WO2012083636A1 - 利用超重力反应器进行费托合成的方法 - Google Patents

利用超重力反应器进行费托合成的方法 Download PDF

Info

Publication number
WO2012083636A1
WO2012083636A1 PCT/CN2011/074634 CN2011074634W WO2012083636A1 WO 2012083636 A1 WO2012083636 A1 WO 2012083636A1 CN 2011074634 W CN2011074634 W CN 2011074634W WO 2012083636 A1 WO2012083636 A1 WO 2012083636A1
Authority
WO
WIPO (PCT)
Prior art keywords
fischer
tropsch synthesis
supergravity
reaction
tropsch
Prior art date
Application number
PCT/CN2011/074634
Other languages
English (en)
French (fr)
Inventor
陈建峰
张燚
刘意
初广文
Original Assignee
北京化工大学
北京中超海奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学, 北京中超海奇科技有限公司 filed Critical 北京化工大学
Publication of WO2012083636A1 publication Critical patent/WO2012083636A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1806Stationary reactors having moving elements inside resulting in a turbulent flow of the reactants, such as in centrifugal-type reactors, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • This invention relates to a new method for Fischer-Tropsch synthesis using a Fischer-Tropsch synthesis reactor, and more particularly to a method for utilizing a supergravity Fischer-Tropsch reactor under supergravity conditions.
  • a new method for the Fischer-Tropsch synthesis including directed synthesis of olefins, alkynes, gasoline, diesel, paraffin, mixed alcohols and other products.
  • Fischer-Tropsch process also known as F-T synthesis, is a synthesis of paraffin-based liquid fuels using a synthesis gas (CO, a mixed gas of 0 2 and 3 ⁇ 4) under the catalyst and appropriate conditions.
  • the traditional Fischer-Tropsch synthesis products are mainly linear hydrocarbons, olefins, small amounts of aromatic hydrocarbons and aldols, as well as by-product water and carbon dioxide.
  • the product composition is complex, the selectivity is poor, and the light liquid hydrocarbons are less.
  • Fischer-Tropsch synthesis has been in existence for more than 80 years, and now Sasol, PetroSA, Shell and Oryx are among the larger Fischer-Tropsch synthesis companies.
  • the reactants of the Fischer-Tropsch synthesis reaction, syngas can be converted from coal, natural gas, biomass by gasification or reforming.
  • the chain growth of the Fischer-Tropsch synthesis product follows the polymerization mechanism and the selectivity of the product follows the Anderson Schuitz-Flory distribution. In addition to the higher selectivity of formazan and heavy hydrocarbons, the selectivity of other products is not high.
  • the supergravity separation technique was first proposed by the British Imperial Chemical Company (ICI).
  • EP0023745 A3 proposes that a supergravity rotating bed can be used for absorption, desorption, distillation and the like.
  • Chinese patents CN1064338A, CNI 116146A, CN1116185A break through the limitations of the supergravity separation technology, innovatively propose the supergravity reaction technology, and successfully implement the application of the supergravity rotating bed to the industrial scale oilfield dewatering process and Preparation of ultrafine calcium carbonate.
  • Chinese patent CN1507940A, CN1895766A proposes a hydrocarbon catalytic reaction in a supergravity reactor and discloses a method for carrying out total hydrogenation and partial hydrogenation of hydrocarbons in a supergravity reactor.
  • the object of the present invention is to provide a new method for Fischer-Tropsch synthesis using a supergravity Fischer-Tropsch synthesis reactor, and in particular to provide a new method for enhancing the Fischer-Tropsch synthesis reaction by using a supergravity Fischer-Tropsch synthesis reactor. method.
  • a novel process for the Fischer-Tropsch synthesis using the supergravity sitto synthesis reactor of the present invention is as follows: The Fischer-Tropsch synthesis reaction is carried out in a supergravity Fischer-Tropsch synthesis reactor.
  • the schematic diagram is a hypergravity Fischer-Tropsch synthesis reactor as shown in the figure.
