WO2013061780A9 - 電子血圧計 - Google Patents

電子血圧計 Download PDF

Info

Publication number
WO2013061780A9
WO2013061780A9 PCT/JP2012/076232 JP2012076232W WO2013061780A9 WO 2013061780 A9 WO2013061780 A9 WO 2013061780A9 JP 2012076232 W JP2012076232 W JP 2012076232W WO 2013061780 A9 WO2013061780 A9 WO 2013061780A9
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
pressure
cuff
measurement
voltage drop
Prior art date
Application number
PCT/JP2012/076232
Other languages
English (en)
French (fr)
Other versions
WO2013061780A1 (ja
Inventor
小林 達矢
祐輝 山下
佐野 佳彦
幸哉 澤野井
佐藤 博則
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to DE112012004480.0T priority Critical patent/DE112012004480T5/de
Priority to US14/350,373 priority patent/US9138152B2/en
Priority to CN201280048090.0A priority patent/CN103841883B/zh
Publication of WO2013061780A1 publication Critical patent/WO2013061780A1/ja
Publication of WO2013061780A9 publication Critical patent/WO2013061780A9/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof

Definitions

  • the present invention relates to an electronic sphygmomanometer, and more particularly to an electronic sphygmomanometer that measures blood pressure using a pulse wave detected from a measurement site.
  • Blood pressure is one of the indices for analyzing circulatory diseases, and risk analysis based on blood pressure is effective in preventing cardiovascular diseases such as stroke, heart failure and myocardial infarction.
  • diagnosis has been performed based on blood pressure (anytime blood pressure) measured at a medical institution such as when visiting a hospital or during a medical examination.
  • blood pressure measured at home home blood pressure
  • blood pressure monitors used at home have become widespread.
  • Blood pressure measurement by the oscillometric method is to wrap the cuff around a measurement site such as the upper arm, pressurize the cuff internal pressure (cuff pressure) by a predetermined pressure (for example, 30 mmHg) higher than the systolic blood pressure, and then gradually or stepwise. Reduce the cuff pressure.
  • the volume change of the artery is detected as a pressure change (pulse wave amplitude) superimposed on the cuff pressure, and the systolic blood pressure and the diastolic blood pressure are determined from the change in the pulse wave amplitude.
  • the blood pressure can be measured by detecting the amplitude of the pulse wave generated in the process of increasing the cuff pressure.
  • the drive voltage of the pump or valve is feedback-controlled based on the difference between the average speed and the target speed so that the average speed becomes the target speed.
  • a pump using a motor as a drive source, a piezoelectric micro pump using a piezoelectric element as a drive source, or the like can be applied as a blood pressure measurement pump that is feedback-controlled.
  • the structure of the piezoelectric micropump is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-74418.
  • Patent Document 2 Japanese Patent Laid-Open No. 5-42114 describes a method for determining the pressurization speed from the battery voltage.
  • JP 2009-74418 A Japanese Patent Laid-Open No. 5-42114
  • the method of determining the pressurization speed based on the battery voltage in Patent Document 2 does not take into account the drop in battery voltage during blood pressure measurement. That is, in a pump with high power consumption, since the battery voltage drop is large, it is difficult to accurately determine the pressurization speed.
  • an object of the present invention is to provide an electronic sphygmomanometer that makes it possible to estimate power consumption more than expected.
  • An electronic sphygmomanometer includes a cuff wound around a measurement site of a measurement subject and a piezoelectric pump that uses a piezoelectric vibrator for supplying fluid to the cuff to control the inside of the cuff.
  • An adjustment unit for adjusting the pressure a drive control unit for gradually changing the pressure in the cuff by driving and controlling the adjustment unit, and a pressure detection for detecting the cuff pressure representing the pressure in the cuff
  • a blood pressure determination unit for determining a blood pressure value based on the cuff pressure detected by the pressure detection unit, a peripheral length detection unit for detecting the peripheral length of the measurement site, and for supplying power to each unit
  • a drop detection unit for detecting the voltage drop value of the battery during blood pressure measurement, based on the perimeter and the voltage drop value detected during the initial pressurization period at the start of blood pressure measurement, Voltage drop during subsequent blood pressure measurement To estimate the range of values.
  • the present invention by estimating the range of the voltage drop value during the subsequent blood pressure measurement based on the circumference and the voltage drop value detected during the initial pressurization period at the start of blood pressure measurement, It is possible to estimate power consumption.
  • FIG. 1 is a block diagram showing a hardware configuration of electronic blood pressure monitor 100 according to the present embodiment.
  • an electronic sphygmomanometer 100 includes a cuff 40 attached to a blood pressure measurement site and an air system.
  • the cuff 40 includes the air bag 20.
  • the air bag 20 is connected to the air system via the air tube 300.
  • the electronic sphygmomanometer 100 further controls the display unit 12, the operation unit 13, and each unit in a centralized manner, performs various arithmetic processing, a CPU (Central Processing Unit) 10, programs for causing the CPU 10 to perform predetermined operations, and various types It includes a memory 11 for storing data, a detachable battery 15 for supplying power to each unit, and a timer 14 for performing a timing operation.
  • the memory 11 includes a non-volatile memory (for example, a flash memory) for storing the measured blood pressure.
  • the non-volatile memory stores a table 433 searched by a perimeter detection unit 351 described later, a table 434 searched by a descent amount detection unit 352 described later, and a table 435 searched by a power estimation unit 35 described later. .
  • the operation unit 13 includes a power switch that accepts an operation for turning the power on or off, a measurement switch that accepts an operation for starting measurement, a stop switch for accepting an operation of an instruction to stop measurement, and a user (a person to be measured) A user selection switch for accepting an operation for selectively designating the user.
  • the operation unit 13 also has a switch for receiving an operation for reading information such as measured blood pressure stored in the flash memory and displaying the information on the display unit.
  • the electronic blood pressure monitor 100 since the electronic blood pressure monitor 100 is shared by a plurality of persons to be measured, the electronic blood pressure monitor 100 includes a user selection switch. However, if the electronic blood pressure monitor 100 is not shared, the user selection switch may be omitted.
  • the measurement switch may also be used as a power switch. In that case, the measurement switch can be omitted.
  • the air system includes a pressure sensor 21 for detecting the pressure in the air bag 20 (hereinafter referred to as cuff pressure), a piezoelectric pump 26 for supplying air to the air bag 20 to pressurize the cuff pressure, and air. It includes an exhaust valve 24 that is opened and closed to exhaust or enclose the air in the bag 20.
  • the electronic sphygmomanometer 100 includes an amplifier 22 and an A / D (Analog / Digital) converter 23, a piezoelectric pump drive circuit 27, and an exhaust valve drive circuit 25 in connection with the air system.
  • the piezoelectric pump 26, the exhaust valve 24, the piezoelectric pump drive circuit 27, the exhaust valve drive circuit 25, and the like correspond to an adjustment unit for adjusting the cuff pressure.
  • the piezoelectric pump 26 is a micro pump using a piezoelectric element as a drive source.
  • the piezoelectric pump 26 includes a piezoelectric actuator that is driven by a vibration control voltage signal 273, a diaphragm laminated on the piezoelectric actuator, and a pump chamber that is compressed and expanded by displacement, that is, vibration of the diaphragm.
  • the air is supplied to the air bag 20 via.
  • the piezoelectric pump drive circuit 27 generates and outputs a vibration control voltage signal 273 based on the voltage control signal 271 and the frequency control signal 272 from the CPU 10.
  • the frequency control signal 272 matches the resonance frequency determined from the dimensions of the piezoelectric actuator and the diaphragm laminated thereon, and is stored in the memory 11 in advance.
  • the voltage control signal 271 indicates a voltage value determined based on the pressurization speed target by the feedback control described above.
  • the piezoelectric pump drive circuit 27 generates a vibration control voltage signal 273 that is an AC voltage signal near the resonance frequency based on the voltage control signal 271 and the frequency control signal 272 and applies it to the piezoelectric actuator.
  • the exhaust valve drive circuit 25 controls opening and closing of the exhaust valve 24 based on a control signal given from the CPU 10.
  • An A / D (Analog / Digital) converter 16 is provided in association with the battery 15.
  • the A / D converter 16 receives the battery voltage of the battery 15 (voltage between terminals of the battery 15), converts it into digital data, and outputs a voltage signal 513 indicating the battery voltage value to the CPU 10.
  • a non-chargeable primary battery such as a dry battery or a rechargeable secondary battery can be applied.
  • the pressure sensor 21 is a capacitance type pressure sensor, and the capacitance value changes depending on the cuff pressure.
  • the pressure sensor 21 outputs a signal corresponding to the cuff pressure to the amplifier 22.
  • the amplifier 22 amplifies the signal input from the pressure sensor 21 and outputs the amplified signal to the A / D converter 23.
  • the A / D converter 23 converts the amplified signal (analog signal) input from the amplifier 22 into a digital signal, and outputs the converted digital signal to the CPU 10.
  • CPU10 detects a cuff pressure.
  • the CPU 10 detects the cuff pressure by converting the signal obtained from the A / D converter 23 into pressure.
  • the fluid supplied to the cuff 40 is not limited to air, and may be, for example, a liquid or a gel. Or it is not limited to fluid, Uniform microparticles, such as a microbead, may be sufficient.
