WO2013079514A1 - Schwefel-freie übergangsmetall-isocyanat-basierte ionische flüssigkeiten - Google Patents

Schwefel-freie übergangsmetall-isocyanat-basierte ionische flüssigkeiten Download PDF

Info

Publication number
WO2013079514A1
WO2013079514A1 PCT/EP2012/073804 EP2012073804W WO2013079514A1 WO 2013079514 A1 WO2013079514 A1 WO 2013079514A1 EP 2012073804 W EP2012073804 W EP 2012073804W WO 2013079514 A1 WO2013079514 A1 WO 2013079514A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquids
cations
sulfur
methylimidazolium
liquids according
Prior art date
Application number
PCT/EP2012/073804
Other languages
English (en)
French (fr)
Inventor
Martin Köckerling
Tim PEPPEL
Original Assignee
Universität Rostock
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Rostock filed Critical Universität Rostock
Publication of WO2013079514A1 publication Critical patent/WO2013079514A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • C07D213/20Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5463Compounds of the type "quasi-phosphonium", e.g. (C)a-P-(Y)b wherein a+b=4, b>=1 and Y=heteroatom, generally N or O
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to sulfur-free transition metal isocyanate-based ionic liquids, a process for their preparation and their use.
  • Ionic liquids are salts which have a melting point below 373 K (100 ° C) (P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926-3945). They have very good dissolving properties for organic, inorganic and also polymeric substances. The interest in them is largely based on their diverse and unusual characteristics. Many previously known ionic liquids are flame retardant, have high decomposition temperatures and large electrochemical potential ranges in which they are not reduced or oxidized, and are not corrosive. These specific properties give rise to a variety of applications for ionic liquids (eg NV Plechova, KR Seddon, Chem. Soc. Rev.
  • a special class is represented by the ionic liquids in which, in addition to organic cations, paramagnetic transition metal complex anions are present (eg S. Hayashi, H. O Hamaguchi, Chem. Lett., 2004, 33, 1590-1591, T. Peppel, M. Köckerling M. Geppert-Rybczynska, RV Ralys, JK Lehmann, SP Verevkin, A. Heintz, Angew Chem 2010, 722, 7270-7274; B. Mallick, B. Balke, C. Felser, A.V. Mudring Angew Chem. 2008, 120, 7747-7750).
  • paramagnetic transition metal complex anions eg S. Hayashi, H. O Hamaguchi, Chem. Lett., 2004, 33, 1590-1591, T. Peppel, M. Köckerling M. Geppert-Rybczynska, RV Ralys, JK Lehmann, SP Verevkin, A. Heintz
  • magnetic ionic liquids They are referred to as "magnetic ionic liquids.”
  • these magnetic ionic liquids exhibit a pronounced paramagnetism, and some compounds of this class containing complex anions with halide ligands (Cl, Br, or I) are already in EP 1 71 1 472 A1 and in the non-patent literature (eg in T. Peppel, M. Köckerling, M. Geppert-Rybczynska, RV Ralys, JK Lehmann, SP Verevkin, A. Heintz, Angew Chem 2010, 122 Mallick, B. Balke, C. Felser, A.V. Mudring Angew Chem .. 2008, 120, 7747-7750).
  • halide ligands Cl, Br, or I
  • Ionic cobalt-based liquids which already have improved viscosity and solubility in some solvents, are described in T. Peppel et al. (Peppel, M. Köckerling, M. Geppert-Rybczynska, RV Ralys, JK Lehmann, SP Verevkin, A. Heintz, Angew Chem 2010, 722, 7270-727, 4). These compounds contain sulfur-containing isothiocyanate ligands and have the structural formula A x [Co (NCS) 4 ], where x is one or two and the cation A is, for example, 1-ethyl-3-methylimidazolium.
  • the object of the present invention was therefore to provide sulfur-free ionic liquids which overcome the abovementioned disadvantages.
  • a process has also been sought which can yield reaction products which have no traces of silver.
  • M is a divalent metal cation selected from manganese 2+ , nickel 2+ and cobalt 2+ ; d represents one or two;
  • A is selected from quaternary ammonium cations, quaternary phosphonium cations, imidazolium cations, N, N '- (CH 2 ) n -diimidazolium cations, pyridinium cations, N, N' - (CH 2 ) n -dipyridinium cations, pyrrolidinium cations. and bipyridinium cations, wherein
  • n is an integer between 1 and 5
  • These materials do not contain sulfur atoms, making them suitable for applications such as engine or pump applications. They have low viscosities (for example in the range of 50-1500 mPa s at room temperature), are stable to water and oxygen and are readily soluble in many solvents, both polar and non-polar, such as water, acetonitrile, dimethyl sulfoxide, dichloromethane or nitromethane , The glass transition temperatures or melting points are surprisingly well below room temperature (293 K, 20 ° C) or at least below 100 ° C. Paramagnetism is given for all agents.
  • the imidazolium cations preferably have the general formula (II) and the ⁇ , ⁇ '- (CH 2 ) n -diimidazolium cations have the general formula (II I), these formulas also include isomeric imidazolinium and imidazolidinium cations:
  • R ⁇ R 2, R 3, R 4, R 5, R 6, R 7, Rs are each independently hydrogen, Ci-Cis-alkyl, C6-Ci2 aryl (fused or isolated at Polycylcen rings) or C 5 -C 2 - cycloalkyl (at Polycylcen fused or bridged rings), where the radicals mentioned independently unsubstituted or substituted by one or more functional groups, C 5 -C 6 -aryl, -C 6 alkyl, C 5 -C 6 -aryloxy, -C 6 alkyloxy groups, halogen atoms, or C 2 - C 5 - Heterocycles are substituted or contain one or more heteroatoms (O, N, S, or P) and
