder Lithiumphosphat, N-(p-tolylsulfonyl-)-p- toluolsulfimid-Kaliumsalz, N-(N'-Benzyl_,amino_,carbonyl)-sulfanylimid-Kaliumsalz.
Bevorzugt werden Natrium- oder Kaliumperfluorbutansulfat, Natrium- oder Kaliumperfluoroctansulfat, Natrium- oder Kalium- diphenylsulfonsulfonat und Natrium oder Kalium-2,4,6-trichlorbenzoat und N-(p-Tolylsulfonyl-)-p-toluolsulfimid-Kaliumsalz, N-(N'- Benzylaminocabonyl)-sulfanylimid-Kaliumsalz. Ganz besonders bevorzugt sind Kalium-nona- fluor-l-butansulfonat und Natrium- oder Kalium- diphenylsulfonsulfonat. Kalium-nona-fluor-1- butansulfonat ist u.a. als Bayowet®C4 (Firma Lanxess, Leverkusen, Deutschland, CAS-Nr. 29420-49-3), RM64 (Firma Miteni, Italien) oder als 3M™ Perfluorobutanesulfonyl Fluoride FC-51 (Firma 3M, USA) kommerziell erhältlich. Ebenfalls sind Mischungen der genannten Salze geeignet. Kalium-nona-fluor-l-butansulfonat wird besonders bevorzugt eingesetzt. Komponente C)
UV (Ultraviolett)-Stabilisatoren im Rahmen der vorliegenden Erfindung weisen eine möglichst geringe Transmission unterhalb 400 nm und eine möglichst hohe Transmission oberhalb von 400 nm auf. Für den Einsatz in der erfindungsgemäßen Zusammensetzung besonders geeignete Ultraviolett-Absorber sind Benzotriazole, Triazine, Benzophenone und/oder arylierte Cyanoacrylate. Besonders geeignete Ultraviolett- Absorber sind Hydroxy-Benzotriazole, wie 2-(3',5'-Bis-(l,l- dimethylbenzyl)-2'-hydroxy-phenyl)-benzotriazol (Tinuvin® 234, BASF, Ludwigshafen), 2-(2'- Hydroxy-5'-(tert.-octyl)-phenyl)-benzotriazol (Tinuvin® 329, BASF, Ludwigshafen), 2-(2'- Hydroxy-3'-(2-butyl)-5'-(tert.butyl)-phenyl)-benzotriazol (Tinuvin® 350, BASF, Ludwigshafen), Bis-(3-(2H-benztriazolyl)-2-hydroxy-5-tert.-octyl)methan, (Tinuvin® 360, BASF, Ludwigshafen), (2-(4,6-Diphenyl-l,3,5-triazin-2-yl)-5-(hexyloxy)-phenol (Tinuvin® 1577, BASF, Ludwigshafen), sowie der Benzophenone 2,4-Dihydroxy-benzophenon (Chimasorb® 22 , BASF, Ludwigshafen) und 2-Hydroxy-4-(octyloxy)-benzophenon (Chimassorb® 81, BASF, Ludwigshafen), 2-Propenoic acid, 2-Cyano-3,3-diphenyl-, 2,2-Bis[[(2-cyano-l-oxo-3,3-diphenyl-2-propenyl)oxy]-methyl]-l,3- propanediylester (9CI) (Uvinul® 3030, BASF AG Ludwigshafen), 2-[2-Hydroxy-4-(2- ethylhexyl)oxy]phenyl-4,6-di(4-phenyl)phenyl-l,3,5-triazine (CGX UVA 006, BASF, Ludwigshafen), Tetra-ethyl-2,2'-(l,4-phenylene-dimethylidene)-bismalonate (Hostavin® B-Cap, Clariant AG) oder N-(2-ethoxyphenyl)-N'-(2-ethylphenyl)-Ethanediamide (Tinuvin® 312, CAS- Nr. 23949-66-8, BASF, Ludwigshafen) Besonders bevorzugt als UV-Stabilisator ist Tinuvin® 312.
Es können auch Mischungen dieser Ultraviolett- Absorber eingesetzt werden.
Komponente D)
Füllstoffe im Sinne der vorliegenden Erfindung sind Glasfasern
Bevorzugt werden Schnittglasfasern verwendet, die aus M-, E-, A-, S-, R- oder C-Glas herstellt werden, wobei E-, oder C-Glas weiter bevorzugt sind.
Der Durchmesser der Fasern beträgt bevorzugt 5 bis 25 μηι, weiter bevorzugt 6 bis 20 μηι, besonders bevorzugt 7 bis 17 μιη.
Die Schnittglasfasern weisen vor Compoundierung bevorzugt eine Länge von 3 mm bis 6 mm auf.
Die verwendeten Glasfasern zeichnen sich dadurch aus, dass die Auswahl der Faser nicht durch die Wechselwirkungscharakteristik der Faser mit der Polycarbonatmatrix beschränkt ist.
Sowohl für eine starke Anbindung an die Polymermatrix, als auch bei einer nicht-anbindenden Faser zeigt eine Verbesserung der erfindungsgemäßen Eigenschaften der Zusammensetzungen.
