WO2013069325A1 - エンジンの冷却制御装置 - Google Patents

エンジンの冷却制御装置 Download PDF

Info

Publication number
WO2013069325A1
WO2013069325A1 PCT/JP2012/063253 JP2012063253W WO2013069325A1 WO 2013069325 A1 WO2013069325 A1 WO 2013069325A1 JP 2012063253 W JP2012063253 W JP 2012063253W WO 2013069325 A1 WO2013069325 A1 WO 2013069325A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
passage
passages
cooling water
cooling control
Prior art date
Application number
PCT/JP2012/063253
Other languages
English (en)
French (fr)
Inventor
林邦彦
菅本周作
長谷川吉男
畑浩一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/353,637 priority Critical patent/US9267420B2/en
Priority to JP2013542876A priority patent/JP5895942B2/ja
Priority to EP12848238.7A priority patent/EP2778366B1/en
Priority to CN201280054557.2A priority patent/CN103917759B/zh
Publication of WO2013069325A1 publication Critical patent/WO2013069325A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/056Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with ball-shaped valve members
    • F16K11/0565Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with ball-shaped valve members moving in a combined straight line and rotating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/001Cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement

Definitions

  • the present invention relates to an engine cooling control device.
  • Patent Documents 1 and 2 disclose techniques that are considered to be related to the present invention regarding engine cooling control devices.
  • Patent Documents 1 and 2 include a main body having a fluid inlet and at least two fluid outlets, and an adjustment member that can take various angular positions to control the distribution of fluid through the fluid outlet has a small gap.
  • a control valve surrounded by a seal ring is disclosed. In order to prevent fluid from accidentally leaking to the outlet, the control valve brings the seal ring into contact with the side wall where the fluid outlet opens under the action of fluid pressure.
  • Patent Document 3 discloses a technique that is considered to be related to the present invention in terms of a configuration in which an outer ring of a rolling bearing is brought into rolling contact with a slider. Techniques considered to be relevant to the present invention are further disclosed in Patent Documents 4 to 7.
  • an object of the present invention is to provide an engine cooling control device capable of suitably performing engine cooling control.
  • the present invention provides a housing portion provided with a plurality of passages configured to have at least one inlet side passage through which cooling water for the engine flows in and one outlet side passage through which the cooling water from the engine flows out, Of the housing portion, each of the plurality of passages is provided in an intermediate portion that opens, and a rotor that controls circulation of the cooling water of the engine through the plurality of passages by rotation operation, the housing portion, and the rotor
  • a seal function portion provided rotatably with the rotor between the rotor and the seal function portion, and at least the inlet-side passage among the plurality of passages according to phase control of the rotor
  • An engine cooling control device comprising: an elastic member that urges the seal function portion to be able to abut against the opening portion.
  • the present invention further includes a pump that pumps the cooling water of the engine, and the plurality of passages are configured to have passages through which cooling water from the pumps to the engine can flow.
  • a second passage group configured to have a passage capable of circulating cooling water from the engine to the pump, and the first and second passage groups.
  • the sealing function portion is disposed between the first and second passage groups in the direction along the axis of rotation of the rotor. Further, a pressing portion pressed against the rotor can be further provided.
  • the rotation center when the rotor is viewed along the axis of rotation center, the rotation center is provided at a position where the distance to each of the opening portions of the plurality of passages opening in the intermediate portion is different from each other at least partially.
  • the elastic member individually biases the sealing function portion for each different phase of the rotor with respect to each of the openings of the plurality of passages.
  • a gap between the sealing function portion and the opening portion of the predetermined passage when the elastic member biases the sealing function portion with respect to the opening portion of the predetermined passage among the plurality of passages. Can be provided.
  • the present invention further comprises a plurality of rolling elements arranged between the rotor and the seal function part along four axes of the rotation center of the rotor when viewed along the axis of rotation center of the rotor. Can do.
  • an opening of at least one of the plurality of passages is formed in accordance with the outer surface shape of the seal function portion that faces the rotor in a state controlled to a corresponding phase. It can be set as the structure which has a sealing surface.
  • engine cooling control can be suitably performed.
  • FIG. 6A and 6B are first diagrams illustrating the operation of the first embodiment.
  • FIGS. 7A and 7B are second diagrams illustrating the operation of the first embodiment.
  • FIGS. 8A and 8B are third diagrams illustrating the operation of the first embodiment.
  • 2 is a diagram illustrating a specific example of Example 1.
  • FIG. It is a figure which shows the cooling circuit of the engine of Example 2.
  • FIG. 14A to FIG. 14F are diagrams for explaining the operation of the second embodiment.
  • FIG. 6 is a diagram illustrating an engine cooling control apparatus according to a third embodiment.
  • FIGS. 16A and 16B are first diagrams illustrating the operation of the third embodiment.
  • FIG. 10 is a second diagram for explaining the operation of the third embodiment.
  • FIG. 10 is a perspective view showing a main part of Example 4.
  • FIG. 6 is a cross-sectional view showing a main part of Example 4.
  • FIG. 10 is a perspective view showing a main part of Example 5.
  • FIG. 10 is a perspective view showing a main part of Example 6.
  • 10 is a cross-sectional view showing the main parts of Example 6.
  • FIG. 1 is a diagram showing an engine cooling circuit (hereinafter referred to as a cooling circuit) 100A incorporating an engine cooling control device (hereinafter referred to as a single rejection control apparatus) 10A.
  • the cooling circuit 100A is mounted on a vehicle (not shown).
  • the cooling circuit 100 ⁇ / b> A includes a water pump (hereinafter referred to as W / P) 1, a cooling control device 10 ⁇ / b> A, an engine 2 ⁇ / b> A, a radiator 3, a heater core 4, and a thermostat 5.
  • W / P1 circulates the cooling water of engine 2A.
  • W / P1 is a mechanical pump driven by the output of the engine 2A.
  • W / P1 may be an electrically driven pump.
  • the cooling water discharged from W / P1 is supplied to the cooling control device 10A.
  • the cooling control device 10A supplies the cooling water supplied from W / P1 to the engine 2A.
  • the engine 2A includes a cylinder block 2a and a cylinder head 2b.
  • the cooling control device 10A is connected to the cylinder block 2a and the cylinder head 2b so as to be able to supply cooling water.
  • the engine 2A is formed with a flow path through which cooling water flows in the order of the cylinder block 2a and the cylinder head 2b, and a flow path through which cooling water flows through the cylinder head 2b. These flow paths merge at the cylinder head 2b.
  • the cooling water that has circulated through the engine 2A is diverted toward the radiator 3, the heater core 4, and the thermostat 5.
  • the radiator 3 exchanges heat between the air and the cooling water to cool the cooling water.
  • the heater core 4 exchanges heat between the air and the cooling water to heat the air.
  • the heater core 4 is used for an air conditioner that air-conditions the passenger compartment.
  • the thermostat 5 controls the flow of the cooling water according to the temperature of the cooling water.
  • the thermostat 5 is located at a point where the distribution path connecting the engine 2A and W / P1 and the distribution path connecting the radiator 3 and W / P1 join the distribution path connecting the heater core 4 and W / P1. Is provided. And the thermostat 5 connects the radiator 3 and W / P1 according to the temperature of the cooling water, the restriction of the circulation of the cooling water through the distribution path connecting the engine 2A and the W / P1, the release of the distribution restriction, and the radiator 3 and the W / P1. The distribution restriction of the cooling water via the distribution route and the release of the distribution restriction are performed.
  • the thermostat 5 restricts the flow of the cooling water through the flow path connecting the radiator 3 and the W / P1, and the flow connecting the engine 2A and the W / P1. Release restrictions on the flow of cooling water through the route. Further, when the cooling water temperature is higher than the predetermined value ⁇ (specifically, when the cooling water temperature is equal to or higher than the predetermined value ⁇ ), the flow restriction of the cooling water via the flow path connecting the radiator 3 and the W / P 1 is restricted. In addition to releasing, it restricts the circulation of the cooling water via the distribution path connecting the engine 2A and the W / P1.
  • the cooling water diverted toward the heater core 4 flows through the heater core 4 and then returns to the W / P 1 as it is through the thermostat 5.
  • the cooling water branched toward the radiator 3 and the cooling water branched toward the thermostat 5 return to W / P 1 via the thermostat 5 under the control of the cooling water flow by the thermostat 5. It should be noted that performing restriction and release of restriction includes prohibition and permission.
  • FIG. 2 is a diagram showing the cooling control apparatus 10A.
  • the cooling control device 10A includes a housing part 11A, a rotor 12, a seal function part 13A, and an elastic member 14.
  • Passage PA in for flowing cooling water supplied from the W / P1 as inlet channel is provided in the housing portion 11A.
  • a passage PA out 1 through which cooling water supplied to the cylinder block 2a flows out and a passage PA out 2 through which cooling water supplied to the cylinder head 2b flows out are provided as the outlet side passages.
  • the passages PA in , PA out 1, and PA out 2 correspond to a plurality of passages configured to have at least one entrance side passage and one exit side passage.
  • the rotor 12 is provided in an intermediate portion M where the passages PA in , PA out 1 and PA out 2 are opened in the housing portion 11A.
  • the intermediate portion M is a portion that accommodates the rotor 12 that controls the circulation of the cooling water through the passages PA in , PA out 1, PA out 2 by the rotation operation.
  • the passages PA in , PA out 1, PA out 2 are opened from the side of the rotor 12 to the intermediate portion M in correspondence with different phases of the rotor 12.
  • the distances to the openings of the passages PA in , PA out 1, PA out 2 that open to the intermediate part M are different from each other at least partially.
  • a center of rotation is provided. This point will be described in detail later.
  • the seal function part 13A is provided between the housing part 11A and the rotor 12.
  • the seal function part 13A is constituted by a seal member (for example, resin or rubber).
  • the seal function part 13 ⁇ / b> A is rotatably provided together with the rotor 12.
  • the rotor 12 is slidable along a direction orthogonal to the axis C.
  • the rotor 12 and the seal function part 13A are specifically provided with engagement parts i1 and i2.
  • the engaging portion i1 is provided in the rotor 12 and is a block-like portion that is rectangular when viewed along the axis C.
  • the engaging part i2 is provided in the seal function part 13A, and is a slot-like part that is rectangular when viewed along the axis C.
  • the engaging portions i1 and i2 allow the sealing function portion 13A to be rotated together with the rotor 12 in a state where the engaging portion i1 is accommodated in the engaging portion i2, and in a direction perpendicular to the axis C with respect to the rotor 12.
  • the sealing function part 13A is made slidable along.
  • the engagement part i1 when the engagement part i1 is viewed along the axis C, it has sliding wall parts at equal intervals with the axis C in between.
  • the engaging part i2 has a sliding wall part corresponding to each sliding wall part of the engaging part i1.
  • the interval between the sliding wall portions of the engaging portion i2 is set to be larger by the sliding clearance than the interval between the sliding wall portions of the engaging portion i1.
  • the interval between both end wall portions of the engaging portion i2 can be set larger than the interval between both end wall portions of the engaging portion i1 in accordance with the movable range required by the seal function portion 13A.
  • the seal function unit 13A includes a contact portion E that contacts at least one of the passages PA in , PA out 1, PA out 2.
  • the seal function portion 13A is provided so as to partially contact the housing portion 11A by contacting the opening portion of any of the passages PA in , PA out 1, PA out 2 with the contact portion E. ing. That is, it is provided so as not to contact the housing portion 11 ⁇ / b> A at other portions other than the contact portion E.
  • the seal function portion 13A is provided so that the outer periphery shape is elliptical when viewed along the axis C, and the outer periphery shape is smaller than the inner periphery shape of the intermediate portion M. .
  • a portion located on one end side in the major axis direction of the elliptical outer shape is the contact portion E, and the sliding wall portion of the engaging portion i2 is in the outer shape major axis. It is provided along.
  • the elastic member 14 is provided between the rotor 12 and the seal function part 13A. Specifically, when the elastic member 14 is viewed along the axis C, one of the wall portions of the engagement portion i1 and one of the wall portions of the engagement portion i2 is the one wall portion. It is provided between the wall part which opposes.
  • the elastic member 14 is, for example, a spring, and biases the sealing function portion 13A from the rotor 12 toward the housing portion 11A, so that the opening of the passage 12 is in each of the openings of the passages PA in , PA out 1, PA out 2.
  • the seal function unit 13A is urged individually for each different phase.
  • the contact portion E is a portion located on the side urged by the elastic member 14 in the seal function portion 13A. Further, the outer surface of the contact portion E is a portion where the openings of the passages PA in , PA out 1, PA out 2 face each other in a state where the rotor 12 is controlled to the corresponding phase. Specifically, the elastic member 14 biases the seal function part 13A in such a manner that the seal function part 13A slides with respect to the rotor 12.
  • the housing portion 11A is provided such that the inner periphery of the intermediate portion M is elliptical when viewed along the axis C.
  • the passage PA in is opened from the one end side in the short axis direction of the inner circumference shape, and the passage PA out 2 is opened from the other end side in the minor axis direction of the inner circumference shape to the intermediate portion M.
  • the passage PA out 1 is provided so as to open to the intermediate portion M from one end side in the major axis direction of the inner circumference.
  • the passages PA in and PA out 2 are provided so as to open to the intermediate portion M so as to correspond to the short axis of the inner shape. Further, the passage PA out 1 is provided so as to open to the intermediate portion M in correspondence with the long axis of the inner shape.
  • the passages PA in and PA out 2 are provided so as to extend along the minor axis of the inner periphery shape, and the passage PA out 1 extends along the major axis of the inner periphery shape and open to the intermediate portion M.
  • the passages PA in , PA out 1, PA out 2 are provided in this order along the rotation direction of the rotor 12.
  • the rotation center of the rotor 12 is set at a position eccentric to the side of the passage PA in with respect to the inner elliptical center when viewed along the axis C.
  • the passage PA in is provided such that the distance from the rotation center of the rotor 12 to the opening is shorter than the passages PA out 1 and PA out 2.
  • the passage PA out 2 is provided such that the distance from the rotation center of the rotor 12 to the opening is shorter than the passage PA out 1. That is, specifically, the rotor 12 is provided with the rotation centers at positions where the distances to the openings of the passages PA in , PA out 1, PA out 2 are different from each other.
  • FIG. 3 is a diagram showing the rotor 12 alone.
  • the rotor 12 includes a gear portion G to which a driving force from the actuator is input in addition to the engaging portion i1.
  • the phase can be changed by the actuator.
  • a rotation angle sensor 30 capable of detecting the phase of the rotor 12 is provided for the rotor 12. As a result, the current control mode can be detected.
  • FIG. 4 is a diagram showing the engaging portions i1 and i2.
  • the cooling control device 10 ⁇ / b> A includes a plurality (four in this case) arranged in the four directions of the rotation center of the rotor 12 when viewed along the axis C between the rotor 12 and the sealing function unit 13 ⁇ / b> A.
  • Rolling elements T are provided. Each of the rolling elements T is specifically disposed between the engaging portions i1 and i2, is provided so as to be able to roll on the engaging portion i1, and is provided so as to be in contact with the engaging portion i2.
  • the rolling element T is, for example, a ball.
  • the rolling element T may be a cylindrical member, for example.
  • FIG. 5 is a diagram showing openings of the passages PA in , PA out 1, PA out 2.
  • the cooling control apparatus 10 ⁇ / b > A, all the openings of the passages PA in , PA out 1, PA out 2 have a seal surface S formed in accordance with the outer surface shape of the contact portion E.
  • at least one of the passages PA in , PA out 1, PA out 2 has a seal surface S formed so as to match the outer surface shape of the contact portion E.
  • the cooling control device 10A prohibits the water stop mode for stopping the circulation of the cooling water through the cylinder block 2a and the cylinder head 2b and the circulation of the cooling water through the cylinder block 2a as the cooling control of the engine 2A.
  • a block stagnation mode that permits the circulation of cooling water via the cylinder head 2b and a full flow mode that permits the circulation of cooling water via the cylinder block 2a and the cylinder head 2b are provided for each different phase of the rotor 12. Yes.
  • Water stop mode is a control mode that can promote warm-up of the engine 2A.
  • the block stagnation mode is a control mode that can reduce the cooling loss of the engine 2A.
  • the total flow rate mode is a control mode that can improve the cooling performance of the engine 2A. Then, the cooling control device 10A switches the cooling control of the engine 2A between these control modes by changing the phase of the rotor 12.
  • 6 (a), 6 (b), 7 (a), 7 (b), 8 (a) and 8 (b) are operation explanatory views of the cooling control apparatus 10A.
  • 6A and 6B show the cooling control device 10A in the water stop mode.
  • 7A and 7B show the cooling control device 10A in the block kneading mode.
  • 8A and 8B show the cooling control device 10A in the full flow mode.
  • the circulation state of the cooling water in each control mode is indicated by arrows.
  • the contact force of the seal function portion 13A in each control mode is indicated by an arrow.
  • the path PA in is set such that the distance from the rotation center of the rotor 12 to the opening is the shortest compared to the other paths PA out 1 and PA out 2.
  • the cooling control device 10A is configured so that the pressure of the acting cooling water remains at a predetermined pressure even if the contact force of the sealing function portion 13A obtained by the elastic member 14 is reduced by the pressure of the cooling water. until becomes, by blocking the opening of the passage PA in a sealing function portion 13A, it stops the flow of cooling water to the engine 2A.
  • the pressure of the acting cooling water reaches a predetermined pressure, by opening the opening of the passage PA in , the passages PA out 1 and PA out 2 are indicated by broken arrows in FIG. Allows cooling water to flow through. Thereby, the cooling water is circulated urgently to the engine 2A.
  • the rotor 12 is controlled to a phase corresponding to the opening of the passage PA out 1 in the block stagnation mode.
  • the elastic member 14 biases the sealing function portion 13A against the opening of the passage PA out 1.
  • the sealing function portion 13A blocks the opening of the passage PA out 1 to allow the cooling water to flow out through the passage PA out 2.
  • the circulation of the cooling water via the cylinder block 2a is stopped and the circulation of the cooling water via the cylinder head 2b is permitted.
  • the passage PA out 1 is set such that the distance from the rotation center of the rotor 12 to the opening is the longest compared to the other passages PA in and PA out 2.
  • the elastic member 14 urges the sealing function portion 13A against the opening of the passage PA out 1, it is compared with the case where the elastic member 14 urges the opening of the other passages PA in and PA out 2.
  • the weakest biasing force is generated.
  • FIG. 7B in the block stagnation mode, the contact force of the seal function part 13A is obtained mainly by the pressure of the cooling water.
  • the rotor 12 is controlled to the phase corresponding to the opening of the passage PA out 2 in the full flow mode.
  • the elastic member 14 biases the sealing function portion 13A against the opening of the passage PA out 2.
  • the opening of the passage PA out 2 is blocked by the sealing function portion 13A, thereby allowing the cooling water to flow out through the passage PA out 1. And thereby, the distribution
  • the passage PA out 2 is set so that the distance from the rotation center of the rotor 12 to the opening is longer than the passage PA in and shorter than the passage PA out 1.
  • the elastic member 14 is weaker when urging the sealing function portion 13A against the opening of the passage PA out 2 than when urging the sealing function portion 13A against the opening of the passage PA in 2 , and the passage PA out.
  • a stronger biasing force is generated than when biasing one opening.
  • the contact force of the seal function part 13A is obtained by the elastic member 14 and the pressure of the cooling water.
  • FIG. 9 is a diagram showing a specific example of the cooling control device 10A.
  • the cooling control apparatus 10A can be applied to, for example, the rotary valve 20 shown in FIG.
  • the rotary valve 20 includes a housing part 21, a rotor 22, a drive part 23, and a thermostat 24.
  • the housing portion 21 includes a first passage portion 21a and a second passage portion 21b.
  • an inlet portion In1, In2 and an outlet portion Out1, Out2 are provided.
  • W / P1 is also shown together with the rotary valve 20.
  • the first passage portion 21a is connected to the cooling water outlet portion of W / P1, and allows the cooling water to circulate from the cooling water outlet portion.
  • path part 21b is connected to the cooling water inlet part of W / P1, and distribute
  • the passage portions 21a and 21b are connected to W / P1 at the ends in a state of being arranged side by side. In the first passage portion 21a, the W / P1 side is the upstream side, and in the second passage portion 21b, the W / P1 side is the downstream side.
  • the first passage portion 21 a communicates with the outlet portions Out 1 and Out 2 on the downstream side of the rotor 22.
  • the second passage portion 21b communicates with the inlet portion In1 on the downstream side of the rotor 22.
  • the inlet 22 communicates with the upstream side and the downstream side of the rotor 22.
  • the second passage portion 21a communicates the first communication portion B1 that communicates the downstream portion of the rotor 22 and the inlet portion In2, and the second communication portion that communicates the upstream portion of the rotor 22 and the inlet portion In2.
  • a communication part B2 For convenience of illustration, in FIG. 9, the first passage portion 21 a is shown as being provided in the same phase with the portions communicating with the outlet portions Out ⁇ b> 1 and Out ⁇ b> 2 on the downstream side of the rotor 22. Are actually provided in different phases.
  • the rotor 22 is provided so as to be interposed between the first passage portion 21a and the second passage portion 21b.
  • the rotor 22 simultaneously controls the circulation of the cooling water flowing through the first passage portion 21a and the circulation of the cooling water flowing through the second passage portion 21b by a rotating operation.
  • the rotor 22 includes a first valve body portion R1 interposed in the first passage portion 21a and a second valve body portion R2 interposed in the second passage portion 21b.
  • the rotor 22 can restrict the circulation of the cooling water flowing through the first passage portion 21a and the circulation of the cooling water flowing through the second passage portion 21b, and release the restriction.
  • the drive unit 23 includes an actuator 23a and a gear box unit 23b, and drives the rotor 22.
  • the actuator 23a is specifically an electric motor, for example.
  • the actuator 23a may be a hydraulic actuator that can be electronically controlled by a hydraulic control valve, for example.
  • the thermostat 24 is provided in the first communication part B1. The thermostat 24 opens when the temperature of the cooling water is higher than a predetermined value, and closes when the temperature is equal to or lower than the predetermined value.
  • the cooling control device 10A can be applied to the rotary valve 20 as follows. That is, of the first passage portion 21a, can be the passage formed by the upstream portion than the rotor 22 and the passage PA in. Further, of the first passage portion 21a, a part of the downstream side of the rotor 22, by a portion to the passage formed by the portion which communicates with the outlet portion Out1 a passage PA out 1, communicating with the outlet portion Out2
  • the formed path can be a path PA out 2.
