WO2013061707A1 - 二次電池用アルミニウム缶体及びその製造方法 - Google Patents

二次電池用アルミニウム缶体及びその製造方法 Download PDF

Info

Publication number
WO2013061707A1
WO2013061707A1 PCT/JP2012/073441 JP2012073441W WO2013061707A1 WO 2013061707 A1 WO2013061707 A1 WO 2013061707A1 JP 2012073441 W JP2012073441 W JP 2012073441W WO 2013061707 A1 WO2013061707 A1 WO 2013061707A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy plate
aluminum
less
secondary battery
ppm
Prior art date
Application number
PCT/JP2012/073441
Other languages
English (en)
French (fr)
Inventor
松本 剛
小林 一徳
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020147010999A priority Critical patent/KR101697410B1/ko
Priority to CN201280039602.7A priority patent/CN103733377B/zh
Publication of WO2013061707A1 publication Critical patent/WO2013061707A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum can body assembled by welding a lid body and an exterior body made of an aluminum alloy plate, and a method for manufacturing the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-104866 (hereinafter referred to as Patent Document 1), a lid body is formed along a side edge of an aluminum alloy plate made of JIS-A3000, which is an aluminum alloy mainly containing Mn.
  • JIS-A3000 which is an aluminum alloy mainly containing Mn.
  • a technique for assembling a can body by abutting the end surfaces of the alloy plate body for use and laser welding with a YAG slab laser along a butt line formed on the end surface of the alloy plate body for the main body is disclosed.
  • Patent Document 2 JP 2009-146645 A (hereinafter referred to as Patent Document 2), by using a high-density heat source laser, metal scattering due to sputtering occurs, the bead thickness is reduced, and the shape is recessed from the outer surface. It states that it becomes a welded part.
  • a convex portion is formed outward from both plate bodies along a butt line of the alloy plate body for the main body and the alloy plate body for the lid body, and laser welding is performed at the convex portion. ing.
  • Patent Document 3 a low-strength but high-conductivity JIS-A1000 series (pure aluminum material) is a can of a lithium ion secondary battery for automobiles.
  • this aluminum plate is welded with a high energy density pulse laser, the components such as impurities and the surface condition in the aluminum plate have a great influence on the width and depth of the melt-bonded part. It is easy to bring about an abrupt change in the melt-bonded part, such as causing an abnormal depth of penetration that suddenly penetrates the aluminum plate or generating porosity.
  • high-strength aluminum alloys such as JIS-A3000, in particular, A3003 and A3005 are used for the lid and exterior body, and these are laser-bonded. It is desired to assemble it into an aluminum can body by welding. Here, in order to increase the bonding strength of welding, it is preferable to form a deeper melt-bonded portion to increase the bonding area.
  • the plate thickness of the lid and / or the exterior body becomes thin, and the width of the fusion bonded portion cannot be increased. That is, it is desired to increase only the depth direction of the melt-bonded portion, and high energy density keyhole welding or the like can be employed.
  • Patent Documents 1 to 3 in a high energy density laser welding, a sound fusion joint can be stably formed without causing root cracks or porosity. Difficult to give.
  • an object of the present invention is to provide a healthy aluminum can body for a secondary battery assembled by laser welding a lid body and an exterior body made of a high-strength aluminum alloy plate, without causing root cracks and porosity.
  • Manufacturing method of aluminum can body for secondary battery capable of stably providing fusion joint, and secondary having higher mechanical strength as a whole by having a higher joint strength given such a healthy joint.
  • the object is to provide an aluminum can for a battery.
  • a method for producing an aluminum can body for a secondary battery according to the present invention is a method for producing an aluminum can body for a secondary battery assembled by laser welding a lid body and an exterior body made of an aluminum alloy plate, and includes at least a mass.
  • An alloy plate made of an aluminum alloy containing Si in an amount of 0.30% or less and B in a range of 2 to 30 ppm was prepared, and the first plate along the side edge of the first alloy plate was prepared.
  • the method includes a step of controlling laser welding conditions so that a ratio W / D of the width W to the depth D of the melt-bonded portion given by being sandwiched is 1.5 or more.
  • the component composition of the aluminum alloy plate body while maintaining the ratio of the width W to the depth D of the melt-bonded portion by controlling the energy density of the continuous laser.
  • the depth D of the melt-bonded portion can be increased, and a sound melt-bonded portion can be stably provided without causing cracks or porosity. That is, it is possible to provide an aluminum can body for a secondary battery that is provided with a sound joint and has higher mechanical strength.
  • the disposing step includes Si: 0.05 to 0.30% as an essential additive element in a mass ratio to one or both of the first alloy plate or the second alloy plate. , Fe: 0.05 to 0.7%, Cu: 0.05 to 0.25%, Mn: 0.8 to 1.5%, B: 2 to 20 ppm, Mg: 0.05 as an optional additive element %, Ti: within a range of 0.1% or less, it may include a step of preparing an aluminum alloy sheet having a composition composed of the balance Al and inevitable impurities. In this case, an aluminum can body for a secondary battery having mechanical strength equivalent to A3003 material can be provided.
  • the disposing step includes Si: 0.05 to 0.30% as an essential additive element in a mass ratio to one or both of the first alloy plate or the second alloy plate.
  • Ti may include a step of preparing an aluminum alloy sheet having a component composition composed of the remaining Al and inevitable impurities within a range of 0.1% or less.
  • an aluminum can body for a secondary battery having high mechanical strength equivalent to A3005 material can be provided.
  • the placing step includes, on the other side of the first alloy plate or the second alloy plate, B: 2 to 10 ppm as an essential additive element and Si as an optional additive element at a mass ratio. : 0.30% or less, Fe: 0.6% or less, Cu: 0.1% or less, Mn: 0.05% or less, Mg: 0.05% or less, Zn: 0.1% or less, Ti: 0
  • the step may further include the step of preparing an aluminum alloy plate body having a composition of the remaining Al and inevitable impurities within a range of 0.04% or less as the lid body.
  • the energy density of the continuous laser in the assembly of an aluminum can for a secondary battery by laser welding, even when a lid with a lower mechanical strength of the base material than that of the exterior body is adopted as required.
  • the ratio of the width W to the depth D of the melt-bonded portion can be controlled to a predetermined value or more, and the depth D of the melt-bonded portion can be further increased, and a stable melt-bonded portion can be stabilized without causing cracks or porosity. Can be given.
  • a cut portion may be provided along a side edge of the first alloy plate.
  • the plate body can be aligned and temporarily fixed easily and accurately, so that a stable and melt-bonded portion can be provided.
  • the aluminum can body for a secondary battery is an aluminum can body for a secondary battery assembled by laser welding a lid body and an exterior body made of an aluminum alloy plate body, wherein the aluminum alloy plate body is: An aluminum alloy containing at least Si of 0.30% or less and B in a range of 2 to 30 ppm by mass ratio, and the second alloy along the side edge of the first alloy plate.
  • the ratio W of the width W to the depth D of the melt-bonded portion which is continuously laser welded along the butt line formed by butting the end surface of the plate body and forming the end surface of the first alloy plate body.
  • / D is 1.5 or more and the depth D is 0.35 mm or more.
  • the ratio of the width W to the depth D of the melt-bonded portion is controlled by controlling the energy density of the continuous laser, and the components of the aluminum alloy plate body
  • the depth D of the melt-bonded portion can be increased, and a sound melt-bonded portion can be stably provided without causing cracks or porosity. That is, it is possible to provide an aluminum can body for a secondary battery having a sound joint and higher mechanical strength.
  • one or both of the first alloy plate body and the second alloy plate body are, as a mass ratio, Si: 0.05-0.30%, Fe: 0.0. 05 to 0.7%, Cu: 0.05 to 0.25%, Mn: 0.8 to 1.5%, B: 2 to 20 ppm,
  • Mg: 0.05% or less Ti: It may be characterized by having a component composition consisting of the balance Al and inevitable impurities within a range of 0.1% or less. In this case, a can having a mechanical strength equivalent to the A3003 material can be obtained.