Eine starke Anbindung der Glasfaser an die Polymermatrix ist an den Tieftemperaturbruchoberflächen bei rasterelektronenmikroskopischen Aufnahmen zu erkennen, wobei die größte Anzahl der gebrochenen Glasfasern auf derselben Höhe wie die Matrix gebrochen sind und nur vereinzelt Glasfasern aus der Martix herausstehen. Rasterelektronenmikroskopische Aufnahmen zeigen für den umgekehrten Fall der nicht-anbindenen Charakteristik, dass die Glasfasern im Tieftemperaturbruch aus der Matrix stark herausstehen oder vollständig herausgeglitten sind.
Komponente E
Die verwendeten Entformungsmittel E) sind Ester aliphatischer langkettiger Carbonsäuren mit ein- oder mehrwertigen aliphatischen und/oder aromatischen Hydroxy Verbindungen. Besonders bevorzugt verwendete aliphatische Carbonsäureester sind Verbindungen der allgemeinen Formel (III):
( R , ( ( >·( >),,- (OH)p mit o - I bis 4 und p - 3 bis 0 (I II) wobei R4 ein aliphatischer gesättigter oder ungesättigter, linearer, cyclischer oder verzweigter Alkylrest ist und R5 ein Alkylenrest eines 1- bis 4-wertigen aliphatischen Alkohols R5-(OH)o+p ist.
Besonders bevorzugt für R4 sind C1-C18 Alkylreste. Cl-C18-Alkyl steht beispielsweise für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 1 -Methylbutyl, 2- Methylbutyl, 3 -Methylbutyl, neo-Pentyl, 1-Ethylpropyl, Cyclohexyl, Cyclopentyl, n-Hexyl, 1,1- Dimethylpropyl, 1 ,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3 -Methylpentyl, 4- Methylpentyl, 1,1-Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3- Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1 , 1 ,2-Trimethylpropyl, 1 ,2,2- Trimethylpropyl, 1-Ethyl-l-methylpropyl oder l-Ethyl-2-methylpropyl, n-Heptyl und n-Octyl, Pinakyl, Adamantyl, die isomeren Menthyle, n-Nonyl, n-Decyl, n-Dodecyl, n-Tridecyl, n- Tetradecyl, n-Hexadecyl oder n-Octadecyl.
Alkylen steht für einen geradkettigen, zyklischen, verzweigten oder unverzweigten C1-C18 Alkylen-Rest. Cl-C 18 -Alkylen steht beispielsweise für Methylen, Ethylen, n-Propylen, iso- Propylen, n-Butyen, n-Pentylen, n-Hexylen, n-Heptylen, n-Octylen, n-Nonylen, n-Decylen, n- Dodecylen, n-Tridecylen, n-Tetradecylen, n-Hexadecylen oder n-Octadecylen. Bei Estern von mehrwertigen Alkoholen können auch freie, nicht veresterte OH-Gruppen vorhanden sein. Erfindungsgemäß geeignete aliphatische Carbonsäureester sind z.B.: Glycerinmonostearat, Palmitylpalmitat und Stearylstearat. Es können auch Gemische verschiedener Carbonsäureester der Formel (III) eingesetzt werden. Bevorzugt verwendete Carbonsäureester sind Ester von Pentaerythrit, Glycerin, Trimethylolpropan, Propandiol, Stearylalkohol, Cetylalkohol oder Myristylalkohol mit Myristin-, Palmitin-, Stearin- oder Montansäure und Gemische daraus.
Besonders bevorzugt sind Pentaerythrittetrastearat, Stearylstearat und Propandioldistearat, bzw. Gemische, daraus und am stärksten bevorzugt Pentaerythrittetrastearat. Als Antitropfmittel der Komponente (F) kann den Formmassen zusätzlich Polytetrafluorethylen (PTFE) zugefügt werden. Letzteres ist in diversen Produktqualitäten kommerziell verfügbar. Hierzu zählen Additive wie Hostafion® TF2021 oder aber PTFE-Blends wie Metablen® A-3800 (ca. 40% PTFE CAS 9002-84-0 und ca. 60 % Methylmethacrylat/Butylacrylat Copolymer CAS 25852-37-3 von Misubishi-Rayon) oder Blendex® B449 (ca. 50% PTFE und ca. 50 % SAN [aus
80 % Styrol und 20 % Acrylnitril]) der Firma Chemtura. Bevorzugt wird Blendex® B449 verwendet
Im Rahmen der vorliegenden Erfindung kann PTFE optional in Mengen von 0,05 Gew.%> bis 5 Gew.%), bevorzugt 0,1 Gew.%> bis 1,0 Gew.%>, besonders bevorzugt 0,1 Gew.%> bis 0,5 Gew.%> jeweils bezogen auf die Gesamtzusammensetzung berechnet auf reines PTFE eingesetzt werden.
