WO2013067833A1 - 一种合成气直接合成低碳烯烃的方法 - Google Patents

一种合成气直接合成低碳烯烃的方法 Download PDF

Info

Publication number
WO2013067833A1
WO2013067833A1 PCT/CN2012/078988 CN2012078988W WO2013067833A1 WO 2013067833 A1 WO2013067833 A1 WO 2013067833A1 CN 2012078988 W CN2012078988 W CN 2012078988W WO 2013067833 A1 WO2013067833 A1 WO 2013067833A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
synthesis gas
catalyst
syngas
supergravity
Prior art date
Application number
PCT/CN2012/078988
Other languages
English (en)
French (fr)
Inventor
陈建峰
张燚
初广文
Original Assignee
北京化工大学
北京中超海奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学, 北京中超海奇科技有限公司 filed Critical 北京化工大学
Publication of WO2013067833A1 publication Critical patent/WO2013067833A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0405Apparatus
    • C07C1/041Reactors
    • C07C1/0415Reactors with moving catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates

Definitions

  • the invention relates to a method for synthesizing low-carbon olefins directly from synthesis gas, in particular to a fluff super-gravity reactor for performing Fischer-Tropsch synthesis reaction under super-gravity environment and catalyst to directly convert synthesis gas into low-carbon olefins Methods. Background technique
  • Fischer-Tropsch process also known as F-T synthesis, is a synthesis of paraffin-based liquid fuels based on synthesis gas (CO, mixed gas of C0 2 and H 2 ) under the catalyst and appropriate conditions. crafting process.
  • the traditional Fischer-Tropsch synthesis products are mainly linear alkanes, olefins, small amounts of aromatic hydrocarbons and aldols, as well as by-product water and carbon dioxide.
  • the product composition is complex, the selectivity is poor, and the light liquid hydrocarbons are less.
  • Fischer-Tropsch synthesis has been in existence for more than 80 years, and now Sasol, PetroSA, Sheli and Oryx are among the larger Fischer-Tropsch synthesis companies.
  • the reactants of the Fischer-Tropsch synthesis reaction, syngas can be converted from coal, natural gas, biomass by gasification or reforming.
  • the chain growth of the Fischer-Tropsch synthesis product obeys the polymerization mechanism and the selectivity of the product follows the Anderson-Schultz-F!ory distribution.
  • EP0023745 A3 proposes that a supergravity rotating bed can be used for absorption, desorption, distillation and the like.
  • China patent CN1064338A, CN1116146A., CN ⁇ 116] 85A breaks through the limitations of supergravity separation technology, innovatively proposes super-gravity reaction technology, and successfully realizes the application of super-gravity rotating bed to industrial-scale oilfield water injection] 3 ⁇ 4 oxygen process and super Preparation of fine calcium carbonate.
  • Chinese patent CN1507940A, CN1895766A proposes a hydrocarbon catalytic reaction in a supergravity reactor and discloses a method for carrying out total hydrogenation and partial hydrogenation of hydrocarbons in a supergravity reactor. Summary of the invention
  • the object of the present invention is to provide a method for directly converting a synthesis gas of various sources into a low-carbon olefin under the action of a supergravity environment and a catalyst by using a supergravity reactor for Fischer-Tropsch synthesis reaction, specifically, providing A method for directional synthesis of light olefins by a Fischer-Tropsch synthesis process using a supergravity reactor.
  • the Fischer-Tropsch synthesis process is a process in which the crude syngas obtained by converting coal, natural gas, coalbed methane and biomass into raw materials is desulfurized and deoxidized, and then adjusted according to the Fischer-Tropsch synthesis reactor. 13 ⁇ 4/03 enters the reactor to synthesize various hydrocarbons than a suitable syngas.
  • the Fischer-Tropsch synthesis tail gas can be separated at low temperature to obtain low-carbon olefins, or increased by oligomerization. Refueling yield, or reforming back to the reactor.
  • Increasing mass transfer and heat transfer efficiency in the Fischer-Tropsch synthesis reaction can have the following advantages: (1) It can effectively reduce local overheating of the reactor, thereby reducing the selectivity of formazan; (2) Conducive to primary reaction products Desorption, thereby reducing the influence of secondary reaction on product selectivity, thereby increasing the selectivity of low-carbon olefins; (3) facilitating the introduction of heavy hydrocarbons from the catalyst pores, thereby reducing the accumulation of wax in the catalyst pores The catalyst from i is deactivated, increasing the service life of the catalyst.
