WO2013067832A1 - 一种选择性调控费托合成产品的方法 - Google Patents

一种选择性调控费托合成产品的方法 Download PDF

Info

Publication number
WO2013067832A1
WO2013067832A1 PCT/CN2012/078987 CN2012078987W WO2013067832A1 WO 2013067832 A1 WO2013067832 A1 WO 2013067832A1 CN 2012078987 W CN2012078987 W CN 2012078987W WO 2013067832 A1 WO2013067832 A1 WO 2013067832A1
Authority
WO
WIPO (PCT)
Prior art keywords
fischer
reaction
catalyst
supergravity
tropsch synthesis
Prior art date
Application number
PCT/CN2012/078987
Other languages
English (en)
French (fr)
Inventor
陈建峰
张燚
刘意
初广文
Original Assignee
北京化工大学
北京中超海奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110355256.0A external-priority patent/CN102559234B/zh
Application filed by 北京化工大学, 北京中超海奇科技有限公司 filed Critical 北京化工大学
Publication of WO2013067832A1 publication Critical patent/WO2013067832A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention relates to a method for selectively regulating Fischer-Tropsch synthesis products, in particular to a method for Fischer-Tropsch synthesis under high gravity conditions, including directed synthesis of olefins, hydrocarbons, gasoline , diesel, paraffin, mixed alcohol and other products.
  • the Fischer Tropsch process also known as FT synthesis, is a process for synthesizing a paraffin-based liquid fuel based on a synthesis gas (CO, a mixed gas of C0 2 and 3 ⁇ 4) under a suitable condition.
  • CO synthesis gas
  • the synthetic products are mainly linear alkanes, olefins, small amounts of aromatic hydrocarbons and aldols, as well as by-product water and carbon dioxide.
  • the product composition is complex, the selectivity is poor, and the light liquid hydrocarbons are less. Month
  • Fischer-Tropsch synthesis has been in existence for more than 80 years, and now Sasol, PetroSA, Sheil and Oryx are among the larger Fischer-Tropsch synthesis companies.
  • the reactants of the Fischer-Tropsch synthesis reaction, syngas can be converted from coal, natural gas, biomass by gasification or reforming.
  • the chain growth of the Fischer-Tropsch synthesis product follows the polymerization mechanism and the selectivity of the product follows the Amlerson-Schultz-Flory distribution.
  • EP0023745 A3 proposes that the supergravity rotating bed can be used for thousands of absorption, desorption, distillation and the like.
  • Chinese patents CN1064338A, CN1116146A, CN1 U6185A break through the limitations of the supergravity separation technology, innovatively propose the supergravity reaction technology, and successfully implement the application of the supergravity rotating bed to the industrial scale oilfield water injection deoxidation process and the preparation of ultrafine calcium carbonate.
  • Chinese patent CN1507940A, CN1895766A proposes a hydrocarbon catalytic reaction in a supergravity reactor and discloses a method for total hydrogenation and partial hydrogenation of a hydrocarbon in a supergravity reactor. Summary of the invention
  • a process condition for a method of selectively regulating a Fischer-Tropsch synthesis product of the present invention is: The Fischer-Tropsch synthesis reaction is carried out in a supergravity reactor.
  • the method of the invention is a completely new Fischer-Tropsch synthesis by performing Fischer-Tropsch synthesis reaction in a manner different from fixed bed, fluidized bed and slurry bed reactor to selectively produce olefin, gasoline, diesel, paraffin and mixed alcohol. Reaction method.
  • the specific process of the method of the present invention comprises: carrying out the: ⁇ ⁇ reaction in a simulated supergravity environment, immobilizing the Fischer-Tropsch catalyst on the rotor of the supergravity reactor (ie, the catalyst bed), and the catalyst bed during the reaction
  • the layer is always in a rotating state, and the reaction material enters from the inlet of the supergravity reactor.
  • the synthesis gas undergoes a Fischer-Tropsch reaction through a high-speed rotating catalyst bed, and the resulting product is discharged from the outlet of the supergravity reactor; the reaction material is coal-based syngas.
  • Natural gas-based syngas, coalbed methane-based syngas or biomass-based syngas which is composed of various proportions of CO+C0 2 X H 2 , CO+H 2 , C0 2 +3 ⁇ 4 ;
  • the reactor has a supergravity level of from 2 to 400 g ; a reaction temperature of 500 ° C, a reaction pressure of from 1 to 100 atm, and a gas space velocity of from 100 to 1000 ohms to selectively synthesize a specific product.
  • the super-gravity level of the super-month gravity reactor is used to produce diesel, paraffin and mixed alcohol products at 2-100g, respectively.
  • the super-gravity level is 20-200g, respectively, using the corresponding catalyst to produce diesel and gasoline products respectively; 50-400g 'Use of the corresponding catalyst to produce gasoline, olefin, and alkyne products, respectively.
  • the catalyst for the Fischer-Tropsch reaction includes a catalyst such as a Co-based, Ru-based or Fe-based catalyst prepared by various methods.
  • the method for selectively regulating Fischer-Tropsch synthesis products of the present invention is: Fischer-Tropsch synthesis reaction is carried out in a supergravity reactor, and the reaction materials are coal-based syngas, natural gas-based syngas, coalbed methane-based syngas or raw Substance-based syngas; the supergravity level of the supergravity reactor is 2-400g; the reaction temperature is ⁇ 80 ⁇ -500 ⁇ , the reaction pressure is 1- lOOatffl, and the gas space velocity is i00-i00000h-l, under the action of the catalyst, respectively Selective synthesis of specific products including olefins, alkynes, gasoline-, diesel, paraffin and mixed alcohols.
  • the level of supergravity is 2-100 g or 50-200 g or 100-400 g, and the reaction temperature is 180-280 ° C or 200-350. C or 260-500 ' ⁇ , reaction pressure is: 30 aim or; 10-50 aim or 20-100 aim or 25-100 atm, gas space velocity is 100-30001 ⁇ or 600-I OOOOh"' or 2000-1000001 ⁇ .
  • the supergravity reactor uses a corresponding catalyst to produce diesel, paraffin and mixed alcohol products at 2 100g.
  • the super-gravity level is 20-200g to produce diesel and gasoline products respectively.
  • the super-gravity level is 50- Production of gasoline, olefins, and alkyne products at 400g.
  • Paraffin and diesel products are produced at a reaction temperature of 180-280 Torr.
  • Gasoline, olefin, and alkyne are produced at a reaction temperature of 220-350 ° C, and olefin or mixed alcohol products are produced at a reaction temperature of 240-500 ⁇ .
  • the Fischer-Tropsch synthesized reaction material is a synthesis gas obtained by various methods including coal, natural gas, coalbed methane or biomass.
  • the catalyst is a ruthenium-based, cobalt-based or iron-based catalyst prepared by various methods.