  • one or both of the first alloy plate body and the second alloy plate body are, as a mass ratio, Si: 0.05-0.30%, Fe: 0.0. 05-0.7%, Cu: 0.05-0.3%, Mn: 0.8-1.5%, Mg: 0.2-0.6%, B: 2-30ppm, optional addition elements Ti: It may be characterized by having a component composition consisting of the balance Al and inevitable impurities within a range of 0.1% or less. In this case, a can having a high mechanical strength equivalent to the A3005 material can be obtained.
  • the other of the first alloy plate body or the second alloy plate body is the lid body, and B: 2 to 10 ppm as an optional additive element in terms of mass ratio, an optional additive element Si: 0.30% or less, Fe: 0.6% or less, Cu: 0.1% or less, Mn: 0.05% or less, Mg: 0.05% or less, Zn: 0.1% or less, Ti: It may be characterized by having a component composition consisting of the balance Al and inevitable impurities within a range of 0.04% or less.
  • the depth D of the melt-bonded portion is large while the ratio of the width W to the depth D of the melt-bonded portion is not less than a predetermined value.
  • the aluminum can body for a secondary battery can have a sound melt-bonded portion with less cracking and porosity, and has an effect of having high mechanical strength.
  • the first alloy plate body may be welded after being provided with a cut portion along a side edge end portion thereof.
  • the plate body can be aligned and temporarily fixed easily and accurately, so that a stable and melt-bonded portion can be provided.
  • the present invention relates to an aluminum can body assembled by laser welding a lid body and an exterior body made of an aluminum alloy plate, and a method for manufacturing the same.
  • the present invention particularly relates to an aluminum can for a secondary battery for housing a secondary battery such as a lithium ion secondary battery and a method for manufacturing the same.
  • the present inventor has concluded that it is difficult to apply such welding in applications where stable and sound welding is required, including the appearance of the fusion joint, such as an aluminum can body for a secondary battery. Therefore, manufacture of aluminum cans for secondary batteries to be welded so that the fusion joint can be deepened while obtaining a healthy fusion joint by heat conduction laser welding that reduces energy density and does not generate keyholes.
  • the present inventor is conducting a welding test for the purpose of stably obtaining a sound fusion joint having a depth and a soundness. Details of the welding test will be described with reference to FIGS.
  • the housing plate 2 is an aluminum alloy plate having a component composition described later with a plate thickness of 0.5 mm, a width of 50 mm, and a length of 200 mm
  • the lid plate 3 has a plate thickness of 1.0 mm, a width of 50 mm, and a length of 200 mm. This is an aluminum alloy plate having the component composition described later.
  • the end surface 3 a of the lid plate 3 is abutted and temporarily fixed in the vicinity of the end surface 2 a of the housing plate 2, that is, the side edge of the housing plate 2. did.
  • the outer edge line of the end face 3a, which is the abutting surface, and the edge line of the end face 2a located along the outer edge line are referred to as a butting line 5.
  • the laser beam 6 is irradiated from right above the end face 2a along the butt line 5, the welding speed is 5 m / min, the advance angle is 10 °, and the shielding gas As described above, laser welding was performed while supplying nitrogen to the weld at 20 liters / minute.
  • the fusion bonded portion 4 is formed across both the casing plate 2 and the lid plate 3 with the butt line 5 interposed therebetween, and the casing plate 2 and the lid plate 3 are joined to obtain the welded joint 1.
  • the laser was adjusted so that the distance between the processing point and the focal point was 0, the focused beam diameter was 0.8 mm, and the output was 2500 to 3200 W.
  • the ratio of the width W to the depth D of the fusion bonded portion 4 is 1.5 or more.
  • the depth D of the melt-bonded portion 4 could be 0.35 mm or more in such an output range. Therefore, the depth D of the melt-bonded portion 4 was 0.4 mm ( ⁇ 0.00 mm).
  • the laser output was adjusted to be 01 mm.
  • keyhole type welding is performed such that a keyhole is formed in the melt-bonded portion 4, but here the laser has a distance between the processing point and the focal point of 0, and the focused beam diameter Is reduced to 0.2 mm, the output is adjusted to 600 to 800 W, and welding is performed in the same manner as described above.
  • the component composition of the aluminum alloy plate used for the production of the welded joint 1 is obtained by changing the component compositions of alloy numbers 3003, 3005, and 1050 defined in JIS-H4000. Call.
  • Aluminum alloy plates having these component compositions were used for both the case plate 2 and the lid plate 3.
  • FIG. 2 shows representative components of 3003 series, 3005 series and 1050 series.
  • FIG. 3 shows only Si, Mg, and B among the component compositions of the aluminum alloys used in the welded joints 1 of Examples 1 to 15 and Comparative Examples 1 to 21. That is, the other component compositions are the same as the representative components of the 3003 and 3005 systems in FIG.
  • Examples 16 to 21 and Comparative Examples 22 to 30 in the case of using 1050 series for the cover plate 3 and 3003 series or 3005 series for the case board 2 are also shown in FIG. .
  • the content of each component is a mass ratio, and is hereinafter simply expressed as% or ppm.
  • a tensile test is performed by fixing the casing plate 2 b to the jig 20 with a test body 1 b cut out from a weld length of 200 mm of each weld joint 1 to a length of 20 mm at an arbitrary position. Is going. A main surface of the housing plate 2b is brought into contact with the upper surface of an L-shaped jig 21 attached to one chuck of a tensile tester (not shown), and the housing plate 2b is pressed from above with a holding plate 22 to thereby provide a bolt 23 and a nut.
  • the lid plate 3b is attached to a chuck (not shown) so that the center of the lid plate 3b of the test body 1b is overlapped with the tension center axis M of a tensile tester (not shown). Thereby, the test body 1b is pulled so that it may be divided
  • the tensile strength divided by the cross-sectional area of the lid plate 3b of the test body 1b is determined to be good when it is 121 N / mm 2 or higher, which is 10% higher than the standard joint strength 110 N / mm 2 of the 3003 series. , 121 N / mm 2 is determined to be impossible, and each is indicated by “ ⁇ ” and “X” in FIGS. 3 and 4.
  • the test results in Fig. 3 will be described.
  • the 3003 series comparative examples 1 to 4 and the 3005 series comparative examples 10 to 16 and the 1050 series comparative examples 18 to 21 with the laser welding condition “K” are all “impossible” in the “appearance”.
  • the “evaluation” of the welding test is “impossible”.
  • the result of “good” in “porosity” is not obtained. That is, it is difficult to obtain the melted joint 4 soundly by keyhole type welding.
  • the “evaluation” of the welding test result was “good”, and in Examples 3 and 4, the “evaluation” of the welding test result was “good”.
  • the sound fusion joint part 4 with the required depth D was obtained.
  • the “external appearance” was “possible”.
  • the content of B is as high as 11.0 ppm and 17.3 ppm in Examples 3 and 4 as compared with 5.7 ppm and 9.7 ppm in Examples 1 and 2, and exceeds 10 ppm. Although details will be described later, it is considered that this is a cause of disturbance of the melt-bonded portion 4. Therefore, in the 3003 series, the upper limit of the B content is 20 ppm, but a more preferable upper limit of the content is 10 ppm.
  • Example 15 the “evaluation” of the welding test result was “good”, and in Example 15, the “evaluation” of the welding test result was “possible”.
  • the sound fusion joint part 4 with the required depth D was obtained.
  • Example 15 a slight disturbance was observed in a part of the melt-bonded portion 4, and the “appearance” was “possible”.
  • in content of B compared with 2.7 ppm and 5.3 ppm of Example 13 and 14, it is as high as 9.2 ppm in Example 15, and exceeds 6 ppm. Although details will be described later, it is considered that this is a cause of disturbance of the melt-bonded portion 4.
  • the B content is as high as 13.4 ppm and exceeds 10 ppm.
  • the upper limit of the B content is 10 ppm, and the more preferable upper limit of the content is 6 ppm.
  • Example 9 of the 3005 series and Comparative Examples 5 and 6 the Si content is 0.25%, 0.32%, and 0.45% in this order.
  • the “evaluation” of the welding test result was “good”, but the comparative example in which the Si content was more than 0.30% In “5” and “6”, “cracking” was “impossible”, and “porosity” was not obtained as “good”, and the “evaluation” of the welding test result was “impossible”.
  • the high Si content is the cause of cracking
  • the upper limit of the Si content is 0.30%.
  • the ratio of the width W to the depth D of the fusion bonded portion 4 is adjusted to 1.5 or more by adjusting the energy density or welding speed of the continuous laser.