  • FIG. 2 is a functional block diagram showing a functional configuration of electronic blood pressure monitor 100 according to the present embodiment.
  • the functional configuration is indicated by using the functions of the CPU 10 and its peripheral part.
  • the CPU 10 includes an operation receiving unit 30 for receiving a user operation via the operation unit 13, a pulse wave detecting unit 31 for inputting a pressure signal from the A / D converter 23, and a pressure detecting unit. 32, a drive control unit 33 that outputs control signals to the piezoelectric pump drive circuit 27 and the exhaust valve drive circuit 25, a blood pressure determination unit 34 that determines a blood pressure value according to the oscillometric method, and for reading and writing (accessing) data in the memory 11 Access unit 36, output unit 37 that controls display on display unit 12, and power estimation unit 35 that estimates the voltage drop value of battery 15 and the amount of power consumed in electronic sphygmomanometer 100.
  • the drive control unit 33 has a function for increasing the cuff pressure according to the pressurization speed target by controlling the exhaust valve drive circuit 25 and the piezoelectric pump drive circuit 27 during blood pressure measurement.
  • the drive control unit 33 transmits a control signal to the exhaust valve drive circuit 25 and the piezoelectric pump drive circuit 27 in order to adjust the cuff pressure.
  • a control signal for increasing or decreasing the cuff pressure is output.
  • the control signal for the piezoelectric pump drive circuit 27 is output according to feedback control described later.
  • the pulse wave detection unit 31 detects a pulse wave signal representing a change in the volume of the artery superimposed on the pressure signal from the A / D converter 23 using a filter circuit.
  • the pressure detection unit 32 converts the pressure signal from the A / D converter 23 into a pressure value and outputs it in order to detect the cuff pressure.
  • the blood pressure determination unit 34 determines the blood pressure according to a known oscillometric equation. Specifically, the blood pressure is determined based on the transition of the pulse wave amplitude and the cuff pressure using the cuff pressure input from the pressure detection unit 32 during blood pressure measurement and the pulse wave detected by the pulse wave detection unit 31. .
  • the cuff pressure corresponding to the maximum value of the pulse wave amplitude is the average blood pressure
  • the cuff pressure corresponding to the pulse wave amplitude on the high cuff pressure side corresponding to 50% of the maximum value of the pulse wave amplitude is the systolic blood pressure
  • the pulse wave is the average blood pressure
  • the cuff pressure corresponding to the pulse wave amplitude on the low cuff pressure side corresponding to 70% of the maximum value of the amplitude is determined as the diastolic blood pressure.
  • the pulse rate is calculated according to a known procedure using the pulse wave signal.
  • the acquired blood pressure value and pulse rate measurement data are displayed on the display unit 12 via the output unit 37 or stored in the memory 11 via the access unit 36.
  • the measurement data displayed or stored may include the measurement time input from the timer 14.
  • the drive control unit 33 When blood pressure is measured according to the oscillometric equation, the cuff pressure must be increased at a constant pressure target in order to obtain measurement accuracy. That is, at the start of blood pressure measurement, the drive control unit 33 generates the voltage control signal 271 indicating the voltage based on the pressurization target value and the frequency control signal 272 described above, and outputs them to the piezoelectric pump drive circuit 27. Accordingly, the piezoelectric pump drive circuit 27 generates a vibration control voltage signal 273 for controlling vibration according to the pressurization target value, and outputs the vibration control voltage signal 273 to the piezoelectric pump 26.
  • the drive control unit 33 calculates the pressurization speed of the cuff pressure based on the cuff pressure input from the pressure detection unit 32, the calculated pressurization speed, and the current pressurization
  • the speed target is compared, and a voltage control signal 271 indicating a voltage based on the difference between the two according to the comparison result is generated and output to the piezoelectric pump drive circuit 27.
  • the piezoelectric pump 26 is feedback-controlled so that the pressurization speed becomes the pressurization speed target.
  • the voltage control signal 271 indicates the feedback control described above. This can be realized by changing both or one of the voltage and the frequency indicated by the frequency control signal 272.
  • the piezoelectric pump 26 is feedback-controlled using the voltage control signal 271 as described above.
  • the power estimation unit 35 includes a perimeter detection unit 351 that detects the perimeter of the measurement site around which the cuff 40 is wound, and a drop amount detection unit 352 that detects a drop amount of the battery voltage of the battery 15.
  • the power estimation unit 35 estimates the power consumption in the electronic sphygmomanometer 100 based on the battery voltage drop amount and the perimeter.
  • FIG. 3 is a diagram illustrating an example of a table 433 that is referred to in order to estimate the measurement site circumference L according to the present embodiment.
  • the table 433 stores the constant speed pressurization time required to pressurize the cuff pressure by a predetermined pressure when the winding state of the cuff 40 around the measurement site is “appropriate winding”, and the corresponding peripheral length L. .
  • the data in the table 433 is acquired in advance through experiments or the like.
  • FIG. 4 is a graph of cuff pressure-pressurization time characteristics (in the case of appropriate winding) according to the present embodiment.
  • 3 and 4 indicate values based on data sampled from many subjects using the electronic sphygmomanometer 100.
  • “appropriate winding” refers to a state that is substantially equal to the length of the circumference by the inner diameter of the cuff 40 wound around the circumference of the measurement site (the diameter of the cross section of the arm that is the measurement site). In the present embodiment, it is assumed that blood pressure is measured in an appropriate winding state.
  • the pressurization time required for the piezoelectric pump 26 to supply the air of the fluid volume ⁇ V23 under constant pressure pressurization (constant rotation speed) in the pressurization process is a fixed time (here, the time V23 from the time V2 to the time V3) )
  • the time V23 varies depending on the peripheral length L of the measurement site.
  • V23 decreases as the perimeter decreases (thin arm), and the perimeter increases (thick arm). ) V23 increases.
  • the perimeter detection unit 351 determines the time required for the cuff pressure to change from 0 mmHg (pressure P2) to 20 mmHg (pressure P3) based on the detected cuff pressure. It is measured by the timer 14. Then, based on the measured time, the corresponding peripheral length L is read by searching the table 433 via the access unit 36.
  • peripheral length L is estimated (measured) at the time of blood pressure measurement.
  • the measurement subject may operate and input the operation unit 13 at the time of measurement.
  • the perimeter L may be stored in advance in the memory 11 for each person to be measured.
  • a drop value of the battery voltage for detecting the power consumption is detected.
  • the internal resistance value of the battery 15, that is, the voltage drop value differs depending on the environmental temperature during use in which the electronic blood pressure monitor 100 is disposed. That is, since the internal resistance of the battery 15 increases when the environmental temperature is low, the drop value of the battery voltage becomes large even when operated under the same conditions such as the pressurization speed target as compared with the ambient temperature at normal temperature. Therefore, in the present embodiment, the drop amount detection unit 352 estimates the environmental temperature by detecting the drop value of the battery voltage based on the voltage signal 513 during initial pressurization.
  • FIG. 5 is a graph showing the relationship between the environmental temperature and the battery voltage drop according to the present embodiment.
  • the graph is obtained by the inventors' experiment, the battery voltage is taken on the vertical axis, and the measurement time is taken on the horizontal axis. According to the graph, even when the blood pressure is measured with the same circumference (standard arm circumference) and the same pressurization speed target, the drop value of the battery voltage is larger when the environmental temperature is low than when it is normal temperature. I understand that.
  • a predetermined time time for pressurizing the cuff pressure by a predetermined pressure
  • the battery temperature drop values and the environmental temperatures (low temperature, normal temperature, high temperature) corresponding to each of these drop values are stored in advance.
  • the predetermined time substantially corresponds to the time required for pressurization for estimating the peripheral length L described above.
  • the memory 11 stores the table 435 of FIG. 7 for each environmental temperature (low temperature, normal temperature, high temperature), and each table 435 has a peripheral length (small).
  • the battery voltage drop value can be calculated (estimated) by substituting into the voltage drop equation the time elapsed since the start of constant speed pressurization with the initial pressurization speed target. Therefore, in this embodiment, when it is determined that the estimated drop value of the battery voltage is reduced by 120% or more, for example, it is determined that the piezoelectric element of the piezoelectric pump 26 is abnormal, that is, the power consumption by the electronic sphygmomanometer 100 is large. It is determined that the life of the battery 15 is shortened. In this case, by notifying the person to be measured that the power consumption is large, the person to be measured can inspect and replace the electronic blood pressure monitor 100 at an early stage.
  • FIG. 8 is a graph for explaining a case where it is determined that the battery voltage drops 120% or more of the estimated drop value of the battery voltage according to the present embodiment.
  • the vertical axis represents the battery voltage