  • the catalyst is always in a rotating state during the reaction, and the supergravity level is 2-400 g.
  • a method for producing paraffin by Fischer-Tropsch synthesis using a supergravity reactor, placing a catalyst in a mesh support, fixing it on a rotor of a supergravity reactor, syngas passing through a rotating catalyst bed, and a reaction process The conditions are as follows: Syngas gas space velocity: 600-SOOOh- 1 , reaction temperature: 190-280 ⁇ , reaction pressure: 1.0-6.0 Mpa, catalyst bed supergravity level: ⁇ 0-80 g, selectivity of paraffin component in product 20 -40%.
  • the catalyst includes catalysts such as Co-based, Ru-based, and Fe-based prepared by various methods.
  • a method for producing diesel oil by Fischer-Tropsch synthesis using a supergravity reactor characterized in that a Fischer-Tropsch catalyst is placed in a mesh support, fixed on a rotor of a supergravity reactor, and the syngas is passed through a rotating catalyst bed.
  • the reaction conditions of the layer are as follows: synthesis gas space velocity; 600-SOOOh- 1 , reaction temperature; 190-280 ⁇ , reaction pressure: 0.5-5.0 MPa, catalysis
  • Agent bed supergravity level 30-150g, the selectivity of the diesel component in the product is 40-70%.
  • the catalyst includes catalysts such as Co-based, Ru-based and Fe-based prepared by various methods.
  • a method for producing gasoline by Fischer-Tropsch synthesis using a supergravity reactor characterized in that a Fischer-Tropsch catalyst is placed in a mesh support, fixed on a rotor of a supergravity reactor, and the syngas is passed through a rotating catalyst bed.
  • the reaction conditions are as follows: Syngas air velocity: 500-7000h- ! , Reaction temperature: 210-350 ° C, Reaction pressure: 0,5-5 MPa, Catalyst bed supergravity level: 50-250 g, Product gasoline group The selectivity of the fraction is 40-65%.
  • the catalyst includes a catalyst such as a Co group, a Ru group, and a Fe group prepared by various methods.
  • a J3 ⁇ 4 supergravity reactor for Fischer-Tropsch synthesis for producing low-carbon explosion hydrocarbons placing a Fischer-Tropsch catalyst in a mesh support, fixed on a rotor of a supergravity reactor, and syngas passing through a rotating catalyst bed
  • the reaction conditions are as follows: Syngas air velocity: 600-8000h-"% Reaction temperature: 210-400 °C, reaction pressure: 0.5-2.5MPa, catalyst bed supergravity level: 50-350g, low carbon in the product
  • the selectivity of the olefin (C-C, D component is 35-70%.
  • the catalyst includes catalysts such as Co-based, Ru-based and Fe-based prepared by various methods.
  • a method for performing a Fischer-Tropsch synthesis of a crucible using a supergravity reactor placing a Fischer-Tropsch catalyst in a mesh support and fixing it on a rotor of a supergravity reactor.
  • the synthesis gas passes through the rotating catalyst bed, and the reaction conditions are as follows: Syngas gas space velocity: lOOO-lOOOOh" 1 , reaction temperature: 210-400 ⁇ , reaction pressure: 0.1-2.0 MPa, catalyst bed supergravity level: i50 - 400g, the selectivity of acetylene in the product is 10-30%.
  • the catalyst comprises catalysts such as Co-based, Rxi-based and Fe-based prepared by various methods.
  • a method for preparing mixed alcohol by Fischer-Tropsch synthesis using a supergravity reactor The catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor. Syngas passes through the rotating catalyst bed.
  • the reaction conditions are as follows; synthesis gas space velocity: 500-3000 h reaction temperature: 300-500 C C ; reaction pressure: 2.0-7.0 M: Pa, catalyst bed supergravity level: 10-300 g, total alcohol selectivity in the product 50-80%.
  • the catalyst is a catalyst containing one or more of cerium, molybdenum, cobalt, nickel, iron, copper and potassium prepared by various methods.
  • the method of the invention strengthens the mass transfer of the regulated reaction product by adjusting the level of supergravity acceleration in the supergravity reactor
  • the process utilizes its reaction separation synergy to directionally adjust the residence time of the reaction products of each component in the reaction field, thereby controlling or inhibiting the occurrence of secondary reactions, increasing the selectivity of specific target products, and increasing catalyst life.
  • the catalyst for the Fischer-Tropsch reaction is installed in the rotor of the supergravity reactor, and the catalyst bed is always in a high-speed rotation state during the reaction. And determined by gas chromatography analysis. In the case of airspeed, the selectivity of the product can be controlled by adjusting the rotational speed of the catalyst bed to control the specific product to the reaction environment.
  • the conventional Fischer-Tropsch reaction is limited by the growth and transformation mechanism of the synthesis process chain.
  • the selectivity of the target product is relatively low, and there are many synthetic by-products.
  • the range of normal chain hydrocarbons can range from ⁇ . Therefore, strengthening the mass transfer of the product and controlling the residence time of different products in the reaction environment can effectively improve the selectivity of the target product.
  • Diesel as the target product choose the appropriate supergravity plus
  • the speed gives the intermediate product sufficient time to produce the diesel component, and the diesel component is able to leave the reaction environment in time, thereby causing the reaction to tend to form a diesel component.
  • the appropriate super-gravity acceleration is selected to rapidly remove the generated low-carbon olefins from the reaction environment, and to inhibit the occurrence of secondary reactions to form high-carbon hydrocarbons, thereby improving the selectivity of low-carbon olefins.
  • a reduction in the partial pressure of the lower olefin product of the reaction environment will cause the reaction to move from the surface to the lower olefin to increase the selectivity of the lower olefin.
  • the mass transfer process between the product of the above reaction and the catalyst is carried out in supergravity; the iTF is strengthened, effectively reducing or eliminating the influence of the diffusion process on the above reaction, so that the produced product can quickly leave the reaction environment, and the selectivity of the target product is improved.
  • the yield effectively inhibits the carbon deposition deactivation of the catalyst and accelerates the movement of the reactants toward the product, thereby improving the reaction efficiency.
  • the above reaction is an exothermic reaction.
  • the exothermic reaction process it is crucial to eliminate the heat of reaction in time.