Die erfindungsgemäßen Polymer-Zusammensetzungen können neben den erfindungsgemäßen Stabilisatoren optional noch weitere übliche Polymeradditive als Komponente G) enthalten, wie z.B. die in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 oder „Plastics Additives Handbook", Hans Zweifel, 5th Edition 2000, Hanser Verlag, München) beschriebenen Antioxidantien, Thermostabilisatoren, von B) verschiedene Flammschutzmittel, optischen Aufheller und Lichtstreumittel in den für die jeweiligen Thermoplasten üblichen Mengen.
Ferner können die erfindungsgemäßen Polymer- Zusammensetzungen Pigmente und/oder Farbstoffe in den üblichen Mengen als Komponente G) enthalten.
Als Thermostabilisatoren gemäß Komponente (G), eignen sich bevorzugt Triphenylphosphin, Tris- (2,4-di-tert-butylphenyl)phosphit (Irgafos 168), Tetrakis-(2,4-di-tert.-butylphenyl)-[l,l biphenyl]-
4,4'-diylbisphosphonit, Trisoctylphosphat, Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)- propionat (Irganox 1076), Bis-(2,4-dicumylphenyl)-pentaerythritoldiphosphit (Doverphos S-9228), Bis-(2,6-di-tert.butyl-4-methylphenyl)-pentaerythritoldiphosphit (ADK STAB PEP-36). Sie werden allein oder im Gemisch (z. B. Irganox B900 (Gemisch aus Irganox 168 und Irganox 1076 im Verhältnis 1 :3) oder Doverphos S-92228 mit Irganox B900 bzw. Irganox 1076) eingesetzt.
Die Herstellung der erfindungsgemäßen Polymer-Zusammensetzungen enthaltend die Komponenten A) bis G) erfolgt mit gängigen Einarbeitungsverfahren durch Zusammenführung, Vermischen und Homogenisieren der einzelnen Bestandteile, wobei insbesondere die Homogenisierung bevorzugt in der Schmelze unter Einwirkung von Scherkräften stattfindet. Gegebenenfalls erfolgt das Zusammenführen und Vermischen vor der Schmelzehomogenisierung unter Verwendung von Pulvervormischungen.
Es können auch Vormischungen aus Granulaten oder Granulaten und Pulvern mit den erfindungsgemäßen Zusätzen verwendet werden. Es können auch Vormischungen verwendet werden, die aus Lösungen der Mischungskomponenten in geeigneten Lösungsmitteln, wobei gegebenenfalls in Lösung homogenisiert wird und das Lösungsmittel anschließend entfernt wird, hergestellt worden sind.
Insbesondere können hierbei die Additive der erfindungsgemäßen Zusammensetzung durch bekannte Verfahren oder als Masterbatch eingebracht werden.
Die Verwendung von Masterbatchen ist insbesondere zum Einbringen der Additive bevorzugt, wobei insbesondere Masterbatche auf Basis der jeweiligen Polymermatrix verwendet werden.
In diesem Zusammenhang kann die Zusammensetzung in üblichen Vorrichtungen wie Schneckenextrudern (zum Beispiel Zweischneckenextruder, ZSK), Knetern, Brabender- oder Banbury-Mühlen zusammengeführt, vermischt, homogenisiert und anschließend extrudiert werden.
Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden.
Die Zusammenführung und Durchmischung einer Vormischung in der Schmelze kann auch in der Plastifiziereinhiet einer Spritzgußmaschine erfolgen. Hierbei wird die Schmelze im anschließenden Schritt direkt in einen Formkörper überführt.
Die Herstellung der Kunststoffformteile kann vorzugsweise durch Spritzguß erfolgen.
Von Interesse ist auch die Verwendung der erfindungsgemäßen Kunststoffzusammensetzung zur Herstellung von Mehrschichtsystemen. Hierbei wird die erfindungsgemäße Kunststoff- Zusammensetzung in einer oder mehreren Schicht(en) auf einen geformten Gegenstand aus einem Kunststoff aufgebracht. Das Aufbringen kann zugleich mit oder unmittelbar nach der Formgebung des Formkörpers geschehen, zum Beispiel durch Hinterspritzen einer Folie, Coextrusion oder Mehrkomponentenspritzguß. Das Aufbringen kann aber auch auf den fertig geformten Grundkörper geschehen, z.B. durch Lamination mit einem Film, Umspritzen eines vorhandenen Formkörpers oder durch Beschichtung aus einer Lösung.
