WO2013061901A1 - 原着メタ型全芳香族ポリアミド繊維 - Google Patents

原着メタ型全芳香族ポリアミド繊維 Download PDF

Info

Publication number
WO2013061901A1
WO2013061901A1 PCT/JP2012/077188 JP2012077188W WO2013061901A1 WO 2013061901 A1 WO2013061901 A1 WO 2013061901A1 JP 2012077188 W JP2012077188 W JP 2012077188W WO 2013061901 A1 WO2013061901 A1 WO 2013061901A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
aromatic polyamide
wholly aromatic
meta
type wholly
Prior art date
Application number
PCT/JP2012/077188
Other languages
English (en)
French (fr)
Inventor
賢作 林
聡史 菊池
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2013540762A priority Critical patent/JP5852127B2/ja
Priority to SG11201401715YA priority patent/SG11201401715YA/en
Priority to KR1020147013610A priority patent/KR20140080552A/ko
Priority to MX2014004843A priority patent/MX341055B/es
Priority to EP12843047.7A priority patent/EP2772571B1/en
Priority to ES12843047T priority patent/ES2806079T3/es
Priority to CN201280052403.XA priority patent/CN103906868B/zh
Priority to CA2852197A priority patent/CA2852197A1/en
Priority to RU2014121105A priority patent/RU2609913C2/ru
Priority to US14/350,932 priority patent/US20140303292A1/en
Priority to IN3133DEN2014 priority patent/IN2014DN03133A/en
Publication of WO2013061901A1 publication Critical patent/WO2013061901A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3495Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments

