WO2013073509A1 - 内燃機関の燃料噴射の異常判定方法と内燃機関 - Google Patents

内燃機関の燃料噴射の異常判定方法と内燃機関 Download PDF

Info

Publication number
WO2013073509A1
WO2013073509A1 PCT/JP2012/079327 JP2012079327W WO2013073509A1 WO 2013073509 A1 WO2013073509 A1 WO 2013073509A1 JP 2012079327 W JP2012079327 W JP 2012079327W WO 2013073509 A1 WO2013073509 A1 WO 2013073509A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
value
time correction
correction value
current
Prior art date
Application number
PCT/JP2012/079327
Other languages
English (en)
French (fr)
Inventor
英和 藤江
哲史 塙
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2013073509A1 publication Critical patent/WO2013073509A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow

Definitions

  • the present invention includes a fuel injection valve when performing correction so as to eliminate the difference between the actual fuel injection amount and the commanded fuel injection amount using the oxygen concentration of a NOx sensor provided downstream of the exhaust gas purification device.
  • the present invention relates to a fuel injection method for an internal combustion engine and an internal combustion engine capable of determining an abnormality in a fuel supply system.
  • an ECU controls an injector (fuel injection valve) to adjust the fuel injection amount from the injector to an appropriate amount.
  • the command fuel injection amount adjusted to an appropriate amount is determined so as to improve fuel consumption, reduce harmful components of exhaust gas, and reduce noise.
  • an excess air ratio sensor or an excess air ratio sensor (such as an oxygen sensor also called a lambda sensor or an A / F sensor called an A / F sensor) that can measure the excess air ratio or the air / fuel ratio is used to measure the exhaust gas from the target air / fuel ratio.
  • An apparatus that corrects the deviation amount of the air-fuel ratio for example, see Patent Document 1
  • an apparatus that compares and corrects the excess air ratio in the exhaust gas, the command injection quantity, and the excess air ratio calculated from the fresh air quantity Yes see, for example, Patent Document 2.
  • These devices detect an excess air ratio in the exhaust gas or an air-fuel ratio of the exhaust gas by an excess air ratio sensor provided upstream of the exhaust gas treatment device or upstream and downstream of the exhaust gas treatment device.
  • the detected excess air ratio or air / fuel ratio depends on the actual fuel injection amount. By correcting the deviation between this and the target value obtained from the indicated fuel injection amount, or comparing the deviations, abnormal fuel injection is detected. By detecting this, the injector is monitored and controlled so that the actual fuel injection amount and the command fuel injection amount do not deviate.
  • the air excess rate sensor provided in the above apparatus is, for example, ZrO 2 (zirconia) or TiO 2 (titania) which is provided upstream of the exhaust gas processing apparatus and has electrodes with Pt (platinum) coating on the inner and outer surfaces. It is formed with a solid electrolyte tube formed by, for example.
  • This excess air ratio sensor is that oxygen ions flow from the atmosphere side where the oxygen partial pressure is high toward the exhaust gas side where the oxygen partial pressure is low, thereby generating an electromotive force proportional to the logarithm of the oxygen partial pressure ratio between the electrodes.
  • the oxygen concentration in the exhaust gas is detected from the electromotive force.
  • This NOx sensor is, for example, a sensor that is provided downstream of an exhaust gas treatment device and is made of a ceramic solid electrolyte (oxygen ion conductor) that is excellent in durability and heat resistance, and has at least two compartments.
  • the exhaust gas is exhausted by the first oxygen pump by using a first oxygen pump that removes oxygen other than NOx in one compartment and a second oxygen pump that decomposes NOx and removes the generated oxygen in the other compartment.
  • the oxygen concentration in the exhaust gas is detected, and the NOx concentration in the exhaust gas is detected by the second oxygen pump.
  • the NOx sensor uses oxygen ion conductors (SnO 2 , ITO, YBCO, WO 3 , TiO 2 , ZrO 2 , Zn 2 SnO 4, etc.), and Pt, Rh on the surface thereof. Since it is processed by applying (rhodium) or the like, the sensor is expensive.
  • oxygen ion conductors SnO 2 , ITO, YBCO, WO 3 , TiO 2 , ZrO 2 , Zn 2 SnO 4, etc.
  • this NOx sensor is a method for directly detecting the NOx occlusion state of the NOx occlusion reduction catalyst in the exhaust gas purification device and giving an optimum timing for reducing agent charging control, or a method for diagnosing deterioration of the catalyst on the vehicle. It is a sensor that is indispensable for providing an exhaust gas purifying device in an engine.
  • the present invention has been made in view of the above problems, and its purpose is to use a NOx sensor provided downstream of the exhaust gas purifying device without adding an expensive excess air ratio sensor and When correcting the next commanded fuel injection amount so that the deviation between the actual fuel injection amount generated due to the fuel injection amount and the commanded fuel injection amount becomes zero, an abnormality of the fuel supply system including the injector can be diagnosed.
  • An abnormality determination method for an internal combustion engine fuel injection and an internal combustion engine are provided.
  • An internal combustion engine fuel injection abnormality determination method of the present invention for solving the above-mentioned object is provided in the internal combustion engine fuel injection method in which an exhaust gas purification device is provided in an exhaust passage, downstream of the exhaust gas purification device.
  • Correction is made to be zero, an injection time correction value is calculated, and at the time of fuel injection from the fuel injection valve, the current instruction fuel injection amount is corrected with the injection time correction value to perform fuel injection, Squirt
  • the fuel injection is determined to be abnormal when the absolute value of the firing time correction value is greater than a preset abnormality determination value.
  • the fuel injection amount of the injector (fuel injection valve) is changed to the actual fuel injection amount using the NOx sensor provided downstream of the exhaust gas purification device including the SCR device (selective catalytic reduction device).
  • the SCR device selective catalytic reduction device
  • the injection time correction value is expressed by the following equation using the actual excess air ratio ⁇ 1, the target excess air ratio ⁇ 2, and the current injection time correction value. Obtained by (1).
  • L (i, j) current injection time correction value
  • L (I, J) injection time correction value
  • W_cor weighting factor.
  • the injection time correction value corrected so that the deviation value between the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 becomes zero the injection time
  • the absolute value of the correction value is compared with the abnormality determination value and the difference is larger than the abnormality determination value, that is, when the difference between the actual fuel injection amount and the commanded fuel injection amount is larger than a certain value
  • the fuel including the injector It can be determined that the supply system is abnormal.
  • An internal combustion engine for solving the above problem is an internal combustion engine provided with an exhaust gas purification device in an exhaust passage, and an actual excess air ratio ⁇ 1 calculated from an oxygen concentration value of a NOx sensor provided downstream of the exhaust gas purification device.
  • the injection time correction is performed by correcting the current injection time correction value stored in the base injection time correction value map and corresponding to the current common rail pressure and the current commanded fuel injection amount so that the deviation value becomes zero.