  • the process of the present invention is a completely new Fischer-Tropsch synthesis by performing a Fischer-Tropsch synthesis reaction in a completely different manner from a fixed bed, a fluidized bed and an annealed bed reactor to selectively produce olefins, gasoline, diesel, paraffin, and mixed alcohol. Reaction method.
  • the specific process of the method of the invention comprises: carrying out the Fischer-Tropsch reaction in a supergravity field, and fixing the Fischer-Tropsch reaction catalyst on the rotor of the supergravity reactor, wherein the catalyst bed is always in a rotating state during the reaction, and the reaction material is The inlet of the supergravity reactor enters, the syngas undergoes a Fischer-Tropsch reaction through a high-speed rotating catalyst bed, and the resulting product is discharged from the outlet of the supergravity reactor; the reaction materials are coal-based syngas, natural gas-based syngas, and coalbed methane-based synthesis.
  • the catalyst for the Fischer-Tropsch reaction includes conventional catalysts such as a Co group, a Ru group and a Fe group prepared by various methods.
  • the method of the invention adjusts the mass transfer process of the reaction product by adjusting the super-gravity acceleration in the supergravity reactor, and utilizes the reaction separation to separate the sameness, and adjusts the reaction product of each component to stay in the reaction field within 0 inch, and controls or inhibits two. Secondary reactions occur, increasing the selectivity of a particular target product and increasing catalyst life.
  • the Fischer-Tropsch reaction catalyst is installed in the rotor of the supergravity reactor, and the catalyst bed is always in a high-speed rotation state during the reaction.
  • the product was determined by gas chromatography analysis.
  • the selectivity of the product can be controlled by adjusting the rotational speed of the catalyst bed to control the time at which a particular product leaves the reaction environment.
  • the conventional Fischer-Tropsch reaction is limited by the growth and transformation mechanism of the synthesis process chain.
  • the selectivity of the target product is relatively low, and there are many synthetic by-products.
  • the range of normal chain hydrocarbons can range from C1 to C100. Therefore, strengthening the mass transfer of the product and controlling the residence time of different products in the reaction environment can effectively improve the selectivity of the target product.
  • the appropriate super-gravity acceleration is selected to allow the intermediate product to generate diesel oil components in sufficient time, and the diesel fuel components can leave the reaction environment in time, so that the reaction tends to generate diesel fuel components.
  • the appropriate super-gravity acceleration is selected to rapidly separate the generated low-carbon olefins from the reaction environment, and to inhibit the occurrence of secondary reactions to form high-carbon hydrocarbons, thereby improving the selectivity of low-carbon olefins.
  • a reduction in the partial pressure of the lower olefin product of the reaction environment will cause the reaction to move toward the formation of lower olefins to further enhance the selectivity of the lower olefins.
  • the above reaction is an exothermic reaction.
  • the exothermic reaction process it is important to eliminate the heat of reaction in time.
  • the reaction temperature is liable to be out of control.
  • the reaction exothermic product is quickly taken out of the reaction zone, so that it is easy to control the reaction temperature and is suitable for the above reaction.
  • the present invention provides a Fischer-Tropsch synthesis reaction for the selective synthesis of specific target products, including olefins, alkynes, gasoline, diesel, paraffin, and mixed alcohols, which are completely different from the conventional Fischer-Tropsch synthesis process. new method.
