WO2013079599A1 - Polycarbonatzusammensetzungen mit verbesserter oberfläche - Google Patents

Polycarbonatzusammensetzungen mit verbesserter oberfläche Download PDF

Info

Publication number
WO2013079599A1
WO2013079599A1 PCT/EP2012/073974 EP2012073974W WO2013079599A1 WO 2013079599 A1 WO2013079599 A1 WO 2013079599A1 EP 2012073974 W EP2012073974 W EP 2012073974W WO 2013079599 A1 WO2013079599 A1 WO 2013079599A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
molding compositions
compositions according
bis
Prior art date
Application number
PCT/EP2012/073974
Other languages
English (en)
French (fr)
Inventor
Gesa Dern
Birte SÄMISCH
Thomas THULKE
Ulrich Grosser
Original Assignee
Bayer Intellectual Property Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property Gmbh filed Critical Bayer Intellectual Property Gmbh
Publication of WO2013079599A1 publication Critical patent/WO2013079599A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • C08K7/20Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a thermoplastic molding composition of polycarbonate and inorganic fillers, which in addition to increased rigidity, have a high impact resistance and elongation at break.
  • the molding composition has a good scratch resistance, which has also existed during processing to moldings with high gloss surfaces.
  • the present invention also relates to moldings having high-gloss surfaces, which have the above-mentioned good mechanical properties.
  • Polycarbonates are due to their good toughness u.a. used in areas where this toughness of the material is required for impact, e.g. in housings for mobile electronics (camera, mobile phones, etc.).
  • thermoplastic molding compositions are therefore often mixed with inorganic fillers, such as milled glass fibers, but this addition of fillers in turn adversely affects other mechanical properties and leads to a decrease in the toughness of the molding compositions and components produced therefrom. Furthermore, the addition of fillers often also has an effect on the surface properties of the molded parts, so that their roughness increases significantly.
  • SiO 2 particles as filler in polycarbonate molding compositions not only significantly increases the strength of the compositions, but also preserves the tough properties of the pure polycarbonate better than with other inorganic fillers.
  • the molding compositions and components of the invention have an isotropic expansion and shrinkage behavior and thus a good dimensional stability of the finished component.
  • DE 2327014 describes a thermoplastic polycarbonate molding composition containing 10 to 50% by weight of a quartz mineral and 0.1 to 10% by weight of one or more vinyl polymers which counteract a reduction in molecular weight caused by the quartz powder and thus a decrease in the mechanical properties of the filled polycarbonate molding composition acts. However, an increased scratch resistance is not reported.
  • US 2009/0298991 describes thermoplastic molding compositions containing 0.1 to 50% by weight of nanoparticulate, organically treated metal oxides which bring about an improvement in scratch resistance.
  • US 2009/0298991 describes a special particle size reduction, and a particle size of 100-300 nm to achieve the desired properties as essential necessary.
  • US Pat. No. 4,070,330 describes Novacu 1-filled polycarbonate molding compositions having increased impact strength, it being possible optionally to use silanes as coupling reagents in order to further improve the impact resistance.
  • silanes as coupling reagents in order to further improve the impact resistance.
  • thermoplastic compositions are containing
  • G 0.0 to 10.0 parts by weight, preferably 0.01 to 9.00 parts by weight, more preferably 0.5 to 8.0 parts by weight, particularly preferably 1, 0 to 6.0 Parts by weight, other customary additives,
  • the composition consists only of the components A and B, in a further preferred embodiment of the components A - G in the abovementioned proportions.
  • Preferred embodiments and ranges can be both as sole modification, as well as combined with each other.
  • Polycarbonates in the context of the present invention are both homopolycarbonates and copolycarbonates;
  • the polycarbonates may be linear or branched in a known manner.
  • the preparation of the polycarbonates is carried out in a known manner from diphenols, carbonic acid derivatives, optionally chain terminators and branching agents.
  • Diphenols suitable for the preparation of the polycarbonates are, for example, hydroquinone, resorcinol, dihydroxybenzenes, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers , Bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, alpha-alpha 'bis (hydroxyphenyl) diisopropylbenzenes, phthalimidines derived from isatin or phenolphthalein derivatives and their nuclear alkylated, nuclear arylated and nuclear-halogenated compounds.
  • Preferred diphenols are 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis- (4-hydroxyphenyl ) -p-diisopropylbenzene, 2,2-bis (3-methyl-4-hydroxyphenyl) -propane, 2,2-bis (3-chloro-4-hydroxyphenyl) -propane, bis (3 , 5-dimethyl-4-hydroxyphenyl) methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone , 2,4-Bis- (3,5-dimethyl-4-hydroxyphenyl) -2-methylbutane, 1,1-bis- (3,5-dimethyl-4-hydroxyphenyl) -p-diisopropylbenzene, 2,2 Bis- (3,5-dichloro-4-hydroxy
  • diphenols are 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro 4-hydroxyphenyl) -propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) -propane, 1,1-bis (4-hydroxyphenyl) -cyclohexane and 1,1-bis (4 hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • diphenols are described, for example, in US Pat. No. 3,028,635, US Pat. No. 2,999,825, US Pat. No. 3,148,172, US Pat. No. 2,991,273, US Pat. No.
  • Suitable carbonic acid derivatives are, for example, phosgene or diphenyl carbonate.
  • Suitable k ettenabbrecher that can be used in the preparation of the polycarbonates are both monophenols and monocarboxylic acids.
  • Suitable monophenols are, for example, phenol itself, alkylphenols such as cresols, p-tert-butylphenol, cumylphenol, pn-oetylpheno-1, p-iso-octylpheno-1, pn-nonylphenol and p-isononylphenol, halophenols such as p-chlorophenol, 2, 4-dichlorophenol, p-bromophenol and 2,4, 6-tribromopheno-1, 2,4,6-triiodophenol, p-iodophenol, and mixtures thereof.
  • Preferred chain terminators are also the phenols which are mono- or polysubstituted with C 1 to C 30 -alkyl radicals, linear or branched, preferably unsubstituted or substituted by tert-butyl. Particularly preferred chain terminators are phenol, cumylphenol and / or p-tert-butylphenol.
  • Suitable monocarboxylic acids are also benzoic acid, A Ikylbenzoeklaren and halobenzoic acids.
  • the amount of chain terminator to be used is preferably 0.1 to 5 mol%, based on moles of diphenols used in each case.
  • the addition of the chain terminators can be carried out before, during or after the reaction with a Kohleklarederivat.
  • Suitable branching agents are the tri- or more than tri-substituted ionic compounds known in polycarbonate chemistry, especially those having three or more than three phenolic OH groups.
  • Suitable branching agents are, for example, phloroglucinol, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptene-2, 4,6-dimethyl-2,4,6-tri (4-hydroxyphenyl) -heptane , 1, 3,5-tri (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, tri- (4-hydroxyphenyl) -phenylmethane, 2,2- Bis- [4,4-bis (4-hydroxyphenyl) cyclohexyl] -propane, 2,4-bis (4-hydroxyphenyl-isopropyl) -phenol, 2,6-bis- (2-hydroxy-5'- methyl-benzyl) -4-methylphenol, 2- (4-hydroxypheny
  • the amount of optionally used branching agent is preferably from 0.05 mol% to 2.00 mol%, based in turn on " moles of diphenols used in each case.
  • the branching agents may be presented either with the diphenols and the chain terminators in the aqueous alkaline phase, or may be added dissolved in an organic solvent prior to phosgenation. In the case of the transesterification process, the branching agents are used together with the diphenols.
  • the aromatic polycarbonates of the present invention have weight average molecular weights M w (determined by gel permeation chromatography and calibration with standard carboxylate) between 5000 and 200,000 g mol, preferably between 18,000 and 36,000 g / mol, more preferably between 22,000 and 34,000 g / mol, still further preferably between 24,000-32,000 g / mol, and more preferably between 26,000-32,000 g / mol.
  • M w weight average molecular weights M w (determined by gel permeation chromatography and calibration with standard carboxylate) between 5000 and 200,000 mol, preferably between 18,000 and 36,000 g / mol, more preferably between 22,000 and 34,000 g / mol, still further preferably between 24,000-32,000 g / mol, and more preferably between 26,000-32,000 g / mol.
  • Particularly preferred polycarbonates are the homopolycarbonate based on bisphenol A, the Homopo lycarbonate based on 1, 3-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and the copolycarbonates based on the two monomers bisphenol A and 1, 1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane.
  • component B As component B are inorganic fillers, in particular minerals, which are built up to 97 wt.% Based on quartz (SiCh) are used.
  • the grain shape is spherical and / or approximately spherical.
  • component B is finely divided quartz flours, which have been produced by iron-free grinding with subsequent air classification from prepared quartz sand.
  • quartz-based materials are also called silicates in the following.
  • the silicates used in the invention are of average diameter from 2 to 10 microns, preferably from 2.5 to 8.0 ⁇ , more preferably from 3 to 5 microns, and particularly preferably from 3 microns, wherein an upper diameter of from 6 to 34 ⁇ m, more preferably from 6.5 to 25.0 ⁇ m, even more preferably from 7 to 15 ⁇ m, and particularly preferably from 10 ⁇ m is preferred.
  • the particle size distribution (mean diameter) is determined by air classification.
  • the silicates preferably have a BET specific surface area, determined by nitrogen adsorption according to ISO 9277, of 0.4 to 8.0 m 2 / g, more preferably of 2 to 6 m 2 / g, and particularly preferably of 4.4 to 5.0 m 2 / g.
  • silicates have only a maximum of 3 wt.% Of minor components, wherein preferably the content of
  • Preferred silicates having a pH, measured according to ISO 10390 in aqueous suspension in the range, 6 to 9, more preferably 6.5 to 8.0 used.
  • inorganic fillers in particular silicates, are used which have a coating with organosilicon compounds, preference being given to using epoxysilane, methylsiloxane, and methacrylic silane sizes. Particularly preferred is a Epoxysilanschlichte.
  • the optionally used mold release agents C are esters of aliphatic long-chain carboxylic acids with mono- or polyhydric aliphatic and / or aromatic hydroxy compounds.
  • Particularly preferably used aliphatic carboxylic acid esters are compounds of the general formula (III):
  • R4 is an aliphatic saturated or unsaturated, linear, cyclic or branched alkyl radical and R5 is an alkylene radical of a 1- to 4-valent aliphatic alcohol R5- (OH) o + p.
  • C1-C18 alkyl radicals are particularly preferred.
  • C 1 -C 18 -alkyl is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3 Methylbutyl, neo-pentyl, 1-ethylpropyl, cyclohexyl, cyclopentyl, n-hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-e
  • Alkylene represents a straight-chain, cyclic, branched or unbranched C 1 -C 18 -alkylene radical.
  • C 1 -C 18 -alkylene is, for example, methylene, ethylene, n- Propylene, iso-propylene, n-butylene, n-pentylene, n-hexylene, n-heptylene, n-octylene, n-nonylene, n-decylene, n-dodecylene, n-tridecylene, n-tetradecylene, n-hexadecylene or n-octadecylene.
  • esters of polyhydric alcohols free, non-esterified OH groups may also be present.
  • suitable aliphatic carboxylic esters according to the invention are: glycerol monostearate, palmityl palmitate, and stearyl stearate. It is also possible to use mixtures of different carboxylic acid esters of the formula (III).
  • Preferred carboxylic acid esters are esters of pentaerythritol, glycerol, trimethylolpropane, propanediol, stearyl alcohol, cetyl alcohol or myristyl alcohol with myristic, palmitic, stearic or montanic acid and mixtures thereof.
  • Suitable flame retardants in the context of the present invention include, among others, alkali or alkaline earth salts of aliphatic or aromatic sulfonic acid sulfonamide and sulfonimide derivatives, e.g. Potassium perfluorobutanesulfonate, potassium diphenylsulfone sulfonate, N- (p-tolylsulfonyl) -p-toluenesulfimide potassium salt, N- (N'-benzylaminocabonyl) sulfanylimide potassium salt.