  • the housing part 21 provided with these passages can be used as the housing part 11A.
  • paths opens can be made into the intermediate part M, and the rotor 22 provided in the part which each of these channel
  • FIG. 1 the sealing function portion 13A is provided between the housing portion 21 and the first valve body portion R1, and the elastic member 14 is provided between the first valve body portion R1 and the sealing function portion 13A. Can do.
  • the thermostat 5 can be provided on the rotary valve 20 by using the thermostat 24 as the thermostat 5.
  • a sealing function part 13A is provided between the housing part 21 and the second valve body part R2, and an elastic member 14 is provided between the second valve body part R2 and the sealing function part 13A.
  • the housing portion 21 uses the passage formed by the portion upstream of the rotor 22 in the second passage portion 21b as the inlet-side passage, and the passage formed by the portion downstream from the rotor 22 as the outlet.
  • a housing part provided with two passages as side passages is formed.
  • the rotary valve 20 as a whole may be grasped by providing the seal function part 13A and the elastic member 14 on at least one of the valve body parts R1 and R2.
  • the sealing function part 13A is rotatably provided with the rotor 12, and the elastic member 14 is individually provided for each of the different phases of the rotor 12 with respect to the openings of the passages PA in , PA out 1, PA out 2.
  • the seal function part 13A is biased.
  • the cooling control apparatus 10A performs cooling control of the engine 2A by blocking the opening of one of the passages PA in , PA out 1, PA out 2 in accordance with the phase control of the rotor 12. be able to.
  • the cooling control apparatus 10A when the rotation center of the rotor 12 is viewed along the axis C, the distances to the openings of the passages PA in , PA out 1, PA out 2 that open to the intermediate part M are at least partly. Are provided at different positions. For this reason, the cooling control apparatus 10A can change the contact force of the seal function part 13A for each of the paths PA in , PA out 1, PA out 2 where the distances are different from each other.
  • 10 A of cooling control devices can perform cooling control of engine 2A suitably at the point which can ensure sealing performance, suppressing the fall of the responsiveness of the rotor 12. .
  • wear of seal function part 13A can also be controlled.
  • the cooling control apparatus 10A when the elastic member 14 urges the sealing function part 13A against the opening of the passage PA in , the pressure of the cooling water may be applied in a direction that reduces the contact force of the sealing function part 13A. it can. For this reason, the cooling control device 10A reduces the contact force of the sealing function portion 13A in accordance with the increase in the discharge pressure of W / P1, thereby increasing the response of the rotor 12 during the high-speed operation of the engine 2A where the demand for cooling increases.
  • the cooling control of the engine 2A can be suitably performed also in the point which can be improved.
  • the cooling control device 10A when the elastic member 14 urges the sealing function portion 13A against the opening of the passage PA in , the pressure of the cooling water is applied in a direction to reduce the contact force of the sealing function portion 13A. Until the pressure of the acting cooling water reaches a predetermined pressure, the seal function portion 13A blocks the opening of the passage PA in to stop the flow of the cooling water to the engine 2A, and the acting cooling water When the pressure reaches a predetermined pressure, the opening of the passage PA in can be opened.
  • the cooling control apparatus 10A can circulate the cooling water urgently to the engine 2A without changing the phase of the rotor 12 when the pressure of the acting cooling water reaches a predetermined pressure.
  • the cooling control of the engine 2A is also suitably performed in that it can be suitably dealt with when the necessity for cooling rapidly increases as a result of the rapid increase in the rotational speed of the engine 2A. be able to.
  • the cooling control of the engine 2A can be suitably performed in that it can cope with a case where the drive unit 23 fails in the rotary valve 20, for example.
  • the sealing function unit 13A includes a contact portion E that contacts at least one of the passages PA in , PA out 1, PA out 2.
  • the seal function part 13A is in contact with the opening part of any one of the passages PA in , PA out 1, PA out 2 at the contact part E so as to partially contact the housing part 11A. Is provided.
  • the cooling control device 10A can also improve the responsiveness of the rotor 12 because the seal function portion 13A does not make contact with the housing portion 11A other than the contact portion E.
  • the cooling control of the engine 2A can be suitably performed.
  • the cooling control device 10A is combined with the sealing function unit 13A provided as described above. Specifically, when the cooling control device 10A has the following configuration, the passages PA in , PA out 1, PA out 2 The pressure of the cooling water can be applied in a direction to open or block the opening.
  • the sealing function portion 13A is provided so as to be slidable with respect to the rotor 12 along the direction orthogonal to the axis C, and the elastic member 14 causes the sealing function portion 13A to slide with respect to the rotor 12.
  • the pressure of the cooling water can be applied to the seal function portion 13A in a direction that opens or blocks the openings of the passages PA in , PA out 1, PA out 2. .
  • the cooling control device 10A reduces the average torque required for driving the rotor 12 by applying the cooling water pressure in a direction to open or block the openings of the passages PA in , PA out 1, PA out 2.
  • the responsiveness of the rotor 12 can be increased, the wear of the seal function portion 13A can be suppressed, and the burden on the actuator that drives the rotor 12 can be reduced.
  • the cooling control apparatus 10A is specifically suitable for the above configuration.
  • the cooling control device 10A has the above-described configuration, the amount of the cooling water pressure acting on the seal function unit 13A in the direction of blocking the openings of the passage PA out 1 and the passage PA out 2 Responsiveness will decrease.
  • the opening of the passage PA out 1 is blocked, the opening of the passage PA out 2 is opened, and when the opening of the passage PA out 2 is blocked, the opening of the passage PA out 1 is opened. .
  • the cooling control device 10A completely blocks the outflow of the cooling water even if the pressure of the cooling water acts on the seal function unit 13A in the direction of blocking the opening of the passage PA out 1 and the passage PA out 2. Compared with the case where it is done, it can suppress sufficiently that the responsiveness of the rotor 12 falls. Therefore, more specifically, the cooling control device 10A preferably has a configuration in which two or more outlet-side passages (here, the passages PA out 1 and PA out 2) are provided in the housing portion 11A.
  • the cooling control device 10A includes a plurality of rolling elements T arranged in four directions of the rotation center of the rotor 12 when viewed along the axis C between the rotor 12 and the seal function unit 13A. For this reason, 10 A of cooling control apparatuses can suppress contacting with the sealing function part 13A in the state which the rotor 12 inclined along the rotation direction rather than the regular state.
  • the cooling control apparatus 10A can improve the displacement response of the seal function part 13A and can suppress contact wear between the rotor 12 and the seal function part 13A. Thereby, the phase detection error of the rotation angle sensor 30 can be reduced to improve the phase accuracy of the seal function unit 13A.
  • the inner part of the intermediate portion M is formed in an elliptical shape, so that the distance from the rotation center of the rotor 12 to the opening is different between the passage PA in and the passage PA out 1.
  • the curvature of the opening as viewed along the axis C differs between the passage PA in and the passage PA out 1.
  • the sealing function portion 13A for the opening is provided. The ways of contact may differ from each other. For this reason, in the cooling control apparatus 10A, it is not always easy to seal these openings with the sealing function unit 13A.
  • the cooling control apparatus 10A at least one of the passages PA in , PA out 1, PA out 2 has a seal surface S formed so as to match the outer surface shape of the contact portion E. is doing.
  • the cooling control apparatus 10A has the sealing properties of the openings of the passages PA in , PA out 1, PA out 2 in which the curvature of the opening and the manner of contact of the seal function part 13A differ at least partially. It can also be suitably secured. Sealing surface S is preferably be provided in an opening of the passage PA in which is required at least a high sealing property, for example.
  • the cooling control device 10A is provided on the upstream side of the engine 2A, so that it is possible to provide the W / P 1 and the thermostat 5 as shown by the rotary valve 20. Further, in this case, the size of the radiator 3 can be suppressed from being increased because it is not necessary to provide the radiator 3 with an outlet-side passage through which the cooling water flows out. Further, in this case, by using the rotor 12 as the rotor 22, the circulation of the cooling water flowing through the first passage portion 21a and the circulation of the cooling water flowing through the second passage portion 21b are simultaneously controlled by a rotating operation. You can also
  • the rotor 22 is configured to simultaneously control the circulation of the cooling water flowing through the first passage portion 21a and the circulation of the cooling water flowing through the second passage portion 21b by a rotating operation, it is not particularly easy to ensure responsiveness. .
  • the cooling control device 10 ⁇ / b> A capable of ensuring the sealing performance while suppressing the decrease in the response of the rotor 12 is specifically configured to use the rotor 12 as the rotor 22.
  • FIG. 10 is a diagram showing a cooling circuit 100B incorporating the cooling control device 10B.
  • the cooling circuit 100B is provided with a cooling control device 10B instead of the cooling control device 10A, a point provided with the engine 2B instead of the engine 2A, and a change in the flow path according to this, except for the cooling circuit 100A. Is substantially the same.
  • the cooling control device 10B is substantially the same as the cooling control device 10A except that the cooling control device 10B is provided on the downstream side of the engine 2B and the configuration is changed accordingly. The configuration of the cooling control device 10B will be described in detail later.
  • the engine 2B includes a cylinder block 2a ′ and a cylinder head 2b ′ instead of the cylinder block 2a and the cylinder head 2b.
  • the cylinder block 2a ′ and the cylinder head 2b ′ are substantially the same as the cylinder block 2a and the cylinder head 2b, except that a flow path for individually flowing the cooling water is formed.
  • the method of circulating the cooling water in the cooling circuit 100B is as follows. That is, the cooling water discharged from the W / P 1 is first supplied to the cylinder block 2a ′ and the cylinder head 2b ′. Then, the cooling water flowing through the cylinder head 2b ′ passes through the cylinder block 2a ′ via the flow path P1 connecting the cylinder head 2b ′ and the cooling control device 10B, and the cooling water flowing through the cylinder block 2a ′ and the cooling control device. It individually flows into the cooling control device 10B via the distribution path P2 connecting 10B.
  • a distribution path P3 connecting the cooling control apparatus 10B and the radiator 3 a distribution path P4 connecting the cooling control apparatus 10B and the heater core 4, or a distribution path connecting the cooling control apparatus 10B and the thermostat 5. Cooling water is supplied to the radiator 3, the heater core 4, and the thermostat 5 through P5. Thereafter, the cooling water returns to W / P1 in the same manner as in the case of the cooling circuit 100A.
  • the cooling control device 10B specifically controls the circulation of the cooling water as described below. That is, in the water stop mode, the inflow of the cooling water from the distribution paths P1 and P2 is prohibited and the outflow of the cooling water to the distribution paths P3, P4 and P5 is permitted. Further, in the block stagnation mode, the inflow of the cooling water from the distribution path P2 is prohibited, the inflow of the cooling water from the distribution path P1 is permitted, and the outflow of the cooling water to the distribution paths P3, P4, P5 is permitted.
  • the first high water temperature control for increasing the cooling water temperature and the first low water temperature control for decreasing the cooling water temperature are performed by the thermostat 5.
  • the cooling control device 10B permits the cooling water to flow in from the flow paths P1 and P2 during the first high water temperature control and the first low water temperature control in the full flow mode, and cools the flow to the flow path P5. Allow outflow of water.
  • the outflow of the cooling water to the flow path of at least flow path P3 is restricted among flow paths P3 and P4.
  • at least the restriction on the outflow of the cooling water to the circulation path P3 is canceled out of the circulation paths P3 and P4.
  • FIG. 11 is a view showing the circulation of the cooling water during the first high water temperature control.
  • FIG. 12 is a diagram showing the circulation of cooling water during the first low water temperature control.
  • the flow of the cooling water is indicated by an arrow along the flow path, and the flow path whose flow is restricted by the thermostat 5 or the cooling control device 10B is indicated by a broken line.
  • FIGS. 11 and 12 show a case where the cooling control device 10B cancels the cooling water outflow restriction for the flow path P4.
  • the cooling control device 10B may limit the outflow of the cooling water to the flow path P4 during the first high water temperature control or the first low water temperature control.
  • the thermostat 5 restricts the inflow of cooling water from the radiator 3 and cancels the inflow restriction of the cooling water from the cooling control device 10B. It shows a state where water temperature control is being performed.
  • the cooling control device 10B limits the outflow of the cooling water to the flow path P3 during the first high water temperature control, so that the cooling water temperature is continuously increased even after the cooling water temperature exceeds the predetermined value ⁇ . Make it possible.
  • FIG. 12 shows that when the cooling water temperature is higher than the predetermined value ⁇ , the thermostat 5 cancels the cooling water inflow restriction from the radiator 3 and restricts the cooling water inflow from the cooling control device 10B. It shows a state where water temperature control is being performed. On the other hand, the cooling control device 10B cancels the restriction on the outflow of the cooling water to the flow path P3 during the first low water temperature control, thereby stopping the high temperature of the cooling water and lowering the cooling water temperature. Make it possible to do.
  • the cooling control apparatus 10B performs the second high water temperature control that makes the cooling water temperature relatively high in the range of the appropriate temperature in the full flow mode and the second low water temperature that makes the cooling water temperature relatively low in the range of the appropriate temperature.
  • Water temperature control can be performed.
  • the predetermined value ⁇ can be set to a lower limit value of an appropriate temperature, for example.
  • FIG. 13 is a diagram showing the cooling control device 10B.
  • the cooling control device 10B is substantially the same as the cooling control device 10A except that it includes a housing portion 11B instead of the housing portion 11A and a sealing function portion 13B instead of the sealing function portion 13A.
  • the housing portion 11B is provided with a passage PB in 1 for allowing cooling water to flow from the circulation path P1 and a passage PB in 2 for allowing cooling water to flow from the circulation path P2.
  • a passage PB out 1 that allows the cooling water to flow out to the circulation path P3 as an outlet-side passage
  • a passage PB out 2 that causes the cooling water to flow through the circulation path P4
  • a path PB out 3 that causes the cooling water to flow through the circulation path P5 Is provided.
  • the passages PB in 1, PB in 2, PB out 1, PB out 2, and PB out 3 correspond to a plurality of passages.
  • the housing portion 11B is provided such that the inner shape of the intermediate portion M is elliptical when viewed along the axis C. Then, when viewed along the axis C, the passages PB in 1 and PB in 2 are provided so as to open to the intermediate portion M from one end side in the short axis direction of the inner shape in a state adjacent to each other. Specifically, it is provided so as to open to the intermediate part M in a state of being adjacent to each other so as to sandwich the inner-shaped short axis.
  • the passages PB in 1 and PB in 2 are provided so as to extend along the short axis of the inner shape and open to the intermediate portion M.
  • the passage diameter is set to be smaller in the passage PB in 1 than in the passage PB in 2.
  • the passages PB out 1 and PB out 2 are provided adjacent to each other so as to open from the other end side in the short axis direction of the inner shape to the intermediate portion M.
  • the passage PB out 1 is provided so as to open to the intermediate portion M so as to correspond to the inner-shaped short axis.
  • the passage PB out 2 is provided so as to open to the intermediate portion M at a position offset forward in the rotational direction of the rotor 12 from the short shaft having the inner shape.
  • the passages PB out 1 and PB out 2 are provided so as to extend along the short axis of the inner shape and open to the intermediate portion M.
  • the passage diameter is set to be smaller in the passage PB out 2 than in the passage PB out 1.
  • the passage PB out 3 is provided so as to open to the intermediate portion M from one end side in the long axis direction of the inner circumference when viewed along the axis C. Further, it is provided so as to open to the intermediate part M at a position offset forward in the rotational direction of the rotor 12 from the inner long axis.
  • the passage PB out 3 extends along the long axis of the inner shape and is provided so as to open to the intermediate portion M.
  • the passages PB in 1, PB in 2, PB out 1, PB out 2, and PB out 3 are provided in this order along the rotation direction of the rotor 12.
  • the rotation center of the rotor 12 is set at a position eccentric to the side of the passages PB in 1 and PB in 2 with respect to the inner elliptical center when viewed along the axis C.
  • the paths PB in 1 and PB in 2 are provided such that the distance from the rotation center of the rotor 12 to the opening is shorter than the paths PB out 1 and PB out 2.
  • the passage PB in 1 is provided such that the distance from the rotation center of the rotor 12 to the opening is shorter than the passage PB in 2. Further, between the passages PB out 1 and PB out 2, the passage PB out 1 is provided such that the distance from the rotation center of the rotor 12 to the opening is shorter than the passage PB out 2.
  • the passage PB out 3 is provided such that the distance from the rotation center of the rotor 12 to the opening is different from the passages PB in 1, PB in 2, PB out 1, and PB out 2.
  • the distances to the openings of the passages PB in 1, PB in 2, PB out 1, PB out 2, and PB out 3 are all different from each other at positions different from each other. A center of rotation is provided.
  • the seal function portion 13B has a portion located on one end side in the minor axis direction of the elliptical outer periphery as a contact portion E, and a sliding wall portion of the engagement portion i2 is provided along the outer periphery of the minor axis.
  • the engagement function i2 is substantially the same as the seal function portion 13A except that the engagement portion i2 is provided so as to protrude from the other end side along the short axis direction of the outer periphery. Yes.
  • the abutting portion E is of the passages PB in 1, PB in 2, PB out 1, PB out 2, PB out 3, abuts on the opening of the at least one passageway. Cooling control device 10B in the contact portion E a passage PB in 1, PB in 2, PB out 1, out of the PB out 2, PB out 3, so that it can contact the opening of the passage PB in 1, PB in 2
  • the movable range of the seal function part 13B is set.
  • the elastic member 14 is an opening of the passages PB out 1 and PB out 2 corresponding to predetermined passages among the passages PB in 1, PB in 2, PB out 1, PB out 2, and PB out 3.
  • a gap is provided between the seal function part 13B and the openings of the passages PB out 1 and PB out 2 in a state where the seal function part 13B is urged against the part. This gap is provided within an interval that functions as a stop.
  • the elastic member 14 urges the sealing function portion 13B against the entire openings of the passages PB in 1 and PB in 2. doing, the sealing function portion 13B is enabled to contact simultaneously the opening each passage PB in 1, PB in 2. Further, the elastic member 14 individually biases the seal function part 13B to at least the opening of the path PB in 2 out of the paths PB in 1 and PB in 2, so that the seal function part 13B becomes the path PB in 1, among PB in 2, and to be able to abut individually to at least the opening of the passage PB in 2.
  • the elastic member 14 urges the seal function part 13B against the entire openings of the passages PB out 1 and PB out 2. By doing so, a gap is provided simultaneously between the seal function part 13B and the openings of the passages PB out 1 and PB out 2. Further, the elastic member 14 individually biases the sealing function portion 13B against the opening portions of the passages PB in 1 and PB in 2, respectively, so that the sealing function portion 13B and the opening portions of the passages PB in 1 and PB in 2 respectively. A gap is provided between each of them.
  • the rotation center of the rotor 12 is provided at a position where the distances to the adjacent openings of PB out 1 and PB out 2 are different from each other.
  • FIG. 14 (a) to 14 (f) are operation explanatory views of the cooling control device 10B.
  • FIG. 14A shows the cooling control device 10B in the water stop mode.
  • FIG. 14B shows the cooling control device 10B in the block stagnation mode.
  • FIG. 14C shows the cooling control device 10B in the full flow mode and in the first low water temperature control.
  • FIG. 14D shows the cooling control device 10B in the full flow rate mode and the first high water temperature control.
  • FIG. 14E shows the cooling control device 10B in the full flow mode and in the first high water temperature control and further in the air conditioner load reduction control.
  • FIG. 14 (f) shows the cooling control device 10B in the full flow mode and in the first low water temperature control, and further in the air conditioner load reduction control.
  • the air conditioner load reduction control is a control for reducing the load during the cooler operation in the air conditioner using the heater core 4.
  • the rotor 12 in the water stop mode, the rotor 12 is controlled to a phase corresponding to the entire adjacent openings of the passages PB in 1 and PB in 2.
  • the elastic member 14 urges the sealing function portion 13B against the entire opening portions of the passages PB in 1 and PB in 2.
  • high pressure of the cooling water acts on the seal function part 13B in the direction of opening the entire opening part of the passages PB in 1 and PB in 2 during the high rotation operation of the engine 2B.
  • the passages PB in 1 and PB in 2 have distances from the rotation center of the rotor 12 to the entire opening, and the individual passages PB in 1 and PB in 2 and other passages PB out 1, PB out 2, PB out It is set to be the shortest compared to 3.
  • the cooling control device 10B cools through the engine 2B by blocking the entire openings of the passages PB in 1 and PB in 2 with the sealing function unit 13B until the pressure of the acting cooling water reaches a predetermined pressure. Stop water distribution.
  • the pressure of the acting cooling water reaches a predetermined pressure, the entire openings of the passages PB in 1 and PB in 2 are opened, and the passages PB out 1 and PB out are indicated by broken arrows. 2. Allow cooling water to flow out through PB out 3. And thereby, the distribution
  • the rotor 12 in the block stagnation mode, the rotor 12 is controlled to a phase individually corresponding to the opening of the passage PB in 2.
  • the elastic member 14 individually urges the sealing function portion 13B against the opening of the passage PB in 2. And thereby, by blocking individual openings of the passages PB in 2 in sealing function portion 13B, and the inflow of coolant through the passages PB in 1, the passage PB out 1, PB out 2, PB out 3 Allows cooling water to flow through.
  • the circulation of the cooling water via the cylinder block 2a ′ is stopped and the circulation of the cooling water via the cylinder head 2b ′ is permitted.
  • the pressure of the cooling water acts on the seal function part 13B in the direction to open the opening of the passage PB in 2.
  • the path PB in 2 is set such that the distance from the rotation center of the rotor 12 to the opening is longer than the path PB in 1 and shorter than the paths PB out 1, PB out 2, and PB out 3.
  • the elastic member 14 then energizes the entire opening of the passages PB in 1 and PB in 2 when urging the sealing function portion 13B against the opening of the passage PB in 2. A strong biasing force is generated between the control modes.
  • FIG. 14C it corresponds to any of the openings of the passages PB in 1, PB in 2, PB out 1, PB out 2, PB out 3 in the full flow mode and in the first low water temperature control.
  • the rotor 12 is controlled to a phase that does not. And thereby, the distribution
  • the rotor 12 is specifically controlled so that the sealing function portion 13B faces the front portion of the passage PB in 2 and the rear portion of the passage PB out 1 in the rotation direction of the rotor 12 in the housing portion 11B.