  • Means for calculating a value means for performing fuel injection by correcting the current command fuel injection amount with the injection time correction value, and absolute value of the injection time correction value when fuel is injected from the fuel injection valve. Forecast And a control device provided with means for determining that the fuel injection is abnormal when it becomes larger than the set abnormality determination value.
  • the control device uses the actual air excess rate ⁇ 1, the target air excess rate ⁇ 2, and the current injection time correction value as the injection time correction value using the equation (2) shown above.
  • Is provided.
  • L (i, j) current injection time correction value
  • L (I, J) injection time correction value
  • W_cor weighting factor.
  • the actual excess air ratio ⁇ 1 can be calculated from the output of the NOx sensor, and is calculated when the indicated fuel injection amount is corrected from the actual fuel injection amount using the actual excess air ratio ⁇ 1.
  • the absolute value of the injection time correction value becomes larger than the abnormality determination value, an abnormality of the fuel supply system including the injector can be detected. This eliminates the need for an excess air ratio sensor that has been necessary in the prior art, thereby reducing the cost.
  • a notification device that notifies the driver of abnormality in fuel injection may be provided.
  • the present invention it is possible to use the NOx sensor provided downstream of the exhaust gas purification device without adding an expensive excess air ratio sensor, and to indicate the actual fuel injection amount generated due to an injector failure or the like and the indicated fuel.
  • the next command fuel injection amount so that the deviation from the injection amount is zero, it is possible to diagnose abnormality of the fuel supply system including the injector.
  • FIG. 1 is a diagram showing an intake and exhaust system of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the control of the internal combustion engine according to the embodiment of the present invention.
  • FIG. 3 is a learning region map used in the fuel injection abnormality determination method for the internal combustion engine according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a fuel injection abnormality determination method for an internal combustion engine according to the embodiment of the present invention.
  • an engine (internal combustion engine) 1 includes a fuel supply system 4 including an injector (fuel injection valve) 3 for injecting fuel into each cylinder 2, an intake system 6 including an intake passage 5, and an exhaust passage.
  • An exhaust system 8 including 7 is provided.
  • Fuel supply system 4 is a system that injects high-pressure fuel from injectors 3 connected to a common rail 9 that stores pressurized fuel, and includes a fuel tank and a supply pump (not shown).
  • the intake system 6 includes an intake filter 10, an intercooler 11, and an intake throttle 12, and the exhaust system 8 is an exhaust gas purification system including a DPF (diesel particulate collection filter) 13 and an SCR device (selective catalytic reduction device) 14.
  • a device 15 is provided.
  • the intake system 6 and the exhaust system 8 can send the compressed air into the engine by rotating the turbine at high speed using the energy of the exhaust gas and driving the centrifugal compressor with the rotational force.
  • the turbocharger 16, the EGR cooler 17, and the EGR valve 18 are provided with an EGR device (exhaust gas recirculation device) 19 that takes out a part of the exhaust gas after combustion, guides it to the intake side, and sucks it again.
  • the configuration of the engine 1 is a well-known configuration, and each device can use a well-known technique.
  • the exhaust gas purification device 15 including at least the SCR device 14 is provided in the exhaust system 8, other configurations are not limited to the above configuration.
  • an ECU (control device) 20 that controls the above-described device and system, a NOx sensor 21, a MAF sensor (fresh air amount sensor) 22, a pressure sensor 23, and a warning lamp (notification device) connected to the ECU 20 29).
  • the engine 1 is provided with a sensor (not shown). However, in this embodiment, at least the sensors 21 to 23 are sufficient.
  • the ECU 20 is a control device called an engine control unit, and is a microcontroller that comprehensively performs electrical control in charge of control of the engine 1 by an electric circuit. As shown in FIG. Then, the fuel injection amount of the injector 3 is controlled, and the lighting of the warning lamp 29 is controlled.
  • the ECU 20 includes an actual excess air ratio calculation means 24, a target excess air ratio calculation means 25, a learning value calculation means 26, an indicated fuel injection amount calculation means 27, and an abnormality determination means 28, and a learning area map M1 and a current
  • the command fuel injection amount Q_fin is stored. Each of these means 24 to 28 is stored in the ECU 20 as a program and sequentially executed when the fuel injection amount is corrected.
  • the NOx sensor 21 provided downstream of the SCR device 14 is a sensor that measures the concentration value of NOx (nitrogen oxide) in the exhaust gas, and is a sensor that can measure the oxygen concentration value O2_exh in the exhaust gas. is there.
  • the NOx sensor 21 is used in a method for directly detecting the NOx occlusion state of the NOx occlusion reduction catalyst in the SCR device 14 to give an optimum timing for reducing agent charging control, and a method for diagnosing deterioration of the catalyst on the vehicle. This sensor is necessary when the exhaust system 8 includes the SCR device 14.
  • the NOx sensor 21 is excellent in durability and heat resistance, and a known NOx sensor can be used as long as it can measure the NOx concentration in the exhaust gas and can measure the oxygen concentration value O2_exh in the exhaust gas.
  • the MAF sensor 22 and the pressure sensor 23 may be well-known sensors if the MAF sensor 22 detects the fresh air amount m_air and the pressure sensor 23 can detect the common rail pressure (common rail pressure) P. it can.
  • the warning lamp 29 is a lamp that is lit to notify the driver of the abnormality when the fuel injection of the engine 1 is abnormal. Although the lamp is used in this embodiment, it is only necessary to notify the driver of the abnormality. For example, a warning buzzer may be used.
  • the actual excess air ratio calculating means 24 provided in the ECU 20 uses the oxygen concentration value O2_exh detected by the NOx sensor 21 to calculate the actual excess air ratio ⁇ 1 from the following formula (3). calculate.
  • the oxygen concentration in the atmosphere is O2_air.
  • the actual excess air ratio calculating means 24 can calculate the actual excess air ratio ⁇ 1 derived from the actual fuel injection amount from the oxygen concentration value O2_exh detected by the NOx sensor 21. Thereby, in order to calculate the actual excess air ratio ⁇ 1, by using the NOx sensor 21 that needs to be provided in the engine 1 including the SCR device 14, it is not necessary to separately add an excess air ratio sensor. Therefore, the number of parts can be reduced, and the manufacturing cost can be reduced.
  • the target excess air ratio calculating means 25 calculates the following equation (4 ) To calculate the target excess air ratio ⁇ 2.
  • the ideal air-fuel ratio AFR takes various values depending on the properties of the fuel. For example, when the fuel is light oil, the value is about 14.5.
  • the current learning value (current injection time correction value) L (i, j) stored in the learning area map (injection time correction value map) M1 is corrected.
  • the learning area map M1 will be described.
  • the learning region map M1 is a map based on the common rail pressure P_area and the fuel flow rate (indicated fuel injection amount) Q_area.
  • the learning value (injection time correction value) L (i, j) stored in the learning area map M1 is a correction value for the injection time of the injector 3.
  • the numerical value described in the learning area map M1 shown in FIG. 3 is a numerical value for explanation, and the actual numerical value is not limited to this. Further, the number of cells is not limited, and actually, a numerical value may be set finely to increase the number of cells.