  • alkali or alkaline earth salts of aliphatic or aromatic sulfonic acid sulfonamide and sulfonimide derivatives e.g. Potassium perfluorobutanesulfonate, potassium diphenylsulfone sulfonate, N- (p-tolylsulfonyl) -p-toluenesul
  • Salts which may optionally be used in the molding compositions according to the invention are, for example: sodium or potassium perfluorobutanesulfate, sodium or potassium perfluoromethanesultbnate, sodium or potassium perfluorooctane sulfate, sodium or potassium 2,5-dichlorobenzenesulfate, sodium or potassium silicate.
  • 2,4,5-trichlorobenzoic iso-tate, sodium or potassium methylphosphonate, sodium or potassium (2-phenyl-ethylene) -phosphonate, sodium or potassium pentachlorobenzoate, sodium or potassium 2,4,6-trichlorobenzoate, sodium or potassium 2,4-dichlorobenzoate, lithium phenylphosphonate, sodium or potassium diphenylsulfone sulfonate, sodium or potassium 2-formylbenzenesulfonate, sodium or potassium (N-benzenesulfonyl) benzenesulfonamide.
  • additional flame retardants are e.g. phosphorus-containing flame retardants selected from the groups of mono- and oligomeric phosphoric and phosphonic acid esters, phosphonateamines, phosphonates, phosphinates, phosphites, hypophosphites, phosphine oxides and phosphazenes, whereby mixtures of several components selected from one or more of these groups can be used as flame retardants Question.
  • Other preferably halogen-free phosphorus compounds which are not specifically mentioned here can also be used alone or in any desired combination with other preferably halogen-free phosphorus compounds. These include purely inorganic phosphorus compounds such as boron phosphate hydrate.
  • phosphonatamines into consideration.
  • the preparation of phosphonatamines is described, for example, in US Pat. No. 5,844,028.
  • Phosphazenes and their preparation are described for example in EP A 728 81 1, DE A 1 961 668 and WO 97/40092.
  • siloxanes, phosphorylated organosiloxanes, silicones or siloxysilanes as flame retardants, which is described in more detail, for example, in EP 1 342 753, in DE 10257079 A and in EP 1 188 792.
  • halogen-containing compounds include brominated compounds such as brominated oligocarbonates (eg tetrabromobisphenol A oligocarbonate BC-52®, BC-58®, BC-52HP® the company Chemtura), polypentabromobenzyl acrylates (eg FR 1025 from Dead Sea Bromine (DSB)), oligomeric reaction products Tetrabromo bisphenol A with Expoxi- the (eg FR 2300 and 2400 from DSB), or brominated oligo- or polystyrenes (eg Pyro-Chek® 68PB from Ferro Corporation, PDBS 80 and Firemaster® PBS-64HW from Chemtura).
  • brominated oligocarbonates eg tetrabromobisphenol A oligocarbonate BC-52®, BC-58®, BC-52HP® the company Chemtura
  • polypentabromobenzyl acrylates eg FR 1025 from Dead Sea Bromine (DSB)
  • the present invention is free of rialogen ized flame retardants.
  • Po lytetrafluorethylen can be added.
  • the latter is commercially available in various product qualities. These include additives such as Hostafion® TF2021 or PTFE blends such as Metablen® A-3800 (about 40% PTFE CAS 9002-84-0 and about 60% methyl methacrylate / butyl acrylate copolymer CAS 25852-37-3 from Misubishi Rayon) or Blendex® B449 (about 50% PTFE and about 50% SAN [from 80% styrene and 20% acrylonitrile] from Chemtura.
  • Addstafion® TF2021 or PTFE blends such as Metablen® A-3800 (about 40% PTFE CAS 9002-84-0 and about 60% methyl methacrylate / butyl acrylate copolymer CAS 25852-37-3 from Misubishi Rayon) or Blendex® B449 (about 50% PTFE and about 50% SAN [from 80% styrene and 20%
  • the polymer compositions according to the invention may optionally contain further customary polymer additives as component F), such as e.g. the antioxidants described in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 or "Plastics Additives Handbook", Hans Zweifel, 5th Edition 2000, Hanser Verlag, Kunststoff), thermostatic dispersers, B) various flame retardants, optical brighteners and light scattering agents in the usual amounts for the respective thermoplastics.
  • component F such as e.g. the antioxidants described in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 or "Plastics Additives Handbook", Hans Zweifel, 5th Edition 2000, Hanser Verlag, Kunststoff), thermostatic dispersers, B) various flame retardants, optical brighteners and light scattering agents in the usual amounts for the respective thermoplastics.
  • Tris (2,4-di-tert-butylphenyl) phosphite (Irgafos 168), tetrakis (2,4-di-tert-butylphenyl) - [1, 1 biphenyl] - are particularly suitable as stabilizers, especially heat stabilizers.
  • ADK STAB PEP-36 bis (2,6-di-tert-butyl-4-methylphenyl) -pentaerythritol diphosphite
  • ADK STAB PEP-36 bis (2,6-di-tert-butyl-4-methylphenyl) -pentaerythritol diphosphite
  • BUY4076 (12H-dibenzofd, g] fl, 3,2-dioxaphosphocine, 4,8-dicyclohexyl- 6-hydroxy-2,10-dimethyl
  • ADK STEP PEP-36 from Adeka (bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite), and triphenylphosphine (TPP).
  • the stabilizer is selected from the group comprising BUY4076 and ADK STAB PEP-36.
  • stabilizer combinations are BUY4076, Irgafosl 68 and TPP; ADK STAB PEP-36, Irgafosl 68 and TPP; and ADK STAB PEP-36 and TPP.
  • Doverphos S-9228 stabilizer from Dover Chemical Corporation bis (2,4-dicumylphenyl) pentaerythritol diphosphite
  • TPP triphenylphosphine
  • compositions can be added as a further additive (G) special UV stabilizers which have the lowest possible transmission below 400 nm and the highest possible transmission above 400 nm.
  • G special UV stabilizers which have the lowest possible transmission below 400 nm and the highest possible transmission above 400 nm.
  • ultraviolet absorbers benzotriazoles, triazines, benzophenones and / or arylated cyanoacrylates.
  • Ultravk lett absorbers are hydroxybenzotriazoles such as 2- (3 ', 5'-bis (1, 1-dimethylbenzyl) -2'-hydroxy-phenyl () benzotriazole Tinuvin ® 234, Ciba Specialty Chemicals, Basel) 2- (2'-hydroxy-5 '- (tert-octyl) phenyl) benzotriazole (Tinuvin ® 329, Ciba specialty Chemicals, Basel), 2- (2'-hydroxy-3' - (2-butyl) -5 '- (tert-butyl) phenyl) - benzotriazole (Tinuvin ® 350, Ciba specialty Chemicals, Basel), bis (3- (2H-benzotriazolyl) - 2-hydroxy-5-tert-octyl) methane, (Tinuvin ® 360, Ciba specialty Chemicals, Basel), (2- (4,6-diphenyl-1, 3,5-triazin-2-yl
  • Particularly preferred specific UV stabilizers are, for example, Tinuvin ® 360, Tinuvin ® 350, Tinuvin ® 329, Hostavin B-CAP ®, particularly preferably TIN 329 and Hostavin ® B-Cap.
  • the composition contains Ultravio lett absorber in an amount of 0 ppm to 6000 ppm, preferably 500 ppm to 5000 ppm, and more preferably 1000 ppm to 2000 ppm based on the total composition.
  • nucleating agents such as organic dyes or pigments or inorganic pigments, IR absorbers, and also antistatics such as polyalkylene ethers, alkyl sulfonates or polyamide-containing polymers.
  • Additional suitable additives include, but are not limited to, those described in "Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999", “Plastics Additives Handbook, Hans Zweifel, Hanser, Kunststoff 2001” or WO 99/55772, p. 15-25.
  • the preparation of the polymer compositions according to the invention comprising the components A) to G) is carried out by conventional incorporation methods by combining, mixing and homogenizing the individual components, wherein in particular the homogenization takes place preferably in the melt under the action of shear forces.
  • the merging and mixing takes place prior to melt homogenization using powder premixes.
  • premixes of granules or granules and powders with the additives according to the invention. It is also possible to use premixes which have been prepared from solutions of the mixture components in suitable solvents, optionally homogenizing in solution and subsequently removing the solvent. In particular, in this case the additives of the composition according to the invention can be introduced by known methods or as a masterbatch.
  • masterbatches are particularly preferred for introducing the additives, in particular masterbatches based on the respective polymer matrix being used.
  • the composition can be combined, mixed, homogenized and then extruded in conventional equipment such as screw extruders (for example twin-screw extruder, ZSK), kneaders, Brabender or Banbury mills. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed. The merging and mixing of a premix in the melt can also be done in the plasticizing an injection molding machine. In this case, the melt is transferred directly into a shaped body in the subsequent step.
  • plastic moldings The production of plastic moldings is done by injection molding.
  • compositions according to the present invention are used in a device comprising: a metering device for the components, a co-rotating two-shaft kneader (ZSK 25 from Werner & Pfleiderer) with a screw diameter of 25 mm, a hole die for shaping melt strands, a water bath for Cooling and solidification of the strands and a granulator compounded.
  • a metering device for the components a co-rotating two-shaft kneader (ZSK 25 from Werner & Pfleiderer) with a screw diameter of 25 mm, a hole die for shaping melt strands, a water bath for Cooling and solidification of the strands and a granulator compounded.
  • the finished granules are processed on an injection molding machine to the corresponding test specimens (melt temperature 300 ° C, mold temperature 110 ° C).
  • Linear polycarbonate based on bisphenol-A having an MVR of 9.5 cm 3/10 min (measured according to ISO 1133/300 ° C / 1, 2 kg).
  • Linear polycarbonate based on bisphenol-A with an MVR of 20 cm3 / 10min (measured according to ISO 1 133/300 ° C / 1.2 kg).
  • Pentaerythritol tetrastearate as a slip / defoamer Component D
  • Potassium perfluoro-1-butanesulfonate available commercially as Bayowet * C4 from Lanxess, Leverkusen, Germany, CAS no. 29420-49-3.
  • Polytetrafluoroethylene powder e.g. CFP 6000 N, Du Pont.
  • Stabilizer Irgafos® 168 tris (2,4-di-tert-butylphenyl) phosphite
  • Stabilizer BUY4076 from RheinChemie (12H-dibenzo [d, g] [1,2,2] dioxaphosphocine, 4,8-dicyclohexyl-6-hydroxy-2, 10-dimethyl-)
  • Doverphos S-9228 stabilizer from Dover Chemical Corporation bis (2,4-dicumylphenyl) pentaerythritol diphosphite
  • TPP triphenylphosphine
  • the impact resistance was measured according to ISO 179 / l eU or ISO180 / 1 U on single-sided test bars measuring 80 x 10 x 4 mm. measured.
  • the Vicat B / 120 as a measure of the heat resistance is determined according to ISO 306 on specimens of dimension 80 x 10 x 4 mm with a stamp load of 50 N and a heating rate of 120 ° C / h.
  • the mean particle size d 50 is the diameter, above and below which are each 50 wt .-% of the particles.
  • the maximum particle size d 95 is the diameter below which 95% by weight of the particles lie.
  • the corresponding diameters were determined by air classification.
  • the fire behavior is measured according to UL 94V on rods measuring 127 x 12.7 x 1, 0 mm.
  • the modulus of elasticity and the elongation at break were determined according to ISO 527 on a single-sided sprayed test rod of the dimension 80 ⁇ 10 ⁇ 4 mm.
  • the length and width shrinkage was determined according to TTC.VA5.1.2.3.1. measured.
  • Scratch resistance was determined according to ASTM D-3363 (weight 750 g) as pencil hardness.
  • pencils hardness 3H, 211, TT, F, HB, B, 2B and 3B (here decreasing hardness) with specified pressure over the surface.
  • the pencil hardness indicates the hardest pencil with no scratch on the surface.
  • the measurement of the surface hardness was also carried out on small platelets by means of an Atomic Force Microscope AFM (Digital Instruments Nanoscope), whereby under the impression of a diamond tip in a Nanoindent-35 measuring head (Hysitron) in the Po lymerober Assembly (80 ⁇ ), the scan speed the tip (1 Hz) and the measuring field size (30 x 30 ⁇ , scanned in 256 lines) each removed by the scanning mechanically removed from the sample surface volume (recess in the material) in ⁇ 5 as a measured variable and thus as a unit of measurement for surface hardness , The larger the volume, the softer the material surface of the respective (co) polycarbonate.
  • AFM Atomic Force Microscope AFM
  • Table 1 shows measured values of polycarbonates according to the invention.
  • the finished granules are processed on an injection molding machine to the corresponding specimens (melt temperature 300 ° C, mold temperature 1 10 ° C).