  • the horizontal axis represents the elapsed time of blood pressure measurement.
  • the change according to the elapsed time of the voltage drop value when the blood pressure is measured under the condition that the ambient length L is normal at normal temperature is shown by a solid line graph, and the drop value is reduced by 120%. Is shown by a broken line graph.
  • the broken line graph is referred to as an “assumed range” of the voltage drop.
  • the voltage drop expression in the table 435 is an arithmetic expression obtained by experiment, and an “expected range” graph (indicated by a broken line in FIG. 8) is obtained for each case where the ambient length L and the environmental temperature are different. Equivalent), and an arithmetic expression obtained by approximating the obtained graph to a curve.
  • FIG. 9 is a flowchart of blood pressure measurement processing according to the present embodiment.
  • the program according to this flowchart is stored in advance in the memory 11, and is read from the memory 11 by the CPU 10 and executed.
  • the operation reception unit 30 receives the operation and follows the received operation.
  • a measurement start instruction signal is output.
  • An initialization process is performed according to the instruction signal (step S3).
  • the power estimation unit 35 receives the voltage signal 513 and detects an initial drop value that is an initial battery voltage.
  • the drive control unit 33 outputs a voltage control signal 271 and a frequency control signal 272 to the piezoelectric pump drive circuit 27 and outputs a control signal for closing the exhaust valve 24 to the exhaust valve drive circuit 25. As a result, the exhaust valve 24 is closed by the exhaust valve drive circuit 25.
  • the piezoelectric pump drive circuit 27 generates a vibration control voltage signal 273 based on the input voltage control signal 271 and the frequency control signal 272 and outputs the vibration control voltage signal 273 to the piezoelectric pump 26.
  • the blood pressure measurement is started and the piezoelectric pump 26 operates so that the cuff pressure is pressurized at a constant speed in accordance with an initial pressurization speed target (for example, 5.5 mmHg / sec) (step S5).
  • the drop amount detection unit 352 detects a drop value from the initial drop value based on the voltage signal 513 (step S7). Then, the table 434 of the memory 11 is searched based on the detected voltage drop value, and the corresponding temperature data is read by the search (step S8). Thereby, the environmental temperature is estimated.
  • the perimeter detection unit 351 estimates the perimeter L according to the above-described procedure (step S9).
  • the power estimation unit 35 searches the memory 11 based on the estimated environmental temperature, and specifies the table 435 corresponding to the environmental temperature by the search. Then, the specified table 435 is searched based on the estimated peripheral length L, and the corresponding voltage drop equation is read by the search (step S11). Thus, an arithmetic expression for calculating the “assumed range” can be obtained.
  • the power estimation unit 35 estimates the battery voltage based on the voltage signal 513 (step S13).
  • the blood pressure determining unit 34 estimates blood pressure according to the oscillometric formula (step S15).
  • the drive control unit 33 stops the piezoelectric pump 26.
  • a control signal for opening the exhaust valve 24 is output. Thereby, the air in the air bag 20 is exhausted and the cuff pressure is reduced.
  • the measurement result is stored in the memory 11 and displayed on the display unit 12 (step S23), and the process ends.
  • step S17 Since the blood pressure cannot be determined during the period when the pressure is not sufficiently increased (NO in step S17), the process proceeds to step S19.
  • the power estimation unit 35 calculates a voltage drop value from the initial based on the initial battery voltage measured in step S3 and the current battery voltage based on the voltage signal 513, and the calculated current voltage drop value is the step S11. It is determined whether or not the value is equal to or less than the value of the “assumed range” calculated by the voltage drop equation read out in (1).
  • the value of the initial battery voltage measured in step S3 and the measurement time measured by the timer 14 are substituted into the voltage drop equation parameter, and the voltage drop value according to the voltage drop equation is calculated as the “assumed range”.
  • the voltage drop type parameter includes a coefficient depending on the environmental temperature.
  • step S19 If the power estimation unit 35 determines that the current voltage drop value is less than the “assumed range” (YES in step S19), the process returns to step S13, and the subsequent processes are similarly performed. Is determined (NO in step S19), the power estimation unit 35 notifies that the amount of power consumption is excessive via the output unit 37 (step S21). Thereafter, the process returns to step 13 and the subsequent processes are repeated.
  • the determination result may be stored in the memory 11 in association with the blood pressure measurement result.
  • the piezoelectric pump 26 in which the voltage drop is too large cannot be controlled can be stored or displayed together with the measurement result.
  • the power estimation unit 35 substitutes or combines it with the measured voltage drop value to calculate the power consumption amount using a predetermined arithmetic expression. It is also possible to calculate, determine some of the calculated power consumption, and notify the determination result.
  • the “assumed range” is a power consumption amount calculated by a predetermined arithmetic expression according to the voltage drop value ⁇ V in the broken line graph of FIG.
  • a power consumption calculation formula corresponding to the peripheral length may be read from the table 435 and used as the above-described predetermined calculation formula.
  • W indicates the amount of power consumption, and the voltage drop value ⁇ V changes depending on the environmental temperature, so ⁇ and ⁇ indicate predetermined coefficient values depending on the environmental temperature.
  • the environmental temperature is detected after the blood pressure measurement is started.
  • the environmental temperature may be measured by measuring the voltage drop value of the battery 15 using the reference resistance before the blood pressure measurement is started. Good. Or you may provide a temperature sensor and measure environmental temperature with a temperature sensor.
  • the drive control unit 33 controls the pressurization speed by performing feedback control of the piezoelectric pump 26 using the voltage control signal 271.
  • the drive control unit 33 variably changes the voltage value indicated by the voltage control signal 271 within a range larger than the BL (abbreviation of battery low) voltage value set for the battery 15.
  • BL battery low
  • Data indicating the set value of the BL voltage indicates a value at normal temperature and is stored in the memory 11 in advance.
  • FIG. 10 shows a graph of a modification example according to the environmental temperature of the BL voltage according to the present embodiment.
  • the vertical axis represents the battery voltage
  • the horizontal axis represents the elapsed time of blood pressure measurement. Since the voltage drop of the battery 15 at low temperature is steeper than that at normal temperature, when the BL voltage at normal temperature is used in blood pressure measurement at low temperature, the voltage drop of the battery 15 is not completed before the blood pressure measurement is completed. The value exceeds the BL voltage, making accurate feedback control difficult.
  • the BL voltage value is changed to be smaller than the BL voltage value at room temperature at low temperatures. Thereby, feedback control can be performed within the voltage range indicated by the BL voltage until blood pressure measurement is completed even at a low temperature.
  • the frequency of the frequency control signal 272 is determined depending on the size of the piezoelectric element as described above. However, paying attention to the fact that the size changes (expands / contracts) depending on the environmental temperature, the frequency of the frequency control signal 272 is changed to the environment. It may be variably changed according to the temperature.
  • the initial pressurization voltage indicated by the voltage control signal 271 supplied to the piezoelectric pump 26 is determined so that the pressurization speed target (for example, 5.5 mmHg / sec) is reached.
  • the initial pressurization voltage may be variably changed according to the environmental temperature.
  • the vertical axis represents the battery voltage
  • the horizontal axis represents the elapsed time of blood pressure measurement. Since the voltage drop of the battery 15 at a low temperature is steeper than at a normal temperature, when the pressurization is performed at a pressurization speed target at a normal temperature in the blood pressure measurement at a low temperature, the battery is not measured before the blood pressure measurement is completed. The voltage drop value of 15 exceeds the BL voltage at low temperature, making accurate feedback control difficult.
  • the pressurization voltage at low temperature is set lower than that at room temperature. Thereby, feedback control can be performed within the voltage range indicated by the BL voltage until blood pressure measurement is completed even at a low temperature.
  • the peripheral length L is determined from the time required to pressurize by a predetermined pressure. As described above, the peripheral length L is determined by variably changing the pressurizing voltage for each environmental temperature. High accuracy can be obtained.
  • Modification 5 Different types of batteries can be used for the battery 15.
  • the measurement subject inputs the type of the battery 15 in advance from the operation unit 13, and the power estimation unit 35 inputs the voltage.
  • the “assumed range” may be changed depending on the type of the battery.
  • the secondary battery and the primary battery may be discriminated based on the voltage drop amount by the blood pressure measurement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 電子血圧計は、測定部位の周囲に巻付けられるカフに流体を供給するための圧電振動子を利用した圧電ポンプを制御することによりカフ圧を調整するための調整部と、調整部を駆動制御することにより、カフ圧を徐々に変化させるための駆動制御部(33)と、カフ圧を検出するための圧力検出部(32)と、検出されるカフ圧に基づいて血圧値を決定するための血圧決定部(34)と、測定部位の周囲長を検出するための周囲長検出部(351)と、各部に電力を供給するための電池(15)と、血圧測定中の電池の電圧降下値を検出するための降下量検出部(352)と、を備え、周囲長と、血圧測定開始時の初期加圧期間に検出される電圧降下値とに基づき、その後の血圧測定中における電圧降下値の範囲を推定する。