  • the reaction temperature is liable to be out of control.
  • the reaction exotherm is quickly taken out of the reaction zone by the product, so that it is easy to control the reaction temperature and is suitable for the above reaction.
  • the present invention utilizes a supergravity Fischer-Tropsch synthesis reactor to perform a Fischer-Tropsch synthesis reaction to selectively synthesize a specific target product, including an olefin, an alkyne, a gasoline, a diesel, a paraffin, and a mixed alcohol which is completely different from the conventional Fischer-Tropsch synthesis process. method.
  • the method of the invention has the characteristics of directed production of target product, good mass transfer, good heat transfer performance and long catalyst life. Description
  • Figure 1 is a schematic illustration of a supergravity reactor employed in the present invention.
  • the reactor includes:
  • the Fischer-Tropsch synthesis catalyst is installed in the rotor of the supergravity reactor, and the catalyst bed is always in a high-speed rotation state during the reaction. Syngas enters the inlet of the supergravity reactor through a high speed rotating catalyst bed. The resulting product was discharged from the outlet of the supergravity reactor and determined by gas chromatography analysis. In the case where the space velocity is constant, the time at which the product leaves the reaction environment can be controlled by adjusting the rotation speed of the catalyst bed, and the selectivity of the product is controlled.
  • the Fischer-Tropsch synthesis of paraffin was carried out using a supergravity reactor.
  • the Co/Si0 2 Fischer-Tropsch catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the RuZSi0 2 Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the iron-based Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • the Co/SiO Fischer-Tropsch catalyst is packed into a fixed bed reactor.
  • a super-gravity reactor performs a Fischer-Tropsch synthesis of diesel fuel.
  • the Ru/Si0 2 Fischer-Tropsch catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis of diesel fuel was carried out using a supergravity reactor.
  • the synthesis gas is a CO+3 ⁇ 4 mixture, C()/: 4/2.
  • the Co/Si0 2 Fischer-Tropsch catalyst was placed in a mesh support ⁇ and fixed to the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis of diesel fuel was carried out using a supergravity reactor. Syngas is a mixture of CO + H 2 , CO / H;
  • the iron-based Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis of diesel fuel was carried out using a fixed bed reactor.
  • the Co/S» 2 Fischer-Tropsch catalyst is loaded into a fixed bed reactor.
  • the process conditions of the reaction are as follows:
  • the use of a supergravity reactor for Fischer-Tropsch synthesis of gasoline against the moon is a mixture of CO + 3 ⁇ 4, and the CO/H2-1/2 Ru/Si0 2 Fischer-Tropsch catalyst is placed in a mesh support and fixed on the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis gasoline reaction was carried out using a supergravity reactor.
  • the synthesis gas is a mixture of CO + H 2
  • the CO/H 2 Co/SiO 2 Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • Synthesis gas space velocity 250011-1, reaction temperature: 250 ° C, reaction pressure: 2.5MPa
  • a Fischer-Tropsch synthesis gasoline reaction was carried out using a supergravity reactor.
  • the iron-based Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • reaction conditions of the reaction are as follows - synthesis gas space velocity; 7000 ⁇ , reaction temperature: 350. C, reaction pressure: 5.0MPa
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • the Co/SiiO: Fischer Tropsch catalyst was charged to a fixed bed reactor.
  • reaction conditions are as follows - synthesis gas space velocity: 2500b- 1 , reaction temperature; 240 °C, reaction pressure: 1.5 MPa
  • a Fischer-Tropsch synthesis of a low carbon olefin is carried out using a supergravity reactor.
  • the synthesis gas is a mixture of CO + H 2 , COZH:
  • the Ru/SiOz Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis of a low carbon olefin is carried out using a supergravity reactor.
  • the Co/S» 2 Fischer-Tropsch catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis of a low carbon olefin is carried out using a supergravity reactor.
  • the iron-based Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor : >
  • the Co/S» 2 Fischer-Tropsch catalyst was loaded into a fixed bed reactor.
  • reaction conditions of the reaction are as follows: Syngas airspeed: 2500h Reaction temperature: 260'C, reaction pressure: 0.5MPa
  • the Fischer-Tropsch synthesis is carried out using a supergravity reactor to produce an alkyne reaction.
  • the 3 ⁇ 4i/SK) 2 Fischer-Tropsch catalyst was placed in a mesh support and fixed on the rotor of the supergravity reactor.
  • the alkyne reaction was carried out by Fischer-Tropsch synthesis using a supergravity reactor.
  • the synthesis gas is a mixture of CCHH 2 , CO/H 2 -l/2 josCo/Si0 2 Fischer-Tropsch catalyst is placed in a mesh support and fixed on the rotor of the supergravity reactor.
  • Example 15 The Fischer-Tropsch synthesis is carried out using a supergravity reactor to produce an alkyne reaction.
  • the iron-based Fischer-Tropsch catalyst is placed in a mesh support and fixed on the rotor of the supergravity reactor, >
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • the synthesis gas is a CO+3 ⁇ 4 mixture, CO/H ⁇ 1/2.
  • the Fischer-Tropsch catalyst was loaded into a fixed bed reactor.
  • the mixed alcohol reaction was carried out by Fischer-Tropsch synthesis using a supergravity reactor.
  • the K-Co-Mo/C catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the super-gravity reactor is subjected to Fischer-Tropsch synthesis to prepare a mixed alcohol reaction result;
  • the mixed alcohol reaction was carried out by Fischer-Tropsch synthesis using a supergravity reactor. Syngas is a mixture of CO+:
  • the K-Co-MoZC catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • reaction conditions of the reaction are as follows - synthesis gas space velocity; ISOOh" 1 , reaction temperature: 400 ° C, reaction force: 7 MPa
  • the super-gravity reactor is subjected to Fischer-Tropsch synthesis to prepare a mixed alcohol reaction.
  • the K-Co-Mo/C catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the mixed alcohol reaction was carried out by Fischer-Tropsch synthesis using a fixed bed reactor.
  • the Co-Mo/C catalyst was packed in a fixed bed reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种选择性调控费托合成产品的方法,属于超重力技术领域。该方法是将费托合成反应在超重力反应器中进行,反应过程中催化剂床层以一定转速旋转,反应物料为煤基合成气、天然气基合成气、煤层气基合成气或生物质基合成气,超重力反应器的超重力水平为2-400g;反应温度为180°C-500°C,反应压力为1-100atm,气体空速为100-100000h-1,选择性地合成特定产品,使一种崭新的费托合成新方法,本发明的方法具有定向生产目标产物,传质,传热性能好,催化剂寿命长的特点。