Definitions

  • the present invention relates to an original meta type wholly aromatic polyamide fiber. More specifically, the present invention relates to an original meta-type wholly aromatic polyamide fiber having a small discoloration due to exposure.
  • wholly aromatic polyamide fibers produced from aromatic diamines and aromatic dicarboxylic acid dihalides are excellent in heat resistance and flame retardancy.
  • polymetaphenylene isophthalate is known.
  • Meta-type wholly aromatic polyamide fibers represented by amides are known to be particularly useful as heat-resistant and flame-retardant fibers.
  • Meta-type wholly aromatic polyamide fibers take advantage of these characteristics and are suitably used in the field of protective clothing such as fire-fighting clothes and heat-resistant work clothes (see Patent Document 1).
  • colored fibers For such use in the clothing field, it is common to use colored fibers.
  • methods for obtaining colored fibers there are known post-dyeing methods in which fibers are dyed and dyed with a dye, or original methods in which fibers are added after adding a pigment to a spinning dope.
  • the colored meta-type wholly aromatic polyamide fiber has a drawback of causing discoloration or discoloration by light irradiation, and may not be usable depending on the degree of discoloration.
  • the present invention has been made in view of the background art described above, and an object thereof is to provide an original meta-type wholly aromatic polyamide fiber having a small discoloration under exposure.
  • the inventor has intensively studied to solve the above problems. As a result, it was found that if the solvent content remaining in the fiber is set to a certain value or less, the obtained original meta-type wholly aromatic polyamide fiber is less discolored by exposure, and the present invention has been completed. .
  • the present invention is an original meta type wholly aromatic polyamide fiber having a residual solvent amount of 0.1% by mass or less with respect to the entire fiber mass.
  • the meta-type wholly aromatic polyamide fiber of the present invention is an original meta-type wholly aromatic polyamide fiber that has small discoloration due to exposure. That is, in addition to the properties inherent to meta-type wholly aromatic polyamide fibers such as flame retardancy and heat resistance, there is an advantage that discoloration of the product can be suppressed even when used for a long time under exposure.
  • the original meta-type wholly aromatic polyamide fiber of the present invention is a fiber that has low shrinkage at high temperatures and excellent thermal dimensional stability. For this reason, stable use can be continued even in applications where flame exposure, radiant heat, or the like exists.
  • the garment made using the original meta-type wholly aromatic polyamide fiber according to the present invention exhibits excellent anti-fading resistance in long-time exposure and excellent dimensional stability at high temperatures. It can be suitably used as protective clothing such as fire clothes and heat-resistant work clothes.
  • the original meta-type wholly aromatic polyamide fiber of the present invention has the following specific physical properties. The physical properties, configuration, production method and the like of the original meta-type wholly aromatic polyamide fiber of the present invention will be described below.
  • the meta-type wholly aromatic polyamide fiber is usually produced from a spinning dope in which a polymer is dissolved in an amide solvent and a pigment is kneaded, the solvent necessarily remains in the fiber.
  • the amount of the solvent remaining in the fiber is 0.1% by mass or less with respect to the mass of the fiber. It is essential that the content is 0.1% by mass or less, and more preferably 0.08% by mass or less.
  • the solvent When the solvent remains in the fiber in excess of 0.1% by mass with respect to the fiber mass, the residual solvent volatilizes during processing and use in a high temperature atmosphere exceeding 200 ° C. Inferior to environmental safety. Further, when used under exposure, it causes a discoloration of the fiber.
  • the components or conditions of the coagulation bath are adjusted so that the coagulation form does not have a skin core, and plasticization is performed at a specific magnification. Stretching is performed.
  • the “residual solvent amount in the fiber” refers to a value obtained by the following method. (Measurement method of residual solvent amount) 1.0 mg of fiber was sampled and the amount of amide solvent remaining in the fiber was measured using gas chromatography (manufactured by Shimadzu Corporation, model: GC-2010). Subsequently, the residual solvent concentration in the fiber was calculated from a calibration curve prepared using an amide solvent as a standard sample.
  • the original meta-type wholly aromatic polyamide fiber of the present invention preferably has a maximum heat shrinkage of 7.5% or less at a temperature rising rate of 100 ° C./min and a temperature range of 25 to 500 ° C. It is preferably 7.5% or less, and more preferably 7.0% or less. If the maximum heat shrinkage rate exceeds 7.5%, the product dimensions change when used in a high-temperature atmosphere, and problems such as product breakage occur.
  • the components or conditions of the coagulation bath are adjusted so that the coagulation form does not have a skin core, and plastic stretching is performed at a specific magnification. In addition, a specific heat treatment is performed.
  • the “maximum heat shrinkage rate” in the present invention refers to a value obtained by the following method.
  • a thermomechanical analyzer EXSTAR6000 made by SII is used, a fiber sample is divided into 480 dtex, and this is sandwiched between chucks and used as a measurement sample.
  • the shrinkage rate with respect to the initial length of the sample fiber at each temperature is measured under the following conditions, and the shrinkage rate at the temperature at which the shrinkage rate is maximum among the obtained shrinkage rate results at each temperature is defined as the maximum heat shrinkage rate.
  • the lightness index L * of the original meta-type wholly aromatic polyamide fiber of the present invention is not particularly limited, and can take all the hues that can be colored by the original application. However, the effect of the original meta-type wholly aromatic polyamide fiber of the present invention is remarkable in dark-colored fibers. Accordingly, the lightness index L * value of the fiber is preferably 40 or less.
  • light-changing chromaticity (color difference: ⁇ E *) by a xenon arc fade meter refers to a value obtained by the following method. (How to calculate light chromaticity (color difference: ⁇ E *) with a xenon arc fade meter) The photochromic chromaticity (color difference: ⁇ E *) by a xenon arc fade meter is determined using unirradiated cotton and light irradiated cotton irradiated for a certain time at 1.1 W / m 2 with a xenon arc fade meter.
  • the diffuse reflectance in a -10 degree visual field is measured using the light source D65, and the lightness index L * value, chromaticness index a *, and b * value are calculated by normal calculation processing.
  • the measurement light irradiation area is 30 mm ⁇ .
  • the light discoloration chromaticity (color difference: ⁇ E *) is obtained from the following equation using the obtained value according to JIS Z-8730.
  • the original meta-type wholly aromatic polyamide fiber of the present invention has a color difference before and after irradiation for 72 hours at 135 V ⁇ 17 A with a carbon arc fade meter, that is, a photochromic chromaticity ( ⁇ E * ) Is 2.5 or less. It is preferably 2.3 or less, and more preferably 2.1 or less.
  • the light discoloration chromaticity (color difference: ⁇ E *) by the carbon arc fade meter exceeds 2.5, the discoloration of the fiber due to light irradiation is remarkable.
  • light-changing chromaticity (color difference: ⁇ E *) by a carbon arc fade meter refers to a value obtained by the following method. (How to determine the light change chromaticity (color difference: ⁇ E *) with a carbon arc fade meter) The light-changing chromaticity (color difference: ⁇ E *) measured by the carbon arc fade meter was measured using the above-mentioned xenon arc fade meter using unirradiated cotton and light-irradiated cotton irradiated at 135V / 17A for a certain time with a carbon arc fade meter.
  • the photochromic chromaticity (color difference: ⁇ E *) That is, first, the diffuse reflectance in a -10 degree visual field was measured using the light source D65, and the lightness index L * value, chromaticness index a *, and b * value were calculated by a normal calculation process. Using the value, the value is obtained by the above formula based on JIS Z-8730. At this time, the measurement light irradiation area is 10 mm ⁇ . In addition, the light change chromaticity (color difference: ⁇ E *) by the carbon arc fade meter in the present invention was specified at an irradiation time of 72 hours.
  • the original meta-type wholly aromatic polyamide fiber of the present invention has a photochromic chromaticity (color difference: ⁇ E *) before and after irradiation for 72 hours at 135V ⁇ 17A with a carbon arc fade meter, and the residual solvent amount in the fiber is 0. It is 75% or less with respect to the light discoloration chromaticity (color difference: ⁇ E *) of the original meta-type wholly aromatic polyamide fiber added with the same amount of the same pigment of 4% by mass or more. It is preferably 72% or less, and more preferably 70% or less.
  • the meta-type wholly aromatic polyamide constituting the original meta-type wholly aromatic polyamide fiber of the present invention is composed of a meta-type aromatic diamine component and a meta-type aromatic dicarboxylic acid component.
  • Other copolymer components such as the para type may be copolymerized within a range not impairing the above.
  • the raw material for the original meta-type wholly aromatic polyamide fiber of the present invention is particularly preferably used from the viewpoint of mechanical properties, heat resistance, and flame retardancy.
  • the metaphenylene isophthalamide units are preferably 90 mol% or more of the total repeating units, more preferably 95 mol% or more, particularly preferably. 100 mol%.
  • [Raw material for meta-type wholly aromatic polyamide] (Meta-type aromatic diamine component)
  • the meta-type aromatic diamine component used as a raw material for the meta-type wholly aromatic polyamide include metaphenylene diamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone, and the like, halogens in these aromatic rings, Examples of derivatives having a substituent such as an alkyl group having 1 to 3 carbon atoms, such as 2,4-toluylenediamine, 2,6-toluylenediamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene, etc. can do.
  • metaphenylenediamine alone or a mixed diamine containing metaphenylenediamine in an amount of 85 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more is preferable.
  • Metal-type aromatic dicarboxylic acid component examples of the raw material of the meta type aromatic dicarboxylic acid component constituting the meta type wholly aromatic polyamide include a meta type aromatic dicarboxylic acid halide.