Description

電子血圧計
 本発明は電子血圧計に関し、特に、測定部位から検出される脈波を用いて血圧を測定する電子血圧計に関する。
 血圧は循環器系疾患を解析する指標の一つであり、血圧に基づいてリスク解析を行うことは、例えば脳卒中や心不全や心筋梗塞などの心血管系の疾患の予防に有効である。従来は通院時や健康診断時などの医療機関で測定される血圧(随時血圧)により診断が行われていた。しかしながら近年の研究により、家庭で測定する血圧(家庭血圧)が随時血圧より循環器系疾患の診断に有用であることが判明してきた。それに伴い、家庭で使用する血圧計が普及している。
 家庭向けの血圧計の多くがオシロメトリック法による血圧測定方法を採用している。オシロメトリック法による血圧測定は、カフを上腕などの測定部位に巻付け、カフの内圧(カフ圧)を収縮期血圧より所定圧(例えば30mmHg)だけ高く加圧し、その後、徐々にまたは段階的にカフ圧を減圧していく。この減圧過程における動脈の容積変化をカフ圧に重畳した圧変化(脈波振幅)として検出し、この脈波振幅の変化より収縮期血圧および拡張期血圧を決定する方法である。オシロメトリック法では、カフ圧の加圧過程において発生する脈波振幅を検出して血圧を測定することも可能である。
 これらの血圧測定において正確に脈波振幅を検出するためには、ポンプまたは弁によりカフ圧を一定速度で、加圧または減圧する必要がある。具体的には、等速加圧制御、または等速減圧制御では平均速度と目標速度との差に基づいて、平均速度が目標速度となるようにポンプまたは弁の駆動電圧をフィードバック制御する。フィードバック制御される血圧測定用のポンプには、モータを駆動源として用いるポンプ、圧電素子を駆動源として用いた圧電マイクロポンプなどを適用することができる。圧電マイクロポンプの構造は、たとえば特許文献1(特開2009-74418号公報)に開示がある。
 また、ポンプの加圧速度を決定する方法として、特許文献2(特開平5-42114号公報)には、電池電圧から加圧速度を決定する方法が記載されている。
特開2009-74418号公報 特開平5-42114号公報
 特許文献2の電池電圧により加圧速度を決定する方法は、血圧測定中の電池電圧の降下が考慮されていない。つまり、消費電力が大きいポンプでは、電池電圧降下が大きいため、加圧速度を精度よく決定することが困難となる。
 圧電マイクロポンプの場合には、圧電素子が完全に破壊されていなくても、落下衝撃によるひび割れ等により圧電素子のインピーダンスが変化した場合、ポンプが完全に破壊されていないが消費電力が大きくなることがある。このような状態で使用し続けると、電池寿命が短くなり、ポンプの故障により機器が使用できなくなる。
 それゆえに本発明の目的は、想定以上の電力消費の推定を可能にする電子血圧計の提供を目的とする。
 この発明のある局面に従う電子血圧計は、被測定者の測定部位の周囲に巻付けられるカフと、カフに流体を供給するための圧電振動子を利用した圧電ポンプを制御することによりカフ内の圧力を調整するための調整部と、調整部を駆動制御することにより、カフ内の圧力を徐々に変化させるための駆動制御部と、カフ内の圧力を表わすカフ圧を検出するための圧力検出部と、圧力検出部より検出されるカフ圧に基づいて血圧値を決定するための血圧決定部と、測定部位の周囲長を検出するための周囲長検出部と、各部に電力を供給するための電池と、血圧測定中の電池の電圧降下値を検出するための降下検出部と、を備え、周囲長と、血圧測定開始時の初期加圧期間に検出される電圧降下値とに基づき、その後の血圧測定中における電圧降下値の範囲を推定する。
 本発明によれば、周囲長と、血圧測定開始時の初期加圧期間に検出される電圧降下値とに基づき、その後の血圧測定中における電圧降下値の範囲を推定することにより、想定以上の電力消費についての推定が可能となる。
実施の形態に係る電子血圧計のハードウェア構成を表わすブロック図である。 実施の形態に係る電子血圧計の機能構成を示すブロック図である。 実施の形態に係る周囲長を推定するために参照されるテーブルの一例を示す図である。 本実施の形態によるカフ圧-加圧時間特性(適切巻きの場合)のグラフである。 本実施の形態に係る環境温度と電池電圧の降下との関係を示すグラフである。 本実施の形態に係る環境温度と電池電圧の降下との関係に従うテーブルを示す図である。 本実施の形態に係る環境温度(低温、常温、高温)毎の周囲長に対応して、電池電圧降下値を判定するためテーブルを示す図である。 本実施の形態による推定した電池電圧の降下値の120%以上低下すると判定するケースを説明するためのグラフである。 本実施の形態に係る血圧測定処理のフローチャートである。 本実施の形態に係る環境温度によるBL電圧の可変変更を説明するための図である。 本実施の形態に係る環境温度による初期加圧電圧の可変変更を説明するための図である。
 以下、図面を参照しつつ、本発明の各実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 図1は、本実施の形態に係る電子血圧計100のハードウェア構成を表わすブロック図である。図1を参照して、電子血圧計100は血圧測定部位に装着されるカフ40およびエア系を備える。カフ40は空気袋20を含む。空気袋20は、エアチューブ300を介して、エア系に接続される。
 電子血圧計100は、さらに表示部12、操作部13および各部を集中的に制御し、各種演算処理を行なうためのCPU(Central Processing Unit)10、CPU10に所定の動作をさせるためのプログラムや各種データを記憶するためのメモリ11、各部に電力を供給するための着脱自在の電池15、計時動作を行なうためのタイマ14を含む。メモリ11は、測定された血圧を記憶するための不揮発性メモリ(例えばフラッシュメモリ)などを含む。不揮発メモリには、後述する周囲長検出部351により検索されるテーブル433、後述する降下量検出部352により検索されるテーブル434、および後述する電力推定部35により検索されるテーブル435が格納される。
 操作部13は、電源をONまたはOFFするための操作を受付ける電源スイッチ、測定開始の操作を受付けるための測定スイッチ、測定停止の指示の操作を受付けるための停止スイッチ、およびユーザ(被測定者)を選択的に指定する操作を受付けるための使用者選択スイッチを有する。操作部13は、フラッシュメモリに格納された測定血圧などの情報を読出し表示部に表示させる操作を受付けるためのスイッチも有する。
 本実施の形態では、電子血圧計100は複数の被測定者により共用されることから、使用者選択スイッチを備えるが、共用されない場合には使用者選択スイッチは省略されてよい。また、測定スイッチを、電源スイッチと兼用してもよい。その場合には、測定スイッチは省略することができる。
 エア系は、空気袋20内の圧力(以下、カフ圧という)を検出するための圧力センサ21、カフ圧を加圧するために、空気袋20に空気を供給するための圧電ポンプ26、および空気袋20の空気を排出しまたは封入するために開閉される排気弁24を含む。電子血圧計100は、エア系に関連して、増幅器22およびA/D(Analog/Digital)変換器23、圧電ポンプ駆動回路27、および排気弁駆動回路25を含む。ここでは、圧電ポンプ26、排気弁24、圧電ポンプ駆動回路27および排気弁駆動回路25などは、カフ圧を調整するための調整部に相当する。
 圧電ポンプ26は、圧電素子を駆動源として用いたマイクロポンプである。圧電ポンプ26は、振動制御電圧信号273によって駆動される圧電アクチュエータと、これに積層されたダイヤフラムと、ダイヤフラムの変位すなわち振動によって圧縮および膨張されるポンプ室とを有し、圧縮および膨張するポンプ室を介し空気が空気袋20へ供給される。
 圧電ポンプ駆動回路27は、CPU10からの電圧制御信号271および周波数制御信号272に基づき、振動制御電圧信号273を生成し出力する。周波数制御信号272は、圧電アクチュエータおよびこれに積層されたダイヤフラムの寸法から決定される共振周波数に一致し、予めメモリ11に格納される。また、電圧制御信号271は、上述したフィードバック制御により加圧速度目標に基づき決定される電圧値を指す。圧電ポンプ駆動回路27は、電圧制御信号271と周波数制御信号272に基づき、共振周波数付近の交流電圧信号である振動制御電圧信号273を生成し、圧電アクチュエータに印加する。
 排気弁駆動回路25はCPU10から与えられる制御信号に基づいて排気弁24の開閉を制御する。
 電池15に関連してA/D(Analog/Digital)変換器16を備える。A/D変換器16は電池15の電池電圧(電池15の端子間の電圧)を入力しデジタルデータに変換して、電池電圧値を指す電圧信号513をCPU10に出力する。電池15は、乾電池などの充電不可能な1次電池、または充電可能な2次電池を適用することができる。
 圧力センサ21は、静電容量形の圧力センサであり、カフ圧により容量値が変化する。圧力センサ21は、カフ圧に応じた信号を増幅器22に出力する。増幅器22は、圧力センサ21から入力した信号を増幅し、増幅後の信号をA/D変換器23に出力する。A/D変換器23は、増幅器22から入力した増幅後の信号(アナログ信号)を、デジタル信号に変換し、変換後のデジタル信号をCPU10に出力する。これにより、CPU10は、カフ圧を検出する。CPU10は、A/D変換器23から得られる信号を圧力に変換することによってカフ圧を検知する。
 なお、カフ40に供給される流体は空気に限定されるものではなく、例えば液体やゲルであってもよい。あるいは、流体に限定されるものではなく、マイクロビーズなどの均一な微粒子であってもよい。
 (機能構成)
 図2は、本実施の形態に係る電子血圧計100の機能構成を示す機能ブロック図である。機能構成は、CPU10が有する機能と、その周辺部を用いて示される。