  • the Fischer-Tropsch synthesis catalyst typically comprises the following three types of components: a primary metal, a support or a structural auxiliary, and various other adjuvants and additives.
  • the main metal is mainly composed of the eighth group elements Fe, Co, Ni, Ru and Rh.
  • Fe and Co are industrially proven catalysts which are ideal for Fischer-Tropsch synthesis and have been successfully applied in the industry.
  • Ru is the most catalytically active metal in CO hydrogenation reaction, especially for high molecular weight linear terpene hydrocarbons.
  • Selectivity The hydrogenation activity of Ni is second only to that of methane. Rh is easy to form oxygenates.
  • the Fischer-Tropsch reaction catalyst of the present invention comprises a catalyst such as a granulated, honeycomb or plate type structured Co-based, 3 ⁇ 4-based or Fe-based catalyst prepared by various methods.
  • the process conditions of the method for the Fischer-Tropsch synthesis using the supergravity reactor of the present invention are as follows: the Fischer-Tropsch synthesis reaction is 2-400 g in the ultra-flat; the reaction temperature is 180 ° C - 500 Torr, the reaction
  • the supergravity reactor described in the method of the present invention refers to various types of supergravity reactors in which the acceleration of the simulated supergravity environment is greater than the gravitational acceleration of the earth (g ⁇ Sm/s).
  • Hypergravity technology is one of the first key technologies in process enhancement technology that has received much attention.
  • the easiest way to achieve supergravity technology on the earth is to use the centrifugal acceleration environment generated by the rotation to simulate. By changing the rotation speed and the rotor radius, the centrifugal acceleration is simulated, that is, the level of the simulated supergravity is reached, and the value reaches the earth's gravity acceleration. Hundreds or thousands of times more than (g), at this time, the fluid is subjected to simulated supergravity control that greatly exceeds the gravity of the Earth.
  • the supergravity technology is a process intensification technology that strengthens the transfer and micro-mixing process, which can greatly improve the efficiency of the reaction and separation process, and significantly reduce the volume of the reaction and separation device.
  • the demonstration practice of industrial applications in China for many years shows that the super-gravity device It has outstanding advantages such as large operation flexibility, easy opening and closing, small floor space, small space, high production efficiency and high production intensity.
  • the process of the present invention is a novel process for the targeted production of light olefins by Fischer-Tropsch synthesis in a manner completely different from fixed bed, fluidized bed and slurry bed reactors.
  • the specific process of the method of the invention comprises: carrying out the Fischer-Tropsch reaction in a supergravity reactor, fixing the Fischer-Tropsch catalyst to the rotor of the supergravity reactor, and the catalyst bed is always in a rotating state during the reaction, the reaction material Intrusion from the inlet of the supergravity reactor, the synthesis gas is subjected to a Fischer-Tropsch reaction through a high-speed rotating catalyst bed, and the resulting product is a hydrocarbon mainly composed of low-carbon olefins ethylene propylene and butene) under simulated supergravity.
  • the reaction material is coal-based syngas, natural gas-based syngas, coalbed methane-based syngas or biomass-based syngas, which is composed of CO+ C0 2 +H 2 , CO+H 2 , C0 2 +H 2 ;
  • the supergravity level of the supergravity reactor is 2-400g; the reaction temperature is ⁇ ⁇ 80 °C - 500 °C, the reaction pressure is l-100atm, gas
  • the space velocity is lOO-lOOOOli'', and the low-carbon olefin product is synthesized in a targeted manner.
  • the method of the invention strengthens the mass transfer process of the reaction product through the regulation of the super-gravity acceleration level in the supergravity reactor and utilizes the reaction separation synergy to adjust the residence time of the reaction product in the reaction field, thereby controlling or suppressing the second Secondary reactions occur, increasing the selectivity of a particular target product and increasing catalyst life.