  • the meta-type aromatic dicarboxylic acid halide examples include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives having substituents such as halogen and an alkoxy group having 1 to 3 carbon atoms on the aromatic ring, such as 3 -Chloroisophthalic acid chloride and the like can be exemplified.
  • isophthalic acid chloride itself or a mixed carboxylic acid halide containing isophthalic acid chloride in an amount of 85 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more is preferable.
  • the method for producing the meta type wholly aromatic polyamide constituting the original meta type wholly aromatic polyamide fiber of the present invention is not particularly limited.
  • the meta type aromatic diamine component and the meta type aromatic dicarboxylic acid chloride are used. It can be produced by solution polymerization or interfacial polymerization using the ingredients as raw materials.
  • the molecular weight of the meta-type wholly aromatic polyamide is not particularly limited as long as it can form fibers.
  • a polymer having an intrinsic viscosity (IV) measured in a concentrated sulfuric acid at 30 ° C. with a polymer concentration of 100 mg / 100 mL sulfuric acid is in a range of 1.0 to 3.0.
  • Appropriate polymers in the range of 1.2 to 2.0 are particularly preferred.
  • the original meta-type wholly aromatic polyamide fiber of the present invention uses, for example, a spinning solution preparation step, a spinning / coagulation step, plasticity described below, using the meta-type wholly aromatic polyamide obtained by the above-described production method and the like. It can be manufactured through a drawing bath drawing process, a washing process, a relaxation treatment process, and a heat treatment process.
  • spinning liquid preparation process In the spinning solution preparation step, the meta-type wholly aromatic polyamide is dissolved in an amide solvent and a pigment is added to prepare a spinning solution (original meta-type wholly aromatic polyamide polymer solution).
  • an amide solvent is usually used, and examples of the amide solvent used include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), and the like. be able to. Of these, NMP or DMAc is preferably used from the viewpoints of solubility and handling safety.
  • the concentration of the solution may be appropriately selected from the viewpoint of the coagulation rate and the solubility of the polymer in the next spinning and coagulation step.
  • the polymer is polymetaphenylene isophthalamide and the solvent is NMP. In this case, it is usually preferable to set the content in the range of 10 to 30% by mass.
  • pigment used in the present invention examples include organic pigments such as azo, phthalocyanine, perinone, perylene, and anthraquinone, and inorganic pigments such as carbon black, ultramarine, bengara, titanium oxide, and iron oxide. However, it is not limited to these.
  • the mixing method of the meta type wholly aromatic polyamide and the pigment is to prepare an amide solvent slurry in which the pigment is uniformly dispersed in the amide solvent, and the meta type wholly aromatic polyamide is dissolved in the amide solvent.
  • the method of adding to the solution, or the method of adding the pigment powder directly to the solution in which the meta-type wholly aromatic polyamide is dissolved in the amide solvent, is not particularly limited.
  • the spinning solution thus obtained original meta-type wholly aromatic polyamide polymer solution
  • Pigment amount As a pigment compounding quantity, it is 10.0 mass% or less with respect to meta type wholly aromatic polyamide, Preferably it is 5.0 mass% or less. If added in an amount of more than 10.0% by mass, the physical properties of the resulting fiber will be unfavorable.
  • spinning and coagulation process In the spinning / coagulation step, the spinning solution obtained above (original meta-type wholly aromatic polyamide polymer solution) is spun into a coagulation solution and coagulated.
  • the spinning apparatus is not particularly limited, and a conventionally known wet spinning apparatus can be used. Further, the number of spinning holes, the arrangement state, the hole shape and the like of the spinneret are not particularly limited as long as they can be stably wet-spun. For example, the number of holes is 500 to 30,000, and the spinning hole diameter is 0.05. A multi-hole spinneret for ⁇ 0.2 mm sufu may be used.
  • the temperature of the spinning solution (original meta-type wholly aromatic polyamide polymer solution) when spinning from the spinneret is suitably in the range of 10 to 90 ° C.
  • an aqueous solution containing 45 to 60% by mass of an amide solvent not containing an inorganic salt is used at a bath temperature of 10 to 35 ° C. If the amide solvent concentration is less than 45% by mass, the skin has a thick structure, the cleaning efficiency in the cleaning process is lowered, and it is difficult to make the residual solvent amount of the obtained fiber 0.1% by mass or less. In addition, when the amide solvent concentration exceeds 60% by mass, uniform solidification cannot be performed until reaching the inside of the fiber, and therefore, the residual solvent amount of the fibrils may be 0.1% by mass or less. It becomes difficult.
  • the fiber immersion time in the coagulation bath is suitably in the range of 0.1 to 30 seconds.
  • the plastic stretching bath liquid is not particularly limited, and a conventionally known bath liquid can be employed.
  • the draw ratio in the plastic drawing bath needs to be in the range of 3.5 to 5.0 times, more preferably in the range of 3.7 to 4.5 times.
  • the solvent removal from the coagulated yarn can be promoted by plastic drawing in a plastic drawing bath within a specific magnification range. It can be 1 mass% or less.
  • the temperature of the plastic stretching bath is preferably in the range of 10 to 90 ° C.
  • the process stability is good.
  • washing process In the washing step, the fiber drawn in the plastic drawing bath is thoroughly washed. Washing is preferably performed in multiple stages because it affects the quality of the resulting fiber.
  • the temperature of the cleaning bath in the cleaning step and the concentration of the amide solvent in the cleaning bath liquid affect the state of extraction of the amide solvent from the fibers and the state of penetration of water from the cleaning bath into the fibers. For this reason, it is preferable to control the temperature condition and the concentration condition of the amide solvent by setting the washing process in multiple stages for the purpose of bringing them into an optimum state.
  • the temperature condition and the amide solvent concentration condition are not particularly limited as long as the quality of the finally obtained fiber can be satisfied.
  • the initial cleaning bath is set to a high temperature of 60 ° C. or higher, water enters the fiber at a stretch, and a huge void is generated in the fiber, resulting in deterioration of quality.
  • the first washing bath has a low temperature of 30 ° C. or lower.
  • the amount of solvent contained in the fiber used in the present invention is 0.1% by mass or less, more preferably 0.08% by mass or less.
  • the fiber that has undergone the washing step is dried and heat treated.
  • a method of dry heat processing For example, the method of using a hot roller, a hot plate, etc. can be mentioned.
  • the original meta-type wholly aromatic polyamide fiber of the present invention can be finally obtained.
  • the heat treatment temperature in the dry heat treatment step is preferably in the range of 260 to 350 ° C, and more preferably in the range of 270 to 340 ° C.
  • the heat treatment temperature is less than 260 ° C.
  • the fiber is insufficiently crystallized and the shrinkage of the fiber is increased.
  • it exceeds 350 ° C. the crystallization of the fiber becomes too large, and the elongation at break is significantly reduced.
  • the dry heat treatment temperature is in the range of 260 to 350 ° C.
  • the maximum heat shrinkage rate at a temperature increase rate of 100 ° C./min and a temperature range of 25 to 500 ° C. can be 7.5% or less. The breaking strength of the obtained fiber can be improved.
  • the original meta-type wholly aromatic polyamide fiber subjected to the dry heat treatment may be further crimped as necessary. Further, after the crimping process, it may be cut into an appropriate fiber length and provided to the next step. In some cases, it may be wound up as a multifilament yarn.
  • the lightness index L * value was calculated by measuring the diffuse reflectance in a -10 degree visual field with the light source D65 and performing normal calculation processing.
  • thermomechanical analyzer EXSTAR6000 made by SII As a measuring device, a thermomechanical analyzer EXSTAR6000 made by SII is used, a fiber sample is divided into 480 dtex, and this is sandwiched between chucks and used as a measurement sample. The shrinkage ratio with respect to the initial length of the sample fiber at each temperature was measured under the following conditions, and the shrinkage ratio at the temperature at which the shrinkage ratio was maximum among the obtained shrinkage ratio results at each temperature was defined as the maximum heat shrinkage ratio.
  • Example 1 [Spinning liquid adjustment process] In a reaction vessel under a dry nitrogen atmosphere, 721.5 parts by mass of N, N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less was weighed, and 97.2 parts by mass (50.18 mol) of metaphenylenediamine was added to the DMAc. %) was dissolved and cooled to 0 ° C. To this cooled DMAc solution, 181.3 parts by mass (49.82 mol%) of isophthalic acid chloride (hereinafter abbreviated as IPC) was added while gradually stirring to carry out a polymerization reaction.
  • IPC isophthalic acid chloride
  • Pigment Blue 15 powder of 0.95% by mass relative to the polymer was uniformly dispersed, and vacuum spinning was performed to prepare a spinning solution (spinning dope).
  • the spinning dope was spun from a spinning nozzle having a hole diameter of 0.07 mm and a hole number of 500 into a coagulation bath having a bath temperature of 30 ° C.
  • the washed fiber was subjected to a dry heat treatment with a heat roller having a surface temperature of 300 ° C. to obtain an original meta type wholly aromatic polyamide fiber.
  • Example 2 An original meta-type wholly aromatic polyamide raw cotton was produced in the same manner as in Example 1 except that Pigment Blue 60 / Pigment Black 7 mixed pigment (Navy Blue) was used as the pigment. Table 1 shows various measurement results for the obtained raw cotton.
  • Example 3 An original meta-type wholly aromatic polyamide raw cotton was produced in the same manner as in Example 1 except that Pigment Black 7 was used as a pigment. Table 1 shows various measurement results for the obtained raw cotton.
  • the fiber of the present invention is an original meta type wholly aromatic polyamide fiber in which the discoloration of the fiber due to long exposure and the thermal shrinkage due to high temperature heating such as flame exposure and radiant heat are suppressed. Therefore, the original meta-type wholly aromatic polyamide fiber of the present invention can be suitably used for fire fighting clothes and heat-resistant work clothes that require these characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Coloring (AREA)