  • n is an integer between 1 and 3.
  • the pyridinium cations preferably have the general formula (IV) and the ⁇ , ⁇ '- (CH 2 ) n -Dipyridinium cations the general formula (V), wherein pyridazinium, pyrimidinium and pyrazinium cations also includes are:
  • residues RR 6 or RR 10 and n have the meaning already mentioned for the imidazolium cations to RR 8 and n.
  • the quaternary ammonium cations preferably have the formula [NR 1 R 2 R 3 R 4] + and the quaternary phosphonium cations have the formula [PR ! R 2 R 3 R 4 ] + , where the radicals RR 4 have the meaning already mentioned for the imidazolium cations to RR 8 .
  • n is one or two, preferably one.
  • ligand A in one embodiment it is preferred that
  • A is selected from 1-methylimidazolium (Mim), 1, 3-dimethylimidazolium (DMIm), 1-ethyl-3-methylimidazolium (EMIm), 1, 3-diethylimidazolium (DEIm), 1-methyl-3-n-propylimidazolium ( PMIm), 1-methyl-3 / so-propylimidazolium (i-PMIm), 1-n-butyl-3-methylimidazolium (BMIm), 1- '' -butyl-3-methylimidazolium (i-BMIm), 1 -Methyl 3-pentylimidazolium (PentMlm), 1-hexyl-3-methylimidazolium (HexMIm), 1-heptyl-3-methylimidazolium (HeptMIm), 1-methyl-3-octylimidazolium (OctMIm), 1-methyl-3 nonylimidazolium (NonMIm), 1-allyl-3-methylimi
  • A is selected from 3, 3'-dimethyl-1, 1'-methylenediimidazolium (DMDIm), 3,3 '- (ethane-1, 2-diyl) bis (1-methylimidazolium) (EMDIm), 3,3' - ( Propane-1,3-diyl) bis (1-methylimidazolium (PMDIm), 3,3 '- (butane-1, 4-diyl) bis (1-methylimidazolium (BMDIm) and 3,3'-methylenebis (1-butyl) -imidazolium) (DBMDIm).
  • cobalt 2+ is preferred as the metal cation.
  • EMIm 1-ethyl-3-methylimidazolium
  • But 4 N tetra-n-butylammonium
  • the metal cation is nickel 2+ .
  • d is one and I is two and A is selected from tetramethylammonium (Me 4 N), tetra-n-butylammonium (But N), triethylbenzylammonium (Et 3 BnN), tri-n-butylbenzylammonium (Bu 3 BnN), triphenylethylphosphonium (Ph 3 EtP), 1-ethyl-3-methylimidazolium (EMIm) and bis (triphenylphosphine) iminium [(Ph 3 P) 2 N].
  • the metal cation is preferably manganese 2+ .
  • the sulfur-free ionic liquids according to the invention are -ggf. at the same time used as solvent and catalyst.
  • Other uses are as a liquid magnet or as a magnetizable addition to the membranes.
  • they are used as a magnetically manipulable additive in electrode materials for batteries or as a magnetically manipulatable additive in fuel cells.
  • the sulfur-free ionic liquids according to the invention are prepared by a process in which
  • the metal (II) and the cation A have the meaning mentioned above.
  • the halides are selected from chloride, bromide and iodide in both the metal halide and the halide salt of Cation A.
  • the alkali metal cyanate alkalis are preferably potassium or sodium.
  • the reaction takes place in water (at room temperature) or in acetone (at temperatures above 50 ° C., preferably at reflux under atmospheric pressure, 10.1325 Pa) for at least 30 minutes (preferably four hours).
  • a ratio of water: acetone is preferably between 1:10 and 10: 1, more preferably between 1: 5 and 5: 1, most preferably 1: 1.
  • the sulfur-free ionic liquid in the case of using water as a solvent, the sulfur-free ionic liquid by repeated (preferably fourfold) extraction with nitromethane, followed by drying the combined extraction liquid, z. B. with magnesium sulfate, and removal of the solvent under reduced pressure (compared to atmospheric pressure).
  • the precipitated alkali halide is separated by filtration, and the sulfur-free ionic liquid is isolated by removing the solvent under reduced pressure (as compared with normal pressure).
  • Further purification of the sulfur-free ionic liquid can be carried out by dissolving in dichloromethane, filtration and removal of the solvent under reduced pressure (in comparison to normal pressure) and heating to temperatures above room temperature (preferably to temperatures between 60 ° C. and 100 ° C.) High vacuum.
  • the production of sulfur-free ionic liquids can be carried out in two variants, one water-based and one water-free.
  • the molar ratio of metal halide: alkali cyanate: organic cation A (halide salt) in both variants is preferably between 1: 1, 1: 1, 1 and 1: 20: 10. Particularly preferred is a molar ratio of metal halide Alkali cyanate: organic cation A (halide salt) of 1: 4: 2.
  • the extract is dried over sodium sulfate and the solvent removed in vacuo.
  • the product may be dissolved in dichloromethane, filtered and the solvent removed again in vacuo. Further purification of adherent water can be carried out by heating in a high vacuum.
  • Variant II / acetone variant A weighed amount of metal (II) halide (MCI 2 or MBr 2 or Ml 2 ), a molar excess of alkali metal cyanate (KOCN, NaOCN) and a molar excess of the halide of the organic cation AX are added Acetone as the solvent for at least 30 min (preferably four hours) heated to reflux. After cooling, the precipitated alkali halide is filtered off and the solvent is removed in vacuo. The residue is dissolved in a little dichloromethane, filtered through a hard filter and then stripped of the solvent in vacuo. Further drying can take place in a diffusion pump vacuum at 60 ° C.
  • PeMIm 1, 2,3,4,5-pentamethylimidazolium DML, dimethyl, 1, 3-dimethyl-2,4,5-triphenylimidazolium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