  • the conventional Fischer-Tropsch reaction is limited by the growth and transformation mechanism of the synthesis process chain.
  • the selectivity of the target product is relatively low, and the synthesis by-products are more.
  • the range of normal chain hydrocarbons can range from ci oo. Therefore, strengthening the mass transfer of the product and controlling the residence time of different products in the reaction environment can effectively improve the selectivity of the target product.
  • the appropriate super-gravity acceleration level is selected to rapidly generate the low-carbon olefins from the reaction environment, and the secondary reaction such as hydrogenation or chain growth is inhibited to reduce the probability of formation of alkanes and high-carbon hydrocarbons, thereby increasing Low carbon olefin selectivity.
  • a lower partial pressure of the lower olefin product in the reaction environment will shift the reaction toward the formation of lower olefins to further improve the selectivity of the lower olefins.
  • the excessive residence of the product and the intermediate product on the catalyst is also responsible for the carbon deposition of the catalyst.
  • the carbon deposition is one of the important reasons for the deactivation of the Fischer-Tropsch catalyst. Therefore, the present invention can effectively suppress the surface area carbon generation of the catalyst and increase the life of the catalyst.
  • the supergravity reactor has the following advantages - enhanced mass transfer.
  • the mass transfer process between the reactants and the product and the catalyst in the above reaction is strengthened under the action of supergravity, effectively reducing or eliminating the influence of the diffusion process on the above reaction, so that the produced product can quickly leave the reaction environment and improve the target product.
  • the above reaction is an exothermic reaction.
  • the exothermic reaction process it is crucial to eliminate the heat of reaction in time.
  • the reaction temperature is liable to be out of control.
  • the reaction exotherm is quickly taken out of the reaction zone by the product, so that it is easy to control the reaction temperature and is suitable for the above reaction.
  • the present invention utilizes a supergravity reactor to carry out a Fischer-Tropsch synthesis reaction to selectively synthesize a specific target product, including a low carbon olefin of ethylene propylene butene.
  • the method of the invention has the characteristics of high conversion rate of reaction materials, directed production of low-carbon olefin products, good mass transfer, good heat transfer performance and long catalyst life.
  • Figure is a schematic representation of a supergravity reactor employed in the present invention.
  • the reactor includes:
  • the Fischer-Tropsch synthesis catalyst is installed in the rotor of the supergravity reactor, and the catalyst bed is always in a high-speed rotation state during the reaction. Syngas enters the inlet of the supergravity reactor through a high speed rotating catalyst bed. The resulting product was discharged from the outlet of the supergravity reactor and determined by gas chromatography analysis. In the case where the space velocity is constant, the time at which the product leaves the reaction environment can be controlled by adjusting the rotational speed of the catalyst bed, thereby controlling the selectivity of the product.
  • the synthesis gas is a mixture of CO + H 2 , CO / 3 ⁇ 4::: l/2.
  • the cobalt-based Fischer-Tropsch catalyst particles are placed in a mesh support and placed on the rotor of the supergravity reactor.
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • the cobalt-based Fischer-Tropsch catalyst particles are loaded into a fixed bed reactor.
  • the iron-based Fischer-Tropsch catalyst particles are placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • the iron-based Fischer-Tropsch catalyst particles are loaded into a fixed bed reactor.
  • the iron-based honeycomb Fischer-Tropsch catalyst is placed in a mesh support to be fixed to the rotor of the supergravity reactor.
  • the process conditions of the reaction are as follows:
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • An iron-based honeycomb Fischer-Tropsch catalyst is loaded into the fixed bed reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开了一种合成气直接合成低碳烯烃的方法,属于超重力技术领域。该方法是合成气在超重力环境和催化剂的共同作用下直接转化合成低碳烯烃的方法,反应过程中催化剂床层以一定转速旋转,反应物料为煤基合成气、天然气基合成气、煤层气基合成气或生物质基合成气,超重力反应器的超重力水平为2-400g;反应温度为180°C-500°C,反应压力为1-100atm,气体空速为100-100000h-1。具有定向生产低碳烯烃产物,传质,传热性能好,催化剂寿命长的特点。