 図2を参照して、CPU10は、操作部13を介したユーザの操作を受付けるための操作受付部30、A/D変換器23からの圧力信号を入力する脈波検出部31および圧力検出部32、圧電ポンプ駆動回路27と排気弁駆動回路25とに制御信号を出力する駆動制御部33、オシロメトリック法に従って血圧値を決定する血圧決定部34、メモリ11のデータを読み書き(アクセス)するためのアクセス部36、表示部12の表示を制御する出力部37、および電池15の電圧降下値および電子血圧計100における消費電力量を推定する電力推定部35を備える。
 駆動制御部33は、血圧測定中に排気弁駆動回路25および圧電ポンプ駆動回路27を制御することにより、加圧速度目標に従ってカフ圧を加圧させるための機能を有する。駆動制御部33は、カフ圧を調整するために、排気弁駆動回路25および圧電ポンプ駆動回路27に制御信号を送信する。具体的には、カフ圧を加圧し、または減圧するための制御信号を出力する。取分け、圧電ポンプ駆動回路27に対する制御信号は、後述するフィードバック制御に従って出力される。
 脈波検出部31は、A/D変換器23からの圧力信号に重畳される動脈の容積変化を表す脈波信号を、フィルタ回路を用いて検出する。圧力検出部32は、カフ圧を検出するために、A/D変換器23からの圧力信号を圧力値に変換し、出力する。
 血圧決定部34は、公知のオシロメトリック式に従い血圧を決定する。具体的には、血圧測定時に圧力検出部32から入力するカフ圧と、脈波検出部31により検出された脈波とを用いて、脈波振幅の推移とカフ圧とに基づき血圧を決定する。例えば、脈波振幅の最大値に対応するカフ圧を平均血圧、また脈波振幅の最大値の50%に相当する高カフ圧側の脈波振幅に対応するカフ圧を収縮期血圧、また脈波振幅の最大値の70%に相当する低カフ圧側の脈波振幅に対応するカフ圧を拡張期血圧と決定する。また、脈拍数を、脈波信号を用いて公知の手順に従って算出する。取得された血圧値および脈拍数の測定データは、出力部37を介して表示部12に表示され、または、アクセス部36を介してメモリ11に格納される。表示または格納される測定データには、タイマ14から入力した測定時間が含まれてよい。
 (圧電ポンプ26のフィードバック制御)
 オシロメトリック式に従って血圧測定する場合には、測定精度を得るために、カフ圧を一定の加圧速度目標で加圧しなければならない。つまり、血圧測定開始時に駆動制御部33は、加圧目標値に基づいた電圧を指す電圧制御信号271、および前述の周波数制御信号272を生成し圧電ポンプ駆動回路27に出力する。これにより、圧電ポンプ駆動回路27は、加圧目標値に従って振動を制御するための振動制御電圧信号273を生成し圧電ポンプ26に出力する。
 初期の加圧速度目標に従って加圧開始後、駆動制御部33は、圧力検出部32から入力するカフ圧に基づきカフ圧の加圧速度を算出し、算出した加圧速度と、現在の加圧速度目標とを比較し、比較結果に従う両者の差に基づく電圧を指す電圧制御信号271を生成し、圧電ポンプ駆動回路27に出力する。このように電圧制御信号271を用いて、圧電ポンプ26は、加圧速度が加圧速度目標となるようにフィードバック制御される。
[規則91に基づく訂正 25.12.2013] 
 圧電ポンプ26の吐出流量は、圧電ポンプ駆動回路27から与えられる電圧制御信号271が指す電圧または周波数制御信号272が指す周波数に比例することから、上述のフィードバック制御には、電圧制御信号271が指す電圧および周波数制御信号272が指す周波数の両方、または一方を変更することにより実現することができる。ここでは、説明を簡単にするために、上述のように、圧電ポンプ26を電圧制御信号271を用いてフィードバック制御すると想定する。
[規則91に基づく訂正 25.12.2013] 
 電力推定部35は、カフ40が巻き付けられる測定部位の周囲長を検出する周囲長検出部351と電池15の電池電圧の降下量を検出するための降下量検出部352を含む。電力推定部35は、電池電圧の降下量と周囲長とに基づき、電子血圧計100における電力の消費量を推定する。
 (周囲長推定)
 本実施の形態の周囲長検出部351による測定部位の周囲長の推定について説明する。図3は、本実施の形態に係る測定部位周囲長Lを推定するために参照されるテーブル433の一例を示す図である。テーブル433には、カフ40の測定部位に対する巻付け状態が“適切巻き”の場合においてカフ圧を所定圧力だけ加圧するのに要する等速加圧の時間と、対応する周囲長Lが格納される。テーブル433のデータは、予め実験等により取得される。図4は、本実施の形態によるカフ圧‐加圧時間特性(適切巻きの場合)のグラフである。図3と図4のデータは、電子血圧計100を用いて多くの被験者からサンプリングしたデータに基づく値を指す。ここで、“適切巻き”とは、測定部位の周囲長に対して巻付けられたカフ40の内径(測定部位である腕の断面の径)による円周の長さにほぼ等しい状態を指す。本実施の形態では、適切巻きの状態において血圧測定がされると想定する。
 測定部位に巻付けたカフ40のカフ圧と、カフ40内へ供給される流体(本実施の形態では、空気)の容積変化に基づき、カフ圧が、圧力P2から圧力P3になるまでに必要な空気は、流体容積ΔV23であるとする(図4参照)。加圧過程で圧電ポンプ26が等速加圧(一定回転数)の下で流体容積ΔV23の空気を供給するのに要する加圧時間は、一定時間(ここでは、時刻V2~時刻V3の時間V23)となる。しかしながら、時間V23は、測定部位の周囲長Lに依存して変化する。
 例えば、周囲長が異なる測定部位に対して、適切巻きでカフ40を巻付けた場合、図4のように、周囲長が小さい(細腕)ほど時間V23は小さくなり、周囲長が大きい(太腕)ほどV23は大きくなる。
 周囲長検出部351は、初期の加圧速度目標で加圧開始後、検出されるカフ圧に基づき、カフ圧が0mmHg(圧力P2)から20mmHg(圧力P3)まで変化するのに要した時間をタイマ14によって計測する。そして、計測した時間に基づき、アクセス部36を介してテーブル433を検索することにより、対応する周囲長Lを読出す。
[規則91に基づく訂正 25.12.2013] 
 なお、ここでは血圧測定時に周囲長Lを推定(測定)するとしているが、被測定者が測定時に操作部13を操作して入力するとしてもよい。または、予めメモリ11に被測定者毎に周囲長Lが格納されるとしてもよい。
 (電圧降下値による温度の推定)
 本実施の形態では電力消費量を検出するための電池電圧の降下値を検出する。ここで、電子血圧計100が配置される使用時の環境温度により電池15の内部抵抗値は、すなわち電圧降下値は相違する。つまり、環境温度が低い場合、電池15の内部抵抗は増加するため、加圧速度目標など同じ条件で動作させても常温の環境温度の場合に比べて電池電圧の降下値は大きくなる。そこで、本実施の形態では、降下量検出部352は、初期加圧時に電圧信号513に基づき電池電圧の降下値を検出することで、環境温度を推定する。
 図5は、本実施の形態に係る環境温度と電池電圧の降下との関係を示すグラフである。グラフは発明者らの実験により取得されたものであり、縦軸は電池電圧がとられ、横軸には測定時間がとられる。グラフによれば、同じ周囲長(標準腕周)および同じ加圧速度目標で血圧測定をした場合でも、環境温度が低温である場合には常温の場合に比較して電池電圧の降下値が大きいことがわかる。
 図5の実験結果に従って、テーブル434には、図6に示すように、初期の加圧速度目標で等速加圧を開始してから所定時間(カフ圧を所定圧だけ加圧する時間)を経過したときの各種の電池電圧の降下値と、これら降下値のそれぞれに対応して環境温度(低温、常温、高温)が予め格納される。所定時間は、上述した周囲長Lを推定するための加圧に要する時間にほぼ相当する。
 (周囲長による消費電力の推定)
 また、図5のグラフによれば、同じ環境温度および同じ加圧速度目標で血圧測定をした場合には、周囲長により電池電圧の降下値が大きくなることがわかる。また、グラフによれば、同じ周囲長および同じ加圧速度目標で血圧測定をした場合には、環境温度により電池電圧の降下値が相違することがわかる。そこで、本実施の形態では、図5の実験結果に従って、メモリ11には環境温度(低温、常温、高温)毎に図7のテーブル435が格納されて、各テーブル435には、周囲長(小、標準、大)と、周囲長のそれぞれに対応して、時間と初期降下値をパラメータに用いた電池電圧降下値を判定するための演算式である電圧降下式と、消費電力を算出するための演算式である消費電力算出式が格納される。
 電圧降下式に、初期の加圧速度目標で等速加圧を開始してからの経過時間を代入して演算することにより、電池電圧の降下値を算出(推定)することができる。そこで、本実施の形態では、推定した電池電圧の降下値の例えば120%以上低下すると判定した場合は、圧電ポンプ26の圧電素子の異常と判定し、すなわち、電子血圧計100による消費電力が大きくなり、電池15の寿命が短くなると判定する。この場合には、消費電力が大きいことを被測定者に報知することで、被測定者は電子血圧計100の点検や買換えを早期に行うことができるようになる。
 図8には、本実施の形態による推定した電池電圧の降下値の120%以上低下すると判定するケースを説明するためのグラフである。このグラフは、縦軸に電池電圧がとられ、横軸に血圧測定の経過時間がとられている。図8では、1例として、常温で周囲長Lは標準という条件下において血圧測定する場合の電圧降下値の経過時間に従う変化が実線のグラフで示されて、その降下値の120%低下する場合が破線のグラフで示される。ここでは、破線のグラフを電圧降下の「想定範囲」と呼ぶ。したがって、実際の血圧測定において一点鎖線のグラのように電圧降下値が測定された場合には、血圧測定開始後の時間TAにおいて測定される電圧降下値は「想定範囲」以下であると判定されて、消費電力が異常に大きいことが被測定者に対し報知される。ここでは、テーブル435の電圧降下式は、実験により取得した演算式であって、周囲長Lと環境温度を異ならせたケース毎に実験により「想定範囲」のグラフ(図8の破線のグラフに相当)を取得し、取得したグラフを曲線近似して得た演算式を指す。