Die vorliegende Erfindung betrifft Schwefel-freie Übergangsmetall-lsocyanat-basierte ionische Flüssigkeiten, ein Verfahren zur deren Herstellung und deren Verwendung. Die Schwefel-freien Übergangsmetall-lsocyanat-basierten ionischen Flüssigkeiten weisen die allgemeine Formel (I) auf, worin MII ein zweiwertiges Metallkation ausgewählt aus Mangan2+, Nickel2+ und Kobalt2+ ist; d eins oder zwei bedeutet; I eins oder zwei bedeutet; und A ausgewählt ist aus quartären Ammoniumkationen, quartären Phosphoniumkationen, Imidazolium-Kationen, N, N'-(CH2)n-Diimidazolium-Kationen, Pyridinium-Kationen, N, N'-(CH2)n-Dipyridinium-Kationen, Pyrrolidinium- und Bipyridinium-Kationen, wobei n eine ganze Zahl zwischen 1 und 5 ist und wobei d, A und I so ausgewählt sind, dass sich insgesamt für Ad+ i die Ladung 2+ ergibt.

Description

Schwefel-freie Übergangsmetall-lsocyanat-basierte ionische Flüssigkeiten
Die vorliegende Erfindung betrifft Schwefel-freie Übergangsmetall-lsocyanat-basierte ionische Flüssigkeiten, ein Verfahren zur deren Herstellung und deren Verwendung.
Ionische Flüssigkeiten sind Salze, die einen Schmelzpunkt unterhalb 373 K (100°C) aufweisen (P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926-3945). Sie besitzen sehr gute Lösungseigenschaften für organische, anorganische und auch polymere Substanzen. Das an ihnen bestehende Interesse beruht zum großen Teil auf ihren vielfältigen und ungewöhnlichen Eigenschaften. Viele bisher bekannte ionische Flüssigkeiten sind schwer entflammbar, haben hohe Zersetzungstemperaturen und große elektrochemische Potentialbereiche, in denen sie nicht reduziert oder oxidiert werden und sind nicht korrosiv. Aufgrund dieser spezifischen Eigenschaften ergeben sich vielfältige Anwendungsgebiete für ionische Flüssigkeiten (z.B. N. V. Plechova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123-150 oder R. D. Rogers, K. R. Seddon (Hrsg.)„lonic Liquids - Industrial Applications to Green Che- mistry", ACS-Symposium Series 818, 2002, ISBN 0841237891), beispielsweise im elektrochemischen Bereich (z.B. M. C. Buzzero, R. G. Evans, R. G. Compton, ChemPhysChem 2004, 5, 1 106-1120 oder F. Endres, S. Z. El Abedin Phys. Chem. Chem. Phys. 2006, 8, 2101-2116) oder als Schmiermittel (F. Zhou, Y. Liang, W. Liu, Chem. Soc. Rev. 2009, 38, 2590-2599).
Eine besondere Klasse stellen die ionischen Flüssigkeiten dar, in denen neben organischen Kationen paramagnetische Übergangsmetall-Komplexanionen vorliegen (z.B. S. Hayashi, H.- o Hamaguchi, Chem. Lett. 2004, 33, 1590-1591 ; T. Peppel, M. Köckerling, M. Geppert- Rybczynska, R. V. Ralys, J. K. Lehmann, S. P. Verevkin, A. Heintz, Angew. Chem. 2010, 722,7270-7274; B. Mallick, B. Balke, C. Felser, A.-V. Mudring Angew. Chem. 2008, 120, 7747-7750). Sie werden als„magnetische ionische Flüssigkeiten" bezeichnet. Zusätzlich zu den bereits genannten Eigenschaften weisen diese magnetischen ionischen Flüssigkeiten einen ausgeprägten Paramagnetismus auf. Einige Substanzen dieser Klasse, die Komplex- anionen mit Halogenidliganden (Cl, Br oder I) enthalten, sind bereits in EP 1 71 1 472 A1 erwähnt, sowie in der Nicht-Patentliteratur (z.B. in T. Peppel, M. Köckerling, M. Geppert- Rybczynska, R. V. Ralys, J. K. Lehmann, S. P. Verevkin, A. Heintz, Angew. Chem. 2010, 122, 7270-7274; B. Mallick, B. Balke, C. Felser, A.-V. Mudring Angew. Chem. 2008, 120, 7747-7750). Weiterhin ist bereits von Anwendungen, insbesondere der Verbindung
BMIm[FeCI4], berichtet worden (siehe z.B. US 2011/0020509 A1 oder WO 2009/080648 A1). Ein großer Nachteil vieler bisher beschriebener, auf Komplexanionen mit Halogenidliganden basierender ionischer Flüssigkeiten ist eine hohe Hydrolyse- und/oder Oxidationsempfind- lichkeit, d.h. sie reagieren mit Wasser, Luftfeuchtigkeit und/oder Luftsauerstoff. Ein weiterer Nachteil ist die hohe Viskosität, d.h. sie sind in der Technik nur schwer oder unter hohem Energieaufwand handhabbar. Ebenfalls nachteilig ist die völlige Unlöslichkeit/ Nichtmisch- barkeit mit Wasser. Weiterhin liefert die Salzmetathese-Reaktion analog zur von Forster und Goodgame vorgeschlagenen Umsetzung (D. Forster, D. M. L. Goodgame, J. Chem. Soc. 1964, 2790-2798) der entsprechenden Tetrahalogenidocobaltate(ll) mit Silbercyanat in Aceton bzw. Nitromethan, Reaktionsprodukte, die mit nicht abzutrennenden Silberspuren verunreinigt sind.
Ionische Cobalt-basierte Flüssigkeiten, welche bereits eine verbesserte Viskosität und eine gesteigerte Löslichkeit in einigen Lösungsmitteln aufweisen, sind in T. Peppel et al. offenbart (T. Peppel, M. Köckerling, M. Geppert-Rybczynska, R. V. Ralys, J. K. Lehmann, S. P. Verev- kin, A. Heintz, Angew. Chem. 2010, 722,7270-727 '4). Diese Verbindungen enthalten schwefelhaltige Isothiocyanat-Liganden und weisen die Strukturformel Ax[Co(NCS)4] auf, wobei x eins oder zwei ist und das Kation A beispielsweise 1-Ethyl-3-methylimidazolium ist.
Ein essentieller Nachteil hierbei ist allerdings das Vorliegen von Schwefelatomen, da die entsprechenden ionischen Flüssigkeiten für Anwendungen z.B. im Motoren- oder Pumpenbereich ungeeignet sind.