Ferner betrifft die vorliegende Erfindung die Verwendung von erfindungsgemäßen Zusammensetzungen zur Herstellung dünnwandiger, steifer Bauteile, insbesondere Rahmenbauteile für LCD / LED Geräte, im EE- und IT-Bereich. Beispiele Komponente A-l
BUP-gecaptes, lineares Polycarbonate auf Basis Bisphenol-A mit einem MVR von 10 (gemäß ISO 1133, bei 300°C und 1,2 kg Belastung). Komponente A-l
Lineares Polycarbonate auf Basis Bisphenol-A mit einem MVR von 8 (gemäß ISO 1133, bei 300°C und 1,2 kg Belastung).
Komponente B
Kaliumperfluor- 1 -butansulfonat kommerziell erhältlich als Bayowet® C4 der Firma Lanxess, Leverkusen, Deutschland, CAS-Nr. 29420-49-3.
Komponente C
N-(2-ethoxyphenyl)-N'-(2-ethylphenyl)-Ethanediamide (Tinuvin® 312, CAS-Nr. 23949-66-8, BASF, Ludwigshafen)
Komponente D-l CS 7968, geschnittene Kurzglasfasern (anbindend) der Firma Lanxess AG mit einem durchschnittlichen Faserdurchmesser von 11 μιη und einer durchschnittlichen Faserlänge von 4,5 mm.
Komponente D-2
CS108F-14P, geschnittene Kurzglasfasern (nicht anbindend) der Firma 3B mit einem durchschnittlichen Faserdurchmesser von 14 μηι, einer durchschnittlichen Faserlänge von 4,0 mm.
Komponente E
Pentaerythrittetrastearat als Gleit-/Entformungsmittel Komponente F
Polytetrafluorethylen (Blendex® B449 (ca. 50% PTFE und ca. 50 % SAN [aus 80 % Styrol und 20 % Acrylnitril] der Firma Chemtura).
Die Schlagzähigkeit nach Charpy wurde nach ISO 179/leU an einseitig angespritzten Prüfstäben der Dimension 80 x 10 x 4 mm bei RT und -40°C gemessen. Der Vicat B/50 als Maß für die Wärmeformbeständigkeit wird bestimmt gemäß ISO 306 an Prüfkörpern der Abmessung 80 x 10 x 4 mm mit einer Stempellast von 50 N und einer Aufheizgeschwindigkeit von 50°C/h.
Die mittlere Teilchengröße dso ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen.
Die maximale Teilchengröße d95 ist der Durchmesser, unterhalb dessen 95 Gew.-% der Teilchen liegen.
Die entsprechenden Durchmesser wurden durch Windsichten bestimmt.
Das Brandverhalten wird nach UL 94V an Stäben der Abmessung 127 mm x 12,7 mm x 1,0 mm, 127 x 12,7 x 1,2 mm, 127 x 12,7 x 1,5 mm gemessen.
Das Brandverhalten wird nach UL 94 5V an Stäben der Abmessung 127 mm x 12,7 mm x 3,0 mm und Platten der Abmessung 105 mm x 105 mm x 3,0 mm gemessen. Nicht bestanden bedeutet durchgefallen in Stab- und Plattenprüfung, class A bestanden bedeutet bestehen der Stab- und Plattenprüfung. Class B bestanden bedeutet bestehen der Stabprüfung und durchfallen der Plattenprüfung.
Der E-Modul und die Bruchdehnung wurden gemäß ISO 527 an einem einseitig angespritzten Schulterstäben mit einem Kern der Dimension 80 x 10 x 4 mm gemessen.
Die Bestimmung des Schmelzvolumenrate (MVR) erfolgt nach ISO 1133 (bei 300 °C; 1,2 kg).
Die Bestimmung der Kennwerte des Durchstoßexperimentes erfolgt bei -20°C nach ISO 6603-2 an Prüfplatten von 60mm x 60mm x 2 mm.
Die Bestimmung der HDT-A edgwise erfolgte nach ISO 75 mit einer Auflagekraft von 1,80 MPa an einem Prüfkörper der Maße 120 mm x 10 mm x 4 mm an der 4 mm Kante mit einer Stützweite von 100 mm.
Die Bestimmung der HDT-A flatwise erfolgte nach ISO 75 mit einer Auflagekraft von 1,80 MPa an einem Prüfkörper der Maße 80 mm x 10 mm x 4 mm an der 10 mm Kante mit einer Stützweite von 64 mm. Tabelle 1 :
Figure imgf000014_0001