 (フローチャート)
 図9は、本実施の形態に係る血圧測定処理のフローチャートである。このフローチャートに従うプログラムは、予めメモリ11に格納されて、CPU10によりメモリ11から読出されて、実行される。
 被測定者は、測定部位にカフ40を適切巻きで巻き付けた状態で、操作部13の電源スイッチ(または測定スイッチ)を操作すると、操作受付部30により当該操作が受付けられて、受付けた操作に従う測定開始の指示信号が出力される。指示信号に応じて初期化処理が行われる(ステップS3)。具体的には、電力推定部35は、電圧信号513を入力して初期の電池電圧である初期降下値を検出する。また、駆動制御部33は、電圧制御信号271および周波数制御信号272を圧電ポンプ駆動回路27に出力するとともに、排気弁駆動回路25に排気弁24を閉鎖するための制御信号を出力する。これにより、排気弁駆動回路25によって排気弁24は閉鎖される。
 圧電ポンプ駆動回路27は、入力する電圧制御信号271および周波数制御信号272に基づく振動制御電圧信号273を生成し圧電ポンプ26に出力する。これにより、血圧測定が開始されて初期の加圧速度目標(例えば、5.5mmHg/sec)に従って、カフ圧が等速加圧されるように圧電ポンプ26が動作する(ステップS5)。
 タイマ14を用いて等速加圧開始後から所定期間が経過したと判定されたとき、降下量検出部352は電圧信号513に基づき、初期降下値からの降下値を検出する(ステップS7)。そして、検出した電圧降下値に基づきメモリ11のテーブル434を検索し、検索によって対応する温度のデータを読出す(ステップS8)。これにより環境温度が推定される。
 また、等速加圧開始後において、周囲長検出部351は上述した手順に従い周囲長Lを推定する(ステップS9)。
 電力推定部35は、推定された環境温度に基づきメモリ11を検索し、検索により環境温度に対応するテーブル435を特定する。そして、特定したテーブル435を、推定した周囲長Lに基づき検索し、検索により対応する電圧降下式を読出す(ステップS11)。これにより「想定範囲」を算出するための演算式を得ることができる。
 等速加圧と並行して、電力推定部35は電圧信号513に基づき電池電圧を推定する(ステップS13)。また、血圧決定部34によりオシロメトリック式に従う血圧の推定が行われ(ステップS15)、血圧が決定し測定完了と判定されると(ステップS17でYES)、駆動制御部33は圧電ポンプ26を停止し、且つ排気弁24を開くような制御信号を出力する。これにより、空気袋20の空気は排気されてカフ圧は減圧する。そして、測定結果はメモリ11に格納されるとともに、表示部12に表示され(ステップS23)、処理は終了する。
 まだ、十分に加圧されない期間は血圧を決定することができないので(ステップS17でNO)、処理はステップS19に移行する。
 電力推定部35は、ステップS3で測定した初期の電池電圧と、電圧信号513に基づく現在の電池電圧とに基づき初期からの電圧降下値を算出し、算出した現在の電圧降下値が、ステップS11で読出した電圧降下式により算出される「想定範囲」の値以下であるか否かを判定する。ここでは、電圧降下式のパラメータに、ステップS3で測定した初期電池電圧の値およびタイマ14が計時する測定時間を代入して、当該電圧降下式に従う電圧降下値が「想定範囲」として算出される。なお、環境温度により、圧電ポンプ26の圧電素子の流量特性が変化するため、電圧降下式のパラメータには、環境温度に依存した係数が含まれる。
 電力推定部35は、現在の電圧降下値が、「想定範囲」未満であると判定すると(ステップS19でYES)、処理はステップS13に戻り、以降の処理が同様に行われるが、以上であると判定すると(ステップS19でNO)、電力推定部35は、出力部37を介して消費電力量が多すぎる旨を報知する(ステップS21)。その後、処理はステップ13に戻り、以降の処理が繰返される。
 なお、消費電力が多すぎると判定されたときは、その判定結果を血圧測定結果と関連付けてメモリ11に格納するようにしてもよい。これにより、電圧降下が大きすぎる圧電ポンプ26は正常な制御ができないことから血圧測定精度が保障されないとの情報を格納し、または測定結果とともに表示することができる。
 (変形例1)
 一般に電圧降下値が大きくなると消費電力量は多くなることが知られているから、上述の実施の形態では、電圧降下値(以下、電圧降下値ΔVと称する)を測定(検出)し、電圧降下値ΔVを用いて消費電力量が多いことを判定し報知していたが、電力推定部35は、これに代替し又は併せて、測定した電圧降下値から所定演算式を用いて消費電力量を算出し、算出した消費電力量の多少を判定し、判定結果を報知してもよい。この場合には、「想定範囲」は、図8の破線のグラフの電圧降下値ΔVに従い所定演算式で算出される消費電力量となる。
 消費電力量を算出するためにテーブル435から、周囲長に対応の消費電力算出式を読出し、これを上述の所定演算式として用いてもよい。消費電力を算出するための所定演算式は、たとえば、W=ΔV×α+βを指す。ただし、Wは消費電力量を指し、環境温度により電圧降下値ΔVは変化するためαとβは環境温度に依存した所定係数値を指す。
 (変形例2)
 また、上述の実施の形態では環境温度を血圧測定開始後に検出したが、血圧測定開始前に基準抵抗を用いて、電池15の電圧降下値を測定することで環境温度を測定するようにしてもよい。または、温度センサを備えて、温度センサにより環境温度を測定してもよい。
 (変形例3)
 本実施の形態では、駆動制御部33は、電圧制御信号271を用いて圧電ポンプ26をフィードバック制御することで加圧速度を制御する。フィードバック制御では、駆動制御部33は、電圧制御信号271が指す電圧値を、電池15について設定されたBL(バッテリローの略)電圧値よりも大きい範囲で可変に変更する。
 ここで、BL(バッテリロー)は、電子血圧計100の設計仕様により決まる要求電圧であって、電子血圧計100の正常動作を保証するために要求される電池電圧を指す。BL電圧の設定値を指すデータは常温時の値を指し、メモリ11に予め格納される。
 しかし、上述したように電池15の内部抵抗値は環境温度により変化することから、図10のように、環境温度によりBL電圧を可変に変更するようにしてもよい。図10には、本実施の形態によるBL電圧の環境温度に従う変更例のグラフが示される。
 図10の縦軸には電池電圧がとられ、横軸には血圧測定の経過時間がとられる。低温時の電池15の電圧降下は、常温時よりも急峻であることから、低温時の血圧測定において常温時のBL電圧を用いた場合には、血圧測定が完了しないうちに電池15の電圧降下値がBL電圧を超えてしまい、正確なフィードバック制御が困難となる。
 そこで、低温時はBL電圧の値を、常温時のBL電圧値よりも小さくなるように変更する。これにより、低温時であっても血圧測定完了まで、BL電圧が指す電圧範囲内でフィードバック制御をすることができる。
 また、周波数制御信号272の周波数は上述にように圧電素子のサイズに依存して決定するとしたが、そのサイズは環境温度により変化(伸縮)することに着目し、周波数制御信号272の周波数を環境温度に従って可変に変更するとしてもよい。
 (変形例4)
 また、本実施の形態では、加圧速度目標(例えば、5.5mmHg/sec)となるように圧電ポンプ26に供給する電圧制御信号271が指す初期加圧電圧を決定しているが、図11のように環境温度により、初期加圧電圧を可変に変更してもよい。
 図11の縦軸には電池電圧がとられ、横軸には血圧測定の経過時間がとられる。低温時の電池15の電圧降下は、常温時よりも急峻であることから、低温時の血圧測定において常温時の加圧速度目標で加圧をした場合には、血圧測定が完了しないうちに電池15の電圧降下値が低温時のBL電圧を超えてしまい、正確なフィードバック制御が困難となる。
 そこで、血圧測定開始時の初期加圧において環境温度を検出し、環境温度により、圧電素子の流量特性が変化することに着目し、その後の加圧過程の加圧速度目標を決定する加圧電圧を環境温度毎に可変に変更する。図11では、低温時の加圧電圧を常温時よりも低くしている。これにより、低温時であっても血圧測定完了まで、BL電圧が指す電圧範囲内でフィードバック制御をすることができる。
 また、本実施の形態では、所定圧力だけ加圧するのに要する時間から周囲長Lを判定するが、このように環境温度毎に加圧電圧を可変に変更することで、周囲長Lの判定についても高い精度を得ることができる。
 (変形例5)
 電池15には異なる種類の電池を用いることができる。ここで、電池15として用いる2次電池と1次電池(乾電池)では電圧降下量が異なるため、操作部13から、被測定者は予め電池15の種類を入力させて、電力推定部35は入力した電池の種類によって「想定範囲」を変化させても良い。また、入力操作に代替して、基準抵抗により環境温度を測定した後、血圧測定による電圧降下量に基づき、2次電池と1次電池(乾電池)を判別するようにしてもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 26 圧電ポンプ、27 圧電ポンプ駆動回路、31 脈波検出部、32 圧力検出部、33 駆動制御部、34 血圧決定部、35 電力推定部、100 電子血圧計、271 電圧制御信号、272 周波数制御信号、273 振動制御電圧信号、351 周囲長検出部、352 降下量検出部、433,434,435 テーブル、513 電圧信号。