  • the actual learning value (current injection time correction value) L (i, j) stored in the learning region map M1 is set to the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2.
  • the learning value calculation means 26 uses the deviation value ⁇ and the weighting coefficient w_cor, the learning value calculation means 26 corrects the value from the following equation (5) to calculate the learning value (injection time correction value) L (I, J). .
  • the abnormality determination means 28 determines whether or not the absolute value of the calculated learning value L (I, J) is larger than a predetermined abnormality determination value Vd.
  • ⁇ Vd the absolute value of the learning value L (I, J) falls within an appropriate value.
  • > Vd when the fuel supply system 4 is out of order and the fuel injection is abnormal,
  • the abnormality determination value Vd will be described.
  • the deviation value ⁇ between the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 increases, and the corresponding learning value (injection time correction value) L (I, J) The absolute value of becomes larger. This indicates that the deviation between the actual fuel injection amount and the current command fuel injection amount Q_fin is large.
  • the abnormality determination value Vd is determined by using a change value (such as a torque fluctuation value of the engine 1, a harmful component amount in the exhaust gas, or noise) generated when the fuel supply system 4 fails and a learning value L (I, J). Is set in advance and stored in the ECU 20. In the case of setting from the amount of harmful components in the exhaust gas, for example, it is set to a value that does not exceed the exhaust gas value that can be determined to be a failure indicated by the law of OBD (On-Board Diagnostic).
  • OBD On-Board Diagnostic
  • the commanded fuel injection amount calculating means 27 calculates the next commanded fuel injection amount Q_corr from the following equation (6).
  • is a coefficient for converting the learning value L (I, J) into an injection amount correction value.
  • the ECU 20 controls the injector 3 to inject with the calculated command fuel injection amount Q_corr.
  • the ECU 20 controls the warning lamp 29 to be lit to notify the driver of the abnormality.
  • the current learning value L (i, j) stored in the learning area map M1 is corrected so that the deviation value ⁇ between the actual excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2 is zero.
  • the failure of the fuel supply system 4 including the injector 3 can be detected by comparing the absolute value of the learned value L (I, J) and the predetermined abnormality determination value Vd.
  • the engine 1 can calculate the actual excess air ratio ⁇ 1 using the oxygen concentration value O2_exh of the NOx sensor 21 provided downstream of the SCR device 14 when the injector 3 injects fuel. Since the learning value L (I, J) can be calculated using the deviation value ⁇ of the excess air ratio ⁇ 1 and the target excess air ratio ⁇ 2, the deterioration of the injector 3 and the like can be detected without adding an excess air ratio sensor. can do.
  • This abnormality determination method is performed for each predetermined crank angle of the engine 1, and when correcting to the indicated fuel injection amount Q_corr based on the actual fuel injection amount of the injector 3, a fuel injection abnormality is determined. To go.
  • step S11 for calculating the actual excess air ratio ⁇ 1 in the exhaust gas is performed using the oxygen concentration value O2_exh of the NOx sensor 21 provided downstream of the SCR device 14.
  • the actual excess air ratio ⁇ 1 is calculated using the above mathematical formula (3), but it is sufficient that the excess air ratio based on the actual fuel injection amount can be obtained, and the present invention is not limited to the above method.
  • step S12 for calculating the target excess air ratio ⁇ 2 is performed using the MAF sensor 22 and the current command fuel injection amount Q_fin.
  • the target excess air ratio ⁇ 2 is calculated using the above equation (4), but it is sufficient if the target excess air ratio ⁇ 2 obtained from the current command fuel injection amount Q_fin can be calculated. Not limited.
  • step S14 for calling the current learning value L (i, j) from the learning region map M1 is performed.
  • the current learning value L (i, j) corresponding to the engine speed Ne detected by the crank angle sensor and the current commanded fuel injection amount Q_fin is called.
  • the learning value L (i, j) is a learning value used when the current command fuel injection amount Q_fin is corrected.
  • the current learning value L (i, j) is corrected to calculate the learning value L (I, J). I do.
  • the learning value L (I, J) is calculated using the above mathematical formula (5).
  • step S16 is performed to determine abnormality of the fuel supply system 4 using the learning value L (I, J) calculated in step S15.
  • the absolute value of the learning value L (I, J) is compared with the predetermined abnormality determination value Vd, and if the absolute value of the learning value L (I, J) is equal to or less than the abnormality determination value Vd.
  • the absolute value of the learning value L (I, J) is equal to or less than the abnormality determination value Vd.
  • step S17 is performed in which the learning value L (I, J) is written in the learning region map M1.
  • the location of the cell written in the learning area map M1 is specified by the current common rail pressure P and the current commanded fuel injection amount Q_fin.
  • step S19 for calculating the next commanded fuel injection amount Q_corr using the learned value L (I, J) and the current commanded fuel injection amount Q_fin is performed.
  • the command fuel injection amount Q_corr is calculated using the above equation (6).
  • step S18 is performed in which the current learning value L (i, j) is set to the learning value L (I, J), the process proceeds to step S19, and the next commanded fuel injection amount is set. Calculate Q_corr and return to the start.
  • step S20 for notifying the abnormality of the fuel supply system 4 is performed.
  • a warning buzzer or the like may be used instead of the warning lamp 29.
  • the next commanded fuel injection amount Q_corr is used to eliminate the difference between the actual fuel injection amount and the current commanded fuel injection amount Q_fin using the oxygen concentration value O2_exh of the NOx sensor 21.
  • a failure of the fuel supply system 4 is detected by comparing the absolute value of the learning value L (I, J) used for correcting the command fuel injection amount Q_corr with a predetermined abnormality determination value Vd. be able to. Thereby, it is possible to accurately detect an abnormality in the actual fuel injection amount due to an injector failure or the like without adding an excess air ratio sensor.
  • the driver can check the abnormality of the fuel injection in real time, correct the cause of the abnormality of the fuel injection, and avoid the problem caused by the abnormality of the fuel injection.
  • an in-line four-cylinder diesel engine has been described as an example.
  • an ideal air-fuel ratio or the like to a value suitable for gasoline, it can also be applied to a gasoline engine equipped with an exhaust gas processing device. .
  • the internal combustion engine of the present invention can detect an abnormality in fuel injection when correcting a deviation between the actual fuel injection amount and the commanded fuel injection amount using a NOx sensor provided downstream of the exhaust gas processing device. Therefore, it can be used for a vehicle equipped with a diesel engine that particularly needs to process exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 排気通路に設けた排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率と、吸気通路に設けたMAFセンサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率との偏差値を算出し、コモンレール圧と指示燃料噴射量をベースとする学習領域マップM1に記憶され、且つ、現コモンレール圧と現指示燃料噴射量に対応する現学習値を、偏差値がゼロになるように補正して、新たな学習値を算出し、インジェクタからの燃料噴射に際しては、現指示燃料噴射量を学習値で補正して、燃料噴射を行い、学習値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定することにより、NOxセンサを用いて、インジェクタの劣化などによる実際の燃料噴射量と指示された燃料噴射量との偏差をゼロにするように補正する際に、燃料噴射の異常を検知する。