  • the distance from the rotation center of the rotor 12 is longer than the openings of the passages PB in 1, PB in 2, and PB out 3 and shorter than the openings of the passages PB out 1 and PB out 2.
  • the elastic member 14 generates a biasing force when biasing the sealing function portion 13B with respect to the portion, which is weaker than when biasing the opening portion of the passage PB in 2.
  • the contact force of the functional part 13B is reduced.
  • the rotor 12 is controlled to a phase individually corresponding to the opening of the passage PB out 1 during the full flow mode and during the first high water temperature control.
  • the elastic member 14 individually urges the sealing function portion 13B against the opening of the passage PB out 1. And thereby, by providing the gap separately between the opening of the sealing function portion 13B and the passage PB out 1, limiting the outflow of the cooling water through the passage PB out 1 separately.
  • the distance from the rotation center of the rotor 12 to the opening is longer than the distance at which the seal function part 13 ⁇ / b> B reaches the movable limit.
  • the seal function part 13B individually corresponds to the opening part of the passage PB out 2 in the full flow mode and in the first low water temperature control and further in the air conditioner load reduction control.
  • the rotor 12 is controlled to the phase.
  • the elastic member 14 biases individually sealing function portion 13B with respect to the opening of the passage PB out 2. And thereby, by providing the gap separately between the opening of the sealing function portion 13B and the passage PB out 2, to limit the outflow of cooling water through the passage PB out 2 individually.
  • the cooling control device 10B can also bring the seal function portion 13B and the passage PB out out of the housing portion 11B by bringing the seal member 13B into contact with the front portion of the passage PB out 2 in the rotation direction of the rotor 12.
  • a gap can be individually provided between the two openings.
  • the elastic member 14 further seals the sealing function portion 13B against the opening of the passages PB out 1 and PB out 2, which are predetermined passages.
  • a gap is provided between the portion 13B and the openings of the passages PB out 1 and PB out 2. Therefore, the cooling control device 10B instead of stopping the circulation of the coolant through the passages PB out 1, PB out 2, it is possible to allow the flow of a small amount of cooling water.
  • the responsiveness of the rotor 12 can also be improved by avoiding contact with the housing portion 11B.
  • the cooling control device 10B can obtain the following effects by setting the predetermined passage as the passage PB out 1 through which the cooling water supplied to the radiator 3 flows out . That is, when the cooling water is not circulated through the radiator 3, the first low water temperature control and the first high water temperature control are equivalent to the amount that the cooling water temperature is likely to rise during the full flow mode and during the first high water temperature control. The switching frequency of the water temperature control increases between the two. As a result, the life of the thermostat 5 tends to be reduced.
  • the cooling water stored in the radiator 3 is likely to be at a lower temperature in the full flow mode and in the first high water temperature control. Therefore, in this case, when the first high water temperature control is switched to the first low water temperature control, the low-temperature cooling water is suddenly supplied to the engine 2B. As a result, a large thermal stress is generated in the engine 2B, resulting in thermal distortion. As a result, the engine 2B may cause leakage of cooling water or oil.
  • the cooling control device 10B that the path PB out 1 a predetermined path, at full flow rate mode, and supplying a small amount of cooling water to the radiator 3 when the first high-temperature control. For this reason, the cooling control device 10B can improve the life of the thermostat 5 by reducing the switching frequency of the water temperature control. Moreover, when the first high water temperature control is switched to the first low water temperature control, it is possible to improve the reliability of the engine 2B by preventing a large thermal stress from being generated in the engine 2B.
  • the cooling control device 10B can restrict the inflow of the high-temperature cooling water from the engine 2B to the heater core 4 in the full flow mode by setting the predetermined passage as the passage PBout 2 through which the cooling water supplied to the heater core 4 flows out. . And thereby, the load at the time of the air-conditioner operation
  • the cooling control device 10B is provided on the downstream side of the engine 2B, so that it is possible to improve the mounting property on the vehicle instead of enabling the W / P 1 and the thermostat 5 to be provided.
  • the second high water temperature control that makes the cooling water temperature relatively high within the range of the appropriate temperature in the full flow mode and the second low water temperature control that makes the cooling water temperature relatively low within the range of the appropriate temperature are performed. Can make it possible. Further, it is possible to perform the cooling water flow control not only for the engine 2B but also for other components such as the heater core 4.
  • the cooling control device 10B controls the cooling of the engine 2B between the control modes of the water stop mode, the block stagnation mode, and the full flow mode by making the openings of the passages PB in 1 and PB in 2 adjacent to each other. Can be suitably switched.
  • the air conditioner load reduction control can be switched between execution and stop at the time of the first high water temperature control and the first low water temperature control, the openings of the passages PB out 1 and PB out 2 are connected to the openings adjacent to each other. By doing so, it is possible to suitably switch between execution and stop of the air conditioner load reduction control during the first high water temperature control.
  • FIG. 15 is a diagram showing the cooling control device 10C.
  • the cooling control device 10C includes a housing portion 11C instead of the housing portion 11A, a point including a rotor 12 'instead of the rotor 12, a point including a seal function portion 13C instead of the seal function portion 13A, and an elastic member.
  • the cooling control device 10A is substantially the same as the cooling control device 10A except that an elastic member 14 ′ is provided instead of the cooling device 14.
  • the cooling control device 10C can be provided in the cooling circuit 100A, for example, instead of the cooling control device 10A. Further, it can be applied to the rotary valve 20 similarly to the cooling control device 10A.
  • the housing part 11C is substantially the same as the housing part 11A except that the inner part of the intermediate part M is provided in a circular shape when viewed along the axis C.
  • the passages PA in , PA out 1, PA out 2 are provided corresponding to the two orthogonal diameter axes of the inner shape. It has been.
  • the rotor 12 ′ includes an engagement portion i 1 ′ in place of the engagement portion i 1 and a point in which the center of rotation is provided in accordance with the center of the inner shape of the intermediate portion M when viewed along the axis C. This is substantially the same as the rotor 12 except that the thickness of the valve body is different. The thickness of the valve body portion is not necessarily different from that of the rotor 12.
  • the engaging portion i1 ′ is provided so as to protrude radially outward from the valve body portion of the rotor 12 ′.
  • the seal function part 13C is rotatably provided with the rotor 12 'between the housing part 11C and the rotor 12', like the seal function part 13A. Moreover, it is comprised by the sealing member similarly to 13A of sealing function parts. On the other hand, the sealing function part 13C is different from the sealing function part 13A in that it is configured as follows.
  • the sealing function portion 13C has a cylindrical shape that is circular when viewed along the axis C, and has openings D1 and D2 provided in the peripheral wall portion. Moreover, it is the structure provided with engagement part i2 'instead of engagement part i2. The openings D1 and D2 will be described later.
  • the engaging portion i2 ′ is provided so as to protrude radially inward from the peripheral wall portion of the sealing function portion 13C.
  • the engaging part i2 ′ is provided so as to correspond to the engaging part i1 ′, and is provided so as to sandwich the engaging part i1 ′ along the circumferential direction when viewed along the axis C.
  • the engaging portions i1 ′ and i2 ′ that engage with each other can be provided in a plurality of sets (here, two sets).
  • the engaging portions i1 ′ and i2 ′ regulate the movement of the sealing function portion 13C in the rotational direction relative to the rotor 12 ′ while being engaged with each other.
  • the seal function part 13C is arranged concentrically with the rotor 12 'in a state where the engaging parts i1' and i2 'are engaged with each other.
  • the seal function part 13C is provided so as to be rotatable together with the rotor 12 'by the engaging parts i1' and i2 ', and is provided so as to be slidable along the direction perpendicular to the axis C with respect to the rotor 12'. This is different from the seal function portion 13A.
  • the engaging portions i1 ′ and i2 ′ may be provided to allow the sealing function portion 13C to be displaced along the direction perpendicular to the axis C with respect to the rotor 12 ′ in a state of being engaged with each other.
  • the elastic member 14 'in response to the phase control of the rotor 12', passage PA in, with respect to the opening of at least the passage PA in among PA out 1, PA out 2, to urge the sealing function portion 13C can contact the .
  • the elastic member 14 ′ individually biases the sealing function portion 13 ⁇ / b> C for each phase of the rotor 12 ′ with respect to each of the passages PA in , PA out 1, PA out 2 for the phase control of the rotor 12 ′. It is different from the elastic member 14 in that it should not. This point will be described later.
  • the biased part F which is the part to which the elastic member 14 'is biased, is pressed against the intermediate part M by the biasing force of the elastic member 14'.
  • the seal function portion 13C is provided with an opening D1 that faces the opening of the passage PA out 1 in a phase state where the biased portion F faces the opening of the passage PA in . Further, in the phase that an open portion D1 is opposed to the opening of the passage PA in, opening D2 is provided to face the opening of the passage PA out 2.
  • the sealing function portion 13C configured as described above is in contact with the intermediate portion M at the biased portion F under the action of the elastic member 14 ', and other than the biased portion F due to thermal expansion when the temperature is higher than a predetermined temperature.
  • the other part is provided so as to contact the intermediate part M.
  • the predetermined temperature may be an appropriate temperature.
  • the predetermined temperature can be set to a temperature at which another portion is in contact with the intermediate portion M at least within the operating temperature range.
  • the elastic member 14 ′ can be configured so that the biased portion F can be pressed against the intermediate portion M by deformation or displacement of the seal member 13 C even when the temperature is lower than a predetermined temperature. it can.
  • the predetermined temperature may be set to a temperature at which another portion always contacts the intermediate portion M within the operating temperature range.
  • the elastic member 14 ' which (specifically, the portion to be urged F) sealing function portion 13C is blocking the opening of the passage PA in by urging against the opening of the passage PA in, act until the pressure of the cooling water becomes predetermined pressure, it can be blocked the opening of the passage PA in.
  • the opening portion of the passage PA in can be opened by shortening it with deformation or displacement of the seal function portion 13C.
  • the cooling control device 10C has a water stop mode and a block stagnation mode for each phase of the rotor 12 'as cooling control of the engine 2A.
  • the phase of the rotor 12 ' is controlled as follows.
  • 16 (a) and 16 (b) and FIG. 17 are explanatory diagrams of the operation of the cooling control apparatus 10C.
  • FIGS. 16A and 16B show the cooling control device 10C in the water stop mode.
  • FIG. 17 shows the cooling control device 10C in the block stagnation mode.
  • FIG. 16A shows a state in which the pressure of the acting cooling water is lower than a predetermined pressure.
  • FIG. 16B shows a state in which the pressure of the acting cooling water reaches a predetermined pressure.
  • Cooling control unit water stop mode biased portions F at the 10C as shown in FIG. 16 (a) is a rotor 12 'in the phase opposite to the opening of the passage PA in is controlled.
  • the elastic member 14 ' is urging the sealing function portion 13C so as to block the opening of the passage PA in the opening part of the passage PA in.
  • the rotor 12 ' is controlled to the following phase in the block stagnation mode. That is, the rotor 12 'is controlled to a phase in which the biased portion F faces the wall portion provided at a position that is 180 degrees out of phase with the opening portion of the passage PA out 1 in the intermediate portion M.
  • the opening D1 in the cooling control device 10C together with is arranged at a position facing the opening of the passage PA in
  • opening D2 is disposed at a position opposed to the opening of the passage PA out 2.
  • the openings of the passages PA in and PA out 2 are opened, so that the circulation of the cooling water through the cylinder head 2b is permitted.
  • the peripheral wall portion provided at a position that is 180 ° out of phase with the biased portion F in the sealing function portion 13C is opposed to the opening portion of the passage PA out 1.
  • the said surrounding wall part interrupts
  • the circulation of the cooling water through the cylinder block 2a is stopped simultaneously.
  • the rotor 12 ' can be rotated in the following rotation direction when shifting from the water stop mode to the block kneading mode. That is, the rotor 12 ′ can be rotated in a rotational direction that goes directly from the opening of the passage PA in to the wall portion without passing through the opening of another passage.
  • the cooling control device 10C may be configured such that the rotor 12 ′ is controlled in a phase in which the biased portion F faces the opening of the passage PA out 1 in the block stagnation mode.
  • the structure which has a total flow mode instead of a block stagnation mode may be sufficient.
  • the passage PA out 1 can be a passage through which the cooling water supplied to the cylinder head 2b flows out
  • the passage PA out 2 can be a passage through which the cooling water supplied to the cylinder block 2a flows out.
  • the elastic member 14 ′ has a sealing function portion with respect to the opening of the passage PA in among the passages PA in , PA out 1 and PA out 2 in accordance with the phase control of the rotor 12 ′.
  • 13C is configured to be urged so as to be able to contact. That is, the cooling control device 10C on phase control of the rotor 12 ', the elastic member 14' passages PA in, to PA out 1, PA out 2 respectively, individually sealing function portion 13C for different phases of the rotor 12 ' It has a configuration that does not energize.
  • Cooling control device 10C is similar to the cooling control unit 10A when the elastic member 14 'to urge the sealing function portion 13C with respect to the opening of the passage PA in, it is possible to improve the responsiveness of the rotor 12'. Further, similarly to the cooling control device 10A, the cooling water can be urgently distributed to the engine 2A. As a result, the cooling control of the engine 2A can be suitably performed in these respects.
  • the cooling control device 10C dares to enter the water stop mode during the high rotation operation of the engine 2A where the demand for cooling increases, so that the cooling water via the cylinder block 2a and the cylinder head 2b when the pressure of the cooling water reaches a predetermined pressure. Can also be allowed to distribute.
  • the opening of the passage PA out 1 when the opening of the passage PA out 1 is blocked, the opening of the passage PA out 2 is opened. For this reason, similarly to the cooling control device 10A, it is possible to suppress a decrease in the responsiveness of the rotor 12 'as compared with the case where the outflow of the cooling water is completely blocked.
  • the cooling control device 10C includes a housing portion 11C, a rotor 12 ', and a sealing function portion 13C, and the sealing function portion 13C is preferably provided with an opening as follows. is there. That is, when the sealing function unit 13C blocks any of the openings of the plurality of outlet-side passages (here, the paths PA out 1 and PA out 2), the opening to be blocked among the openings of the plurality of outlet-side passages. It is preferable that an opening that opens at least one of the openings other than the opening is provided in the seal function part 13C.
  • the housing 11C is provided such that the inner periphery of the intermediate portion M is circular when viewed along the axis C, and a plurality of outlet-side passages are provided. can do.
  • the rotor 12 ′ may have a configuration in which the center of rotation is provided in accordance with the inner center of the intermediate portion M when viewed along the axis C.
  • the sealing function portion 13C can be configured to have a cylindrical shape, and further can be configured to be concentric with the rotor 12 ′. Moreover, it can be set as the structure which parts other than the to-be-biased part F touch the intermediate part M at least within a use temperature range.
  • the rotor 12 ′ may be further configured as follows. That is, the structure which has a hollow part and is provided with the opening part which connects inside and outside corresponding to each opening part provided in the surrounding wall part of the sealing function part (here seal function part 13C) may be provided. . In this case, by reducing the clearance between the seal function part and the rotor 12 ', the cooling water can be circulated through at least the rotor 12' out of the clearance and the rotor 12 '. The same applies to the cooling control devices 10D, 10E, and 10F described below.
  • FIG. 18 is a perspective view showing a main part of the cooling control apparatus 10D.
  • FIG. 19 is a cross-sectional view showing a main part of the cooling control apparatus 10D.
  • a part of the main part shown in FIG. While the cooling control device 10D applies the cooling control device 10C to the rotary valve 20 shown in FIG. 9, the configuration is such that a seal function portion 13D is provided instead of the seal function portion 13C for the application, and W / P1
  • the cooling control device 10C is substantially the same as the cooling control device 10C except that it is further provided.
  • the cooling control device 10D configured as described above has a configuration in which the housing portion 21 is the housing portion 11C. Further, the rotor 22 is a rotor 12 '. In addition, a seal function part 13 ⁇ / b> D is provided between the housing part 21 and the rotor 22. Further, an elastic member 14 ′ is provided between the rotor 22 and the seal function part 13 ⁇ / b> D.
  • the rotor 22 ′ is configured to include the valve body portions R1 and R2 because the rotor 22 is the rotor 12 ′.
  • the seal function portion 13 ⁇ / b> D is specifically provided over the valve body portions R ⁇ b> 1 and R ⁇ b> 2 in the direction along the axis C.
  • the sealing function unit 13D further includes a plurality of openings including an opening D3 that can open the opening of the passage formed by the second passage 21b.
  • the seal function part 13D is substantially the same as the seal function part 13C except that it further includes a pressing part L.
  • the pressing portion L is a portion pressed against the rotor 12 ′ between the first and second passage groups in the direction along the axis C.
  • a first passage group is configured in which each of the passages formed by the first passage portion 21a has a passage through which cooling water from the W / P1 to the engine 2A can flow.
  • each of the passages formed by the second passage portion 21b constitutes a second passage group having passages through which cooling water from the engine 2A toward W / P1 can be circulated.
  • the first and second passage groups are provided at different positions in the direction along the axis C.
  • the pressing portion L is located between the rotor 12 'and the peripheral wall portion of the seal function portion 13D, and is provided around the inner circumference of the peripheral wall portion along the circumferential direction. Further, it has a lip shape extending toward the rotor 12 'and the first passage group side.
  • a plurality of passages are configured to have first and second passage groups. For this reason, the cooling water leaks from the first passage group side to the second passage group side through a clearance formed between the rotor 12 'and the peripheral wall portion of the seal function portion 13D. As a result, the flow rate of the cooling water supplied to the engine 2A may be significantly reduced.
  • the pressing portion L prevents or suppresses the leakage of the cooling water from the first passage group side to the second passage group side.
  • the cooling control apparatus 10D can further prevent or suppress the flow rate of the cooling water supplied to the engine 2A from being reduced due to leakage.
  • the reliability of the engine 2A can be improved by securing the flow rate of the cooling water supplied to the engine 2A.
  • the pressing portion L can be configured to have a lip shape extending toward the rotor 12 'and the first passage group side. Thereby, the pressing portion L can be pressed against the rotor 12 ′ so as to improve the sealing performance due to the pressure difference of the cooling water between the first and second passage groups. As a result, a decrease in the flow rate of the cooling water supplied to the engine 2A can be prevented or suppressed more suitably. Thereby, the pressing part L can also be made flexible. As a result, the sealing performance can be maintained while preventing the deformation or displacement of the sealing function portion 13D from being disturbed when the cooling water is circulated urgently.
  • FIG. 20 is a perspective view showing a main part of the cooling control device 10E.
  • the cooling control device 10E is substantially the same as the cooling control device 10D except that a sealing function unit 13E is provided instead of the sealing function unit 13D. Similar changes may be made to the cooling control apparatus 10C, for example.
  • the seal function part 13E is substantially the same as the seal function part 13D except that the dividing part U is provided.
  • the dividing part U is composed of parts separated in the circumferential direction in the seal function part 13E. Specifically, the dividing portion U is provided along the axis C.
  • the linear expansion coefficient of the seal function part 13E is larger than that of the housing part 11C made of, for example, an aluminum alloy.
  • the cooling control apparatus 10E can further suitably perform the cooling control of the engine 2A in that the responsiveness can be suppressed from decreasing due to the increase in the contact force.
  • FIG. 21 is a perspective view showing a main part of the cooling control apparatus 10F.
  • FIG. 22 is a cross-sectional view showing a main part of the cooling control apparatus 10F. In FIG. 22, a part of the main part shown in FIG. 21 is shown together with the housing part 11C in a section including the axis C.
  • the cooling control device 10F is substantially the same as the cooling control device 10E except that a sealing function unit 13F is provided instead of the sealing function unit 13E.
  • the sealing function part 13F is substantially the same as the sealing function part 13E except that a dividing part U ′ is provided instead of the dividing part U.
  • the dividing portion U ′ includes partial dividing portions U1 and U2 which are first and second partial dividing portions provided along the axis C in phases different from each other on the first passage group side and the second passage group side. ing. Moreover, the partial division part U3 which is provided along the circumferential direction and is a 3rd partial division part which connects the partial division parts U1 and U2 is provided. The partial dividing portion U3 is provided in the seal function portion F in the direction along the axis C in a portion closer to the second passage group than the pressing portion L.
  • the cooling control device 10F in the cooling control apparatus 10E, the cooling water leaks from the first passage group side to the second passage group side through a gap formed between the divided portions of the dividing portion U.
  • the cooling control apparatus 10F increases the pressure loss of the cooling water leaking at the partial dividing portion U3. For this reason, the cooling control device 10F can suppress the decrease in the flow rate of the cooling water supplied to the engine 2A in a manner compatible with this while suppressing the decrease in the responsiveness similarly to the cooling control device 10E.
  • the dividing portion U ′ is configured such that the partial dividing portion U3 is provided in a portion on the second passage group side of the pressing portion L in the seal function portion F in the direction along the axis C. be able to.
  • the interval between the divided parts of the partial dividing part U3 is reduced, or the gap between the divided parts is closed. can do.
  • it can suppress more suitably that the flow volume of the cooling water supplied to engine 2A decreases.
  • the seal function part in the present invention may be a structure having a seal member in a part corresponding to the contact part E in the seal function part 13A in the above-described embodiment. That is, in the sealing function part 13A in the above-described embodiment, the part other than the contact part E does not necessarily need to be configured by the seal member.
  • the elastic member is attached so that the seal function part can be brought into contact with the opening of at least one of the plurality of inlet side passages according to the phase control of the rotor. It can be set as the structure which energizes. Moreover, it can be set as the structure urged