Description

一种选择性调控费托合成产品的方法
技术领域
本发明涉及一种选择性调控费托合成产品的方法, 具体的说, 涉及一种利] ¾超重力反应 器在超重力条件下进行费托合成的方法, 包括定向合成烯烃、 块烃、 汽油、 柴油、 石蜡、 混 合醇等产品。
背景技术
费托合成 (Fischer Tropsch process), 又称 F-T合成, 是以合成气 (CO, C02和 ¾的混 合气体) 为原料在催化剂和适当条件下合成以石蜡烃为主的液体燃料工艺过程。 传统的费托
合成产物主要为直链烷烃、 烯烃、 少量芳烃和醛醇, 以及副产水和二氧化碳, 产物组成复杂, 选择性较差, 轻质液体烃少。 月
费托合成反应己有 80 余年历史, 现在拥有较大规模费托合成生产能力的有 Sasol, PetroSA, Sheil和 Oryx公司等。 近年来, 随着石油资源的逐渐耗竭以及世界范園内对新能源 和资源需求的不断攀升, 通过费托合成反应制备液体燃料或高附加值化学品的途径已经获得 广泛认可。 费托合成反应的反应物, 即合成气, 可由煤炭, 天然气, 生物质经气化或重整等 过程转化而来。 费托合成产物的链增长服从聚合机理, 产物的选择性遵循 Amlerson-Schultz-Flory分布。 该分布除甲烷和重碳烃类 取得较高的选择性外, 其他产物的 选择性均不高。 采用不同类型的反应器, 如固定床, 流化床或浆态床, 对费托合成产物的选 择性几乎没有影响。
超重力分离技术最早是由英国帝国化学工业公司 αα) 提出的, 在地球上通过旋转产 生加速度大于 9.8m/s2的模拟超重力环境而加以实现, 被称为 Higee ( High "g", g为地球加速 度, =::9.8 ffl/s2)技术, 国内译为超重力技术。 EP0023745 A3提出超重力旋转床可以用千吸收, 解吸, 蒸馏等过程。 中国专利 CN1064338A, CN1116146A, CN1 U6185A突破超重力分离技 术局限性, 创新性地提出超重力反应技术, 成功实现了将超重力旋转床应用于工业规模的油 田注水脱氧过程和超细碳酸钙的制备。 中国专利 CN1507940A, CN1895766A提出在超重力反 应器中进行烃类催化反应并公幵了在超重力反应器中进行烃类全加氢和部分加氢的方法。 发明内容
本发明的目的是提供一种选择性调控费托合成产品的方法, 具体的说, 就是提供一种利 用超重力反应器强化费托合成反应的新方法。
本发明的一种选择性调控费托合成产品的方法的工艺条件为: 费托合成反应在超重力反 应器中进行。
本发明方法所述的超重力反应器是指模拟超重力环境的加速度大于地球引力加速度 (g=9.8m/s2) 的各种类型的超重力反应器, 其示意图如 图 1所示的超重力反应器。
本发明的方法是以完全不同于固定床、 流化床和浆态床反应器的方式进行费托合成反应 选择性生产烯烃、 汽油、 柴油、 石蜡、 混合醇, 是一种全新的费托合成反应方法。
本发明方法的具体过程包括: 将费: ίΐ反应在模拟的超重力环境中进行, 将费托反应的催 化剂固定在超重力反应器的转子上(即催化剂床层), 在反应过程中催化剂床层始终处于旋转 状态, 反应 ¾料由超重力反应器的入口进入, 合成气通过高速旋转的催化剂床层发生费托反 应, 生成的产物由超重力反应器出口排出; 反应物料为煤基合成气、 天然气基合成气、 煤层 气基合成气或生物质基合成气, 其组成为各种比例的 CO+C02十 H2, CO+H2, C02; 超重力 说
反应器的超重力水平为 2- 400g; 反应温度为 500°C, 反应压力为 1- lOOatm, 气体空速 为 100- lOOOOOh 选择性地合成特定产品。 超月重力反应器的超重力水平在 2- 100g时使用相应 的催化剂分别生产柴油、石蜡和混合醇产品,超重力水平在 20- 200g时使用相应催化剂分别生 产柴油, 汽油产品; 超重力水平在 50- 400g '使用相应的催化剂分别生产汽油、烯烃, 炔烃产 品。 费托反应的催化剂包括各种方法制备的 Co基、 Ru基和 Fe基等催化剂。
具体来说, 本发明的选择性调控费托合成产品的方法为: 费托合成反应在超重力反应器 中进行, 反应物料为煤基合成气、 天然气基合成气、 煤层气基合成气或生物质基合成气; 超 重力反应器的超重力水平为 2- 400g; 反应温度为〗80Ό- 500Ό , 反应压力为 1- lOOatffl, 气体 空速为 i00-i00000h-l, 在催化荆作用下, 分别选择性地合成特定产物, 包括烯烃、 炔烃、 汽 油-, 柴油、 石蜡及混合醇。
超重力水平为 2-100g或 50-200g或 100-400g, 反应温度为 180-280 °C或 200-350。C或 260-500 'Ό , 反应压力为 : 30 aim或; 10-50 aim或 20-100 aim或 25-100atm , 气体空速为 100- 30001 ^或 600-I OOOOh"'或 2000-1000001^。
超重力反应器的超重力水平在 2 100g时使用相应的催化剂分别生产柴油、石蜡和混合醇 产品, 超重力水平在 20- 200g时使用相应催化剂分别生产柴油, 汽油产品; 超重力水平在 50- 400g时生产汽油、 烯烃, 炔烃产品。
反应温度为 180-280Γ时生产石蜡、柴油产品, 反应温度为 220-350'C时生产汽油、烯烃、 炔径, 反应温度为 240- 500'Ό时生产烯烃或混合醇产品。
所述的费托合成反应的反应物料和产物在离开超重力反应器前始终处于加速度大于地球 引力加速度 g=9,8m/s2的反应环境下。
费托合成的反应物料是包括煤、 天然气、 煤层气或生物质通过各种方法制得的合成气。 催化剂为各种方法制备的钌基、 钴基或铁基催化剂。
反应过程中催化剂始终处于旋转状态, 超重力水平为 2-400g。 一种利用超重力反应器进行费托合成生产石蜡的方法,将费 ½催化剂放入网状支撑件内, 固定于超重力反应器的转子上, 合成气通过旋转的催化剂床层, 反应的工艺条件如下: 合成 气空速: 600-SOOOh-1 , 反应温度: 190- 280Γ , 反应压力: 1.0-6.0Mpa, 催化剂床层超重力水 平: 】0- 80g, 产物中石蜡组分的选择性 20-40%。催化剂包括各种方法制备的 Co基、 Ru基和 Fe 基等催化剂。
一种利用超重力反应器迸行费托合成生产柴油的方法, 其特征在于, 将费托催化剂放入 网状支撑件内, 固定于超重力反应器的转子上, 合成气通过旋转的催化剂床层, 反应的工艺 条件如下: 合成气空速; 600-SOOOh-1 , 反应温度; 190- 280Ό , 反应压力: 0.5- 5.0MPa, 催化 说
剂床层超重力水平: 30-150g, 产物中柴油组分的选择性 40-70%。 催化剂包括各种方法制备 的 Co基、 Ru基和 Fe基等催化剂„ 月
一种利用超重力反应器进行费托合成生产汽油的方法, 其特征在于, 费托催化剂放入网 状支撑件内, 固定于超重力反应器的转子上, 合成气通过旋转的催化剂床层, 反应的工艺条 件如下: 合成气空速: 500-7000h-! , 反应温度: 210-350°C , 反应压力: 0,5-5MPa, 催化剂床 层超重力水平: 50-250g, 产物中汽油组分的选择性 40-65%。 催化剂包括各种方法制备的 Co 基、 Ru基和 Fe基等催化剂。
一种利 J¾超重力反应器进行费托合成生产低碳爆烃的方法, 将费托催化剂放入网状支撑 件内, 固定于超重力反应器的转子上, 合成气通过旋转的催化剂床层, 反应的工艺条件如下: 合成气空速: 600-8000h-"% 反应温度: 210-400 °C , 反应压力: 0.5-2.5MPa, 催化剂床层超重 力水平: 50- 350g, 产物中低碳烯烃 (C - C,D 组分的选择性 35-70%。 催化剂包括各种方法 制备的 Co基、 Ru基和 Fe基等催化剂。