Description

[規則26に基づく補充 30.11.2012] 内燃機関の燃料噴射の異常判定方法と内燃機関
 本発明は、排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度を利用して、実際の燃料噴射量と指示燃料噴射量との乖離をなくすように補正する際に、燃料噴射弁を含む燃料供給システムの異常を判定することができる内燃機関の燃料噴射方法と内燃機関に関する。
 従来、エンジン(内燃機関)では、ECU(制御装置)がインジェクタ(燃料噴射弁)を制御して、インジェクタからの燃料噴射量を適正な量になるように調整している。この適正な量に調節された指示燃料噴射量は、燃費を向上し、排出ガスの有害成分を減少し、及び騒音を減少するように定められている。
 しかし、インジェクタを含む燃料供給システムの劣化、及び故障により指示燃料噴射量と実際にインジェクタが噴射する量とが乖離すると、様々な問題が発生する。例えば、実際の噴射量が指示燃料噴射量よりも少ない場合は、必要とするトルクが得られずに走行に支障を来し、一方、実際の噴射量が指示燃料噴射量よりも多い場合は、燃圧が上がってエンジンが故障する、燃費が悪化する、及び排気ガスの有害成分の濃度が増加するなどの問題が発生する。
 そこで、空気過剰率、又は空燃比を測定することができる空気過剰率センサ(ラムダセンサとも呼ばれる酸素センサ、又はA/Fセンサとも呼ばれる空燃比センサなど)を用いて、目標空燃比から排気ガスの空燃比のずれ量を補正する装置(例えば、特許文献1参照)や、排気ガス中の空気過剰率と指示噴射量と新気空気量より計算される空気過剰率を比較し補正を行う装置がある(例えば、特許文献2参照)。
 これらの装置は、排気ガス処理装置の上流、又は排気ガス処理装置の上流と下流に設けた空気過剰率センサで、排気ガス中の空気過剰率、又は排気ガスの空燃比を検出している。検出した空気過剰率、又は空燃比は実際の燃料噴射量によるものであり、これと指示燃料噴射量から求められる目標値との偏差を補正することで、又は偏差を比較して燃料噴射の異常を検知することで、実際の燃料噴射量と指示燃料噴射量とが乖離しないようにインジェクタを監視、及び制御している。
 上記の装置に設けられている空気過剰率センサは、例えば、排気ガス処理装置の上流に設けられて、内外面にPt(白金)コーティングによる電極を持つZrO(ジルコニア)又はTiO(チタニア)などで形成した固体電解質の管で形成される。
 この空気過剰率センサの原理は、酸素分圧の高い大気側から酸素分圧の低い排気ガス側に向かって酸素イオンが流れることで電極間の酸素分圧比の対数に比例する起電力が発生し、その起電力から、排気ガス中の酸素濃度を検出するというものである。
 この空気過剰率センサを搭載した上記の装置を用いることで、実際の燃料噴射量と指示燃料噴射量との偏差を補正することが、又は偏差を比較して燃料噴射の異常を検知することができるが、空気過剰率センサは、PtやZrOを用いるため、センサとしては高価なものになっている。そのため、製造コストが増加するため、空気過剰率センサを搭載しているエンジンはごく一部である。
 一方、近年のエンジンには、排気ガスのクリーン化のために、排気ガス浄化装置を搭載したものが多い。このエンジンは、排気ガス浄化装置の下流に排気ガス中のNOx(窒素酸化物)の含有量を計測するNOxセンサを設けている。
 このNOxセンサは、例えば、排気ガス処理装置の下流に設けられ、耐久性と耐熱性に優れたセラミックスの固体電解質(酸素イオン伝導体)で、少なくとも2つの区画を形成してなるセンサである。一方の区画で、NOx以外の酸素を除去する第1酸素ポンプとし、他方の区画でNOxを分解して、生成した酸素を除去する第2酸素ポンプとすることで、第1酸素ポンプで排気ガス中の酸素濃度を検出し、第2酸素ポンプで排気ガス中のNOx濃度を検出している。
 前述の空気過剰率センサと同様、NOxセンサも酸素イオン導電体(SnO、ITO、YBCO、WO、TiO、ZrO、ZnSnOなど)が用いられ、それらの表面にPt、Rh(ロジウム)などを塗布して、加工されているため、センサとしては高価なものである。
 しかしながら、このNOxセンサは、排気ガス浄化装置内のNOx吸蔵還元触媒のNOx吸蔵状態を直接検知し、還元剤投入制御の最適タイミングを与える方法や、同触媒の劣化を車上で診断する方法に用いられており、排気ガス浄化装置をエンジンに設ける上で必要不可欠なセンサである。
特開平11-82117号公報 特開平10-141125号公報
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、高価な空気過剰率センサを追加することなく、排気ガス浄化装置の下流に設けたNOxセンサを用いて、インジェクタの故障などにより発生する実際の燃料噴射量と指示された燃料噴射量との偏差をゼロにするように次回の指示燃料噴射量を補正する際に、インジェクタを含む燃料供給システムの異常を診断することができる内燃機関の燃料噴射の異常判定方法と内燃機関を提供することである。
 上記の目的を解決するための本発明の内燃機関の燃料噴射の異常判定方法は、排気通路に排気ガス浄化装置を設けた内燃機関の燃料噴射方法において、前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出し、コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出し、燃料噴射弁からの燃料噴射に際しては、前記現指示燃料噴射量を前記噴射時間補正値で補正して、燃料噴射を行い、前記噴射時間補正値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定することを特徴とする方法である。
 この方法によれば、SCR装置(選択的触媒還元装置)を含む排気ガス浄化装置の下流に設けたNOxセンサを用いて、インジェクタ(燃料噴射弁)の燃料噴射量を、実際の燃料噴射量に基づいて補正する際に、インジェクタを含む燃料供給システムの異常を検知することができる。これにより、システムの異常の検知に従来では必要であった空気過剰率センサを追加することなく、インジェクタの故障などによる燃料噴射の異常を検知することができるので、その分の部品点数が減り、また、製造コストを低減することができる。
 また、上記の内燃機関の燃料噴射の異常判定方法において、前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(1)により求める。