Abstract

Die vorliegende Erfindung betrifft eine thermoplastische Formmasse aus Polycarbonat und anorganischen Füllstoffen, die neben erhöhter Steifigkeit, eine hohe Schlagzähigkeit und Bruchdehnung aufweisen. Zudem weist die Formmasse eine gute Kratzfestigkeit auf, die auch bei der Verarbeitung zu Formteilen mit Hochglanzoberflächen bestand hat. Demgemäß betrifft die vorliegende Erfindung auch Formteile mit Hochglanzoberflächen, die die oben genannten guten mechanischen Eigenschaften aufweisen.

Description

Polycarbonatzusammensetzungen mit verbesserter Oberfläche
Die vorliegende Erfindung betrifft eine thermoplastische Formmasse aus Polycarbonat und anorganischen Füllstoffen, die neben erhöhter Steifigkeit, eine hohe Schlagzähigkeit und Bruchdehnung aufweisen. Zudem weist die Formmasse eine gute Kratzfestigkeit auf, die auch bei der Verarbeitung zu Formteilen mit Hochglanzoberflächen bestand hat. Demgemäß betrifft die vorliegende Erfindung auch Formteile mit Hochglanzoberflächen, die die oben genannten guten mechanischen Eigenschaften aufweisen. Polycarbonate werden aufgrund ihrer guten Zähigkeit u.a. in Bereichen eingesetzt, wo diese Zähigkeit des Materials gegenüber Stößen gefordert ist, z.B. in Gehäusen für die mobile Elektronik (Kamera, Mobilfunkgeräte, etc.).
Darüber hinaus ist in diesem Anwendungsgebiet, insbesondere aufgrund der technischen Miniaturisierung und der Nachfrage nach leichteren, stabilen Bauteilen, eine Abnahme der Wanddickenstärke der Gehäuse gefordert.
Zur Erhöhung der Stabilität der Bauteile werden thermoplastische Formmassen daher oft mit anorganischen Füllstoffen, wie beispielsweise gemahlenen Glasfasern, versetzt, wobei dieser Zusatz von Füllstoffen aber wiederum andere mechanische Eigenschaften negativ beeinflußt und zu einer Abnahme der Zähigkeit der Formmassen und daraus hergestellten Bauteile fuhrt. Ferner wirkt sich der Zusatz von Füllstoffen auch oft auf die Oberflächenei- genschaften der Formteile aus, so dass deren Rauheit deutlich steigt.
Überraschenderwei se wurde nun gefunden, dass bei der Verwendung von SiO2-Partikeln als Füllstoff in Polycarbonatformmassen sich nicht nur die Festigkeit der Zusammenset- zungen deutlich erhöht, sondern auch die zähen Eigenschaften des reinen Polycarbonates besser erhalten bleiben, als bei anderen anorganischen Füllstoffen.
Zudem zeigt sich auch eine stark verbesserte Kratzfestigkeit der Zusammensetzungen. Besonders überraschend zeigte sich, dass diese Kratzfestigkeit auch auf Hochglanzoberflächen bestand hat, die im Spritzgussverarbeitungsprozess der thermoplastischen Formmasse unter Verwendung eines vorgeheizten Werkzeugs erhalten werden kann.
Darüber hinaus weisen die erfindungsgemäßen Formmassen und Bauteile ein isotropes Ausdehnungs- und Schwindungsverhalten und somit eine gute Maßhaltigkeit des fertigen Bauteils auf. DE 2327014 beschreibt eine thermoplastische Polycarbonatformmasse enthaltend 10 bis 50 Gew.% eines Quarzminerals, sowie 0.1 bis 10 Gew.% eines oder mehrerer Vinylpoly- merisate, die einem durch das Quarzmehl bedingten Molekulargewichtsabbau und damit einem Abfall der mechanischen Eigenschaften der gefüllten Polycarbonatformmasse ent- gegen wirkt. Über eine erhöhte Kratzfestigkeit wird jedoch nicht berichtet.
In US 2009/0298991 werden thermoplastische Formmassen enthaltend 0.1 bis 50 Gew.-% nanopartikulärer, organisch behandelter Metalloxide beschrieben, die eine Verbesserung der Kratzfestigkeit bewirken, im Gegensatz zu den Zusammensetzungen der vorliegenden Erfindung werden in US 2009/0298991 eine spezielle Beschlichtung der Partikel, sowie eine Partikelgröße von 100-300 nm zum Erreichen der gewünschten Eigenschaften als essentiell notwendig herausgestellt.
US 4,070,330 beschreibt Novacu 1 it-gefü 1 lte Polycarbonatformmassen mit erhöhter Schlagzähigkeit, wobei optional Silane als Kupp lungsreagenzien verwendet werden können, um die Schlagzähigkeit weiter zu verbessern. Auf eine Verbesserung der Oberflächeneigen- schaften sowie hohe Maßhaltigkeit der hergestellten Formteile werden in US 4,070,330 jedoch keine Hinweise gegeben; von der Verwendung anderer Quarz-basierter Minerale, z.B. Wollastonit, führt die Lehre der US 4,00,330 sogar weg.
Es bestand daher die Aufgabe, Po lycarbonatzusammensetzungen mit einer Kombination aus verstärkender Wirkung (Steifigkeit) und möglichst gutem Erhalt der Zähigkeitseigen- schaften (Schlagzähigkeit) von unverstärktem Polycarbonat bereitzustellen, die eine hohe Kratzfestigkeit der Oberfläche, insbesondere von Hochglanzoberflächen, aufweisen und eine isotrope Maßhaltigkeit der aus den Zusammensetzungen hergestellten Bauteile aufweisen. Darüber hinaus war es Aufgabe der Erfindung, Formteile mit Hochglanzoberflächen mit verbessertem Glanzverhalten bei thermischer Belastung zur Verfügung zu stellen.
Überraschenderwe ise wurde nun gefunden, dass Formmassen nach Anspruch 1 und daraus hergestellte Formteile nach Anspruch 11 diese Aufgabe lösen.
Gegenstand der Erfindung sind somit thermoplastische Formmassen enthaltend
A) 60 bis 90 Gew. -Teile, vorzugsweise 70 bis 85 Gew.-Teile, besonders bevorzugt 75,0 bis 80 Gew.-Teile, mindestens eines aromatischen Polycarbonats,
B) 10 bis 40 Gew.-Teile, bevorzugt 15 bis 30 Gew.-Teile, weiter bevorzugt 20 bis 25 Gew.-Teile, mindestens eines anorganischen Füllstoffs mit sphärischer Korngestalt, C) 0,00 Gew. -Teile bis 1,00 Gew.-Teile, weiter bevorzugt 0,10 Gew.-Teile bis 0,75 Gew. -Teile, besonders bevorzugt 0, 15 Gew.-Teile bis 0,60 Gew.-Teile, und ganz besonders bevorzugt 0,20 Gew.-Teile bis 0.50 Gew.-Teile, mindestens eines Ent- formungsmittels,
D) 0,00 Gew.-Teile bis 1,00 Gew.-Teile, weiter bevorzugt 0,10 Gew.-Teile bis 0,75 Gew.-Teile, noch weiter bevorzugt 0, 15 Gew.-Teile bis 0,60 Gew.-Teile, besonders bevorzugt 0,07 Gew.-Teile bis 0,50 Gew.-Teile, und ganz besonders bevorzugt 0, 18 Gew.-Teile bis 0,50 mindestens eines Flammschutzmittels,
E) 0,00 Gew.-Teile bis 1 ,00 Gew.-Teile, weiter bevorzugt 0, 10 Gew.-Teile bis 0,75 Gew.-Teile, besonders bevorzugt 0,15 Gew.-Teile bis 0,60 Gew.-Teile, und ganz besonders bevorzugt 0,20 Gew.-Teile bis 0,50 Gew.-Teile, mindestens eines Anti- drippingm ittels,
F) 0,00 Gew.-Teile bis 1,00 Gew.-Teile, weiter bevorzugt 0,02 Gew.-Teile bis 0,75 Gew.-Teile, besonders bevorzugt 0,05 Gew.-Teile bis 0,60 Gew.-Teile, und ganz besonders bevorzugt 0,07 Gew.-Teile bis 0,50 Gew.-Teile mindestens eines Stabilisators,
G) 0,0 bis 10,0 Gew.-Teile, bevorzugt 0,01 bis 9,00 Gew.-Teile, weiter bevorzugt 0,5 bis 8,0 Gew.-Teile, besonders bevorzugt 1 ,0 bis 6,0 Gew.-Teile, weitere übliche Additive,
wobei die Summe der Gewichtsteile der Komponenten A) bis F) sich zu 100 Gewichtsteilen addiert.
In einer besonders bevorzugten Ausführungsform besteht die Zusammensetzung nur aus den Komponenten A und B, in einer weiteren bevorzugten Ausfuhrungsform aus den Komponenten A - G in den oben angegebenen Mengenanteilen.
Bevorzugte Ausführungsformen und Bereiche können sowohl als alleinige Modifikation stehen, als auch miteinander kombiniert werden.
Komponente A)
Polycarbonate im Sinn der vorliegenden Erfindung sind sowohl Homopolycarbonate als auch Copolycarbonate; die Polycarbonate können in bekannter Weise linear oder verzweigt sein. Die Herstellung der Polycarbonate erfolgt in bekannter Weise aus Diphenolen, Kohlensäurederivaten, gegebenenfalls Kettenabbrechern und Verzweigern.
Einzelheiten der Herstellung von Polycarbonaten sind in vielen Patentschriften seit etwa 40 Jahren niedergelegt. Beispielhaft sei hier auf Schnell, "Chemistry and Physics of Polycar- bonates", Polymer Reviews, Volume 9, Interscience Publishers, New York, London, Sydney 1964, auf D. Freitag, U. Grigo, P.R. Müller, H. Nouvertne, BAYER AG, "Polycarbo- nates" in Encyclopedia of Polymer Science and Engineering, Volume 1 1 , Second Edition, 1988, Seiten 648-718 und schliesslich auf Dres. U. Grigo, K. Kirchner und P.R. Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Poly- acetale, Polyester, Celluloseester, Carl Hanser Verlag München, Wien 1992, Seiten 17- 299 verwiesen.
Für die Herstellung der Polycarbonate geeignete Diphenole sind beispielsweise Hydrochi- non, Resorcin, D ihydroxyd iphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)- cycloalkane, Bis-(hydroxyphenyl)-sulflde, Bis-(hydroxyphenyl)-ether, Bis- (hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, alpha - alpha '-Bis-(hydroxyphenyl)-diisopropylbenzole, Phtalimidine abgeleitet von Isatin- oder Phenolphthaleinderivaten sowie deren kernalkylierte, kernarylierte und kernhalo- genierte Verbindungen.
Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(4-hydroxyphenyl)-p-diisopropylben- zol, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3-chlor-4-hydroxyphenyl)-pro- pan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphe- ny!)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4-hydro- xyphenyl)-2-methylbutan, 1 , 1 -Bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropylbenzol, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)- propan und 1 , 1 -Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
Besonders bevorzugte Diphenole sind 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dimethyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2- Bis-(3,5-dibrom-4-hydroxyphenyl)-propan, l ,l -Bis-(4-hydroxyphenyl)-cyclohexan und 1 , 1 -Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan. Diese und weitere geeignete Diphenole sind z.B. in US-A 3 028 635, US-A 2 999 825, US- A 3 148 172, US-A 2 991 273, US-A 3 271 367, US-A 4 982 014 und US-A 2 999 846, in DE-A 1 570 703, DE-A 2063 050, DE-A 2 036 052, DE-A 2 21 1 956 und DE-A 3 832 396, in FR-A 1 561 518, in der Monographie "H. Schnell, Chemistry and Physics of Poly- carbonates, Interscience Publishers, New York 1964" sowie in JP-A 62039/1986, JP-A 62040/1986 und JP-A 105550/1986 beschrieben.
Im Fall der Homopolycarbonate ist nur ein Diphenol eingesetzt, im Fall der Copolycarbo- nate sind mehrere Diphenole eingesetzt.
Geeignete Kohlensäurederivate sind beispielsweise Phosgen oder Diphenylcarbonat.
Geeignete K ettenabbrecher, die bei der Herstellung der Polycarbonate eingesetzt werden können, sind sowohl Monophenole als auch Monocarbonsäuren. Geeignete Monophenole sind beispielsweise Phenol selbst, Alkylphenole wie Kresole, p-tert.-Butylphenol, Cumylphenol, p-n-Oetylpheno 1, p- iso-Octylpheno 1, p-n-Nonylphenol und p-iso- Nonylphenol, Halogenphenole wie p-Chlorphenol, 2,4-Dichlorphenol, p-Bromphenol und 2,4, 6-Tribrompheno 1, 2,4,6-Trijodphenol, p- Jodphenol, sowie deren Mischungen.
Bevorzugte Kettenabbrecher sind ferner die Phenole welche ein oder mehrfach mit C l bis C30-Alkylresten, linear oder verzweigt, bevorzugt unsubstituiert oder mit tert.-Butyl substituiert sind. Besonders bevorzugte Kettenabbrecher sind Phenol, Cumylphenol und/oder p-tert.-Butylphenol.
Geeignete Monocarbonsäuren sind weiterhin Benzoesäure, A Ikylbenzoesäuren und Halogenbenzoesäuren.
Die Menge an einzusetzendem Kettenabbrecher beträgt bevorzugt 0, 1 bis 5 Mol%, bezogen auf Mole an jeweils eingesetzten Diphenolen. Die Zugabe der Kettenabbrecher kann vor, während oder nach der Umsetzung mit einem Kohlesäurederivat erfolgen.
Geeignete Verzweiger sind die in der Polycarbonatchemie bekannten tri- oder mehr als tritünkt ioneilen Verbindungen, insbesondere solche mit drei oder mehr als drei phenolischen OH-Gruppen. Geeignete Verzweiger sind beispielsweise Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydro- xyphenyl)-hepten-2, 4,6-Dimethyl-2.4,6-tri(4-hydroxyphenyl)-heptan, 1 ,3,5-Tri(4-hydro- xyphenyl)-benzol, 1 , 1 , 1 -Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylme- than, 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4-hydroxypheny- lisopropyl)-phenol, 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol, 2-(4-hydroxy- phenyl)-2-(2,4-dihydroxyphenyl)-propan, Hexa-(4(4-hydroxyphenylisopropyl)-phenyl)- orthoterephthalsäureester, Tetra-(4-hydroxyphenyl)-methan, Tetra-(4-(4-hydroxypheny- lisopropyl)-phenoxy)-methan und 1 ,4-Bis-((4',4"-dihydroxytriphenyl)-methyl)-benzol so- wie 2.4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4- hydroxyphenyl)-2-oxo-2,3-dihydroindol.
Die Menge der gegebenenfalls einzusetzenden Verzweiger beträgt bevorzugt 0,05 Mol-% bis 2,00 Mol%, bezogen wiederum auf" Mole an jeweils eingesetzten Diphenolen.
Die Verzweiger können entweder mit den Diphenolen und den Kettenabbrechern in der wässrig alkalischen Phase vorgelegt werden, oder in einem organischen Lösungsmittel gelöst vor der Phosgenierung zugegeben werden. Im Fall des Umesterungsverfahrens werden die Verzweiger zusammen mit den Diphenolen eingesetzt.
Die aromatischen Polycarbonate der vorliegenden Erfindung besitzen Gewichtsmittel- molekulargewichte Mw (ermittelt durch Gelpermeationschromatographie und Eichung mit Po lycar bonatstandard) zwischen 5000 und 200.000 g mol, vorzugsweise zwischen 18.000- 36.000 g/mol, weiter bevorzugt zwischen 22.000-34.000 g/mol, noch weiter bevorzugt zwischen 24.000-32.000 g/mol, und besonders bevorzugt zwischen 26.000-32.000 g/mol.
Besonders bevorzugte Polycarbonate sind das Homopolycarbonat auf Basis von Bisphenol A, das Homopo lycarbonat auf Basis von 1 ,3-Bis-(4-hydroxyphenyl)-3,3,5- trimethylcyclohexan und die Copolycarbonate auf Basis der beiden Monomere Bisphenol A und 1 , 1 -Bis-(4-hydroxyphenyl)-3.3,5-trimethylcyclohexan.
Komponente B) Als Komponente B kommen anorganische Füllstoffe, insbesondere Mineralien, die zu über 97 Gew.% auf der Basis von Quarz (SiCh) aufgebaut sind, zum Einsatz. Die Korngestalt ist dabei sphärisch und/oder annähernd sphärisch.
In bevorzugter Ausffihrungsform handelt es sich bei Komponente B um feinteilige Quarz- mehle, die durch eisenfreie Mahlung mit nachfolgender Windsichtung aus aufbereitetem Quarzsand hergestellt wurden.
Diese Quarz-basierten Materialien werden im folgenden auch Silikate genannt. Die in der Erfindung verwendeten Silikate sind durch einen mittleren Durchmesser
Figure imgf000008_0003
von 2 bis 10 μm, vorzugsweise von 2.5 bis 8.0 μητ, weiter bevorzugt von 3 bis 5 μm, und besonders bevorzugt von 3 μm, gekennzeichnet, wobei eine oberen Durchmesser
Figure imgf000008_0002
von entsprechend 6 bis 34 μm, weiter bevorzugt von 6.5 bis 25.0 μm, noch weiter bevorzugt von 7 bis 15 μm, und besonders bevorzugt von 10 μm bevorzugt ist.
Die Korngrößenverteilung (mittlere Durchmesser) wird durch Windsichten bestimmt.
Bevorzugt weisen die Silikate eine spezifische BET-Oberfläche, bestimmt durch Stickstoffadsorption gemäß ISO 9277, von 0.4 bis 8.0 m2/g, weiter bevorzugt von 2 bis 6 m2/g, und besonders bevorzugt von 4.4 bis 5.0 m2/g auf.
Weiter bevorzugte Silikate weisen nur maximal 3 Gew.% Nebenbestandteile auf, wobei vorzugsweise der Gehalt an
ist, jeweils bezogen auf das Gesamtgewicht des Silikats.
Figure imgf000008_0001
Bevorzug werden Silikate mit einem pH- Wert, gemessen gemäß ISO 10390 in wäßriger Suspension im Bereich, 6 bis 9, weiter bevorzugt 6.5 bis 8.0 eingesetzt.
Sie weisen darüber hinaus eine Ölabsorptionszahl gemäß ISO 787-5 von bevorzugt 20 bis 30 g/100 g. In einer bevorzugten Ausführungsform kommen anorganische Füllstoffe, insbesondere Silikate, zum Einsatz, die eine Beschichtung mit Silicium-organischen Verbindungen haben, wobei bevorzug Epoxysilan-, Methylsiloxan-, und Methacrylsilan-Schlichten zum Einsatz kommen. Besonders bevorzugt ist eine Epoxysilanschlichte.
Die Beschlichtung von anorganischen Füllstoffen erfolgt nach den allgemeinen, dem Fachmann bekannten Verfahren.
Komponente C)
Die optional verwendeten Entformungsmittel C sind Ester aliphatischer langkettiger Carbonsäuren mit ein- oder mehrwertigen aliphatischen und/oder aromatischen Hydroxyver- bindungen. Besonders bevorzugt verwendete aliphatische Carbonsäureester sind Verbindungen der allgemeinen Formel (III):
Figure imgf000009_0001
wobei R4 ein aliphatischer gesättigter oder ungesättigter, linearer, cyclischer oder verzweigter Alkylrest ist und R5 ein Alkylenrest eines 1- bis 4- wertigen aliphatischen Alkohols R5-(OH)o+p ist.
Besonders bevorzugt für R4 sind C1-C18 Alkylreste. Cl-C18-Alkyl steht beispielsweise für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 1- Methylbutyl, 2-Methylbu- tyl, 3-Methylbutyl, neo-Pentyl, 1-Ethylpropyl, Cyclohexyl, Cyc- lopentyl, n-Hexyl, 1,1-Di-methylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2- Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1- Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-l- methylpropyl oder l-Ethyl-2-methylpropyl, n-Heptyl und n-Octyl, Pinakyl, Adamantyl, die isomeren Menthyle, n-Nonyl, n-Decyl, n-Dodecyl, n-Tridecyl, n- Tetradecyl, n-Hexadecyl oder n-Octadecyl.
Alkylen steht für einen geradkettigen, zyklischen, verzweigten oder unverzweigten C1- C18 Alkylen-Rest. C 1-C18-Alkylen steht beispielsweise für Methylen, Ethylen, n- Propylen, iso-Propylen, n-Butyen, n-Pentylen, n-Hexylen, n-Heptylen, n-Octylen, n- Nonylen, n-Decylen, n-Dodecylen, n-Tridecylen, n-Tetradecylen, n-Hexadecylen oder n- Octadecylen. Bei Estern von mehrwertigen Alkoholen können auch freie, nicht veresterte OH-Gruppen vorhanden sein. Erfindungsgemäß geeignete aliphatische Carbonsäureester sind z.B.: Gly- cerinmonostearat, Palmitylpalmitat, und Stearylstearat. Es können auch Gemische verschiedener Carbonsäureester der Formel (III) eingesetzt werden. Bevorzugt verwendete Carbonsäureester sind Ester von Pentaerythrit, Glycerin, Trimethylolpropan, Propandiol, Stearylalkohol, Cetylalkohol oder Myristylalkohol mit Myristin-, Palmitin-, Stearin- oder Montansäure und Gemische daraus. Besonders bevorzugt sind Pentaerythrittetrastearat, Glycerinmonostearat, Stearylstearat und Propandioldistearat, bzw. Gemische, daraus und am stärksten bevorzugt Stearylstearat. Komponente D)