一种利用超重力反应器进行费托合成制块弪的方法, 将费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。 合成气通过旋转的催化剂床层, 反应的工艺条件如下: 合成 气空速: lOOO-lOOOOh"1 , 反应温度: 210-400 Ό , 反应压力: 0.1- 2.0MPa, 催化剂床层超重力 水平: i50- 400g, 产物中乙炔的选择性 10- 30%。催化剂包括各种方法制备的 Co基、 Rxi基和 Fe 基等催化剂。
一种利用超重力反应器进行费托合成制混合醇的方法。 将催化剂放入网状支撑件内, 固 定于超重力反应器的转子上。 合成气通过旋转的催化剂床层。 反应的工艺条件如下; 合成气 空速: 500- 3000h 反应温度: 300-500 CC ; 反应压力: 2.0- 7.0M:Pa, 催化剂床层超重力水平: 10- 300g, 产物中全醇选择性 50-80%。 催化剂为各种方法制备的含有铑, 钼、 钴, 镍, 铁, 铜, 钾元素中的一种或几种的催化剂。
本发明的方法通过调节超重力反应器中超重力加速度水平, 强化调控反应生成物的传质 过程并利用其反应分离协同性, 定向调节各组分反应生成物在反应场的停留时间, 从而控制 或者抑制二次反应发生, 提高特定目标产物的选择性, 并且提高催化剂寿命。
费托反应的催化剂安装在超重力反应器的转子中, 反应过程中催化剂床层始终处于高速 旋转状态。 并经气相色谱分析测定。 在空速 ·定的情况下, 通过调节催化剂床层的转速可以 调控特定产物离幵反应环境的 间, 从而控制产物的选择性。
常规费托反应受合成过程链增长转化机理的限制, 目标产品的选择性相对较低, 合成副 产物较多, 正构链烃的范围可从 至 αοο。 因此, 强化产物传质, 控制不同产物在反应环 境的停留时间可有效提高目标产品的选择性。 如以柴油为目标产品时, 选择适当的超重力加 说
速度, 使中间产物有充足时间生成柴油组分, 并且柴油组分能够及时离开反应环境, 从而使 反应倾向于生成柴油组分。 在合成低碳烯烃时月, 选择适当的超重力加速度, 使生成的低碳烯 烃迅速离开反应环境, 抑制发生二次反应生成高碳烃类, 从而提高低碳烯烃选择性。 另外, 反应环境的低碳烯烃产物分压降低将使反应向生成低碳烯烃方向移动从面进一歩提高低碳烯 烃选择性。
另外, 产物和中间产物在催化剂上停留时间过长也是催化剂积碳的原因之一, 而积碳是 费托反应催化剂失活的重要原因之一。
由于超重力反应器具有如下优势- 强化传质。 以上反应的生成物与催化剂之间的传质过程在超重力作; iTF得到强化, 有效 减少或消除了扩散过程对上述反应的影响, 使生成的产物得以迅速离开反应环境, 提高目标 产物选择性及产率, 有效抑制催化剂积碳失活, 并促使反应物加快向产物方向移动, 从而提 高反应效率。
强化传热。 以上反应是放热反应。 在放热反应过程中, 及时排除反应热是至关重要的。 在传统的固定床反应器中进行放热反应时, 如果热量不能及时被带出, 反应温度容易失控。 而在超重力反应器中, 由于产物在超重力的强化作用下迅速离幵催化剂床层, 反应放热被生 成物迅速带出反应区域, 因此易于控制反应温度, 适用于以上反应。
因此, 本发明利用超重力费托合成反应器进行费托合成反应选择性地合成特定目标产 品, 包括烯径, 炔烃, 汽油, 柴油, 石蜡, 混合醇是完全不同于传统费托合成工艺的方法。
本发明的方法具有定向生产目标产物, 传质, 传热性能好, 催化剂寿命长的特点。 酎图说明
图 1是本发明所采用的超重力反应器的示意图。
该反应器包括:
1. 反应物入口 2. 催化剂床层
3. 转子
4. 产物出口
具体实施方式
费托合成催化剂安装在超重力反应器的转子中,反应过程中催化剂床层始终处于高速旋 转状态。 合成气由超重力反应器的入口进入, 通过高速旋转的催化剂床层。 生成的产物由超 重力反应器出口排出, 并经气相色谱分析测定。 在空速一定的情况下, 通过调节催化剂床层 的转速可以控制产物离开反应环境的时间, 而控制产物的选择性。
实施例 1
利用超重力反应器进行费托合成制石蜡反月应。合成气为 CO+]¾的混合气, CO/H2=l/2。将 Co/Si02费托催化剂放入网状支撑件内 , 固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: 600h— 反应温度; 210Ό , 反应压力: l,2MPa
催化剂床层超重力水平: 10g
超重力反应器进行费托合成制石蜡反应结果:
Figure imgf000007_0001
实施倒 2
利用超重力反应器进行费托合成制石蜡反应。合成气为 CO+H2的混合气, CO/H;
RuZSi02费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下;
合成气空速: 50001 '! , 反应温度: 190°C , 反应压力: 6.0MPa
催化剂床层超重力水平: 80g
超重力反应器进行费托合成制石蜡反应结果-
Figure imgf000007_0002
实施列 3
利用超重力反应器进行费托合成制石蜡反应。合成气为 CO+¾的混合气, CO/H:
铁基费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下;
合成气空速: 2000h"! , 反应温度: 280'C, 反应压力: 3,0MPa
催化剂床层超重力水平: 50g
超重力反应器进行费托合成制石蜡反应结果:
说 月
Figure imgf000008_0001
对比例 1
利用固定床反应器进行费托合成反应。合成气为 CCH¾的混合气,(::(:)/ =:: 1/2。将 Co/SiO 费托催化剂装填到固定床反应器中。
反应的工艺条件如下:
合成气空速: 2000h— 反应温度: 2】0Ό , 反应压力: 〗.5!ViPa
固定床费托反应器进行费托合成制石蜡反应结果;
Figure imgf000008_0002
实施例 4
利 超重力反应器进行费托合成制柴油反应。合成气为 CO+¾的混合气, CO/¾==l/2。将 Ru/Si02费托催化剂放入网状支撑件内 , 固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: 600b-1 , 反应温度; 190。C , 反应压力: 2,5MPa
催化剂床层超重力水平: 30g
超重力反应器进行费托合成制柴油反应结果: 选择性 (%)
CO转化率 〔%)
柴油组分 ( C9-C,s)
52,5% 91 52
实施例 5
利用超重力反应器进行费托合成制柴油反应。合成气为 CO+¾的混合气, C()/ :4/2。将 Co/Si02费托催化剂放入网状支撑件 ή , 固定于超重力反应器的转子上。
反应的工艺条件如下: 说
合成气空速: 2500h 反应温度: 220月 反应压力: 0.5MPa
催化剂床层超重力水平: 80g
超重力反应器进行费托合成制柴油反应结果:
Figure imgf000009_0001
实施例 6
利用超重力反应器进行费托合成制柴油反应。合成气为 CO+H2的混合气, CO/H;
铁基费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下;
合成气空速: 5000h"] , 反应温度: 280。C , 反应压力: 5.0MPa
催化剂床层超重力水平: 150g
超重力反应器进行费托合成制柴油反应结果-
Figure imgf000009_0002
对'比^] 2
利用固定床反应器进行费托合成制柴油反应。合成气为 C(: H2的混合气, (::(;)/¾== 1 /2„将 Co/S»2费托催化剂装填到固定床反应器中。 反应的工艺条件如下:
