WO2013065343A1 - 非ペプチドヒンジ部含有フレキシブル抗体様分子 - Google Patents

非ペプチドヒンジ部含有フレキシブル抗体様分子 Download PDF

Info

Publication number
WO2013065343A1
WO2013065343A1 PCT/JP2012/061529 JP2012061529W WO2013065343A1 WO 2013065343 A1 WO2013065343 A1 WO 2013065343A1 JP 2012061529 W JP2012061529 W JP 2012061529W WO 2013065343 A1 WO2013065343 A1 WO 2013065343A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
peptide
molecule
hinge
fragment
Prior art date
Application number
PCT/JP2012/061529
Other languages
English (en)
French (fr)
Inventor
田中 耕一
佐藤 孝明
ジェイ. カポン,ダニエル
Original Assignee
株式会社 島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所 filed Critical 株式会社 島津製作所
Priority to JP2013541649A priority Critical patent/JP6158090B2/ja
Priority to EP12844691.1A priority patent/EP2784080B1/en
Publication of WO2013065343A1 publication Critical patent/WO2013065343A1/ja
Priority to US14/569,070 priority patent/US9725503B2/en
Priority to US15/670,641 priority patent/US11345745B2/en
Priority to US17/732,232 priority patent/US20220403012A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present invention relates to an artificial antibody. More specifically, the present invention relates to flexible antibody-like molecules that contain non-peptide hinge portions.
  • Non-patent Document 1 The essence of an antibody molecule is in its Y shape.
  • Pauling assumed that the antibody had three regions, the central part had the same conformation as normal ⁇ -globulin, and the two ends were variable to complement the antigen surface 1) (Non-patent Document 1).
  • Porter demonstrated that ⁇ -globulin was formed from three globular sections and demonstrated that these sections could be divided by papain 2) (Non-Patent Document 2).
  • the sequence of one part (Fc) of these sections is shown to be essentially conserved in all ⁇ -globulins, and the other two parts (Fab) vary considerably in sequence by molecule. Was shown to do.
  • Non-Patent Document 3 Provided a complete description of the connection between the Fab region and the Fc region 3) (Non-Patent Document 3).
  • Papain cleavage occurs in the two heavy chains, and the Fab arm, in which the light chain is bound to the N-terminal part of the heavy chain by disulfide, is dilated from the Fc fragment, which is a dimer with the C-terminal half of the heavy chain disulfide-bonded.
  • Liberate All of the cysteines involved in these interchain disulfide bonds are clustered together in the middle of the heavy chain, making ⁇ -globulin Y-shaped.
  • Non-patent Documents 4 and 5 A more dynamic image of the ⁇ -globulin structure was revealed by electron microscopic analysis of the antibody-antigen complex 4), 5) (Non-patent Documents 4 and 5).
  • antibodies form cyclic dimers, trimers, tetramers, pentamers, and larger structures.
  • the Fab and Fc portions have the appearance of a rigid rod, but the angle between them varies from zero to 180 °, allowing them to crosslink antigens at distances up to 120 mm.
  • the antibody behaves as if all three parts are joined by a “hinge”, the name currently used for heavy chain regions containing interchain disulfides.
  • Non-Patent Document 6 reveals an extreme asymmetry of the Fab arm arrangement, which indicates that these distances from Fc And the difference in rotational displacement.
  • the hinges on adjacent heavy chains are separated from each other by a distance of 18 mm or less, but the Fab arms diverge at an angle of 148 ° along their main axes and rotate 158 ° along their depth axes. ing.
  • Non-Patent Documents 7 to 14 Non-Patent Documents 7 to 14).
  • immunoadhesins or Fc fusion proteins are cleaved into three fragments like antibodies by papain, and have a long plasma half-life, Fc receptor and complement binding, and cross the placenta It has many of the biological properties of IgG, including the ability to All have been shown to have therapeutic potential.
  • CD4 immunoadhesin prevents HIV-1 infection in chimpanzees
  • L-selectin immunoadhesin blocks neutrophil influx in mice
  • TNF receptor immunoadhesin is lethal. Mice were protected from toxic shock.
  • TNF receptor etanercept
  • CTLA-4 abatacept
  • IL-1 receptor rilonacept
  • romiplostim thrombopoietin analog
  • CD4 immunoadhesins for AIDS therapy, Nature 337, 525-531.
  • RA Mordenti, J., Lucas, C., Smith, D., Marsters, SA, Johnson, JS, Cossum, P., Chamow, SM, Wurm, FM, Gregory, T., Groopman, JE , DJ (1990) Biological properties of a CD4 immunoadhesin. Nature 344, 667-670.
  • the inventors have devised a chemical synthesis method based on native chemical ligation 17) that gives a quantitative yield of Fc fusion protein but is suitable for Fc molecules with native biological activity.
  • the inventors fused the 15 amino acid peptide 18) -21 ) , which has an immunodominant epitope of Alzheimer's A ⁇ (1-42) fibrils, and a non-between A ⁇ and Fc portion.
  • the protein chain was successfully incorporated. That is, by performing native chemical ligation under mild non-denaturing conditions, the ligand binding domain (A ⁇ peptide) was bound to IgG1 Fc dimers via individual oxyethylene oligomers of varying lengths.
  • MALDI-TOF developed by Tanaka et al. By applying MS 22), 23) , the structure of the non-protein chain was confirmed by ionization and desorption of adjacent protein regions.
  • MALDI-TOF MS analysis confirms the protein / non-protein / protein structure of a two-handed molecule, which allows complex protein-non-protein fusions to be desorbed / It was demonstrated to be detected by ionization.
  • symmetroadhesins that combine the target specificity of antibodies with the novel physical, chemical and biological properties of the non-protein hinge region.
  • the present invention includes the following inventions.
  • Non-peptide hinge-containing group represented by the general formula (I): XY-Asp-Lys-Thr-His-Thr (SEQ ID NO: 1)-(wherein X is composed of an amino acid or 2 to 50 amino acid residues) And a non-peptide hinge-containing flexible antibody-like molecule comprising an antibody Fc fragment bound to the non-peptide hinge-containing group.
  • X is ⁇ -amyloid (1-15) Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln (SEQ ID NO: 2), and Y is The flexible antibody-like molecule according to (1), which is a polyethylene glycol group having a degree of polymerization of 12 to 36, an antibody Fc fragment forms a dimer, and has two of the non-peptide hinge-containing groups.
  • Antibody-like molecules that can bind to the target with higher affinity (specifically, a smaller dissociation constant K D ) can be provided. Since our molecules with at least two hands bind to the target with very good affinity, improved antibodies are very promising for future development of antibody drugs.
  • Inset shows A ⁇ -PEG x -DK and THT-Fc6 fragments.
  • E The predicted sequence of the ligation site indicating the trypsin cleavage site and
  • F Theoretical m / z value of the tryptic digestion fragment derived from the ligation site.
  • the arrows indicate the positions of major peaks corresponding to Fc dimers with two A ⁇ 1-15 hands and one A ⁇ 1-15 hand, respectively, and Fc dimers without A ⁇ 1-15 hands. .
  • HMW represents a molecular species having a higher molecular weight.
  • FIG. SEC of A ⁇ -PEG x -Fc fusion protein (C) A ⁇ -PEG 24 -Fc; (D) A ⁇ -PEG 36 -Fc.
  • SDS-PAGE analysis of SEC chromatograms of four A ⁇ -PEG x -Fc fusion proteins (A) Overlay of four chromatograms obtained by injecting equal amounts of protein; and (B) A ⁇ - It is a chromatogram fraction gel analysis of Fc (C) A ⁇ -PEG 12 -Fc, (D) A ⁇ -PEG 24 -Fc and (E) A ⁇ -PEG 36 -Fc.
  • MS spectra of two major peaks of the SEC chromatogram of A ⁇ -PEG x -Fc fusion protein (A) A ⁇ -Fc; (B) A ⁇ -PEG 12 -Fc.
  • the inset shows the fractions selected from each chromatogram for MS analysis (similar in FIG. 10).
  • a ⁇ -two-handed and one-handed A ⁇ - model showing the generation of a one-handed fusion protein heterodimer by cleavage of a two-handed fusion protein homodimer
  • It is a conceptual diagram of the structure of a PEG x -Fc fusion protein. The sequence of the IgG1 hinge region is shown in bold. It is a surface plasmon resonance analysis (SPR) result of anti-A ⁇ mAb (6E10) binding by A ⁇ -PEG x -Fc fusion protein ((A) A ⁇ -Fc, (B) A ⁇ -PEG 12 -Fc). An actual binding curve trace is shown in (i) and a fitting curve of the binding curve is shown in (ii) (the same applies to FIGS. 13 and 14).
  • SPR surface plasmon resonance analysis
  • SPR surface plasmon resonance analysis
  • the non-peptide hinge-containing flexible antibody-like molecule of the present invention comprises a molecular recognition system constructing substance X, an alkylene oxide group-containing group Y bound to the molecular recognition system constructing substance X, and an antibody hinge region structure bound to the alkylene oxide-containing group.
  • the molecular recognition system constructing substance X may be one of a guest substance (target molecule) and a host substance (molecular recognition substance) that can generally interact by non-covalent bonds.
  • amino acid, peptide or poly It may be a peptide (including a protein). In particular, it may be an amino acid or a peptide or polypeptide consisting of 2 to 50 amino acid residues.
  • the guest substance includes various physiologically active substances, and is preferably a disease-related substance. Specific examples include amyloid ⁇ (a peptide chain consisting of all or part of amyloid ⁇ , which is a well-known sequence).
  • peptide chain containing at least the amyloid ⁇ (3-7) sequence EFRHD (SEQ ID NO: 3), which is an epitope of amyloid ⁇ , and the amyloid ⁇ (3-7) sequence, amyloid ⁇ (1-15)
  • EFRHD SEQ ID NO: 3
  • amyloid ⁇ 3-7 sequence
  • amyloid ⁇ 3-7 sequence, amyloid ⁇ (1-15)
  • Examples thereof include a peptide chain comprising the sequence DAEFRHDSGYEVHHQ (SEQ ID NO: 2) and amyloid ⁇ (1-42) DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA (SEQ ID NO: 4).
  • Molecular recognition means that a molecular recognition site of a molecular recognition substance recognizes and interacts with an epitope of a specific target molecule by noncovalent bonding, for example, a binding rate constant ka (unit 1 / Ms) is at least 10 3 or It can be specifically bound with an affinity of 10 4 , for example 10 3 to 10 5 or 10 4 to 10 5 .
  • the alkylene oxide-containing group Y is a divalent group, and can be, for example, an alkylene oxide-containing group having 2 to 6 carbon atoms. More specifically, the alkylene oxide in the alkylene oxide-containing group is ethylene oxide or propylene oxide.
  • the alkylene oxide-containing group is preferably a polyalkylene oxide-containing group. Accordingly, a polyalkylene glycol group generated by polymerization of an alkylene glycol having 2 to 6 carbon atoms (for example, a polymerization degree of 2 to 50) is preferable.
  • a polyethylene glycol group (a group generated by polymerization of ethylene glycol) and a polypropylene glycol group (a group generated by polymerization of 1,2-propanediol or 1,3-propanediol).
  • a polyethylene glycol group or a polyethylene glycol group having a polymerization degree of 2 to 50, more preferably 12 to 36, can be selected.
  • the alkylene oxide-containing group Y provides flexibility or flexibility and extensibility to the hinge region of the antibody-like molecule of the present invention.
  • antibodies include IgG1, IgG2, IgG3, and IgG4.
  • the antibody may be from any animal, but in particular from humans.
  • change from a genetic engineering viewpoint is permitted.
  • antibody hinge region constituent sequences include antibody upper hinge region constituent sequence Z U , antibody core hinge region constituent sequence Z C , and antibody lower hinge region constituent sequence Z L.
  • the antibody-like molecule of the present invention includes all these sequences. May be included.
  • the core hinge region is at least two cysteines adjacent to the C-terminal side of the upper hinge region and the N-terminal side of the lower hinge region and forming an interchain disulfide bridge between the heavy chains in the antibody hinge region.
  • a region having a residue is a part or all of the sequences constituting each hinge region.
  • the upper hinge area configuration sequence Z U may be a partial sequence of the upper hinge region domain may be a short sequence made of, for example, 3-5 amino acid residues.
  • the upper hinge area configuration sequence Z U is DKTHT a partial sequence of the IgG1 upper hinge region (SEQ ID NO: 1). Furthermore, in this case, in the antibody-like molecule of the present invention, it is preferable that no cysteine residue is bound to the N-terminus of the DKTHT sequence.
  • the core hinge region construction sequence Z C has at least two cysteine residues to form interchain disulfide bridge between heavy chains, those of N-terminal side of those two cysteine residues, the core hinge region preferably it corresponds to the N-terminal amino acid residue of the configuration sequence Z C.
  • CPPC SEQ ID NO: 5
  • Antibodies lower hinge region construction sequence Z L as an example, a PAELLGGP a sequence of IgG1 antibodies lower hinge region (SEQ ID NO: 6).
  • Antibody Fc fragment is a polypeptide that constitutes part or all of an antibody Fc region. Specifically, it may have a second double-stranded constant region (CH2) and a third triple-stranded constant region (CH3). As an example, it may consist of a sequence containing at least a part of SVFLFPPKPK (SEQ ID NO: 7). The Fc fragment may form a dimer or higher multimer (eg, a maximum decamer).
  • Antibody-like molecules of the present invention when the Fc fragment forms a dimer, a non-peptide hinge comprising a molecular recognition system built substance X, and an alkylene oxide-containing group Y, and antibody upper hinge region construction sequence Z U It has two part-containing groups (XYZ U -group).
  • Such an antibody-like molecule may be described as a two-handed antibody-like molecule.
  • the Fc fragment when the Fc fragment forms a dimer or more multimer, it can have two or more non-peptide hinge-containing groups (XYZ U -group), whereby 2 It can be an antibody-like molecule with more than one hand.
  • the counterpart to X that constitutes a molecular recognition system in which the antibody-like molecule of the present invention can participate is determined by those skilled in the art according to the nature of X.
  • the counterpart substance may be a monomer molecule, a multimer or dimer of molecules, or an aggregate.
  • the counterpart substance may be derived from a living body or non-living body.
  • the counterpart substance may be a low molecular weight molecule (for example, a molecular weight of 80,000 or less, or 30,000 or less). For example, it can be a low molecular weight protein such as a cytokine.
  • the antibody-like molecule of the present invention is in a state in which at least one of two or more hands always binds to the counterpart substance due to the flexibility provided by the alkylene oxide-containing group Y, so that the hand grasps the counterpart substance. Easy to maintain. That is, it makes it difficult to dissociate the counterpart substance.
  • the binding rate constant ka (unit 1 / Ms) by each hand is as described above, and is equivalent to the binding rate constant ka when the molecular recognition system constructing substance X is a single molecule, while the dissociation rate.
  • the constant kd (unit 1 / s) is smaller than that in this case.
  • the dissociation constant K D (unit M) is smaller than that in this case, for example, 10 ⁇ 9 , 10 ⁇ 10 , 10 ⁇ 11 , or 10 ⁇ 12 at the maximum, for example, 10 ⁇ 13 to 10 ⁇ 9 . .
  • the application of the antibody-like molecule of the present invention may be any application using a molecular recognition system.
  • a molecular recognition system for example, in-vitro diagnostic agents, molecular target drugs, ELISA (Enzyme-Linked Immunosorbent Assay) reagents, probes for molecular imaging (PET (positron emission tomography), optical imaging) and the like can be mentioned.
  • PET positron emission tomography
  • optical imaging positron emission tomography
  • those skilled in the art can select an appropriate molecular recognition system constructing substance X and, if necessary, further include a functional group (such as a signal group) in the antibody-like molecule.
  • the antibody-like molecule of the present invention is prepared as follows. And molecular recognition system built substance X, and an alkylene oxide-containing group Y, comprising the antibody of the upper hinge region construction sequence Z U, providing a non-peptide hinge containing thioester (XYZ U -COSR).
  • COSR is (can be derived from the carboxyl group) of the C-terminal amino acid residues of an antibody upper hinge region construction sequence Z U represents a thioester group
  • R represents an organic group (e.g., straight chain or branched having 1 to 18 carbon atoms An alkyl group, an aryl group having 6 to 18 carbon atoms, or an aralkyl group in which they are combined).
  • the molecular recognition system constructing substance X may be derived from living organisms or non-living organisms, and is any method known to those skilled in the art, such as isolation from natural products, organic chemical synthesis, biochemical production, and semi-synthesis. You may get it at Biochemical production includes enzymatic synthesis / degradation and genetic engineering synthesis (host cells may be prokaryotic cells such as bacteria and eukaryotic cells such as yeast and animal cells) (see below). The same applies to other elements).
  • Antibodies upper hinge region construction sequence Z U may be derived from biological or non-biological, well known to those skilled in the art, isolation from natural products, organic chemical synthesis, any biochemical production, and semi-synthetic such as You may acquire by the method of.
  • molecular recognition system constructed substance X and antibodies upper hinge region construction sequence Z U each element obtained in a state of being connected via an alkylene oxide-containing group Y may be carried out by methods known to those skilled in the art.
  • the thioester group can be appropriately derived by those skilled in the art from the C-terminal carboxyl group of the antibody upper hinge region constituting sequence.