Aufgabe der vorliegenden Erfindung war daher die Bereitstellung von Schwefel-freien ionischen Flüssigkeiten, die die oben genannten Nachteile überwinden. In diesem Zusammenhang wurde auch nach einem Verfahren gesucht, welches Reaktionsprodukte liefern kann, die keine Silberspuren aufweisen.
Die Aufgabe wird mit Schwefel-freien ionischen Flüssigkeiten gemäß Anspruch 1 sowie durch deren Verwendung gemäß Anspruch 15 und durch ein Herstellungsverfahren gemäß Anspruch 16 gelöst. Bevorzugte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.
In anderen Worten wird die Aufgabe mit Schwefel-freien ionischen Flüssigkeiten der allgemeinen Formel (I) i[M"(NCO)4] gelöst, worin
M" ein zweiwertiges Metallkation ausgewählt aus Mangan2+, Nickel2+ und Kobalt2+ ist; d eins oder zwei bedeutet;
I eins oder zwei bedeutet;
und
A ausgewählt ist aus quartären Ammoniumkationen, quartären Phosphoniumkationen, Imidazolium-Kationen, N, N'-(CH2)n-Diimidazolium-Kationen, Pyridinium-Kationen, N, N'-(CH2)n-Dipyridinium-Kationen, Pyrrolidinium- und Bipyridinium-Kationen, wobei
n eine ganze Zahl zwischen 1 und 5 ist
und wobei d, A und I so ausgewählt sind, dass sich insgesamt für Ad+i die Ladung 2+ ergibt.
Diese Materialien enthalten keine Schwefelatome, wodurch sie für Anwendungen beispielsweise im Motoren- oder Pumpenbereich geeignet sind. Sie weisen niedrige Viskositäten auf (beispielsweise im Bereich von 50 - 1500 mPa s bei Raumtemperatur), sind stabil gegen Wasser und Sauerstoff und in vielen Lösungsmitteln, sowohl polaren als auch unpolaren, wie beispielsweise Wasser, Acetonitril, Dimethylsulfoxid, Dichlormethan oder Nitromethan, gut löslich. Die Glasübergangstemperaturen bzw. Schmelzpunkte liegen überraschenderweise deutlich unterhalb von Raumtemperatur (293 K, 20°C) bzw. zumindest unterhalb von 100°C. Paramagnetismus ist für alle Vertreter gegeben.
Imidazolium-Kationen
Die Imidazolium-Kationen weisen vorzugsweise die allgemeine Formel (I I) und die Ν ,Ν'- (CH2)n-Diimidazolium-Kationen die allgemeine Formel (II I) auf, wobei diese Formeln ebenfalls isomere Imidazolinium- und Imidazolidinium-Kationen umfassen:
Figure imgf000004_0001
Die Reste R^ R2, R3, R4, R5, R6, R7, Rs sind unabhängig voneinander jeweils Wasserstoff, Ci-Cis-Alkyl, C6-Ci2-Aryl (bei Polycylcen annelierte oder isolierte Ringe) oder C5-Ci2- Cycloalkyl (bei Polycylcen kondensierte oder verbrückte Ringe), wobei die genannten Reste unabhängig voneinander unsubstituiert oder durch ein oder mehrere funktionelle Gruppen, C5-C6-Aryl-, CrC6-Alkyl-, C5-C6-Aryloxy-, CrC6-Alkyloxy-Gruppen, Halogenatome oder C2- C5-Heterocyclen substituiert sind oder ein oder mehrere Heteroatome enthalten (O, N, S, oder P) und
wobei
n eine ganze Zahl zwischen 1 und 3 ist. Pyridinium-Kationen
Die Pyridinium-Kationen weisen vorzugsweise die allgemeine Formel (IV) und die Ν,Ν'- (CH2)n-Dipyridinium-Kationen die allgemeine Formel (V) auf, wobei Pyridazinium-, Pyrimidi- nium- und Pyrazinium-Kationen ebenfalls umfasst sind:
Figure imgf000005_0001
Die Reste R R6 bzw. R R10 und n haben die bereits zu den Imidazolium-Kationen zu R R8 und n genannte Bedeutung.
Quartäre Ammoniumkationen und quartäre Phosphoniumkationen
Die quartären Ammoniumkationen weisen vorzugsweise die Formel [NR1R2R3R4]+ und die quartären Phosphoniumkationen die Formel [PR!R2R3R4]+ auf, wobei die Reste R R4 die bereits zu den Imidazolium-Kationen zu R R8 genannte Bedeutung haben.
Sowohl bei den Imidazolium-, als auch den Pyridinium- sowie den Ammonium- bzw. Phso- phonium-Kationen ist es besonders bevorzugt, dass jeweils zwei bis vier der Reste R R4 bzw. R1-R5 bzw. R R8 bzw. R R10 ausgewählt sind aus CrCi8-Alkyl, C6-Ci2-Aryl und C5-Ci2- Cycloalkyl und die verbleibenden Reste R Wasserstoff sind. Stärker bevorzugt ist es, wenn alle vier Reste R R4 ausgewählt sind aus d-C18-Alkyl, C6-C12-Aryl und C5-C12-Cycloalkyl. Dies ist höchst bevorzugt bei den Ammonium- bzw. Phosphonium-Kationen. Hinsichtlich des Index n ist es bei allen Varianten besonders bevorzugt, dass n eins oder zwei, vorzugsweise eins, ist. Bezüglich des Liganden A ist es in einer Ausführungsform bevorzugt, dass
d eins und I zwei ist
und
A ausgewählt ist aus 1-Methylimidazolium (Mim), 1 ,3-Dimethylimidazolium (DMIm), 1-Ethyl- 3-methylimidazolium (EMIm), 1 ,3-Diethylimidazolium (DEIm), 1-Methyl-3-n-propylimidazolium (PMIm), 1-Methyl-3-/so-propylimidazolium (i-PMIm), 1-n-Butyl-3-methylimidazolium (BMIm), 1-/'so-Butyl-3-methylimidazolium (i-BMIm), 1-Methyl-3-pentylimidazolium (PentMlm), 1-Hexyl- 3-methylimidazolium (HexMIm), 1-Heptyl-3-methylimidazolium (HeptMIm), 1-Methyl-3-octyl- imidazolium (OctMIm), 1-Methyl-3-nonylimidazolium (NonMIm), 1-Allyl-3-methylimidazolium (AllylMIm), 1-Methyl-3-propagylimidazolium (PropargylMIm), 1-Methyl-3-phenylpropylimi- dazolium (PhPrMIm), 1 ,2,3,4,5-Pentalmethylimidazolium (PeMIm), Dimethyllophin (1 ,3-Di- methyl-2,4,5-Triphenylimidazol, DML oder DMTPhlm), 1 ,3-Dibutyl-1 ,4,5-trimethylimidazolium (DBTMIm), Ethylpyridinium (EPy), Butylpyridinium (BPy) und Bis(triphenylphosphin)iminium [(Ph3P)2N].
Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass
d zwei und I eins ist
und
A ausgewählt ist aus 3, 3'Dimethyl-1 , 1'-methylenediimidazolium (DMDIm), 3,3'-(Ethan-1 ,2- diyl)bis(l-methylimidazolium) (EMDIm), 3,3'-(Propan-1 ,3-diyl)bis(1-methylimidazolium (PMDIm), 3,3'-(Butan-1 ,4-diyl)bis(1-methylimidazolium (BMDIm) und 3,3'-Methylenbis(1- butyl-imidazolium) (DBMDIm).
Insbesondere bei diesen beiden vorstehend genannten Ausführungsformen ist als Metallkation Kobalt2+ bevorzugt.
Eine weitere bevorzugte Kombination aus Ligand A und Metall ist dadurch gekennzeichnet, dass
d eins und I zwei ist,
A 1-Ethyl-3-methylimidazolium (EMIm) oder Tetra-n-butylammonium (But4N) und
das Metallkation Nickel2+ ist.
Eine weitere bevorzugte Variante der Schwefel-freien ionischen Flüssigkeiten ist dadurch gekennzeichnet, dass
d eins und I zwei ist und A ausgewählt ist aus Tetramethylammonium (Me4N), Tetra-n-butylammonium (But N), Trie- thyl-benzylammonium (Et3BnN), Tri-n-butyl-benzylammonium (Bu3BnN), Triphenylethylphos- phonium (Ph3EtP), 1 -Ethyl-3-methylimidazolium (EMIm) und Bis(triphenylphosphin)iminium [(Ph3P)2N]. Hierbei ist das Metallkation vorzugsweise Mangan2+.
Die erfindungsgemäßen Schwefel-freien ionischen Flüssigkeiten werden -ggf. gleichzeitig- als Lösungsmittel und Katalysator verwendet. Weitere Verwendungen sind die als flüssiger Magnet oder als magnetisierbarer Zusatz zur Membranen. Ebenso werden sie als magnetisch manipulierbarer Zusatz in Elektrodenmaterialien für Batterien oder als magnetisch manipulierbarer Zusatz in Brennstoffzellen eingesetzt.
Die Herstellung der erfindungsgemäßen Schwefel-freien ionischen Flüssigkeiten erfolgt über ein Verfahren, bei welchem
a) ein Metall' -halogenid,
b) ein Alkalicyanat im molaren Überschuss, vorzugsweise in vierfacher molarer Menge, im Vergleich zum Metalf-halogenid, und
c) ein organisches Kation A in Form seines Halogenidsalzes (AX, X=Halogenid) im molaren Überschuss, vorzugsweise in zweifacher molarer Menge, im Vergleich zum Metall' -halogenid umgesetzt werden.
Das Metall(ll) und das Kation A haben die eingangs genannte Bedeutung. Die Halogenide sind sowohl beim Metall"-halogenid als auch beim Halogenidsalz des Kations A ausgewählt aus Chlorid, Bromid und lodid. Die Alkali des Alkalicyanats sind vorzugsweise Kalium oder Natrium.
Die Umsetzung erfolgt in Wasser (bei Raumtemperatur) oder in Aceton (bei Temperaturen oberhalb von 50°C, vorzugsweise bei Sieden unter Rückfluss bei Normaldruck, 10.1325 Pa) für mindestens 30 min (vorzugsweise vier Stunden).
Bei der Umsetzung in Wasser können, insbesondere bei Verwendung von Dikationen A (d= 2, 1 = 1 ), Mischungen aus Wasser und Aceton eingesetzt werden. Bevorzugt ist ein Verhältnis Wasser : Aceton zwischen 1 : 10 und 10: 1 , besonders bevorzugt zwischen 1 :5 und 5: 1 , höchst bevorzugt 1 : 1 .
Bei Einsatz von Aceton als Lösungsmittel werden diesem vorzugsweise 1 -25 Volumenprozent, mehr bevorzugt 10-20 Volumenprozent, höchst bevorzugt 15 Volumenprozent, DMSO zugefügt. Dies ist aufgrund einer besseren Löslichkeit der Edukte bei der Herstellung derjenigen ionischen Flüssigkeiten bevorzugt, welche Dikationen A enthalten (d= 2, 1 = 1 ).
Im Falle der Verwendung von Wasser als Lösungsmittel wird die Schwefel-freie ionische Flüssigkeit durch mehrfache (vorzugsweise vier-fache) Extraktion mit Nitromethan, anschließende Trocknung der vereinigten Extraktionsflüssigkeit, z. B. mit Magnesiumsulfat, und Entfernung des Lösungsmittels unter vermindertem Druck (im Vergleich zu Normaldruck) gewonnen. Im Falle der Verwendung von Aceton als Lösungsmittel wird das ausgefallene Alka- lihalogenid durch Filtration abgetrennt und die Schwefel-freie ionische Flüssigkeit dadurch isoliert, dass das Lösungsmittel unter vermindertem Druck (im Vergleich zu Normaldruck) entfernt wird.
Eine weitere Reinigung der Schwefel-freien ionischen Flüssigkeit kann durch Auflösen in Dichlormethan, Filtration und Abtrennung des Lösungsmittels unter vermindertem Druck (im Vergleich zu Normaldruck) sowie Erwärmen auf Temperaturen oberhalb der Raumtemperatur (bevorzugt auf Temperaturen zwischen 60 °C und 100 °C) im Hochvakuum erfolgen.
Da das erfindungsgemäße Verfahren ohne die Verwendung von Silberverbindungen auskommt, sind entsprechend auch keine nachteiligen Silberrückstände im Reaktionsprodukt zu finden.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen.
Ausführungsbeispiele
Die Herstellung der Schwefel-freien ionischen Flüssigkeiten kann in zwei Varianten, einer Wasser basierten und einer Wasser-freien erfolgen.
Das molare Verhältnis Metall' -halogenid : Alkalicyanat : organisches Kation A (Halogenid- salz) liegt bei beiden Varianten vorzugsweise zwischen 1 : 1 , 1 : 1 , 1 und 1 :20: 10. Besonders bevorzugt ist ein molares Verhältnis Metall' -halogenid : Alkalicyanat : organisches Kation A (Halogenidsalz) von 1 :4:2.