  • the method of the invention has the characteristics of directed production of target product, good mass transfer, good heat transfer performance and long catalyst life.
  • Figure 1 is a schematic illustration of a supergravity reactor employed in the present invention.
  • the reactor includes:
  • the product outlet Fischer-Tropsch synthesis catalyst is installed in the rotor of the supergravity reactor, and the catalyst bed is always in a high-speed rotation state during the reaction. Syngas enters from the inlet of the supergravity reactor and is ignited by high-speed rotation Chemical bed. The resulting product was discharged from the outlet of the supergravity reactor and determined by gas chromatography analysis. In the case where the space velocity is constant, the time at which the product leaves the reaction environment can be controlled by adjusting the rotational speed of the catalyst bed, thereby controlling the selectivity of the product.
  • Example 1 A Fischer-Tropsch synthesis paraffin reaction was carried out using a hypergravity Fischer-Tropsch reactor.
  • the Co/Si (3 ⁇ 4 Fischer-Tropsch catalyst) was placed in a mesh support and fixed on the rotor of the supergravity reactor.
  • the reaction conditions were as follows: Syngas airspeed: 2000 h" ! , Reaction temperature: 210 Torr, Reaction pressure: L5MPa catalyst bed supergravity level: I0g super-gravity Fischer-Tropsch reactor for Fischer-Tropsch synthesis of paraffin reaction results:
  • a Fischer-Tropsch synthesis of diesel fuel was carried out using a supergravity Fischer-Tropsch reactor.
  • the synthesis gas is a mixture of CO + H 2 , CO/3 ⁇ 4H/2.
  • a conventional Co/SiO 2 Fischer-Tropsch catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • a Fischer-Tropsch synthesis of diesel fuel was carried out using a fixed bed reactor.
  • a conventional (0/80 02 Fischer-Tropsch catalyst was charged to a fixed bed reactor).
  • the gasoline reaction was carried out by Fischer-Tropsch synthesis using a super-gravity Fischer-Tropsch reactor.
  • a conventional (3 ⁇ 4/810 2 Fischer-Tropsch catalyst was charged to a fixed bed reactor).
  • reaction conditions of the reaction are as follows: Syngas airspeed: 2500h-, reaction temperature: 240. C, reaction pressure: L5MPa catalyst bed supergravity level: 180g
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor.
  • the Co / Si0 2 Fischer-Tropsch catalyst is charged into a fixed bed reactor.
  • a Fischer-Tropsch synthesis of a low carbon olefin reaction is carried out using a supergravity Fischer-Tropsch reactor.
  • the synthesis gas is a mixture of (0+]3 ⁇ 4, CO/H; H/2.
  • the Fischer-Tropsch catalyst is placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the process conditions of the reaction are as follows—
  • Example 5 Fischer-Tropsch synthesis was carried out using a supergravity Fischer-Tropsch reactor to produce an alkyne reaction.
  • CO + H syngas mixture of CO 2 / H 2 l / 2.
  • the Fischer-Tropsch catalyst is placed in a mesh support and attached to the rotor of the supergravity reactor.
  • the reaction conditions are as follows: Syngas gas space velocity: 250011 Reaction temperature: 250 ° C, Reaction pressure: 0.6 MPa Catalyst bed supergravity level: 300 g Super gravity Fischer-Tropsch reactor Fischer Fischer-Tropsch synthesis of alkyne reaction results: Selection Sex (%)
  • the Fischer-Tropsch synthesis reaction was carried out using a fixed bed reactor. Syngas is a mixture of CO + H 2 , CO / ::: iZ2. The Co/Si0 2 Fischer-Tropsch catalyst was loaded into a fixed bed reactor.
  • the mixed alcohol reaction was carried out by Fischer-Tropsch synthesis using a supergravity Fischer-Tropsch reactor.
  • the K-Co-Mo/C catalyst was placed in a mesh support and fixed to the rotor of the supergravity reactor.
  • the mixed alcohol reaction was carried out by Fischer-Tropsch synthesis using a fixed bed reactor.
  • the K-Co-Mo/C catalyst was packed in a fixed bed reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