Abstract

 露光下での変褪色が小さい原着メタ型全芳香族ポリアミド繊維であって、繊維中に残存する溶媒含有量が一定値以下である原着メタ型全芳香族ポリアミド繊維。具体的には、繊維中の残存溶媒量が繊維質量全体に対して0.1質量%以下である原着メタ型全芳香族ポリアミド繊維。

Description

原着メタ型全芳香族ポリアミド繊維
 本発明は、原着メタ型全芳香族ポリアミド繊維に関する。さらに詳しくは、露光による変褪色が小さい原着メタ型全芳香族ポリアミド繊維に関する。
 芳香族ジアミンと芳香族ジカルボン酸ジハライドとから製造される全芳香族ポリアミド繊維が、耐熱性および難燃性に優れていることは公知であり、かかる全芳香族ポリアミド繊維のうち、ポリメタフェニレンイソフタルアミドに代表されるメタ型全芳香族ポリアミド繊維は、耐熱性および難燃性繊維として特に有用であることが知られている。そして、メタ型全芳香族ポリアミド繊維は、これらの特徴を活かし、例えば、消防服、耐熱性作業服などの防護衣料分野で好適に使用されている(特許文献1参照)。
 このような衣料分野での使用においては、着色した繊維を用いるのが一般的である。そして、着色した繊維を得る方法としては、繊維化後、染料を用いて染色する後染色法、あるいは紡糸原液に顔料を添加した後に繊維化する原着法が知られている。
 しかしながら、着色されたメタ型全芳香族ポリアミド繊維は、光照射により変色や褪色を起こすという欠点を有しており、変褪色の度合いによっては使用できなくなる場合があった。
 そこで、染料を用いて染色する後染色法においては、ヒンダードアミン系耐光剤を添加して、染色されたメタ型全芳香族ポリアミド繊維の褪色を抑制する方法が提案されている(特許文献2参照)。しかしながら、特許文献2に記載の方法では、長時間の光照射に対しては染料の分解が進んでしまい、長期の耐変褪色性はいまだ満足できるものではなかった。
 一方、紡糸原液に顔料を添加して繊維化する原着法においては、光照射により褐色化する全芳香族ポリアミドに、黄色系の光褪色性着色剤を練り込んで変色までの時間を長期化させるとともに淡色化させ、見かけ上の変褪色を抑制する方法が提案されている(特許文献3参照)。しかしながら、特許文献3に記載の方法では、黄色系以外の色相ではその効果が小さく、根本的な解決策となっていなかった。
特開2006-016709号公報 特開2003-239136号公報 特開平2-229281号公報
 本発明は、上記背景技術に鑑みてなされたものであり、その目的とするところは、露光下での変褪色の小さい原着メタ型全芳香族ポリアミド繊維を提供することにある。
 発明者は、上記の課題を解決するため鋭意検討を重ねた。その結果、繊維中に残存する溶媒含有量を一定値以下とすれば、得られる原着メタ型全芳香族ポリアミド繊維は露光による変褪色が小さくなることを見出し、本発明を完成するに至った。
 すなわち本発明は、残存溶媒量が繊維質量全体に対して0.1質量%以下である原着メタ型全芳香族ポリアミド繊維である。
 本発明のメタ型全芳香族ポリアミド繊維は、露光による変褪色が小さい原着メタ型全芳香族ポリアミド繊維となる。すなわち、難燃性、耐熱性というメタ型全芳香族ポリアミド繊維が本来もつ性質に加えて、露光下で長時間使用した場合であっても製品の変褪色を抑制できるという利点を有する。
 また、本発明の原着メタ型全芳香族ポリアミド繊維は、高温下における収縮性が小さく熱寸法安定性に優れた繊維となる。このため、火炎暴露や輻射熱等が存在する用途においても、安定した使用を継続することができる。
 したがって、本発明に係る原着メタ型全芳香族ポリアミド繊維を用いて作成された衣料は、長時間の露光において優れた耐変褪色性を示すとともに、高温下において優れた寸法安定性を示すため、消防服や耐熱性作業服などの防護衣料として好適に使用することができる。
 <原着メタ型全芳香族ポリアミド繊維>
 本発明の原着メタ型全芳香族ポリアミド繊維は、以下の特定の物性を備える。本発明の原着メタ型全芳香族ポリアミド繊維の物性、構成、および、製造方法等について以下に説明する。
 [原着メタ型全芳香族ポリアミド繊維の物性]
 〔残存溶媒量〕
 メタ型全芳香族ポリアミド繊維は、通常、ポリマーをアミド系溶媒に溶解して、顔料を混練した紡糸原液から製造されるため、必然的に繊維中に溶媒が残存する。しかしながら、本発明の原着メタ型全芳香族ポリアミド繊維は、繊維中に残存する溶媒の量が、繊維質量に対して0.1質量%以下である。0.1質量%以下であることが必須であり、0.08質量%以下であることがより好ましい。
 繊維質量に対して0.1質量%を超えて溶媒が繊維中に残存している場合には、200℃を超えるような高温雰囲気下での加工や使用の際に、残存溶媒が揮発するため環境安全性に劣る。また、露光下での使用に際して、繊維の変褪色を引き起こす原因となる。
 繊維中の残存溶媒量を0.1質量%以下とするためには、繊維の製造工程において、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を調節し、かつ、特定倍率で可塑延伸を実施する。
 なお、本発明における「繊維中の残存溶媒量」とは、以下の方法で得られる値を言う。
 (残存溶媒量の測定方法)
 繊維を1.0mg採取し、ガスクロマトグラフィー((株)島津製作所社製、型式:GC-2010)を用いて、繊維中に残存するアミド系溶媒量を測定した。続いて、標準サンプルとしてアミド系溶媒を用いて作成した検量線から、繊維中の残存溶媒濃度を算出した。
 〔最大熱収縮率〕
 本発明の原着メタ型全芳香族ポリアミド繊維は、昇温速度100℃/min、温度範囲25~500℃での最大熱収縮率が7.5%以下であることが好ましい。7.5%以下であることが好ましく、7.0%以下であることがより好ましい。最大熱収縮率が7.5%を超える場合には、高温雰囲気下での使用時に製品寸法が変化し、製品の破損が生じる等の問題が発生するため好ましくない。
 繊維の最大熱収縮率を7.5%以下とするためには、繊維の製造工程において、スキンコアを有しない凝固形態となるよう凝固浴の成分あるいは条件を調節し、かつ、特定倍率で可塑延伸を実施し、さらに、特定の熱処理を実施する。
 なお、本発明における「最大熱収縮率」とは、以下の方法で得られる値をいう。
 (最大熱収縮率の測定方法)
 測定装置として、SII製の熱機械分析装置EXSTAR6000を用い、繊維サンプルを480dtexに分繊し、これをチャックに挟み測定試料とする。以下の条件で各温度における試料繊維初期長に対する収縮率を測定し、得られた各温度の収縮率結果のうち収縮率が最大となる温度での収縮率を最大熱収縮率とする。
  <測定条件>
    測定試料長  :10mm
    昇温速度   :100℃/min
    測定温度範囲 :25~500℃
    繊維試料に与える負荷荷重 :1.2cN
 〔明度指数L*〕
 本発明の原着メタ型全芳香族ポリアミド繊維の明度指数L*は、特に限定されるものではなく、原着により着色が可能な範囲の全ての色相を取りうる。しかしながら、本発明の原着メタ型全芳香族ポリアミド繊維は、濃色系繊維においてその効果が顕著となる。したがって、繊維の明度指数L*値は、40以下とすることが好ましい。
 〔キセノンアークフェードメーターによる光変褪色度(色差:ΔE*)〕
 本発明の原着メタ型全芳香族ポリアミド繊維は、明度指数L*値が40以下の場合、キセノンアークフェードメーターにて1.1W/mで80時間照射前後の色差、すなわち光変褪色度(ΔE*)が、24.0以下となる。23.0以下であることが好ましく、22.0以下であることがより好ましい。キセノンアークフェードメーターによる光変褪色度(色差:ΔE*)が24.0を超える場合には、光照射による繊維の変褪色が著しい。
 なお、「キセノンアークフェードメーターによる光変褪色度(色差:ΔE*)」とは、以下の方法で得られる値をいう。
 (キセノンアークフェードメーターによる光変褪色度(色差:ΔE*)の求め方)
 キセノンアークフェードメーターによる光変褪色度(色差:ΔE*)は、未照射綿、およびキセノンアークフェードメーターにて1.1W/mで一定時間照射した光照射綿を用いて求める。先ず、光源D65を用いて-10度視野での拡散反射率を測定し、通常の演算処理により、明度指数L*値、クロマティクネス指数a*、b*値を算出する。測定光照射面積は、30mmΦとする。光変褪色度(色差:ΔE*)は、得られた値を用いて、JIS Z-8730に準拠して次式により求める。なお、本発明におけるキセノンアークフェードメーターによる光変褪色度(色差:ΔE*)は、照射時間80時間にて特定した。
 [式1]
   ΔE*=((ΔL*)+(Δa*)+(Δb*)1/2
 〔カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)〕
 本発明の原着メタ型全芳香族ポリアミド繊維は、明度指数L*値が40以下の場合、カーボンアークフェードメーターにて135V・17Aで72時間照射前後の色差、すなわち光変褪色度(ΔE*)が、2.5以下となる。2.3以下であることが好ましく、2.1以下であることがより好ましい。カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)が2.5を超える場合には、光照射による繊維の変褪色が著しい。
 なお、「カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)」とは、以下の方法で得られる値をいう。
 (カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)の求め方)
 カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)は、未照射綿、およびカーボンアークフェードメーターにて135V・17Aで一定時間照射した光照射綿を用いて、上記のキセノンアークフェードメーターによる光変褪色度(色差:ΔE*)と同様に求める。すなわち、先ず、光源D65を用いて-10度視野での拡散反射率を測定し、通常の演算処理により、明度指数L*値、クロマティクネス指数a*、b*値を算出し、得られた値を用いて、JIS Z-8730に準拠した上記式によって求める。このとき、測定光照射面積は10mmΦとする。なお、本発明におけるカーボンアークフェードメーターによる光変褪色度(色差:ΔE*)は、照射時間72時間にて特定した。
 〔高残存溶媒量原着繊維との光変褪色度(色差:ΔE*)の比〕
 本発明の原着メタ型全芳香族ポリアミド繊維は、カーボンアークフェードメーターにて135V・17Aで72時間照射前後の光変褪色度(色差:ΔE*)が、繊維中の残存溶媒量が0.4質量%以上である同一顔料を同量添加した原着メタ型全芳香族ポリアミド繊維の光変褪色度(色差:ΔE*)に対して、75%以下である。72%以下であることが好ましく、70%以下であることがより好ましい。0.4質量%以上の残存溶媒量である同一色の原着繊維との光変褪色度(色差:ΔE*)の比が75%を超える場合には、光照射による繊維の変褪色が著しいため好ましくない。
 なお、高残存溶媒量原着繊維との光変褪色度(色差:ΔE*)の比を確認するための「カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)」とは、照射時間72時間として、上記した方法と同一の方法を実施して得られる値をいう。
 [メタ型全芳香族ポリアミドの構成]
 本発明の原着メタ型全芳香族ポリアミド繊維を構成するメタ型全芳香族ポリアミドは、メタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸成分とから構成されるものであり、本発明の目的を損なわない範囲内で、パラ型等の他の共重合成分が共重合されていてもよい。
 本発明の原着メタ型全芳香族ポリアミド繊維の原料として特に好ましく使用されるのは、力学特性、耐熱性、難燃性の観点から、メタフェニレンイソフタルアミド単位を主成分とするメタ型全芳香族ポリアミドである。
 メタフェニレンイソフタルアミド単位から構成されるメタ型全芳香族ポリアミドとしては、メタフェニレンイソフタルアミド単位が、全繰り返し単位の90モル%以上であることが好ましく、さらに好ましくは95モル%以上、特に好ましくは100モル%である。
 〔メタ型全芳香族ポリアミドの原料〕
 (メタ型芳香族ジアミン成分)
 メタ型全芳香族ポリアミドの原料となるメタ型芳香族ジアミン成分としては、メタフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルホン等、および、これらの芳香環にハロゲン、炭素数1~3のアルキル基等の置換基を有する誘導体、例えば、2,4-トルイレンジアミン、2,6-トルイレンジアミン、2,4-ジアミノクロロベンゼン、2,6-ジアミノクロロベンゼン等を例示することができる。なかでも、メタフェニレンジアミンのみ、または、メタフェニレンジアミンを85モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上含有する混合ジアミンであることが好ましい。
 (メタ型芳香族ジカルボン酸成分)
 メタ型全芳香族ポリアミドを構成するメタ型芳香族ジカルボン酸成分の原料としては、例えば、メタ型芳香族ジカルボン酸ハライドを挙げることができる。メタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド、および、これらの芳香環にハロゲン、炭素数1~3のアルコキシ基等の置換基を有する誘導体、例えば3-クロロイソフタル酸クロライド等を例示することができる。なかでも、イソフタル酸クロライドそのもの、または、イソフタル酸クロライドを85モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上含有する混合カルボン酸ハライドであることが好ましい。
 [メタ型全芳香族ポリアミドの製造方法]
 本発明の原着メタ型全芳香族ポリアミド繊維を構成するメタ型全芳香族ポリアミドの製造方法は、特に限定されるものではなく、例えば、メタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸クロライド成分とを原料とした溶液重合や界面重合等により製造することができる。
 なお、メタ型全芳香族ポリアミドの分子量は、繊維を形成し得る程度であれば特に限定されるものではない。一般に、十分な物性の繊維を得るには、濃硫酸中、ポリマー濃度100mg/100mL硫酸で30℃において測定した固有粘度(I.V.)が、1.0~3.0の範囲のポリマーが適当であり、1.2~2.0の範囲のポリマーが特に好ましい。
 <原着メタ型全芳香族ポリアミド繊維の製造方法>
 本発明の原着メタ型全芳香族ポリアミド繊維は、上記の製造方法等によって得られたメタ型全芳香族ポリアミドを用いて、例えば、以下に説明する紡糸液調製工程、紡糸・凝固工程、可塑延伸浴延伸工程、洗浄工程、弛緩処理工程、熱処理工程を経て製造できる。
 [紡糸液調製工程]
 紡糸液調製工程においては、メタ型全芳香族ポリアミドをアミド系溶媒に溶解し、顔料を添加して、紡糸液(原着メタ型全芳香族ポリアミド重合体溶液)を調整する。紡糸液の調整にあたっては、通常、アミド系溶媒を用い、使用されるアミド系溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等を例示することができる。これらのなかでは溶解性と取り扱い安全性の観点から、NMPまたはDMAcを用いることが好ましい。
 溶液濃度としては、次工程である紡糸・凝固工程での凝固速度および重合体の溶解性の観点から、適当な濃度を適宜選択すればよく、例えば、ポリマーがポリメタフェニレンイソフタルアミドで溶媒がNMPの場合には、通常は10~30質量%の範囲とすることが好ましい。
 (顔料)
 本発明に用いられる顔料としては、アゾ系、フタロシアニン系、ペリノン系、ペリレン系、アンスラキノン系等の有機顔料、あるいは、カーボンブラック、群青、ベンガラ、酸化チタン、酸化鉄等の無機顔料が挙げられるが、これらに限定されるものではない。
 メタ型全芳香族ポリアミドと顔料との混合方法は、アミド系溶媒中に顔料を均一分散したアミド系溶媒スラリーを作成し、当該アミド系溶媒スラリーをメタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液に添加する方法、あるいは顔料粉末を直接、メタ型全芳香族ポリアミドがアミド系溶媒に溶解した溶液に添加する方法等が挙げられるが、特に限定されるものではない。このようにして得られた紡糸液(原着メタ型全芳香族ポリアミド重合体溶液)は、例えば下記工程を経て、繊維に成形される。
 (顔料配合量)
 顔料配合量としては、メタ型全芳香族ポリアミドに対して10.0質量%以下、好ましくは5.0質量%以下である。10.0質量%より多く添加した場合には、得られる繊維の物性が低下し好ましくない。
 [紡糸・凝固工程]
 紡糸・凝固工程においては、上記で得られた紡糸液(原着メタ型全芳香族ポリアミド重合体溶液)を凝固液中に紡出して凝固させる。
 紡糸装置としては特に限定されるものではなく、従来公知の湿式紡糸装置を使用することができる。また、安定して湿式紡糸できるものであれば、紡糸口金の紡糸孔数、配列状態、孔形状等は特に制限する必要はなく、例えば、孔数が500~30000個、紡糸孔径が0.05~0.2mmのスフ用の多ホール紡糸口金等を用いてもよい。
 また、紡糸口金から紡出する際の紡糸液(原着メタ型全芳香族ポリアミド重合体溶液)の温度は、10~90℃の範囲が適当である。
 本発明の繊維を得るために用いる凝固浴としては、無機塩を含まないアミド系溶媒濃度45~60質量%の水溶液を、浴液の温度10~35℃の範囲で用いる。アミド系溶媒濃度45質量%未満ではスキンが厚い構造となってしまい、洗浄工程における洗浄効率が低下し、得られる繊維の残存溶媒量を0.1質量%以下とすることが困難となる。また、アミド系溶媒濃度60質量%を超える場合には、繊維内部に至るまで均一な凝固を行うことができず、このため、原繊維の残存溶媒量を0.1質量%以下とすることが困難となる。なお、凝固浴中への繊維の浸漬時間は、0.1~30秒の範囲が適当である。
 [可塑延伸浴延伸工程]
 可塑延伸浴延伸工程においては、凝固浴にて凝固して得られた繊維が可塑状態にあるうちに、可塑延伸浴中にて繊維を延伸処理する。
 可塑延伸浴液としては特に限定されるものではなく、従来公知の浴液を採用することができる。
 本発明の繊維を得るためには、可塑延伸浴中の延伸倍率を、3.5~5.0倍の範囲とする必要があり、さらに好ましくは3.7~4.5倍の範囲とする。本発明に用いられる繊維の製造においては、可塑延伸浴中にて特定倍率の範囲で可塑延伸することにより、凝固糸中からの脱溶剤を促進することができ、原繊維の残存溶媒量0.1質量%以下とすることができる。
 可塑延伸浴中での延伸倍率が3.5倍未満である場合には、凝固糸中からの脱溶剤が不十分となり、原繊維の残存溶媒量を0.1質量%以下とすることが困難となる。また、破断強度が不十分となり、紡績工程等の加工工程における取り扱いが困難となる。一方で、延伸倍率が5.0倍を超える場合には、単糸切れが発生するため、工程安定性が悪くなる。
 可塑延伸浴の温度は、10~90℃の範囲が好ましい。好ましくは温度20~90℃の範囲にあると、工程安定性がよい。