Description

一种合成气直接合成低碳烯烃的方法
技术领域
本发明涉及一种合成气直接合成低碳烯烃的方法, 具体的说, 涉及一种利 ffl超重力反应 器在超重力环境和催化剂作用下进行费托合成反应将合成气直接转化为低碳烯烃的方法。 背景技术
费托合成 (Fischer - Tropsch process), 又称 F- T合成, 是以合成气 (CO, C02和 H2的混 合气体) 为原料在催化剂和适当条件下合成以石蜡烃为主的液体燃料工艺过程。 传统的费托 合成产物主要为直链烷烃、 烯烃、 少量芳烃和醛醇, 以及副产水和二氧化碳, 产物组成复杂, 选择性较差, 轻质液体烃少。
费托合成反应己有 80 余年历史, 现在拥有较大规模费托合成生产能力的有 Sasol, PetroSA, Sheli和 Oryx公司等。 近年来, 随着石油资源的逐渐耗竭以及世界范 I内对新能源 和资源需求的不断攀升, 通过费托合成反应制备液体燃料或高附加值化学品的途径已经获得 广泛认可。 费托合成反应的反应物, 即合成气, 可由煤炭, 天然气, 生物质经气化或重整等 过程转化而来。 费托合成产物的链增长服从聚合机理, 产物的选择性遵循 Anderson-Schultz-F!ory分布。 该分布除甲烷和重碳烃类可取得较高的选择性外, 其他产物的 选择性均不高。 采用不同类型的反应器, 如固定床, 流化床或浆态床, 对费托合成产物的选 择性几乎没有影响。
超重力分离技术最早是由英国帝国化学工业公司 αα) 提出的, 在地球上通过旋转产 生加速度大于 9.8m/S 2的模拟超重力环境而加以实现, 被称为 Higee ( High "g" , g为地球加速 度, =9.8 m/s2)技术, 国内译为超重力技术。 EP0023745 A3提出超重力旋转床可以用于吸收, 解吸 ·, 蒸馏等过程。 中国专利 CN1064338A, CN1116146A., CN〗116】85A突破超重力分离技 术局限性, 创新性地提出超重力反应技术, 成功实现了将超重力旋转床应用于工业规模的油 田注水] ¾氧过程和超细碳酸钙的制备。 中国专利 CN1507940A, CN1895766A提出在超重力反 应器中进行烃类催化反应并公开了在超重力反应器中进行烃类全加氢和部分加氢的方法。 发明内容
本发明的目的是提供一种利用超重力反应器进行费托合成反应将各种来源的合成气在超 重力环境和催化剂的共同作用下直接转化合成低碳烯烃的方法, 具体的说, 就是提供一种利 用超重力反应器强化费托合成反应过程定向合成低碳烯烃的方法。
费-托合成工艺过程是先将煤, 天然气, 煤层气及生物质为原料转化制得的粗合成气经脱 硫、 脱氧净化后, 依据采 ^的费-托合成反应器, 经水煤气变换反应调整1¾/03比合适的合成 气进入反应器合成各种烃类。 费-托合成反应尾气可低温分离得到低碳烯烃, 或经齐聚反应增 加油品收率, 或经过重整返回反应器。
尽管经與的 ASF规律能在一定的范围内给出良好的产物分布描述,并被广泛地用于动力 学数据的原始分析中。 然而, 近年来大量的实验事实表明 FT合成的产物分布并不完全遵循 ASF分布规律。烯烃再吸爾二次反应现已被普遍认为是产物分布偏离 ASF规律的重要原因之 一。 提高费 -托合成反应过程中的传质和传热效率, 可以具有以下的优点: (1 )可以有效的减 少反应器局部过热, 从而降低甲垸的选择性; (2 ) 有利于一次反应产物的脱附, 从而减少二 次反应对产物选择性的影响, 从而提高低碳烯烃的选择性; (3 ) 有利于重质烃从催化剂孔中 的提出 , 从而减少蜡在催化剂孔中的堆积弓 i起的催化剂失活, 增加催化剂的使用寿命。