Variante I / H^O- Variante: Das Halogenid des organischen Kations AX (X = Cl, Br oder I), Alkalicyanat (z. B. KOCN oder NaOCN) und das zweiwertige Metallhalogenid (MCI2, MBr2 oder Ml2) werden in Wasser aufgelöst, für mindestens 30 min gerührt und dann die ionische Flüssigkeit mit Nitromethan mehrfach extrahiert. Das Extrakt wird über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum entfernt. Zur weiteren Reinigung kann das Produkt in Dichlormethan aufgelöst, filtriert und das Lösungsmittel wieder im Vakuum entfernt werden. Eine weitere Reinigung von anhaftendem Wasser kann durch Erwärmen im Hochvakuum erfolgen. Im Fall von Dikationen, A2+ (I = 1) wird die Reaktion in einer 1 : 1-Mischung aus Wasser und Aceton durchgeführt.
Variante II / Aceton-Variante: Eine abgewogene Menge Metall(ll)-halogenid (MCI2 oder MBr2 oder Ml2), ein molarer Überschuss Alkalicyanat (KOCN, NaOCN) und ein molarer Über- schuss des Halogenids des organischen Kations AX werden mit Aceton als Lösungsmittel für mindestens 30 min (vorzugsweise vier Stunden) unter Rückfluss erhitzt. Nach dem Abkühlen wird das ausgefallene Alkalihalogenid abfiltriert und im Vakuum das Lösungsmittel entfernt. Der Rückstand wird in wenig Dichlormethan gelöst, durch ein hartes Filter filtriert und anschließend im Vakuum das Lösungsmittel abgezogen. Eine weitere Trocknung kann im Diffusionspumpenvakuum bei 60 °C erfolgen.
Aufgrund einer besseren Löslichkeit der Edukte werden für die verfahrensmäßige Herstellung derjenigen ionischen Flüssigkeiten, welche Dikationen enthalten (d= 2, 1 = 1), dem Aceton 15 Volumenprozent DMSO zugefügt.
Beispiel 1 : (EMIm)7rCo(NCO
Bis(1-ethyl-3-methylimidazolium)-tetra(isocyanato)cobaltat(ll)
0,85 g (6,55 mmol) Cobalt(ll)-chlorid, 2, 18 g (26,84 mmol) Kaliumcyanat und 1 ,49 g (13,42 mmol) 1-Ethyl-3-methylimidazoliumchlorid (EMImCI) werden in 100 mL Aceton 4 h unter Rückfluss erhitzt. Nach dem Abkühlen wird vom Kaliumchlorid filtriert und bis zur Trockene im Vakuum vom Lösungsmittel befreit. Der Rückstand wird in wenig Dichlormethan gelöst, durch ein hartes Filter filtriert und anschließend im Vakuum vom Lösungsmittel befreit. Nach dem Trocknen im Diffusionspumpenvakuum bei ca. 60 °C erhält man eine dunkelblaue, leicht bewegliche Flüssigkeit, Ausbeute 1 ,82 g (54 %). Glasübergang: -78 °C.
Beispiel 2: (DBMDIm)rCo(NCO)£l
3,3'-Methylenbis(1-butylimidazolium)-tetra(isocyanato)cobaltat(ll)
0,85 g (6,55 mmol) Cobalt(ll)-chlorid, 2, 18 g (26,84 mmol) Kaliumcyanat und 1 ,76 g (6,70 mmol) DBMDImCI, 3,3'-Methylenbis(1-butyl-imidazolium)chlorid, werden in einer Mischung aus 100 ml_ Aceton und 15 mL DMSO 4 h unter Rückfluss erhitzt. Nach dem Abkühlen wird vom Kaliumchlorid abfiltriert und bis zur Trockene im Vakuum vom Lösungsmittel befreit. Der Rückstand wird in wenig Dichlormethan gelöst, filtriert und anschließend im Vakuum vom Lösungsmittel befreit. Nach dem Trocknen im Diffusionspumpenvakuum bei ca. 60 °C erhält man einen blauen Feststoff, Ausbeute: 96 %. Schmp. 91 °C.
Beispiel 3: (BuUM NKNCO^l
Bis(tetrabutylammonium)-tetra(isocyanato)nickelat(ll)
0,65 g (5 mmol) Nickel(ll)-chlorid, 2,92 g (21 mmol) Kaliumcyanat und 1 ,70 g (10,5 mmol) But4NCI, Tetrabutylammonium-chlorid, werden in 100 mL Aceton 4 h unter Rückfluss erhitzt. Nach dem Abkühlen wird vom Kaliumchlorid abfiltriert und bis zur Trockene im Vakuum vom Lösungsmittel befreit. Der Rückstand wird in wenig Dichlormethan gelöst, filtriert und anschließend im Vakuum vom Lösungsmittel befreit. Nach dem Trocknen im Diffusionspumpenvakuum bei ca. 80 °C erhält man eine blaue Flüssigkeit, Ausbeute: 97 %. Schmp. -21 °C.
Nach dem gleichen Verfahren wurden insgesamt die nachfolgend genannten Verbindungen hergestellt, wobei auf die Angabe der Details aufgrund der Übereinstimmung zu den Beispielen 1-3 verzichtet wird:
1) A2[Co"(NCO)4]
d = 1 , 1 = 2 A = Mim, 1-Methylimidazolium
DMIm, 1 ,3-Dimethylimidazolium
EMIm, 1-Ethyl-3-methylimidazolium
DEIm, 1 ,3-Diethylimidazolium
PMIm, 1-Methyl-3-n-propylimidazolium
i-PMIm, 1-Methyl-3-i-propylimidazolium
BMIm, 1-n-Butyl-3-methylimidazolium
i-BMIm, 1-i-Butyl-3-methylimidazolium
PentMIm, 1-Methyl-3-pentylimidazolium
HexMIm, 1-Hexyl-3-methylimidazolium
HeptMIm, 1-Heptyl-3-methylimidazolium
OctMIm, 1-Methyl-3-octylimidazolium
NonMIm, 1-Methyl-3-nonylimidazolium
AllylMIm, 1-Allyl-3-methylimidazolium
PropargylMIm, 1-Methyl-3-propagylimidazolium
PhPrMIm, 1-Methyl-3-phenylpropylimidazolium
PeMIm, 1 ,2,3,4,5-Pentamethylimidazolium DML, Dimethyllophin, 1 ,3-Dimethyl-2,4,5-triphenylimidazolium
DBTMIm, 1 ,3-Dibutyl-1 ,4,5-trimethylimidazolium
EPy, Ethylpyridinium
BPy, Butylpyridinium
(Ph3P)2N, Bis(triphenylphosphin)iminium
2) A[Co"(NCO)4]
d = 2, I = 1 A = DMDIm, 3,3'-Dimethyl-1 , 1'-methylenediinnidazolium
EMDIm, 3,3'-(Ethan-1 ,2-diyl)bis(1-methylimidazolium
PMDIm, 3,3'-(Propan-1 ,3-diyl)bis(1-methylimidazolium BMDIm, 3,3'-(Butan-1 ,4-diyl)bis(1-methylimidazolium
DBMDIm, 3,3'-Methylenbis(1-butyl-imidazolium)
3) A2[Ni"(NCO)4]
EMIm, 1-Ethyl-3-methylimidazolium
ButtN, Tetra-n-butylammonium
4) A2[Mn"(NCO)4]
d= 1 , 1 = 2 A = Me4N, Tetramethylammonium
ButtN, Tetra-n-butylammonium
Et3BnN, Triethyl-benzylammonium
Bu3BnN, Tri-n-butyl-benzylammonium
Ph3EtP, Triphenylethylphosphonium
EMIm, 1-Ethyl-3-methylimidazolium
(Ph3P)2N, Bis(triphenylphosphin)iminium