  • an antibody Fc fragment-containing peptide having an antibody Fc fragment and a cysteine residue at the N-terminus is prepared.
  • the antibody Fc fragment-containing peptide may have an amino acid residue or a peptide chain L between the N-terminal cysteine residue and the Fc fragment (Cys-L-Fc (L is an amino acid residue or peptide chain). Indicated).
  • the antibody Fc fragment-containing peptide preferably has at least one other cysteine residue between the cysteine residue and the antibody Fc fragment (for example, Cys-L 1 -Cys-L 2 -Fc ( L 1 and L 2 are represented by amino acid residues or peptide chains).
  • an antibody Fc fragment-containing peptide comprises the antibody core hinge region construction sequence Z C
  • the cysteine residues of the N-terminal is equivalent to the N-terminal cysteine residue of the antibody core hinge region construction sequence Z C.
  • the at least one other cysteine residue is also preferably contained in the antibody core hinge region constituting sequence Z C (for example, Cys-L 1 -Cys-L 2 -Fc (Cys-L 1 -Cys Is indicated by the antibody core hinge region constituent sequence Z C )).
  • the antibody Fc fragment-containing peptide may further contain an antibody lower hinge region constituting sequence Z L (for example, Cys-L 1 -Cys-L 2 -Fc (L 2 is indicated by antibody lower hinge region constituting sequence Z L )) .
  • Antibody Fc fragment-containing peptides can be obtained by peptide preparation methods well known to those skilled in the art. Therefore, it may be obtained by any method known to those skilled in the art, such as isolation from natural products, organic chemical synthesis, biochemical production, semi-synthesis, and combinations of these methods.
  • a native chemical ligation reaction occurs by bringing a non-peptide hinge-containing thioester (XYZ U -COSR) and an antibody Fc fragment-containing peptide (eg, Cys-L-Fc) into contact with each other.
  • the reaction can be performed by incubating in a buffer solution under non-heating temperature conditions (room temperature) for 6 to 16 hours.
  • a buffer solution under non-heating temperature conditions (room temperature) for 6 to 16 hours.
  • FIG. 1 shows a native chemical ligation mechanism by taking an example of the present invention.
  • the non-peptide hinge-containing thioester contains amyloid ⁇ (1-15) DAEFRHDSGYEVHHQ (SEQ ID NO: 2) as the molecular recognition system constructing substance X and polyethylene glycol (PEG) x having a polymerization degree x as the alkylene oxide-containing group Y.
  • DAEFRHDSGYEVHHQ SEQ ID NO: 2
  • PEG polyethylene glycol
  • a DKTHT as antibody upper hinge region construction sequence Z U (SEQ ID NO: 1), antibody Fc fragments containing peptides, CPPC as antibodies core hinge region construction sequence Z C (SEQ ID NO: 5) and the antibody lower hinge region construction sequence Z L
  • a peptide having PAELLGGP SEQ ID NO: 6
  • an S-acyl intermediate is reversibly formed by a transthioesterification reaction (FIG. 1A), and S-acyl is spontaneously transferred to N-acyl in the S-acyl intermediate (FIG. 1B).
  • a peptide bond is irreversibly formed through a five-membered ring intermediate (FIG. 1C).
  • Fc6 Recombinant Fc protein (referred to as Fc6) was expressed in Chinese hamster ovary (CHO) cells and purified by protein A affinity chromatography.
  • CHO Chinese hamster ovary
  • SHH human sonic hedgehog homologue
  • Fc6 protein production was performed by transient expression in CHO-DG44 cells adapted to serum-free suspension medium. Transient transfections were performed as described previously 25) using polyethylenimine as a transfection agent to form complexes with DNA under high density conditions. A seed train culture was maintained in 50 tubes of a TubeSpin® bioreactor and the amount was scaled up to produce sufficient biomass for transfection.
  • Transfection was performed in 0.5 liter to 1 liter culture medium. Culture at this scale was maintained in 2 liter or 5 liter Schott bottles with caps with vent holes. The bottle was shaken at 180 rpm on a Kuhner incubator shaker with humidification and control of CO 2 to 5% by volume. The cell culture was collected after 10 days, centrifuged, sterile filtered and purified. RProtein A Fast Flow (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) pre-equilibrated with Dulbecco's phosphate buffered saline (PBS) (UCSF Cell Culture Facility, San Francisco, CA) without Ca or Mg salts. The culture supernatant was applied to the packed column.
  • PBS Dulbecco's phosphate buffered saline
  • Forming peptide thioesters by treating crude protected peptides overnight with DIC / HOBt / DIEA and thiophenol (peptides 1, 2, 5) or benzyl mercaptan (peptides 3, 4) in DCM did. After concentration, the crude protected peptide thioester was precipitated by triturating multiple times with cold ether and then centrifuged. Deprotection was performed by treating the crude protected product with 95: 2.5: 2.5 TFA / TIS / H 2 O (volume ratio) at room temperature for 2 hours.
  • the deprotected peptide thioester is purified by preparative RP-HPLC in a H 2 O-acetonitrile (0.1 vol% TFA) system to yield 91-95% The final product was obtained with purity and the desired MS.
  • reaction was adjusted to pH 7.0 using 0.05 v / v 1 M Tris-HCl, pH 9.0, and purchased from GE Healthcare (Piscataway, NJ) HiTrap Protein A HP Purified on column. Reaction products were analyzed by SDS polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions using NuPAGE® Novex Bis-Tris Midi Gel (10%) purchased from Invitrogen (Carlsbad, CA). analyzed. Proteins were visualized using Silver Stain Plus or Coomassie Brilliant Blue R-250 purchased from Bio-Rad (Hercules, CA).
  • the gel pieces were dehydrated in 150 ⁇ l of 100% ACN for 10 minutes at room temperature and then dried using Speed Vac® for 30 minutes. Sulfide bonds were reduced for 1 hour at 37 ° C. by adding 100 ⁇ l volume of a solution containing 10 mM DTT in 50 mM NH 4 HCO 3 aqueous solution to the dried gel. After removing the solution, the protein was alkylated in 100 ⁇ l of a solution containing 55 mM IAA in 50 mM NH 4 HCO 3 aqueous solution for 1 hour at room temperature in the dark. The gel pieces were then washed with 150 ⁇ l of 50 mM NH 4 HCO 3 aqueous solution and then dehydrated in 150 ⁇ l in 100% ACN.
  • MALDI-TOF MS analysis MALDI mass spectra were obtained using an AXIMA performance MALDI-TOF mass spectrometer (Shimadzu / KRATOS, Manchester, UK) equipped with a 337 nm nitrogen laser in positive ion reflectron mode and linear mode. ⁇ -Cyano-4-hydroxy-cinnamic acid (CHCA) and sinapinic acid (SA) were obtained from LaserBio Labs (Sophia-Antipolis Cedex, France). As a MALDI matrix, CHCA was used for trysin-digested protein and SA was used for SEC separated protein.
  • the matrix solution was prepared by dissolving 5 mg of the matrix compound in 0.5 ml of 50% v / v ACN aqueous solution containing 0.1% v / v TFA.
  • the sample solution (0.5 ⁇ l) was mixed with an equal volume of matrix solution on the target plate and then dried at room temperature for MALDI-TOF MS analysis.
  • m / z values are 2 pmol of [angiotensin I + H + ] (m / z 1296.7), [angiotensin II + H + ] (m / z 1046.5), [[Glu1] -fibrinopeptide B + H + ], respectively.
  • SEC Size Exclusion Chromatography
  • reaction product purified with protein A was poured onto a TSKgel SuperSW3000 [4.6 mm ID ⁇ 30 cm L] column. The molecular species ratio was calculated from the area under each peak.
  • reaction product purified with protein A was added to a 0.5 ml Amicon Ultracel-3K centrifugal filter ( Millipore, Cork, IR), first concentrated 10-fold, then 50 ⁇ l of each concentrate in 4 TSKgel columns (2 G2000SW XL and 2 G3000SW XL [7.8 mm ID ⁇ 30 cm L] column).
  • SPR testing was performed using a Biacore T100 instrument (Biacore AB, Uppsala, Sweden).
  • Ligand, biotin-labeled 6E10 monoclonal antibody (Covance, Princeton, NJ) was immobilized on a CAP sensor chip, Series S at a concentration of 10 mg / ml in PBS using the Biotin CAPture Kit (GE Healthcare, Piscataway, NJ) did.
  • the sensor chip was loaded with streptavidin capture reagent and regenerated according to the manufacturer's instructions, including an additional regeneration step using 0.25 M NaOH in 30% acetonitrile.
  • Binding of A ⁇ symmetroadhesin and A ⁇ peptide was performed at 25 ° C. in 10 mM Hepes buffer, pH 7.4, 150 mM NaCl, 3 mM EDTA, and 0.005 vol% Tween-20. Data were evaluated using Biacore T100 Evaluation Software, version 2.0.3.
  • Nucleophilic acyl substitution with both N-terminal sulfhydryls of the Fc6 molecule as the nucleophile leads to a thioester-linked intermediate with two A ⁇ thioesters (FIG. 1B). Subsequent nucleophilic attack by both Fc6 N-terminal amino groups followed by intramolecular rearrangement forms an irreversible peptide bond between Fc6 and the two A ⁇ peptides (FIG. 1C).
  • the IgG1 hinge region consists of three cysteine residues, namely 220 Cys in the upper hinge region (CDKTHT (SEQ ID NO: 8)) that is normally involved in the disulfide bond between the heavy and light chains, as well as the two heavy chains. 226 Cys and 229 Cys within the core hinge region (CPPC (SEQ ID NO: 5)), optionally present in an interchain disulfide bond between.
  • CPPC SEQ ID NO: 5
  • the signal sequence of the sonic hedgehog homologue (SHH) was selected for secretion and processing of the Fc protein since its own mature polypeptide has an N-terminal cysteine.
  • the pCDNA3-SHH-IgG1-Fc11 construct efficiently induced Fc6 protein synthesis after transient transfection of Chinese hamster ovary (CHO) cells.
  • FIG. 2 shows that the Fc6 product obtained by affinity purification of the transfected CHO cell supernatant has an apparent molecular weight of 27,000 daltons on SDS-PAGE under reducing conditions (lane 1).
  • Fc6 protein was found to be well expressed in transient transfection, reaching levels above 0.8 g / L, binding quantitatively, and eluting from protein A affinity resin.
  • Fc6 Fc6 to react with 5 different C-terminal thioesters (listed in Table 1) was investigated. All five thioesters contain a portion of the upper hinge region (DKTHT (SEQ ID NO: 1)) at its C-terminus. Four of the five thioesters also contain a 15 amino acid sequence (DAEFRHDSGYEVHHQ (SEQ ID NO: 2)) derived from human A ⁇ protein linked at the C-terminus to the N-terminus of the upper hinge region. In addition, three of the A ⁇ -containing thioesters incorporated a non-peptide chain between the A ⁇ sequence and the upper hinge sequence. The non-peptide portion in these peptides consisted of oxyethylene oligomers (PEG) with chain lengths of 12, 24, or 36, respectively.
  • PEG oxyethylene oligomers
  • Figure 2 shows that Fc6 reacted quantitatively with all five thioesters, resulting in a product ladder of increasing size on SDS-PAGE under reducing conditions (lanes 2-6). .
  • the addition of PEG 12 oligomers increased in size on SDS-PAGE, similar to the 15 amino acid residue A ⁇ sequence (compare Figure 2, lanes 2-4). This indicates that one amino acid residue and one oxyethylene monomer unit contributes to the contour length as well, consistent with the comparable length of these trans structures (about 3.5-4 mm ) 16) .
  • the addition of PEG 24 and PEG 36 further increased the size relative to PEG 12 , and this increase was consistent (compare Figure 2, lanes 3-6).
  • each reaction product contains two A ⁇ s. It may be a mixture of a homodimer with a “hand”, a heterodimer with a single “A ⁇ ” hand, and an unreacted Fc6 homodimer. Therefore, size exclusion chromatography (SEC) was used to investigate the subunit molecular structure of the four A ⁇ symmetroadhesins.
  • FIGS. 6A, 6B, 7A and 7B show that all four of the symmetroadhesin reaction products showed two major peaks. The size of these two major peaks increased in the order A ⁇ -Fc ⁇ A ⁇ -PEG 12 -Fc ⁇ A ⁇ -PEG 24 -Fc ⁇ A ⁇ -PEG 36 -Fc.
  • Table 2 shows the percentage of A ⁇ -PEG x -Fc symmetroadhesin product determined by size exclusion chromatography (SEC). The proportion of each of the four reaction products shown in FIGS. 3 to 4 was calculated directly from the respective peak areas. HMW represents a molecular species with a higher molecular weight, indicating that ND was not detected. As shown in Table 2, the two-handed symmetroadhesin candidate was the major product observed in each of the four reactions (66-74%). Finally, three of the reaction products also exhibited minor higher molecular weight (HMW) peaks (FIGS. 6A, 7C, 7D). For the two major peaks, the size of this peak increased with the length of the oxyethylene oligomer.
  • SEC size exclusion chromatography
  • the candidate peak for a one-handed symmetroadhesin consists of the expected A ⁇ -PEG x -Fc product in a 1: 1 ratio, and apparently unreacted Fc6, so that A heterodimeric structure was confirmed.
  • MW (observed) 1 has two hands (Two-Handed) and one hand (One-Handed) in the four reactions shown in FIGS. 6 to 7 (Reaction).
  • ⁇ MW 2 is the molecular weight difference between the two-handed (Two-Handed) and one-handed (One-Handed) products in each reaction.
  • the results shown in Table 3 show that the molecular weight difference ( ⁇ MW) between the A ⁇ -PEG x -Fc reaction product and the apparently “unreacted” Fc6 is consistently about 238 Daltons higher than expected. This led to an unexpected finding.
  • the DAEFRHDSGYEVHHQ sequence (SEQ ID NO: 2) is reactive with human A ⁇ (1-42) fibrils, including 6E10 18) , PFA1 and PFA2 19) , WO2 20) , and 12A11, 10D5, and 12B4 21) It is well suited for this purpose because it contains a major epitope (EFRHD (SEQ ID NO: 3)) recognized by several monoclonal antibodies. We therefore characterized the binding of our A ⁇ symmetroadhesin to one of these antibodies (6E10) using surface plasmon resonance (SPR). We compared the binding of A ⁇ peptide containing the DAEFRHDSGYEVHHQ sequence (SEQ ID NO: 2), which was expected to bind 6E10 in one handed manner.
  • EFRHD major epitope
  • Figures 12-14 show the results obtained when 6E10 was immobilized on the surface of the SPR chip. All four A ⁇ symmetroadhesins containing a 15 amino acid A ⁇ sequence ( Figure 12A, Figure 12B, Figure 13A, Figure 13B), and two A ⁇ peptides: pen-A ⁇ and A ⁇ -pra (Table 1) Specific binding was observed in (FIG. 14E, FIG. 14F). No binding was observed with Fc6 or DKTHT-Fc6 symmetroadhesin (FIG. 2, lane 2), confirming that the binding was specific for the A ⁇ sequence. 6E10 binding by A ⁇ symmetroadhesin was qualitatively and quantitatively different from that of A ⁇ peptide (FIGS. 12-14).
  • Table 4 shows the kinetic results of Mab-6E10 binding measured by surface plasmon resonance.
  • the kinetic binding curves for both A ⁇ peptides fit well with the 1: 1 Langmuir model (x 2 ⁇ 0.1), consistent with single hand binding.
  • the four A ⁇ symmetroadhesins did not fit well with the 1: 1 Langmuir model (x 2 > 10), indicating two classes of binding sites.
  • a good fit was obtained for four A ⁇ symmetroadhesins using two exponential models (x 2 ⁇ 1.1).
  • a ⁇ -Fc, A ⁇ -PEG 12 -Fc, A ⁇ -PEG 24 -Fc, and A ⁇ -PEG 36 -Fc symmetroadhesins are all 2 to 5 orders of magnitude higher than the corresponding low affinity sites. Presenting a much higher affinity site, this provided strong evidence of the presence of two-handed binding of 6E10 by a significant fraction (19-27%) of A ⁇ symmetroadhesin (Table 4) .
  • Proteins prefer to form compact, spherical or fibrous structures, minimizing their exposure to solvents. This tendency is inherent in both polypeptide backbones that have a propensity for hydrogen-bonded secondary structure and side chain interactions that promote tertiary folding. Thus, previous efforts to introduce “flexibility” to antibodies using peptides have been largely inadequate. For example, it is common to use a combination of an amino acid that favors solvent interaction (eg, serine) and an amino acid that breaks the helical structure (eg, glycine). This technique is useful for making fusion proteins such as single chain antibody fragments (scFv), but the resulting structure is fairly compact and does not involve any evidence of extensibility (see, eg, ref. 20 Wanna). Furthermore, such sequences are prone to further problems because of their intrinsic immunogenicity and susceptibility to proteolysis.
  • an amino acid that favors solvent interaction eg, serine
  • an amino acid that breaks the helical structure eg, glycine
  • the inventors sought a new strategy for introducing non-protein chains into the hinge region by chemical semisynthesis.
  • Our results demonstrate the quantitative yield of antibody-like molecules with non-protein hinges that connect two A ⁇ 1-15 peptides with Fc dimers. These molecules form a two-handed native dimer that exhibits high affinity for anti-A ⁇ monoclonal antibodies.
  • Our A ⁇ -PEG x -Fc dimer with a non-protein hinge part has an affinity 2 to 5 orders of magnitude higher than the cognate peptide and binds much better than the A ⁇ -Fc dimer Seems to do.
  • a complete interpretation of these results awaits the determination of the three-dimensional structure of the A ⁇ 1-15 peptide, including the immunodominant epitope of Alzheimer's A ⁇ (1-42) fibrils.
  • FIG. 2 shows that it also appears to have a significant effect on the hydrodynamic radius of the Fc protein, as demonstrated by size exclusion chromatography of A ⁇ -PEG 36 -Fc molecules.
  • MALDI-TOF MS appears to be ideally suited for the characterization of our novel protein-nonprotein-protein molecules.
  • the majority contributed by the hybrid structure can be efficiently characterized not only in trypsin digests, but also in two-handed and one-handed native Fc dimers. Ionization and desorption appear to be mediated by adjacent protein sequences in our protein-non-protein hybrid molecules, which means that this approach to a wide range of chemically distinct polymer chains. Indicates the application.
  • Matrixassisted laser desorption / ionization- quadrupole ion trap-time of flight mass spectrometry sequencing resolves structures of unidentified peptides obtained by in-gel tryptic digestion of haptoglobin derivatives from human plasma proteomes.Proteomics 3, 851-858. 24) Kabat, EA, Wu, TT, Perry, HM, Gottesman, KS and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, 5th ed.National Institutes of Health, Bethesda, MD.