利用超重力反应器进行费托合成的方法 本发明涉及一种利用费托合成反应器进行费托合成的新方法, 具体的说, 涉及一种利用超重力费托合成反应器在超重力条件下迸行费托合成的新方法, 包括定向合成烯烃、 炔烃.、 汽油、 柴油、 石蜡、 混合醇等产品。 费托合成 (Fischer - Tropsch process) , 又称 F- T合成, 是以合成气 (CO, ( 02和¾的混合气体)为原料在催化剂和适当条件下合成以石蜡烃为主的液体燃 料工艺过程。 传统的费托合成产物主要为直链垸烃、 烯烃、 少量芳烃和醛醇, 以及副产水和二氧化碳, 产物组成复杂, 选择性较差, 轻质液体烃少。
费托合成反应已有 80余年历史, 现在拥有较大规模费托合成生产能力的有 Sasol , PetroSA , Shell和 Oryx公司等。 近年来, 随着石油资源的逐渐耗竭以及 世界范围内对新能源和资源需求的不断攀升, 通过费托合成反应制备液体燃料 或高附加值化学品的途径已经获得广泛认可。 费托合成反应的反应物, 即合成 气, 可由煤炭, 天然气, 生物质经气化或重整等过程转化而来。 费托合成产物 的链增长服从聚合机理, 产物的选择性遵循 Anderson Schuitz- Flory分布。 该分 布除甲垸和重碳烃类可取得较高的选择性外, 其他产物的选择性均不高。 采 ^ 不同类型的反应器, 如固定床, 流化床或浆态床, 对费托合成产物的选择性几 乎没有影响。
超重力分离技术最早是由英国帝国化学工 公司(ICI)提出的。 EP0023745 A3提出超重力旋转床可以用于吸收,解吸,蒸馏等过程。中国专利 CN1064338A, CNI 116146A, CN1116185A突破超重力分离技术局限性, 创新性地提出超重力 反应技术, 成功实现了将超重力旋转床应用于工业规模的油田注水脱氧过程和 超细碳酸钙的制备。 中国专利 CN1507940A, CN1895766A提出在超重力反应器 中进行烃类催化反应并公开了在超重力反应器中进行烃类全加氢和部分加氢的 方法。
发明内容
本发明的目的是提供一种 1用超重力费托合成反应器进行费托合成的新方 法, 具体的说, 就是提供一种利 I用超重力费托合成反应器强化费托合成反应的 新方法。
本发明的一种利用超重力赛托合成反应器进行费托合成的新方法的工艺条 件为: 费托合成反应在超重力费 '托合成反应器中进行。
本发明方法所述的超重力费托合成反应器是指超重力场的重力加速度大于 地球引力加速度 (g=9.8m/s2) 的各种类型的超重力费托合成反应器。 其示意图 如^图所示的超重力费托合成反应器。
本发明的方法是以完全不同于固定床, 流化床和桨态床反应器的方式进行 费托合成反应选择性生产烯烃, 汽油, 柴油, 石蜡, 混合醇, 是一种全新的费 托合成反应方法。
本发明方法的具体过程包括: 将费托反应在超重力场中进行, 将费托反应 的催化剂固定在超重力反应器的转子上, 在反应过程中催化剂床层始终处于旋 转状态, 反应物料由超重力反应器的入口进入, 合成气通过高速旋转的催化剂 床层发生费托反应, 生成的产物由超重力反应器出口排出; 反应物料为煤基合 成气、 天然气基合成气、 煤层气基合成气或生物质基合成气, 其组成为 CO+C02+H2, CO+H2, C02+H2; 超重力反应器的超重力水平为 2- 300g; 反应温 度为 180°C- 500Ό, 反应压力为 i- iOOatm, 气体空速为 100- iOOOOOh 选择性地 合成特定产品。 超重力水平在 2-100g时使用相应的催化剂生产柴油、 石蜡和混 合醇产品; 超重力水平在 100- 300g时生产汽油、 烯烃和炔烃产品。
费托反应的催化剂包括各种方法制备的 Co基、 Ru基和 Fe基等常规催化剂。 本发明的方法通过调节超重力反应器中超重力加速度, 强化反应生成物的 传质过程利用反应分离 ¾同性, 定向调节各组分反应生成物在反应场的停留 0寸 间, 而控制或者抑制二次反应发生, 提高特定目标产物的选择性, 并且提高 催化剂寿命。