Geeignete Flammschutzmittel im Sinne der vorliegenden Erfindung sind unter anderem Alkali- bzw. Erdalkalisalze von aliphatischen bzw. aromatischen Sulfonsaeure- Sulfonamid- und Sulfonimidderivaten z.B. Kaliumperfluorbutansulfonat, Kaliumdiphenylsulfon- sulfonat, N-(p-tolylsulfbnyl-)-p-toluolsulfimid-Kaliumsalz, N-(N'-Benzylaminocabonyl)- sulfanylimid-Kaliumsalz.
Salze die gegebenenfalls in den erfindungsgemäßen Formmassen verwendet werden können, sind beispielsweise: Natrium- oder Kaliumperfluorbutansulfat, Natrium- oder Kali- umperfluormethansultbnat, Natrium- oder Kaliumperfluoroctansultät, Natrium-oder Kali- um-2,5-dichlorbenzolsulfat, Natrium- oder Kai ium-2,4, 5 -trichlorben zo Isul tat, Natrium- oder Kaliummethylphosphonat, Natrium- oder Kalium-(2-phenyl-ethylen)-phosphonat, Natrium- oder Kaliumpentachlorbenzoat, Natrium- oder Kalium-2,4,6-trichlorbenzoat, Natrium-oder Kalium-2,4-dichlorbenzoat, Lithiumphenylphosphonat, Natrium- oder Kali- um-diphenylsulfonsulfonat, Natrium- oder Kalium-2-formylbenzolsulfonat, Natrium- oder Kalium-(N-benzolsulfonyl)-benzolsulfbnamid. Trinatrium- oder Trikalium- hexafluoroaluminat, Dinatrium- oder Dikaliumhexafluorotitanat, Dinatrium- oder Dikali- um-hexafluorosilikat, Dinatrium- oder Dikaliumhexafluorozirkonat, Natrium- oder Kali- um-pyrophosphat, Natrium- oder Kaliummetaphosphat, Natrium- oder Kaliumtetrafluoro- borat, Natrium- oder Kaliumhexafluorophosphat, Natrium- oder Kalium- oder Lithiumpho- sphat, N-(p-tolylsulfonyl-)-p-toluolsulfimid- Kaliumsalz, N-(N'-Benzyl^amino^carbonyl)- sulfanylimid-Kaliumsalz.
Bevorzugt werden Natrium- oder Kaliumperfluorbutansulfat, Natrium- oder Kaliumperflu- oroctansulfat, Natrium- oder Kai iu m-d iphenylsu 1 fon-su lfo nat und Natrium oder Kalium- 2,4,6-trichlorbenzoat und N-(p-tolylsulfonyl-)-p-toluolsulfimid-Kaliumsalz, N-(N'- Benzylaminocabonyl)-sulfanylimid- Kaliumsalz. Ganz besonders bevorzugt sind Kalium- nona-fluor- 1 -butansulfonat und Natrium- oder Kaliumdiphenylsulfonsulfonat. Kalium- nona-fluor-l-butansulfonat ist u.a. als Bayowet®C4 (Firma Lanxess, Leverkusen, Deutschland, CAS-Nr. 29420-49-3), RM64 (Firma Miteni, Italien) oder als 3M™ Perflu- orobutanesulfonyl Fluoride FC-51 (Firma 3M, USA) kommerziell erhältlich. Ebenfalls sind Mischungen der genannten Salze geeignet.
Als zusätzliche Flammschutzmittel kommen z.B. phosphorhaltige Flammschutzmittel ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine, Phosphonate, Phosphinate, Phosphite, Hypophosphite, Phosphinoxide und Phosphazene, wobei auch Mischungen von mehreren Komponenten ausgewählt aus einer oder verschiedenen dieser Gruppen als Flammschutzmittel zum Einsatz kommen können in Frage. Auch andere hier nicht speziell erwähnte vorzugsweise halogenfreie Phosphorverbindungen können alleine oder in beliebiger Kombination mit anderen vor- zugsweise halogenfreien Phosphorverbindungen eingesetzt werden. Hierzu zählen auch rein anorganische Phosphorverbindungen wie Borphosphathydrat. Des weiteren kommen als phosphorhaltige Flammschutzmittel Phosphonatamine in Betracht. Die Herstellung von Phosphonataminen ist beispielsweise in US-Patentschrift 5,844,028 beschrieben. Phosphazene und deren Herstellung sind beispielsweise in EP A 728 81 1 , DE A 1 961 668 und WO 97/40092 beschrieben. Auch können Siloxane, phosphorylierte Organosiloxane, Silicone oder Siloxysilane als Flammschutzmittel Verwendung finden, was beispielsweise in der EP 1 342 753, in der DE 10257079 A sowie in der EP 1 188 792 näher beschrieben wird.
Weitere geeignete zusätzliche Flammschutzmittel im Sinne der vorliegenden Erfindung sind halogenhaltige Verbindungen. Hierzu zählen bromierte Verbindungen wie bromierte Oligocarbonate (z.B. Tetrabrombisphenol-A oligocarbonat BC-52®, BC-58®, BC-52HP® der Firma Chemtura), Polypentabrombenzylacrylate (z.B. FR 1025 der Firma Dead Sea Bromine (DSB)), oligomere Umsetzungsprodukte aus Tetrabrom-bisphenol-A mit Expoxi- den (z.B. FR 2300 und 2400 der Firma DSB), oder bromierte Oligo- bzw. Polystyrole (z.B. Pyro-Chek® 68PB der Firma Ferro Corporation, PDBS 80 und Firemaster® PBS-64HW der Firma Chemtura).
Vorzugsweise ist die vorliegende Erfindung frei von rialogen ierten Flammschutzmitteln.
Komponente E)
Als Antitropfm ittel kann den Formmassen zusätzlich Po lytetrafluorethylen (PTFE) zugefügt werden. Letzteres ist in diversen Produktqualitäten kommerziell verfügbar. Hierzu zählen Additive wie Hostafion® TF2021 oder aber PTFE-Blends wie Metablen® A-3800 (ca. 40% PTFE CAS 9002-84-0 und ca. 60 % Methylmethacrylat/Butylacrylat Copolymer CAS 25852-37-3 von Misubishi-Rayon) oder Blendex® B449 (ca. 50% PTFE und ca. 50 % SAN [aus 80 % Styrol und 20 % Acrylnitril] der Firma Chemtura.
Die erfindungsgemäßen Polymer- Zusammensetzungen können neben den erfindungsge- mäßen Stabilisatoren optional noch weitere übliche Polymeradditive als Komponente F) enthalten, wie z.B. die in EP-A 0 839 623, WO-A 96/15102, EP-A 0 500 496 oder„Plas- tics Additives Handbook", Hans Zweifel, 5th Edition 2000, Hanser Verlag, München) beschriebenen Antioxidantien, Thermostabi 1 isatoren, von B) verschiedene Flammschutzmittel, optischen Aufheller und Lichtstreumittel in den für die jeweiligen Thermoplasten übli- chen Mengen.
Komponente F)
Als Stabilisatoren, insbesondere Thermostabilisatoren, eignen sich bevorzugt Tris-(2,4-di- tert-butylphenyl)phosphit (Irgafos 168), Tetrakis-(2,4-di-tert.-butylphenyl)-[ 1 , 1 biphenyl]- 4,4'-diyIbisphosphonit, Trisoctylphosphat, Octadecyl-3-(3,5-di-tert-butyl-4- hydroxyphenyl)-propionat (Irganox 1076), Bis-(2,4-dicumylphenyl)- pentaerythritoldiphosphit (Doverphos S-9228), Bis-(2,6-di-tert.butyl-4-methylphenyl)- pentaerythritoldiphosphit (ADK STAB PEP-36), BUY4076 (12H- Dibenzofd,g]f l ,3,21dioxaphosphocin,4,8-dicyclohexyl-6-hydroxy-2,10-dimethyl-), ADK STAB PEP-36 aus Adeka (Bis(2,6-di-ter-butyl-4-methylphenyl)pentaerythritol- diphosphite), und Triphenylphosphine (TPP).
Sie werden allein oder im Gemisch (z. B. Irganox B900 oder Doverphos S-92228 mit Irganox B900 bzw. Irganox 1076) eingesetzt. In einer bevorzugten Ausfuhrungsform ist der Stabilisator ausgewählt aus der Gruppe, die BUY4076 und ADK STAB PEP-36 umfaßt.
Ferner sind die Stabilisatorkombinationen aus BUY4076, Irgafosl 68 und TPP; ADK STAB PEP-36 ,Irgafosl 68 und TPP; sowie ADK STAB PEP-36 und TPP bevor- zugt.
Komponente F4
Stabilisator Doverphos S-9228 aus Dover Chemical Corporation (Bis(2,4-dicumylphenyl) pentaerythritol diphosphite)
Komponente F5
Stabilisator triphenylphosphine (TPP)
In einer besonders bevorzugten Ausführungsform wird kein Thermostabilisator eingesetzt. Komponente G)
Optional können der Zusammensetzungen als weiteres Additiv (G) spezielle UV- Stabilisatoren zugesetzt werden, die eine möglichst geringe Transmission unterhalb 400 nm und eine möglichst hohe Transmission oberhalb von 400 nm besitzen. Für den Einsatz in der erfindungsgemäßen Zusammensetzung besonders geeignete U Itravio lett- Absorber sind Benzotriazole, Triazine, Benzophenone und/oder arylierte Cyanoacrylate.
Besonders geeignete Ultravk) lett-Absorber sind Hydroxybenzotriazole, wie 2-(3',5'-Bis- ( 1 , 1 -dimethylbenzyl)-2'-hydroxy-phenyl)-benzotriazol (Tinuvin® 234, Ciba Spezialitätenchemie, Basel), 2-(2'-Hydroxy-5'-(tert-octyl)-phenyl)-benzotriazol (Tinuvin® 329, Ciba Spezialitätenchemie, Basel), 2-(2'-Hydroxy-3'-(2-butyl)-5'-(tert-butyl)-phenyl)- benzotriazol (Tinuvin® 350, Ciba Spezialitätenchemie, Basel), Bis-(3-(2H-benztriazolyl)- 2-hydroxy-5-tert-octyl)-methan, (Tinuvin® 360, Ciba Spezialitätenchemie, Basel), (2-(4,6- Diphenyl- 1 ,3,5-triazin-2-yl)-5-(hexyloxy)-phenol (Tinuvin® 1577, Ciba Spezialitätenchemie, Basel), sowie der Benzophenone 2,4-Dihydroxybenzophenon (Chimasorb® 22 , Ciba Spezialitätenchemie, Basel) und 2-Hydroxy-4-(octyloxy)-benzophenon (Chimassorb® 81 , Ciba, Basel), 2-Propenoic acid, 2-Cyano-3,3-diphenyl-, 2,2-Bis[[(2-cyano- 1 -oxo-3,3- diphenyl-2-propenyl)oxy]-methyl]- 1 ,3-propanediylester (9CI) (Uvinul® 3030, BASF AG Ludwigshafen), 2-[2-Hydroxy-4-(2-ethylhexyl)oxy]-phenyl-4,6-di(4-phenyl)-phenyl-l ,3,5- iriazin (CGX UVA 006, Ciba Spezialitätenchemie, Basel) oder Tetra-ethyl-2,2'-( 1 ,4- phenylene-dimethylidene)-bismalonate (Hostavin® B-Cap, Clariant AG).