合成气空速: 2500b-1, 反应温度: 220 C, 反应压力:
固定床费托反应器进行费托合成制柴油反应结果:
Figure imgf000010_0001
实施例 7 说
利用超重力反应器进行费托合成制汽油反月应。合成气为 CO+¾的混合气, CO/H2-1/2 Ru/Si02费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速; 500h- 反应温度: 2ί0Τ〕, 反应压力: 0.5 Pa.
催化剂床层超重力水平: 250g
超重力反应器进行费托合成制汽油反应结果-
Figure imgf000010_0002
实施例 8
利用超重力反应器进行费托合成制汽油反应。合成气为 CO+H2的混合气, CO/H2 Co/Si02费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: 250011-1, 反应温度: 250 °C, 反应压力: 2.5MPa
催化剂床层超重力水平: 50g
超重力反应器进行费托合成制汽油反应结果-
Figure imgf000010_0003
利用超重力反应器进行费托合成制汽油反应。合成气为 CO+H2的混合气, CO/ =l/l。将 铁基费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下- 合成气空速; 7000^ , 反应温度: 350。C , 反应压力: 5.0MPa
催化剂床层超重力水平: 250g
超重力反应器进行费托合成制汽油反应结果- 说 月
Figure imgf000011_0002
对比例 3
利用固定床反应器进行费托合成反应。合成气为 CO¾的混合气, CO/¾=l/2。将 Co/SiiO: 费托催化剂装填到固定床反应器中。
反应的工艺条件如下- 合成气空速: 2500b-1 , 反应温度; 240 °C , 反应压力: 1.5MPa
固定床反应器进行费托合成反应结果:
Figure imgf000011_0003
实施例 10
利用超重力反应器进行费托合成制低碳烯烃反应。合成气为 CO+H2的混合气, COZH: 将 Ru/SiOz费托催化剂放入网状支撑件内固定于超重力反应器的转子上。
反应的工艺条件如下;
合成气空速: 500h"! , 反应温度: 210Ό , 反应压力: 2.5MPa
催化剂床层超重力水平: 350g
超重力反应器进行费托合成制低碳烯弪反应结果:
Figure imgf000011_0001
9
Figure imgf000012_0001
实施例 11
利用超重力反应器进行费托合成制低碳烯烃反应。合成气为 CO+H2的混合气, CO/H2=iZ2。 将 Co/S»2费托催化剂放入网状支撑件内固定于超重力反应器的转子上。
反应的工艺条件如下;
合成气空速: 2500h"! , 反应温度: 260'C, 反应压力: 0,5MPa
催化剂床层超重力水平: 50g
超重力反应器进行费托合成制低碳烯烃反应结果:
Figure imgf000012_0002
实施例 12
利用超重力反应器进行费托合成制低碳烯烃反应。合成气为 CO+¾的混合气, CO/H2=i/l。 铁基费托催化剂放入网状支撑件内固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: lOOOOh"1 , 反应温度: 400 反应压力: l .SMPa
催化剂床层超重力水平: 350g
超重力反应器进行费托合成制低碳烯烃反应结果:
Figure imgf000012_0003
对比例 4
利用固定床反应器进行费托合成反应:>合成气为 CO÷H2的混合气, CO/H2=l/2。将 Co/S»2 费托催化剂装填到固定床反应器中。
反应的工艺条件如下: 合成气空速: 2500h 反应温度: 260'C, 反应压力: 0.5MPa
固定床反应器进行费托合成反应结果:
Figure imgf000013_0001
实施例 13
利用超重力反应器进行费托合成制说炔烃反应。合成气为 CO+H2的混合气, CO/H2=l/2。将 ¾i/SK)2费托催化剂放入网状支撑件内, 固定月于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: lOOOOh , 反应温度: 400 °C , 反应压力: 0.1 MPa
催化剂床层超重力水平: 400g
超重力反应器进行费托合成制炔烃反应结果-
Figure imgf000013_0002
实施倒 14
利用超重力反应器迸行费托合成制炔烃反应。合成气为 CCHH2的混合气, CO/H2-l/2„将 Co/Si02费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: 3000h"] , 反应温度: 350X2 , 反应压力: 0.6MPa.
催化剂床层超重力水平: 250g
超重力反应器进行费托合成制炔烃反应结果-
Figure imgf000013_0003
实施例 15 利用超重力反应器进行费托合成制炔烃反应。合成气为 CO+H2的混合气, CO/¾=l/l。将 铁基费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上, >
反应的工艺条件如下:
合成气空速: lOOOhf1 , 反应温度: 210 C, 反应压力: 2.0MPa
催化剂床层超重力水平: 150g
超重力反应器迸行费托合成制炔烃反应结果:
Figure imgf000014_0001
月 利用固定床反应器进行费托合成反应。合成气为 CO+¾的混合气, CO/H^ 1/2。将费托催 化剂装填到固定床反应器中。
反应的工艺条件如下:
合成气空速; 30001 1 , 反应温度: 350 反应压力: 0.6MPa
固定床反应器进行费托合成反应结果-
Figure imgf000014_0002
实施倒 16
利用超重力反应器进行费托合成制混合醇反应。 合成气为 CO+¾的混合气, CO/¾=i/2。 将 K- Co- Mo/C催化剂放入网状支撑件内, 固定于超重力反应器的转子上。
反应的工艺条件如下:
合成气空速: 00h"! , 反应温度: 300。C, 反应压力: 5MPa
催化剂床层转速; 10g
超重力反应器进行费托合成制混合醇反应结果;
Figure imgf000014_0003
实施例 17
利用超重力反应器进行费托合成制混合醇反应。 合成气为 CO+: 的混合
将 K-Co-MoZC催化剂放入网状支撑件内 , 固定于超重力反应器的转子上。
反应的工艺条件如下- 合成气空速; ISOOh"1 , 反应温度: 400。C , 反应 力: 7MPa
催化剂床层转速: 300g
超重力反应器进行费托合成制混合醇反应结果- 说 月
Figure imgf000015_0001
实施俩 17
利 超重力反应器进行费托合成制混合醇反应。 合成气为 CO- W2的混合气, C()/ ==l/2。 将 K- Co- Mo/C催化剂放入网状支撑件內, 固定于超重力反应器的转子上。
反应的工艺条件如下;
合成气空速: 30001f! , 反应温度: 500 °C , 反应压力: 2.5MPa
催化剂床层转速; 10g
超重力反应器进行费托合成制混合醇反应结果:
Figure imgf000015_0002
对比例 6
利用固定床反应器进行费托合成制混合醇反应。 合成气为 CO+H2的混合气, CO/H2=i/2。 将 Co-Mo/C催化剂装填在固定床反应器中。
反应的工艺条件如下:
合成气空速: SOOh"1 , 反应温度: 320 Γ , 反应压力: 5MPa
利用固定床反应器进行费托合成制混合醇反应结果:
CO转化率 (%) MeOH/C,+OH (%) 全醇选择性 (%)
^
.% 0542