费托反应的催化剂安装在超重力反应器的转子中, 反应过程中催化剂床层 始终处于高速旋转状态。 产物经气相色谱分析测定。 在空速一定的情况下, 通 过调节催化剂床层的转速可以调控特定产物离开反应环境的时间, 从而控制产 物的选择性。
常规费托反应受合成过程链增长转化机理的限制, 目标产品的选择性相对 较低, 合成副产物较多, 正构链烃的范围可从 C1至 C100。 因此, 强化产物传 质, 控制不同产物在反应环境的停留时间可有效提高目标产品的选择性。 如以 柴油为目标产品时, 选择适当的超重力加速度, 使中间产物有充足日寸间生成柴 油组分, 并且柴油组分能够及时离开反应环境, 从而使反应倾向于生成柴油组 分。 在合成低碳烯烃日寸, 选择适当的超重力加速度, 使生成的低碳烯烃迅速离 开反应环境, 抑制发生二次反应生成高碳烃类, 从而提高低碳烯烃选择性。 另 外, 反应环境的低碳烯烃产物分压降低将使反应向生成低碳烯烃方向移动从而 进一步提高低碳烯烃选择性。
另外, 产物和中间产物在催化剂上停留时间过长也是催化剂积碳的原因之 一, 而积碳是费托反应催化剂失活的重要原因之一。
由于超重力反应器具有如下优势:
强化传质。 以上反应的生成物与催化剂之间的传质过程在超重力作用下得 到强化, 有效减少或消除了扩散过程对上述反应的影响, 使生成的产物得以迅 速离开反应环境, 提高目标产物选择性及产率, 有效抑制催化剂积碳失活, 并 促使反应物加快 ί 产物方向移动, 而提高反应效率。
强化传热。 以上反应是放热反应。 在放热反应过程中, 及时排除反应热是 至关重要的。 在传统的固定床反应器中进行放热反应时, 如果热量不能及时被 带出, 反应温度容易失控。 而在超重力反应器中, 由于产物在超重力的强化作 ^下迅速离开催化剂床层, 反应放热被生成物迅速带出反应区域, 因此易于控 制反应温度, 适用于以上反应。
因此, 本发明利 ^超重力费托合成反应器进行费托合成反应选择性地合成 特定目标产品, 包括烯烃, 炔烃, 汽油, 柴油, 石蜡, 混合醇是完全不同于传 统费托合成工艺的新方法。
本发明的方法具有定向生产目标产物, 传质, 传热性能好, 催化剂寿命长 的特点。
附图说明
图 1是本发明所采用的超重力反应器的示意图。
该反应器包括:
1 , 反应物入口
2, 催化剂床层
鲑孑
4. 产物出口 费托合成催化剂安装在超重力反应器的转子中, 反应过程中催化剂床层始 终处于高速旋转状态。 合成气由超重力反应器的入口进入, 通过高速旋转的催 化剂床层。 生成的产物由超重力反应器出口排出, 并经气相色谱分析测定。 在 空速一定的情况下, 通过调节催化剂床层的转速可以控制产物离开反应环境的 时间, 从而控制产物的选择性。 实施例 1 利用超重力费托反应器进行费托合成制石蜡反应。 合成气为 CO+H2的混合 气, CO/H2=!/2。将 Co/Si(¾费托催化剂放入网状支撑件内, 固定于超重力反应器 的转子上。 反应的工艺条件如下: 合成气空速: 2000h"! , 反应温度: 210Ό, 反应压力: L5MPa 催化剂床层超重力水平: I0g 超重力费托反应器进行费托合成制石蜡反应结果:
Figure imgf000007_0001
对比例 1 利用固定床反应器进行费托合成制柴油反应。 合成气为 CO+H2的混合气, CO/¾=!/2。 将 0)^02费托催化剂装填到固定床反应器中。 反应的工艺条件如下: 合成气空速: 20001〗, 反应温度: 210°C, 反应压力: I.SMPa 固定床费托反应器进行费托合成制石蜡反应结果: 选择性 (%)
CO转化率 (%)
C5 + 石蜡组分 (Ci8- C30)
48.2% 85 11 利用超重力费托反应器进行费托合成制柴油反应。 合成气为 CO+H2的混合 气, CO/¾H/2。将常规 Co/Si02费托催化剂放入网状支撑件内, 固定于超重力反 应器的转子上。
反应的工艺条件如下:
合成气空速: 2000h"! , 反应温度: 210Ό, 反应压力: L5MPa
催化剂床层超重力水平: 90g
超重力费托反应器进行费托合成制柴油反应结果:
Figure imgf000008_0001
对比例 2
利用固定床反应器进行费托合成制柴油反应。 合成气为 CO+H2的混合气, CO/¾=!/2。 将常规 ( 0/8 02费托催化剂装填到固定床反应器中。
反应的工艺条件如下:
合成气空速: 20001〗, 反应温度: 210°C, 反应压力: I.SMPa
固定床费托反应器进行费托合成制柴油反应结果:
Figure imgf000008_0002
实施例 3
利用超重力费托反应器迸行费托合成制汽油反应。 合成气为 CO+H2的混合 % , CO/¾=i/2。 将常规 (¾/8102费托催化剂装填到固定床反应器中。
反应的工艺条件如下: 合成气空速: 2500h-〗, 反应温度: 240。C, 反应压力: L5MPa 催化剂床层超重力水平: 180g
超重力费托反应器进行费托合成制汽油反应结果:
Figure imgf000009_0001
;t比例 3
利用固定床反应器迸行费托合成反应。 合成气为 CO+H2的混合气, CO/H2=l/2 o 将 Co/Si02费托催化剂装填到固定床反应器中。
反应的工艺条件如下:
合成气空速: 250011 , 反应温度: 240 °C , 反应压力: l .SMPa
固定床反应器进行费托合成反应结果:
Figure imgf000009_0002
实施例 4
利用超重力费托反应器进行费托合成制低碳烯烃反应。 合成气为 ( 0+]¾的 混合气, CO/H;H/2。 费托催化剂放入网状支撑件内固定于超重力反应器的转子 反应的工艺条件如—
^成气空速: 2500h"! , : LOMPa 超重力费托反应器进行费托合成
Figure imgf000010_0001
对比例 4 利用固定床反应器进行费托合成反应。 合成气为 CCHH2的混合气, CO/¾=i/2。 将 Co/Si02费托催化剂装填到固定床反应器中。 反应的工艺条件如下: 合成气空速: 2500h"! , 反应温度: 240Ό, 反应压力: LOMPa 固定床反应器进行费托合成反应结果:
Figure imgf000010_0002
实施例 5 利用超重力费托反应器进行费托合成制炔烃反应。 合成气为 CO+H2的混合 CO/H2=l/2。费托催化剂放入网状支撑件内, 固定于超重力反应器的转子上。 反应的工艺条件如下: 合成气空速: 250011 反应温度: 250°C, 反应压力: 0.6MPa 催化剂床层超重力水平: 300g 超重力费托反应器迸行费托合成制炔烃反应结果: 选择性 (%)
CO转化率 (%)
炔烃组分 (乙炔)
Figure imgf000011_0001
对比例 5
利用固定床反应器进行费托合成反应。 合成气为 CO+H2的混合气, CO/ :::iZ2。 将 Co/Si02费托催化剂装填到固定床反应器中。
反应的工艺条件如下:
合成气空速: 2500h-! , 反应温度: 250Ό , 反应压力: 0,6MPa
固定床反应器进行费托合成反应结果:
Figure imgf000011_0002
实施例 6
利用超重力费托反应器进行费托合成制混合醇反应。 合成气为 COK¾的混 合气, CO/H2=l/2。 将 K-Co-Mo/C催化剂放入网状支撑件内, 固定于超重力反应 器的转子上。
反应的工艺条件如下:
合成气空速: 150011 , 反应温度: 320°C, 反应压力: 5MPa
催化齐床层转速: 30g
超重力费托反应器进行费托合成制混合醇反应结果-
CO转化率(%) MeOH/Co ' OH (%) 全醇选择性 (%)
26.7% 0.15 64 对比例 6
利用固定床反应器进行费托合成制混合醇反应。 合成气为 CO+H2的混合气, CO/H2=iZ2。 将 K- Co- Mo/C催化剂装填在固定床反应器中。
反应的工艺条件如下:
合成气空速: 150011"1, 反应温度: 320Ό, 反应压力: 5MPa
利用固定床反应器进行费托合成制混合醇反应结果:
CO转化率(%) MeOH/C2 +OH (%) 全醇选择性 (%)
18.4% 0.25 41