 [洗浄工程]
 洗浄工程においては、可塑延伸浴にて延伸された繊維を、十分に洗浄する。洗浄は、得られる繊維の品質面に影響を及ぼすことから、多段で行うことが好ましい。特に、洗浄工程における洗浄浴の温度および洗浄浴液中のアミド系溶媒の濃度は、繊維からのアミド系溶媒の抽出状態および洗浄浴からの水の繊維中への浸入状態に影響を与える。このため、これらを最適な状態とする目的においても、洗浄工程を多段とし、温度条件およびアミド系溶媒の濃度条件を制御することが好ましい。
 温度条件およびアミド系溶媒の濃度条件については、最終的に得られる繊維の品質を満足できるものであれば、特に限定されるものではない。ただし、最初の洗浄浴を60℃以上の高温とすると、水の繊維中への浸入が一気に起こるため、繊維中に巨大なボイドが生成し、品質の劣化を招く。このため、最初の洗浄浴は、30℃以下の低温とすることが好ましい。
 繊維中に溶媒が残っている場合には、当該繊維を用いた製品の加工、および当該繊維を用いて形成された製品の使用における環境安全性が好ましくない。このため、本発明に用いられる繊維に含まれる溶媒量は、0.1質量%以下であり、より好ましくは0.08質量%以下である。
 [乾熱処理工程]
 乾熱処理工程においては、洗浄工程を経た繊維を、乾燥・熱処理する。乾熱処理の方法としては特に限定されるものではないが、例えば、熱ローラー、熱板等を用いる方法を挙げることができる。乾熱処理を経ることにより、最終的に、本発明の原着メタ型全芳香族ポリアミド繊維を得ることができる。
 本発明の繊維を得るためには、乾熱処理工程における熱処理温度を、260~350℃の範囲とすることが好ましく、270~340℃の範囲とすることがさらに好ましい。熱処理温度が260℃未満の場合には、繊維の結晶化が不十分となり、繊維の収縮性が高くなる。一方で、350℃を越える場合には、繊維の結晶化が大きくなりすぎるため、破断伸度が著しく低下する。また、乾熱処理温度を260~350℃の範囲とすれば、昇温速度100℃/min、温度範囲25~500℃における最大熱収縮率を、7.5%以下とすることができるとともに、得られる繊維の破断強度を向上させることができる。
 [捲縮工程等]
 乾熱処理が施された原着メタ型全芳香族ポリアミド繊維には、必要に応じて、さらに捲縮加工を施してもよい。さらに、捲縮加工後は、適当な繊維長に切断し、次工程に提供してもよい。また、場合によっては、マルチフィラメントヤーンとして巻き取ってもよい。
 以下、実施例および比較例により本発明をさらに詳しく具体的に説明する。ただし、これらの実施例および比較例は本発明の理解を助けるためのものであって、これらの記載によって本発明の範囲が限定されるものではない。
 <測定方法>
 実施例および比較例における各物性値は、下記の方法で測定した。
 [固有粘度(I.V.)]
 ポリマーを97%濃硫酸に溶解し、オストワルド粘度計を用い30℃で測定した。
 [明度指数L*]
 明度指数L*値は、光源D65にて-10度視野での拡散反射率を測定し、通常の演算処理により算出した。
 [繊度]
 JIS L1015に基づき、正量繊度のA法に準拠した測定を実施し、見掛繊度にて表記した。
 [残留溶媒量]
 繊維を1.0mg採取し、ガスクロマトグラフィー((株)島津製作所社製、型式:GC-2010)を用いて、繊維中に残存するアミド系溶媒量を測定した。続いて、標準サンプルとしてアミド系溶媒を用いて作成した検量線から、繊維中の残存溶媒濃度を算出した。
 [最大熱収縮率]
 測定装置として、SII製の熱機械分析装置EXSTAR6000を用い、繊維サンプルを480dtexに分繊し、これをチャックに挟み測定試料とする。以下の条件で各温度における試料繊維初期長に対する収縮率を測定し、得られた各温度の収縮率結果のうち収縮率が最大となる温度での収縮率を最大熱収縮率とした。
  (測定条件)
    測定試料長  :10mm
    昇温速度   :100℃/min
    測定温度範囲 :25~500℃
    繊維試料に与える負荷荷重 :1.2cN
 [キセノンアークフェードメーターによる光変褪色度(色差:ΔE*)]
 未照射綿、およびキセノンアークフェードメーターにて1.1W/mで24時間および80時間照射した光照射綿を用いて、光源D65にて-10度視野での拡散反射率を測定し、通常の演算処理により、明度指数L*値、クロマティクネス指数a*、b*値を算出した。このとき、測定光照射面積は30mmΦとした。光変褪色度(色差:ΔE*)は、得られた値を用いて、JIS Z-8730に準拠して次式により求めた。
 [式1]
   ΔE*=((ΔL*)+(Δa*)+(Δb*)1/2
 [カーボンアークフェードメーターによる光変褪色度(色差:ΔE*)]
 未照射綿、およびカーボンアークフェードメーターにて135V・17Aで24時間および72時間照射した光照射綿を用いて、光源D65にて-10度視野での拡散反射率を測定し、通常の演算処理により、明度指数L*値、クロマティクネス指数a*、b*値を算出した。このとき、測定光照射面積は10mmΦとした。光変褪色度(色差:ΔE*)は、得られた値を用いて、上記のキセノンアークフェードメーターによる光変褪色度(色差:ΔE*)と同一の式により求めた。
 [光変褪色度(色差:ΔE*)の比]
 カーボンアークフェードメーターにて135V・17Aで72時間照射前後の光変褪色度(ΔE*)を用いて、同一顔料を同量添加した繊維中の残存溶媒量が0.4質量%以上である比較例数値に対する実施例数値の割合(%)を求めた。
 <実施例1>
 [紡糸液調整工程]
 乾燥窒素雰囲気下の反応容器に、水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)721.5質量部を秤量し、このDMAc中にメタフェニレンジアミン97.2質量部(50.18モル%)を溶解して0℃に冷却した。この冷却したDMAc溶液に、さらにイソフタル酸クロライド(以下IPCと略す)181.3質量部(49.82モル%)を徐々に攪拌しながら添加し、重合反応を行った。
 次に、平均粒径が10μm以下の水酸化カルシウム粉末を66.6質量部秤量し、重合反応が完了したポリマー溶液に対してゆっくり加え、中和反応を実施した。水酸化カルシウムの投入が完了した後、さらに40分間攪拌し、透明なポリマー溶液を得た。得られたポリマー溶液からポリメタフェニレンイソフタルアミドを単離して固有粘度(I.V.)を測定したところ、1.65であった。また、ポリマー溶液中のポリマー濃度は17%であった。
 該ポリマー溶液に、ポリマー対比0.95質量%のPigment Blue15粉末を均一分散し、減圧脱法して紡糸液(紡糸ドープ)を作製した。
 [紡糸・凝固工程]
 上記紡糸ドープを、孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/DMAc=45/55(質量部)であり、凝固浴中に糸速7m/分で吐出して紡糸した。
 [可塑延伸浴延伸工程]
 引き続き、温度40℃の水/DMAc=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
 [洗浄工程]
 延伸後、20℃の水/DMAc=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
 [乾熱処理工程]
 洗浄後の繊維について、表面温度300℃の熱ローラーにて乾熱処理を施し、原着メタ型全芳香族ポリアミド繊維を得た。
 [捲縮、カット工程]
 クリンパーを通して得られた繊維に捲縮を付与した後、カッターでカットして51mmの短繊維とすることにより、原着メタ型全芳香族ポリアミド原綿を得た。得られた原綿についての各種測定結果を表1に示す。
 <比較例1>
 紡糸・凝固工程において、凝固液の組成を、水/DMAc(量比)=70/30に変更した以外は、実施例1と同様にして原着メタ型全芳香族ポリアミド原綿を製造した。得られた原綿についての各種測定結果を表1に示す。
 <比較例2>
 紡糸・凝固工程において、凝固液の組成を、水/DMAc(量比)=30/70に変更した以外は、実施例1と同様にして原着メタ型全芳香族ポリアミド原綿を製造した。得られた原綿についての各種測定結果を表1に示す。
 <実施例2>
 顔料としてPigment Blue60/Pigment Black7混合顔料(Navy Blue)を用いた以外は、実施例1と同様にして原着メタ型全芳香族ポリアミド原綿を製造した。得られた原綿についての各種測定結果を表1に示す。
 <比較例3>
 紡糸・凝固工程において、凝固液の組成を、水/DMAc(量比)=30/70に変更した以外は、実施例2と同様にして原着メタ型全芳香族ポリアミド原綿を製造した。得られた原綿についての各種測定結果を表1に示す。
 <実施例3>
 顔料としてPigment Black7を用いた以外は、実施例1と同様にして原着メタ型全芳香族ポリアミド原綿を製造した。得られた原綿についての各種測定結果を表1に示す。
 <比較例4>
 紡糸・凝固工程において、凝固液の組成を、水/DMAc(量比)=30/70に変更した以外は、実施例3と同様にして原着メタ型全芳香族ポリアミド原綿を製造した。得られた原綿についての各種測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の繊維は、長時間の露光による繊維の変褪色、および火炎暴露や輻射熱等の高温加熱による熱収縮が抑制された原着メタ型全芳香族ポリアミド繊維となる。したがって、本発明の原着メタ型全芳香族ポリアミド繊維は、これら特性を必要とする消防服や耐熱作業服に好適に使用することができる。