  • the depth of the molten joint 4 is 0.35 mm or more which gives the required mechanical strength to the plate thickness of a typical aluminum can body for a secondary battery, while performing welding, that is, heat conduction type welding. 4 mm ( ⁇ 0.01 mm) can be obtained.
  • the component composition corresponding to the 3005 system corresponds to the 1050 system by adjusting the contents of Si, B and Mg.
  • a sound melt-bonded portion 4 can be obtained. That is, it is possible to obtain an aluminum can body for a secondary battery that has a sound joint and higher mechanical strength.
  • the “evaluation” of the above-mentioned welding test is “possible.
  • the range of the component composition is determined based on the need for “good”. That is, the upper limit of the B content is 10 ppm in the component composition corresponding to the 3003 system, 20 ppm in the component composition corresponding to the 3005 system, and 6 ppm in the component composition corresponding to the 1050 system.
  • Comparative Examples 24 and 25 in which the laser welding condition is “K” and the casing plate 2 is 3003 series, and Comparative Examples 29 and 30 in which the casing board 2 is 3005 series are both “Porosity”. “No”, and “Evaluation” in the welding test is “No”. That is, it is difficult to obtain the melted joint 4 soundly by keyhole type welding.
  • Examples 19 to 21 and Comparative Example 26 in which the casing plate 2 is a 3005 series also have the same welding test results as those of Examples 16 to 18 and Comparative Example 22 described above. Regarding these results, the same considerations as in Examples 13 to 15 and Comparative Example 17 are given.
  • the content of B in the casing plate 2 is as high as 27.2 ppm, disorder is observed in the melt-bonded portion 4, and “impossible” in “appearance”. That is, the “evaluation” of the welding test result was “impossible”.
  • the upper limit of the B content is 20 ppm as described above, which is a supporting result.
  • Comparative Example 27 Si was increased to 0.45% in the 3005 series component composition used for the housing plate 2.
  • Comparative Example 6 described above when the Si content was more than 0.30%, “cracking” was “impossible”, and “evaluation” of the welding test result was “impossible”. Like the above-mentioned comparative example 6, it is thought that the high content of Si is a cause of a crack.
  • Comparative Example 28 Mg was increased to 0.78% in the 3005 component composition used for the housing plate 2.
  • the “crack” was “impossible” as a result of increasing the Mg content from 0.6%, and the “evaluation” of the welding test result was “impossible”. Similar to Comparative Example 9, it is considered that the increase in Mg content is the cause of cracking.
  • the component range of the essential additive elements as 3003 series and 3005 series aluminum alloy plate bodies used for assembling the aluminum can body for the secondary battery was determined. The reason will be explained.
  • Si dissolves in the matrix phase to improve the mechanical strength required as an aluminum alloy plate, and to improve the pressure resistance required as an aluminum can for a secondary battery after assembly. Further, an Al—Fe—Mn—Si intermetallic compound is formed to improve the formability during the forming process of the aluminum alloy sheet. On the other hand, when excessively added, coarse intermetallic compounds that are likely to start cracks are increased, the formability of the aluminum alloy sheet is lowered, and weld cracks are likely to occur. Therefore, based on the results of the above-described welding test, the amount of Si added is in the range of 0.05 to 0.30%.
  • Fe forms an Al-Fe-Mn intermetallic compound or an Al-Fe-Mn-Si intermetallic compound, and finely precipitates the intermetallic compound to provide a lubricating effect during the forming process of the aluminum alloy sheet.
  • the addition amount of Fe is in the range of 0.05 to 0.7%.
  • the amount of Cu added is in the range of 0.05 to 0.25% in the aluminum alloy corresponding to the 3003 series, and in the range of 0.05 to 0.3% in the aluminum alloy corresponding to the 3005 series.
  • Mn can be dissolved in the matrix phase to improve the mechanical strength required as an aluminum alloy plate as the amount of addition increases, and it is necessary as an aluminum can for secondary batteries after assembly. To improve the pressure strength. Forming Al-Fe-Mn intermetallic compounds and Al-Fe-Mn-Si intermetallic compounds, and finely precipitating such intermetallic compounds improve the lubrication effect during the forming process of aluminum alloy sheets. Improve formability. On the other hand, when added excessively, the coarse intermetallic compound which tends to become the starting point of a crack will increase, and the moldability of an aluminum alloy plate will be reduced. Therefore, the amount of Mn added is in the range of 0.8 to 1.5%.
  • B can prevent casting cracks in the slab for rolling by refining and homogenizing the cast structure at the time of slab ingot production of aluminum alloy.
  • porosity is likely to be generated in the molten bead during welding, and further, the porosity is easily aggregated by convection of the molten metal in the molten bead, so that the molten joint is easily disturbed.
  • the influence of B with respect to the generation of porosity can be reduced by addition of Mg, which will be described later, the amount of addition can be adjusted with the content of Mg.
  • the amount of B added is within the range of 2 to 20 ppm, more preferably within the range of 2 to 10 ppm, and more preferably within the range of 2 to 10 ppm, and 2 to 30 ppm in the 3005 series. Within the range, more preferably within the range of 2 to 20 ppm.
  • Mg is an essential additive element in the 3005 system, but is an optional additive element in the 3003 system.
  • Mg can be dissolved in the matrix phase to improve the mechanical strength required as an aluminum alloy plate with an increase in the amount added, and is necessary as an aluminum can for secondary batteries after assembly. To improve the pressure strength.
  • Mg 2 Si and S ′ phase Al 2 CuMg are finely precipitated to suppress the movement of transition, thereby suppressing the stress relaxation and improving the stress relaxation resistance required as an aluminum alloy plate. .
  • the Mg content is within a range of 0.05% or less in the aluminum alloy corresponding to the 3003 series, and 0.2 to 0 in the aluminum alloy corresponding to the 3005 series. Within the range of 6%.
  • Ti can prevent casting cracks in the rolling slab by refining and homogenizing the cast structure during the slab ingoting of the aluminum alloy.
  • the convection of a molten metal will be made unstable at the time of welding, and it will become easy to leave a porosity in a fusion
  • the Ti content is in the range of 0.1% or less.
  • impurity elements include Zn, Zr, Cr, Ga, V, Ni, etc., all of which have a content of 0.05% or less, and the total of Ti and B added is 0.15% or less. The amount does not greatly affect the physical characteristics described above.
  • pure aluminum can also be used for the lid body that has a lower mechanical strength than the exterior body.
  • pure aluminum is preferable for a lid that requires high conductivity.
  • the component composition of pure aluminum can be appropriately selected from a range of chemical components such as alloy numbers 1050, 1060, 1070, 1080, and 1085 as defined in JIS H4000.
  • B is an essential additive element in the range of 2 to 10 ppm, more preferably in the range of 2 to 6 ppm.
  • Si is 0.30% or less
  • Fe is 0.6% or less
  • Cu is 0.1% or less
  • Mn is 0.05% or less
  • Mg is 0.05% or less
  • Zn Is preferably in the range of 0.1% or less.
  • the end surface 3a of the lid body plate 3 is butted against the side edge end portion of the housing plate 2, and the butting relationship between the housing plate 2 and the lid body plate 3 is different from that of the other.
  • the end surface 2 a of the casing plate 2 is abutted with the vicinity of the end surface 3 a of the lid plate 3, that is, the side edge of the lid plate 3, and the lid plate You may arrange
  • the outer edge line of the end surface 2a which is a butting surface and the edge line of the end surface 3a located along the outer edge line are arranged as the butting line 5, and as shown in FIG. It is welded to form a fusion joint 4 in position.
  • the side edge of the lid plate 3 is provided with a notch 3b having a depth substantially the same as the plate thickness of the casing plate 2, and the casing plate is provided therewith.
  • the end face 2 a is abutted against the side edge end portion of the lid plate 3 so as to fit 2. That is, in this case as well, the outer edge line of the end face 2a, which is a butt face, and the edge line of the end face 3a located along the rim line are arranged as a butt line 5, and the butt line is shown in FIG. 9B. It welds so that the fusion
  • FIG. 9B It welds so that the fusion