Abstract

 より高い親和性で標的に結合することができる抗体を提供する。一般式(I):XY-Asp-Lys-Thr-His-Thr(配列番号1)-で示される非ペプチドヒンジ部含有基(式中、Xはアミノ酸又は2~50個のアミノ酸残基から構成されるペプチドを表し、Yはアルキレンオキシド含有基を表す。)と、前記非ペプチドヒンジ部含有基に結合した抗体Fc断片とを含む、非ペプチドヒンジ部含有フレキシブル抗体様分子。

Description

非ペプチドヒンジ部含有フレキシブル抗体様分子
(関連出願への相互参照)
 この出願は、2011年10月31日に出願された米国仮特許出願番号第61/553,910号の米国特許法119条(e)項の下での利益を主張し、上記仮出願は、その全容が参照として本明細書に援用される。
 本発明は、人工抗体に関する。より具体的には、本発明は、非ペプチドヒンジ部を含有するフレキシブル抗体様分子に関する。
 抗体分子の本質は、そのY形状にある。1940年までに、Paulingは、抗体は3つの領域を有することを想定し、中央部分が正常なγ-グロブリンと同じ立体構造を有し、2つの端部が抗原の表面に相補的である可変性の立体構造を有することを正確に予測していた1)(非特許文献1)。1958年に、Porterは、γ-グロブリンが3つの球状セクションから形成されていることを証明し、これらのセクションがパパインによって分割され得ることを実証した2)(非特許文献2)。これらのセクションのうち1つの部分(Fc)の配列は、すべてのγ-グロブリンにおいて本質的に保存されていることが示され、他の2つの部分(Fab)は、分子によって配列が相当に変化することが示された。1969年までに、Edelmanらは、Fab領域とFc領域の間の接続についての完全な説明を提示した3)(非特許文献3)。パパイン切断は2本の重鎖内で起こり、軽鎖がジスルフィドによって重鎖のN末端部分に結合しているFabアームを、重鎖のC末端半分がジスルフィド結合した二量体であるFc断片から遊離する。これらの鎖間ジスルフィド結合に関与するシステインのすべては、重鎖の中央で密集することにより、γ-グロブリンはY形状となる。
 γ-グロブリン構造のより動的な像は、抗体-抗原複合体の電子顕微鏡分析から明らかになった4), 5)(非特許文献4及び5)。二価ハプテンの存在下で、抗体は、環状の二量体、三量体、四量体、五量体、およびより大きい構造を形成する。Fab部分およびFc部分は、剛体棒の外観を有するが、これらの間の角度がゼロから180°まで変化することにより、これらが最大120Åの距離で抗原を架橋することを可能にしている。抗体は、3つすべての部分が、鎖間ジスルフィドを含む重鎖領域について現在では使用される名称である「ヒンジ部」によって結合されているように振る舞う。IgG1においてはわずか10アミノ酸であるその小さいサイズにもかかわらず、ヒンジ部は、その立体構造において相当な変化を示す。完全長のヒンジ部を有するヒトIgG1の1つの利用可能な結晶構造6)(非特許文献6)により、Fabアームの配置の極端な非対称が明らかになり、このことは、Fcからのこれらの距離および回転変位の差異を反映している。隣接する重鎖上のヒンジ部は、互いに18Å以下の距離をもって離れているが、Fabアームは、これらの主軸に沿って148°の角度で分岐し、これらの奥行き軸に沿って158°回転している。
 1989年の初めに、Caponらは、IgGのFabアームは、CD4の細胞外ドメイン、L-セレクチン、および腫瘍壊死因子(TNF)受容体を含めた様々な他のタンパク質と取り替えることができることを報告した7)~14)(非特許文献7~14)。これらのY形状抗体様分子(イムノアドヘシンまたはFc融合タンパク質と呼ばれる)は、パパインによって抗体のように3つの断片に切断され、長い血漿半減期、Fc受容体および補体結合、ならびに胎盤を横断する能力を含めた、IgGの生物学的性質の多くを有する。すべてが治療可能性を有することが示された。具体的には、CD4イムノアドヘシンは、チンパンジーにおいてHIV-1感染症を予防し、L-セレクチンイムノアドヘシンはマウスにおいて好中球流入を遮断し、TNF受容体イムノアドヘシンは致死性の内毒素ショックからマウスを保護した。血液中でのこれらの長い半減期7)(非特許文献7)は、特に有益であると証明され、5つの治療薬、すなわち、エタネルセプト(TNF受容体)、アバタセプト(abatacept)(CTLA-4)、アレファセプト(LFA-3)、リロナセプト (IL-1受容体)、およびロミプロスチム(トロンボポエチン類似体)の承認に至った15)(非特許文献15)。
Pauling, L. (1940) A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. 62, 2643-2657. Porter, R.R. (1958) Separation and isolation of fractions of rabbit gamma-globulin containing the antibody and antigenic combining sites. Nature 182, 670-671. Edelman, G.M., Cunningham, B.A., Gall, W.E., Gottlieb, P.D., Rutishauser, U. and Waxdal, M.J. (1969) The covalent structure of an entire .Gimmunoglobulin molecule. Proc. Natl. Acad. Sci. U.S.A. 63, 78-85. Feinstein, A. and Rowe, A.J. (1965) Molecular mechanism of formation of an antigen-antibody complex. Nature 205, 147-149. Valentine, R.C. and Green, N.M. (1967) Electron microscopy of an antibody hapten complex. J. Mol. Biol. 27, 615-617. Saphire, E.O., Stanfield, R.L., Crispin, M.D., Parren, P.W., Rudd, P.M., Dwek, R.A., Burton, D.R. and Wilson, I.A. (2002) Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 319, 9-18. Capon, D.J., Chamow, S.M., Mordenti, J., Marsters, S.A., Gregory, T., Mitsuya, H., Byrn, R.A., Lucas, C., Wurm, F.M., Groopman, J.E., Broder, S. and Smith, D.H. (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337, 525-531. Byrn, R.A., Mordenti, J., Lucas, C., Smith, D., Marsters, S.A., Johnson, J.S., Cossum, P., Chamow, S.M., Wurm, F.M., Gregory, T., Groopman, J.E. and Capon, D.J. (1990) Biological properties of a CD4 immunoadhesin. Nature 344, 667-670. Chamow, S.M., Peers, D.H., Byrn, R.A., Mulkerrin, M.G., Harris, R.J., Wang, W.C., Bjorkman, P.J., Capon, D.J. and Ashkenazi, A. (1990) Enzymatic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. Biochemistry 29, 9885-9891. Ward, R.H., Capon, D.J., Jett, C.M., Murthy, K.K., Mordenti, J., Lucas, C., Frie, S.W., Prince, A.M., Green, J.D. and Eichberg, J.W. (1991) Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin. Nature 352, 434-436. Watson, S.R., Imai, Y., Fennie, C., Geoffroy, J.S., Rosen, S.D. and Lasky, L.A. (1990) A homing receptor-IgG chimera as a probe for adhesive ligands of lymph node high endothelial venules. J. Cell Biol. 110, 2221-2229. Watson, S.R., Fennie, C. and Lasky, L.A. (1991) Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature 349, 164-167. Ashkenazi, A., Marsters, S.A., Capon, D.J., Chamow, S.M., Figari, I.S., Pennica, D., Goeddel, D.V., Palladino, M.A. and Smith, D.H. (1991) Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc. Natl. Acad. Sci. U.S.A. 88, 10535-10539. Ashkenazi, A., Capon, D.J. and Ward, R.H. (1993) Immunoadhesins. Int. Rev. Immunol. 10, 219-227. Reichert, J.M. (2011) Antibody-based therapeutics to watch in 2011. MAbs 3, 76-99.
 より高い親和性で標的に結合することができる抗体が大いに必要とされている。
 上述の承認された治療抗体は、多量体タンパク質である標的に対するものである。このことは、もし両アームで特定の標的分子をつかむことができるとすれば、治療抗体が改善され得ることを示す。残念ながら、この作業は、ヒンジ部が通常Fabアームを互いに離して向けるので簡単明瞭でない。外側に向かうアームは、細菌などの大きい疾患標的をつかむように進化した可能性があるが、内側に向かうアームがあるとすれば、タンパク質(例えば、TNF)などのより小さい標的をつかみやすくなるだろう。後者は、ヒンジ部が柔軟であるだけでなく、Fcから少なくとも数ナノメートルの距離まで伸長可能であること(多くの型のポリマー鎖において見出されるが、ポリペプチドにおいて一般に欠如している性質16)の組合せ)をおそらく必要とする。
 魅力的な解決策は、非タンパク質鎖を使用することによって、柔軟でもあり伸長可能でもある抗体ヒンジ部を作り出すことである。本発明者らは、これらの目的に向けた著しい成果をここに説明する。
 本発明者らは、Fc融合タンパク質の定量的収率を与えるが、ネイティブで生物学的活性を有するFc分子に適切な、ネイティブケミカルライゲーション17)に基づく化学的合成法を考案した。本発明者らは、より柔軟で伸長可能であり、2本の手で結合することができる非タンパク質ヒンジ領域を有する抗体様分子であるシンメトロアドヘシン(symmetroadhesin)を作製するために新規化学的合成法を報告する。
 この手法を使用して、本発明者らは、アルツハイマーのAβ(1~42)原線維の免疫優性エピトープを持つ15アミノ酸ペプチド18)~21)を融合し、AβとFc部分との間に非タンパク質鎖を組み込むことに成功した。すなわち、ネイティブケミカルライゲーションを穏やかな非変性条件下で実施することによって、リガンド結合ドメイン(Aβペプチド)を、様々な長さの個々のオキシエチレンオリゴマーを介してIgG1 Fc二量体に結合させた。2本の手を持つAβ-Fc融合タンパク質が定量的収率で得られ、表面プラズモン共鳴によってコントロールのAβペプチドより少なくとも2桁小さいKDで抗Aβ抗体に結合することを示した。
 Tanakaらよって開発されたMALDI-TOF MS22)、23)を適用することによって、隣接するタンパク質領域のイオン化および脱離によって、非タンパク質鎖の構造を確認した。MALDI-TOF MS分析により、2本の手を持つ分子のタンパク質/非タンパク質/タンパク質構造が確認され、それにより、複雑なタンパク質-非タンパク質融合体を、その中に含まれるペプチド配列の脱離/イオン化によって検出されることが実証された。本発明者らは、抗体の標的特異性を、非タンパク質ヒンジ部の新規の物理的、化学的および生物学的性質と組み合わせたシンメトロアドヘシンについて多くの用途を期待する。
 本発明は、以下の発明を含む。
(1)
 一般式(I):XY-Asp-Lys-Thr-His-Thr(配列番号1)-で示される非ペプチドヒンジ部含有基(式中、Xはアミノ酸又は2~50個のアミノ酸残基から構成されるペプチドを表し、Yはアルキレンオキシド含有基を表す。)と、前記非ペプチドヒンジ部含有基に結合した抗体Fc断片とを含む、非ペプチドヒンジ部含有フレキシブル抗体様分子。
(2)
 前記Xがβアミロイドである、(1)のフレキシブル抗体様分子。
(3)
 前記Yが重合度2~50のポリエチレングリコール基である、(1)又は(2)のフレキシブル抗体様分子。
(4)
 前記Xがβアミロイド(1-15) Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln(配列番号2)であり、前記Yが重合度12~36のポリエチレングリコール基であり、抗体Fc断片が二量体を形成しており、前記前記非ペプチドヒンジ部含有基を2個有している、(1)のフレキシブル抗体様分子。
(5)
 一般式(II):XY-Asp-Lys-Thr-His-Thr(配列番号1)-COSR(式中、Xはアミノ酸又は2~50個のアミノ酸残基から構成されるペプチドを表し、Yはアルキレンオキシド含有基を表し、COSRはアミノ酸配列Asp-Lys-Thr-His-Thr(配列番号1)のC末端トレオニン残基のチオエステル基であり、Rは有機基を表す。)で示される非ペプチドヒンジ部含有チオエステルを用意し、
 抗体Fc断片を有し且つN末端にシステイン残基を有する抗体Fc断片含有ペプチドを用意し、
 前記非ペプチドヒンジ部含有チオエステルと前記抗体Fc断片含有ペプチドとをネイティブケミカルライゲーションに供することによって、XY-Asp-Lys-Thr-His-Thr(配列番号1)-で示される非ペプチドヒンジ部含有基と、前記非ペプチドヒンジ部含有基が前記システイン残基を介して結合した抗体Fc断片とを有する抗体様分子を得る、非ペプチドヒンジ部含有フレキシブル抗体様分子を調製する方法。
 より高い親和性(具体的にはより小さい解離定数KD)で標的に結合することができる抗体様分子を提供することができる。
 本発明者らの少なくとも2本の手を持つ分子は、非常に優れた親和性を伴って標的に結合することから、改善された抗体は抗体医薬の将来の開発のために大変有望である。
Aβ-PEGx-Fc融合タンパク質の化学半合成であり、以下を示す:(A)トランスチオエステル化反応によるS-アシル中間体の可逆的形成;(B)S-アシル中間体のS-からN-アシルへの自発的移行;(C)五員環中間体を介したペプチド結合の不可逆的形成。IgG1ヒンジ領域を太字で示している。 未反応のFc6タンパク質と化学的合成された融合タンパク質のSDS-PAGE分析:(1)Fc6;(2)Aβ-Fc;(3)Aβ-PEG12-Fc;(4)Aβ-PEG24-Fc;(5)Aβ-PEG36-Fc。 融合タンパク質Aβ-PEGx-FcのトリプシンペプチドMSスペクトルである:(A)Aβ-Fc;(B)Aβ-PEG12-Fc。アスタリスク(*)は、融合タンパク質由来のピークを示す。挿入図は、Aβ-PEGx-DK及びTHT-Fc6断片を示す。 融合タンパク質Aβ-PEGx-FcのトリプシンペプチドMSスペクトルである:(C)Aβ-PEG24-Fc;(D)Aβ-PEG36-Fc。アスタリスク(*)は、融合タンパク質由来のピークを示す。挿入図は、Aβ-PEGx-DK及びTHT-Fc6断片を示す。 (E)トリプシン開裂サイトを示すライゲーション部位の予測された配列及び(F)ライゲーション部位に由来するトリプシン消化断片の理論m/z値である。 Aβ-PEGx-Fc融合タンパク質のSECである:(A)Aβ-Fc;(B)Aβ-PEG12-Fc。矢印は、2本のAβ1-15手及び1本のAβ1-15手をそれぞれ有するFc二量体、並びにAβ1-15手を有しないFc二量体に相当する主要ピークの位置を示す。HMWはより高い分子量を有する分子種を表す。図7においても同様。 Aβ-PEGx-Fc融合タンパク質のSECである:(C)Aβ-PEG24-Fc;(D)Aβ-PEG36-Fc。 4つのAβ-PEGx-Fc融合タンパク質のSECクロマトグラムのSDS-PAGE分析:(A)等量のタンパク質がインジェクトされて得られた4つのクロマトグラムを重ねたもの;及び(B)Aβ-Fc(C)Aβ-PEG12-Fc、(D)Aβ-PEG24-Fc及び(E)Aβ-PEG36-Fcのクロマトグラム画分ゲル分析である。 Aβ-PEGx-Fc融合タンパク質のSECクロマトグラムの2つの主要ピークのMSスペクトルである:(A)Aβ-Fc;(B)Aβ-PEG12-Fc。挿入図は、MS分析のためにそれぞれのクロマトグラムから選択された画分を示す(図10において同様)。 Aβ-PEGx-Fc融合タンパク質のSECクロマトグラムの2つの主要ピークのMSスペクトルである:(C)Aβ-PEG24-Fc;(D)Aβ-PEG36-Fc。 2本の手を持つ融合タンパク質ホモ二量体の開裂による1本の手を持つ融合タンパク質のヘテロ二量体の生成モデルを示した、2本の手を持つ及び1本の手を持つAβ-PEGx-Fc融合タンパク質の構造の概念図である。IgG1ヒンジ領域の配列を太字で示している。 Aβ-PEGx-Fc融合タンパク質((A)Aβ-Fc、(B)Aβ-PEG12-Fc)によるanti-AβmAb(6E10)結合の表面プラズモン共鳴分析(SPR)結果である。実際の結合曲線のトレースを(i)、結合曲線のフィット曲線を(ii)に示す(図13及び図14において同様)。 Aβ-PEGx-Fc融合タンパク質((C)Aβ-PEG24-Fc、(D)Aβ-PEG36-Fc)によるanti-AβmAb(6E10)結合の表面プラズモン共鳴分析(SPR)結果である。 1-15ペプチド((E)pen-(Aβ1-15)、(F)(Aβ1-15)-pra)によるanti-AβmAb(6E10)結合の表面プラズモン共鳴分析(SPR)結果である。