Claims

Patentansprüche
Schwefel-freie ionische Flüssigkeiten der allgemeinen Formel (I)
Figure imgf000012_0001
worin
M" ein zweiwertiges Metallkation ausgewählt aus Mangan2+, Nickel2+ und Kobalt2+ ist; d eins oder zwei bedeutet;
I eins oder zwei bedeutet;
und
A ausgewählt ist aus quartären Ammoniumkationen, quartären Phosphoniumkationen, Imidazolium-Kationen, N,N'-(CH2)n-Diimidazolium-Kationen, Pyridinium-Kationen, N,N'-(CH2)n-Dipyridinium-Kationen, Pyrrolidinium- und Bipyridinium-Kationen, wobei
n eine ganze Zahl zwischen 1 und 5 ist
und wobei d, A und I so ausgewählt sind, dass sich insgesamt für Ad+i die Ladung 2+ ergibt.
Schwefel-freie ionische Flüssigkeiten gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Imidazolium-Kationen die allgemeine Formel (II) und die N,N'-(CH2)nDiimidazolium-Kationen die allgemeine Formel (III) aufweisen
Figure imgf000012_0002
wobei die Reste
Ri, R2, R3, R4, R5, R6, R7, Rs unabhängig voneinander jeweils Wasserstoff, Ci-Ci8-Alkyl, C6- Ci2-Aryl oder C5-Ci2-Cycloalkyl sind, wobei die genannten Reste unabhängig voneinander unsubstituiert oder durch ein oder mehrere funktionelle Gruppen, C5-C6-Aryl-, d-C6-Alkyl-, C5-C6-Aryloxy-, CrC6-Alkyloxy-Gruppen, Halogenatome oder C2-C5-Heterocyclen substituiert sind oder ein oder mehrere Heteroatome enthalten und
wobei
n eine ganze Zahl zwischen 1 und 3 ist.
3. Schwefel-freie ionische Flüssigkeiten gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Pyridinium-Kationen die allgemeine Formel (IV) und die N,N'-(CH2)n-Dipyridinium-Kationen
Figure imgf000013_0001
(IV) (V)
wobei die Reste R R6 bzw. R R10 und n die in Anspruch 2 zu R R8 und n genannte Bedeutung haben.
4. Schwefel-freie ionische Flüssigkeiten gemäß Anspruch 1 , dadurch gekennzeichnet, dass die quartären Ammoniumkationen die Formel [NR1R2R3R4]+ und die quartären Phosphonium- kationen die Formel [PRiR2RsR ]+ aufweisen, wobei die Reste R R die in Anspruch 2 zu R R8 genannte Bedeutung haben
5. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jeweils zwei bis vier der Reste R R bzw. R1-R5 bzw. R R8 bzw. R R10 ausgewählt sind aus d-C18-Alkyl, C6-C12-Aryl und C5-C12-Cycloalkyl und die verbleibenden Reste R Wasserstoff sind.
6. Schwefel-freie ionische Flüssigkeiten gemäß Anspruch 5, dadurch gekennzeichnet, dass alle vier Reste R R ausgewählt sind aus d-Ci8-Alkyl, C6-Ci2-Aryl und C5-Ci2-Cycloalkyl.
7. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass n eins oder zwei, vorzugsweise eins, ist.
8. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
d eins und I zwei ist
und
A ausgewählt ist aus 1-Methylimidazolium (Mim), 1 ,3-Dimethylimidazolium (DMIm), 1-Ethyl- 3-methylimidazolium (EMIm), 1 ,3-Diethylimidazolium (DEIm), 1-Methyl-3-n-propylimidazolium (PMIm), 1-Methyl-3-/so-propylimidazolium ('PMIm), 1-n-Butyl-3-methylimidazolium (BMIm), 1- /'so-Butyl-3-methylimidazolium ('BMIm), 1-Methyl-3-pentylimidazolium (PentMIm), 1-Hexyl-3- methylimidazolium (HexMIm), 1-Heptyl-3-methylimidazolium (HeptMIm), 1-Methyl-3- octylimidazolium (OctMIm), 1-Methyl-3-nonylimidazolium (NonMIm), 1-Allyl-3- methylimidazolium (AllylMIm), 1-Methyl-3-propagylimidazolium (PropargylMIm), 1-Methyl-3- phenylpropylimidazolium (PhPrMIm), 1 ,2,3,4,5-Pentalmethylimidazolium (PeMIm), Dimethyl- lophin (1 ,3-Dimethyl-2,4,5-Triphenylimidazol, DML oder DMTPhlm), 1 ,3-Dibutyl-1 ,4,5- trimethylimidazolium (DBTMIm), Ethylpyridinium (EPy), Butylpyridinium (BPy) und
Bis(triphenylphosphin)iminium [(Ph3P)2N].
9. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
d zwei und I eins ist
und
A ausgewählt ist aus 3, 3'Dimethyl-1 , 1'-methylenediimidazolium (DMDIm), 3,3'-(Ethan-1 ,2- diyl)bis(l-methylimidazolium) (EMDIm), 3,3'-(Propan-1 ,3-diyl)bis(1-methylimidazolium (PMDIm), 3,3'-(Butan-1 ,4-diyl)bis(1-methylimidazolium (BMDIm) und 3,3'-Methylenbis(1- butyl-imidazolium) (DBMDIm).
10. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 8 oder 9, dadurch
gekennzeichnet, dass das Metallkation Kobalt2+ ist.
1 1. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
d eins und I zwei ist
und
A 1-Ethyl-3-methylimidazolium (EMIm) oder Tetra-n-butylammonium (But4N) ist.
12. Schwefel-freie ionische Flüssigkeiten gemäß Anspruch 11 , dadurch gekennzeichnet, dass das Metallkation Nickel2+ ist.
13. Schwefel-freie ionische Flüssigkeiten gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
d eins und I zwei ist und
A ausgewählt ist aus Tetramethylammonium (Me N), Tetra-n-butylammonium (But N), Trie- thyl-benzylammonium (Et3BnN), Tri-n-butyl-benzylammonium (Bu3BnN), Triphenylethylphos- phonium (Ph3EtP), 1-Ethyl-3-methylimidazolium (EMIm) und Bis(triphenylphosphin)iminium [(Ph3P)2N].
14. Schwefel-freie ionische Flüssigkeiten gemäß Anspruch 13, dadurch gekennzeichnet, dass das Metallkation Mangan2+ ist.
15. Verwendung der Schwefel-freien ionischen Flüssigkeiten gemäß einem oder mehreren der Ansprüche 1-14 für eine Anwendung ausgewählt aus Lösungsmittel, Katalysator, flüssiger Magnet, magnetisierbarer Zusatz zur Membranen, magnetisch manipulierbarer Zusatz in Elektrodenmaterialien für Batterien oder magnetisch manipulierbarer Zusatz in Brennstoffzellen.
16. Verfahren zur Herstellung von Schwefel-freien ionischen Flüssigkeiten gemäß einem oder mehreren der Ansprüche 1-14 durch Umsetzung
a) eines Metall' -halogenids,
b) eines Alkalicyanats im molaren Überschuss im Vergleich zum Metall' -halogenid, und c) eines organischen Kations A in Form seines Halogenidsalzes im molaren Überschuss im Vergleich zum Metall"-halogenid
in Wasser oder Aceton als Lösungsmittel für mindestens 30 min,
wobei das Metall(ll) und das Kation A die in den Ansprüchen 1-14 genannte Bedeutung haben, die Halogenide ausgewählt sind aus Chlorid, Bromid, lodid und die Alkali Kalium oder Natrium sind.
17. Verfahren zur Herstellung von der Schwefel-freien ionischen Flüssigkeiten gemäß Anspruch 16, dadurch gekennzeichnet, dass dem Aceton 1-25 Volumenprozent DMSO zugefügt werden.
PCT/EP2012/073804 2011-11-30 2012-11-28 Schwefel-freie übergangsmetall-isocyanat-basierte ionische flüssigkeiten WO2013079514A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011055859.4 2011-11-30
DE102011055859A DE102011055859A1 (de) 2011-11-30 2011-11-30 Schwefel-freie Übergangsmetall-Isocyanat-basierte ionische Flüssigkeiten

Publications (1)

Publication Number Publication Date
WO2013079514A1 true WO2013079514A1 (de) 2013-06-06

Family

ID=47326092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073804 WO2013079514A1 (de) 2011-11-30 2012-11-28 Schwefel-freie übergangsmetall-isocyanat-basierte ionische flüssigkeiten

Country Status (2)