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

 冷却制御装置100Aは通路PAin、PAout1、PAout2が設けられたハウジング部11Aと、ハウジング部11Aの中間部Mに設けられるとともに、中間部Mに開口する通路PAin、PAout1、PAout2の開口部それぞれまでの距離が少なくとも一部の間で互いに異なる位置に回転中心が設けられたロータ12と、ハウジング部11A、ロータ12間に設けられたシール機能部13Aと、ロータ12、シール機能部13A間に設けられ、通路PAin、PAout1、PAout2の開口部それぞれに対し、ロータ12の異なる位相毎に個別にシール機能部13Aを付勢する弾性部材14とを備える。

Description

エンジンの冷却制御装置
 本発明はエンジンの冷却制御装置に関する。
 エンジンの冷却制御装置に関し、本発明と関連性があると考えられる技術が例えば特許文献1、2で開示されている。特許文献1、2では流体入口と、少なくとも2つの流体出口とを備える本体を含み、流体出口を通る流体の分配を制御するために種々の角度位置を取ることができる調節部材が小さな間隙をおいてシールリングによって囲まれている制御弁が開示されている。この制御弁は流体が誤って出口に漏出することを防止するために、流体の圧力の作用下で流体出口が開口する側壁にシールリングを接触させる。このほか、転がり軸受の外輪をスライダに転接させる構造を開示している点で構成上、本発明と関連性があると考えられる技術が例えば特許文献3で開示されている。本発明と関連性があると考えられる技術はさらに特許文献4から7で開示されている。
特開2011-21753号公報 特表2006-512547号公報 特開2008-51197号公報 特表2004-534191号公報 特表2005-510668号公報 特開2006-283677号公報 特開2005-54997号公報
 エンジンの冷却制御を行うにあたり、冷却水漏れを防止するには例えば特許文献1、2が開示する制御弁のようにハウジング部、ロータ間に冷却水の圧力によってハウジング部に押し付けられるシール機能部を設けることが考えられる。ところがこの場合には、例えばエンジンへの冷却水の流通停止時に出力要求に基づきエンジンの回転数が急上昇した際に、回転数に応じた冷却水の供給を行おうとすると、シール部材をハウジング部に押し付ける冷却水の圧力も高まることになる。結果、ロータの応答性が低下し、冷却水の流通停止を速やかに解除できなくなることで、エンジンがオーバーヒートする虞がある。
 本発明は上記課題に鑑み、エンジンの冷却制御を好適に行うことが可能なエンジンの冷却制御装置を提供することを目的とする。
 本発明はエンジンの冷却水を流入させる入口側通路と、前記エンジンの冷却水を流出させる出口側通路とを少なくとも1つずつ有して構成される複数の通路が設けられたハウジング部と、前記ハウジング部のうち、前記複数の通路それぞれが開口する中間部に設けられるとともに、回転動作で前記複数の通路を介した前記エンジンの冷却水の流通を制御するロータと、前記ハウジング部と前記ロータとの間に前記ロータとともに回転可能に設けられたシール機能部と、前記ロータと前記シール機能部との間に設けられ、前記ロータの位相制御に応じて前記複数の通路のうち少なくとも前記入口側通路の開口部に対し、前記シール機能部を当接可能に付勢する弾性部材と、を備えるエンジンの冷却制御装置である。
 本発明は前記エンジンの冷却水を圧送するポンプをさらに備え、前記複数の通路が前記ポンプから前記エンジンに向かう冷却水を流通させることが可能な通路を有して構成される第1の通路群と、前記エンジンから前記ポンプに向かう冷却水を流通させることが可能な通路を有して構成される第2の通路群とを有して構成されるとともに、前記第1および第2の通路群が前記ロータの回転中心の軸線に沿った方向において互いに異なる位置に設けられており、前記シール機能部が前記ロータの回転中心の軸線に沿った方向における前記第1および第2の通路群間で、前記ロータに押し当てられる押し当て部をさらに備える構成とすることができる。
 本発明は前記ロータが回転中心の軸線に沿って見た場合に前記中間部に開口する前記複数の通路の開口部それぞれまでの距離が少なくとも一部の間で互いに異なる位置に回転中心が設けられている構成となっており、前記弾性部材が複数の通路の開口部それぞれに対し、前記ロータの異なる位相毎に個別に前記シール機能部を付勢する構成とすることができる。
 本発明は前記弾性部材が前記複数の通路のうち、所定の通路の開口部に対し前記シール機能部を付勢した状態で、前記シール機能部と前記所定の通路の開口部との間に隙間が設けられる構成とすることができる。
 本発明は前記ロータと前記シール機能部との間に前記ロータの回転中心の軸線に沿って見た場合に前記ロータの回転中心の四方に配置された複数の転動体をさらに備える構成とすることができる。
 本発明は前記複数の通路のうち、少なくともいずれかの通路の開口部が、前記ロータが対応する位相に制御された状態で対向することになる前記シール機能部の外面形状に合わせて形成されたシール面を有する構成とすることができる。
 本発明によれば、エンジンの冷却制御を好適に行うことができる。
実施例1のエンジンの冷却回路を示す図である。 実施例1のエンジンの冷却制御装置を示す図である。 ロータを単体で示す図である。 係合部を示す図である。 通路の開口部を示す図である。 図6(a)及び図6(b)は実施例1の動作説明図の第1図である。 図7(a)及び図7(b)は実施例1の動作説明図の第2図である。 図8(a)及び図8(b)は実施例1の動作説明図の第3図である。 実施例1の具体例を示す図である。 実施例2のエンジンの冷却回路を示す図である。 第1の高水温制御時の冷却水の流通を示す図である。 第1の低水温制御時の冷却水の流通を示す図である。 実施例2のエンジンの冷却制御装置を示す図である。 図14(a)ないし図14(f)は実施例2の動作説明図である。 実施例3のエンジンの冷却制御装置を示す図である。 図16(a)及び図16(b)は実施例3の動作説明図の第1図である。 実施例3の動作説明図の第2図である。 実施例4の要部を示す斜視図である。 実施例4の要部を示す断面図である。 実施例5の要部を示す斜視図である。 実施例6の要部を示す斜視図である。 実施例6の要部を示す断面図である。
 図面を用いて、本発明の実施例について説明する。
 図1はエンジンの冷却制御装置(以下、単却制御装置と称す)10Aを組み込んだエンジンの冷却回路(以下、冷却回路と称す)100Aを示す図である。冷却回路100Aは図示しない車両に搭載されている。冷却回路100Aはウォータポンプ(以下、W/Pと称す)1と、冷却制御装置10Aと、エンジン2Aと、ラジエータ3と、ヒータコア4と、サーモスタット5とを備えている。
 W/P1はエンジン2Aの冷却水を循環させる。W/P1はエンジン2Aの出力で駆動する機械式のポンプとなっている。W/P1は電気駆動式のポンプであってもよい。W/P1が吐出する冷却水は冷却制御装置10Aに供給される。冷却制御装置10AはW/P1から供給された冷却水をエンジン2Aに供給する。
 エンジン2Aはシリンダブロック2aおよびシリンダヘッド2bを備えている。冷却制御装置10Aは具体的にはシリンダブロック2aとシリンダヘッド2bとに冷却水を供給可能に接続されている。エンジン2Aにはシリンダブロック2a、シリンダヘッド2bの順に冷却水を流通させる流通経路と、シリンダヘッド2bに冷却水を流通させる流通経路とが形成されている。これらの流通経路はシリンダヘッド2bで合流している。
 エンジン2Aを流通した冷却水はラジエータ3、ヒータコア4およびサーモスタット5に向かって分流する。ラジエータ3は空気と冷却水との間で熱交換を行い、冷却水を冷却する。ヒータコア4は空気と冷却水との間で熱交換を行い、空気を加熱する。ヒータコア4は車室内の空調を行うエアコンに利用される。サーモスタット5は冷却水の温度に応じて冷却水の流通制御を行う。
 サーモスタット5はヒータコア4とW/P1とを接続する流通経路に対して、エンジン2AとW/P1とを接続する流通経路とラジエータ3とW/P1とを接続する流通経路とが合流する地点に設けられている。そして、サーモスタット5は冷却水の温度に応じて、エンジン2AとW/P1とを接続する流通経路を介した冷却水の流通制限、流通制限の解除と、ラジエータ3とW/P1とを接続する流通経路を介した冷却水の流通制限、流通制限の解除とを行う。
 サーモスタット5は冷却水温が所定値αよりも低い場合に、ラジエータ3とW/P1とを接続する流通経路を介した冷却水の流通を制限するとともに、エンジン2AとW/P1とを接続する流通経路を介した冷却水の流通制限の解除を行う。また、冷却水温が所定値αよりも高い場合(具体的にはここでは所定値α以上である場合)に、ラジエータ3とW/P1とを接続する流通経路を介した冷却水の流通制限の解除を行うとともに、エンジン2AとW/P1とを接続する流通経路を介した冷却水の流通を制限する。
 このため、ヒータコア4に向かって分流した冷却水はヒータコア4を流通した後、サーモスタット5を介してそのままW/P1に戻る。一方、ラジエータ3に向かって分流した冷却水と、サーモスタット5に向かって分流した冷却水とはサーモスタット5による冷却水の流通制御のもと、サーモスタット5を介してW/P1に戻る。なお、制限、制限の解除を行うことには禁止、許可を行うことも含まれる。
 図2は冷却制御装置10Aを示す図である。冷却制御装置10Aはハウジング部11Aと、ロータ12と、シール機能部13Aと、弾性部材14とを備えている。ハウジング部11Aには入口側通路としてW/P1から供給される冷却水を流入させる通路PAinが設けられている。また出口側通路として、シリンダブロック2aに供給する冷却水を流出させる通路PAout1と、シリンダヘッド2bに供給する冷却水を流出させる通路PAout2とが設けられている。通路PAin、PAout1、PAout2は入口側通路と出口側通路とを少なくとも1つずつ有して構成される複数の通路に相当する。
 ロータ12はハウジング部11Aのうち、通路PAin、PAout1、PAout2それぞれが開口する中間部Mに設けられている。中間部Mは回転動作で通路PAin、PAout1、PAout2を介した冷却水の流通を制御するロータ12を収容する部分となっている。通路PAin、PAout1、PAout2は具体的にはロータ12の異なる位相それぞれに対応させてロータ12の側方から中間部Mに開口している。ロータ12は回転中心の軸線Cに沿って見た場合に中間部Mに開口する通路PAin、PAout1、PAout2の開口部それぞれまでの距離が少なくとも一部の間で互いに異なる位置に回転中心が設けられている。この点については後に詳述する。
 シール機能部13Aはハウジング部11Aとロータ12との間に設けられている。シール機能部13Aはシール部材(例えば樹脂やゴム)によって構成されている。シール機能部13Aはロータ12とともに回転可能に設けられている。また、ロータ12に対し、軸線Cに直交する方向に沿って摺動可能に設けられている。このようにシール機能部13Aを設けるにあたって、ロータ12とシール機能部13Aとは具体的には係合部i1、i2を備えている。
 係合部i1はロータ12に設けられ、軸線Cに沿って見た場合に長方形状となるブロック状の部分となっている。係合部i2はシール機能部13Aに設けられ、軸線Cに沿って見た場合に長方形状となるスロット状の部分となっている。そして、係合部i1、i2は係合部i1を係合部i2に収容した状態で、シール機能部13Aをロータ12とともに回転可能にするとともに、ロータ12に対し、軸線Cに直交する方向に沿ってシール機能部13Aを摺動可能にする。
 係合部i1は具体的には軸線Cに沿って見た場合に軸線Cを間に挟んで等間隔に摺動壁部を有している。係合部i2は係合部i1の摺動壁部それぞれに対応する摺動壁部を有している。係合部i2の摺動壁部の間隔は係合部i1の摺動壁部の間隔よりも摺動クリアランスの分だけ大きく設定されている。係合部i2の両端壁部の間隔は係合部i1の両端壁部の間隔よりもシール機能部13Aが必要とする可動範囲に合わせて大きく設定することができる。
 シール機能部13Aは通路PAin、PAout1、PAout2のうち、少なくともいずれかの通路の開口部に当接する当接部Eを備えている。シール機能部13Aは通路PAin、PAout1、PAout2のうち、いずれかの通路の開口部に当接部Eで当接することで、ハウジング部11Aと部分的に当接するように設けられている。すなわち、当接部E以外のその他の部分でハウジング部11Aと接触しないように設けられている。
 シール機能部13Aは具体的には軸線Cに沿って見た場合に外回り形状が楕円状となるように設けられるとともに、中間部Mの内回り形状よりも外回り形状が小さくなるように設けられている。そして、シール機能部13Aでは楕円状の外回り形状の長軸方向において一端側に位置する部分が当接部Eとなっており、係合部i2の摺動壁部は当該外回り形状の長軸に沿って設けられている。
 弾性部材14はロータ12およびシール機能部13A間に設けられている。弾性部材14は具体的には軸線Cに沿って見た場合に係合部i1の両端壁部のうち、一方の壁部と、係合部i2の両端壁部のうち、当該一方の壁部に対向する壁部との間に設けられている。弾性部材14は例えばスプリングであり、ロータ12からハウジング部11Aに向かってシール機能部13Aを付勢することで、通路PAin、PAout1、PAout2の開口部それぞれに対し、ロータ12の異なる位相毎に個別にシール機能部13Aを付勢する。
 当接部Eはシール機能部13Aのうち、弾性部材14によって付勢される側に位置する部分となっている。また、当接部Eの外面はロータ12が対応する位相に制御された状態で通路PAin、PAout1、PAout2の開口部が対向することになる部分となっている。弾性部材14は具体的にはロータ12に対してシール機能部13Aを摺動させる態様でシール機能部13Aを付勢する。
 ハウジング部11Aは具体的には軸線Cに沿って見た場合に中間部Mの内回り形状が楕円状になるように設けられている。そして、通路PAinは当該内回り形状の短軸方向における一端側から、通路PAout2は当該内回り形状の短軸方向における他端側からそれぞれ中間部Mに開口するように設けられている。また、通路PAout1は当該内回り形状の長軸方向における一端側から中間部Mに開口するように設けられている。
 通路PAin、PAout2は具体的には当該内回り形状の短軸に対応させて中間部Mに開口するように設けられている。また、通路PAout1は当該内回り形状の長軸に対応させて中間部Mに開口するように設けられている。通路PAin、PAout2は当該内回り形状の短軸に沿って、通路PAout1は当該内回り形状の長軸に沿ってそれぞれ延伸し、中間部Mに開口するように設けられている。通路PAin、PAout1、PAout2はロータ12の回転方向に沿ってこの順に設けられている。
 一方、ロータ12の回転中心は軸線Cに沿って見た場合に当該内回り形状の楕円中心よりも通路PAin側に偏心した位置に設定されている。このため、通路PAinはロータ12の回転中心から開口部までの距離が通路PAout1、PAout2よりも短くなるように設けられている。また、通路PAout2はロータ12の回転中心から開口部までの距離が通路PAout1よりも短くなるように設けられている。すなわち、ロータ12は具体的にはこのようにして通路PAin、PAout1、PAout2の開口部それぞれまでの距離がすべての間で互いに異なる位置に回転中心が設けられている。
 図3はロータ12を単体で示す図である。図3に示すようにロータ12は係合部i1のほか、アクチュエータからの駆動力が入力されるギヤ部Gを備えている。そしてこれにより、アクチュエータで位相を変更することができるようになっている。また、ロータ12に対してはロータ12の位相を検出可能な回転角センサ30が設けられている。そしてこれにより、現在の制御モードを検出することができるようになっている。
 図4は係合部i1、i2を示す図である。図4に示すように、冷却制御装置10Aはロータ12とシール機能部13Aとの間に軸線Cに沿って見た場合にロータ12の回転中心の四方に配置された複数(ここでは4つ)の転動体Tを備えている。転動体Tそれぞれは具体的には係合部i1、i2間に配置されており、係合部i1に転動可能に設けられるとともに、係合部i2に転接するように設けられている。転動体Tは例えばボールである。転動体Tは例えば円柱状の部材であってもよい。
 図5は通路PAin、PAout1、PAout2の開口部を示す図である。図5に示すように、冷却制御装置10Aでは通路PAin、PAout1、PAout2すべての開口部が当接部Eの外面形状に合わせて形成されたシール面Sを有している。そしてこれにより、通路PAin、PAout1、PAout2のうち、少なくともいずれかの通路の開口部が当接部Eの外面形状に合わせて形成されたシール面Sを有している。
 ところで、冷却制御装置10Aはエンジン2Aの冷却制御としてシリンダブロック2a、シリンダヘッド2bを介した冷却水の流通を停止する水止めモードと、シリンダブロック2aを介した冷却水の流通を禁止するとともに、シリンダヘッド2bを介した冷却水の流通を許可するブロック淀みモードと、シリンダブロック2a、シリンダヘッド2bを介した冷却水の流通を許可する全流量モードとをロータ12の異なる位相毎に有している。
 水止めモードはエンジン2Aの暖機を促進可能な制御モードである。ブロック淀みモードはエンジン2Aの冷却損失を低減可能な制御モードである。全流量モードはエンジン2Aの冷却性を高めることが可能な制御モードである。そして、冷却制御装置10Aはロータ12の位相を変更することでこれらの各制御モード間でエンジン2Aの冷却制御を切り替える。
 図6(a)、6(b)、7(a)、7(b)、8(a)及び8(b)は冷却制御装置10Aの動作説明図である。図6(a)及び6(b)は水止めモード時の冷却制御装置10Aを示す。図7(a)及び7(b)はブロック淀みモード時の冷却制御装置10Aを示す。図8(a)及び8(b)は全流量モード時の冷却制御装置10Aを示す。図6(a)から図8(a)では各制御モードにおける冷却水の流通状態を矢印で示す。図6(b)から図8(b)では各制御モードにおけるシール機能部13Aの接触力を矢印で示す。
 図6(a)及び6(b)に示すように水止めモード時には通路PAinの開口部に対応する位相にロータ12が制御される。このとき、弾性部材14は通路PAinの開口部を遮断すべくシール機能部13Aを通路PAinの開口部に対して付勢する。水止めモード時には通路PAinからの冷却水漏れが発生すると、エンジン2Aの暖機促進性が大きく損なわれる虞がある。また、シール機能部13Aに対しては通路PAinの開口部を開放する方向に冷却水の圧力(ここではW/P1の吐出圧)が作用する。このため、水止めモード時には通路PAinからの冷却水漏れを防止するにあたって、弾性部材14の必要性が高いといえる。
 これに対し、通路PAinはロータ12の回転中心から開口部までの距離が他の通路PAout1、PAout2と比較して最も短くなるように設定されている。そしてこれにより、弾性部材14はシール機能部13Aを通路PAinの開口部に対して付勢する場合に、他の通路PAout1、PAout2の開口部に対して付勢する場合と比較して最も強い付勢力を発生させるようになっている。