Figure JPOXMLDOC01-appb-M000003
 但し、L(i,j):現噴射時間補正値、L(I,J):噴射時間補正値、W_cor:重み係数とする。
 この方法によれば、実空気過剰率λ1と目標空気過剰率λ2との偏差値をゼロにするように補正した噴射時間補正値を用いて、インジェクタの噴射量を補正する際に、その噴射時間補正値の絶対値と異常判定値とを比較し、異常判定値より大きい場合に、つまり実際の燃料噴射量と指示燃料噴射量との乖離が一定の値よりも大きい場合に、インジェクタを含む燃料供給システムの異常と判定することができる。これにより、空気過剰率センサを追加することなく、インジェクタの故障などを検知することができ、インジェクタの故障などで発生する燃費の悪化、スモーク排出の増加、及び排気ガスの高温化による排気管やターボチャージャーなどの熱破損を防止することができる。
 上記の問題を解決するための内燃機関は、排気通路に排気ガス浄化装置を設けた内燃機関において、前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出する手段と、コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出する手段と、燃料噴射弁からの燃料噴射に際しては、前記現指示燃料噴射量を前記噴射時間補正値で補正して、燃料噴射を行う手段と、前記噴射時間補正値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定する手段とを備える制御装置を設けて構成される。
 また、上記の内燃機関において、前記制御装置が、前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、上記に示す式(2)により求める手段を備える。
Figure JPOXMLDOC01-appb-M000004
 但し、L(i,j):現噴射時間補正値、L(I,J):噴射時間補正値、W_cor:重み係数とする。
 この構成によれば、NOxセンサの出力から実空気過剰率λ1を算出することができ、その実空気過剰率λ1を用いて、実際の燃料噴射量から指示燃料噴射量を補正する際に、算出される噴射時間補正値の絶対値が異常判定値よりも大きくなったときに、インジェクタを含む燃料供給システムの異常を検知することができる。これにより、従来では必要であった空気過剰率センサを追加することがないため、コストを低減することができる。また、上記の構成に加えて、燃料噴射の異常を運転手に報知する報知装置を備えてもよい。
 本発明によれば、高価な空気過剰率センサを追加することなく、排気ガス浄化装置の下流に設けたNOxセンサを用いて、インジェクタの故障などにより発生する実際の燃料噴射量と指示された燃料噴射量との偏差をゼロにするように次回の指示燃料噴射量を補正する際に、インジェクタを含む燃料供給システムの異常を診断することができる。
図1は、本発明に係る実施の形態の内燃機関の吸気、及び排気システムを示した図である。 図2は、本発明に係る実施の形態の内燃機関の制御を示した概略図である。 図3は、本発明に係る実施の形態の内燃機関の燃料噴射の異常判定方法に用いる学習領域マップである。 図4は、本発明に係る実施の形態の内燃機関の燃料噴射の異常判定方法を示したフローチャートである。
 以下、本発明に係る実施の形態の内燃機関の燃料噴射の異常判定方法と内燃機関について、図面を参照しながら説明する。なお、この実施の形態では、直列4気筒のディーゼルエンジンを例に説明するが、これに限定せずにNOxセンサを設ける内燃機関であれば、本発明を適用することができる。
 まず、本発明に係る実施の形態の内燃機関の構成について、図1と図2を参照しながら説明する。図1に示すように、エンジン(内燃機関)1は、各気筒2に燃料を噴射するインジェクタ(燃料噴射弁)3を含む燃料供給システム4と、吸気通路5を含む吸気システム6と、排気通路7を含む排気システム8を備える。
 燃料供給システム4は、加圧された燃料を貯えたコモンレール9に接続されたインジェクタ3から高圧の燃料を噴射するシステムであり、他に図示しない燃料タンク、サプライポンプを備える。吸気システム6は、吸気フィルタ10、インタークーラー11、及び吸気スロットル12を備え、排気システム8は、DPF(ディーゼル微粒子捕集フィルタ)13とSCR装置(選択的触媒還元装置)14とからなる排気ガス浄化装置15を備える。
 また、吸気システム6と排気システム8には、排気ガスのエネルギーを利用してタービンを高速回転させ、その回転力で遠心式圧縮機を駆動することにより圧縮した空気をエンジン内に送り込むことができるターボチャージャー16と、EGRクーラー17とEGR弁18とからなり、燃焼後の排気ガスの一部を取出し、吸気側へ導き再度吸気させるEGR装置(排気再循環装置)19を備える。
 上記のエンジン1の構成は、周知の構成であり、各装置も周知の技術を用いることができる。この実施の形態においては、少なくともSCR装置14を含む排気ガス浄化装置15を排気システム8に設けていれば、他の構成は上記の構成に限定しない。
 加えて、上記の装置及びシステムを制御するECU(制御装置)20と、そのECU20と接続されるNOxセンサ21、MAFセンサ(新気空気量センサ)22、圧力センサ23、及び警告ランプ(報知装置)29を備える。その他にも、エンジン1には図示しないセンサを設けるが、この実施の形態においては、少なくとも上記のセンサ21~23があればよい。
 ECU20は、エンジンコントロールユニットと呼ばれる制御装置であり、電気回路によってエンジン1の制御を担当している電気的な制御を総合的に行うマイクロコントローラであり、図2に示すように、この実施の形態ではインジェクタ3の燃料噴射量を制御し、また、警告ランプ29の点灯を制御している。このECU20は、実空気過剰率算出手段24、目標空気過剰率算出手段25、学習値算出手段26、指示燃料噴射量算出手段27、及び異常判定手段28を備え、また、学習領域マップM1と現指示燃料噴射量Q_finを記憶している。これの各手段24~28をプログラムとして、ECU20に記憶し、燃料噴射量を補正する際に順次実行する。
 SCR装置14の下流に設けられるNOxセンサ21は、排気ガス中のNOx(窒素酸化物)の濃度値を測定するセンサであり、且つ排気ガス中の酸素濃度値O2_exhを測定することができるセンサである。このNOxセンサ21は、SCR装置14内のNOx吸蔵還元触媒のNOx吸蔵状態を直接検知し、還元剤投入制御の最適タイミングを与える方法や、同触媒の劣化を車上で診断する方法に用いられており、排気システム8に、SCR装置14を備えた場合には必要なセンサである。