 本発明の非ペプチドヒンジ部含有フレキシブル抗体様分子は、分子認識系構築物質Xと、分子認識系構築物質Xに結合したアルキレンオキシド基含有基Yと、アルキレンオキシド含有基に結合した抗体ヒンジ領域構成配列と、抗体ヒンジ領域構成配列に結合した抗体Fc断片とを含む。結合には、直接的結合及び間接的結合が含まれる。
 分子認識系構築物質Xは、一般的に非共有結合によって相互作用可能なゲスト物質(標的分子)及びホスト物質(分子認識物質)の一方であればよく、具体的には、アミノ酸、ペプチド又はポリペプチド(タンパク質を含む)であってよい。特に、アミノ酸又は2~50アミノ酸残基からなるペプチド又はポリペプチドでありうる。
 ゲスト物質としては、様々な生理活性物質が含まれ、疾病関連物質であることが好ましい。具体的にはアミロイドβ(周知の配列であるアミロイドβの全部又は一部からなるペプチド鎖)が挙げられる。より具体的には、アミロイドβのエピトープであるアミロイドβ(3-7)配列EFRHD(配列番号3)を少なくとも含むペプチド鎖であり、アミロイドβ(3-7)配列、アミロイドβ(1-15)配列DAEFRHDSGYEVHHQ(配列番号2)、アミロイドβ(1-42)DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA(配列番号4)からなるペプチド鎖などが挙げられる。
 ホスト物質としては、標的分子(生体由来分子及び非生体由来分子を問わない)の分子認識が可能な物質であればよく、例えば、抗体Fab断片やアプタマーなどが挙げられる。
 分子認識とは、非共有結合によって分子認識物質の分子認識部位が特定の標的分子のエピトープを認識し相互作用をすることであり、例えば結合速度定数ka(単位1/Ms)が少なくとも10又は10、例えば10~10又は10~10の親和性で特異的結合することでありうる。
 アルキレンオキシド含有基Yは2価の基であり、例えば炭素数2~6のアルキレンオキシド含有基でありうる。より具体的には、アルキレンオキシド含有基におけるアルキレンオキシドは、エチレンオキシド又はプロピレンオキシドである。アルキレンオキシド含有基は、好ましくはポリアルキレンオキシド含有基である。従って、炭素数2~6のアルキレングリコールの重合(例えば重合度2~50)によって生じさるポリアルキレングリコール基であることが好ましい。例えば、ポリエチレングリコール基(エチレングリコールの重合によって生じる基)及びポリプロピレングリコール基(1,2-プロパンジオール又は1,3-プロパンジオールの重合によって生じる基)からなる群から選ばれうる。
 本発明においては、特に、エチレングリコール基、又は重合度2~50、より好ましくは12~36のポリエチレングリコール基が選択されうる。
 アルキレンオキシド含有基Yは、本発明の抗体様分子のヒンジ領域に、柔軟性、又は柔軟性及び伸長性を与える。
 抗体としては、IgG1、IgG2、IgG3、IgG4等が挙げられる。抗体は、いかなる動物由来であってもよいが、特にヒト由来である。また、遺伝子工学的観点における改変を許容する。
 抗体ヒンジ領域構成配列としては、抗体上部ヒンジ領域構成配列Z、抗体コアヒンジ領域構成配列Z、及び抗体下部ヒンジ領域構成配列Zが挙げられ、本発明の抗体様分子にはこれら全ての配列が含まれていてよい。一般的にコアヒンジ領域は、抗体のヒンジ領域において、上部ヒンジ領域のC末端側且つ下部ヒンジ領域のN末端側に隣接し、重鎖間に鎖間ジスルフィド架橋を形成している少なくとも2個のシステイン残基を有する領域である。
 各ヒンジ領域構成配列は、各ヒンジ領域を構成する一部又は全ての配列である。例えば、上部ヒンジ領域構成配列Zは、上部ヒンジ領域領域の一部の配列であってよく、例えば3~5個のアミノ酸残基からなる短い配列であってよい。例えば、上部ヒンジ領域構成配列Zは、IgG1上部ヒンジ領域の一部の配列であるDKTHT(配列番号1)である。さらにこの場合、本発明の抗体様分子においては、当該DKTHT配列のN末端にシステイン残基が結合していないことが好ましい。
 コアヒンジ領域構成配列Zは、重鎖間に鎖間ジスルフィド架橋を形成している少なくとも2個のシステイン残基を有し、それら2個のシステイン残基のうちN末端側のものが、コアヒンジ領域構成配列ZのN末端アミノ酸残基に相当することが好ましい。一例として、IgG1コアヒンジ領域の配列であるCPPC(配列番号5)である。
 抗体下部ヒンジ領域構成配列Zとしては、一例として、IgG1抗体下部ヒンジ領域の配列であるPAELLGGP(配列番号6)である。
 抗体Fc断片は、抗体Fc領域の一部又は全部を構成するポリぺプチドである。具体的には、第二重鎖定常領域(CH2)および第三重鎖定常領域(CH3)を有してよい。一例として、SVFLFPPKPK(配列番号7)を少なくとも一部に含む配列からなってよい。Fc断片は、二量体又はそれ以上の多量体(例えば最大十量体)を形成していていよい。
 本発明の抗体様分子は、Fc断片が二量体を形成している場合、分子認識系構築物質Xと、アルキレンオキシド含有基Yと、抗体上部ヒンジ領域構成配列Zとを含む非ペプチドヒンジ部含有基(XYZ-基)を2個有する。このような態様の抗体様分子を、2本の手を持つ(Two-Handed)抗体様分子と記載することがある。同様に、本発明の抗体様分子においてFc断片が二量体以上の多量体を形成している場合、非ペプチドヒンジ部含有基(XYZ-基)を2個以上有し得ることによって、2本以上の手を持つ抗体様分子となり得る。
 本発明の抗体様分子が関与することができる分子認識系を構成する、Xに対する相手方物質は、Xの性質によって当業者により決定される。
 相手方物質は、単量体分子、分子の二量体以上の多量体又は凝集体であってよい。
 相手方物質は、生体由来であってもよいし、非生体由来であってもよい。
 相手方物質は、低分子量分子(例えば分子量8万以下、又は3万以下)であってよい。例えば、サイトカインなどの低分子量タンパク質でありうる。
 本発明の抗体様分子は、アルキレンオキシド含有基Yの存在によってもたらされる柔軟性により、常に2本以上の手の少なくともいずれかが相手方物質と結合することにより、手が相手方物質をとらえた状態を維持しやすい。つまり、相手方物質を解離させにくくする。具体的には、それぞれの手による結合速度定数ka(単位1/Ms)は上述の通りで、分子認識系構築物質Xが単独分子である場合の結合速度定数kaと同等である一方、解離速度定数kd(単位1/s)が当該場合に比べて小さい。そのため、解離定数KD(単位M)が当該場合に比べて小さく、例えば最大10-9、10-10、10-11、又は10-12であり、例えば10-13~10-9でありうる。
 本発明の抗体様分子の用途としては、分子認識系を利用するいかなる用途であってもよい。例えば、体外診断薬、分子標的医薬、ELISA(Enzyme-Linked ImmunoSorbent Assay)試薬、分子イメージング(PET(positron emission tomography)、オプティカルイメージング)用プローブなどが挙げられる。これらの用途に応じて、当業者は、適当な分子認識系構築物質Xを選択し、必要に応じて官能基(シグナル基など)をさらに抗体様分子に含めることができる。
 本発明の抗体様分子は、以下のように調製される。
 分子認識系構築物質Xと、アルキレンオキシド含有基Yと、抗体上部ヒンジ領域構成配列Zとを含む、非ペプチドヒンジ部含有チオエステル(XYZ-COSR)を用意する。COSRは抗体上部ヒンジ領域構成配列ZのC末端アミノ酸残基の(カルボキシル基から誘導されることができる)チオエステル基を表し、Rは有機基(例えば、炭素数1~18の直鎖又は分岐のアルキル基、炭素数6~18のアリール基又はそれらが組み合わされたアラルキル基)を表す。
 分子認識系構築物質Xは、生体由来又は非生体由来であってよく、当業者に周知の、天然物からの単離、有機化学的合成、生化学的産生、及び半合成等のいずれの方法で取得してもよい。
 生化学的産生には、酵素学的合成・分解及び遺伝子工学的合成(宿主細胞としては、バクテリア等の原核細胞、及び酵母や動物細胞等の真核細胞を問わない)が含まれる(以下の他の要素においても同様)。
 抗体上部ヒンジ領域構成配列Zは、生体由来又は非生体由来であってよく、当業者に周知の、天然物からの単離、有機化学的合成、生化学的産生、及び半合成等のいずれの方法で取得してもよい。
 分子認識系構築物質X及び抗体上部ヒンジ領域構成配列Zそれぞれの要素がアルキレンオキシド含有基Yを介して連結された状態で得る方法は、当業者に周知の方法で行うことができる。チオエステル基は、抗体上部ヒンジ領域構成配列のC末端カルボキシル基から当業者が適宜誘導することができる。
 一方、抗体Fc断片を有し且つN末端にシステイン残基を有する、抗体Fc断片含有ペプチドを用意する。抗体Fc断片含有ペプチドは、N末端システイン残基とFc断片との間に、アミノ酸残基又はペプチド鎖Lを有していてよい(Cys-L-Fc(Lはアミノ酸残基又はペプチド鎖)で示される)。抗体Fc断片含有ペプチドは、システイン残基と抗体Fc断片との間に、少なくとも1個の別のシステイン残基を有していることが好ましい(例えばCys-L-Cys-L-Fc(L及びLはアミノ酸残基又はペプチド鎖)で示される)。具体的には、抗体Fc断片含有ペプチドは抗体コアヒンジ領域構成配列Zを含み、N末端のシステイン残基が抗体コアヒンジ領域構成配列ZのN末端システイン残基に相当していることが好ましい。また、前記の少なくとも1個の別のシステイン残基も抗体コアヒンジ領域構成配列Z中に含まれていることが好ましい(例えばCys-L-Cys-L-Fc(Cys-L-Cysは抗体コアヒンジ領域構成配列Z)で示される)。抗体Fc断片含有ペプチドは、さらに抗体下部ヒンジ領域構成配列Zを含んでよい(例えばCys-L-Cys-L-Fc(Lは抗体下部ヒンジ領域構成配列Z)で示される)。
 抗体Fc断片含有ペプチドは、当業者に周知のペプチド調製法により取得することができる。従って、当業者に周知の、天然物からの単離、有機化学的合成、生化学的産生、半合成等、及びそれら方法の組み合わせのいずれの方法で取得してもよい。
 非ペプチドヒンジ部含有チオエステル(XYZ-COSR)と抗体Fc断片含有ペプチド(例えばCys-L-Fc)とを互いに接触させることにより、ネイティブケミカルライゲーション反応が起こる。反応は、緩衝液中、非加熱温度条件下(室温)、6~16時間インキュベートすることによって行うことができる。この結果、XYZ-基と、XYZ-基がシステイン残基を介して結合した抗体Fc断片(例えばXYZ-Cys-L-Fc)とを有する抗体様分子を得る。
 図1に、本発明の一例を挙げてネイティブケミカルライゲーションの機構を示す。図1においては、非ペプチドヒンジ部含有チオエステルが、分子認識系構築物質Xとしてアミロイドβ(1-15)DAEFRHDSGYEVHHQ(配列番号2)、アルキレンオキシド含有基Yとして重合度xのポリエチレングリコール(PEG)x、抗体上部ヒンジ領域構成配列ZとしてDKTHT(配列番号1)であり、抗体Fc断片含有ペプチドが、抗体コアヒンジ領域構成配列ZとしてのCPPC(配列番号5)と抗体下部ヒンジ領域構成配列ZとしてのPAELLGGP(配列番号6)とを有するペプチドである場合を挙げている。
 ネイティブケミカルライゲーションにおいては、トランスチオエステル化反応によってS-アシル中間体が可逆的に形成され(図1A)、S-アシル中間体においてS-アシルがN-アシルへ自発的に移行し(図1B)、五員環中間体を介してペプチド結合が不可逆的に形成される(図1C)。
[物質および方法]
[ヒトIgG1 Fcタンパク質]
 組換えFcタンパク質(Fc6と呼ばれる)を、チャイニーズハムスター卵巣(CHO)細胞内で発現させ、プロテインA親和性クロマトグラフィーによって精製した。226CPPCコアヒンジ配列から始まるヒトIgG1重鎖ヒンジ領域に融合したヒトソニックヘッジホッグ相同体(SHH)シグナル配列を含むキメラタンパク質の発現を指示するDNA発現ベクターを設計した(重鎖の残基は、Eu形式3)によって番号付けされる;残基226Cysは、Kabat & Wu形式ではCys239に対応する) 24)。このベクター(pCDNA3-SHH-IgG1-Fc11)の配列は、Capon, D.J.(2008年11月20日)世界特許協力条約、公開番号WO/2008/140477に記載されている。SHHシグナル配列の分泌および切断の後、得られる成熟Fc6ポリペプチドは、222残基の予測された長さを有する。Fc6タンパク質の生成は、無血清懸濁培地にアダプトされたCHO-DG44細胞内における一過性発現によって実施した。一過性トランスフェクションを、以前に記載されたように25)、トランスフェクション剤としてのポリエチレンイミンを用い、高密度条件下で、DNAと複合体を形成させて行った。シードトレイン培養(seed train culture)をTubeSpin(登録商標)バイオリアクターの50本の管内で維持し、トランスフェクション用の十分なバイオマスを生成するために量をスケールアップした。トランスフェクションは、0.5リットル~1リットルの培養液中で実施した。このスケールでの培養を、換気孔付きキャップを有する2リットルまたは5リットルのSchott瓶内で維持した。加湿して、CO2を5体積%に制御して、Kuhnerインキュベーター振盪機で、180rpmで瓶を振盪した。細胞培養液を10日後に回収し、遠心分離し、滅菌濾過した後、精製した。Ca塩またはMg塩を含まないダルベッコリン酸緩衝食塩水(PBS)(UCSF Cell Culture Facility、San Francisco、CA)で予め平衡化したrProtein A Fast Flow(GE Healthcare Bio-Sciences AB、Uppsala、Sweden)を充填したカラムに培養上清をアプライした。カラムを、PBSを用いて大規模に洗浄し、Fc6タンパク質を、0.1Mのグリシン緩衝液、pH2.7を用いて溶出した。画分を、0.05v/v、1.0MのTris-HCL、pH9.0を含む管の中に収集し(7.5の最終pHを与える)、プールし、PBSに対して透析し、4℃で貯蔵した後使用した。
[ペプチド]
 本研究で使用したすべての合成ペプチドを表1に示す。
 表1においては、アミノ酸配列(Sequence)を太字で表示している。チオエステルは、ペプチド(Peptide)1、4及び5においてはチオフェノールに由来し、ペプチド2及び3においてはベンジルメルカプタンに由来する。Mrは相対分子質量を、MH+はモノアイソトピック質量(測定値)を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すすべてのペプチドは、Fmoc-Thr(tBu)-OHを予め添加した2-クロロトリチルクロリド樹脂上で、Fmoc/t-ブチル固相ストラテジーによって合成した。アミノ酸誘導体はCPC Scientific(Sunnyvale、CA)から入手し、Fmoc-PEGx-OH誘導体はQuanta BioDesign(Powell、OH)から購入し、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、ジクロロメタン(DCM)、トリクロロ酢酸(TFA)、N,N'-ジイソプロピルカルボジイミド(DIC)、1-ヒドロキシベンゾトリアゾール(HOBt)、N,N'-ジイソプロピルエチルアミン(DIEA)、およびトリイソプロピルシラン(TIS)はSigma(St. Louis、MO)から購入した。標準的なHBTU活性化をペプチド伸長のために使用した。ペプチド2~4は、Fmoc-PEGx-OHの挿入を必要とした(それぞれ、x=12、24、および36)。ペプチド伸長の最終ステップとして、末端のα-Fmoc(9-フルオレニルメトキシカルボニル)保護基をBoc(tert-ブトキシカルボニル)に変換した。ペプチド樹脂を、DCMを用いて洗浄し、1%のTFA/DCM(体積基準)を用いて切断することによって、C末端に遊離カルボン酸を有する完全に保護されたペプチドを得た。クルードの保護ペプチドを、DIC/HOBt/DIEA、およびDCM中のチオフェノール(ペプチド1、2、5)またはベンジルメルカプタン(ペプチド3、4)を用いて一晩処理することによって、ペプチドのチオエステルを形成した。濃縮後、クルードの保護ペプチドチオエステルを、冷エーテルを用いて複数回トリチュレートすることによって沈殿させ、その後遠心分離した。脱保護は、クルードの保護生成物を、95:2.5:2.5のTFA/TIS/H2O(体積比)を用いて室温で2時間処理することによって実施した。氷冷エーテルを用いて沈殿させた後、脱保護されたペプチドチオエステルを、H2O-アセトニトリル(0.1体積%のTFA)系中の分取RP-HPLCにより精製することによって、91~95%の純度および所望のMSを有する最終生成物を得た。
[シンメトロアドヘシンの化学半合成]
 2-(N-モルホリノ)エタンスルホン酸(MES)はAcros(Morris Plains、NJ)から購入し、トリス(2-カルボキシエチル)ホスフィン(TCEP)はPierce(Rockford、IL)から購入し、4-メルカプトフェニル酢酸(MPAA)はSigma-Aldrich(St. Louis、MO)から購入した。反応物は、pH6.5、50mMのMES緩衝液、0.8mMのTCEP、10mMのMPAA、5mg/mlのペプチドチオエステル、および1mg/mlのFc6タンパク質を含んでいた。室温で15時間インキュベートした後、反応物を、0.05v/vの1MのTris-HCl、pH9.0を用いてpH7.0に調整し、GE Healthcare(Piscataway、NJ)から購入したHiTrap Protein A HPカラム上で精製した。Invitrogen(Carlsbad、CA)から購入したNuPAGE(登録商標)Novex Bis-Tris Midi Gel(10%)を使用して、還元性条件下でSDSポリアクリルアミドゲル電気泳動(SDS-PAGE)によって反応生成物を分析した。Bio-Rad(Hercules、CA)から購入したSilver Stain PlusまたはCoomassie Brilliant Blue R-250を使用してタンパク質を可視化した。
[タンパク質のゲル内トリプシン消化]