 このため、冷却制御装置10Aは図6(b)に示すように弾性部材14によって得られるシール機能部13Aの接触力が冷却水の圧力によって減少しても、作用する冷却水の圧力が所定圧になるまでの間は、シール機能部13Aで通路PAinの開口部を遮断することで、エンジン2Aへの冷却水の流通を停止する。一方、作用する冷却水の圧力が所定圧に達した場合には通路PAinの開口部を開放することで、図6(a)に破線の矢印で示すように通路PAout1、PAout2を介した冷却水の流出を可能にする。そしてこれにより、エンジン2Aへ緊急的に冷却水を流通させる。
 図7(a)及び7(b)に示すようにブロック淀みモード時には通路PAout1の開口部に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Aを通路PAout1の開口部に対して付勢する。そしてこれにより、図7(a)に示すようにシール機能部13Aで通路PAout1の開口部を遮断することで、通路PAout2を介した冷却水の流出を可能にする。そしてこれにより、シリンダブロック2aを介した冷却水の流通を停止するとともに、シリンダヘッド2bを介した冷却水の流通を許可する。
 ブロック淀みモード時には通路PAout1への冷却水漏れが発生した場合であっても、エンジン2Aの信頼性が損なわれる虞は特段ないといえる。また、ブロック淀みモード時にはシール機能部13Aに対し通路PAout1の開口部を遮断する方向に冷却水の圧力が作用する。このため、ブロック淀みモード時には通路PAout1への冷却水漏れを防止するにあたって、弾性部材14の必要性は低いといえる。
 これに対し、通路PAout1はロータ12の回転中心から開口部までの距離が他の通路PAin、通路PAout2と比較して最も長くなるように設定されている。そしてこれにより、弾性部材14はシール機能部13Aを通路PAout1の開口部に対して付勢する場合に、他の通路PAin、PAout2の開口部に対して付勢する場合と比較して最も弱い付勢力を発生させるようになっている。図7(b)に示すように、ブロック淀みモード時にはシール機能部13Aの接触力が主に冷却水の圧力によって得られている。
 図8(a)及び8(b)に示すように全流量モード時には通路PAout2の開口部に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Aを通路PAout2の開口部に対して付勢する。そしてこれにより、図8(a)に示すようにシール機能部13Aで通路PAout2の開口部を遮断することで、通路PAout1を介した冷却水の流出を可能にする。そしてこれにより、シリンダブロック2a、シリンダヘッド2bを介した冷却水の流通を許可する。
 全流量モード時には通路PAout2への冷却水漏れが発生した場合に、シリンダブロック2aに供給する冷却水の流量が減少する結果、エンジン2Aの信頼性が損なわれる虞がある。一方、全流量モード時にはシール機能部13Aに対し通路PAout2の開口部を遮断する方向に冷却水の圧力が作用する。このため、全流量モード時には通路PAout2への冷却水漏れを防止するにあたって、弾性部材14の必要性が通路PAout1よりも高く、且つ通路PAinよりも低いといえる。
 これに対し、通路PAout2はロータ12の回転中心から開口部までの距離が通路PAinよりも長くなるように設定されるとともに、通路PAout1よりも短くなるように設定されている。そしてこれにより、弾性部材14はシール機能部13Aを通路PAout2の開口部に対して付勢する場合に、通路PAinの開口部に対して付勢する場合よりも弱く、且つ通路PAout1の開口部に対して付勢する場合よりも強い付勢力を発生させるようになっている。図8(b)に示すように、全流量モード時にはシール機能部13Aの接触力が弾性部材14と冷却水の圧力とによって得られている。
 図9は冷却制御装置10Aの具体例を示す図である。冷却制御装置10Aは具体的には例えば図9に示すロータリバルブ20に適用することができる。ロータリバルブ20はハウジング部21とロータ22と駆動部23とサーモスタット24とを備えている。ハウジング部21は第1の通路部21aと第2の通路部21bとを備えている。また、入口部In1、In2と出口部Out1、Out2とを備えている。なお、図9ではロータリバルブ20とともにW/P1も示している。
 第1の通路部21aはW/P1の冷却水出口部に接続されており、冷却水出口部から冷却水を流通させる。第2の通路部21bはW/P1の冷却水入口部に接続されており、冷却水入口部に冷却水を流通させる。通路部21a、21bは並べて配置された状態でW/P1に端部で接続されている。第1の通路部21aではW/P1側が上流側、第2の通路部21bではW/P1側が下流側となっている。
 第1の通路部21aはロータ22の下流側で出口部Out1、Out2に連通している。第2の通路部21bはロータ22の下流側で入口部In1に連通している。また、ロータ22の上流側および下流側で入口部In2に連通している。第2の通路部21aはロータ22よりも下流側の部分と入口部In2とを連通する第1の連通部B1と、ロータ22よりも上流側の部分と入口部In2とを連通する第2の連通部B2とを備えている。なお、図示の都合上、図9では第1の通路部21aのうち、ロータ22の下流側で出口部Out1、Out2に連通する部分それぞれを同位相に設けているように示しているが、これらは実際には互いに異なる位相に設けられている。
 ロータ22は第1の通路部21aと第2の通路部21bとに介在するように設けられている。ロータ22は第1の通路部21aを流通する冷却水の流通と、第2の通路部21bを流通する冷却水の流通とを回転動作で同時に制御する。ロータ22は第1の通路部21aに介在する第1の弁体部R1と第2の通路部21bに介在する第2の弁体部R2とを備えている。ロータ22は第1の通路部21aを流通する冷却水と第2の通路部21bを流通する冷却水の流通の制限、制限の解除を行うことができる。
 駆動部23はアクチュエータ23aとギヤボックス部23bとを備えており、ロータ22を駆動する。アクチュエータ23aは具体的には例えば電動モータである。アクチュエータ23aは例えば油圧制御弁によって電子制御可能な油圧アクチュエータであってもよい。サーモスタット24は第1の連通部B1に設けられている。サーモスタット24は冷却水の温度が所定値よりも高い場合に開弁するとともに、所定値以下である場合に閉弁する。
 上記ロータリバルブ20に対し、冷却制御装置10Aは具体的には次のように適用することができる。すなわち、第1の通路部21aのうち、ロータ22よりも上流側の部分によって形成される通路を通路PAinとすることができる。また、第1の通路部21aのうち、ロータ22よりも下流側の部分であって、出口部Out1に連通する部分によって形成される通路を通路PAout1とし、出口部Out2に連通する部分によって形成される通路を通路PAout2とすることができる。
 この場合、これらの通路が設けられたハウジング部21をハウジング部11Aとすることができる。また、これらの通路それぞれが開口する部分を中間部Mとし、これらの通路それぞれが開口する部分に設けられたロータ22をロータ12とすることができる。そして、ハウジング部21と第1の弁体部R1との間にシール機能部13Aを、第1の弁体部R1とシール機能部13Aとの間に弾性部材14を前述したようにそれぞれ設けることができる。この場合、サーモスタット24をサーモスタット5とすることで、サーモスタット5をロータリバルブ20に設けることができる。
 ロータリバルブ20に対しては例えばハウジング部21と第2の弁体部R2との間にシール機能部13Aを、第2の弁体部R2とシール機能部13Aとの間に弾性部材14をそれぞれ設けてもよい。この場合、ハウジング部21は第2の通路部21bのうち、ロータ22よりも上流側の部分によって形成される通路を入口側通路とし、ロータ22よりも下流側の部分によって形成される通路を出口側通路とする2つの通路が設けられたハウジング部を構成することになる。本発明の一観点によれば、弁体部R1、R2のうち、少なくともいずれか一方の側にシール機能部13Aと弾性部材14とを設けたロータリバルブ20全体として把握されてもよい。
 次に冷却制御装置10Aの主な作用効果について説明する。冷却制御装置10Aではシール機能部13Aがロータ12とともに回転可能に設けられるとともに、弾性部材14が通路PAin、PAout1、PAout2の開口部それぞれに対し、ロータ12の異なる位相毎に個別にシール機能部13Aを付勢する。このため、冷却制御装置10Aはロータ12の位相制御に応じて通路PAin、PAout1、PAout2のうち、いずれかの通路の開口部を遮断することで、エンジン2Aの冷却制御を行うことができる。
 そして、冷却制御装置10Aではロータ12の回転中心が軸線Cに沿って見た場合に中間部Mに開口する通路PAin、PAout1、PAout2の開口部それぞれまでの距離が少なくとも一部の間で互いに異なる位置に設けられている。このため、冷却制御装置10Aはかかる距離が互いに異なってくる通路PAin、PAout1、PAout2毎にシール機能部13Aの接触力を変えることができる。
 そしてこれにより、適度なシール性を確保することで、冷却制御装置10Aはロータ12の応答性の低下を抑制しつつシール性を確保できる点で、エンジン2Aの冷却制御を好適に行うことができる。またこれにより、シール機能部13Aの摩耗も抑制できる。また、シール機能部13Aの摩耗を抑制することで、冷却水に混入する摩耗粉がラジエータ3の性能低下を引き起こす結果、エンジン2Aの冷却性が悪化することも抑制できる。
 冷却制御装置10Aでは弾性部材14が通路PAinの開口部に対し、シール機能部13Aを付勢する場合に、シール機能部13Aの接触力を減少させる方向に冷却水の圧力を作用させることができる。このため、冷却制御装置10AはW/P1の吐出圧の上昇に応じてシール機能部13Aの接触力を減少させることで、冷却の要求が高まるエンジン2Aの高回転運転時にロータ12の応答性を向上させることができる点でも、エンジン2Aの冷却制御を好適に行うことができる。
 冷却制御装置10Aでは弾性部材14が通路PAinの開口部に対し、シール機能部13Aを付勢する場合に、シール機能部13Aの接触力を減少させる方向に冷却水の圧力を作用させることで、作用する冷却水の圧力が所定圧になるまでの間は、シール機能部13Aで通路PAinの開口部を遮断してエンジン2Aへの冷却水の流通を停止するとともに、作用する冷却水の圧力が所定圧に達した場合には、通路PAinの開口部を開放するようにすることもできる。
 このため、冷却制御装置10Aは作用する冷却水の圧力が所定圧に達した場合にロータ12の位相を変更することなくエンジン2Aへ緊急的に冷却水を流通させることができる。そしてこれにより、エンジン2Aのオーバーヒートを防止するにあたり、エンジン2Aの回転数が急上昇した結果、冷却の必要性が急激に高まった場合に好適に対処できる点でも、エンジン2Aの冷却制御を好適に行うことができる。また、例えばロータリバルブ20において駆動部23が故障した場合に対処できる点でも、エンジン2Aの冷却制御を好適に行うことができる。
 冷却制御装置10Aでは、シール機能部13Aが通路PAin、PAout1、PAout2のうち、少なくともいずれかの通路の開口部に当接する当接部Eを備えている。そして、シール機能部13Aは通路PAin、PAout1、PAout2のうち、いずれかの通路の開口部に当接部Eで当接することで、ハウジング部11Aと部分的に当接するように設けられている。このため、冷却制御装置10Aはシール機能部13Aのうち、当接部E以外のその他の部分でハウジング部11Aとの接触を行わない分、ロータ12の応答性を向上させることができる点でも、エンジン2Aの冷却制御を好適に行うことができる。
 冷却制御装置10Aはシール機能部13Aが上述のように設けられていることと相俟って、具体的には次に示すような構成である場合に通路PAin、PAout1、PAout2の開口部を開放または遮断する方向に冷却水の圧力を作用させることができる。すなわち、シール機能部13Aが軸線Cに直交する方向に沿ってロータ12に対して摺動可能に設けられるとともに、弾性部材14がロータ12に対してシール機能部13Aを摺動させる態様でシール機能部13Aを付勢する構成である場合に、シール機能部13Aに対し、通路PAin、PAout1、PAout2の開口部を開放または遮断する方向に冷却水の圧力を作用させることができる。
 シール機能部13Aに対し、通路PAin、PAout1、PAout2の開口部を遮断する方向に冷却水の圧力が常に作用する場合には、弾性部材14の付勢力が最も高いシール性を必要とする制御モードに併せて設定されることと相俟って、その他の制御モードでロータ12の駆動に要するトルクが過大となる。結果、ロータ12の応答性の低下を招くことになる。
 これに対し、冷却制御装置10Aは通路PAin、PAout1、PAout2の開口部を開放または遮断する方向に冷却水の圧力を作用させることで、ロータ12の駆動に要する平均トルクを低下させ、これによりロータ12の応答性を高めることや、シール機能部13Aの摩耗を抑制することや、ロータ12を駆動するアクチュエータの負担軽減を図るもできる。このため、冷却制御装置10Aは具体的には、上記構成である場合に好適である。
 一方、冷却制御装置10Aが上記構成である場合でも、シール機能部13Aに対し通路PAout1や通路PAout2の開口部を遮断する方向に冷却水の圧力が作用する分は、ロータ12の応答性が低下することになる。冷却制御装置10Aでは通路PAout1の開口部を遮断する場合には通路PAout2の開口部が開き、通路PAout2の開口部を遮断する場合には通路PAout1の開口部が開く。
 このため、冷却制御装置10Aはシール機能部13Aに対し、通路PAout1や通路PAout2の開口部を遮断する方向に冷却水の圧力が作用しても、冷却水の流出が完全に遮断される場合と比較して、ロータ12の応答性が低下することを十分抑制できる。したがって、冷却制御装置10Aはさらに具体的にはハウジング部11Aに2つ以上の出口側通路(ここでは通路PAout1、PAout2)が設けられた構成であることが好適である。
 冷却制御装置10Aはロータ12とシール機能部13Aとの間に軸線Cに沿って見た場合にロータ12の回転中心の四方に配置された複数の転動体Tを備えている。このため、冷却制御装置10Aはロータ12が正規の状態よりも回転方向に沿って傾いた状態でシール機能部13Aと接触することを抑制できる。
 そしてこれにより、冷却制御装置10Aはシール機能部13Aの変位応答性を高めることができるとともに、ロータ12、シール機能部13A間の接触摩耗を抑制できる。またこれにより、回転角センサ30の位相検出誤差を小さくすることで、シール機能部13Aの位相精度を良好にすることもできる。
 冷却制御装置10Aでは、中間部Mの内回り形状を楕円状にすることで、通路PAinと通路PAout1との間でロータ12の回転中心から開口部までの距離を互いに異ならせている。ところがこの場合には、通路PAinと通路PAout1との間で軸線Cに沿って見た開口部の曲率が異なってくる。また、通路PAin、PAout1、PAout2の開口部それぞれまでの距離が少なくとも一部の間で互いに異なる位置にロータ12の回転中心を設けた場合には、開口部に対するシール機能部13Aの接触の仕方が互いに異なってくることもある。このため、冷却制御装置10Aではこれらの開口部をシール機能部13Aでシールすることが必ずしも容易ではなくなる。
 これに対し、冷却制御装置10Aでは通路PAin、PAout1、PAout2のうち、少なくともいずれかの通路の開口部が当接部Eの外面形状に合わせて形成されたシール面Sを有している。このため、冷却制御装置10Aは開口部の曲率やシール機能部13Aの接触の仕方が少なくとも一部の間で互いに異なってくる通路PAin、PAout1、PAout2の開口部のシール性を好適に確保することもできる。シール面Sは例えば少なくとも高いシール性が必要とされる通路PAinの開口部に設けられることが好適である。
 冷却制御装置10Aはエンジン2Aの上流側に設けられることで、ロータリバルブ20で示したようにW/P1やサーモスタット5を設けることを可能にすることができる。また、この場合にはラジエータ3に冷却水を流出させる出口側通路を設ける必要がない分、サイズが大きくなることも抑制できる。また、この場合にはロータ12をロータ22とすることで、第1の通路部21aを流通する冷却水の流通と第2の通路部21bを流通する冷却水の流通とを回転動作で同時に制御することもできる。
 ロータ22は第1の通路部21aを流通する冷却水の流通と第2の通路部21bを流通する冷却水の流通とを回転動作で同時に制御する構成上、応答性の確保が特に容易ではない。このため、ロータ12の応答性の低下を抑制しつつシール性を確保できる冷却制御装置10Aは具体的にはロータ12をロータ22とする構成であることが好適である。
 図10は冷却制御装置10Bを組み込んだ冷却回路100Bを示す図である。冷却回路100Bは冷却制御装置10Aの代わりに冷却制御装置10Bを備える点と、エンジン2Aの代わりにエンジン2Bを備える点と、これに応じた流通経路の変更がなされている点以外、冷却回路100Aと実質的に同一となっている。冷却制御装置10Bはエンジン2Bの下流側に設けられている点と、これに応じた構成の変更がなされている点以外、冷却制御装置10Aと実質的に同一となっている。冷却制御装置10Bの構成については後に詳述する。
 エンジン2Bはシリンダブロック2a、シリンダヘッド2bの代わりにシリンダブロック2a´、シリンダヘッド2b´を備えている。シリンダブロック2a´、シリンダヘッド2b´は個別に冷却水を流通させる流通経路が形成されている点以外、シリンダブロック2a、シリンダヘッド2bと実質的に同一となっている。
 冷却回路100Bにおける冷却水の流通の仕方は以下の通りである。すなわち、W/P1が吐出する冷却水はまずシリンダブロック2a´とシリンダヘッド2b´とに供給される。そして、シリンダヘッド2b´を流通した冷却水はシリンダヘッド2b´と冷却制御装置10Bとを接続する流通経路P1を介して、シリンダブロック2a´を流通した冷却水はシリンダブロック2a´と冷却制御装置10Bとを接続する流通経路P2を介して、個別に冷却制御装置10Bに流入する。
 冷却制御装置10Bからは冷却制御装置10Bとラジエータ3とを接続する流通経路P3、冷却制御装置10Bとヒータコア4とを接続する流通経路P4、または冷却制御装置10Bとサーモスタット5とを接続する流通経路P5を介して、ラジエータ3やヒータコア4やサーモスタット5に冷却水が供給される。そして、その後は冷却回路100Aの場合と同様にして冷却水がW/P1に戻るようになっている。
 冷却回路100Bにおいてエンジン2Bの冷却制御を行うにあたり、冷却制御装置10Bは具体的には以下に示すように冷却水の流通制御を行う。すなわち、水止めモード時には流通経路P1、P2からの冷却水の流入を禁止し、流通経路P3、P4、P5への冷却水の流出を許可する。また、ブロック淀みモード時には流通経路P2からの冷却水の流入を禁止するとともに流通経路P1からの冷却水の流入を許可し、流通経路P3、P4、P5への冷却水の流出を許可する。