费-托合成催化剂通常包括下列三种类型组分: 主金属, 载体或结构助剂, 其他各种助 剂和添加剂。 其中, 主金属以第八族元素 Fe、 Co、 Ni、 Ru和 Rh为主, Fe、 Co是经过工业 验证的较为理想的费 -托合成催化剂, 目前在工业中均已成功应用。 Ru是 CO加氢反应中催化 活性最高的金属, 尤其对于高分子量的直链垸烃的选择性非常高, 但由干其昂贵的价格, 所 以一般只能用诈助剂来改善催化剂的活性和选择性。 Ni 的加氢活性仅次于 但主要生成 甲烷。 Rh则易于生成含氧化合物。
本发明的费托反应的催化剂包括各种方法制备的颗粒状, 蜂窝状或板式等结构化的 Co 基、 ¾基和 Fe基等催化剂。
本发明的一种利用超重力反应器迸行费托合成的方法的工艺条件为: 费托合成反应在超 平为 2- 400g; 反应温度为 180°C - 500Ό , 反应
Figure imgf000004_0001
本发明方法所述的超重力反应器是指模拟的超重力环境的加速度大于地球引力加速度 ( g ^Sm/s ) 的各种类型的超重力反应器。 超重力技术是过程强化技术中最先受到人们关注 的几项关键技术之一。 在地球上实现超重力技术最简便的方法是利用旋转产生的离心加速度 环境进行模拟而实现, 通过改变旋转速度和转子半径来控制离心加速度即模拟超重力水平的 高低, 使其值达到地球重力加速度 (g) 的几百或几千倍以上, 此时, 流体受大大超过地球引 力的模拟超重力控制。 人们可通过旋转实验获得持续、 稳定和可控制的离心力场来研究超重 力科学和幵发利 ]¾超重力技术。超重力技术是一项强化传递与微观混合过程的过程强化技术, 可以大幅度地提高反应与分离过程的效率, 显著缩小反应与分离装置的体积, 我国多年的工 业应用示范实践表明, 超重力设备具有操作弹性大, 开停车容易, 占地面积小和空间小、 生 产效率高、 生产强度大等突出优势。
本发明的方法是一种以完全不同于固定床, 流化床和浆态床反应器的方式进行费托合成 反应定向生产低碳烯烃的新方法。 本发明方法的具体过程包括: 将费托反应在超重力反应器中进行, 将费托反应的催化剂 固定在超重力反应器的转子上, 在反应过程中催化剂床层始终处于旋转状态, 反应物料由超 重力反应器的入口迸入, 合成气通过高速旋转的催化剂床层发生费托反应, 生成的产物是以 低碳烯烃 乙烯丙烯和丁烯) 为主的烃类, 在模拟超重力作用下迅速离开催化剂床层, 由超 重力反应器出口排出并经气相色谱分析测定; 反应物料为煤基合成气、 天然气基合成气、 煤 层气基合成气或生物质基合成气, 其组成为 CO+C02+H2, CO+H2, C02+H2 ; 超重力反应器的 超重力水平为 2-400g ; 反应温度为 〗80 °C - 500 °C, 反应压力为 l-100atm, 气体空速为 lOO-lOOOOOli'' , 定向地合成低碳烯烃产品。
本发明的方法通过超重力反应器中超重力加速度水平的调控, 强化调控反应生成物的传 质过程并利用其反应分离协同性, 定向调节反应生成物在反应场的停留时间, 从而控制或者 抑制二次反应发生, 提高特定目标产物的选择性, 并且提高催化剂寿命。
常规费托反应受合成过程链增长转化机理的限制, 目标产品的选择性相对较低, 合成副 产物较多, 正构链烃的范围可从 至 ci oo。 因此, 强化产物传质, 控制不同产物在反应环 境的停留时间可有效提高目标产品的选择性。 在合成低碳烯烃寸, 选择适当的超重力加速度 水平, 使生成的低碳烯烃迅速离幵反应环境, 抑制加氢或链增长等二次反应发生降低烷烃和 高碳烃类生成概率, 从而提高低碳烯烃选择性。 另夕卜, 反应环境中的低碳烯烃产物分压降低 将使反应向生成低碳烯烃方向移动从而迸一步提高低碳烯烃选择性。
另夕卜, 产物和中间产物在催化剂上停留^间过长也是催化剂积碳的原因之 ·, 而积碳是 费托反应催化剂失活的重要原因之一。 因此, 本发明可有效抑制催化剂表面积碳生成, 提高 催化剂寿命。