 HPLCグレードのアセトニトリル(ACN)およびトリフルオロ酢酸(TFA)はWako Pure Chemical Industries(Osaka、Japan)から購入した。炭酸水素アンモニウム(NH4HCO3)、ジチオトレイトール(dithiotreitol)(DTT)、およびヨードアセトアミド(IAA)はNacalai Tesque(Kyoto、Japan)から購入した。シーケンスグレードのトリプシンはPromega(Madison、WI)から購入した。ゲルからのタンパク質バンドを切り取り、50mMのNH4HCO3水溶液中50% v/vのACNを含む溶液 300μlを用いて、4℃で45分間脱染した。ゲル断片を、100%のACN 150μl中で、室温で10分間脱水し、その後Speed Vac(登録商標)を用いて30分間乾燥した。50mMのNH4HCO3水溶液中10mMのDTTを含む溶液100μl体積量を乾燥したゲルに添加することによって、スルフィド結合を37℃で1時間還元した。溶液を除去した後、50mMのNH4HCO3水溶液中55mMのIAA を含む溶液100μl中で、暗所下で、室温で1時間タンパク質をアルキル化した。その後、ゲル断片を、50mMのNH4HCO3水溶液 150μlを用いて洗浄し、次いで100%のACN中150μl中で脱水した。このステップを2回繰り返した。次いでゲル断片を真空遠心分離機内で30分間乾燥させた。50mMのNH4HCO3水溶液中50ng/μlのトリプシンを含む溶液2μlを用いて乾燥したゲルを再水和し、室温で5分間インキュベートした。次いで、超純水18μlをさらに添加し、タンパク質を37℃で一晩消化した。消化後、0.1% v/vのTFAを含有する50% v/vのACN水溶液 40μlを消化混合物に添加し、ゲル断片を15分間超音波処理した。上清を新しい0.5mlの管内に収集した。
[MALDI-TOF MS分析]
 MALDI質量スペクトルは、陽イオンリフレクトロンモードおよびリニアモードで、337nmの窒素レーザーを備えたAXIMA performance MALDI-TOF質量分析計(Shimadzu/KRATOS、Manchester、UK)を使用して得た。α-シアノ-4-ヒドロキシ-桂皮酸(CHCA)およびシナピン酸(SA)は、LaserBio Labs(Sophia-Antipolis Cedex、France)から入手した。MALDIマトリックスとして、CHCAをトリプシン消化した(trysin-digested)タンパク質に使用し、SAをSEC分離したタンパク質に使用した。マトリックス溶液は、0.1% v/vのTFAを含む50% v/vのACN水溶液 0.5ml中にマトリックス化合物5mgを溶解させることによって調製した。試料溶液(0.5μl)をターゲットプレート上で等量のマトリック溶液と混合し、次いでMALDI-TOF MS分析のために室温で乾燥させた。m/z値は、それぞれ2pmolの[アンギオテンシンI+H+](m/z 1296.7)、[アンギオテンシンII+H+](m/z 1046.5)、[[Glu1]-フィブリノペプチドB+H+](m/z 1570.7)、[N-アセチル樹脂基質テトラデカペプチドI+H+](m/z 1800.9)、[ACTH断片1~17+H+](m/z 2093.1)、および[ACTH断片18~39+H+](m/z 2464.2)、ならびに3pmolの[ACTH断片7~38+H+](m/z 3656.9)、7.5pmolの[ウシ血清アルブミン+H+](m/z 66430.09(平均))および[アルドラーゼ+H+](m/z 39212.28(平均))を外部標準物質として用いて較正した。
[サイズ排除クロマトグラフィー(SEC)]
 SECを実施し、Prominence HPLC System(Shimadzu Corp、Kyoto、Japan)またはAKTA Avant FPLC System(GE Healthcare、Piscataway、NJ)を使用して同様の結果を伴った。TSKgelカラムは、TOSOH Bioscience(Tokyo、Japan)から購入した。使用した移動相、流量、カラム温度、および検出波長はそれぞれ、50mMのリン酸ナトリウム、pH7.4および300mMのNaCl、0.35mL/分、25℃、および214/280nmであった。4つすべてのAβ-PEGx-Fcシンメトロアドヘシン(x=0、12、24、および36)は、各実験において並行して分析した。2本の手を持つ分子の合成の効率を分析するために、プロテインAで精製した各反応生成物5μLをTSKgel SuperSW3000[4.6mm I.D.×30cm L]カラムに注いだ。分子種の比は、各ピーク下面積から計算した。2本の手を持つ分子および1本の手を持つ分子のサブユニット構造をSDS-PAGEによって確認するために、プロテインAで精製した反応生成物を、0.5mlのAmicon Ultracel-3K遠心濾過機(Millipore、Cork、IR)を使用して最初に10倍に濃縮し、次いで各濃縮物50μlを連続して結合された4つのTSKgelカラム(2つのG2000SWXL、および2つのG3000SWXL[7.8mm I.D.×30cm L]カラム)に注いだ。次いで、還元性条件下でNuPAGE(登録商標)Novex Bis-Tris Midi Gel(4~12%)を使用して画分を分析した。SECによって観察された2つの主要な化学種の分子量を決定するために、プロテインAで精製した各反応物50μLをTSKgel G3000SWXL[7.8mm I.D.×30cm L]カラムに注いだ。ピーク画分を、リニアモードでMALDI TOF MS分析によって分析した。
[表面プラズモン共鳴(SPR)]
 SPR試験を、Biacore T100計測器(Biacore AB、Uppsala、Sweden)を使用して実施した。リガンド、ビオチン標識6E10モノクローナル抗体(Covance、Princeton、NJ)を、Biotin CAPture Kit(GE Healthcare、Piscataway、NJ)を使用してCAPセンサーチップ、Series S上に、PBS中10mg/mlの濃度で固定化した。センサーチップにストレプトアビジン捕捉試薬を入れ、30%のアセトニトリル中0.25MのNaOHを用いた追加の再生ステップを含めて、製造者の使用説明書に従って再生した。AβシンメトロアドヘシンおよびAβペプチドの結合は、10mMのHepes緩衝液、pH7.4、150mMのNaCl、3mMのEDTA、および0.005体積%のTween-20中で、25℃で実施した。データは、Biacore T100 Evaluation Software、バージョン2.0.3を使用して評価した。
[結果]
[シンメトロアドヘシンの定量的合成]
 Aβシンメトロアドヘシンを化学半合成するための本発明者らのストラテジーを図1に示した。
 両N末端でシステイン残基を有するように操作された組換えFcタンパク質(Fc6)を用いてネイティブケミカルライゲーションを実施した。本発明者らは、安定なFc二量体にとって好ましく、且つN末端システインのスルフヒドリル基を還元状態で維持し、Fc6分子をC末端チオエステルと容易に反応させる、穏やかに還元する非変性条件を開発した。求核体としてFc6分子の両N末端スルフヒドリルを伴う求核アシル置換(図1A)は、2つのAβチオエステルを有するチオエステル連結中間体に導く(図1B)。両方のFc6 N末端アミノ基による引き続く求核攻撃とその後の分子内再配列とは、Fc6と2つのAβペプチドとの間の非可逆性ペプチド結合を形成する(図1C)。
 Fc6タンパク質を得るために、本発明者らは、ヒンジ領域内に通常見出されるシステイン残基に隣接してシグナル配列を配置した組換えDNAコンストラクトを使用した。IgG1ヒンジ領域は、3つのシステイン残基、すなわち、重鎖と軽鎖との間のジスルフィド結合に通常関与する上部ヒンジ領域(CDKTHT(配列番号8))内の220Cys、ならびに2本の重鎖の間の鎖間ジスルフィド結合中に場合により存在する、コアヒンジ領域(CPPC(配列番号5))内の226Cysおよび229Cysを含む。本発明者らは、本発明者らのFc分子に関して、N末端として220Cysより226Cysを選択した。その理由は、N末端に220Cysを有する分子(Fc3)は、チオール-セファロース結合実験によって判断した場合、還元されにくかったためである(データ示さず)。さらに、N末端として229Cysより226Cysが選択された。その理由は、これが、ヒトIgG1の結晶構造によって示されるように、シンメトロアドヘシンを安定化させるより大きい潜在性を有するためであり、ヒトIgG1のの結晶構造は、226Cys残基は明らかに共有結合的に結合されている一方で、229Cys残基は見るからに離れていることを示す17)
 ソニックヘッジホッグ相同体(SHH)のシグナル配列を、それ自体の成熟したポリペプチドがN末端システインを有するので、Fcタンパク質の分泌および処理のために選択した。pCDNA3-SHH-IgG1-Fc11コンストラクトは、チャイニーズハムスター卵巣(CHO)細胞の一過性トランスフェクションの後にFc6タンパク質の合成を効率的に誘導した。図2は、トランスフェクトしたCHO細胞上清をアフィニティ精製することによって得られるFc6生成物が、還元性条件下のSDS-PAGEで27,000ダルトンの見かけ上の分子量を有することを示す(レーン1)。Fc6タンパク質は、一過性トランスフェクションにおいて十分に発現され、0.8g/Lを超えるレベルに到達し、定量的に結合すること、およびプロテインAアフィニティ樹脂から溶出することが判明した。
 Fc6が5つの異なるC末端チオエステル(表1に列挙)と反応する能力を調査した。5つすべてのチオエステルは、そのC末端で上部ヒンジ領域(DKTHT (配列番号1))の一部を含む。5つのチオエステルのうちの4つは、C末端で上部ヒンジ領域のN末端に結合したヒトAβタンパク質由来の15アミノ酸配列(DAEFRHDSGYEVHHQ (配列番号2))も含む。さらに、Aβ含有チオエステルのうちの3つは、Aβ配列と上部ヒンジ配列との間に非ペプチド鎖を組み込んでいた。これらのペプチド中の非ペプチド部分は、それぞれ、鎖長12、24、または36のオキシエチレンオリゴマー(PEG)からなっていた。
 図2は、Fc6が5つすべてのチオエステルと定量的に反応したことで、還元性条件下のSDS-PAGEで、サイズが増加する生成物のラダーが生じたことを示す(レーン2~6)。PEG12オリゴマーの付加により、15アミノ酸残基のAβ配列と同様に、SDS-PAGEで、サイズが増加した(図2、レーン2~4を比較されたい)。これは、1つのアミノ酸残基および1つのオキシエチレンモノマーユニットが、これらのトランス構造の匹敵する長さ(約3.5~4Å)と一致して、輪郭長に同様に寄与することを示す16)。PEG24およびPEG36の付加により、PEG12に対してさらにサイズが増加し、この増加は一貫していた(図2、レーン3~6を比較されたい)。
 本発明者らは、哺乳動物細胞内の分泌によって、ネイティブな折り畳まれたタンパク質としてFc6を作製したので、他のネイティブケミカルライゲーション研究において一般的に使用されるカオトロピック剤および強い還元条件の使用17)を回避することが決定的に重要であった。それにもかかわらず、穏やかな還元性条件は必須であった。この理由は、さもなければFc6タンパク質は、チオエステルと本質的に非反応性であることが判明したためである(データ示さず)。シンメトロアドヘシンの定量的収率(>90%)は、トリス(2-カルボキシエチル)ホスフィンなどの非チオール還元剤を4-メルカプトフェニル酢酸などのチオール還元剤と組み合わせることによって、図2に見られるように容易に得られた26)
[シンメトロアドヘシンの一次構造分析]
 Aβ配列とFc6の間の化学結合の正確な性質を確認するために、本発明者らは、質量分析法によって4つのAβシンメトロアドヘシンのモノマー構造を分析した。Aβ-Fc、Aβ-PEG12-Fc、Aβ-PEG24-Fc、およびAβ-PEG36-Fcシンメトロアドヘシン反応生成物を、SDS-PAGEによって精製し、ゲル内トリプシン消化を使用して特徴づけた。MALDI-TOF MSによって検出されたピークを、各シンメトロアドヘシンについて予測された理論的なペプチドとフィッティングしたことで、78.9~81.8%の間の配列包括度を得た(図3A、図3B、図4C、図4D)。この配列包括度は、シンメトロアドヘシンのそれぞれを一意的に同定するのに十分であった。本発明者らは、2つの配列、すなわち、4つすべてのシンメトロアドヘシンにおいて異なるはずであるAβ-PEGx-DK断片(Aβ-PEGx-DK fragment)と、ケミカルライゲーション部位を代表し且つ4つすべてのシンメトロアドヘシンにおいて同一であるはずであるTHT-Fc6断片(THT-Fc6 fragment)と、に的を絞って分析した(図5E)。これらの5つの予測された配列についての理論的なm/z値(m/z value)を図5Fに示す。観察されたMSスペクトルは、4つすべてのユニークな断片(Aβ-DK、Aβ-PEG12-DK、Aβ-PEG24-DK、Aβ-PEG36-DK)、ならびに共通のライゲーション部位断片(THTCPPCPAPELLGGPSVFLFPPKPK(配列番号9))と見事に一致したm/z値でのピークを現した。
[シンメトロアドヘシンのサブユニット分子構造]
 Aβシンメトロアドヘシン反応生成物は、親Fc6分子と同様の二量体構造を有することが予期された。さらに、4つすべての反応物において観察された少量(<10%)の見かけ上未反応の物質Fc6を考慮すると(図2、レーン3~6)、各反応生成物は、2本のAβの「手」を有するホモ二量体、1本のAβの「手」を有するヘテロ二量体、および未反応のFc6ホモ二量体の混合物である場合がある。したがって、4つのAβシンメトロアドヘシンのサブユニット分子構造を調査するために、サイズ排除クロマトグラフィー(SEC)を使用した。Aβ-Fc、Aβ-PEG12-Fc、Aβ-PEG24-Fc、およびAβ-PEG36-Fc反応生成物を、プロテインAアフィニティクロマトグラフィーによって未反応のチオエステルから精製し、次いでネイティブな非還元性条件(50mMのリン酸ナトリウム、pH7.4、300mMのNaCl)下でSECによって分析した。図6A、図6B、図7A及び図7Bは、シンメトロアドヘシン反応生成物の4つすべてが2つの主要ピークを示したことを示す。これらの2つの主要ピークのサイズは、Aβ-Fc<Aβ-PEG12-Fc<Aβ-PEG24-Fc<Aβ-PEG36-Fcの順序で増大した。さらに、所与のシンメトロアドヘシン反応生成物について観察された2つの主要ピークの間のサイズ分離は、同じ相対的順序で増大した。さらに、4つすべてのシンメトロアドヘシン反応生成物は、未反応のFc6二量体(No Aβhand)について予期されるサイズを有する、24.4分でのより小さいマイナーピークを呈した。総合すると、これらの観察結果は、より大きい主要ピークおよびより小さい主要ピークはそれぞれ、予期された「2本の手を持つ(Two-handed)」および「1本の手を持つ(One-handed)」シンメトロアドヘシンを表すことを示した。
Figure JPOXMLDOC01-appb-T000002
 表2に、サイズ排除クロマトグラフィ(SEC)で決定されたAβ-PEGx-Fcシンメトロアドヘシン生成物の割合を示す。図3~図4に示す4つの反応(Reaction)生成物それぞれの割合は、それぞれのピーク面積から直接計算された。HMWはより高い分子量を有する分子種を表し、NDは検出されなかったことを示す。
 表2に示したように、2本の手を持つシンメトロアドヘシン候補は、4つの反応物のそれぞれにおいて観察された主要生成物であった(66~74%)。最後に、反応生成物のうちの3つはまた、マイナーなより高い分子量(HMW)のピークを呈した(図6A、図7C、図7D)。2つの主要ピークに関しては、このピークのサイズは、オキシエチレンオリゴマーの長さとともに増大した。
 2本の手を持つ、および1本の手を持つシンメトロアドヘシンの予測されたサブユニット構造を確認するために、分取SECをネイティブな非還元性条件で実施し(図8A)、得られた画分を還元性条件下でSDS-PAGEによって分析した(図8B~図8E)。4つのシンメトロアドヘシン反応物のそれぞれにおいて、2本の手を持つシンメトロアドヘシンについての候補ピークは、予期されたAβ-PEGx-Fc生成物(x=0、12、24、36)からほとんどもっぱらなり、これによりそのホモ二量体構造を確認した。同様に、1本の手を持つシンメトロアドヘシンについての候補ピークは、1:1の比の予期されたAβ-PEGx-Fc生成物、および見かけ上未反応のFc6からなり、それによりそのヘテロ二量体構造を確認した。
 2本の手を持つシンメトロアドヘシンと1本の手を持つシンメトロアドヘシンとの間の正確な分子関係を確立するために、分析用サイズ排除クロマトグラムで観察された2つの主要ピークを、リニアモードでのMALDI-TOF MSによって分析した(図9A、図9B、図10C、図10D)。
Figure JPOXMLDOC01-appb-T000003
 表3において、MW(observed)1は、図6~図7に示した4つの反応(Reaction)における、2本の手を持つ(Two-Handed)および1本の手を持つ(One-Handed)生成物の分子量である。ΔMW2は、それぞれの反応(Reaction)における2本の手を持つ(Two-Handed)および1本の手を持つ(One-Handed)生成物の間の分子量の差異である。
 表3に示した結果は、Aβ-PEGx-Fc反応生成物と見かけ上「未反応の」Fc6との間の分子量の差異(ΔMW)は、予期されたものより一貫して約238ダルトン大きいという意外な知見に至った。4つすべてのAβシンメトロアドヘシンについて、観察されたΔMWは、断片Aβ-PEGx-DKTの分子量に対応する。これらの結果は、1本の手を持つヘテロ二量体中に存在するより小さい鎖は、予期された未反応のFc6モノマー鎖ではなく、代わりに、上部ヒンジ領域(DKTHT(配列番号1))内の223Thr残基と224His残基の間で引き続いて切断されたAβ-PEGx-Fc反応生成物を表すことを強く示す(図11)。
[表面プラズモン共鳴試験]
 4つすべてのAβシンメトロアドヘシンについて得られた主要反応生成物が2本の手を持つホモ二量体であったので、本発明者らは、そのような調製物が、2本の手を持つ分子として二量体標的に結合する能力を有するかどうかを調査した。この分析は、2本の手を持つシンメトロアドヘシンホモ二量体中に組み込まれたAβ配列の両方と相互作用することができるモノクローナル抗体を使用して実施した。DAEFRHDSGYEVHHQ配列(配列番号2)は、6E1018)、PFA1およびPFA219)、WO220)、ならびに12A11、10D5、および12B421)を含めた、ヒトAβ(1~42)原線維と反応性であるいくつかのモノクローナル抗体によって認識される主要エピトープ(EFRHD(配列番号3))を含むのでこの目的によく適している。したがって、本発明者らは、表面プラズモン共鳴(SPR)を使用してこれらの抗体の1つ(6E10)への本発明者らのAβシンメトロアドヘシンの結合を特徴づけた。本発明者らは、1本の手を持つ形で6E10に結合することが予期されたDAEFRHDSGYEVHHQ配列(配列番号2)を含むAβペプチドの結合を比較した。図12~14は、6E10がSPRチップの表面上に固定化された場合に得られた結果を示す。15アミノ酸のAβ配列を含む、4つすべてのAβシンメトロアドヘシン(図12A、図12B、図13A、図13B)、ならびに2つのAβペプチド、すなわち、pen-AβおよびAβ-pra(表1)(図14E、図14F)で特異的な結合が観察された。Fc6またはDKTHT-Fc6シンメトロアドヘシンで結合はまったく観察されず(図2、レーン2)、これにより結合がAβ配列に特異的であることを確認した。