 一方、全流量モード時にはサーモスタット5によって冷却水温を高温化する第1の高水温制御および冷却水温を低温化する第1の低水温制御が行われる。これに対し、冷却制御装置10Bは全流量モード時には第1の高水温制御時および第1の低水温制御時ともに流通経路P1、P2からの冷却水の流入を許可し、流通経路P5への冷却水の流出を許可する。そして、全流量モード時、且つ第1の高水温制御時には流通経路P3、P4のうち、少なくとも流通経路P3の流通経路への冷却水の流出を制限する。また、全流量モード時、且つ第1の低水温制御時には、流通経路P3、P4のうち、少なくとも流通経路P3への冷却水の流出制限を解除する。
 図11は第1の高水温制御時における冷却水の流通を示す図である。図12は第1の低水温制御時における冷却水の流通を示す図である。図11、図12では冷却水の流れを流通経路に沿った矢印で示すとともに、サーモスタット5または冷却制御装置10Bによって流通が制限されている流通経路を破線で示している。図11、図12では流通経路P4については冷却制御装置10Bが冷却水の流出制限をともに解除している場合を示す。冷却制御装置10Bは第1の高水温制御時や第1の低水温制御時に流通経路P4への冷却水の流出を制限してもよい。
 図11は冷却水温が所定値αよりも低い場合にサーモスタット5がラジエータ3からの冷却水の流入を制限するともに冷却制御装置10Bからの冷却水の流入制限を解除することで、第1の高水温制御が行われている状態を示している。これに対し、冷却制御装置10Bは第1の高水温制御時に流通経路P3への冷却水の流出を制限することで、冷却水温が所定値αを上回った後にも冷却水温の高温化を継続することを可能にする。
 図12は冷却水温が所定値αよりも高い場合にサーモスタット5がラジエータ3からの冷却水の流入制限を解除するとともに冷却制御装置10Bからの冷却水の流入を制限することで、第1の低水温制御が行われている状態を示している。これに対し、冷却制御装置10Bは第1の低水温制御時に流通経路P3への冷却水の流出制限を解除することで、冷却水温の高温化を継続することを中止し、冷却水温を低温化することを可能にする。
 したがって、冷却制御装置10Bは全流量モード時に適温の範囲内で冷却水温を相対的に高温にする第2の高水温制御と適温の範囲内で冷却水温を相対的に低温にする第2の低水温制御とを行うことができる。冷却制御装置10Bを組み込んだ冷却回路100Bでは、所定値αを例えば適温の下限値に設定することができる。
 図13は冷却制御装置10Bを示す図である。冷却制御装置10Bはハウジング部11Aの代わりにハウジング部11Bを備える点と、シール機能部13Aの代わりにシール機能部13Bを備える点以外、冷却制御装置10Aと実質的に同一となっている。
 ハウジング部11Bには入口側通路として流通経路P1から冷却水を流入させる通路PBin1と、流通経路P2から冷却水を流入させる通路PBin2とが設けられている。また、出口側通路として流通経路P3に冷却水を流出させる通路PBout1と、流通経路P4に冷却水を流通させる通路PBout2と、流通経路P5に冷却水を流通させる通路PBout3とが設けられている。そして、冷却制御装置10Bではこれら通路PBin1、PBin2、PBout1、PBout2、PBout3が複数の通路に相当する。
 ハウジング部11Bは具体的には軸線Cに沿って見た場合に中間部Mの内回り形状が楕円状になるように設けられている。そして、通路PBin1、PBin2は軸線Cに沿って見た場合に互いに隣接した状態で当該内回り形状の短軸方向における一端側から中間部Mに開口するように設けられている。具体的には、当該内回り形状の短軸を間に挟むようにして互いに隣接した状態で中間部Mに開口するように設けられている。通路PBin1、PBin2は当該内回り形状の短軸に沿って延伸し、中間部Mに開口するように設けられている。通路径は通路PBin1のほうが通路PBin2よりも小さく設定されている。
 通路PBout1、PBout2は軸線Cに沿って見た場合に互いに隣接した状態で当該内回り形状の短軸方向における他端側から中間部Mに開口するように設けられている。そして、通路PBout1は当該内回り形状の短軸に対応させて中間部Mに開口するように設けられている。また、通路PBout2は当該内回り形状の短軸からロータ12の回転方向において前方にオフセットした位置で中間部Mに開口するように設けられている。通路PBout1、PBout2は当該内回り形状の短軸に沿って延伸し、中間部Mに開口するように設けられている。通路径は通路PBout2のほうが通路PBout1よりも小さく設定されている。
 通路PBout3は軸線Cに沿って見た場合に当該内回り形状の長軸方向における一端側から中間部Mに開口するように設けられている。また、当該内回り形状の長軸からロータ12の回転方向において前方にオフセットした位置で中間部Mに開口するように設けられている。通路PBout3は当該内回り形状の長軸に沿って延伸し、中間部Mに開口するように設けられている。通路PBin1、PBin2、PBout1、PBout2、PBout3はロータ12の回転方向に沿ってこの順に設けられている。
 一方、ロータ12の回転中心は軸線Cに沿って見た場合に当該内回り形状の楕円中心よりも通路PBin1、PBin2側に偏心した位置に設定されている。そしてこれにより、通路PBin1、PBin2のほうが通路PBout1、PBout2よりもロータ12の回転中心から開口部までの距離が短くなるように設けられている。
 通路PBin1、PBin2間では、通路PBin1のほうが通路PBin2よりもロータ12の回転中心から開口部までの距離が短くなるように設けられている。また、通路PBout1、PBout2間では、通路PBout1のほうが通路PBout2よりもロータ12の回転中心から開口部までの距離が短くなるように設けられている。通路PBout3は通路PBin1、PBin2、PBout1、PBout2とはロータ12の回転中心から開口部までの距離が互いに異なるように設けられている。そして、冷却制御装置10Bではこのようにして通路PBin1、PBin2、PBout1、PBout2、PBout3の開口部それぞれまでの距離がすべての間で互いに異なる位置にロータ12の回転中心が設けられている。
 シール機能部13Bは楕円状の外回り形状の短軸方向において一端側に位置する部分を当接部Eとするとともに、係合部i2の摺動壁部を当該外回り形状の短軸に沿って設けている点と、これに伴い係合部i2が当該外回り形状の短軸方向に沿って他端側から張り出すように設けられている点以外、シール機能部13Aと実質的に同一となっている。
 冷却制御装置10Bでは、当接部Eが通路PBin1、PBin2、PBout1、PBout2、PBout3のうち、少なくともいずれかの通路の開口部に当接する。冷却制御装置10Bでは当接部Eが通路PBin1、PBin2、PBout1、PBout2、PBout3のうち、通路PBin1、PBin2の開口部に当接できるようにシール機能部13Bの可動範囲が設定されている。
 一方、冷却制御装置10Bでは弾性部材14が通路PBin1、PBin2、PBout1、PBout2、PBout3のうち、所定の通路に相当する通路PBout1、PBout2の開口部に対しシール機能部13Bを付勢した状態で、シール機能部13Bと通路PBout1、PBout2の開口部との間に隙間が設けられるようになっている。この隙間は絞りとして機能する間隔の範囲内で設けられている。
 互いに開口部が隣接する通路PBin1、PBin2に関し、冷却制御装置10Bでは具体的には弾性部材14が通路PBin1、PBin2の開口部全体に対しシール機能部13Bを付勢することで、シール機能部13Bが通路PBin1、PBin2の開口部それぞれに同時に当接できるようになっている。また、弾性部材14が通路PBin1、PBin2のうち、少なくとも通路PBin2の開口部に対し個別にシール機能部13Bを付勢することで、シール機能部13Bが通路PBin1、PBin2のうち、少なくとも通路PBin2の開口部に個別に当接できるようになっている。
 互いに開口部が隣接する通路PBout1、PBout2に関し、冷却制御装置10Bでは具体的には弾性部材14が通路PBout1、PBout2の開口部全体に対しシール機能部13Bを付勢することで、シール機能部13Bと通路PBout1、PBout2の開口部それぞれとの間に同時に隙間が設けられるようになっている。また、弾性部材14が通路PBin1、PBin2の開口部それぞれに対し個別にシール機能部13Bを付勢することで、シール機能部13Bと通路PBin1、PBin2の開口部それぞれとの間に個別に隙間が設けられるようになっている。
 冷却制御装置10Bでは通路PBin1、PBin2、PBout1、PBout2、PBout3の開口部に加えて、さらに通路PBin1、PBin2の互いに隣接する開口部全体および通路PBout1、PBout2の互いに隣接する開口部全体それぞれまでの距離がすべての間で互いに異なる位置にロータ12の回転中心が設けられている。
 図14(a)~14(f)は冷却制御装置10Bの動作説明図である。図14(a)は水止めモード時の冷却制御装置10Bを示す。図14(b)はブロック淀みモード時の冷却制御装置10Bを示す。図14(c)は全流量モード時、且つ第1の低水温制御時の冷却制御装置10Bを示す。図14(d)は全流量モード時、且つ第1の高水温制御時の冷却制御装置10Bを示す。図14(e)は全流量モード時、且つ第1の高水温制御時であって、さらにエアコン負荷低減制御時の冷却制御装置10Bを示す。図14(f)は全流量モード時、且つ第1の低水温制御時であって、さらにエアコン負荷低減制御時の冷却制御装置10Bを示す。エアコン負荷低減制御は、ヒータコア4を利用するエアコンにおけるクーラ作動時の負荷を低減するための制御である。
 図14(a)に示すように水止めモード時には通路PBin1、PBin2の互いに隣接する開口部全体に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Bを通路PBin1、PBin2の開口部全体に対して付勢する。一方、シール機能部13Bに対してはエンジン2Bの高回転運転時に通路PBin1、PBin2の開口部全体を開く方向に高い冷却水の圧力が作用する。これに対し、通路PBin1、PBin2はロータ12の回転中心から開口部全体までの距離が個別の通路PBin1、PBin2および他の通路PBout1、PBout2、PBout3と比較して最も短くなるように設定されている。
 そしてこれにより、弾性部材14はシール機能部13Bを通路PBin1、PBin2の開口部全体に対して付勢する場合に最も強い付勢力を発生させるようになっている。冷却制御装置10Bは作用する冷却水の圧力が所定圧になるまでの間は、シール機能部13Bで通路PBin1、PBin2の開口部全体を遮断することで、エンジン2Bを介した冷却水の流通を停止する。一方、作用する冷却水の圧力が所定圧に達した場合には、通路PBin1、PBin2の開口部全体を開放することで、破線の矢印で示すように通路PBout1、PBout2、PBout3を介した冷却水の流出を可能にする。そしてこれにより、エンジン2Bを介した冷却水の流通を緊急的に許可する。
 図14(b)に示すようにブロック淀みモード時には通路PBin2の開口部に個別に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Bを通路PBin2の開口部に対して個別に付勢する。そしてこれにより、シール機能部13Bで通路PBin2の開口部を個別に遮断することで、通路PBin1を介した冷却水の流入と、通路PBout1、PBout2、PBout3を介した冷却水の流出を可能にする。そしてこれにより、シリンダブロック2a´を介した冷却水の流通を停止するとともに、シリンダヘッド2b´を介した冷却水の流通を許可する。
 一方、ブロック淀みモード時にはシール機能部13Bに対して通路PBin2の開口部を開く方向に冷却水の圧力が作用する。これに対し、通路PBin2はロータ12の回転中心から開口部までの距離が通路PBin1よりも長く、且つ通路PBout1、PBout2、PBout3よりも短く設定されている。そしてこれにより、弾性部材14はシール機能部13Bを通路PBin2の開口部に対して付勢する場合に、通路PBin1、PBin2の開口部全体に対して付勢する場合に次いで各制御モード間において強い付勢力を発生させるようになっている。
 図14(c)に示すように全流量モード時、且つ第1の低水温制御時には各通路PBin1、PBin2、PBout1、PBout2、PBout3の開口部いずれにも対応しない位相にロータ12が制御される。そしてこれにより、シリンダブロック2a´およびシリンダヘッド2b´を介した冷却水の流通を許可する。このとき、ロータ12は具体的にはシール機能部13Bがハウジング部11Bのうち、ロータ12の回転方向において通路PBin2の前方、且つ通路PBout1の後方の部分に対向するように制御される。
 当該部分はロータ12の回転中心からの距離が通路PBin1、PBin2、PBout3の開口部よりも長く、且つ通路PBout1、PBout2の開口部よりも短くなっている。そしてこれにより、弾性部材14はシール機能部13Bを当該部分に対して付勢する場合に、通路PBin2の開口部に対して付勢する場合よりも弱い付勢力を発生させることで、シール機能部13Bの接触力を低減する。
 図14(d)に示すように全流量モード時、且つ第1の高水温制御時には通路PBout1の開口部に個別に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Bを通路PBout1の開口部に対して個別に付勢する。そしてこれにより、シール機能部13Bと通路PBout1の開口部との間に個別に隙間を設けることで、通路PBout1を介した冷却水の流出を個別に制限する。通路PBout1はシール機能部13Bが可動限界に達することになる距離よりもロータ12の回転中心から開口部までの距離が長くなっている。
 図14(e)に示すように全流量モード時、且つ第1の高水温制御時であって、さらにエアコン負荷低減制御時には、通路PBout1、PBout2の互いに隣接する開口部全体に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Bを通路PBout1、PBout2の開口部全体に対して付勢する。そしてこれにより、シール機能部13Bと通路PBout1、PBout2の開口部それぞれとの間に同時に隙間を設けることで、通路PBout1、PBout2を介した冷却水の流出を同時に制限する。通路PBout1、PBout2はシール機能部13Bが可動限界に達することになる距離よりもロータ12の回転中心から開口部全体までの距離が長くなっている。
 図14(f)に示すように全流量モード時、且つ第1の低水温制御時であって、さらにエアコン負荷低減制御時には、シール機能部13Bが通路PBout2の開口部に個別に対応する位相にロータ12が制御される。このとき、弾性部材14はシール機能部13Bを通路PBout2の開口部に対して個別に付勢する。そしてこれにより、シール機能部13Bと通路PBout2の開口部との間に個別に隙間を設けることで、通路PBout2を介した冷却水の流出を個別に制限する。
 通路PBout2はシール機能部13Bが可動限界に達することになる距離よりもロータ12の回転中心から開口部全体までの距離が長くなっている。通路PBout2に関し、冷却制御装置10Bはハウジング部11Bのうち、ロータ12の回転方向において通路PBout2の前方の部分にシール部材13Bを接触させることによっても、シール機能部13Bと通路PBout2の開口部との間に個別に隙間を設けることができるようにしている。
 次に冷却制御装置10Bの主な作用効果について説明する。冷却制御装置10Bでは、冷却制御装置10Aと比較してさらに弾性部材14が所定の通路である通路PBout1、PBout2の開口部に対しシール機能部13Bを付勢した状態で、シール機能部13Bと通路PBout1、PBout2の開口部との間に隙間が設けられるようになっている。このため、冷却制御装置10Bは通路PBout1、PBout2を介した冷却水の流通を停止する代わりに、少量の冷却水の流通を許可することができる。また、これによりハウジング部11Bとの接触を回避することで、ロータ12の応答性を向上させることもできる。
 冷却制御装置10Bは所定の通路をラジエータ3に供給する冷却水を流出させる通路PBout1とすることで、次に示すような効果を得ることもできる。すなわち、ラジエータ3に冷却水を流通させない場合には、全流量モード時、且つ第1の高水温制御時に冷却水温が上昇し易くなる分、第1の低水温制御と第1の高水温制御との間で水温制御の切り替え頻度が高くなる。結果、サーモスタット5の寿命が低下し易くなる。
 また、ラジエータ3に冷却水を流通させない場合には、全流量モード時、且つ第1の高水温制御時にラジエータ3内に貯留された冷却水がより低温になり易くなる。このためこの場合には、第1の高水温制御から第1の低水温制御に切り替わった場合に低温の冷却水が急にエンジン2Bに供給されることになる。そしてこれにより、エンジン2Bで大きな熱応力が発生し、熱歪が生じる結果、エンジン2Bで冷却水漏れやオイル漏れなどを招く虞がある。
 これに対し、冷却制御装置10Bは所定の通路を通路PBout1とすることで、全流量モード時、且つ第1の高水温制御時にラジエータ3に少量の冷却水を供給できる。このため、冷却制御装置10Bは水温制御の切り替え頻度を低くすることで、サーモスタット5の寿命を向上させることができる。また、第1の高水温制御から第1の低水温制御に切り替わった場合にエンジン2Bで大きな熱応力が発生することを防止することで、エンジン2Bの信頼性を高めることもできる。
 冷却制御装置10Bは所定の通路をヒータコア4に供給する冷却水を流出させる通路PBout2とすることで、全流量モード時にエンジン2Bからヒータコア4への高温冷却水の流入を制限することもできる。そしてこれにより、ヒータコア4を利用するエアコンのクーラ作動時の負荷を低減することもできる。またこれにより、燃費低減効果を得ることもできる。
 冷却制御装置10Bはエンジン2Bの下流側に設けられることで、W/P1やサーモスタット5を設けることを可能にする代わりに、車両への搭載性を向上させることができる。また、全流量モード時に適温の範囲内で冷却水温を相対的に高温にする第2の高水温制御と適温の範囲内で冷却水温を相対的に低温にする第2の低水温制御とを行うことを可能にすることができる。また、エンジン2Bだけでなく、ヒータコア4など他の構成を対象とした冷却水の流通制御を行うことができる。
 冷却制御装置10Bは通路PBin1、PBin2の開口部を互いに隣接する開口部とすることで、水止めモード、ブロック淀みモードおよび全流量モードの各制御モードの間でエンジン2Bの冷却制御を好適に切り替え可能にすることができる。また、第1の高水温制御時および第1の低水温制御時にエアコン負荷低減制御の実行、停止を切り替え可能にするにあたって、通路PBout1、PBout2の開口部を互いに隣接する開口部とすることで、第1の高水温制御時におけるエアコン負荷低減制御の実行、停止を好適に切り替え可能にすることができる。
 図15は冷却制御装置10Cを示す図である。冷却制御装置10Cはハウジング部11Aの代わりにハウジング部11Cを備える点と、ロータ12の代わりにロータ12´を備える点と、シール機能部13Aの代わりにシール機能部13Cを備える点と、弾性部材14の代わりに弾性部材14´を備える点以外、冷却制御装置10Aと実質的に同一となっている。冷却制御装置10Cは例えば冷却制御装置10Aの代わりに冷却回路100Aに設けることができる。また、冷却制御装置10Aと同様にロータリバルブ20に適用することができる。