Landscapes

  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

 アルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てた二次電池用アルミニウム缶体及びその製造方法である。少なくとも、質量比で、Siを0.30%以下とした上でBを2~30ppmの範囲内で含むアルミニウム合金からなる合金板体を用意し、第1の合金板体の側縁端部に沿って第2の合金板体の端面を突き合わせる。第1の合金板体の端面にできる突き合わせ線に沿って連続レーザ溶接する。ここで突き合わせ線を挟んで与えられる溶融接合部の深さDに対する幅Wの比を1.5以上とし、かつ、0.35mm以上の深さDを有するようにレーザ溶接条件が制御される。

Description

二次電池用アルミニウム缶体及びその製造方法
 本発明は、アルミニウム合金板体からなる蓋体及び外装体を溶接して組み立てたアルミニウム缶体及びその製造方法に関する。
 例えば、特開平11-104866号公報(以下、特許文献1という。)では、主としてMnが添加されたアルミニウム合金であるJIS-A3000系からなるアルミニウム合金板体の側縁端部に沿って蓋体用合金板体の端面を突き合わせ、一方、本体用合金板体の端面にできる突き合わせ線に沿ってYAGスラブレーザでレーザ溶接して缶体を組み立てる技術が開示されている。
 また、特開2009-146645号公報(以下、特許文献2という。)では、高密度熱源レーザを使用することでスパッタによる金属の飛散が生じビード厚さを減少させて、外面から窪んだ形状の溶接部となることについて述べている。これに対して、本体用合金板体及び蓋体用合金板体の突き合わせ線に沿って双方の板体から外方へ向けて凸部を形成し、該凸部でレーザ溶接することを開示している。
 更に、特開2009-287116号公報(以下、特許文献3という。)では、低強度ではあるが高導電率のJIS-A1000系(純アルミニウム材)が自動車用のリチウムイオン二次電池の缶体に適していることを述べた上で、かかるアルミニウム板材を高エネルギー密度のパルスレーザで溶接すると、アルミニウム板材中の不純物等の成分及び表面状態が溶融接合部の幅及び深さに大きな影響を与え、突発的にアルミニウム板材を貫通してしまうような異常深さの溶け込みを生じさせたり、ポロシティを生じるなど、溶融接合部の急激な変化をもたらしやすい。
特開平11-104866号公報 特開2009-146645号公報 特開2009-287116号公報
 リチウムイオン二次電池等の電池の軽量化に対しては、高強度のアルミニウム合金、例えば、JIS-A3000系のうち、特に、A3003やA3005を蓋体及び外装体に使用して、これらをレーザ溶接してアルミニウム缶体に組み立てることが望まれる。ここで、溶接の接合強度を高めるには、溶融接合部をより深く形成して接合面積を広く取ることが好ましい。一方で、高強度のアルミニウム合金の採用とともに蓋体及び/又は外装体の板厚は薄くなり、溶融接合部の幅を大きく取ることができない。つまり、溶融接合部の深さ方向だけを大きくすることが望まれ、高エネルギー密度のキーホール(key hole)型溶接などが採用され得る。しかしながら、特許文献1乃至3にも開示されているように、高エネルギー密度のレーザ溶接において、ルート割れ(root crack)やポロシティ(porosity)を生じさせることなく、健全な溶融接合部を安定的に与えることは難しい。
 そこで、本発明の目的は、高強度のアルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てた二次電池用アルミニウム缶体について、ルート割れやポロシティを生じさせることなく、健全な溶融接合部を安定的に与え得る二次電池用アルミニウム缶体の製造方法、及び、かかる健全な接合部を与えられてより高い継手強度を有することで、全体としてより高い機械強度を有する二次電池用アルミニウム缶体を提供することにある。
 本発明による二次電池用アルミニウム缶体の製造方法は、アルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てた二次電池用アルミニウム缶体の製造方法であって、少なくとも、質量比で、Siを0.30%以下とした上でBを2~30ppmの範囲内で含むアルミニウム合金からなる合金板体を用意し、第1の合金板体の側縁端部に沿って第2の合金板体の端面を突き合わせる配置ステップと、前記第1の合金板体の端面にできる突き合わせ線に沿って連続レーザ溶接する溶接ステップと、を含み、前記溶接ステップは、前記突き合わせ線を挟んで与えられる溶融接合部の深さDに対する幅Wの比W/Dを1.5以上とするようにレーザ溶接条件を制御するステップを含むことを特徴とする。
 この場合、レーザ溶接による二次電池用アルミニウム缶体の組み立てにおいて、連続レーザのエネルギー密度の制御で溶融接合部の深さDに対する幅Wの比を所定以上としつつ、アルミニウム合金板体の成分組成の調製により溶融接合部の深さDをより大とでき、しかも割れやポロシティを生じさせずに健全な溶融接合部を安定的に与えることができる。つまり、健全な接合部を与えられてより高い機械強度を有する二次電池用アルミニウム缶体を提供できる。
 上記本発明において、前記配置ステップは、前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方に、質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.25%、Mn:0.8~1.5%、B:2~20ppm、任意添加元素として、Mg:0.05%以下、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成のアルミニウム合金板体を用意するステップを含むことを特徴としてもよい。この場合、A3003材相当の機械強度を有する二次電池用アルミニウム缶体を提供できる。
 上記本発明において、前記配置ステップは、前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方に、質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.3%、Mn:0.8~1.5%、Mg:0.2~0.6%、B:2~30ppm、任意添加元素として、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成のアルミニウム合金板体を用意するステップを含むことを特徴としてもよい。この場合、A3005材相当の高い機械強度を有する二次電池用アルミニウム缶体を提供できる。
 上記本発明において、前記配置ステップは、前記第1の合金板体若しくは前記第2の合金板体の他方に、質量比で、必須添加元素として、B:2~10ppm、任意添加元素として、Si:0.30%以下、Fe:0.6%以下、Cu:0.1%以下、Mn:0.05%以下、Mg:0.05%以下、Zn:0.1%以下、Ti:0.04%以下の範囲内で残部Al及び不可避的不純物からなる成分組成のアルミニウム合金板体を前記蓋体として用意するステップを更に含むことを特徴としてもよい。この場合、要求に応じて、外装体よりも母材の機械強度を低減した蓋体を採用した場合にあっても、レーザ溶接による二次電池用アルミニウム缶体の組み立てにおいて、連続レーザのエネルギー密度の制御で溶融接合部の深さDに対する幅Wの比を所定以上としつつ、溶融接合部の深さDをより大とでき、しかも割れやポロシティを生じさせずに健全な溶融接合部を安定的に与えることができる。
 上記本発明において、前記第1の合金板体の側縁端部に沿って切り込み部を有することを特徴としてもよい。この場合、板体の位置合わせ及び仮固定を容易且つ精度良く行い得るので、安定的に健全な溶融接合部を与えることができる。
 更に、本発明による二次電池用アルミニウム缶体は、アルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てた二次電池用アルミニウム缶体であって、前記アルミニウム合金板体が、質量比で、少なくとも、Siを0.30%以下とした上でBを2~30ppmの範囲内で含むアルミニウム合金であり、第1の合金板体の側縁端部に沿って第2の合金板体の端面を突き合わせて前記第1の合金板体の端面にできる突き合わせ線に沿って連続レーザ溶接され、前記突き合わせ線を挟んで与えられた溶融接合部の深さDに対する幅Wの比W/Dが1.5以上であり、かつ、深さDが0.35mm以上であることを特徴とする。
 この場合、レーザ溶接により組み立てられた二次電池用アルミニウム缶体において、連続レーザのエネルギー密度の制御で溶融接合部の深さDに対する幅Wの比を所定以上としつつ、アルミニウム合金板体の成分組成の調製により溶融接合部の深さDをより大とされ、しかも割れやポロシティを生じさせずに健全な溶融接合部を安定的に与えることができる。つまり、健全な接合部を有しより高い機械強度を有する二次電池用アルミニウム缶体を提供できる。
 上記本発明において、前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方が、質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.25%、Mn:0.8~1.5%、B:2~20ppm、任意添加元素として、Mg:0.05%以下、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成を有することを特徴としてもよい。この場合、A3003材相当の機械強度を有する缶体を得られるのである。
 上記本発明において、前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方が、質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.3%、Mn:0.8~1.5%、Mg:0.2~0.6%、B:2~30ppm、任意添加元素として、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成を有することを特徴としてもよい。この場合、A3005材相当の高い機械強度を有する缶体を得ることができる。
 上記本発明において、前記第1の合金板体若しくは前記第2の合金板体の他方が、前記蓋体であり、且つ、質量比で、必須添加元素として、B:2~10ppm、任意添加元素として、Si:0.30%以下、Fe:0.6%以下、Cu:0.1%以下、Mn:0.05%以下、Mg:0.05%以下、Zn:0.1%以下、Ti:0.04%以下の範囲内で残部Al及び不可避的不純物からなる成分組成を有することを特徴としてもよい。
この場合、外装体よりも機械強度を低減した蓋体を採用する場合にあっても、溶融接合部の深さDに対する幅Wの比を所定以上としつつ溶融接合部の深さDが大であり、二次電池用アルミニウム缶体は割れやポロシティの少ない健全な溶融接合部を有し得て高い機械強度を有するという効果を奏する。
 上記本発明において、前記第1の合金板体の側縁端部に沿って切り込み部を与えた上で溶接されたことを特徴としてもよい。この場合、板体の位置合わせ及び仮固定を容易且つ精度良く行い得るので、安定的に健全な溶融接合部を与えることができる。
溶接試験における溶接継手の斜視図及び断面図である。 溶接試験における溶接継手の合金成分の代表値である。 溶接試験における溶接継手の合金成分及び試験結果を示す図である。 溶接試験における溶接継手の合金成分及び試験結果を示す図である。 溶接試験におけるポロシティ良否判定のための写真である。 溶接試験における割れ良否判定のための写真である。 引張試験における試験体の斜視図である。 他の溶接継手の断面図である。 更に他の溶接継手の断面図である。