 Aβシンメトロアドヘシンによる6E10の結合は、Aβペプチドの結合と定性的にも定量的にも異なった(図12~図14)。
Figure JPOXMLDOC01-appb-T000004
 表4に、表面プラズモン共鳴により測定されたMab-6E10結合の動力学的結果を示す。
 Aβペプチドの両方についての速度論的結合曲線は、1:1のLangmuirモデルと良好にフィッティングし(x2<0.1)、1本の手による結合と一致した。対照的に、4つのAβシンメトロアドヘシンは、1:1のLangmuirモデルと良好にフィッティングせず(x2>10)、このことは2つのクラスの結合部位を示した。表4に示したように、2つの指数関数モデルを使用して、4つのAβシンメトロアドヘシンについて良好なフィッティングが得られた(x2<1.1)。pen-Aβ(17nM)およびAβ-pra(20nM)ペプチドによって示された単一の親和性部位は、Aβ-Fc(140nM)、Aβ-PEG12-Fc(93nM)、Aβ-PEG24-Fc(70nM)、およびAβ-PEG36-Fc(62nM)シンメトロアドヘシンについて観察された低親和性部位と同様であった(表4)。この低親和性部位は、シンメトロアドヘシン集団の1つの画分による1本の手による結合機構と一致した。さらに、Aβ-Fc、Aβ-PEG12-Fc、Aβ-PEG24-Fc、およびAβ-PEG36-Fcシンメトロアドヘシンはすべて、対応する低親和性部位に対して2桁~5桁大きい、はるかに高い親和性部位を呈し、このことは、Aβシンメトロアドヘシンのかなりの画分(19~27%)による6E10の2本の手による結合の存在の強い証拠を提供した(表4)。
[考察]
 タンパク質は、コンパクトな、球状または繊維性の構造を形成することを好むことで、溶媒へのその曝露を最小限にしている。この傾向(tendency)は、水素結合した二次構造についての傾向(propensity)を有するポリペプチド骨格、および三次の折り畳みを促進する側鎖相互作用の両方において固有である。したがって、ペプチドを使用して抗体に「柔軟性」を導入するための以前の取り組みは、大部分は不十分であった。例えば、溶媒相互作用を好むアミノ酸(例えば、セリン)と、らせん構造を壊すアミノ酸(例えば、グリシン)との組合せを使用することは一般的である。この手法は、単鎖抗体断片(scFv)などの融合タンパク質を作るのに有用であるが、得られる構造はかなりコンパクトであり、伸長性の証拠をまったく伴わない(例えば、参考文献20を参照されたい)。さらに、そのような配列は、内因性の免疫原性およびタンパク質分解の受けやすさのためにさらなる問題の原因となりやすい。
 本発明者らは、化学半合成によってヒンジ領域内に非タンパク質鎖を導入する新規ストラテジーを追求した。本発明者らの結果は、2つのAβ1~15ペプチドをFc二量体と接続する非タンパク質ヒンジ部を有する抗体様分子の定量的収率を実証する。これらの分子は、抗Aβモノクローナル抗体に対して高い親和性を呈する、2本の手を持つネイティブな二量体を形成する。本発明者らの非タンパク質ヒンジ部を有するAβ-PEGx-Fc二量体は、同族のペプチドより2桁~5桁大きい親和性を有し、Aβ-Fc二量体よりはるかに良好に結合するように思われる。これらの結果の完全な解釈には、アルツハイマーのAβ(1~42)原線維の免疫優性エピトープを含む、Aβ1~15ペプチドの3次元構造の決定が待たれる。Fab断片と複合したこのエピトープ(DAEFRHDS(配列番号10))の正確な立体構造は、X線構造において解明されているが19)、21)、同じ領域は、クエンチ水素(quenched hydrogen)/重水素交換NMR研究によって得られたAβ(1~42)原線維の3D構造がディスオーダーであるように思われる27)
 SDS-ポリアクリルアミドゲル電気泳動による分析は、所望のAβ-PEGx-Fc融合タンパク質の形成が90%を超えることを示す。さらに、SECによって精製した1本の手を持つ反応生成物のMS分析は、これらが2つの反応したFcポリペプチドを含み(図11)、そのうちの一方は完全長であるが、他方はタンパク質分解(例えば、パパイン)の主要部位であるT/HT配列において加水分解されていることを示す9)。したがって、後に続く切断を除いたネイティブケミカルライゲーションステップの全体的な効率は、100%にはるかに近くなり得る。ネイティブライゲーション条件はまた、非タンパク質ポリマーの性質のいくつかを付与するとともに、Fc二量体のネイティブな構造および生物活性と完全に適合しているように思われる。本発明者らの結果は、別個のオキシエチレンオリゴマーの付加は、結合を改善するだけでなく、Aβ-Fc分子と比較した場合に、Aβ-PEG12-Fc、Aβ-PEG24-Fc、およびAβ-PEG36-Fc分子のサイズ排除クロマトグラフィーによって立証されたように、Fcタンパク質の流体力学半径に対して重要な効果を有するようにも思われることを示す。
 MALDI-TOF MSは、本発明者らの新規のタンパク質-非タンパク質-タンパク質分子の特徴づけに理想的に適しているように思われる。ハイブリッド構造によって寄与される大部分は、トリプシン消化物においてだけでなく、2本の手を持つ、および1本の手を持つネイティブなFc二量体においても効率的に特徴づけることができる。イオン化および脱離は、本発明者らのタンパク質-非タンパク質ハイブリッド分子中の隣接するタンパク質配列によって媒介されるように思われ、このことは、広い範囲の化学的に異なるポリマー鎖へのこの手法の用途を示す。
 結論として、本発明者らは、Fab領域自体などの大きい結合ドメインまたは受容体細胞外ドメインを組み込む非タンパク質ヒンジ部を有する抗体の完全な化学半合成という本発明者らの目的に向けた重要なステップをここで説明してきた。さらなる進展は、ネイティブケミカルライゲーションと組み合わせることができ、同族タンパク質のネイティブな構造および機能と同様に適合性であり、溶液中のそのようなネイティブタンパク質を用いて達成可能であるマイクロモル濃度で効率的に進めることができる他のタンパク質ライゲーション反応の同定に依存することになる。本発明者らが想定する抗体様分子は、疾患標的に対して結合親和性が改善された治療剤候補として非常に大きい潜在性を有する。
[参考文献]
(1)  Pauling, L. (1940) A theory of the structure and process of formation of antibodies. J. Am. Chem. Soc. 62, 2643-2657.
(2)  Porter, R.R. (1958) Separation and isolation of fractions of rabbit gamma-globulin containing the antibody and antigenic combining sites. Nature 182, 670-671.
(3)  Edelman, G.M., Cunningham, B.A., Gall, W.E., Gottlieb, P.D., Rutishauser, U. and Waxdal, M.J. (1969) The covalent structure of an entire .Gimmunoglobulin molecule. Proc. Natl. Acad. Sci. U.S.A. 63, 78-85.
(4)  Feinstein, A. and Rowe, A.J. (1965) Molecular mechanism of formation of an antigen-antibody complex. Nature 205, 147-149.
(5)  Valentine, R.C. and Green, N.M. (1967) Electron microscopy of an antibody hapten complex. J. Mol. Biol. 27, 615-617.
(6)  Saphire, E.O., Stanfield, R.L., Crispin, M.D., Parren, P.W., Rudd, P.M., Dwek, R.A., Burton, D.R. and Wilson, I.A. (2002) Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 319, 9-18.
(7)  Capon, D.J., Chamow, S.M., Mordenti, J., Marsters, S.A., Gregory, T., Mitsuya, H., Byrn, R.A., Lucas, C., Wurm, F.M., Groopman, J.E., Broder, S. and Smith, D.H. (1989) Designing CD4 immunoadhesins for AIDS therapy. Nature 337, 525-531.
(8)  Byrn, R.A., Mordenti, J., Lucas, C., Smith, D., Marsters, S.A., Johnson, J.S., Cossum, P., Chamow, S.M., Wurm, F.M., Gregory, T., Groopman, J.E. and Capon, D.J. (1990) Biological properties of a CD4 immunoadhesin. Nature 344, 667-670.
(9)  Chamow, S.M., Peers, D.H., Byrn, R.A., Mulkerrin, M.G., Harris, R.J., Wang, W.C., Bjorkman, P.J., Capon, D.J. and Ashkenazi, A. (1990) Enzymatic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. Biochemistry 29, 9885-9891.
(10)  Ward, R.H., Capon, D.J., Jett, C.M., Murthy, K.K., Mordenti, J., Lucas, C., Frie, S.W., Prince, A.M., Green, J.D. and Eichberg, J.W. (1991) Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin. Nature 352, 434-436.
(11)  Watson, S.R., Imai, Y., Fennie, C., Geoffroy, J.S., Rosen, S.D. and Lasky, L.A. (1990) A homing receptor-IgG chimera as a probe for adhesive ligands of lymph node high endothelial venules. J. Cell Biol. 110, 2221-2229.
(12)  Watson, S.R., Fennie, C. and Lasky, L.A. (1991) Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature 349, 164-167.
(13)  Ashkenazi, A., Marsters, S.A., Capon, D.J., Chamow, S.M., Figari, I.S., Pennica, D., Goeddel, D.V., Palladino, M.A. and Smith, D.H. (1991) Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc. Natl. Acad. Sci. U.S.A. 88, 10535-10539.
(14)  Ashkenazi, A., Capon, D.J. and Ward, R.H. (1993) Immunoadhesins. Int. Rev. Immunol. 10, 219-227.
15)  Reichert, J.M. (2011) Antibody-based therapeutics to watch in 2011. MAbs 3, 76-99.
16)  Flory, P.J. (1969) Statistical Mechanics of Chain Molecules. Interscience Publishers, New York.
17)  Dawson, P.E. and Kent, S.B. (2000) Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69, 923-960.
18)  Pirttila, T., Kim, K.S., Mehta, P.D., Frey, H. and Wisniewski, H.M. (1994) Soluble amyloid Oprotein in the cerebrospinal fluid from patients with Alzheimer’s disease, vascular dementia and controls. J. Neurol. Sci. 127, 90-95.
19)  Gardberg, A.S., Dice, L.T., Ou, S., Rich, R.L., Helmbrecht, E., Ko, J., Wetzel, R., Myszka, D.G., Patterson, P.H. and Dealwis, C. (2007) Molecular basis for passive immunotherapy of Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 104, 15659-15664.
20)  Robert, R., Dolezal, O., Waddington, L., Hattarki, M.K., Cappai, R., Masters, C.L., Hudson, P.J. and Wark, K.L. (2009) Engineered antibody intervention strategies for Alzheimer’s disease and related dementias by targeting amyloid and toxic oligomers. Protein Eng. Des. Sel. 22, 199-208.
21)  Basi, G.S., Feinberg, H., Oshidari, F., Anderson, J., Barbour, R., Baker, J., Comery, T.A., Diep, L., Gill, D., Johnson-Wood, K., Goel, A., Grantcharova, K., Lee, M., Li, J., Partridge, A., Griswold-Prenner, I., Piot, N., Walker, D., Widom, A., Pangalos, M.N., Seubert, P., Jacobsen, J.S., Schenk, D. and Weis, W.I. (2010) Structural correlates of antibodies associated with acute reversal of AO-related behavioral deficits in a mouse model of Alzheimer disease. J. Biol. Chem. 285, 3417-3427.
22)  Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y. and Yoshida, T. (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151-153. 
23)  Koy, C., Mikkat, S., Raptakis, E., Sutton, C., Resch, M., Tanaka, K. and Glocker, M.O. (2003) Matrixassisted laser desorption/ionization- quadrupole ion trap-time of flight mass spectrometry sequencing resolves structures of unidentified peptides obtained by in-gel tryptic digestion of haptoglobin derivatives from human plasma proteomes. Proteomics 3, 851-858.
24)  Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. and Foeller, C. (1991) Sequences of Proteins of Immunological Interest, 5th ed. National Institutes of Health, Bethesda, MD.
25)  Rajendra, Y., Kiseljak, D., Baldi, L., Hacker, D.L. and Wurm, F.M. (2011) A simple high-yielding process for transient gene expression in CHO cells. J. Biotechnol. 153, 22-26.
26)  Johnson, E.C. and Kent, S.B. (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128, 6640-6646.
27)  Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., Schubert, D. and Riek, R. (2005) 3D structure of Alzheimer’s Aβ(1-42) fibrils. Proc. Natl. Acad. Sci. U.S.A. 102, 17342-17347.