Claims

Patentansprüche
1. Flammwidrige, thermoplastische Formmassen enthaltend
A) 41,500 bis 94,899 Gew. -Teile mindestens eines aromatischen Polycarbonats mit Phenolendgruppen,
B) 0,001 bis 1,000 Gew. -Teile mindestens eines Flammschutzmittels,
C) 0,05 bis 1,50 Gew. -Teile mindestens eines UV-Absorbers,
D) 5,0 bis 40,0 Gew. -Teile mindestens einer Glasfaser
E) 0,00 Gew. -Teile bis 1,00 Gew. -Teile mindestens eines Entformungsmittels,
F) 0,05 Gew. -Teile bis 5,00 Gew. -Teile mindestens eines Antidrippingmittels,
G) 0,0 - 10,0 Gew. -Teile, weitere übliche Additive, wobei die Summe der Gewichtsteile der Komponenten A) bis F) sich zu 100 Gewichtsteilen addiert.
2. Formmassen gemäß Anspruch 1, dadurch gekennzeichnet, daß Komponente D) in einem Anteil von 7,0 bis 20,0 Gew. -Teilen enthalten ist.
3. Formmassen gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß Komponente G) in einem Anteil von 0,20 bis 3,0 Gew. -Teilen enthalten ist.
4. Formmassen gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Komponente C) in einem Anteil von 0,15 bis 1,50 Gew. -Teilen enthalten ist.
5. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der UV- Absorber ausgewählt ist aus Tinuvin 329, Tinuvin 360 und Tinuvin 312.
6. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der UV- Absorber Tinuvin 312 ist.
7. Formmassen gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Polycarbonat mit p-tert.-Butylphenol und Phenol im Molverhältnis 9: 1 bis 1 :9 terminiert ist.
8. Formmassen gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Polycarbonat mit p-tert.-Butylphenol terminiert ist.
9. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Glasfaser eine Schnittglasfasser ist.
10. Formmassen nach Anspruch 9, dadurch gekennzeichnet, daß die Schnittglasfaser aus E-, oder C-Glas herstellt ist, einen Faserdurchmesser von 5 bis 25 μιη μιη aufweist und die Schnittglasfasern vor Compoundierung bevorzugt eine Länge von 3 mm bis 6 mm aufweisen.
11. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Flammschutzmittel ausgewählt ist aus der Gruppe, die Natrium- und
Kaliumperfluorbutansulfat, Natrium- und Kaliumperfluoroctansulfat, Natrium- und Kalium- diphenylsulfonsulfonat und Natrium und Kalium-2,4,6-trichlorbenzoat sowie N- (p-Tolylsulfonyl-)-p-toluolsulfimid-Kaliumsalz, und N-(N'-Benzylaminocabonyl)- sulfanylimid-Kaliumsalz umfaßt.
12. Verwendung der Formassen nach einem der Ansprüche 1 bis 11 zur Herstellung von dünnwandigen Formteilen im EE-Bereich mit einer HDT-A edgewise und flatwise > 135°C.
13. Verwendung der Formassen nach einem der Ansprüche 1 bis 11 zur Herstellung von dünnwandigen Formteilen im EE-Bereich mit einem Flammschutz nach UL 94 5V class A in 3 mm Wandstärke.
14. Verwendung der Formassen nach einem der Ansprüche 1 bis 11 zur Herstellung von dünnwandigen Formteilen im EE-Bereich mit einer Vicattemperatur >= 144 °C.
15. Verwendung der Formassen nach einem der Ansprüche 1 bis 11 zur Herstellung von dünnwandigen Formteilen im EE-Bereich mit einer Kombination der Eigenschaften der Ansprüche 12 - 14.
PCT/EP2012/074032 2011-11-30 2012-11-30 Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich WO2013079633A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/361,011 US20150011689A1 (en) 2011-11-30 2012-11-30 Uv-stabilized, glass-fiber reinforced, flame-retardant polycarbonates for the ee and it sector
EP12791796.1A EP2785782B1 (de) 2011-11-30 2012-11-30 Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich
KR1020147017536A KR20140105492A (ko) 2011-11-30 2012-11-30 Ee 및 it 분야를 위한 uv-안정화, 유리 섬유 강화, 난연성 폴리카르보네이트
CN201280059436.7A CN104039881A (zh) 2011-11-30 2012-11-30 用于ee和it领域的uv-稳定化的玻璃纤维增强的阻燃聚碳酸酯
US14/922,513 US20160040010A1 (en) 2011-11-30 2015-10-26 Uv-stabilized, glass-fiber reinforced, flame-retardant polycarbonates for the ee and it sector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11191242.4 2011-11-30
EP11191242 2011-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/361,011 A-371-Of-International US20150011689A1 (en) 2011-11-30 2012-11-30 Uv-stabilized, glass-fiber reinforced, flame-retardant polycarbonates for the ee and it sector
US14/922,513 Division US20160040010A1 (en) 2011-11-30 2015-10-26 Uv-stabilized, glass-fiber reinforced, flame-retardant polycarbonates for the ee and it sector

Publications (1)

Publication Number Publication Date
WO2013079633A1 true WO2013079633A1 (de) 2013-06-06