Besonders bevorzugte spezielle UV-Stabilisatoren sind beispielsweise Tinuvin® 360, Tinuvin® 350, Tinuvin® 329, Hostavin® B-CAP, besonders bevorzugt TIN 329 und Hostavin® B-Cap.
Es können auch Mischungen dieser Ultraviolett- Absorber eingesetzt werden.
Gemäß einer speziellen Ausführungsform der Erfindung enthält die Zusammensetzung Ultravio lett-Absorber in einer Menge von 0 ppm bis 6000 ppm, bevorzugt 500 ppm bis 5000 ppm, und weiter bevorzugt 1000 ppm bis 2000 ppm bezogen auf die Gesamtzusammensetzung.
Weitere handelsübliche Polymeradditive sind Nukleiermittel, Farbmittel, wie organische Farbstoffe oder Pigmente oder anorganische Pigmente, IR-Absorber, sowie Antistatika wie Polyalkylenether, Alkylsulfonate oder Polyamid-haltige Polymere.
Zusätzliche geeignete Additive sind beispielsweise, jedoch nicht limitierend, beschrieben in "Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999", im "Plastics Additives Handbook, Hans Zweifel, Hanser, München 2001 " oder in WO 99/55772 , S. 15-25.
Die Herstellung der erfindungsgemäßen Polymer-Zusammensetzungen enthaltend die Komponenten A) bis G) erfolgt mit gängigen Einarbeitungsverfahren durch Zusammenführung, Vermischen und Homogenisieren der einzelnen Bestandteile, wobei insbesondere die Homogenisierung bevorzugt in der Schmelze unter Einwirkung von Scherkräften statt- findet. Gegebenenfalls erfolgt das Zusammenfuhren und Vermischen vor der Schmelzehomogenisierung unter Verwendung von Pulvervormischungen.
Es können auch Vormischungen aus Granulaten oder Granulaten und Pulvern mit den erfindungsgemäßen Zusätzen verwendet werden. Es können auch Vormischungen verwendet werden, die aus Lösungen der Mischungskomponenten in geeigneten Lösungsmitteln, wobei gegebenenfalls in Lösung homogenisiert wird und das Lösungsmittel anschließend entfernt wird, hergestellt worden sind. Insbesondere können hierbei die Additive der erfindungsgemäßen Zusammensetzung durch bekannte Verfahren oder als Masterbatch eingebracht werden.
Die Verwendung von Masterbatchen ist insbesondere zum Einbringen der Additive bevor- zugt, wobei insbesondere Masterbatche auf Basis der jeweiligen Polymermatrix verwendet werden.
In diesem Zusammenhang kann die Zusammensetzung in üblichen Vorrichtungen wie Schneckenextrudern (zum Beispiel Zweischneckenextruder, ZSK), Knetern, Brabender- oder Banbury-Mühlen zusammengeführt, vermischt, homogenisiert und anschließend extrudiert werden. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Zusammenführung und Durchmischung einer Vormischung in der Schmelze kann auch in der Plastifiziereinheit einer Spritzguß maschine erfolgen. Hierbei wird die Schmelze im anschließenden Schritt direkt in einen Formkörper überfuhrt.
Die Herstellung der Kunststoffformteile erfolgt durch Spritzguß.
Beispiele
Herstellung der Zusammensetzungen:
Die Zusammensetzungen gemäß der vorliegenden Erfindung werden in einer Vorrichtung umfassend: Eine Dosiereinrichtung für die Komponenten, einem gleichlaufenden Zweiwel- lenkneter (ZSK 25 von der Firma Werner & Pfleiderer) mit einem Schneckendurchmesser von 25 mm, einer Lochdüse zur Ausformung von Schmelzesträngen, einem Wasserbad zur Abkühlung und dem Verfestigen der Stränge und einem Granulator compoundiert. Die fertigen Granulate werden auf einer Spritzgussmaschine zu den entsprechenden Probekörpern verarbeitet (Massetemperatur 300 °C, Werkzeugtemperatur 110°C).
Für die Herstellung der Probekörper mit Hochglanzoberflächen wurde die dynamische Werkzeugtemperierung mit Hilfe einer Induktionsheizung angewendet (max. Werkzeugtemperatur = 153°C).
Für die Herstellun der Zusammensetzungen der Beispiele 1 bis 22 in der oben beschriebenen Compoundiereinrichtung wurden folgende Komponenten eingesetzt:
Komponente A1
Lineares Polycarbonat auf Basis Bisphenol-A mit einem MVR von 60 cmVlOmin (gemessen nach ISO 1 133 / 300°C / 1,2 kg).
Komponente A2
Lineares Polycarbonat auf Basis Bisphenol-A mit einem MVR von 9,5 cm3/ 10min (gemessen nach ISO 1 133 / 300°C / 1 ,2 kg).
Komponente A3
Lineares Polycarbonat auf Basis Bisphenol-A mit einem MVR von 20 cm3/10min (gemessen nach ISO 1 133 / 300°C / 1 ,2kg).
Komponente B1 :
Es wurde Quarzmehl der Firma Quarzwerke GmbH (50226 Frechen, Deutschland) verwendet, welches unter dem Handelsnamen Sikron SF 300 verfügbar ist (dso= ΙΟμπτ, d95 = 34μητ, unbeschlichtet). Komponcntc B2:
Es wurde Quarzmehl der Firma Quarzwerke GmbH (50226 Frechen, Deutschland) verwendet, welches unter dem Handelsnamen Sikron SF 600 verfligbar ist (d50= 3 μm, d95 = 10μm, unbeschlichtet).
Komponente B3:
Es wurde Quarzmehl der Firma Quarzwerke GmbH (50226 Frechen, Deutschland) verwendet, welches unter dem Handelsnamen Sikron PHN 6000 verfügbar ist (d50= 3 μm, d95 = 10 μm, unbeschlichtet, pH-modifiziert).
Komponente B4:
Es wurde Quarzmehl der Firma Quarzwerke GmbH (50226 Frechen, Deutschland) verwendet, welches unter dem Handelsnamen Silbond 6000 EST verfügbar ist (d50= 3 μm, d95 = 10 μm, Epoxysilan-Schlichte).
Komponente BS:
Es wurde Quarzmehl der Firma Quarzwerke GmbH (50226 Frechen, Deutschland) ver- wendet, welches unter dem Handelsnamen Silbond 6000 HST verfügbar ist (d50= 3 μm, d95 = 10 μm, Methylsiloxan-Schlichte).
Komponente B6:
Es wurde Quarzmehl der Firma Quarzwerke GmbH (50226 Frechen, Deutschland) verwendet, welches unter dem Handelsnamen Silbond 6000 PST/3 verfügbar ist (d50= 3 μm,d95 = 10 μm, Methacrylsilan-Schlichte).
Komponente C
Pentaerythrittetrastearat als Gleit-/Entfbrmungsmittel Komponente D
Kaliumperfluor- 1 -butansulfonat kommerziell erhältlich als Bayowet* C4 der Firma Lan- xess, Leverkusen, Deutschland, CAS-Nr. 29420-49-3.
Komponente E
Polytetrafluorethylen-Pulver, z.B. CFP 6000 N, Fa. Du Pont.
Komponente F1
Stabilisator Irgafos® 168 (Tris-(2,4-di-tert-butyl-phenyl)-phosphit) Komponcntc F2
Stabilisator BUY4076 aus RheinChemie ( 12H-Dibenzo[d,g][ 1 ,3,2]dioxaphosphocin,4,8- dicyc lohexyl-6-hydroxy-2 , 10-dimethyl-)
Komponente F3
Stabilisator ADK STAB PEP-36 aus Adeka (Bis(2,6-di-ter-butyl-4- methylphenyl)pentaerythritol-diphosphite)
Komponente F4
Stabilisator Doverphos S-9228 aus Dover Chemical Corporation (Bis(2,4-dicumylphenyl) pentaerythritol diphosphite)
Komponente F5
Stabilisator triphenylphosphine (TPP)
Komponente G
Modifikator Hi-wax 1 105 A
Die Schlagzähigkeit wurde nach ISO 179/l eU oder ISO180/1 U an einseitig angespritzten Prüfstäben der Dimension 80 x 10 x 4 mm. gemessen.
Der Vicat B/120 als Maß für die Wärmeformbeständigkeit wird bestimmt gemäß ISO 306 an Prüfkörpern der Abmessung 80 x 10 x 4 mm mit einer Stempel last von 50 N und einer Aufheizgeschwindigkeit von 120°C/h.
Die mittlere Teilchen große d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen.
Die maximale Teilchengröße d95 ist der Durchmesser, unterhalb dessen 95 Gew.-% der Teilchen liegen.
Die entsprechenden Durchmesser wurden durch Windsichten bestimmt.
Das Brandverhalten wird nach UL 94V an Stäben der Abmessung 127 x 12,7 x 1 ,0 mm gemessen.
Der E-Modul und die Bruchdehnung wurden gemäß ISO 527 an einem einseitig angespritzten Prüfstab der Dimension 80 x 10 x 4 mm. Die Längen- und Breitenschwindung wurde gemäß TTC.V.A.5.1.2.3.1. gemessen.
Die Kratzfestigkeit wurde gemäß ASTM D-3363 (Gewicht 750 g) als Bleistifthärte bestimmt. Dabei werden Bleistifte der Härte 3H, 211, TT, F, HB, B, 2B und 3B (hier Härte abnehmend) mit festgelegtem Druck über die Oberfläche geführt. Die Bleistifthärte gibt den härtesten Bleistift an, mit dem kein Kratzer auf der Oberfläche erkennbar ist.
Die Messung der Oberflächenhärte erfolgte zudem an kleinen Plättchen mittels eines Atomic Force Microscops AFM (Digital Instruments Nanoscope), wobei unter Vorgabe der Eindruckkraft einer Diamantspitze in einem Nanoindent-35 Meßkopf (Fa. Hysitron) in die Po lymeroberfläche (80 μΝ), der Scangeschwindigkeit der Spitze ( 1 Hz) sowie der Meßfeldgröße (30 x 30 μιη; abgerastert in 256 Zeilen) das jeweils durch die Abrasterung mechanisch aus der Probenoberfläche entfernte Volumen (Vertiefung im Material) in μπτ5 als Meßgröße und damit als Maßeinheit für die Oberflächenhärte erhalten wird. Je größer das Volumen dabei ist, desto weicher ist die Materialoberfläche des jeweiligen (Co)polycarbonates.
Kleinere Volumenwerte indizieren somit eine verbesserte Oberflächenhärte. In Tabelle 1 sind Meßwerte an erfindungsgemäßen Polycarbonaten aufgeführt.
Die fertigen Granulate werden auf einer Spritzgußmaschine zu den entsprechenden Probekörpern verarbeitet (Massetemperatur 300°C, Werkzeugtemperatur 1 10°C).
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001