Claims (5)

  1.  一般式(I):XY-Asp-Lys-Thr-His-Thr(配列番号1)-で示される非ペプチドヒンジ部含有基(式中、Xはアミノ酸又は2~50個のアミノ酸残基から構成されるペプチドを表し、Yはアルキレンオキシド含有基を表す。)と、前記非ペプチドヒンジ部含有基に結合した抗体Fc断片とを含む、非ペプチドヒンジ部含有フレキシブル抗体様分子。
  2.  前記Xがβアミロイドである、請求項1のフレキシブル抗体様分子。
  3.  前記Yが重合度2~50のポリエチレングリコール基である、請求項1又は2のフレキシブル抗体様分子。
  4.  前記Xがβアミロイド(1-15) Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln(配列番号2)であり、前記Yが重合度12~36のポリエチレングリコール基であり、抗体Fc断片が二量体を形成しており、前記非ペプチドヒンジ部含有基を2個有している、請求項1~3のいずれか1項のフレキシブル抗体様分子。
  5.  一般式(II):XY-Asp-Lys-Thr-His-Thr(配列番号1)-COSR(式中、Xはアミノ酸又は2~50個のアミノ酸残基から構成されるペプチドを表し、Yはアルキレンオキシド含有基を表し、COSRはアミノ酸配列Asp-Lys-Thr-His-Thr(配列番号1)のC末端トレオニン残基のチオエステル基であり、Rは有機基を表す。)で示される非ペプチドヒンジ部含有チオエステルを用意し、
     抗体Fc断片を有し且つN末端にシステイン残基を有する抗体Fc断片含有ペプチドを用意し、
     前記非ペプチドヒンジ部含有チオエステルと前記抗体Fc断片含有ペプチドとをネイティブケミカルライゲーションに供することによって、XY-Asp-Lys-Thr-His-Thr(配列番号1)-で示される非ペプチドヒンジ部含有基と、前記非ペプチドヒンジ部含有基が前記システイン残基を介して結合した抗体Fc断片とを有する抗体様分子を得る、非ペプチドヒンジ部含有フレキシブル抗体様分子を調製する方法。
     
     
PCT/JP2012/061529 2011-10-31 2012-05-01 非ペプチドヒンジ部含有フレキシブル抗体様分子 WO2013065343A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013541649A JP6158090B2 (ja) 2011-10-31 2012-05-01 非ペプチドヒンジ部含有フレキシブル抗体様分子
EP12844691.1A EP2784080B1 (en) 2011-10-31 2012-05-01 Peptide-hinge-free flexible antibody-like molecule
US14/569,070 US9725503B2 (en) 2011-10-31 2014-12-12 Peptide-hinge-free flexible antibody-like molecule
US15/670,641 US11345745B2 (en) 2011-10-31 2017-08-07 Peptide-hinge-free flexible antibody-like molecule
US17/732,232 US20220403012A1 (en) 2011-10-31 2022-04-28 Peptide-hinge-free flexible antibody-like molecule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161553910P 2011-10-31 2011-10-31
US61/553,910 2011-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US201214354984A A-371-Of-International 2011-10-31 2012-05-01
US14/569,070 Continuation US9725503B2 (en) 2011-10-31 2014-12-12 Peptide-hinge-free flexible antibody-like molecule

Publications (1)

Publication Number Publication Date
WO2013065343A1 true WO2013065343A1 (ja) 2013-05-10

Family

ID=48191711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061529 WO2013065343A1 (ja) 2011-10-31 2012-05-01 非ペプチドヒンジ部含有フレキシブル抗体様分子

Country Status (4)

Country Link
US (3) US9725503B2 (ja)
EP (1) EP2784080B1 (ja)
JP (2) JP6158090B2 (ja)
WO (1) WO2013065343A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170008950A1 (en) * 2014-03-14 2017-01-12 Daniel J. Capon Hybrid immunoglobulin containing non-peptidyl linkage
JP2019508375A (ja) * 2015-12-30 2019-03-28 北京大学Peking University ポリアミノ酸、タンパク質−ポリアミノ酸コンジュゲート及びその製造方法
US10968263B2 (en) 2012-07-17 2021-04-06 Biomolecular Holdings Llc Affinity support and method for trapping substance using the same
US11220556B2 (en) 2013-03-15 2022-01-11 Biomolecular Holdings Llc Hybrid immunoglobulin containing non-peptidyl linkage
US11345745B2 (en) 2011-10-31 2022-05-31 Biomolecular Holdings Llc Peptide-hinge-free flexible antibody-like molecule
JP7475690B2 (ja) 2014-03-14 2024-04-30 バイオモレキュラー・ホールディングス・エルエルシー 非ペプチジル結合を含むハイブリッド免疫グロブリン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501451A (ja) * 1991-11-25 1995-02-16 エンゾン・インコーポレイテッド 多価抗原結合タンパク質
JPH10501701A (ja) * 1994-07-20 1998-02-17 ジェネンテック インコーポレイテッド Htkリガンド
WO2007108152A1 (ja) * 2006-03-23 2007-09-27 Tohoku University 高機能性二重特異性抗体
WO2008140477A2 (en) 2006-11-02 2008-11-20 Capon Daniel J Hybrid immunoglobulins with moving parts
JP2011526792A (ja) * 2008-07-02 2011-10-20 エマージェント プロダクト デベロップメント シアトル, エルエルシー TNF−αアンタゴニスト多重標的結合性タンパク質