Family

ID=47257836

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/EP2012/074033 WO2013079634A1 (de) 2011-11-30 2012-11-30 Ethylen-propylen-maleinsäureanhydrid-copolymer als schlagzähmodifikator in glasfaserverstärkten fr-polycarbonaten für den ee-bereich
PCT/EP2012/074026 WO2013079631A1 (de) 2011-11-30 2012-11-30 Glasfaserverstärkte, flammgeschützte polycarbonatzusammensetzungen
PCT/EP2012/074025 WO2013079630A1 (de) 2011-11-30 2012-11-30 Ethylen-alkyl(meth)acrylat-block-copolymere als schlagzahmodifikator in glasfaserverstärkten flammgeschützten polycarbonaten für den ee-bereich
PCT/EP2012/074032 WO2013079633A1 (de) 2011-11-30 2012-11-30 Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/EP2012/074033 WO2013079634A1 (de) 2011-11-30 2012-11-30 Ethylen-propylen-maleinsäureanhydrid-copolymer als schlagzähmodifikator in glasfaserverstärkten fr-polycarbonaten für den ee-bereich
PCT/EP2012/074026 WO2013079631A1 (de) 2011-11-30 2012-11-30 Glasfaserverstärkte, flammgeschützte polycarbonatzusammensetzungen
PCT/EP2012/074025 WO2013079630A1 (de) 2011-11-30 2012-11-30 Ethylen-alkyl(meth)acrylat-block-copolymere als schlagzahmodifikator in glasfaserverstärkten flammgeschützten polycarbonaten für den ee-bereich

Country Status (7)

Country Link
US (3) US9296893B2 (de)
EP (2) EP2785783B1 (de)
KR (2) KR20140105492A (de)
CN (2) CN104039881A (de)
ES (1) ES2605785T3 (de)
TW (1) TWI557179B (de)
WO (4) WO2013079634A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955201A1 (de) 2014-06-11 2015-12-16 Covestro Deutschland AG Glasfaserverstärkte Polycarbonat-Zusammensetzungen
US20180179379A1 (en) * 2015-06-09 2018-06-28 Covestro Deutschland Ag Glass-fibre-reinforced polycarbonate moulding compositions with improved toughness