Claims (5)

  1.  残存溶媒量が繊維質量全体に対して0.1質量%以下である原着メタ型全芳香族ポリアミド繊維。
  2.  カーボンアークフェードメーターにて135V・17Aで72時間照射前後の色差(ΔE*)が、繊維中の残存溶媒量が0.4質量%以上である同一顔料を同量添加した原着メタ型全芳香族ポリアミド繊維の色差(ΔE*)に対して、75%以下である請求項1記載の原着メタ型全芳香族ポリアミド繊維。
  3.  キセノンアークフェードメーターにて1.1W/mで80時間照射前後の色差(ΔE*)が、24.0以下である請求項1記載の原着メタ型全芳香族ポリアミド繊維。
  4.  カーボンアークフェードメーターにて135V・17Aで72時間照射前後の色差(ΔE*)が、2.5以下である請求項1記載の原着メタ型全芳香族ポリアミド繊維。
  5.  昇温速度100℃/min、温度範囲25~500℃での最大熱収縮率が7.5%以下である請求項1~4いずれか記載の原着メタ型全芳香族ポリアミド繊維。
PCT/JP2012/077188 2011-10-24 2012-10-22 原着メタ型全芳香族ポリアミド繊維 WO2013061901A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2013540762A JP5852127B2 (ja) 2011-10-24 2012-10-22 原着メタ型全芳香族ポリアミド繊維
SG11201401715YA SG11201401715YA (en) 2011-10-24 2012-10-22 Spun-dyed meta-type wholly aromatic polyamide fiber
KR1020147013610A KR20140080552A (ko) 2011-10-24 2012-10-22 원착 메타형 전체 방향족 폴리아미드 섬유
MX2014004843A MX341055B (es) 2011-10-24 2012-10-22 Fibras de poliamidas aromaticas completamente del tipo meta. teñidas por hilado.
EP12843047.7A EP2772571B1 (en) 2011-10-24 2012-10-22 Spun-dyed meta-type fully aromatic polyamide fiber
ES12843047T ES2806079T3 (es) 2011-10-24 2012-10-22 Fibra de poliamida completamente aromática de tipo meta teñida por hilado
CN201280052403.XA CN103906868B (zh) 2011-10-24 2012-10-22 原液染色间位型全芳香族聚酰胺纤维
CA2852197A CA2852197A1 (en) 2011-10-24 2012-10-22 Spun-dyed meta-type wholly aromatic polyamide fiber
RU2014121105A RU2609913C2 (ru) 2011-10-24 2012-10-22 Окрашенное в процессе прядения чисто ароматическое полиамидное волокно мета-типа
US14/350,932 US20140303292A1 (en) 2011-10-24 2012-10-22 Spun-dyed meta-type wholly aromatic polyamide fiber
IN3133DEN2014 IN2014DN03133A (ja) 2011-10-24 2012-10-22

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-232996 2011-10-24
JP2011232996 2011-10-24
JP2011275936 2011-12-16
JP2011-275936 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013061901A1 true WO2013061901A1 (ja) 2013-05-02

Family

ID=48167733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077188 WO2013061901A1 (ja) 2011-10-24 2012-10-22 原着メタ型全芳香族ポリアミド繊維

Country Status (13)

Country Link
US (1) US20140303292A1 (ja)
EP (1) EP2772571B1 (ja)
JP (1) JP5852127B2 (ja)
KR (1) KR20140080552A (ja)
CN (1) CN103906868B (ja)
CA (1) CA2852197A1 (ja)
ES (1) ES2806079T3 (ja)
IN (1) IN2014DN03133A (ja)
MX (1) MX341055B (ja)
RU (1) RU2609913C2 (ja)
SG (1) SG11201401715YA (ja)
TW (1) TWI586855B (ja)
WO (1) WO2013061901A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862496A (zh) * 2015-01-20 2016-08-17 圣欧芳纶(江苏)股份有限公司 有色间位芳纶纤维纸的制备方法
JP6048603B1 (ja) * 2016-02-24 2016-12-21 東洋紡株式会社 着色ポリエチレン繊維の劣化判定方法及び着色ポリエチレン繊維
WO2022185683A1 (ja) * 2021-03-02 2022-09-09 帝人株式会社 原着メタ型全芳香族ポリアミド繊維及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921758B (zh) * 2015-09-16 2021-01-19 小松美特料株式会社 着色纤维面料及着色纤维面料的制造方法
RU2632148C2 (ru) 2015-12-28 2017-10-02 Общество С Ограниченной Ответственностью "Яндекс" Система и способ ранжирования результатов поиска
KR101961189B1 (ko) * 2017-07-03 2019-03-21 주식회사 휴비스 색상이 우수한 메타아라미드 원착사 및 그의 제조방법
KR101992447B1 (ko) * 2018-04-27 2019-06-25 주식회사 휴비스 원착 메타아라미드 편평형 섬유