于超重力反应器具有如下优势- 强化传质。 以上反应的反应物和生成物与催化剂之间的传质过程在超重力作用下得到强 化, 有效减少或消除了扩散过程对上述反应的影响, 使生成的产物得以迅速离开反应环境, 提高目标产物选择性及产率, 有效抑刺催化剂积碳失活, 并促使反应物加快向产物方向移动, 从而提高反应效率。
强化传热。 以上反应是放热反应。 在放热反应过程中, 及时排除反应热是至关重要的。 在传统的固定床反应器中进行放热反应时, 如果热量不能及时被带出, 反应温度容易失控。 而在超重力反应器中, 由于产物在超重力的强化作用下迅速离幵催化剂床层, 反应放热被生 成物迅速带出反应区域, 因此易于控制反应温度, 适用于以上反应。
因此, 本发明利用超重力反应器进行费托合成反应选择性地合成特定目标产品, 包括乙 烯丙烯丁烯的低碳烯烃。 本发明的方法具有反应物料转化率高, 定向生产低碳烯烃产物, 传质, 传热性能好, 催 化剂寿命长的特点。
^图说明
图】是本发明所采用的超重力反应器的示意图。
该反应器包括:
1. 反应物入口
2. 催化剂床层
3. 转子
4. 产物出口
具体实施方式
费托合成催化剂安装在超重力反应器的转子中, 反应过程中催化剂床层始终处于高速旋 转状态。 合成气由超重力反应器的入口进入, 通过高速旋转的催化剂床层。 生成的产物由超 重力反应器出口排出, 并经气相色谱分析测定。 在空速一定的情况下, 通过调 催化剂床层 的转速可以控制产物离开反应环境的时间, 从而控制产物的选择性。
实施例 1
合成气为 CO+H2的混合气, CO/¾:::l/2。钴基费托催化剂颗粒放入网状支撑件内圏定于超 重力反应器的转子上。
反应的工艺条件如下:
合成气空速: 2500h 反应温度: 240 TJ ? 反应压力: l.OMPa
催化剂床层超重力水平: 250g
超重力反应器进行费托合成制低碳烯烃反应结果 -
Figure imgf000006_0001
对比铜 1
利用固定床反应器进行费托合成反应。合成气为 CO+¾的混合气, CO/H2=l/2。将钴基费 托催化剂颗粒装填到固定床反应器中。
反应的工艺条件如下;
合成气空速: 25001—】, 反应温度: 240 °C , 反应压力: l.OMPa 固定床反应器进行费托合成反应结果:
Figure imgf000007_0001
实施例 2
合成气为 CO+H2的混合气, CO/H2=l/l。铁基费托催化剂颗粒放入网状支撑件内固定于超 重力反应器的转子上。
反应的工艺条件如下- 合成气空速: 2500h-' , 反应温度; 280。C, 反应压力: l.OMPa
催化剂床层超重力水平: 20()g
超重力反应器进行费托合成制低碳烯烃反应结果-
Figure imgf000007_0002
对比^ 2
利用固定床反应器进行费托合成反应。合成气为 CO+¾的混合气, CO/H2=l/l。将铁基费 托催化剂颗粒装填到固定床反应器中。
反应的工艺条件如下;
合成气空速: 2500h"' , 反应温度: 280 °C, 反应压力: l.OMPa
固定床反应器进行费托合成反应结果:
Figure imgf000007_0003
实施例 3
合成气为 C(: H2的混合气, C()/i½:=l/l。铁基蜂窝状费托催化剂放入网状支撑件内固定于 超重力反应器的转子上。 反应的工艺条件如下:
合成气空速: 2500h 反应温度: 280 TJ ? 反应压力: l.OMPa
催化剂床层超重力水平: 200g
超重力反应器进行费托合成制低碳烯烃反应结果 -
Figure imgf000008_0001
3
利用固定床反应器迸行费托合成反应。 合成气为 C HH2的混合气, CO/H2=l/l。将铁基蜂 窝状费托催化剂装填到固定床反应器中。
反应的工艺条件如下;
合成气空速: 25001 -】, 反应温度: 280 °C , 反应压力: l.OMPa
固定床反应器进行费托合成反应结果- 选择性 (%)
CO转化率
C5 烯烃组分 (c2 cr)
50.5% 85