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2962612D1 (en) 1978-05-18 1982-06-09 Ciba Geigy Ag Process for batch-colouring hard pvc and polyolefines
JPS60170798A (ja) 1984-02-16 1985-09-04 動力炉・核燃料開発事業団 燃料棒に対するワイヤ巻き付け装置
PT676965E (pt) * 1992-11-16 2007-10-29 Centocor Inc Método para reduzir a imunogenicidade da região variável de anticorpos
US6165476A (en) * 1997-07-10 2000-12-26 Beth Israel Deaconess Medical Center Fusion proteins with an immunoglobulin hinge region linker
AU2600499A (en) * 1998-02-13 1999-08-30 Arch Development Corporation Methods and compositions comprising the use of blocked b-amyloid peptide
US6756480B2 (en) * 2000-04-27 2004-06-29 Amgen Inc. Modulators of receptors for parathyroid hormone and parathyroid hormone-related protein
TWI353991B (en) * 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
EP1682584B1 (en) * 2003-11-13 2013-04-17 Hanmi Science Co., Ltd. A pharmaceutical composition comprising an immunoglobulin fc region as a carrier
KR100754667B1 (ko) * 2005-04-08 2007-09-03 한미약품 주식회사 비펩타이드성 중합체로 개질된 면역글로불린 Fc 단편 및이를 포함하는 약제학적 조성물
US7833979B2 (en) * 2005-04-22 2010-11-16 Amgen Inc. Toxin peptide therapeutic agents
JP6158090B2 (ja) 2011-10-31 2017-07-05 ダニエル・ジェイ・カポン 非ペプチドヒンジ部含有フレキシブル抗体様分子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07501451A (ja) * 1991-11-25 1995-02-16 エンゾン・インコーポレイテッド 多価抗原結合タンパク質
JPH10501701A (ja) * 1994-07-20 1998-02-17 ジェネンテック インコーポレイテッド Htkリガンド
WO2007108152A1 (ja) * 2006-03-23 2007-09-27 Tohoku University 高機能性二重特異性抗体
WO2008140477A2 (en) 2006-11-02 2008-11-20 Capon Daniel J Hybrid immunoglobulins with moving parts
JP2011526792A (ja) * 2008-07-02 2011-10-20 エマージェント プロダクト デベロップメント シアトル, エルエルシー TNF−αアンタゴニスト多重標的結合性タンパク質

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
ASHKENAZI, A.; CAPON, D.J.; WARD, R.H.: "Immunoadhesins", INT. REV. IMMUNOL., vol. 10, 1993, pages 219 - 227
ASHKENAZI, A.; MARSTERS, S.A.; CAPON, D.J.; CHAMOW, S.M.; FIGARI, I.S.; PENNICA, D.; GOEDDEL, D.V.; PALLADINO, M.A.; SMITH, D.H.: "Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin", PROC. NATL. ACAD. SCI. U.S.A., vol. 88, 1991, pages 10535 - 10539
BASI, G.S.; FEINBERG, H.; OSHIDARI, F.; ANDERSON, J.; BARBOUR, R.; BAKER, J.; COMERY, T.A.; DIEP, L.; GILL, D.; JO HNSON-WOOD, K.: "Structural correlates of antibo dies associated with acute reversal of AO-related behavioral deficits in a mouse model of Alzheimer disease", J. BIOL. CH EM., vol. 285, 2010, pages 3417 - 3427
BYRN, R.A.; MORDENTI, J.; LUCAS, C.; SMITH, D.; MARSTERS, S.A.; JOHNSON, J.S.; COSSUM, P.; CHAMOW, S.M.; WURM, F.M.; GREGORY, T.: "Biological properties of a CD4 immunoadhesin", NATURE, vol. 344, 1990, pages 667 - 670
CAPON, D.J.; CHAMOW, S.M.; MORDENTI, J.; MARSTERS, S.A.; GREGORY, T.; MITSUYA, H.; BYRN, R.A.; LUCAS, C.; WURM, F.M.; GROOPMAN, J.: "Designing CD4 immunoadhesins for AIDS therapy", NATURE, vol. 337, 1989, pages 525 - 531
CHAMOW, S.M.; PEERS, D.H.; BYRN, R.A.; MULKERRIN, M.G.; HARRIS, R.J.; WANG, W.C.; BJORKMAN, P.J.; CAPON, D.J.; ASHKENAZI, A.: "Enzymatic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments", BIOCHEMISTRY, vol. 29, 1990, pages 9885 - 9891
DAWSON, P.E.; KENT, S.B.: "Synthesis of native proteins by chemical ligation", ANNU. REV. BIOCHEM., vol. 69, 2000, pages 923 - 960
EDELMAN, G.M.; CUNNINGHAM, B.A.; GALL, W.E.; GOTTLIEB, P.D.; RUTISHAUSER, U.; WAXDAL, M.J.: "The covalent structure of an entire . Gimmunoglobulin molecule", PROC. NATL. ACAD. SCI. U.S.A., vol. 63, 1969, pages 78 - 85
EDELMAN, G.M.; CUNNINGHAM, B.A.; GALL, W.E.; GOTTLIEB, P.D.; RUTISHAUSER, U.; WAXDAL, M.J.: "The covalent structure of an entire Gimmunoglobulin molecule", PROC. NATL. ACAD. SCI. U.S.A., vol. 63, 1969, pages 78 - 85
FEINSTEIN, A.; ROWE, A.J.: "Molecular mechanism of formation of an antigen-antibody complex", NATURE, vol. 205, 1965, pages 147 - 149
FLORY, P.J.: "Statistical Mechanics of Chain Mole cules", 1969, INTERSCIENCE PUBLISHERS
GARDBERG, A.S.; DICE, L.T.; OU, S.; RICH, R.L.; HELMBR ECHT, E.; KO, J.; WETZEL, R.; MYSZKA, D.G.; PATTERSON, P.H.; DEALWIS, C.: "Molecular basis for passive immunothe rapy of Alzheimer's disease", PROC. NATL. ACAD. SCI. U.S.A., vol. 1, no. 04, 2007, pages 15659 - 15664
JOHNSON, E.C.; KENT, S.B.: "Insights into the mechanism and catalysis of the native chemical ligation reac tion", J. AM. CHEM. SOC., vol. 128, 2006, pages 6640 - 6646
KABAT, E.A.; WU, T.T.; PERRY, H.M.; GOTTESMAN, K.S.; FOELLER, C.: "Sequences of Proteins of Immunological Interest", 1991, NATIONAL INSTITUTES OF HEALTH
KOY, C.; MIKKAT, S.; RAPTAKIS, E.; SUTTON, C.; RESCH, M.; TANAKA, K.; GLOCKER, M.O.: "Matrixassisted laser desorptionlionization- quadrupole ion trap-time of flight m ass spectrometry sequencing resolves structures of unidentif ied peptides obtained by in-gel tryptic digestion of haptogl obin derivatives from human plasma proteomes", PROTEOMICS, vol. 3, 2003, pages 851 - 858
LUHRS, T.; RITTER, C.; ADRIAN, M.; RIEK-LOHER, D.; BOH RMANN, B.; DOBELI, H.; SCHUBERT, D.; RIEK, R.: "3D s tructure of Alzheimer's A? (1-42) fibrils", PROC. NATL. ACAD. SCI. U.S.A., vol. 102, 2005, pages 17342 - 17347
PAULING, L.: "A theory of the structure and process of formation of antibodies", J. AM. CHEM. SOC., vol. 62, 1940, pages 2643 - 2657
PIRTTILA, T.; KIM, K.S.; MEHTA, P.D.; FREY, H.; WIS NIEWSKI, H.M.: "Soluble amyloid Oprotein in the cerebro spinal fluid from patients with Alzheimer's disease, vascula r dementia and controls", J. NEUROL. SCI., vol. 127, 1994, pages 90 - 95
PORTER, R.R.: "Separation and isolation of fractions of rabbit gamma-globulin containing the antibody and antigenic combining sites", NATURE, vol. 182, 1958, pages 670 - 671
RAJENDRA, Y.; KISELJAK, D.; BALDI, L.; HACKER, D.L.; WURM, F.M.: "A simple high-yielding process for trans ient gene expression in CHO cells", J. BIOTECHNOL., vol. 153, 2011, pages 22 - 26
REICHERT, J.M.: "Antibody-based therapeutics to watch in 2011", MABS, vol. 3, 2011, pages 76 - 99
ROBERT, R.; DOLEZAL, O.; WADDINGTON, L.; HATTARKI, M.K .; CAPPAI, R.; MASTERS, C.L.; HUDSON, P.J.; WARK, K.L.: "Engineered antibody intervention strategies for Alzheim er's disease and related dementias by targeting amyloid and toxic oligomers", PROTEIN ENG. DES. SEL., vol. 22, 2009, pages 199 - 208
SAPHIRE, E.O.; STANFIELD, R.L.; CRISPIN, M.D.; PARREN, P.W.; RUDD, P.M.; DWEK, R.A.; BURTON, D.R.; WILSON, I.A.: "Contrasting IgG structures reveal extreme asymmetry and flexibility", J. MOL. BIOL., vol. 319, 2002, pages 9 - 18
SAPHIRE, E.O.; STANFIELD, R.L.; CRISPIN, M.D; PARREN, P.W.; RUDD, P.M.; DWEK, R.A.; BURTON, D.R.; WILSON, I.A.: "Contrasting IgG structures reveal extreme asymmetry and flexibility", J. MOL. BIOL., vol. 319, 2002, pages 9 - 18
See also references of EP2784080A4
TANAKA, K.; WAKI, H.; IDO, Y.; AKITA, S.; YOSHIDA, Y.; YOSHIDA, T.: "Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometr y", RAPID COMMUN. MASS SPECTROM., vol. 2, 1988, pages 151 - 153
VALENTINE, R.C.; GREEN, N.M.: "Electron microscopy of an antibody hapten complex", J. MOL. BIOL., vol. 27, 1967, pages 615 - 617
WARD, R.H.; CAPON, D.J.; JETT, C.M.; MURTHY, K.K.; MORDENTI, J.; LUCAS, C.; FRIE, S.W.; PRINCE, A.M.; GREEN, J.D.; EICHBERG, J.W.: "Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin", NATURE, vol. 352, 1991, pages 434 - 436
WATSON, S. R.; FENNIE, C.; LASKY, L.A.: "Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera", NATURE, vol. 349, 1991, pages 164 - 167
WATSON, S.R.; FENNIE, C.; LASKY, L.A.: "Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera", NATURE, vol. 349, 1991, pages 164 - 167
WATSON, S.R.; IMAI, Y.; FENNIE, C.; GEOFFROY, J.S.; ROSEN, S.D.; LASKY, L.A.: "A homing receptor-IgG chimera as a probe for adhesive ligands of lymph node high endothelial venules", J. CELL BIOL., vol. 110, 1990, pages 2221 - 2229
WATSON, S.R.; IMAI, Y.; FENNIE,C.; GEOFFROY, J.S.; ROSEN, S.D.; LASKY, L.A.: "A homing receptor-IgG chimera as a probe for adhesive ligands of lymph node high endothelial venules", J. CELL BIOL., vol. 110, 1990, pages 2221 - 2229

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345745B2 (en) 2011-10-31 2022-05-31 Biomolecular Holdings Llc Peptide-hinge-free flexible antibody-like molecule
US10968263B2 (en) 2012-07-17 2021-04-06 Biomolecular Holdings Llc Affinity support and method for trapping substance using the same
US11220556B2 (en) 2013-03-15 2022-01-11 Biomolecular Holdings Llc Hybrid immunoglobulin containing non-peptidyl linkage
US20170008950A1 (en) * 2014-03-14 2017-01-12 Daniel J. Capon Hybrid immunoglobulin containing non-peptidyl linkage
JP2017516839A (ja) * 2014-03-14 2017-06-22 カポン、ダニエル・ジェイ. 非ペプチジル結合を含むハイブリッド免疫グロブリン
US11066459B2 (en) 2014-03-14 2021-07-20 Biomolecular Holdings Llc Hybrid immunoglobulin containing non-peptidyl linkage
JP2021107391A (ja) * 2014-03-14 2021-07-29 バイオモレキュラー・ホールディングス・エルエルシーBiomolecular Holdings LLC 非ペプチジル結合を含むハイブリッド免疫グロブリン
JP7475690B2 (ja) 2014-03-14 2024-04-30 バイオモレキュラー・ホールディングス・エルエルシー 非ペプチジル結合を含むハイブリッド免疫グロブリン
JP2019508375A (ja) * 2015-12-30 2019-03-28 北京大学Peking University ポリアミノ酸、タンパク質−ポリアミノ酸コンジュゲート及びその製造方法

Also Published As

Publication number Publication date
JP6352354B2 (ja) 2018-07-04
US20220403012A1 (en) 2022-12-22
US9725503B2 (en) 2017-08-08
US11345745B2 (en) 2022-05-31
EP2784080A4 (en) 2015-07-01
EP2784080B1 (en) 2019-12-18
EP2784080A1 (en) 2014-10-01
JP2017036294A (ja) 2017-02-16
JP6158090B2 (ja) 2017-07-05
US20150183858A1 (en) 2015-07-02
JPWO2013065343A1 (ja) 2015-04-02
US20170342142A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
US20220403012A1 (en) Peptide-hinge-free flexible antibody-like molecule
JP7076152B2 (ja) IgG結合ペプチドによる抗体の特異的修飾
US9932367B2 (en) Modification of polypeptides
Chen et al. Fusion protein linkers: property, design and functionality
AU2002254683B2 (en) Binding molecules for Fc-region polypeptides
US20240100129A1 (en) Serum Albumin-Binding Fibronectin Type III Domains
JP6506691B2 (ja) Fab領域結合性ペプチド
WO2013027796A1 (ja) IgG結合性ペプチド及びそれによるIgGの検出および精製方法
US20120157659A1 (en) Affinity peptides and method for purification of recombinant proteins
WO2014115229A1 (ja) 抗体結合性ペプチド
ES2390360T3 (es) Moléculas de unión para el factor VIII humano y proteínas similares al factor VIII humano
JPWO2011148952A1 (ja) IgA結合性ペプチド及びそれによるIgAの精製
JP7117741B2 (ja) IgG結合性ペプチドを含む固相担体及びIgGの分離方法
KR20190082796A (ko) IgG 결합 펩타이드를 포함하는 고상 담체 및 IgG의 분리 방법
Capon et al. Flexible antibodies with nonprotein hinges
JP6818305B2 (ja) 非天然型立体構造を形成した抗体に親和性を示すポリペプチド
CN102597771B (zh) 用于重定向抗体特异性的高亲和力衔接分子
KR102140557B1 (ko) 단백질-단백질 결합체를 형성 매개 펩타이드 및 이를 이용한 단백질-단백질 결합체 형성 방법
US20210054042A1 (en) Affinity ligands for antibody fc region
KR101966301B1 (ko) 높은 항체결합용량과 온화한 용출 조건을 가진 항체정제용 흡착 리간드 및 그 용도
JP7118949B2 (ja) 安定性改良型免疫グロブリン結合性ペプチド
Tang Department of Pharmaceutics and Pharmaceutical Chemistry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012844691

Country of ref document: EP