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145688B2 (ja) * 1973-10-01 1976-12-04
JPH02229281A (ja) 1988-11-18 1990-09-12 Kuraray Co Ltd 全芳香族ポリアミド組成物
JP2003239136A (ja) 2002-02-12 2003-08-27 Teijin Ltd 高耐光性全芳香族ポリアミド繊維構造物
JP2005536660A (ja) * 2002-08-24 2005-12-02 ダイスター・テクスティルファルベン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・ドイッチュラント・コマンデイトゲゼルシャフト 原着された紡織繊維材料及び擬装物品を製造するためのその使用
JP2006016709A (ja) 2004-06-30 2006-01-19 Teijin Techno Products Ltd 耐熱性防護服
WO2011129279A1 (ja) * 2010-04-14 2011-10-20 帝人テクノプロダクツ株式会社 メタ型全芳香族ポリアミド繊維

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145688A (en) * 1974-10-16 1976-04-19 Hitachi Shipbuilding Eng Co Shokubaitaino seizohoho
KR100399459B1 (ko) * 1998-11-18 2003-09-29 아사히 가세이 가부시키가이샤 분산 염료 가염형 섬유와 폴리우레탄 섬유의 혼용 염색품및 그 염색법
CN1649970A (zh) * 2002-05-01 2005-08-03 西巴特殊化学品控股有限公司 颜料制剂
DE602006014507D1 (de) * 2005-03-09 2010-07-08 Dainichiseika Color Chem Gefärbte polyamidfaser und verfahren zur herstellung derselben
JP4759334B2 (ja) * 2005-07-07 2011-08-31 帝人テクノプロダクツ株式会社 全芳香族ポリアミド繊維構造物
JP2007262589A (ja) * 2006-03-27 2007-10-11 Teijin Techno Products Ltd 易染性メタ型芳香族ポリアミド繊維およびその製造法
JP5145688B2 (ja) * 2006-10-27 2013-02-20 セイコーエプソン株式会社 Mems・半導体複合回路の製造方法
JP4647680B2 (ja) * 2008-09-29 2011-03-09 帝人テクノプロダクツ株式会社 易染色性メタ型全芳香族ポリアミド繊維
MX2012010220A (es) * 2010-03-26 2012-10-01 Teijin Ltd Fibra de poliamida completamente aromatica de forma meta.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145688B2 (ja) * 1973-10-01 1976-12-04
JPH02229281A (ja) 1988-11-18 1990-09-12 Kuraray Co Ltd 全芳香族ポリアミド組成物
JP2003239136A (ja) 2002-02-12 2003-08-27 Teijin Ltd 高耐光性全芳香族ポリアミド繊維構造物
JP2005536660A (ja) * 2002-08-24 2005-12-02 ダイスター・テクスティルファルベン・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・ドイッチュラント・コマンデイトゲゼルシャフト 原着された紡織繊維材料及び擬装物品を製造するためのその使用
JP2006016709A (ja) 2004-06-30 2006-01-19 Teijin Techno Products Ltd 耐熱性防護服
WO2011129279A1 (ja) * 2010-04-14 2011-10-20 帝人テクノプロダクツ株式会社 メタ型全芳香族ポリアミド繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772571A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105862496A (zh) * 2015-01-20 2016-08-17 圣欧芳纶(江苏)股份有限公司 有色间位芳纶纤维纸的制备方法
JP6048603B1 (ja) * 2016-02-24 2016-12-21 東洋紡株式会社 着色ポリエチレン繊維の劣化判定方法及び着色ポリエチレン繊維
WO2022185683A1 (ja) * 2021-03-02 2022-09-09 帝人株式会社 原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP7466054B2 (ja) 2021-03-02 2024-04-11 帝人株式会社 原着メタ型全芳香族ポリアミド繊維及びその製造方法

Also Published As

Publication number Publication date
MX341055B (es) 2016-08-05
TWI586855B (zh) 2017-06-11
RU2014121105A (ru) 2015-12-10
SG11201401715YA (en) 2014-09-26
EP2772571A1 (en) 2014-09-03
CN103906868A (zh) 2014-07-02
RU2609913C2 (ru) 2017-02-07
EP2772571B1 (en) 2020-06-03
JPWO2013061901A1 (ja) 2015-04-02
KR20140080552A (ko) 2014-06-30
TW201337055A (zh) 2013-09-16
EP2772571A4 (en) 2015-03-25
JP5852127B2 (ja) 2016-02-03
IN2014DN03133A (ja) 2015-05-22
MX2014004843A (es) 2014-05-27
US20140303292A1 (en) 2014-10-09
CN103906868B (zh) 2015-10-14
ES2806079T3 (es) 2021-02-16
CA2852197A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5852127B2 (ja) 原着メタ型全芳香族ポリアミド繊維
JP4804590B1 (ja) メタ型全芳香族ポリアミド繊維
JP4647680B2 (ja) 易染色性メタ型全芳香族ポリアミド繊維
JP5710593B2 (ja) メタ型全芳香族ポリアミド繊維
JP2013133567A (ja) メタ型全芳香族ポリアミド積層防護服
JP7248507B2 (ja) 原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP2009120976A (ja) 易染色性メタ型全芳香族ポリアミド繊維
JP2012052249A (ja) 複合紡績糸
JP2013133569A (ja) 原着メタ型全芳香族ポリアミド紡績糸
JP6960275B2 (ja) 淡色原着メタ型全芳香族ポリアミド繊維
JP7028682B2 (ja) 原着メタ型全芳香族ポリアミド繊維及びその製造方法、並びに該繊維からなる難燃性紡績糸及び難燃性牽切紡績糸
JP2015042790A (ja) 原着メタ型全芳香族ポリアミド牽切紡績糸
JP2011202326A (ja) 易染色性メタ型全芳香族ポリアミド短繊維を含む繊維構造体
JP2018154945A (ja) 難燃性能に優れた易染性メタ型全芳香族ポリアミド繊維及びその製造方法
JP2018154943A (ja) 難燃性に優れたメタ型全芳香族ポリアミド繊維及びその製造方法
JP2020117831A (ja) 易染性メタ型全芳香族ポリアミド繊維及びその製造方法
JP2012052250A (ja) メタ型全芳香族ポリアミド繊維を含む牽切紡績糸
JP7466054B2 (ja) 原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP2013133568A (ja) 原着メタ型全芳香族ポリアミド繊維布帛
JP2018084000A (ja) メタ型全芳香族ポリアミド繊維及びその製造方法
JP7372118B2 (ja) 易染色性メタ型全芳香族ポリアミド繊維、およびその製造方法
JP6523026B2 (ja) 黒色メタ型全芳香族ポリアミド繊維
JP2023110161A (ja) メタ型全芳香族ポリアミド繊維及びその製造方法
JP2024103025A (ja) 原着メタ型全芳香族ポリアミド繊維及びその製造方法
JP2024084197A (ja) メタ型全芳香族ポリアミド繊維及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540762

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350932

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2852197

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004843

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013610

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012843047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014121105

Country of ref document: RU

Kind code of ref document: A