Claims (12)

  1.  被測定者の測定部位の周囲に巻付けられるカフ(40)と、
     カフに流体を供給するための圧電振動子を利用した圧電ポンプを制御することにより前記カフ内の圧力を調整するための調整部と、
     前記調整部を駆動制御することにより、前記カフ内の圧力を徐々に変化させるための駆動制御部(33)と、
     前記カフ内の圧力を表わすカフ圧を検出するための圧力検出部(32)と、
     前記圧力検出部より検出されるカフ圧に基づいて血圧値を決定するための血圧決定部(34)と、
     前記測定部位の周囲長を検出するための周囲長検出部(351)と、
     各部に電力を供給するための電池(15)と、
     血圧測定中の前記電池の電圧降下値を検出するための降下検出部(352)と、を備え、
     前記周囲長と、血圧測定開始時の初期加圧期間に検出される電圧降下値とに基づき、その後の血圧測定中における電圧降下値の範囲を推定する、電子血圧計。
  2.  検出される電圧降下値が前記範囲を超えると判定するときは、その旨を出力する請求項1に記載の電子血圧計。
  3.  前記周囲長と、血圧測定開始時の初期加圧期間に検出される電圧降下値とに基づき、その後の血圧測定中における消費電力量の範囲を推定する、請求項1または2に記載の電子血圧計。
  4.  検出される電圧降下値に基づき消費電力量を推定し、推定した消費電力量が前記範囲を超えると判定するときは、その旨を出力する、請求項3に記載の電子血圧計。
  5.  前記電子血圧計の環境温度に基づき前記範囲を可変に変更する、請求項1から4のいずれかに記載の電子血圧計。
  6.  前記カフ圧を所定圧力だけ加圧したときに前記降下検出部が検出する電圧降下値に基づき、前記環境温度を検出する、請求項5に記載の電子血圧計。
  7.  血圧測定開始時の初期加圧期間に、前記カフ圧を所定圧力だけ加圧したときに前記降下検出部が検出する電圧降下値に基づき、前記環境温度を検出する、請求項6に記載の電子血圧計。
  8.  前記周囲長検出部は、血圧測定開始時の初期加圧期間に、前記カフ圧を所定圧力だけ加圧するのに要する時間に基づき、前記周囲長を検出する、請求項1から7のいずれかに記載の電子血圧計。
  9.  血圧測定開始時の初期加圧期間に、前記カフ圧を所定圧力だけ加圧したときに前記降下検出部が検出する電圧降下値に基づき、前記駆動制御部による前記調整部を介したカフ圧の加圧速度を可変に変化させる、請求項1から8のいずれかに記載の電子血圧計。
  10.  前記電池は1次電池および2次電池のいずれかであって、
     前記範囲を、前記電池の種類に応じて可変に変更する、請求項1から9のいずれかに記載の電子血圧計。
  11.  前記カフ圧を所定圧力だけ加圧したときに前記降下検出部が検出する電圧降下値に基づき、前記種類を判別する、請求項10に記載の電子血圧計。
  12.  被測定者の測定部位の周囲に巻付けられるカフに流体を供給するための圧電振動子を利用した圧電ポンプを用いる血圧計を制御する方法であって、
     血圧測定のために前記圧電ポンプを制御することにより前記カフ内の圧力を徐々に変化させるステップと、
     前記測定部位の周囲長を検出するステップと、
     血圧測定中に前記血圧計の各部に電力を供給するための電池の電圧降下値を検出するステップと、
     前記周囲長と、血圧測定開始時の初期加圧期間に検出される電圧降下値とに基づき、その後の血圧測定中における電圧降下値の範囲を推定するステップと、を備える、電子血圧計の制御方法。
PCT/JP2012/076232 2011-10-26 2012-10-10 電子血圧計 WO2013061780A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012004480.0T DE112012004480T5 (de) 2011-10-26 2012-10-10 Elektronisches Blutdruckmessgerät
US14/350,373 US9138152B2 (en) 2011-10-26 2012-10-10 Electronic blood pressure meter
CN201280048090.0A CN103841883B (zh) 2011-10-26 2012-10-10 电子血压计