Claims

权 利 要 求 书 WO 2013/067833 PCT/CN2012/078988
1. 一种合成气直接合成低碳烯烃的方法, 其特征在于, 合成气直接合成低碳烯 烃的反应是在超重力反应器中进行, 反应温度为 180 'Ό - 500 Ό, 压力为 1 lOOatm, 合成气体积空速为 100- iOOOOh4 , 超重力水平 2- 400g; 在超重力 环境和催化剂协同作用下合成气直接转化定向合成乙烯、 丙烯和丁烯产品。
2. 根据权利要求 1所述的一种合成气直接合成低碳烯烃的方法, 其特征在于, 所述的合成反应的反应物和产物在离开催化剂床层前始终处于环境加速度 大于地球引力加速度 ^8m/s2的反应环境即超重力环境下。
3. 根据权利要求 1所述的一种合成气直接合成低碳烯烃的方法, 其特征在于, 反应物料为煤基合成气、 天然气基合成气、 煤层气基合成气或生物质基合成 气, 其组成为 CO的摩尔比例为 20%-80%。
4. 根据权利要求 1所述的一种合成气直接合成低碳烯烃的方法, 其特征在于, 所述的催化剂为各种方法制备的各种结构的钌基、 钴基或铁基催化剂。
5. 根据权利要求 1所述的一种合成气直接合成低碳烯烃的方法, 其特征在于, 所述的催化剂是以蜂窝或板式等结构的整体结构化形式, 或以颗粒堆积形 式, 固定在超重力反应器转子上。
6. 根据权利要求 i所述的一种合成气直接合成低碳烯烃的方法, 其特征在于, 所述方法的催化剂床层在反应过程中始终处于旋转状态,其模拟的超重力水 平为 2- 400g。
7. 根据权利要求 1所述的一种合成气直接合成低碳烯烃的方法, 其特征在于, 反应的温度为 180 Ό - 500 °C, 压力为 I - l OOatm , 合成气体积空速为
PCT/CN2012/078988 2011-11-10 2012-07-23 一种合成气直接合成低碳烯烃的方法 WO2013067833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110355241.4 2011-11-10
CN2011103552414A CN102442872A (zh) 2011-11-10 2011-11-10 一种合成气直接合成低碳烯烃的方法

Publications (1)

Publication Number Publication Date
WO2013067833A1 true WO2013067833A1 (zh) 2013-05-16

Family

ID=46005859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078988 WO2013067833A1 (zh) 2011-11-10 2012-07-23 一种合成气直接合成低碳烯烃的方法

Country Status (2)