 本発明は、アルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てたアルミニウム缶体及びその製造方法に関する。本発明は、特に、リチウムイオン二次電池の如き二次電池を収容するための二次電池用アルミニウム缶体及びその製造方法に関する。
 二次電池用アルミニウム缶体をレーザ溶接で組み立てるにあたり、溶融接合部での更なる高い機械強度を得るには、溶融接合部を深く形成することが必要である。しかしながら、溶融接合部を深く形成できるとされる高密度レーザによるキーホール型溶接では、ルート割れやポロシティといった欠陥や溶融接合部の乱れが発生しやすい。本発明者は、二次電池用アルミニウム缶体のように溶融接合部の外観も含めて安定して健全な溶接を要求される用途において、かかる溶接の適用は困難であると結論付けた。そこで、エネルギー密度を下げてキーホールを生じない熱伝導型レーザ溶接で健全な溶融接合部を得ながら、なおかつ溶融接合部を深くできるよう、被溶接対象である二次電池用アルミニウム缶体の製造に使用される高強度アルミニウム合金板体の成分組成を変更することを鋭意検討した。
 その結果、高強度アルミニウム合金に含有される成分のうち、特に、Si及びBの含有量を調整することで、二次電池用アルミニウム缶体として必要とされる機械的強度を与えるような溶融接合部の深さが得られ、しかも安定して健全な溶融接合部を得られることを見出した。Mgの添加されているアルミニウム合金においても、Mgの添加量も併せて調整することで、Mgの添加されていないアルミニウム合金と同等の溶融接合部が得られることを見出した。
 以上に関して、深さを有しつつしかも健全な溶融接合部を安定的に得ることを目的として、本発明者は溶接試験を行っている。かかる溶接試験について、図1乃至図7を用いてその詳細を説明する。
 図1(a)に示すように、溶接試験では、二次電池用缶体の外装体に相当する筐体板2と蓋体に相当する蓋体板3との2つのアルミニウム合金平板の突き合わせ部を連続レーザ溶接して、溶接長を200mmとするL字型の溶接継手1を作製して各種試験を行っている。なお、筐体板2は、板厚0.5mm、幅50mm、長さ200mmの後述する成分組成のアルミニウム合金板であり、蓋体板3は、板厚1.0mm、幅50mm、長さ200mmのやはり後述する成分組成のアルミニウム合金板である。
 図1(b)を参照すると、溶接継手1の作製において、筐体板2の端面2a近傍、すなわち筐体板2の側縁端部に蓋体板3の端面3aを突き合わせて配置、仮固定した。ここで突き合わせ面である端面3aの外側縁線とこれに沿って位置する端面2aの縁線とを突き合わせ線5とする。
 次に、マルチモードのCW(連続発振)ファイバーレーザを用い、突き合わせ線5に沿って端面2aの直上からレーザ光6を照射し、溶接速度を5m/分、前進角を10°とし、シールドガスとして窒素を20リットル/分で溶接部に供給しながらレーザ溶接した。溶融接合部4は、突き合わせ線5を挟んで筐体板2及び蓋体板3の両者に跨って形成され、筐体板2及び蓋体板3が接合され、溶接継手1が得られる。
 なお、レーザは、加工点と焦点との距離が0とし、集光ビーム径が0.8mm、その出力が2500~3200Wとなるように調整した。ここで、図1(c)を参照すると、かかる熱伝導型となるレーザ出力密度の溶接では、溶融接合部4の深さDに対する幅Wの比が1.5以上となるが、後述する実施例において、いずれもかかる出力範囲程度で溶融接合部4の深さDを0.35mm以上とすることが出来ることを確認できたため、溶融接合部4の深さDが0.4mm(±0.01mm)となるようにレーザ出力を調整した。
 また、後述する比較例では、溶融接合部4にキーホールを形成するようなキーホール型溶接をしているが、ここではレーザは、加工点と焦点との距離を0とし、集光ビーム径を0.2mmに絞り、その出力は600~800Wで調整して、上記と同様に溶接を行っている。
 溶接継手1の作製に用いたアルミニウム合金板の成分組成はJIS-H4000に規定される合金番号3003、3005及び1050の成分組成を変更したもので、それぞれ以下において3003系、3005系、1050系と呼ぶ。これらの成分組成のアルミニウム合金板体を筐体板2及び蓋体板3の双方に使用した。図2には、3003系、3005系及び1050系のそれぞれの代表成分を示した。また、図3には、実施例1~15及び比較例1~21の溶接継手1に使用したアルミニウム合金の成分組成のうち、Si、Mg、Bだけについて示した。すなわち、これ以外の成分組成については、図2の3003系及び3005系の代表成分と同じである。さらに、蓋体板3に1050系を使用し、筐体板2に3003系又は3005系を使用した場合についての実施例16~21及び比較例22~30についても、同様に図4に示した。ここで、各成分の含有量はいずれも質量比であり、以下、単に%又はppmで表記する。
 図3及び図4に試験結果を示した。なお、レーザ溶接条件の欄において、「K」はキーホール型溶接となるレーザ出力及び溶接速度の条件、「H」は熱伝導型溶接となるレーザ出力及び溶接速度の条件で溶接を行ったことを示している。
 「外観」の判定は、得られた各溶接継手1の溶接長200mmの全体を外観目視観察することにより行った。溶融接合部4の乱れがなく安定した外観を得られた場合を良好と判定し、図3及び図4において「○」で示した。局所的に溶融接合部4の幅が変化したりアンダーカットが発生したりして外観の乱れた部分を1カ所だけ有する場合を可と判定し、図3及び図4において「△」で示した。それ以上の数の外観の乱れがある場合を不可と判定し、図3及び図4において「×」で示した。
 「ポロシティ」及び「割れ」の判定は、溶接継手1の溶接長200mmから20mmの長さの試料を任意の2カ所から切り出して研磨し、光学顕微鏡観察することにより行った。なお、溶接継手1の長手方向に沿った溶接線方向の断面で溶融接合部4の中心部を観察した。「ポロシティ」の判定では、図5(a)に示すように、直径50μm以上のポロシティが観察されないものを良好と判定し、図3及び図4において「○」で示した。図5(b)に示すように、直径100μmまでのポロシティが溶接長10mmに対し5個以下のものを可と判定し、図3及び図4において「△」で示した。図5(c)に示すように、それ以上の大きさのポロシティが観察されたものを不可と判定し、図3及び図4において「×」で示した。また、「割れ」の判定では、図6(a)に示すように、割れの観察されなかったものを良好と判定し、図3及び図4において「○」で示した。図6(b)に示すように、割れの観察されたものを不可と判定し、図3及び図4において「×」で示した。
 「継手強度」の判定は、3005系に対応する実施例5~12、比較例5~16について、引張試験により行った。詳細には、図7に示すように、各溶接継手1の溶接長200mmから任意の位置で20mmの長さに切り出した試験体1bでその筐体板2bをジグ20に固定して引張試験を行っている。図示しない引張試験機の一方のチャックに取付けられたL型ジグ21の上面に筐体板2bの主面を当接させて、筐体板2bを押さえ板22で上から押さえてボルト23及びナット24で固定する。さらに、試験体1bの蓋体板3bの中心を図示しない引張試験機の引張りの中心軸Mに重ねるように、蓋体板3bを図示しないチャックに取付ける。これにより、試験体1bを、その突き合わせ面を境にして上下に分断するように引っ張る。引張り強度を試験体1bの蓋体板3bの断面積で割った値が3003系の標準的な継手強度である110N/mmよりも10%高い121N/mm以上の場合に良好と判定し、121N/mm未満であった場合を不可と判定することとし、それぞれを図3及び図4において「○」「×」で示した。
 各溶接継手1の溶接試験結果の「評価」は、上記した「外観」、「ポロシティ」、「割れ」及び「継手強度」の各判定結果に基づいて行った。つまり、図3及び図4において、上記した判定結果が全て良好のものを「良好」、判定結果に可が含まれて不可のないものを「可」、判定結果に不可が含まれているものを「不可」で示した。
 図3の試験結果について述べる。まず、レーザ溶接条件を「K」とした3003系の比較例1~4、3005系の比較例10~16、1050系の比較例18~21については、いずれも「外観」において「不可」となり、溶接試験の「評価」がいずれも「不可」となっている。また、「ポロシティ」においても「良好」との結果は得られていない。つまり、キーホール型溶接によっては溶融接合部4を健全に得ることは困難である。
 次に、3003系の実施例1及び2では、溶接試験結果の「評価」は「良好」であり、実施例3及び4では、溶接試験結果の「評価」は「可」であった。この熱伝導型溶接による実施例では、必要な深さDとともに健全な溶融接合部4が得られた。なお、実施例3及び4については、溶融接合部4の一部にわずかに乱れが観察され、「外観」において「可」であった。考察するに、Bの含有量において、実施例1及び2の5.7ppm及び9.7ppmに比べ、実施例3及び4では11.0ppm及び17.3ppmと高く、10ppmを超えている。詳細は後述するが、これが溶融接合部4の乱れの原因であると考える。よって、3003系においてBの含有量の上限は20ppmではあるが、より好ましい含有量の上限は10ppmである。
 また、3005系の実施例5及び6では、溶接試験結果の「評価」は「良好」であり、実施例7及び8では、溶接試験結果の「評価」は「可」であった。この熱伝導型溶接による実施例では、必要な深さDとともに健全な溶融接合部4を得られた。なお、実施例7及び8については、溶融接合部4の一部にわずかに乱れが観察され、「外観」において「可」であった。考察するに、Bの含有量において、実施例5及び6の9.8ppm及び16.3ppmに比べ、実施例7及び8では20.9ppm及び26.7ppmと高く、20ppmを超えている。詳細は後述するが、これが溶融接合部4の乱れの原因であると考える。よって、3005系においてBの含有量の上限は30ppmであるが、より好ましい含有量の上限は20ppmである。
 さらに、1050系の実施例13及び14では、溶接試験結果の「評価」は「良好」であり、実施例15では、溶接試験結果の「評価」は「可」であった。この熱伝導型溶接による実施例では、必要な深さDとともに健全な溶融接合部4を得られた。なお、実施例15については、溶融接合部4の一部にわずかに乱れが観察され、「外観」において「可」であった。考察するに、Bの含有量において、実施例13及び14の2.7ppm及び5.3ppmに比べ、実施例15では9.2ppmと高く、6ppmを超えている。詳細は後述するが、これが溶融接合部4の乱れの原因であると考える。また、比較例17ではBの含有量が13.4ppmと高く、10ppmを超えている。その結果、溶融接合部4に乱れが観察され「外観」において「不可」、すなわち溶接試験結果の「評価」は「不可」であった。よって、1050系においてBの含有量の上限は10ppmであり、より好ましい含有量の上限は6ppmである。
 次に、3005系の実施例9、比較例5及び6では、Siの含有量を順に0.25%、0.32%及び0.45%としている。その結果、Siの含有量を0.25%とした実施例9では、溶接試験結果の「評価」は「良好」であったが、Siの含有量を0.30%よりも多くした比較例5及び6において「割れ」が「不可」となり、「ポロシティ」においても「良好」との結果を得られておらず、溶接試験結果の「評価」は「不可」であった。詳細は後述するが、Siの含有量の高いことが割れの原因であると考えられ、3005系においてSiの含有量の上限は0.30%である。