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074233A1 (en) * 2013-11-22 2015-05-28 Bayer Material Science (China) Co., Ltd. Glass-fibre reinforced polycarbonate composition
EP3115405B1 (de) * 2015-07-08 2017-12-27 Covestro Deutschland AG Bornitrid-haltige thermoplastische zusammensetzung
WO2017186690A1 (de) * 2016-04-27 2017-11-02 Covestro Deutschland Ag Antistatische und lichtstabile thermoplastische polycarbonat-formmassen
TW201809096A (zh) * 2016-05-24 2018-03-16 科思創德意志股份有限公司 含填料、羧酸及其甘油或二甘油酯之聚碳酸酯組成物
CN109863203B (zh) 2016-08-24 2022-03-15 科思创德国股份有限公司 包含滑石的聚碳酸酯组合物
TW201840705A (zh) * 2016-12-19 2018-11-16 德商科思創德意志股份有限公司 具有良好機械性質的熱塑性組成物
WO2018198046A1 (en) 2017-04-25 2018-11-01 Sabic Global Technologies B.V. Non-bromine, non-chlorine flame retardant, glass filled polycarbonate with improved multi-axial impact strength
WO2019025483A1 (de) * 2017-08-04 2019-02-07 Covestro Deutschland Ag Polycarbonat-zusammensetzung und polycarbonat-formmasse mit verbesserter fliessfähigkeit
US11370704B2 (en) 2017-10-27 2022-06-28 Owens Corning Intellectual Capital, Llc Sizing compositions including weakly-coordinating anion salts and uses thereof
WO2019092141A1 (de) 2017-11-10 2019-05-16 Covestro Deutschland Ag Glasfasergefüllte thermoplastische zusammensetzung mit guten mechanischen eigenschaften
US11479666B2 (en) 2017-11-10 2022-10-25 Covestro Deutschland Ag Mineral-filled thermoplastic composition having good mechanical properties
WO2019197270A1 (en) 2018-04-09 2019-10-17 Covestro Deutschland Ag Glass fiber reinforced thermoplastic compositions with good mechanical properties
CN109111711A (zh) * 2018-07-12 2019-01-01 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN109135235B (zh) * 2018-07-12 2021-04-06 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法与应用
CN109320772A (zh) * 2018-09-11 2019-02-12 广东优科艾迪高分子材料有限公司 一种含有机硅和无机硅的抗滴落剂及其制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US2999825A (en) 1958-12-12 1961-09-12 Gen Mills Inc Epoxy-polyamide-ester resin reaction product
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US3028635A (en) 1959-04-17 1962-04-10 Schlumberger Cie N Advancing screw for gill box
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US3271367A (en) 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
FR1561518A (de) 1967-03-10 1969-03-28
DE1570703A1 (de) 1964-10-07 1970-02-12 Gen Electric Hydrolytisch stabile Polycarbonate sowie Verfahren zu deren Herstellung
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
JPS6162039A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS61105550A (ja) 1984-10-29 1986-05-23 Fuji Xerox Co Ltd 電子写真用感光体
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US4982014A (en) 1988-08-12 1991-01-01 Bayer Aktiengesellschaft Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates
EP0500496A1 (de) 1991-02-21 1992-08-26 Ciba-Geigy Ag Stabilisierte Polymere mit Heteroatomen in der Hauptkette
WO1996015102A2 (de) 1994-11-10 1996-05-23 Basf Aktiengesellschaft 2-cyanacrylsäureester
EP0839623A1 (de) 1996-10-30 1998-05-06 Ciba SC Holding AG Stabilisatorkombination für das Rotomolding-Verfahren
US20050256227A1 (en) * 2002-03-08 2005-11-17 Akira Miyamoto Flame-retardant aromatic polycarbonate resin composition
US20070191518A1 (en) * 2006-02-14 2007-08-16 General Electric Company Polycarbonate compositions and articles formed therefrom
US20080076866A1 (en) * 2002-08-26 2008-03-27 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55157648A (en) 1979-05-29 1980-12-08 Mitsubishi Chem Ind Ltd Polycarbonate resin composition
US4420584A (en) * 1981-04-29 1983-12-13 Mobay Chemical Corporation Glass-filled polycarbonate of improved impact strength
JPH07103340B2 (ja) 1990-01-17 1995-11-08 凸版印刷株式会社 コーティング材およびその使用方法
US5360861A (en) * 1993-05-28 1994-11-01 General Electric Company Polyester-carbonate resin compositions of improved impact-resistance
JP3212468B2 (ja) 1995-01-13 2001-09-25 帝人化成株式会社 強化芳香族ポリカーボネート樹脂組成物および成形品
EP0743343B9 (de) * 1995-05-17 2007-05-23 Mitsubishi Engineering-Plastics Corporation Polycarbonatmischung für die Profilextrusion
JP4880823B2 (ja) * 2001-04-11 2012-02-22 帝人化成株式会社 ガラス繊維強化ポリカーボネート樹脂組成物
JP4012439B2 (ja) * 2002-07-01 2007-11-21 出光興産株式会社 ポリカーボネート樹脂組成物及びそれからなる成形体
US7019059B2 (en) * 2002-12-16 2006-03-28 General Electric Company Method for making fire-retarded glass-filled polycarbonate and related compositions
AU2004257223A1 (en) * 2003-07-10 2005-01-27 Sabic Innovative Plastics Ip B.V. Fire-retarded polycarbonate resin composition
US8273826B2 (en) * 2006-03-15 2012-09-25 Dow Global Technologies Llc Impact modification of thermoplastics with ethylene/α-olefin interpolymers
US20060258796A1 (en) * 2005-05-13 2006-11-16 General Electric Company Crosslinked polyethylene compositions
CN1710448A (zh) * 2005-06-09 2005-12-21 吴德明 印刷与涂布制造的光栅像片及生产工艺
US7687567B2 (en) * 2007-08-17 2010-03-30 Cheil Industries Inc. Glass fiber reinforced polycarbonate resin composition having excellent impact strength and flowability and method for preparing the same
US8759428B2 (en) * 2007-08-22 2014-06-24 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions
EP2045303A1 (de) * 2007-10-05 2009-04-08 Scapa France Abriebresistentes Klebeband
US20100261828A1 (en) * 2007-11-08 2010-10-14 Teijin Chemicals Ltd. Resin composition
ES2440785T3 (es) * 2011-09-28 2014-01-30 Bayer Intellectual Property Gmbh Composiciones de PC/ABS ignífugas con buena resistencia al choque, fluencia y resistencia a productos químicos
CN103874734B (zh) * 2011-09-28 2015-12-09 拜耳知识产权有限责任公司 含有玻璃纤维的聚碳酸酯

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271367A (en) 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999825A (en) 1958-12-12 1961-09-12 Gen Mills Inc Epoxy-polyamide-ester resin reaction product
US3028635A (en) 1959-04-17 1962-04-10 Schlumberger Cie N Advancing screw for gill box
DE1570703A1 (de) 1964-10-07 1970-02-12 Gen Electric Hydrolytisch stabile Polycarbonate sowie Verfahren zu deren Herstellung
FR1561518A (de) 1967-03-10 1969-03-28
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
JPS6162039A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS61105550A (ja) 1984-10-29 1986-05-23 Fuji Xerox Co Ltd 電子写真用感光体
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US4982014A (en) 1988-08-12 1991-01-01 Bayer Aktiengesellschaft Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates
EP0500496A1 (de) 1991-02-21 1992-08-26 Ciba-Geigy Ag Stabilisierte Polymere mit Heteroatomen in der Hauptkette
WO1996015102A2 (de) 1994-11-10 1996-05-23 Basf Aktiengesellschaft 2-cyanacrylsäureester
EP0839623A1 (de) 1996-10-30 1998-05-06 Ciba SC Holding AG Stabilisatorkombination für das Rotomolding-Verfahren
US20050256227A1 (en) * 2002-03-08 2005-11-17 Akira Miyamoto Flame-retardant aromatic polycarbonate resin composition
US20080076866A1 (en) * 2002-08-26 2008-03-27 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article
US20070191518A1 (en) * 2006-02-14 2007-08-16 General Electric Company Polycarbonate compositions and articles formed therefrom