Claims

权 利 要 求 书
Ϊ . 一种选择性调控费托合成产品的方法, 其特征在于, 费托合成反应在超重力 反应器中迸行, 反应物料为煤基合成气、 天然气基合成气、 煤层气基合成气 或生物质基合成气; 超重力反应器的超重力水平为 2- 400g; 反应温度为 180 。C 500 C, 反应压力为 1 - ] 00atm, 气体空速为 100- OOOOOh4 , 在催化剂作 ¾ 下, 分别选择性地合成特定产物, 包括烯烃、 炔烃、 汽油、 柴油、 石蜡及混 合醇。
2. 根据权利要求 1所述的一种选择性调控费托合成产品的方法, 其特征在于, 超重力水平为 2 100g或 50- 2()0g或 100- 400g, 反应温度为 180- 28CTC或 200- 350。C或 260- 500°C, 反应压力为 1-30 atm或 10- 50 atm或 20- 100 aim或 25- lOOatm, 气体空速为 100- 30001 或 600- lOOOOh4或 2000- lOOOOOh—】。
3. 根据权利要求 1所述的一种选择性调控费托合成产品的方法, 其特征在于, 超重力反应器的超重力水平在 2- 100g 时使用相应的催化剂分别生产柴油、 石蜡和混合醇产品,超重力水平在 20- 200g时使用相应催化^分别生产柴油, 汽油产品;超重力水平在 50- 400g时使用相应的催化剂分别生产汽油、烯烃, 炔烃产品。
4. 根据权利要求 3的一种选择性调控费托合成产品的方法, 其特征在于, 反应 温度为 180- 280Ό时生产石蜡、柴油产品,反应温度为 220- 350Ό时生产汽油、 烯烃、 炔烃, 反应温度为 240- 5001时生产烯烃或混合醇产品。
5. 根据权利要求 1所述的一种选择性调控费托合成产品的方法, 其特征在于, 所述的费托合成反应的反应物料和产物在离幵超重力反应器前始终处于加 速度大于地球引力加速度 g=9.8m/s2的反应环境下。
6. 根据权利要求 1所述的一种选择性调控费托合成产品的方法, 其特征在于, 费托合成的反应物料是包括煤、 天然气、 煤层气或生物质通过各种方法制得 权 利 要 求 书
的合成气。
7. 根据权利要求 1-6任意项所述的一种选择性调控费托合成产品的方法, 其特 征在于, 所述催化剂为各种方法制备的钌基、 钴基或铁基催化剂。
8. 根据权利要求 1所述的一种选择性调控费托合成产品的方法, 其特征在于, 反应过程中催化剂始终处于旋转状态, 超重力水平为 2- 400g。
9. 一种利用超重力反应器进行费托合成生产石蜡的方法, 其特征在于, 将费托 催化剂放入网状支撑件内, 固定于超重力反应器的转子上, 合成气通过选转 的催化剂床层, 反应的工艺条件如下: 合成气空速: 600 SOOOl 1 , 反应温度: 190-280 Ό , 反应压力: 1,0- 6.0MPa催化剂床层超重力水平: 10-80g, 产物中 石蜡组分的选择性 20-40%。
iih 如权利要求 9 所述的一种利用超重力反应器迸行费托合成生产石蜡的方 法, 其中所述催化剂包括各种方法制备的 Co基、 Rii基和 Fe基常催化剂。
1 L 一种利用超重力反应器进行费托合成生产柴油的方法, 其特征在于, 将 费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上, 合成气通过 旋转的催化剂床层, 反应的工艺条件如下: 合成气空速: 600- 5000h 反应 温度: 190 280Ό , 反应压力: 0.5 5.0MPa,催化剂床层超重力水平: 30- 150g, 产物中柴油组分的选择性 40 70%。
12. 如权利要求 11所述的一种利用超重力反应器进行费托合成生产柴油的方 法, 其中所述催化剂包括各种方法制备的 Co基、 Ru基和 Fe基催化剂。
13. 一种利 超重力反应器进行费托合成生产汽油的方法, 其特征在于, 费 托催化剂放入网状支撑件内, 固定于超重力反应器的转子上, 合成气通过旋 转的催化剂床层, 反应的工艺条件如下: 合成气空速: 500-700011 , 反应温 度: 210 350 , 反应压力: 0.5- 5MPa, 催化剂床层超重力水平: 50- 250g, 权 利 要 求 书
产物中汽油组分的选择性 40 65%。
14. 如权利要求 13所述的一种利用超重力反应器迸行费托合成生产汽油的方 法, 其中所述催化剂包括各种方法制备的 Co基、 Ru基和 Fe基催化剂。
15. 一种利用超重力反应器进行费托合成生产低碳烯烃的方法, 其特征在于, 将费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上, 合成气通 过旋转的催化剂床层, 反应的工艺条件如下: 合成气空速: 600- OOOOh 反应温度: 210- 400Ό , 反应压力: 0„5- 2.5MPa, 催化剂床层超重力水平: 50 350g, 产物中低碳烯烃 (Of- ( ) 组分的选择性 30 70%。
16. 如权利要求 15所述的一种利用超重力反应器进行费托合成生产低碳烯烃 的方法, 其中所述催化剂包括各种方法制备的 Co基、 RU基和 Fe基催化剂。
17. —种利用超重力反应器进行费托合成制炔烃的方法, 其特征在于, 将费 托催化剂放入网状支撑件内, 固定于超重力反应器的转子上; 合成气通过旋 转的催化剂床层, 反应的工艺条件如下: 合成气空速: 1000- 1000011 , 反应 温度: 210- 400t;,反应压力:(U- 2.0MPa,催化剂床层超重力水平; 150- 400g, 产物中乙炔的选择性 10 30%。
18. 如权利要求 17 所述的一种利用超重力反应器进行费托合成制炔烃的方 法, 其中所述催化剂包括各种方法制备的 Co基、 Ru基和 Fe基催化剂。
19. 一种利用超重力反应器进行费托合成制混合醇的方法, 其特征在于, 将 催化剂放入网状支撑件内, 固定于超重力反应器的转子上。 合成气通过旋转 的催化剂床层。 反应的工艺条件如下: 合成气空速: 500- 30001Ϊ1 , 反应温度: 300- 500 Ό, 反应压力: 2,0 7,0MPa, 催化剂床层超重力水平: 10- 300g, 产 物中全醇选择性 50-80%。
20. 如权利要求 19所述的一种利用超重力反应器进行费托合成制混合醇的方 权 利 要 求 书
法, 催化剂为各种方法制备的含有铑, 钼、 钴, 镍, 铁, 铜, 钾元素中的- 种或几种的催化剂。
PCT/CN2012/078987 2011-11-10 2012-07-23 一种选择性调控费托合成产品的方法 WO2013067832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110355256.0 2011-11-10
CN201110355256.0A CN102559234B (zh) 2010-12-21 2011-11-10 一种选择性调控费托合成产品的方法