Country Link
CN (1) CN102442872A (zh)
WO (1) WO2013067833A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442872A (zh) * 2011-11-10 2012-05-09 北京化工大学 一种合成气直接合成低碳烯烃的方法
WO2013067832A1 (zh) * 2011-11-10 2013-05-16 北京化工大学 一种选择性调控费托合成产品的方法
CN117361442A (zh) * 2023-10-08 2024-01-09 成都岷山绿氢能源有限公司 一种利用超重力反应器进行天然气部分氧化制氢的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023745A2 (en) * 1977-12-01 1981-02-11 Imperial Chemical Industries Plc Process and apparatus for effecting mass transfer
CN1116125A (zh) * 1995-07-06 1996-02-07 北京化工大学 错流旋转床超重力场装置
CN2221437Y (zh) * 1995-07-04 1996-03-06 北京化工大学 强化传递反应的旋转床超重力场装置
CN1507940A (zh) * 2002-12-16 2004-06-30 中国石油化工股份有限公司 催化反应的方法
CN1704155A (zh) * 2004-05-28 2005-12-07 北京化工大学 定-转子反应器及其应用
CN1895766A (zh) * 2005-07-14 2007-01-17 中国石油化工股份有限公司 一种催化选择加氢的方法
CN201529413U (zh) * 2009-11-06 2010-07-21 北京化工大学 一种多级逆流式超重力旋转床装置
CN102234212A (zh) * 2010-04-20 2011-11-09 中国石油化工股份有限公司 合成气直接转化为低碳烯烃的方法
CN102442872A (zh) * 2011-11-10 2012-05-09 北京化工大学 一种合成气直接合成低碳烯烃的方法
CN102463075A (zh) * 2010-11-05 2012-05-23 北京化工大学 超重力强化煤基化工原料转化的新方法
CN102559234A (zh) * 2010-12-21 2012-07-11 北京化工大学 一种选择性调控费托合成产品的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242845C (zh) * 2003-04-15 2006-02-22 北京化工大学 用于合成气制乙烯、丙烯、丁烯反应的铁/活性炭催化剂
KR100904297B1 (ko) * 2007-10-26 2009-06-25 한국화학연구원 연속적인 2단계 촉매 반응을 이용한 합성가스로부터 경질올레핀의 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023745A2 (en) * 1977-12-01 1981-02-11 Imperial Chemical Industries Plc Process and apparatus for effecting mass transfer
CN2221437Y (zh) * 1995-07-04 1996-03-06 北京化工大学 强化传递反应的旋转床超重力场装置
CN1116125A (zh) * 1995-07-06 1996-02-07 北京化工大学 错流旋转床超重力场装置
CN1507940A (zh) * 2002-12-16 2004-06-30 中国石油化工股份有限公司 催化反应的方法
CN1704155A (zh) * 2004-05-28 2005-12-07 北京化工大学 定-转子反应器及其应用
CN1895766A (zh) * 2005-07-14 2007-01-17 中国石油化工股份有限公司 一种催化选择加氢的方法
CN201529413U (zh) * 2009-11-06 2010-07-21 北京化工大学 一种多级逆流式超重力旋转床装置
CN102234212A (zh) * 2010-04-20 2011-11-09 中国石油化工股份有限公司 合成气直接转化为低碳烯烃的方法
CN102463075A (zh) * 2010-11-05 2012-05-23 北京化工大学 超重力强化煤基化工原料转化的新方法
CN102559234A (zh) * 2010-12-21 2012-07-11 北京化工大学 一种选择性调控费托合成产品的方法
CN102442872A (zh) * 2011-11-10 2012-05-09 北京化工大学 一种合成气直接合成低碳烯烃的方法

Also Published As

Publication number Publication date
CN102442872A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
Wei et al. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons
Numpilai et al. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide
CN102559234B (zh) 一种选择性调控费托合成产品的方法
CN102234212B (zh) 合成气直接转化为低碳烯烃的方法
RU2712274C1 (ru) Реактор с турбулентным псевдоожиженным слоем, устройство и способ, в котором используют кислородсодержащее соединение для производства пропена и c4 углеводорода
WO2013067835A1 (zh) 一种费托合成定向合成汽油柴油的方法
CN102639676B (zh) 用于生产烯烃的方法
CN102516004A (zh) 一种以生物质合成气为原料经二甲醚两步法制备低碳烯烃的方法
TW200825036A (en) Method and apparatus for producing propylene
CN103864561B (zh) 一种甲醇芳构化制取芳烃的工艺方法
CN107827691A (zh) 一种合成气制取低碳烯烃的方法
WO2013067833A1 (zh) 一种合成气直接合成低碳烯烃的方法
WO2013067834A1 (zh) 一种合成气合成混合醇的方法
CN108080020B (zh) 一种用于费托-齐聚耦合反应的Fe基-分子筛催化剂及其制备方法和应用
CN101585747B (zh) 一种将含氧化合物转化为丙烯的方法
JPH01284338A (ja) 塩基性混合金属酸化物触媒
CN110201609B (zh) 一种利用合成气加氢联产烯烃和芳烃的设备及方法
WO2013067832A1 (zh) 一种选择性调控费托合成产品的方法
CN104888838B (zh) 一种核壳型合成气直接制低碳烯烃的催化剂及制法和应用
CN111205159A (zh) 合成气制低碳烯烃的方法
CN107824214A (zh) 一种合成气制取低碳烯烃的方法
CN102463075A (zh) 超重力强化煤基化工原料转化的新方法
CN108017488A (zh) 醇和/或醚原料催化转化制芳烃的方法
CN102190549B (zh) 生产丙烯的方法
Meng et al. Review of Slurry Bed Reactor for Carbon One Chemistry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847783

Country of ref document: EP

Kind code of ref document: A1