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-235018 2011-10-26
JP2011235018A JP5853587B2 (ja) 2011-10-26 2011-10-26 電子血圧計

Publications (2)

Publication Number Publication Date
WO2013061780A1 WO2013061780A1 (ja) 2013-05-02
WO2013061780A9 true WO2013061780A9 (ja) 2014-06-19

Family

ID=48167614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076232 WO2013061780A1 (ja) 2011-10-26 2012-10-10 電子血圧計

Country Status (5)

Country Link
US (1) US9138152B2 (ja)
JP (1) JP5853587B2 (ja)
CN (1) CN103841883B (ja)
DE (1) DE112012004480T5 (ja)
WO (1) WO2013061780A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811766B2 (ja) * 2011-10-26 2015-11-11 オムロンヘルスケア株式会社 電子血圧計
CN103349546A (zh) * 2013-07-16 2013-10-16 吕品 测量脉搏波和血压的装置及方法
US9524018B2 (en) * 2013-08-30 2016-12-20 Dell Products, Lp Adaptive integral battery pack and voltage regulator
CN107920765B (zh) * 2015-09-03 2021-07-06 皇家飞利浦有限公司 非侵入式血压监测设备和方法
JP6658332B2 (ja) * 2016-06-23 2020-03-04 オムロンヘルスケア株式会社 血圧計
JP6861481B2 (ja) * 2016-07-06 2021-04-21 オムロンヘルスケア株式会社 リスク分析システム及びリスク分析方法
WO2018072175A1 (en) * 2016-10-20 2018-04-26 Boe Technology Group Co., Ltd. Apparatus and method for determining a blood pressure of a subject
JP6324574B1 (ja) * 2017-03-31 2018-05-16 シチズン時計株式会社 血圧計
CN107126200A (zh) * 2017-06-23 2017-09-05 深圳市永盟智能信息系统有限公司 血压计系统及检测方法
JP7045832B2 (ja) * 2017-10-31 2022-04-01 フクダ電子株式会社 生体情報測定装置
CN108071581B (zh) * 2017-12-13 2019-07-05 深圳市景新浩科技有限公司 一种微型压电泵充气软件控制方法及系统
CN110995929B (zh) * 2019-12-05 2022-05-06 北京小米移动软件有限公司 终端控制方法、装置、终端及存储介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155828A (ja) * 1985-12-27 1987-07-10 テルモ株式会社 電子血圧計の電池消耗検出方式
JPH0634781B2 (ja) * 1990-10-24 1994-05-11 オムロン株式会社 電子血圧計
JP3109155B2 (ja) 1991-08-13 2000-11-13 オムロン株式会社 電子血圧計
JP2001245857A (ja) * 2000-03-02 2001-09-11 Matsushita Electric Ind Co Ltd 生体情報測定装置
TW561223B (en) * 2001-04-24 2003-11-11 Matsushita Electric Works Ltd Pump and its producing method
CN2724629Y (zh) * 2004-08-13 2005-09-14 北京蓝百通科技有限公司 紫蜂家用脉搏血压监护仪
JP4134234B1 (ja) * 2007-02-05 2008-08-20 シチズンホールディングス株式会社 電子血圧計
JP4957480B2 (ja) 2007-09-20 2012-06-20 株式会社村田製作所 圧電マイクロポンプ
JP2009172098A (ja) * 2008-01-23 2009-08-06 Omron Healthcare Co Ltd 血圧測定装置および血圧測定データの処理方法
JP2009225842A (ja) * 2008-03-19 2009-10-08 Omron Healthcare Co Ltd 電子血圧計および充電ガイド方法
RU2503406C2 (ru) * 2008-05-22 2014-01-10 Омрон Хэлткэа Ко., Лтд. Устройство для измерения кровяного давления
JP5228880B2 (ja) * 2008-12-17 2013-07-03 オムロンヘルスケア株式会社 電子血圧計
JP2011101735A (ja) * 2009-11-11 2011-05-26 Omron Healthcare Co Ltd 電子血圧計
JP5233967B2 (ja) * 2009-11-20 2013-07-10 オムロンヘルスケア株式会社 血圧測定装置
US20110152650A1 (en) * 2009-12-21 2011-06-23 General Electric Company Adaptive pump control during non-invasive blood pressure measurement
CN102160779A (zh) * 2010-02-22 2011-08-24 深圳市金科威实业有限公司 向无创血压测量设备的袖带充气的方法及装置
CN201831887U (zh) * 2010-03-05 2011-05-18 欧姆龙健康医疗事业株式会社 电子血压计

Also Published As

Publication number Publication date
US20140316290A1 (en) 2014-10-23
JP2013090826A (ja) 2013-05-16
DE112012004480T5 (de) 2014-08-07
US9138152B2 (en) 2015-09-22
CN103841883B (zh) 2016-06-08
CN103841883A (zh) 2014-06-04
WO2013061780A1 (ja) 2013-05-02
JP5853587B2 (ja) 2016-02-09

Similar Documents

Publication Publication Date Title
JP5853587B2 (ja) 電子血圧計
JP5811766B2 (ja) 電子血圧計
JP5408142B2 (ja) 測定部位に巻付けられるカフを有する血圧測定装置
JP3815487B2 (ja) 血圧測定用帯の巻付け制御装置
JP6019592B2 (ja) 血圧測定装置
US20130030310A1 (en) Blood pressure measurement device
JP2010057817A (ja) 電子血圧計
CN103025231B (zh) 电子血压计
JP2008188197A (ja) 電子血圧計
WO2011055716A1 (ja) 電子血圧計
JP5169631B2 (ja) 血圧情報測定装置
WO2013157399A1 (ja) 血圧測定装置、血圧測定装置における制御装置、および、血圧測定装置の制御方法
JP2014014556A (ja) 電子血圧計および血圧測定方法
JP6136111B2 (ja) 血圧測定装置
WO2013061778A1 (ja) 電子血圧計
JP5228620B2 (ja) 血圧測定装置
JP2012213444A (ja) 血圧測定装置
JP2010035804A (ja) 電子血圧計
JP2010167181A (ja) 電子血圧計、情報処理装置、測定管理システム、測定管理プログラム、および測定管理方法
JP2007151940A (ja) 電子血圧計
JP2012115413A (ja) 電子血圧計
WO2011122126A1 (ja) 測定部位に手動で巻付けられるカフを有する血圧測定装置
JP2010051659A (ja) 血圧情報測定装置
JP2012196322A (ja) 血圧測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14350373

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120044800

Country of ref document: DE

Ref document number: 112012004480

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843647

Country of ref document: EP

Kind code of ref document: A1