 ハウジング部11Cは軸線Cに沿って見た場合に中間部Mの内回り形状が円形状の形状になるように設けられている点以外、ハウジング部11Aと実質的に同一となっている。ハウジング部11Cでは、当該内回り形状において長軸、短軸の区別がなくなることから、通路PAin、PAout1、PAout2が当該内回り形状の互いに直交する2つの直径軸それぞれに対応させて設けられている。
 ロータ12´は軸線Cに沿って見た場合に回転中心が中間部Mの内回り形状の形状中心に合わせて設けられている点と、係合部i1を備える代わりに係合部i1´を備える点と、弁体部の太さが異なっている点以外、ロータ12と実質的に同一となっている。弁体部の太さは必ずしもロータ12との間で異なっていなくてもよい。係合部i1´はロータ12´の弁体部から径方向外側に突出するように設けられている。
 シール機能部13Cはシール機能部13Aと同様、ハウジング部11Cとロータ12´との間にロータ12´とともに回転可能に設けられている。また、シール機能部13Aと同様、シール部材によって構成されている。一方、シール機能部13Cは以下に示すように構成されている点で、シール機能部13Aとは異なる構成となっている。
 すなわち、シール機能部13Cは軸線Cに沿って見た場合に円形状の形状となる円筒状の形状を有するとともに、周壁部に開口部D1、D2が設けられている構成となっている。また、係合部i2の代わりに係合部i2´を備える構成となっている。開口部D1、D2については後述する。
 係合部i2´はシール機能部13Cの周壁部から径方向内側に向かって突出するように設けられている。係合部i2´は係合部i1´に対応させて設けられており、軸線Cに沿って見た場合に係合部i1´を周方向に沿って挟み込むように設けられている。互いに係合する係合部i1´、i2´は複数組(ここでは2組)に設けることができる。係合部i1´、i2´は互いに係合した状態でロータ12´に対するシール機能部13Cの相対的な回転方向の移動を規制する。
 シール機能部13Cは係合部i1´、i2´が互いに係合した状態で、ロータ12´と同心状に配置されている。シール機能部13Cは係合部i1´、i2´によってロータ12´とともに回転可能に設けられている一方、ロータ12´に対し軸線Cに直交する方向に沿って特段摺動可能には設けられていない点で、シール機能部13Aとは異なる構成となっている。係合部i1´、i2´は互いに係合した状態でロータ12´に対し軸線Cに直交する方向に沿ってシール機能部13Cが変位することを許容可能に設けられていてよい。
 弾性部材14´はロータ12´の位相制御に応じて、通路PAin、PAout1、PAout2のうち少なくとも通路PAinの開口部に対し、シール機能部13Cを当接可能に付勢する。この点は弾性部材14についても同様である。一方、弾性部材14´はロータ12´の位相制御上、通路PAin、PAout1、PAout2それぞれに対し、ロータ12´の異なる位相毎に個別にシール機能部13Cを付勢することにはならない点で、弾性部材14とは異なる構成となっている。この点については後述する。
 シール機能部13Cのうち、弾性部材14´が付勢する部分である被付勢部Fは弾性部材14´の付勢力によって中間部Mに押し付けられる。シール機能部13Cには、被付勢部Fが通路PAinの開口部に対向する位相状態において、通路PAout1の開口部に対向する開口部D1が設けられている。また、開口部D1が通路PAinの開口部に対向する位相状態において、通路PAout2の開口部に対向する開口部D2が設けられている。
 このように構成されたシール機能部13Cは弾性部材14´の作用のもと被付勢部Fで中間部Mに接するとともに、所定の温度よりも高い場合に熱膨張によって被付勢部F以外の他の部分で中間部Mに接するように設けられている。所定の温度は適宜の温度であってよい。所定の温度は少なくとも使用温度範囲内で他の部分が中間部Mに接する温度に設定することができる。この場合、弾性部材14´は所定の温度より低い場合であってもシール部材13Cの変形或いは変位を伴うことで、被付勢部Fを中間部Mに押し付けることができるように構成することができる。所定の温度は使用温度範囲内で他の部分が中間部Mに常に接する温度に設定されてもよい。
 弾性部材14´はシール機能部13C(具体的には被付勢部F)を通路PAinの開口部に対し付勢することで通路PAinの開口部を遮断している場合に、作用する冷却水の圧力が所定圧になるまでの間、通路PAinの開口部を遮断できる。一方、作用する冷却水の圧力が所定圧に達した場合にはシール機能部13Cの変形或いは変位を伴いながら短縮することで、通路PAinの開口部を開放できる。
 冷却制御装置10Cはエンジン2Aの冷却制御として水止めモードとブロック淀みモードとをロータ12´の異なる位相毎に有している。そして、エンジン2Aの冷却制御ではロータ12´の位相が次のように制御される。図16(a)及び16(b)並びに図17は冷却制御装置10Cの動作説明図である。図16(a)及び16(b)は水止めモード時の冷却制御装置10Cを示す。図17はブロック淀みモード時の冷却制御装置10Cを示す。図16(a)は作用する冷却水の圧力が所定圧よりも低い場合の状態を示す。図16(b)は作用する冷却水の圧力が所定圧に達した場合の状態を示す。
 図16(a)に示すように冷却制御装置10Cでは水止めモード時に被付勢部Fが通路PAinの開口部に対向する位相にロータ12´が制御される。このとき、弾性部材14´は通路PAinの開口部を遮断すべくシール機能部13Cを通路PAinの開口部に対して付勢する。そして、冷却水の圧力が所定圧よりも低い場合には被付勢部Fが通路PAinの開口部に当接することで、通路PAinの開口部が遮断される。結果、エンジン2Aへの冷却水の流通が停止される。
 図16(b)に示すように作用する冷却水の圧力が所定圧に達した場合には弾性部材14´がシール機能部13Cの変形や変位を伴いながら短縮する。結果、通路PAinの開口部が開放されることで、通路PAout1を介した冷却水の流出が可能になる。このためこの場合には、エンジン2Aへ緊急的に冷却水を流通させることができる。
 図17に示すように冷却制御装置10Cではブロック淀みモード時に次に示す位相にロータ12´が制御される。すなわち、被付勢部Fが中間部Mのうち、通路PAout1の開口部と位相が180°異なる位置に設けられている壁部に対向する位相にロータ12´が制御される。このとき、冷却制御装置10Cでは開口部D1が通路PAinの開口部に対向する位置に配置されるとともに、開口部D2が通路PAout2の開口部に対向する位置に配置される。結果、通路PAin、PAout2の開口部が開口されることで、シリンダヘッド2bを介した冷却水の流通が許可される。
 同時に冷却制御装置10Cではブロック淀みモード時にシール機能部13Cのうち、被付勢部Fとは位相が180°異なる位置に設けられている周壁部が通路PAout1の開口部に対向することになる。そして、当該周壁部は冷却水の圧力で通路PAout1の開口部に押し付けられることで、通路PAout1の開口部を遮断する。結果、シリンダブロック2aを介した冷却水の流通が同時に停止される。
 冷却制御装置10Cでは水止めモードからブロック淀みモードに移行する際に、次に示す回転方向でロータ12´を回転させることができる。すなわち、通路PAinの開口部から他の通路の開口部を経由することなく、前述の壁部に直接向かうことになる回転方向でロータ12´を回転させることができる。
 なお、冷却制御装置10Cはブロック淀みモード時に被付勢部Fが通路PAout1の開口部に対向する位相にロータ12´が制御される構成であってもよい。また、ブロック淀みモードの代わりに全流量モードを有する構成であってもよい。この場合、通路PAout1をシリンダヘッド2bに供給する冷却水を流出させる通路とし、通路PAout2をシリンダブロック2aに供給する冷却水を流出させる通路とすることができる。
 このように構成された冷却制御装置10Cは弾性部材14´がロータ12´の位相制御に応じて通路PAin、PAout1、PAout2のうち、通路PAinの開口部に対しシール機能部13Cを当接可能に付勢する構成となっている。すなわち、冷却制御装置10Cはロータ12´の位相制御上、弾性部材14´が通路PAin、PAout1、PAout2それぞれに対し、ロータ12´の異なる位相毎に個別にシール機能部13Cを付勢することにはならない構成となっている。
 次に冷却制御装置10Cの作用効果について説明する。冷却制御装置10Cは弾性部材14´が通路PAinの開口部に対しシール機能部13Cを付勢する場合に冷却制御装置10Aと同様、ロータ12´の応答性を向上させることができる。また、冷却制御装置10Aと同様、エンジン2Aへ緊急的に冷却水を流通させることもできる。結果、これらの点でエンジン2Aの冷却制御を好適に行うことができる。冷却制御装置10Cは冷却の要求が高まるエンジン2Aの高回転運転時に敢えて水止めモードにすることで、冷却水の圧力が所定圧に達した場合にシリンダブロック2aおよびシリンダヘッド2bを介した冷却水の流通を許可することもできる。
 冷却制御装置10Cでは通路PAout1の開口部を遮断する場合には通路PAout2の開口部が開くことになる。このため、冷却制御装置10Aと同様、冷却水の流出が完全に遮断される場合と比較して、ロータ12´の応答性が低下することも抑制できる。
 冷却制御装置10Cは具体的にはハウジング部11Cとロータ12´とシール機能部13Cとを備える構成で、シール機能部13Cに次のように開口部が設けられている構成であることが好適である。すなわち、シール機能部13Cが複数の出口側通路(ここでは通路PAout1、PAout2)の開口部のうちいずれかを遮断する場合に、複数の出口側通路の開口部のうち遮断する開口部以外の少なくともいずれかの開口部を開口する開口部がシール機能部13Cに設けられている構成であることが好適である。
 この場合、ハウジング11Cは具体的には軸線Cに沿って見た場合に中間部Mの内回り形状が円形状の形状になるように設けられるとともに、複数の出口側通路が設けられている構成とすることができる。また、ロータ12´は軸線Cに沿って見た場合に回転中心が中間部Mの内回り形状の形状中心に合わせて設けられている構成とすることができる。また、シール機能部13Cは円筒状の形状を有する構成とすることができ、さらにはロータ12´と同心状に配置される構成とすることができる。また、被付勢部F以外の他の部分が少なくとも使用温度範囲内で中間部Mに接する構成とすることができる。
 ロータ12´はさらに次のように構成されてもよい。すなわち、中空部を有するとともにシール機能部(ここではシール機能部13C)の周壁部に設けられている開口部それぞれに対応させて内外を連通する開口部が設けられている構成であってもよい。この場合、シール機能部とロータ12´との間のクリアランスを縮小することで、当該クリアランスおよびロータ12´のうち、少なくともロータ12´を介して冷却水を流通させることができる。これは以下で説明する冷却制御装置10D、10E、10Fについても同様である。
 図18は冷却制御装置10Dの要部を示す斜視図である。図19は冷却制御装置10Dの要部を示す断面図である。図19では軸線Cを含む断面で図18に示す要部の一部をハウジング部11Cとともに示す。冷却制御装置10Dは図9に示すロータリバルブ20に対し冷却制御装置10Cを適用する一方、適用にあたりシール機能部13Cの代わりにシール機能部13Dを設けた構成となっている点と、W/P1をさらに備える点以外、冷却制御装置10Cと実質的に同一となっている。
 このように構成された冷却制御装置10Dは、具体的にはハウジング部21をハウジング部11Cとする構成となっている。また、ロータ22をロータ12´とする構成となっている。そして、ハウジング部21とロータ22との間にシール機能部13Dを設けた構成となっている。また、ロータ22とシール機能部13Dとの間に弾性部材14´を設けた構成となっている。
 冷却制御装置10Dではロータ22をロータ12´とする構成上、ロータ12´が具体的には弁体部R1、R2を備える構成となっている。そして、ロータ12´との関係においてシール機能部13Dは具体的には軸線Cに沿った方向において弁体部R1、R2にかけて設けられる構成となっている。このため、シール機能部13Dは第2の通路部21bが形成する通路の開口部を開口可能な開口部D3を含む複数の開口部をさらに備えている。シール機能部13Dはこのほか押し当て部Lをさらに備える点以外、シール機能部13Cと実質的に同一となっている。
 押し当て部Lは軸線Cに沿った方向における第1および第2の通路群間で、ロータ12´に押し当てられる部分となっている。冷却制御装置10Dでは第1の通路部21aが形成する通路それぞれがW/P1からエンジン2Aに向かう冷却水を流通させることが可能な通路を有して構成される第1の通路群を構成している。また、第2の通路部21bが形成する通路それぞれがエンジン2AからW/P1に向かう冷却水を流通させることが可能な通路を有して構成される第2の通路群を構成している。そして、第1および第2の通路群は軸線Cに沿った方向において互いに異なる位置に設けられている。
 押し当て部Lは具体的にはロータ12´とシール機能部13Dの周壁部との間に位置し、当該周壁部の内側に周方向に沿って一周に亘って設けられている。また、ロータ12´および第1の通路群側に向かって延伸するリップ状の形状を有している。
 次に冷却制御装置10Dの主な作用効果について説明する。ここで、冷却制御装置10Dでは複数の通路が第1および第2の通路群を有して構成されている。このため、ロータ12´とシール機能部13Dの周壁部との間に形成されるクリアランスを介して第1の通路群側から第2の通路群側に冷却水がリークすることになる。結果、エンジン2Aに供給する冷却水の流量が著しく低下する虞がある。
 これに対し、押し当て部Lは第1の通路群側から第2の通路群側への冷却水のリークを防止或いは抑制する。このため、冷却制御装置10Dはさらにエンジン2Aに供給する冷却水の流量がリークによって低下することを防止或いは抑制できる。結果、エンジン2Aの冷却制御を行うにあたり、エンジン2Aに供給する冷却水の流量を確保することで、エンジン2Aの信頼性を高めることができる。
 押し当て部Lは具体的にはロータ12´および第1の通路群側に向かって延伸するリップ状の形状を有している構成とすることができる。これにより、第1および第2の通路群間における冷却水の圧力差によって、シール性が高まるように押し当て部Lをロータ12´に押し当てることができる。結果、エンジン2Aに供給する冷却水の流量低下をより好適に防止或いは抑制できる。またこれにより、押し当て部Lが柔軟性を有するようにすることもできる。結果、緊急的に冷却水を流通させる際にシール機能部13Dの変形或いは変位を阻害しないようにしつつ、シール性を維持することもできる。
 図20は冷却制御装置10Eの要部を示す斜視図である。冷却制御装置10Eはシール機能部13Dの代わりにシール機能部13Eを備える点以外、冷却制御装置10Dと実質的に同一となっている。同様の変更は例えば冷却制御装置10Cに対して行われてもよい。シール機能部13Eは分断部Uが設けられている点以外、シール機能部13Dと実質的に同一となっている。分断部Uはシール機能部13Eのうち、周方向において分断された部分同士で構成されている。分断部Uは具体的には軸線Cに沿って設けられている。シール機能部13Eの線膨張係数は例えばアルミ合金を材質とするハウジング部11Cよりも大きくなっている。
 次に冷却制御装置10Eの主な作用効果について説明する。シール機能部13Eは冷却水の温度が高まるにつれて、分断部Uの分断された部分同士の間隔が次第に狭くなるように変形する。結果、ハウジング部11Cに対するシール機能部10Eの接触力が熱膨張によって増加することが抑制される。このため、冷却制御装置10Eはさらに、上記接触力の増加によって応答性が低下することを抑制できる点でも、エンジン2Aの冷却制御を好適に行うことができる。
 図21は冷却制御装置10Fの要部を示す斜視図である。図22は冷却制御装置10Fの要部を示す断面図である。図22では軸線Cを含む断面で図21に示す要部の一部をハウジング部11Cとともに示す。冷却制御装置10Fはシール機能部13Eの代わりにシール機能部13Fを備える点以外、冷却制御装置10Eと実質的に同一となっている。シール機能部13Fは分断部Uの代わりに分断部U´が設けられている点以外、シール機能部13Eと実質的に同一となっている。
 分断部U´は第1の通路群側と第2の通路群側とで互いに異なる位相において軸線Cに沿って設けられる第1および第2の部分分断部である部分分断部U1、U2を備えている。また、周方向に沿って設けられ、部分分断部U1、U2を接続する第3の部分分断部である部分分断部U3を備えている。部分分断部U3は軸線Cに沿った方向においてシール機能部Fのうち、押し当て部Lよりも第2の通路群側の部分に設けられている。
 次に冷却制御装置10Fの主な作用効果について説明する。ここで、冷却制御装置10Eでは分断部Uの分断された部分同士の間に形成される隙間を通じて第1の通路群側から第2の通路群側に冷却水がリークすることになる。これに対し、冷却制御装置10Fは部分分断部U3でリークする冷却水の圧力損失を増加させる。このため、冷却制御装置10Fは冷却制御装置10Eと同様に応答性低下を抑制しつつ、これと両立するかたちでエンジン2Aに供給する冷却水の流量が減少することも抑制できる。
 分断部U´は具体的には部分分断部U3が軸線Cに沿った方向においてシール機能部Fのうち、押し当て部Lよりも第2の通路群側の部分に設けられている構成とすることができる。これにより、第1および第2の通路群間における冷却水の圧力差によって、部分分断部U3の分断された部分同士の間隔を縮小したり、分断された部分同士の間の隙間を閉塞したりすることができる。結果、エンジン2Aに供給する冷却水の流量が減少することをより好適に抑制できる。
 以上、本発明の実施例について詳述したが、本発明は上記特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。
 例えば本発明におけるシール機能部は上述した実施例におけるシール機能部13Aのうち、当接部Eに相当する部分にシール部材を有する構造体であってもよい。すなわち、上述した実施例におけるシール機能部13Aのうち、当接部E以外の部分は必ずしもシール部材で構成されていなくてもよい。
 入口側通路が複数設けられている場合、弾性部材はロータの位相制御に応じて複数の入口側通路のうち少なくともいずれかの入口側通路の開口部に対し、シール機能部を当接可能に付勢する構成とすることができる。また、複数の入口側通路の開口部全体に対しシール機能部を当接可能に付勢する構成とすることができる。
  W/P         1
  内燃機関        2A、2B
  シリンダブロック    2a、2a´
  シリンダヘッド     2b、2b´
  冷却制御装置      10A、10B、10C、10D、10E、10F
  ハウジング部      11A、11B、11C、21
  ロータ         12、12´、22
  シール機能部      13A、13B、13C、13D、13E、13F
  弾性部材        14 、14´