 このNOxセンサ21は、耐久性及び耐熱性に優れ、排気ガス中のNOx濃度を測定すると共に、排気ガス中の酸素濃度値O2_exhを測定することができれば、周知のNOxセンサを用いることができる。また、MAFセンサ22と圧力センサ23も、MAFセンサ22が新気空気量m_airを検出し、圧力センサ23がコモンレールの圧力(コモンレール圧)Pを検出することができれば、周知のセンサを用いることができる。
 警告ランプ29は、エンジン1の燃料噴射の異常時に、運転手に異常を報知するために点灯するランプである。この実施の形態ではランプを用いたが、運転手に異常を報知することができればよく、例えば、警告ブザーなどを用いてもよい。
 次に、エンジン1の動作について、図2と図3を参照しながら説明する。エンジン1は、この動作を所定のクランク角(例えば、360°毎)に達する度に行う。図2に示すように、先ず、NOxセンサ21が検出した酸素濃度値O2_exhを用いて、ECU20に備えた実空気過剰率算出手段24が、以下の数式(3)より、実空気過剰率λ1を算出する。なお、ここで大気中の酸素濃度をO2_airとする。
Figure JPOXMLDOC01-appb-M000005
 この実空気過剰率算出手段24により、NOxセンサ21の検出する酸素濃度値O2_exhから、実際の燃料噴射量から導かれる実空気過剰率λ1を算出することができる。これにより、実空気過剰率λ1を算出するために、SCR装置14を備えるエンジン1には設ける必要があるNOxセンサ21を用いることで、空気過剰率センサを別途追加する必要がない。そのため、部品点数を減らすことでき、また、製造コストも低減することができる。
 次に、ECU20に記憶された現指示燃料噴射量Q_finと、MAFセンサ22で検出した新気空気量m_airと理想空燃比AFRを用いて、目標空気過剰率算出手段25が、以下の数式(4)より、目標空気過剰率λ2を算出する。
Figure JPOXMLDOC01-appb-M000006
 ここで、理想空燃比AFRは、燃料の性状により種々の値を取るが、例えば燃料が軽油の場合にその値は約14.5前後である。
 次に、学習領域マップ(噴射時間補正値マップ)M1に記憶された現学習値(現噴射時間補正値)L(i,j)を補正するが、ここでその学習領域マップM1について説明する。図3に示すように、学習領域マップM1は、コモンレール圧P_areaと燃料流量(指示燃料噴射量)Q_areaをベースとするマップである。
 この学習領域マップM1に記憶された学習値(噴射時間補正値)L(i,j)は、インジェクタ3の噴射時間の補正値である。なお、図3に示す学習領域マップM1に記載されている数値は説明のための数値であり、実際の数値はこれに限定しない。また、セル数も限定せず、実際には数値を細かく設定し、セル数を増やしても構わない。
 次に、図2に示すように、上記の学習領域マップM1に記憶された現学習値(現噴射時間補正値)L(i,j)を、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλと、重み係数w_corとを用いて、学習値算出手段26が、以下の数式(5)より、補正して、学習値(噴射時間補正値)L(I,J)を算出する。
Figure JPOXMLDOC01-appb-M000007
 次に、算出された学習値L(I,J)の絶対値が、予め定めた異常判定値Vdよりも大きいか否かを、異常判定手段28が判定する。インジェクタ3を含む燃料供給システム4が故障していなく燃料噴射が正常の場合は、|L(I,J)|≦Vdとなり、学習値L(I,J)の絶対値は適当な値に収まる。一方、燃料供給システム4が故障しており燃料噴射が異常の場合は、|L(I,J)|>Vdとなる。
 ここで、異常判定値Vdについて説明する。燃料供給システム4の故障レベルが大きくなると、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλは大きくなっていき、それに対応する学習値(噴射時間補正値)L(I,J)の絶対値も大きくなる。このことは、実際の燃料噴射量と現指示燃料噴射量Q_finとの偏差が大きいことを示している。
 そこで、異常判定値Vdを、燃料供給システム4が故障した際に発生する変化値(エンジン1のトルク変動値、排気ガス中の有害成分量、又は騒音など)と学習値L(I,J)との関係から、予め設定し、ECU20に記憶させておく。排気ガス中の有害成分量から設定する場合は、例えば、OBD(On―BoardDiagnstic:車載式自己診断)の法規で示されている故障と判断できる排気ガス値を超えない手前の値に設定する。この異常判定値Vdは、学習値L(I,J)の絶対値から、燃料供給システム4の故障を検知することができればよく、上記の値に限定しない。
 燃料供給システム4に問題が無い場合は、学習値算出手段26で実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλをゼロになるように補正された学習値L(I,J)を、新たな学習値として学習領域マップM1に記憶する。
 次に、現指示燃料噴射量Q_finと学習値L(I,J)とを用いて、指示燃料噴射量算出手段27が、以下の数式(6)より、次回の指示燃料噴射量Q_corrを算出する。ここで、αは学習値L(I,J)を噴射量補正値に変換する係数とする。
Figure JPOXMLDOC01-appb-M000008
 そして、ECU20は、算出した指示燃料噴射量Q_corrで噴射するようにインジェクタ3を制御する。一方、燃料供給システム4に異常がある場合は、ECU20は、運転手にその異常を報知するために、警告ランプ29を点灯させるように制御する。
 上記の動作によれば、学習領域マップM1に記憶されている現学習値L(i,j)を、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλをゼロにするように補正した学習値L(I,J)の絶対値と予め定めた異常判定値Vdとを比較することで、インジェクタ3を含む燃料供給システム4の故障を検知することができる。