Publications (1)

Publication Number Publication Date
WO2013067832A1 true WO2013067832A1 (zh) 2013-05-16

Family

ID=48306959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078987 WO2013067832A1 (zh) 2011-11-10 2012-07-23 一种选择性调控费托合成产品的方法

Country Status (1)

Country Link
WO (1) WO2013067832A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653002A (zh) * 2017-09-20 2018-02-02 北京化工大学 一种在超重力反应器内进行稠环芳烃加氢裂化的方法
CN107686742A (zh) * 2017-09-27 2018-02-13 北京化工大学 一种在超重力反应器内进行渣油加氢反应的方法
CN107699276A (zh) * 2017-09-20 2018-02-16 北京化工大学 一种多级超重力反应器重油加氢方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086910A1 (en) * 2000-12-13 2002-07-04 Trinh Sinh Han Rotating annular catalytic reactor
CN102442872A (zh) * 2011-11-10 2012-05-09 北京化工大学 一种合成气直接合成低碳烯烃的方法
CN102463075A (zh) * 2010-11-05 2012-05-23 北京化工大学 超重力强化煤基化工原料转化的新方法
CN102504858A (zh) * 2011-11-10 2012-06-20 北京化工大学 一种费托合成定向合成汽油柴油的方法
CN102503769A (zh) * 2011-11-10 2012-06-20 北京化工大学 一种合成气合成混合醇的方法
WO2012083636A1 (zh) * 2010-12-21 2012-06-28 北京化工大学 利用超重力反应器进行费托合成的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086910A1 (en) * 2000-12-13 2002-07-04 Trinh Sinh Han Rotating annular catalytic reactor
CN102463075A (zh) * 2010-11-05 2012-05-23 北京化工大学 超重力强化煤基化工原料转化的新方法
WO2012083636A1 (zh) * 2010-12-21 2012-06-28 北京化工大学 利用超重力反应器进行费托合成的方法
CN102559234A (zh) * 2010-12-21 2012-07-11 北京化工大学 一种选择性调控费托合成产品的方法
CN102442872A (zh) * 2011-11-10 2012-05-09 北京化工大学 一种合成气直接合成低碳烯烃的方法
CN102504858A (zh) * 2011-11-10 2012-06-20 北京化工大学 一种费托合成定向合成汽油柴油的方法
CN102503769A (zh) * 2011-11-10 2012-06-20 北京化工大学 一种合成气合成混合醇的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653002A (zh) * 2017-09-20 2018-02-02 北京化工大学 一种在超重力反应器内进行稠环芳烃加氢裂化的方法
CN107699276A (zh) * 2017-09-20 2018-02-16 北京化工大学 一种多级超重力反应器重油加氢方法
CN107653002B (zh) * 2017-09-20 2019-06-28 北京化工大学 一种在超重力反应器内进行稠环芳烃加氢裂化的方法
CN107699276B (zh) * 2017-09-20 2019-07-12 北京化工大学 一种多级超重力反应器重油加氢方法
CN107686742A (zh) * 2017-09-27 2018-02-13 北京化工大学 一种在超重力反应器内进行渣油加氢反应的方法

Similar Documents

Publication Publication Date Title
CN102559234B (zh) 一种选择性调控费托合成产品的方法
Numpilai et al. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide
CN102234212B (zh) 合成气直接转化为低碳烯烃的方法
CN101671226B (zh) 一种甲醇芳构化制取二甲苯工艺
Rauch et al. Fischer-Tropsch synthesis to biofuels (BtL process)
CN101823929A (zh) 一种甲醇或二甲醚转化制取芳烃的系统与工艺
CN102504858B (zh) 一种费托合成定向合成汽油柴油的方法
Suárez París et al. Catalytic conversion of biomass-derived synthesis gas to fuels
CN103864561B (zh) 一种甲醇芳构化制取芳烃的工艺方法
KR101418911B1 (ko) 피셔-트롭쉬 합성반응을 이용한 탄화수소 화합물 및 그 제조방법
WO2013067832A1 (zh) 一种选择性调控费托合成产品的方法
KR102069159B1 (ko) 고발열량의 합성천연가스 제조방법 및 그 제조장치
Dong et al. Highly selective Fischer‐Tropsch synthesis for C10‐C20 diesel fuel under low pressure
WO2013067834A1 (zh) 一种合成气合成混合醇的方法
CN110201609B (zh) 一种利用合成气加氢联产烯烃和芳烃的设备及方法
WO2013067833A1 (zh) 一种合成气直接合成低碳烯烃的方法
CN111068743B (zh) 低碳烯烃的生产方法
CN108017489A (zh) 含氧化合物原料催化转化制芳烃的方法
Lee et al. Production of high-calorie synthetic natural gas using copper-impregnated iron catalysts
CN111205159A (zh) 合成气制低碳烯烃的方法
KR101776927B1 (ko) 슬러리 기포탑 반응기를 이용한 경유 및 휘발유 고함량 합성연료의 제조방법
CN108017488A (zh) 醇和/或醚原料催化转化制芳烃的方法
KR102147421B1 (ko) 2이상의 ft 모드로 작동하는 슬러리 기포탑 반응기 구비한 합성연료 제조 장치
CN109647492B (zh) 合成气直接生产低碳烯烃的催化剂
KR102007006B1 (ko) 철계 촉매층 및 니켈계 촉매층이 적층된 반응기에서 고수율의 고발열량 합성천연가스 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847987

Country of ref document: EP

Kind code of ref document: A1