 次に、3005系の比較例7、実施例10~12、比較例8及び9では、Mgの含有量を順に0.11%、0.21%、0.39%、0.52%、0.64%及び0.78%としている。その結果、Mgの含有量を0.2%未満とした比較例7では、「継手強度」が「不可」となり、Mg含有量を0.6%より多くした比較例8及び9では、「割れ」が「不可」となったが、実施例10~12においては溶接試験結果の「評価」で「良好」であった。詳細は後述するが、Mgの含有量を少なくしたことが強度低下の原因であり、Mgの含有量を多くしたことが割れの原因であると考えられる。よって、3005系においてMgの含有量は0.2~0.6%の範囲内である。
 以上において、レーザ溶接による二次電池用アルミニウム缶体の組み立てでは、連続レーザのエネルギー密度や溶接速度などを調整して、溶融接合部4の深さDに対する幅Wの比を1.5以上とする溶接、すなわち熱伝導型溶接としながら、一般的な二次電池用アルミニウム缶体の板体厚さに対して必要な機械強度を与える溶融接合部4の深さ0.35mm以上の深さ0.4mm(±0.01mm)を得られるのである。その上で、3003系に対応する成分組成ではSi及びBの含有量を調整することで、3005系に対応する成分組成ではSi、B及びMgの含有量を調整することで、1050系に対応する成分組成ではBの含有量を調整することで、それぞれ健全な溶融接合部4を得ることができる。つまり、健全な接合部を有し、より高い機械的強度を有する二次電池用アルミニウム缶体を得ることができる。
 なお、溶融接合部の健全性について、一般的なアルミニウム合金溶接部材の中でより厳しい要求のあるリチウムイオン二次電池用アルミニウム缶体を得る場合は、上記した溶接試験の「評価」を「可」とするだけではなく、「良好」とする必要に基づいて成分組成の範囲が定められる。すなわち、Bの含有量の上限は、3003系に対応する成分組成において10ppm、3005系に対応する成分組成において20ppm、1050系に対応する成分組成において6ppmである。
 続いて図4の試験結果について述べる。まず、レーザ溶接条件を「K」とし、筐体板2を3003系とした比較例24及び25、筐体板2を3005系とした比較例29及び30については、いずれも「ポロシティ」において「不可」となり、溶接試験の「評価」がいずれも「不可」となっている。つまり、キーホール型溶接によっては溶融接合部4を健全に得ることは困難である。
 さらに、筐体板2を3003系とした実施例16~18、比較例22では、蓋体板3に使用した1050系の成分組成において、Bの含有量を順に2.7ppm、5.3ppm、9.2ppm、13.4ppmとしており、上記した実施例13~15、比較例17と蓋体板3について同様である。溶接試験結果も、実施例16及び17では実施例13及び14と同様に「評価」が「良好」であり、実施例18では実施例15と同様に「外観」が「可」であるため「評価」も「可」であり、比較例22では比較例17と同様に「外観」が「不可」であるため「評価」も「不可」であった。これらの結果の違いは蓋体板3についてのBの含有量の違いによるものであると考えられる。すなわち、上記した実施例13~15、比較例17と同様の考察を与えられる。
 また、筐体板2を3005系とした実施例19~21、比較例26についても、上記した実施例16~18及び比較例22と同様の溶接試験結果である。これらの結果についても、上記した実施例13~15、比較例17と同様の考察を与えられる。
 さらに、筐体板2を3003系とした比較例23においては、筐体板2のBの含有量が27.2ppmと高く、溶融接合部4に乱れが観察され、「外観」において「不可」、すなわち溶接試験結果の「評価」は「不可」であった。3003系の成分組成においてBの含有量の上限が20ppmであることを上記したが、その裏付けとなる結果であった。
 次に、比較例27においては、筐体板2に使用した3005系の成分組成において、Siを0.45%と高くしている。上記した比較例6と同様に、Siの含有量を0.30%よりも多くした結果「割れ」が「不可」となり、溶接試験結果の「評価」は「不可」であった。上記した比較例6と同様に、Siの含有量の高いことが割れの原因であると考えられる。
 また、比較例28においては、筐体板2に使用した3005系の成分組成において、Mgを0.78%と高くしている。上記した比較例9と同様に、Mgの含有量を0.6%より多くした結果「割れ」が「不可」となり、溶接試験結果の「評価」は「不可」であった。比較例9と同様に、Mgの含有量を多くしたことが割れの原因であると考えられる。
 次に、上記した実施例と同等の溶融接合部を得るにあたり、二次電池用アルミニウム缶体の組み立てに用いられる3003系及び3005系のアルミニウム合金板体としての必須添加元素の成分範囲を定めた理由について説明する。
 Siは、母相内に固溶してアルミニウム合金板体として必要とされる機械的強度を向上させ、組み立て後の二次電池用アルミニウム缶体として必要とされる耐圧強度を向上させる。また、Al-Fe-Mn-Si系金属間化合物を形成し、アルミニウム合金板体の成形加工時の成形性を向上させる。一方で過剰に添加すると、割れの起点となりやすい粗大な金属間化合物を増加させアルミニウム合金板体の成形性を低下させて、溶接割れを生じさせやすくなる。そこで、上記した溶接試験の結果も踏まえ、Siの添加量は、0.05~0.30%の範囲内である。
 Feは、Al-Fe-Mn系金属間化合物やAl-Fe-Mn-Si系金属間化合物を形成し、かかる金属間化合物を微細に析出させて、アルミニウム合金板体の成形加工時の潤滑効果を向上させて成形性を向上させる。一方で過剰に添加すると、割れの起点となりやすい粗大な金属間化合物を増加させ、アルミニウム合金板体の成形性を低下させる。そこで、Feの添加量は、0.05~0.7%の範囲内である。
 Cuは、母相内に固溶してアルミニウム合金板体として必要とされる機械的強度を向上させる。一方で過剰に添加すると、溶接割れが生じやすくなる。そこで、Cuの添加量は、3003系に対応するアルミニウム合金において0.05~0.25%の範囲内、3005系に対応するアルミニウム合金において0.05~0.3%の範囲内である。
 Mnは、母相内に固溶してアルミニウム合金板体として必要とされる機械的強度をその添加量の増加に伴って向上させ得て、組み立て後の二次電池用アルミニウム缶体として必要とされる耐圧強度を向上させる。Al-Fe-Mn系金属間化合物やAl-Fe-Mn-Si系金属間化合物を形成し、かかる金属間化合物を微細に析出させることでアルミニウム合金板体の成形加工時に潤滑効果を向上させて成形性を向上させる。一方で過剰に添加すると、割れの起点となりやすい粗大な金属間化合物を増加させ、アルミニウム合金板体の成形性を低下させる。そこで、Mnの添加量は、0.8~1.5%の範囲内である。
 Bは、アルミニウム合金のスラブ造塊時において、鋳造組織を微細化し均質化することで圧延用スラブの鋳造割れを防止し得る。一方で過剰に添加すると、溶接時の溶融ビード中にポロシティを発生させやすく、さらに溶融ビード中の溶融金属の対流によりポロシティを凝集させることで溶融接合部の乱れを生じさせやすくする。なお、後述するMgの添加によりポロシティの発生に対するBの影響を小さくし得るため、Mgの含有量に伴いその添加量を調整され得る。そこで、上記した溶接試験の結果も踏まえ、Bの添加量は、3003系に対応するアルミニウム合金おいて2~20ppmの範囲内、より好ましくは2~10ppmの範囲内、3005系において2~30ppmの範囲内、より好ましくは2~20ppmの範囲内である。
 Mgは、3005系において必須添加元素であるが、3003系においては任意添加元素である。Mgは、母相内に固溶してアルミニウム合金板体として必要とされる機械的強度をその添加量の増加に伴って向上させ得て、組み立て後の二次電池用アルミニウム缶体として必要とされる耐圧強度を向上させる。また、MgSiやS’相(AlCuMg)を微細に析出させ、転移の移動を抑制させることで応力緩和を抑制し、アルミニウム合金板体として必要とされる耐応力緩和性を向上させる。一方で過剰に含有すると、加工硬化を促進させ、アルミニウム合金板体として必要とされる成形性を損なう。また、溶接時に割れやポロシティを発生させやすくなる。かかる観点から、そして上記した溶接試験の結果も踏まえ、Mgの含有量は、3003系に対応するアルミニウム合金において0.05%以下の範囲内、3005系に対応するアルミニウム合金において0.2~0.6%の範囲内である。
 さらに、二次電池用アルミニウム缶体の組み立てに用いられる3003系及び3005系のアルミニウム合金板体としての任意添加元素の成分範囲を定めた理由について説明する。
 Tiは、アルミニウム合金のスラブ造塊時において、鋳造組織を微細化し均質化することで圧延用スラブの鋳造割れを防止し得る。一方で過剰に含有すると、溶接時に溶融金属の対流を不安定にさせ、溶融接合部にポロシティを残留させやすくさせてしまう。かかる観点から、Tiの含有量は0.1%以下の範囲内である。
 その他の不純物元素として、Zn、Zr、Cr、Ga、V、Ni等が挙げられるが、いずれも0.05%以下の含有量とし、Ti及びBを加えた合計を0.15%以下の含有量とすることで上記した物理的特性に大きな影響を与えない。
 なお、外装体及び蓋体の両者に同一の成分組成のアルミニウム合金板体を使用すれば、機械的強度や溶接性において有利であり、組立て後のリサイクル性において有利である。
 さらに、外装体に比べて要求される機械的強度が低い蓋体には、純アルミニウムを使用することもできる。特に、高い導電性を要求される蓋体においては純アルミニウムであることが好ましい。純アルミニウムの成分組成は、例えば、JIS  H4000に規定される合金番号1050、1060、1070、1080、1085などの化学成分の範囲から適宜選択できる。この場合においても、上記した1050系のアルミニウム合金板体を用いた実施例と同様に、必須添加元素としてBを2~10ppmの範囲内、より好ましくは2~6ppmの範囲内とし、任意添加元素としてTiを0.04%以下として溶融接合部の乱れを低減させ得る。さらに、他の任意添加元素として、Siは0.30%以下、Feは0.6%以下、Cuは0.1%以下、Mnは0.05%以下、Mgは0.05%以下、Znは0.1%以下の範囲内とすることが好ましい。
 また、上記した溶接試験においては、筐体板2の側縁端部に蓋体板3の端面3aを突き合わせて溶接したが、筐体板2と蓋体板3との突き合わせの関係を他の関係としても同様である。例えば、図8(a)に示すように、蓋体板3の端面3a近傍、すなわち蓋体板3の側縁端部に筐体板2の端面2aを突き合わせ、筐体板2に蓋体板3を乗せるように配置してもよい。この場合、突き合わせ面である端面2aの外側縁線とこれに沿って位置する端面3aの縁線とを突き合わせ線5とするように配置され、図8(b)に示すように突き合わせ線5の位置に溶融接合部4を形成するよう溶接される。
 さらに、例えば、図9(a)に示すように、蓋体板3の側縁端部に筐体板2の板厚とほぼ同寸の深さの切り込み部3bを与え、これに筐体板2をはめ込むようにして蓋体板3の側縁端部に端面2aを突き合わせても同様である。すなわち、この場合も突き合わせ面である端面2aの外側縁線とこれに沿って位置する端面3aの縁線とを突き合わせ線5とするように配置され、図9(b)に示すように突き合わせ線5の位置に溶融接合部4を形成するよう溶接される。
 以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができる。
1  溶接継手
2  筐体板
3  蓋体板
4  溶融接合部