 また、エンジン1はインジェクタ3が燃料を噴射する際に、SCR装置14の下流に設けたNOxセンサ21の酸素濃度値O2_exhを用いて、実空気過剰率λ1を算出することができ、算出した実空気過剰率λ1と目標空気過剰率λ2の偏差値Δλを用いて学習値L(I,J)を算出することができるので、空気過剰率センサを追加することなく、インジェクタ3の劣化などを検知することができる。
 次に、エンジン1の燃料噴射の異常判定方法について、図4のフローチャートを参照しながら、説明する。この異常判定方法を、エンジン1の所定のクランク角毎に行い、インジェクタ3の実際の燃料の噴射量に基づいた指示燃料噴射量Q_corrになるように補正する際に、燃料噴射の異常を判定していく。
 まず、SCR装置14の下流に設けたNOxセンサ21の酸素濃度値O2_exhを用いて、排気ガス中の実空気過剰率λ1を算出するステップS11を行う。このステップS11は、上記の数式(3)を用いて、実空気過剰率λ1を算出するが、実際の燃料噴射量に基づく空気過剰率を求めることができればよく、上記の方法に限定しない。
 次に、MAFセンサ22と現指示燃料噴射量Q_finを用いて、目標空気過剰率λ2を算出するステップS12を行う。このステップS12は、上記の数式(4)を用いて、目標空気過剰率λ2を算出するが、現指示燃料噴射量Q_finから求まる目標空気過剰率λ2を算出することができればよく、上記の方法に限定しない。
 次に、算出した実空気過剰率λ1と目標空気過剰率λ2とを比較するステップS13を行う。このステップS13でλ1=λ2であれば、実燃料噴射量と現指示燃料噴射量Q_finは一致しているので、補正せずにステップS18へと進む。一方、ステップS13でλ1≠λ2であれば、現指示燃料噴射量Q_finに対して実燃料噴射量がずれていることになるので、ステップS14へと進み補正をおこなう。
 ステップS13でλ1≠λ2と判断されると、次に、学習領域マップM1から現学習値L(i,j)を呼び出すステップS14を行う。このステップS14では、クランク角センサが検出したエンジン回転数Neと現指示燃料噴射量Q_finとに対応する現学習値L(i,j)を呼び出す。この学習値L(i,j)は、現指示燃料噴射量Q_finを補正した際に用いた学習値である。
 次に、実空気過剰率λ1と目標空気過剰率λ2との偏差値Δλを用いて、現学習値L(i,j)を補正して、学習値L(I,J)を算出するステップS15を行う。このステップS15では、上記の数式(5)を用いて、学習値L(I,J)を算出する。
 次に、ステップS15で算出した学習値L(I,J)を用いて、燃料供給システム4の異常を判定するステップS16を行う。このステップS16では、学習値L(I,J)の絶対値と予め定めた異常判定値Vdとを比較して、学習値L(I,J)の絶対値が異常判定値Vd以下の場合は、燃料噴射の正常と判断し、学習値L(I,J)の絶対値が異常判定値Vdよりも大きい場合は、燃料噴射の異常と判断する。
 ステップS16で燃料噴射の正常と判断されると、次に、学習領域マップM1に学習値L(I,J)を書き込むステップS17を行う。このとき、学習領域マップM1に書き込まれるセルの場所を、現コモンレール圧Pと現指示燃料噴射量Q_finで指定する。
 次に、学習値L(I,J)と現指示燃料噴射量Q_finを用いて次回の指示燃料噴射量Q_corrを算出するステップS19を行う。このステップS19では、上記の数式(6)を用いて、指示燃料噴射量Q_corrを算出する。次回の指示燃料噴射量Q_corrが算出されると、スタートへと戻り、エンジン1が停止するまでくり返し上記のステップを行う。
 ステップS13でλ1=λ2と判断された場合は、現学習値L(i,j)を学習値L(I,J)とするステップS18を行って、ステップS19へ進み、次回の指示燃料噴射量Q_corrを算出して、スタートへと戻る。
 ステップS16で燃料噴射の異常と判断されると、次に、燃料供給システム4の異常を報知するステップS20を行う。この実施の形態では、運転手に燃料噴射の異常を報知することができればよく、上記の方法に限定しない。例えば、警告ランプ29の代わりに警告ブザーなどを用いてもよい。
 上記の燃料噴射の異常判定方法によれば、NOxセンサ21の酸素濃度値O2_exhを用いて、実際の燃料噴射量と現指示燃料噴射量Q_finとの乖離を無くすために次回の指示燃料噴射量Q_corrを補正する際に、指示燃料噴射量Q_corrの補正に用いる学習値L(I,J)の絶対値と予め定めた異常判定値Vdとを比較することで、燃料供給システム4の故障を検知することができる。これにより、空気過剰率センサを追加することなく、インジェクタの故障などによる実際に燃料噴射量の異常を正確に検知することができる。
 また、上記の異常判定方法は、エンジン1の所定のクランク角で行われるため、燃料噴射量の異常が発生したときに、直ぐにその異常を検知することができる。これにより、運転手は燃料噴射の異常をリアルタイムで確認して、燃料噴射の異常の原因を直して、燃料噴射の異常で発生する問題を回避することができる。
 この実施の形態では、直列4気筒のディーゼルエンジンを例に説明したが、理想空燃比などをガソリンに適した値にすることで、排気ガス処理装置を備えたガソリンエンジンにも適用することができる。
 本発明の内燃機関は、排気ガス処理装置の下流に設けたNOxセンサを用いて、実際の燃料噴射量と指示燃料噴射量とのずれを補正する際に、燃料噴射の異常を検知することができるので、特に排気ガスを処理する必要があるディーゼルエンジンを搭載した車両に利用することができる。
1 エンジン(内燃機関)
2 シリンダブロック
3 気筒
4 インジェクタ(燃料噴射弁)
5 吸気管(吸気通路)
6 吸気システム
7 排気管(排気通路)
8 排気システム
9 コモンレール
10 吸気フィルタ
11 インタークーラー
12 吸気スロットル
13 DPF(ディーゼル微粒子捕集フィルタ)
14 SCR装置(選択的触媒還元装置)
15 排気ガス処理装置
16 ターボチャージャー
17 EGR装置(排気再循環装置)
18 EGRクーラー
19 EGR弁
20 ECU(制御装置)
21 NOxセンサ
22 MAFセンサ(新気空気量センサ)
23 クランク角センサ
29 警告ランプ
λ1 実空気過剰率
λ2 目標空気過剰率
M1 学習領域マップ(噴射時間補正値マップ)
L(i,j) 現学習値(現噴射時間補正値)
L(I,J) 学習値(噴射時間補正値)
Q_fin 現指示燃料噴射量
Q_corr 指示燃料噴射量
O2_exh 酸素濃度
O2_air 大気の酸素濃度
m_air 新気吸気量
AFR 理想空燃比
Vd 異常判定値