Claims (6)

  1. エンジンの冷却水を流入させる入口側通路と、前記エンジンの冷却水を流出させる出口側通路とを少なくとも1つずつ有して構成される複数の通路が設けられたハウジング部と、
     前記ハウジング部のうち、前記複数の通路それぞれが開口する中間部に設けられるとともに、回転動作で前記複数の通路を介した前記エンジンの冷却水の流通を制御するロータと、
     前記ハウジング部と前記ロータとの間に前記ロータとともに回転可能に設けられたシール機能部と、
     前記ロータと前記シール機能部との間に設けられ、前記ロータの位相制御に応じて前記複数の通路のうち少なくとも前記入口側通路の開口部に対し、前記シール機能部を当接可能に付勢する弾性部材と、を備えるエンジンの冷却制御装置。
  2. 請求項1記載のエンジンの冷却制御装置であって、
     前記エンジンの冷却水を圧送するポンプをさらに備え、
     前記複数の通路が前記ポンプから前記エンジンに向かう冷却水を流通させることが可能な通路を有して構成される第1の通路群と、前記エンジンから前記ポンプに向かう冷却水を流通させることが可能な通路を有して構成される第2の通路群とを有して構成されるとともに、前記第1および第2の通路群が前記ロータの回転中心の軸線に沿った方向において互いに異なる位置に設けられており、
     前記シール機能部が前記ロータの回転中心の軸線に沿った方向における前記第1および第2の通路群間で、前記ロータに押し当てられる押し当て部をさらに備えるエンジンの冷却制御装置。
  3. 請求項1または2記載のエンジンの冷却制御装置であって、
     前記ロータが回転中心の軸線に沿って見た場合に前記中間部に開口する前記複数の通路の開口部それぞれまでの距離が少なくとも一部の間で互いに異なる位置に回転中心が設けられている構成となっており、
     前記弾性部材が複数の通路の開口部それぞれに対し、前記ロータの異なる位相毎に個別に前記シール機能部を付勢するエンジンの冷却制御装置。
  4. 請求項3記載のエンジンの冷却制御装置であって、
     前記弾性部材が前記複数の通路のうち、所定の通路の開口部に対し前記シール機能部を付勢した状態で、前記シール機能部と前記所定の通路の開口部との間に隙間が設けられるエンジンの冷却制御装置。
  5. 請求項3または4記載のエンジンの冷却制御装置であって、
     前記ロータと前記シール機能部との間に前記ロータの回転中心の軸線に沿って見た場合に前記ロータの回転中心の四方に配置された複数の転動体をさらに備えるエンジンの冷却制御装置。
  6. 請求項3から5いずれか1項記載のエンジンの冷却制御装置であって、
     前記複数の通路のうち、少なくともいずれかの通路の開口部が、前記ロータが対応する位相に制御された状態で対向することになる前記シール機能部の外面形状に合わせて形成されたシール面を有するエンジンの冷却制御装置。
     
PCT/JP2012/063253 2011-11-07 2012-05-24 エンジンの冷却制御装置 WO2013069325A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/353,637 US9267420B2 (en) 2011-11-07 2012-05-24 Engine cooling control device
JP2013542876A JP5895942B2 (ja) 2011-11-07 2012-05-24 エンジンの冷却制御装置
EP12848238.7A EP2778366B1 (en) 2011-11-07 2012-05-24 Engine cooling control device
CN201280054557.2A CN103917759B (zh) 2011-11-07 2012-05-24 发动机的冷却控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-243793 2011-11-07
JP2011243793 2011-11-07

Publications (1)

Publication Number Publication Date
WO2013069325A1 true WO2013069325A1 (ja) 2013-05-16

Family

ID=48289594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063253 WO2013069325A1 (ja) 2011-11-07 2012-05-24 エンジンの冷却制御装置

Country Status (5)

Country Link
US (1) US9267420B2 (ja)
EP (1) EP2778366B1 (ja)
JP (1) JP5895942B2 (ja)
CN (1) CN103917759B (ja)
WO (1) WO2013069325A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094396A (ja) * 2013-11-11 2015-05-18 リンナイ株式会社 切換弁
KR101610344B1 (ko) * 2014-11-18 2016-04-07 지엠비코리아 주식회사 밸브
JP2017155795A (ja) * 2016-02-29 2017-09-07 三菱重工業株式会社 ロータリー弁装置、過給機、および、多段過給システム
KR20190038852A (ko) * 2016-08-11 2019-04-09 푸츠마이스터 엔지니어링 게엠베하 고점도 원료 밸브
US10669923B2 (en) 2014-09-24 2020-06-02 Volkswagen Aktiengesellschaft Combustion machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225949B2 (ja) * 2015-06-23 2017-11-08 トヨタ自動車株式会社 内燃機関の冷却装置
JP6620680B2 (ja) * 2016-06-17 2019-12-18 株式会社デンソー 流路切替弁

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180362A (en) * 1961-12-01 1965-04-27 Muller Jacques Rotary and reciprocating actuated valve
JPS5834276A (ja) * 1981-08-24 1983-02-28 スロ−ン・バルブ・カンパニ− 4ウエイバルブ
JPH05215256A (ja) * 1991-06-06 1993-08-24 Richard T Williams 切換弁及び水の流れを制御する方法
JP2002276364A (ja) * 2001-03-14 2002-09-25 Denso Corp ハイブリッド電気自動車の冷却装置
JP2003322019A (ja) * 2002-04-30 2003-11-14 Denso Corp 車両用内燃機関の冷却系装置
JP2004534191A (ja) 2001-07-11 2004-11-11 ヴァレオ テルミーク モツール 流体循環回路用制御バルブ
JP2005054997A (ja) 2003-08-06 2005-03-03 Robert Bosch Gmbh 完全遮断を伴う弁
JP2005510668A (ja) 2001-11-28 2005-04-21 ランコ インコーポレーテッド オブ デラウェア 自動車用冷却液制御バルブ
JP2006512547A (ja) 2002-12-30 2006-04-13 ヴァレオ テルミーク モツール 流体循環システム用の改良型シーリングを有する制御弁
JP2006283677A (ja) 2005-03-31 2006-10-19 Yamada Seisakusho Co Ltd 流路切替バルブ
JP2008051197A (ja) 2006-08-24 2008-03-06 Ntn Corp 軸継手

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256285A (en) * 1977-06-30 1981-03-17 Honeywell Inc. Eccentric rotary valve with control-improving wing member
US6994316B2 (en) * 2003-01-16 2006-02-07 General Electric Company Rotor valve and seal
JP4432898B2 (ja) * 2005-12-20 2010-03-17 トヨタ自動車株式会社 内燃機関の冷却装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180362A (en) * 1961-12-01 1965-04-27 Muller Jacques Rotary and reciprocating actuated valve
JPS5834276A (ja) * 1981-08-24 1983-02-28 スロ−ン・バルブ・カンパニ− 4ウエイバルブ
JPH05215256A (ja) * 1991-06-06 1993-08-24 Richard T Williams 切換弁及び水の流れを制御する方法
JP2002276364A (ja) * 2001-03-14 2002-09-25 Denso Corp ハイブリッド電気自動車の冷却装置
JP2004534191A (ja) 2001-07-11 2004-11-11 ヴァレオ テルミーク モツール 流体循環回路用制御バルブ
JP2005510668A (ja) 2001-11-28 2005-04-21 ランコ インコーポレーテッド オブ デラウェア 自動車用冷却液制御バルブ
JP2003322019A (ja) * 2002-04-30 2003-11-14 Denso Corp 車両用内燃機関の冷却系装置
JP2006512547A (ja) 2002-12-30 2006-04-13 ヴァレオ テルミーク モツール 流体循環システム用の改良型シーリングを有する制御弁
JP2011021753A (ja) 2002-12-30 2011-02-03 Valeo Thermique Moteur 流体循環システム用の改良型シーリングを有する制御弁
JP2005054997A (ja) 2003-08-06 2005-03-03 Robert Bosch Gmbh 完全遮断を伴う弁
JP2006283677A (ja) 2005-03-31 2006-10-19 Yamada Seisakusho Co Ltd 流路切替バルブ
JP2008051197A (ja) 2006-08-24 2008-03-06 Ntn Corp 軸継手

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2778366A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094396A (ja) * 2013-11-11 2015-05-18 リンナイ株式会社 切換弁
US10669923B2 (en) 2014-09-24 2020-06-02 Volkswagen Aktiengesellschaft Combustion machine
KR101610344B1 (ko) * 2014-11-18 2016-04-07 지엠비코리아 주식회사 밸브
JP2017155795A (ja) * 2016-02-29 2017-09-07 三菱重工業株式会社 ロータリー弁装置、過給機、および、多段過給システム
KR20190038852A (ko) * 2016-08-11 2019-04-09 푸츠마이스터 엔지니어링 게엠베하 고점도 원료 밸브
JP2019525106A (ja) * 2016-08-11 2019-09-05 プツマイスター エンジニアリング ゲーエムベーハーPutzmeister Engineering Gmbh 高密度材料バルブ
KR102334498B1 (ko) 2016-08-11 2021-12-03 푸츠마이스터 엔지니어링 게엠베하 고점도 원료 밸브
JP7019924B2 (ja) 2016-08-11 2022-02-16 プツマイスター エンジニアリング ゲーエムベーハー 高密度材料バルブ

Also Published As

Publication number Publication date
US20140326199A1 (en) 2014-11-06
EP2778366A1 (en) 2014-09-17
JP5895942B2 (ja) 2016-03-30
CN103917759B (zh) 2017-04-05
CN103917759A (zh) 2014-07-09
JPWO2013069325A1 (ja) 2015-04-02
EP2778366A4 (en) 2015-04-08
US9267420B2 (en) 2016-02-23
EP2778366B1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP5895942B2 (ja) エンジンの冷却制御装置
JP7284771B2 (ja)
JP5240403B2 (ja) エンジンの冷却システム
CN108005773B (zh) 控制阀
US10927972B2 (en) Flow rate control valve
JP6501641B2 (ja) 流量制御弁
WO2015163181A1 (ja) 冷却制御装置、流量制御弁及び冷却制御方法
US20130221116A1 (en) Cooling water control valve apparatus
JP7227050B2 (ja) 制御バルブ
JP7146540B2 (ja) 制御バルブ
WO2017217112A1 (ja) 切替流調弁
CN110366654B (zh) 控制阀
JP7344663B2 (ja) 制御バルブ
WO2023112738A1 (ja) 制御バルブ
JP2006029113A (ja) 冷却水流量制御弁
JP5553063B2 (ja) ロータリバルブ
KR20210119659A (ko) 유량제어밸브 장치
JP6808578B2 (ja) 流量制御弁
JP7142150B2 (ja) 制御バルブ
US20210291621A1 (en) Control valve
JP2021148244A (ja) 制御バルブ
JP2020159514A (ja) 制御バルブ
JP7417446B2 (ja) 制御バルブ
JP6705494B2 (ja) バルブ装置および流体制御装置
KR102690515B1 (ko) 멀티웨이밸브 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012848238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14353637

Country of ref document: US