Claims (10)

  1.  アルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てた二次電池用アルミニウム缶体の製造方法であって、
     少なくとも、質量比で、Siを0.30%以下とした上でBを2~30ppmの範囲内で含むアルミニウム合金からなる合金板体を用意し、第1の合金板体の側縁端部に沿って第2の合金板体の端面を突き合わせる配置ステップと、
     前記第1の合金板体の端面にできる突き合わせ線に沿って連続レーザ溶接する溶接ステップと、を含み、
     前記溶接ステップは、前記突き合わせ線を挟んで与えられる溶融接合部の深さDに対する幅Wの比W/Dを1.5以上とするようにレーザ溶接条件を制御する制御ステップを含むことを特徴とする二次電池用アルミニウム缶体の製造方法。
  2.  前記配置ステップは、前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方に、質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.20%、Mn:0.8~1.5%、B:2~20ppm、任意添加元素として、Mg:0.05%以下、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成のアルミニウム合金板体を用意するステップを含むことを特徴とする請求項1記載の二次電池用アルミニウム缶体の製造方法。
  3.  前記配置ステップは、前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方に、質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.3%、Mn:0.8~1.5%、Mg:0.2~0.6%、B:2~30ppm、任意添加元素として、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成のアルミニウム合金板体を用意するステップを含むことを特徴とする請求項1記載の二次電池用アルミニウム缶体の製造方法。
  4.  前記配置ステップは、前記第1の合金板体若しくは前記第2の合金板体の他方に、質量比で、必須添加元素として、B:2~10ppm、任意添加元素として、Si:0.30%以下、Fe:0.6%以下、Cu:0.1%以下、Mn:0.05%以下、Mg:0.05%以下、Zn:0.1%以下、Ti:0.04%以下の範囲内で残部Al及び不可避的不純物からなる成分組成のアルミニウム合金板体を前記蓋体として用意するステップを更に含むことを特徴とする請求項2又は3に記載の二次電池用アルミニウム缶体の製造方法。
  5.  前記第1の合金板体の側縁端部に沿って切り込み部を有することを特徴とする請求項1乃至3のいずれか1つに記載の二次電池用アルミニウム缶体の製造方法。
  6.  アルミニウム合金板体からなる蓋体及び外装体をレーザ溶接して組み立てた二次電池用アルミニウム缶体であって、
     前記アルミニウム合金板体が、質量比で、少なくとも、Siを0.30%以下を含有し、さらにBを2~30ppmの範囲内で含むアルミニウム合金であり、
     第1の合金板体の側縁端部に沿って第2の合金板体の端面を突き合わせて前記第1の合金板体の端面にできる突き合わせ線に沿って連続レーザ溶接され、前記突き合わせ線を挟んで与えられた溶融接合部の深さDに対する幅Wの比W/Dが1.5以上であり、かつ、深さDが0.35mm以上であることを特徴とする二次電池用アルミニウム缶体。
  7.  前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方が、  質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.25%、Mn:0.8~1.5%、B:2~20ppm、任意添加元素として、Mg:0.05%以下、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成を有することを特徴とする請求項6記載の二次電池用アルミニウム缶体。
  8.  前記第1の合金板体若しくは前記第2の合金板体の一方若しくは双方が、
     質量比で、必須添加元素として、Si:0.05~0.30%、Fe:0.05~0.7%、Cu:0.05~0.3%、Mn:0.8~1.5%、Mg:0.2~0.6%、B:2~30ppm、任意添加元素として、Ti:0.1%以下の範囲内で残部Al及び不可避的不純物からなる成分組成を有することを特徴とする請求項6記載の二次電池用アルミニウム缶体。
  9.  前記第1の合金板体若しくは前記第2の合金板体の他方が、
     前記蓋体であり、且つ、
     質量比で、必須添加元素として、B:2~10ppm、任意添加元素として、Si:0.30%以下、Fe:0.6%以下、Cu:0.1%以下、Mn:0.05%以下、Mg:0.05%以下、Zn:0.1%以下、Ti:0.04%以下の範囲内で残部Al及び不可避的不純物からなる成分組成を有することを特徴とする請求項7又は8に記載の二次電池用アルミニウム缶体。
  10.  前記第1の合金板体の側縁端部に沿って切り込み部を与えた上で溶接されたことを特徴とする請求項6乃至8のいずれか1つに記載の二次電池用アルミニウム缶体。
PCT/JP2012/073441 2011-10-28 2012-09-13 二次電池用アルミニウム缶体及びその製造方法 WO2013061707A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147010999A KR101697410B1 (ko) 2011-10-28 2012-09-13 이차 전지용 알루미늄 캔체 및 그의 제조 방법
CN201280039602.7A CN103733377B (zh) 2011-10-28 2012-09-13 二次电池用铝罐体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011237258A JP5656802B2 (ja) 2011-10-28 2011-10-28 二次電池用アルミニウム缶体及びその製造方法
JP2011-237258 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061707A1 true WO2013061707A1 (ja) 2013-05-02