Claims

Patentansprüche
1. Thermoplastische Formmassen enthaltend
A) 70,0 bis 85,0 Gew.-Teile mindestens eines aromatischen Polycarbonats,
B) 15,0 bis 30,0 Gew.-Teile mindestens eines anorganischen Füllstoffs mit sphärischer Korngestalt,
C) 0,00 Gew.-Teile bis 1 ,00 Gew.-Teile mindestens eines Entformungsmittels,
D) 0,00 bis 1 ,00 Gew.-Teile mindestens eines Flammschutzmittels,
E) 0,00 bis 1,00 Gew.-Teile mindestens eines Antidrippingmittels,
F) 0,00 bis 1 ,00 Gew.-Teile mindestens eines Stabilisators,
G) 0,0 10,0 Gew.-Teile, weitere übliche Additive,
wobei die Summe der Gewichtsteile der Komponenten A) bis F) sich zu 100 Gewichtsteilen addiert.
2. Formmassen gemäß Anspruch 1 , dadurch gekennzeichnet, daß die Komponenten in folgendne Mengen enthalten sind:
A) 60,0 bis 90,0 Gew.-Teile mindestens eines aromatischen Polycarbonats,
B) 10,0 bis 40,0 Gew.-Teile mindestens eines anorganischen Füllstoffs mit sphärischer Korngestalt,
C) 0, 10 Gew.-Teile bis 0,75 Gew.-Teile mindestens eines Entformungsmittels,
D) 0,10 bis 0,75 Gew.-Teile mindestens eines Flammschutzmittels,
E) 0, 10 bis 0,75 Gew.-Teile mindestens eines Antidrippingmittels,
F) 0,01 bis 0,75 Gew.-Teile mindestens eines Stabilisators,
G) 0,0 10,0 Gew.-Teile, weitere übliche Additive.
3. Formmassen gemäß Ansprach 1 , dadurch gekennzeichnet, daß die Komponenten in folgendne Mengen enthalten sind:
A) 75,0 bis 80,0 Gew.-Teile mindestens eines aromatischen Polycarbonats,
B) 20,0 bis 25,0 Gew.-Teile mindestens eines anorganischen Füllstoffs mit sphärischer Korngestalt,
C) 0,20 Gew.-Teile bis 0,50 Gew.-Teile mindestens eines Entformungsmittels,
D) 0,18 bis 0,50 Gew.-Teile mindestens eines Flammschutzmittels,
E) 0,20 bis 0,50 Gew.-Teile mindestens eines Antidrippingmittels,
F) 0,07 bis 0,50 Gew.-Teile mindestens eines Stabilisators,
G) 0,00 - 10,0 Gew.-Teile, weitere übliche Additive.
4. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Komponente B ein Mineral auf Basis von Quarz ist.
5. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Komponente B Si02 ist.
6. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Silikate einen mittleren Durchmesser d50% von 2 bis 10 μτη aufweisen.
7. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Silikat eine Epoxysilanschlichte aufweist.
8. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Silikat unbeschlichtet ist.
9. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das das F lammsc hutzmitte 1 ausgewählt ist aus der Gruppe, die Alkali- bzw. Erdalkalisalze von aliphatischen bzw. aromatischen Sulfbnsaeure- Sulfonamid- und Sul- fo nim idder ivaten umfaßt.
10. Formmassen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Stabilisator ausgewählt ist aus der Gruppe, die BUY4076 und ADK STAB PEP-36 umfaßt.
11. Verwendung der Formmassen nach einem der vorhergehenden Ansprüche zur Herstellung von Formteilen mit einer erhöhten Kratzfestigkeit der Oberfläche und verbesserter Maßhaltigikeit.
12. Verfahren zur Herstellung von Formteilen mit erhöhter Kratzfestigkeit der Oberfläche, verbesserter Maßhaltigikeit und verbessertem Glanz der Oberfläche umfassend die Schritte: a) Compoundierung der Zusammensetzungen enthaltend die Komponenten A) bis G) zur Herstellung eines Granulats der Formassen nach einem der vorhergehenden Ansprüche,
b) Spritzgießen der Formteile aus dem so hergestellten Granulat mit variabler Werkzeugtemperatur bei einer initial maximalen Werkzeugtemperatur von 153°C.
13. Verwendung von anorganischen Füllstoffen mit sphärischer Formgestalt zur Herstellung von Formmassen nach einem der vorhergehenden Ansprüche mit einer erhöhten Kratzfestigkeit der Oberfläche und verbesserter Maßhaltigikeit.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß der anorganische Füllstoff ein Silikat ist.
15. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß das die Silikate mittleren Durchmesser d50% von 2 bis 10 μηι aufweisen, vorzugsweise 3 μπι.
PCT/EP2012/073974 2011-11-30 2012-11-29 Polycarbonatzusammensetzungen mit verbesserter oberfläche WO2013079599A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11191311.7 2011-11-30
EP11191311 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013079599A1 true WO2013079599A1 (de) 2013-06-06

Family

ID=47278294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073974 WO2013079599A1 (de) 2011-11-30 2012-11-29 Polycarbonatzusammensetzungen mit verbesserter oberfläche

Country Status (1)

Country Link
WO (1) WO2013079599A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015557A1 (de) 2016-07-22 2018-01-25 Covestro Deutschland Ag Kratzfeste polycarbonat-zusammensetzungen mit guter thermischer stabilität
WO2018181947A1 (ja) * 2017-03-30 2018-10-04 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
WO2019219615A1 (de) 2018-05-17 2019-11-21 Covestro Deutschland Ag Gefüllte polycarbonat-zusammensetzungen mit guter kratzfestigkeit und reduzierter vergilbung
EP3670594A1 (de) 2018-12-19 2020-06-24 Covestro Deutschland AG Thermoplastische zusammensetzungen mit guter stabilität bei thermischer belastung
EP3670595A1 (de) 2018-12-19 2020-06-24 Covestro Deutschland AG Thermoplastische zusammensetzungen mit guter thermischer stabilität
US11370704B2 (en) 2017-10-27 2022-06-28 Owens Corning Intellectual Capital, Llc Sizing compositions including weakly-coordinating anion salts and uses thereof
WO2022221363A1 (en) * 2021-04-13 2022-10-20 Covestro Llc Polycarbonate blend compositions having improved weatherability and scratch resistance
EP4092083A1 (de) * 2021-05-18 2022-11-23 Covestro LLC Polycarbonatmischungszusammensetzungen mit verbesserter witterungs- und kratzfestigkeit

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US400330A (en) 1889-03-26 Samuel k goodman
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US2999825A (en) 1958-12-12 1961-09-12 Gen Mills Inc Epoxy-polyamide-ester resin reaction product
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US3028635A (en) 1959-04-17 1962-04-10 Schlumberger Cie N Advancing screw for gill box
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US3271367A (en) 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
FR1561518A (de) 1967-03-10 1969-03-28
DE1570703A1 (de) 1964-10-07 1970-02-12 Gen Electric Hydrolytisch stabile Polycarbonate sowie Verfahren zu deren Herstellung
DE1961668A1 (de) 1968-12-06 1970-06-18 Philips Nv Wellenlaufzeitvorrichtung
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
FR2180872A1 (en) * 1972-04-17 1973-11-30 Eastman Kodak Co Protective layer for photographic product - partic thermodevelopable using polycarbonate resin and silica particles
DE2324427A1 (de) * 1973-05-15 1974-12-05 Bayer Ag Polycarbonatmassen
DE2327014A1 (de) 1973-05-26 1974-12-12 Bayer Ag Gefuellte aromatische polycarbonate mit verbesserten eigenschaften
US4070330A (en) 1976-01-23 1978-01-24 Mobay Chemical Corporation High impact mineral filled polycarbonates
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS6162039A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS61105550A (ja) 1984-10-29 1986-05-23 Fuji Xerox Co Ltd 電子写真用感光体
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US4982014A (en) 1988-08-12 1991-01-01 Bayer Aktiengesellschaft Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates
EP0500496A1 (de) 1991-02-21 1992-08-26 Ciba-Geigy Ag Stabilisierte Polymere mit Heteroatomen in der Hauptkette
WO1996015102A2 (de) 1994-11-10 1996-05-23 Basf Aktiengesellschaft 2-cyanacrylsäureester
EP0728811A2 (de) 1995-02-27 1996-08-28 Mitsubishi Chemical Corporation Hammhemmende thermoplastische Harzzusammensetzung
WO1997040092A1 (de) 1996-04-18 1997-10-30 Basf Aktiengesellschaft Flammgeschützte thermoplastische formmassen
EP0839623A1 (de) 1996-10-30 1998-05-06 Ciba SC Holding AG Stabilisatorkombination für das Rotomolding-Verfahren
US5844028A (en) 1992-10-20 1998-12-01 Solutia Inc. Cyclic phosphorus containing flame retardant compounds
WO1999055772A1 (en) 1998-04-24 1999-11-04 Ciba Specialty Chemicals Holding Inc. Increasing the molecular weight of polyesters
EP1188792A1 (de) 1999-04-23 2002-03-20 Sumitomo Dow Limited Flammhemmende polycarbonatharzzusammensetzung
EP1342753A1 (de) 2002-03-05 2003-09-10 Shin-Etsu Chemical Co., Ltd. Flammhemmende Harzzusammensetzungen und Formmassen
DE10257079A1 (de) 2002-12-06 2004-06-24 Bayer Ag Verwendung von phosphorylierten Organosiloxanen als Flammschutzmittel
US20070088095A1 (en) * 2005-10-18 2007-04-19 General Electric Company Method of improving abrasion resistance of plastic article using nanoparticles and article produced thereby
US20090298991A1 (en) 2006-12-29 2009-12-03 Cheil Industries Inc. Thermoplastic Nanocomposite Resin Composition with Improved Scratch Resistance
US20110152418A1 (en) * 2009-12-18 2011-06-23 Bayer Materialscience Ag Scratch-resistant, impact-resistant polycarbonate moulding compositions having good mechanical properties ii