Country Link
DE (1) DE102011055859A1 (de)
WO (1) WO2013079514A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045511A (zh) * 2019-12-27 2021-06-29 华中科技大学 含砜基环的孪连双阳离子Brönsted酸离子液体及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
DE102014226441A1 (de) * 2014-12-18 2016-06-23 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit und Verfahren zum Entfeuchten von Luft
DE102015212749A1 (de) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210478A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210484A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210481B3 (de) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit
EP3257843A1 (de) 2016-06-14 2017-12-20 Evonik Degussa GmbH Verfahren zur herstellung von hochreinem imidazoliumsalz
EP3257568B1 (de) 2016-06-14 2019-09-18 Evonik Degussa GmbH Verfahren zur entfeuchtung von feuchten gasgemischen mit ionischen flüssigkeiten
DE102016210483A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1711472A1 (de) 2004-01-26 2006-10-18 Basf Aktiengesellschaft Herstellungsmethode für ionische flüssigkeiten
WO2009080648A1 (de) 2007-12-20 2009-07-02 Proionic Production Of Ionic Substances Gmbh & Co Kg Anwendung magnetischer, ionischer flüssigkeiten als extraktionsmittel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10208822A1 (de) * 2002-03-01 2003-09-11 Solvent Innovation Gmbh Halogenfreie ionische Flüssigkeiten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1711472A1 (de) 2004-01-26 2006-10-18 Basf Aktiengesellschaft Herstellungsmethode für ionische flüssigkeiten
WO2009080648A1 (de) 2007-12-20 2009-07-02 Proionic Production Of Ionic Substances Gmbh & Co Kg Anwendung magnetischer, ionischer flüssigkeiten als extraktionsmittel
US20110020509A1 (en) 2007-12-20 2011-01-27 Roland Kalb Use of magnetic, ionic liquids as an extraction agent

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Dissertation", 1 January 2010, UNIVERSITÄT ROSTOCK, Rostock, article T PEPPEL: "Synthesen, Strukturen und Eigenschaften Cobalt(II)-basierter Ionischer Flüssigkeiten", pages: 1 - 225, XP055052895 *
"Ionic Liquids - Industrial Applications to Green Chemistry", 2002
B. MALLICK; B. BALKE; C. FELSER; A.-V. MUDRING, ANGEW. CHEM., vol. 120, 2008, pages 7747 - 7750
D. FORSTER; D. M. L. GOODGAME, J. CHEM. SOC., 1964, pages 2790 - 2798
F. ENDRES; S. Z. EI ABEDIN, PHYS. CHEM. CHEM. PHYS., vol. 8, 2006, pages 2101 - 2116
F. ZHOU; Y. LIANG; W. LIU, CHEM. SOC. REV., vol. 38, 2009, pages 2590 - 2599
M. C. BUZZERO; R. G. EVANS; R. G. COMPTON, CHEMPHYSCHEM, vol. 5, 2004, pages 1106 - 1120
N. V. PLECHOVA; K. R. SEDDON, CHEM. SOC. REV., vol. 37, 2008, pages 123 - 150
P. WASSERSCHEID; W. KEIM, ANGEW. CHEM., vol. 112, 2000, pages 3926 - 3945
S. HAYASHI; H.- O HAMAGUCHI, CHEM. LETT., vol. 33, 2004, pages 1590 - 1591
T. PEPPEL; M. KÖCKERLING; M. GEPPERT-RYBCZYNSKA; R. V. RALYS; J. K. LEHMANN; S. P. VEREVKIN; A. HEINTZ, ANGEW. CHEM., vol. 122, 2010, pages 7270 - 7274
TIM PEPPEL ET AL: "Low-Viscosity Paramagnetic Ionic Liquids with Doubly Charged [Co(NCS)4]2- Ions", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 49, no. 39, 17 September 2010 (2010-09-17), pages 7116 - 7119, XP055052896, ISSN: 1433-7851, DOI: 10.1002/anie.201000709 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045511A (zh) * 2019-12-27 2021-06-29 华中科技大学 含砜基环的孪连双阳离子Brönsted酸离子液体及其制备方法
CN113045511B (zh) * 2019-12-27 2023-03-31 华中科技大学 含砜基环的孪连双阳离子布朗斯特酸离子液体及其制备方法

Also Published As

Publication number Publication date
DE102011055859A1 (de) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2013079514A1 (de) Schwefel-freie übergangsmetall-isocyanat-basierte ionische flüssigkeiten
DE60022897T3 (de) Verfahren zur herstellung von bei umgebungstemperatur flüssigen ionischen flüssigkeiten
EP0668287B1 (de) Sulfonierte Phenylphosphane enthaltende Komplexverbindungen
DE102008010534A1 (de) Neuartige Phosphonium-Basierte ionische Flüssigkeit sowie diese verwendendes Reaktionslösungsmittel
WO1997034875A1 (de) Verfahren zur herstellung heterocyclischer carbene
WO2008052861A2 (de) Verfahren zur herstellung von 1,3 -hetero-aromatischen carbonaten
DE10356768A1 (de) Verfahren zur Herstellung von Salzen schwach koordinierender Anionen, derartige Salze sowie deren Verwendung
DE3231403A1 (de) Abtrennung und gewinnung von ionischen substanzen durch fluorhaltige verbindungen
EP2114965B1 (de) Verbindungen enthaltend organofluorochlorophosphatanionen
EP1679307A1 (de) Herstellung und Verwendung von Sulfoniumdicyanamiden
EP2616446B1 (de) Neue imidazoliumsalze und darauf basierende carben-metallkomplexe zur verwendung als bioanalytische marker für biomoleküle
EP2107065A1 (de) Ruthenium-Komplexe mit (P-P)-koordinierten Di-Phosphor-Donorliganden sowie Verfahren zu ihrer Herstellung
EP1569921A1 (de) IONISCHE FL SSIGKEITEN MIT N(CF sb 3 /sb ) sb 2 /sb &r sqb; sp - /sp -ANIONEN
EP1362026B1 (de) Verfahren zur herstellung von bis (trifluormethyl)imido-salzen
WO2020099233A1 (de) Tris(trichlorsilyl)dichlorogallylgerman, verfahren zu dessen herstellung und dessen verwendung
AT522210A1 (de) Herstellungsverfahren für Chinoxaline
DE102011007559A1 (de) Verfahren zur Herstellung von Elektrolyten für die Aluminiumabscheidung
DE1238013B (de) Verfahren zur Herstellung von Dithiolphosphorsaeureestern
DE102019108416A1 (de) Verfahren zur Fluorierung anorganischer Verbindungen
EP2943524B1 (de) Polyaryletherketon-polysiloxan/polysilan-hybridpolymer und verfahren zu dessen herstellung
DE102013009918A1 (de) Verfahren zur Herrstellung von Iminiumsalzen und Oniumsalzen, die kontrastreiche Abbildungen bei der Elektronenmikroskopie ermöglichen
DD214377A1 (de) Verfahren zur synthese 3-substituierter 1-thioacylthioharnstoffe
AT258307B (de) Verfahren zur Herstellung von neuen Zinnkomplexverbindungen
DD253810A1 (de) Verfahren zur herstellung von imidazolhaltigen komplexen
DE1545802A1 (de) Verfahren zur Herstellung von Chloroxazinonen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12798657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12798657

Country of ref document: EP

Kind code of ref document: A1