Family

ID=48167545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073441 WO2013061707A1 (ja) 2011-10-28 2012-09-13 二次電池用アルミニウム缶体及びその製造方法

Country Status (4)

Country Link
JP (1) JP5656802B2 (ja)
KR (1) KR101697410B1 (ja)
CN (1) CN103733377B (ja)
WO (1) WO2013061707A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940098A1 (en) 2020-07-16 2022-01-19 Envases Metalúrgicos De Álava, S.A. Aluminium alloys for manufacturing of aluminium cans by impact extrusion

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409668B (zh) * 2013-08-05 2016-02-17 苏州有色金属研究院有限公司 锂离子电池壳体用Al-Mn合金
CN103545465B (zh) * 2013-10-17 2016-05-25 杭州山合江新能源技术有限公司 一种带分体式铝筒的能量储存器及其装配方法
JP6052162B2 (ja) * 2013-12-26 2016-12-27 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP6213784B2 (ja) 2015-06-12 2017-10-18 トヨタ自動車株式会社 密閉型電池
JP6365474B2 (ja) * 2015-09-11 2018-08-01 トヨタ自動車株式会社 二次電池の製造方法
DE102015218530A1 (de) 2015-09-25 2017-03-30 Elringklinger Ag Gehäuse für eine elektrochemische Zelle und Verfahren zur Herstellung eines Gehäuses für eine elektrochemische Zelle
WO2017081719A1 (ja) * 2015-11-09 2017-05-18 株式会社 豊田自動織機 蓄電装置
CN107649784B (zh) * 2017-10-25 2019-06-14 大族激光科技产业集团股份有限公司 用于动力电池焊接的双光束激光焊接设备及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320551A (ja) * 1996-05-28 1997-12-12 Sanyo Electric Co Ltd 密閉型電池
JPH11104866A (ja) * 1997-09-30 1999-04-20 Showa Alum Corp アルミニウム容器及びその製造方法
JP2000268781A (ja) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd 密閉式電池用封口板、密閉式電池及びその製造方法
JP2001043845A (ja) * 1999-07-28 2001-02-16 Fuji Elelctrochem Co Ltd 角形電池の防爆機構
JP2009287116A (ja) * 2007-12-28 2009-12-10 Kobe Steel Ltd パルスレーザ溶接用アルミニウム合金材及び電池ケース

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542187B1 (ko) * 2003-08-21 2006-01-10 삼성에스디아이 주식회사 이차 전지 및 이의 제조 방법
CN100595945C (zh) * 2006-11-22 2010-03-24 日本轻金属株式会社 电池盖用铝合金板
JP2009146645A (ja) 2007-12-12 2009-07-02 Toyota Motor Corp 溶接構造体の製造方法及び電池の製造方法
CN101851715A (zh) * 2009-03-31 2010-10-06 株式会社神户制钢所 电池外壳用铝合金板及电池外壳
JP2011204396A (ja) 2010-03-24 2011-10-13 Sanyo Electric Co Ltd 密閉型電池とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320551A (ja) * 1996-05-28 1997-12-12 Sanyo Electric Co Ltd 密閉型電池
JPH11104866A (ja) * 1997-09-30 1999-04-20 Showa Alum Corp アルミニウム容器及びその製造方法
JP2000268781A (ja) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd 密閉式電池用封口板、密閉式電池及びその製造方法
JP2001043845A (ja) * 1999-07-28 2001-02-16 Fuji Elelctrochem Co Ltd 角形電池の防爆機構
JP2009287116A (ja) * 2007-12-28 2009-12-10 Kobe Steel Ltd パルスレーザ溶接用アルミニウム合金材及び電池ケース

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940098A1 (en) 2020-07-16 2022-01-19 Envases Metalúrgicos De Álava, S.A. Aluminium alloys for manufacturing of aluminium cans by impact extrusion

Also Published As

Publication number Publication date
CN103733377B (zh) 2016-06-01
JP2013097900A (ja) 2013-05-20
CN103733377A (zh) 2014-04-16
JP5656802B2 (ja) 2015-01-21
KR101697410B1 (ko) 2017-01-17
KR20140077940A (ko) 2014-06-24

Similar Documents

Publication Publication Date Title
WO2013061707A1 (ja) 二次電池用アルミニウム缶体及びその製造方法
JP5124056B1 (ja) レーザ接合部品
JP5484147B2 (ja) アルミニウム合金材のパルスレーザ溶接方法
JP2014180685A (ja) 異材接合用溶加材及び異材溶接構造体の製造方法
KR101831584B1 (ko) 상이한 두께의 재료의 레이저 용접 방법
JP2015526298A (ja) レーザ溶接方法及びこれを用いたレーザ溶接部材
JP2012045570A (ja) アルミニウム接合体の製造方法
JP6729192B2 (ja) 溶接継手及びその製造方法
JP4978121B2 (ja) 金属板の突合せ接合方法
JP6236852B2 (ja) レーザ溶接方法及び溶接継手
JP4987453B2 (ja) 鋼板の重ねレーザ溶接継手及び重ねレーザ溶接方法
Trinh et al. Welding of thin tab and battery case for lithium-ion battery cylindrical cell using nanosecond pulsed fiber laser
JP2008200750A (ja) 片面アークスポット溶接方法
JP3136231B2 (ja) アルミニウム合金部材のレーザ溶接方法
JP2018001197A (ja) レーザ溶接継手およびレーザ溶接継手の製造方法
WO2017099004A1 (ja) 突合せ溶接方法
Biswas et al. Applications of Laser Beam Welding in Automotive Sector-A Review
JP2009255134A (ja) 薄鋼板の重ねレーザ溶接方法
WO2014083621A1 (ja) オーステナイト系ステンレス鋼のレーザ溶接材料およびそれを用いた溶接継手
JP2008272784A (ja) アークスポット溶接方法
JP5861443B2 (ja) レーザ溶接方法及びレーザ溶接継手
JP2019534791A (ja) クラッド化アルミニウム合金を使用した強化された抵抗スポット溶接
WO2024106053A1 (ja) 異材接合構造体の製造方法及び異材接合構造体
JP7160090B2 (ja) 金属材料の複合溶接方法および金属材料の突合せ溶接部材
JP6794006B2 (ja) 抵抗スポット溶接継手、抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843816

Country of ref document: EP

Kind code of ref document: A1