Claims

一种利用超重力费托合成反应器进行费托合成的新方法, 其特征在于, 费托 合成反应在超重力费托合成反应器中进行。
2. 根据权利要求 1所述的一种利用超重力费托合成反应器进行费托合成的新方 法, 其特征在于, 所述的超重力费托合成反应器是指加速度大于地球引力加 速度 g=9.8m/s2环境下进行费托合成反应的反应器。
3. 根据权利要求 1所述的一种利用超重力费托合成反应器迸行费托合成的新方 法,其特征在于,费托合成的原料合成气包括煤基合成气、天然气基合成气、 煤层气基合成气或生物质基合成气。
4 根据权利要求 1所述的一种利用超重力费托合成反应器进行费托合成的新方 法, 其特征在于, 所述费托合成反应中催化剂为钌基、 钴基或铁基催化剂。
5. 根据权利要求 1所述的一种利用超重力费托合成反应器进行费托合成的新方 法,其特征在于,费托合成反应在超重力环境条件下选择性地定向生产烯烃、 炔烃、 汽油、 柴油、 石蜡及混合醇。
6. 根据权利要求 1所述的一种利用超重力费托合成反应器迸行费托合成的新方 法, 其特征在于, 所述的费托合成反应通过调节超重力场的超重力水平控制 费托合成反应定向生产目标产物。
Ί, 根据权利要求 2所述的一种利用超重力费托合成反应器进行费托合成的新方 法, 其特征在于所述方法的催化剂床层超重力水平为 2- 300g。
8. 根据权利要求 1所述的一种利用超重力费托合成反应器进行费托合成的新方 法, 其特征在于费托反应的温度为 180°C- 500Ό , 压力为 1- 100atm。
. 按照权利要求 1的方法, 其特征在于, 反应物料为煤基合成气、 天然气基合 成气、 煤层气基合成气或生物质基合成气, 其组成为 CO+C02+H2, CO+¾, C02+¾; 超重力反应器的超重力水平为 2 300g; 反应温度为 180 C- 500Ό, 权 利 要 求 书
反应压力为 1- lOOatm,气体空速为 100 1000001^,选择性地合成特定产品烯 烃、 炔烃、 汽油、 柴油、 石蜡及混合醇。
按照权利要求 1的方法, 其特征在于, 超重力水平在 2- ioog时使^相应 的催化剂生产柴油、 石蜡和混合醇产品; 超重力水平在 100 300g 时生产汽 油、 烯烃和炔烃产品。
PCT/CN2011/074634 2010-12-21 2011-05-25 利用超重力反应器进行费托合成的方法 WO2012083636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010597807 2010-12-21
CN201010597807.X 2010-12-21

Publications (1)

Publication Number Publication Date
WO2012083636A1 true WO2012083636A1 (zh) 2012-06-28

Family

ID=46313089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074634 WO2012083636A1 (zh) 2010-12-21 2011-05-25 利用超重力反应器进行费托合成的方法

Country Status (2)

Country Link
CN (2) CN102559234B (zh)
WO (1) WO2012083636A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067832A1 (zh) * 2011-11-10 2013-05-16 北京化工大学 一种选择性调控费托合成产品的方法
CN106943978A (zh) * 2017-04-24 2017-07-14 北京化工大学 一种适用于高粘度快速反应体系的反应器
DE102018110091A1 (de) * 2018-04-26 2019-10-31 Helmholtz-Zentrum Dresden - Rossendorf E.V. Festbettreaktor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442872A (zh) * 2011-11-10 2012-05-09 北京化工大学 一种合成气直接合成低碳烯烃的方法
CN102503769B (zh) * 2011-11-10 2013-11-20 北京化工大学 一种合成气合成混合醇的方法
CN104694151B (zh) * 2013-12-06 2016-08-17 中国石油天然气股份有限公司 一种含有硫醇盐碱液的氧化再生方法
CN104109552B (zh) * 2014-06-30 2016-02-24 赵山山 一种生物质合成气旋转合成柴油装置
CN112680848B (zh) * 2020-12-08 2021-10-29 安徽颍上县富颍纺织有限公司 一种具有防静电效果的混纺棉纱
CN113716946B (zh) * 2021-08-23 2022-06-03 西安交通大学 一种3d打印可组装整体式催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086910A1 (en) * 2000-12-13 2002-07-04 Trinh Sinh Han Rotating annular catalytic reactor
CN1507940A (zh) * 2002-12-16 2004-06-30 中国石油化工股份有限公司 催化反应的方法
CN1895766A (zh) * 2005-07-14 2007-01-17 中国石油化工股份有限公司 一种催化选择加氢的方法
US20100004419A1 (en) * 2008-07-03 2010-01-07 H R D Corporation High shear rotary fixed bed reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275080B (zh) * 2008-05-19 2012-11-14 中国科学院山西煤炭化学研究所 一种基于固定床反应器的费托合成反应工艺
RU2440400C2 (ru) * 2010-02-01 2012-01-20 Инфра Текнолоджиз Лтд Способ получения синтетических жидких углеводородов и реактор для проведения синтеза фишера-тропша