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
D. FREITAG; U. GRIGO; P.R. MÜLLER; H. NOUVERTNE: "Encyclopedia of Polymer Science and Engineering", vol. 11, 1988, article "Polycarbonates", pages: 648 - 718
H. SCHNELL: "Chemistry and Physics of Polycarbonates", 1964, INTERSCIENCE PUBLISHERS
HANS ZWEIFEL: "Plastics Additives Handbook", 2000, HANSER VERLAG
SCHNELL: "Polymer Reviews", vol. 9, 1964, INTERSCIENCE PUBLISHERS, article "Chemistry and Physics of Polycarbonates"
U. GRIGO; K. KIRCHNER; P.R. MÜLLER: "Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester", 1992, CARL HANSER VERLAG, article "Polycarbonate", pages: 117 - 299

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955201A1 (de) 2014-06-11 2015-12-16 Covestro Deutschland AG Glasfaserverstärkte Polycarbonat-Zusammensetzungen
US20180179379A1 (en) * 2015-06-09 2018-06-28 Covestro Deutschland Ag Glass-fibre-reinforced polycarbonate moulding compositions with improved toughness
US10597529B2 (en) * 2015-06-09 2020-03-24 Covestro Deutschland Ag Glass-fibre-reinforced polycarbonate moulding compositions with improved toughness

Also Published As

Publication number Publication date
EP2785783A1 (de) 2014-10-08
EP2785783B1 (de) 2016-09-28
US9296893B2 (en) 2016-03-29
CN104039881A (zh) 2014-09-10
US20140329948A1 (en) 2014-11-06
KR20140097230A (ko) 2014-08-06
EP2785782A1 (de) 2014-10-08
CN103958585A (zh) 2014-07-30
KR102039755B1 (ko) 2019-11-01
WO2013079634A1 (de) 2013-06-06
TWI557179B (zh) 2016-11-11
US20160040010A1 (en) 2016-02-11
KR20140105492A (ko) 2014-09-01
WO2013079630A1 (de) 2013-06-06
ES2605785T3 (es) 2017-03-16
WO2013079631A1 (de) 2013-06-06
US20150011689A1 (en) 2015-01-08
TW201343780A (zh) 2013-11-01
EP2785782B1 (de) 2016-11-02
CN103958585B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
EP2785782B1 (de) Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich
EP2760932B1 (de) Polycarbonat mit glasfasern
EP0023291B1 (de) Stabilisierte thermoplastische Formmassen auf Basis von Polycarbonaten, ABS-Polymeren und Phosphiten
EP2354182B1 (de) Erzeugnisse mit verbesserter Flammwidrigkeit
WO2013079599A1 (de) Polycarbonatzusammensetzungen mit verbesserter oberfläche
EP3116971B1 (de) Thermisch leitfähige thermoplastische zusammensetzungen mit ausgewogener verarbeitbarkeit
EP3464440B1 (de) Polycarbonat-zusammensetzungen enthaltend füllstoffe, eine carbonsäure und deren glycerol- oder diglycerolester
KR20150067387A (ko) 내연성 폴리카르보네이트 조성물
WO2008125203A1 (de) Erzeugnisse mit vebesserter flammwidrigkeit
WO2016087295A1 (de) Verbesserung der fliessfähigkeit von polycarbonatzusammensetzungen
WO2009030357A1 (de) Formteile mit verbesserten oberflächen
EP2035499B1 (de) Verfahren zur herstellung schlagzähmodifizierter polyalkylenterephthalat/polycarbonat-zusammensetzungen
EP2955201A1 (de) Glasfaserverstärkte Polycarbonat-Zusammensetzungen
DE10231334A1 (de) Mit polymeren Phosphorigsäureestern stabilisierte Thermoplaste
EP3227371B1 (de) Gefüllte polycarbonatzusammensetzungen mit verbesserter fliessfähigkeit und hoher steifigkeit
DE4213098A1 (de) Flammhemmende polycarbonat-zusammensetzung mit verbesserter schlagzaehigkeit
EP4355827A1 (de) Flammgeschützte polycarbonat-zusammensetzungen mit hohem cti
TW201335226A (zh) 用於電/電子與資訊科技領域之uv穩定性、經玻璃增強、抗焰性之聚碳酸酯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12791796

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012791796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012791796

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14361011

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147017536

Country of ref document: KR

Kind code of ref document: A