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US400330A (en) 1889-03-26 Samuel k goodman
US3271367A (en) 1955-03-26 1966-09-06 Bayer Ag Thermoplastic polycarbonates of dihydroxydiarylene sulfones and their preparation
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999825A (en) 1958-12-12 1961-09-12 Gen Mills Inc Epoxy-polyamide-ester resin reaction product
US3028635A (en) 1959-04-17 1962-04-10 Schlumberger Cie N Advancing screw for gill box
DE1570703A1 (de) 1964-10-07 1970-02-12 Gen Electric Hydrolytisch stabile Polycarbonate sowie Verfahren zu deren Herstellung
FR1561518A (de) 1967-03-10 1969-03-28
DE1961668A1 (de) 1968-12-06 1970-06-18 Philips Nv Wellenlaufzeitvorrichtung
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
DE2063050A1 (de) 1970-12-22 1972-07-13 Bayer Verseifungsbeständige Polycarbonate
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
FR2180872A1 (en) * 1972-04-17 1973-11-30 Eastman Kodak Co Protective layer for photographic product - partic thermodevelopable using polycarbonate resin and silica particles
DE2324427A1 (de) * 1973-05-15 1974-12-05 Bayer Ag Polycarbonatmassen
DE2327014A1 (de) 1973-05-26 1974-12-12 Bayer Ag Gefuellte aromatische polycarbonate mit verbesserten eigenschaften
US4070330A (en) 1976-01-23 1978-01-24 Mobay Chemical Corporation High impact mineral filled polycarbonates
JPS6162039A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS6162040A (ja) 1984-09-04 1986-03-29 Fuji Xerox Co Ltd 電子写真用感光体
JPS61105550A (ja) 1984-10-29 1986-05-23 Fuji Xerox Co Ltd 電子写真用感光体
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US4982014A (en) 1988-08-12 1991-01-01 Bayer Aktiengesellschaft Dihydroxydiphenyl cycloalkanes, their production and their use for the production of high molecular weight polycarbonates
EP0500496A1 (de) 1991-02-21 1992-08-26 Ciba-Geigy Ag Stabilisierte Polymere mit Heteroatomen in der Hauptkette
US5844028A (en) 1992-10-20 1998-12-01 Solutia Inc. Cyclic phosphorus containing flame retardant compounds
WO1996015102A2 (de) 1994-11-10 1996-05-23 Basf Aktiengesellschaft 2-cyanacrylsäureester
EP0728811A2 (de) 1995-02-27 1996-08-28 Mitsubishi Chemical Corporation Hammhemmende thermoplastische Harzzusammensetzung
WO1997040092A1 (de) 1996-04-18 1997-10-30 Basf Aktiengesellschaft Flammgeschützte thermoplastische formmassen
EP0839623A1 (de) 1996-10-30 1998-05-06 Ciba SC Holding AG Stabilisatorkombination für das Rotomolding-Verfahren
WO1999055772A1 (en) 1998-04-24 1999-11-04 Ciba Specialty Chemicals Holding Inc. Increasing the molecular weight of polyesters
EP1188792A1 (de) 1999-04-23 2002-03-20 Sumitomo Dow Limited Flammhemmende polycarbonatharzzusammensetzung
EP1342753A1 (de) 2002-03-05 2003-09-10 Shin-Etsu Chemical Co., Ltd. Flammhemmende Harzzusammensetzungen und Formmassen
DE10257079A1 (de) 2002-12-06 2004-06-24 Bayer Ag Verwendung von phosphorylierten Organosiloxanen als Flammschutzmittel
US20070088095A1 (en) * 2005-10-18 2007-04-19 General Electric Company Method of improving abrasion resistance of plastic article using nanoparticles and article produced thereby
US20090298991A1 (en) 2006-12-29 2009-12-03 Cheil Industries Inc. Thermoplastic Nanocomposite Resin Composition with Improved Scratch Resistance
US20110152418A1 (en) * 2009-12-18 2011-06-23 Bayer Materialscience Ag Scratch-resistant, impact-resistant polycarbonate moulding compositions having good mechanical properties ii

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
D. FREITAG; U. GRIGO; P.R. MÜLLER; H. NOUVERTNE; BAYER AG: "Encyclopedia of Polymer Science and Engineering", vol. 11, 1988, article "Polycarbonates", pages: 648 - 718
DRES. U. GRIGO; K. KIRCHNER; P.R. MÜLLER: "Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester", 1992, CARL HANSER VERLAG, article "Polycarbonate", pages: 117 - 299
H. SCHNELL: "Chemistry and Physics of Polycarbonates", 1964, INTERSCIENCE PUBLISHERS
HANS ZWEIFEL: "Plastics Additives Handbook", 2001, HANSER
HANS ZWEIFEL: "Plastics Additives Handbook, 5th Edition", 2000, HANSER VERLAG
JOHN MURPHY: "Additives for Plastics Handbook", 1999, ELSEVIER
SCHNELL: "Polymer Reviews", vol. 9, 1964, INTERSCIENCE PUBLISHERS, article "Chemistry and Physics of Polycarbonates"

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899925B2 (en) 2016-07-22 2021-01-26 Covestro Deutschland Ag Scratch-resistant polycarbonate compositions having good thermal stability
WO2018015557A1 (de) 2016-07-22 2018-01-25 Covestro Deutschland Ag Kratzfeste polycarbonat-zusammensetzungen mit guter thermischer stabilität
US11220600B2 (en) 2017-03-30 2022-01-11 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded body
JP6427299B1 (ja) * 2017-03-30 2018-11-21 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
JPWO2018181949A1 (ja) * 2017-03-30 2020-02-13 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
WO2018181949A1 (ja) * 2017-03-30 2018-10-04 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
WO2018181947A1 (ja) * 2017-03-30 2018-10-04 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
US11370910B2 (en) 2017-03-30 2022-06-28 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded body
US11732129B2 (en) 2017-03-30 2023-08-22 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded body
US11370704B2 (en) 2017-10-27 2022-06-28 Owens Corning Intellectual Capital, Llc Sizing compositions including weakly-coordinating anion salts and uses thereof
WO2019219615A1 (de) 2018-05-17 2019-11-21 Covestro Deutschland Ag Gefüllte polycarbonat-zusammensetzungen mit guter kratzfestigkeit und reduzierter vergilbung
EP3670594A1 (de) 2018-12-19 2020-06-24 Covestro Deutschland AG Thermoplastische zusammensetzungen mit guter stabilität bei thermischer belastung
EP3670595A1 (de) 2018-12-19 2020-06-24 Covestro Deutschland AG Thermoplastische zusammensetzungen mit guter thermischer stabilität
WO2022221363A1 (en) * 2021-04-13 2022-10-20 Covestro Llc Polycarbonate blend compositions having improved weatherability and scratch resistance
EP4092083A1 (de) * 2021-05-18 2022-11-23 Covestro LLC Polycarbonatmischungszusammensetzungen mit verbesserter witterungs- und kratzfestigkeit

Similar Documents

Publication Publication Date Title
EP2760932B1 (de) Polycarbonat mit glasfasern
EP2785782B1 (de) Uv-stabilisierte, glasfaserverstärkte, flammgeschützte polycarbonate für den ee- und it-bereich
WO2013079599A1 (de) Polycarbonatzusammensetzungen mit verbesserter oberfläche
EP2354182B1 (de) Erzeugnisse mit verbesserter Flammwidrigkeit
US7288579B2 (en) Method for reducing haze in a fire resistant polycarbonate composition
EP3116971B1 (de) Thermisch leitfähige thermoplastische zusammensetzungen mit ausgewogener verarbeitbarkeit
EP3464440B1 (de) Polycarbonat-zusammensetzungen enthaltend füllstoffe, eine carbonsäure und deren glycerol- oder diglycerolester
EP2137252A1 (de) Erzeugnisse mit vebesserter flammwidrigkeit
DE102008054329A1 (de) Erzeugnisse mit verbesserter Flammwidrigkeit
WO2009030357A1 (de) Formteile mit verbesserten oberflächen
DE102009015040A1 (de) (Co)polycarbonate mit verbesserten optischen Eigenschaften
EP3227387A1 (de) Copolycarbonat-zusammensetzungen mit verbessertem verarbeitungsverhalten enthaltend pe-wachse
EP3458510B1 (de) Polycarbonat-zusammensetzungen enthaltend eine carbonsäure und deren glycerol- oder diglycerolester
EP3227371B1 (de) Gefüllte polycarbonatzusammensetzungen mit verbesserter fliessfähigkeit und hoher steifigkeit
EP3572469A1 (de) Polycarbonatzusammensetzung mit perlglanzpigment und/oder interferenzpigment
EP2035499A1 (de) Verfahren zur herstellung schlagzähmodifizierter polyalkylenterephthalat/polycarbonat-zusammensetzungen
EP2955201A1 (de) Glasfaserverstärkte Polycarbonat-Zusammensetzungen
EP1137711A1 (de) Chlor- und bromfreie flammwidrige polycarbonatformmassen
WO2022167395A1 (de) Polycarbonat-polyester zusammensetzung, formmasse und formkörper mit guter schlagzähigkeit und hoher thermischer belastbarkeit
EP4247887A1 (de) Flammgeschützte, titandioxid enthaltende polycarbonat-zusammensetzungen
EP4247886A1 (de) Polycarbonat-zusammensetzungen enthaltend titandioxid und epoxy-gruppen enthaltendes triacylglycerol
EP4251688A1 (de) Polycarbonat-zusammensetzungen enthaltend titandioxid und eine titandioxid-beschichtung umfassende glas-plättchen
EP4355827A1 (de) Flammgeschützte polycarbonat-zusammensetzungen mit hohem cti

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12794706

Country of ref document: EP

Kind code of ref document: A1