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086910A1 (en) * 2000-12-13 2002-07-04 Trinh Sinh Han Rotating annular catalytic reactor
CN1507940A (zh) * 2002-12-16 2004-06-30 中国石油化工股份有限公司 催化反应的方法
CN1895766A (zh) * 2005-07-14 2007-01-17 中国石油化工股份有限公司 一种催化选择加氢的方法
US20100004419A1 (en) * 2008-07-03 2010-01-07 H R D Corporation High shear rotary fixed bed reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067832A1 (zh) * 2011-11-10 2013-05-16 北京化工大学 一种选择性调控费托合成产品的方法
CN106943978A (zh) * 2017-04-24 2017-07-14 北京化工大学 一种适用于高粘度快速反应体系的反应器
DE102018110091A1 (de) * 2018-04-26 2019-10-31 Helmholtz-Zentrum Dresden - Rossendorf E.V. Festbettreaktor
DE102018110091B4 (de) 2018-04-26 2021-11-25 Helmholtz-Zentrum Dresden - Rossendorf E. V. Festbettreaktor

Also Published As

Publication number Publication date
CN102559234A (zh) 2012-07-11
CN102559234B (zh) 2015-03-11
CN103756714A (zh) 2014-04-30
CN103756714B (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2012083636A1 (zh) 利用超重力反应器进行费托合成的方法
Kim et al. Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons
Numpilai et al. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide
RU2597084C2 (ru) Способ модифицирования диоксида углерода с использованием технического углерода в качестве катализатора (варианты)
EP2569266B1 (en) Process for the production of light olefins from synthesis gas
WO2013067835A1 (zh) 一种费托合成定向合成汽油柴油的方法
CN103459355A (zh) 用于将合成气转化为低级烯烃的改进的Fischer-Tropsch法
van de Loosdrecht et al. 5.4 synthesis gas to hydrogen, methanol, and synthetic fuels
CN111511882B (zh) 高热值合成天然气的制备方法及其制备装置
WO2013067834A1 (zh) 一种合成气合成混合醇的方法
WO2013067833A1 (zh) 一种合成气直接合成低碳烯烃的方法
WO2013067832A1 (zh) 一种选择性调控费托合成产品的方法
RU2670756C9 (ru) Синтез фишера-тропша
CN104888838B (zh) 一种核壳型合成气直接制低碳烯烃的催化剂及制法和应用
CN105936835B (zh) 一种甲醇制汽油的组合工艺
KR101776927B1 (ko) 슬러리 기포탑 반응기를 이용한 경유 및 휘발유 고함량 합성연료의 제조방법
KR102147421B1 (ko) 2이상의 ft 모드로 작동하는 슬러리 기포탑 반응기 구비한 합성연료 제조 장치
CN102463075A (zh) 超重力强化煤基化工原料转化的新方法
CN108017488A (zh) 醇和/或醚原料催化转化制芳烃的方法
WO2020152647A1 (en) Methanol production process
CN108017482B (zh) 含有含氧化合物的原料转化制芳烃的方法
KR102580498B1 (ko) 이산화탄소의 탄화수소로의 전환 시스템 및 그 전환 공정
Natakaranakul Direct synthesys of LPG from co2 by using CZZA and HY zeolite hybrid catalyst
CN107540505A (zh) 甲醇制芳烃的方法
RU2205171C1 (ru) Способ получения длинноцепочечных углеводородов из co и h2 в жидкой фазе

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851207

Country of ref document: EP

Kind code of ref document: A1