Claims (4)

  1.  排気通路に排気ガス浄化装置を設けた内燃機関の燃料噴射の異常判定方法において、
     前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出し、
     コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出し、
     燃料噴射弁からの燃料噴射に際しては、前記現指示燃料噴射量を前記噴射時間補正値で補正して、燃料噴射を行い、
     前記噴射時間補正値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定することを特徴とする内燃機関の燃料噴射の異常判定方法。
  2.  前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(1)により求めることを特徴とする請求項1に記載の内燃機関の燃料噴射の異常判定方法。
    Figure JPOXMLDOC01-appb-I000001
     但し、
    L(i,j):現噴射時間補正値
    L(I,J):噴射時間補正値
    W_cor:重み係数
  3.  排気通路に排気ガス浄化装置を設けた内燃機関において、
     前記排気ガス浄化装置の下流に設けたNOxセンサの酸素濃度値から算出した実空気過剰率λ1と、吸気通路に設けた吸気量センサで検出された新気空気量と現指示燃料噴射量から算出した目標空気過剰率λ2との偏差値を算出する手段と、
     コモンレール圧と指示燃料噴射量をベースとする噴射時間補正値マップに記憶され、且つ、現コモンレール圧と前記現指示燃料噴射量に対応する現噴射時間補正値を、前記偏差値がゼロになるように補正して、噴射時間補正値を算出する手段と、
     燃料噴射弁からの燃料噴射に際しては、前記現指示燃料噴射量を前記噴射時間補正値で補正して、燃料噴射を行う手段と、
     前記噴射時間補正値の絶対値が予め設定された異常判定値より大きくなったときに、燃料噴射が異常であると判定する手段とを備える制御装置を設けることを特徴とする内燃機関。
  4.  前記制御装置が、前記噴射時間補正値を、前記実空気過剰率λ1と前記目標空気過剰率λ2と前記現噴射時間補正値を用いて、下記に示す式(2)により求める手段とを備えることを特徴とする請求項3に記載の内燃機関。
    Figure JPOXMLDOC01-appb-I000002
     但し、
    L(i,j):現噴射時間補正値
    L(I,J):噴射時間補正値
    W_cor:重み係数
PCT/JP2012/079327 2011-11-18 2012-11-13 内燃機関の燃料噴射の異常判定方法と内燃機関 WO2013073509A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253050A JP5857662B2 (ja) 2011-11-18 2011-11-18 内燃機関の燃料噴射の異常判定方法と内燃機関
JP2011-253050 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073509A1 true WO2013073509A1 (ja) 2013-05-23

Family

ID=48429566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079327 WO2013073509A1 (ja) 2011-11-18 2012-11-13 内燃機関の燃料噴射の異常判定方法と内燃機関

Country Status (2)

Country Link
JP (1) JP5857662B2 (ja)
WO (1) WO2013073509A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4115068A4 (en) * 2020-03-02 2023-11-29 Volvo Truck Corporation ENGINE SYSTEM COMPRISING FUEL SYSTEM CONTROL ARRANGEMENT AND METHOD FOR CONTROLLING FUEL INJECTION IN AN INTERNAL COMBUSTION ENGINE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214780A1 (de) * 2015-08-03 2017-02-09 Continental Automotive Gmbh Verfahren zur Erkennung fehlerhafter Komponenten eines Kraftstoffeinspritzsystems
JP7363727B2 (ja) * 2020-09-24 2023-10-18 いすゞ自動車株式会社 内燃機関の制御装置および内燃機関システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027910A (ja) * 2002-06-24 2004-01-29 Toyota Motor Corp 燃料噴射制御装置
JP2004251188A (ja) * 2003-02-20 2004-09-09 Isuzu Motors Ltd 内燃機関の排気ガス浄化システム
JP2007023959A (ja) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Pm堆積量推定装置
JP2010106756A (ja) * 2008-10-30 2010-05-13 Honda Motor Co Ltd 燃料噴射装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3827978A1 (de) * 1987-11-10 1989-05-18 Bosch Gmbh Robert Verfahren und vorrichtung fuer stetige lambdaregelung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027910A (ja) * 2002-06-24 2004-01-29 Toyota Motor Corp 燃料噴射制御装置
JP2004251188A (ja) * 2003-02-20 2004-09-09 Isuzu Motors Ltd 内燃機関の排気ガス浄化システム
JP2007023959A (ja) * 2005-07-20 2007-02-01 Nissan Motor Co Ltd Pm堆積量推定装置
JP2010106756A (ja) * 2008-10-30 2010-05-13 Honda Motor Co Ltd 燃料噴射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4115068A4 (en) * 2020-03-02 2023-11-29 Volvo Truck Corporation ENGINE SYSTEM COMPRISING FUEL SYSTEM CONTROL ARRANGEMENT AND METHOD FOR CONTROLLING FUEL INJECTION IN AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
JP5857662B2 (ja) 2016-02-10
JP2013108403A (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5825068B2 (ja) 内燃機関の燃料噴射の異常判定方法と内燃機関
US8047064B2 (en) Apparatus and method for detecting abnormality of inter-cylinder air-fuel ratio dispersion in multi-cylinder internal combustion engine
EP2171226B1 (en) Internal combustion engine exhaust gas control apparatus and control method thereof
US7743759B2 (en) Gas sensor controller
US8512531B2 (en) Gas concentration detection apparatus
US9810132B2 (en) Catalyst deterioration diagnosis apparatus
US10590873B2 (en) Control device for internal combustion engine
JP5067509B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
US20120109497A1 (en) Abnormal inter-cylinder air-fuel ratio imbalance detection apparatus for multi-cylinder internal combustion engine
JP5857662B2 (ja) 内燃機関の燃料噴射の異常判定方法と内燃機関
JP2017003298A (ja) NOxセンサの出力補正装置
JP2016223406A (ja) 触媒診断装置
JP5790436B2 (ja) 内燃機関の燃焼噴射方法と内燃機関
JP4789011B2 (ja) 排ガスセンサの故障診断装置
JP5790435B2 (ja) 内燃機関の燃焼噴射方法と内燃機関
JP2013133734A (ja) 内燃機関の制御装置
JP2014181650A (ja) 多気筒型内燃機関の異常検出装置
US10072593B2 (en) Control device of internal combustion engine
JP5831162B2 (ja) NOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関
JP5891734B2 (ja) NOxセンサの異常診断方法、NOxセンサの異常診断システム、及び内燃機関
JP2012137050A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP2015004319A (ja) 内燃機関の排気浄化システム
JP2010007492A (ja) 排気温度推定方法及び排気温度推定装置
JP2008063951A (ja) 内燃機関の空燃比制御装置
JP2008088962A (ja) 触媒熱劣化判定装置及び触媒熱劣化抑制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848826

Country of ref document: EP

Kind code of ref document: A1