WO2013058347A1 - リチウムイオン電池用電極材料の製造方法 - Google Patents

リチウムイオン電池用電極材料の製造方法 Download PDF

Info

Publication number
WO2013058347A1
WO2013058347A1 PCT/JP2012/077037 JP2012077037W WO2013058347A1 WO 2013058347 A1 WO2013058347 A1 WO 2013058347A1 JP 2012077037 W JP2012077037 W JP 2012077037W WO 2013058347 A1 WO2013058347 A1 WO 2013058347A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
less
electrode material
ion battery
producing
Prior art date
Application number
PCT/JP2012/077037
Other languages
English (en)
French (fr)
Inventor
武内 正隆
祐一 上條
嘉介 西村
隆介 三浦
孝行 深井
千明 外輪
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020137033352A priority Critical patent/KR101380730B1/ko
Priority to JP2013516898A priority patent/JP5401631B2/ja
Priority to CN201280033284.3A priority patent/CN103650220B/zh
Priority to US14/126,961 priority patent/US9284192B2/en
Publication of WO2013058347A1 publication Critical patent/WO2013058347A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode material for a lithium ion battery.
  • lithium ion secondary batteries As a power source for portable devices, lithium ion secondary batteries have become almost mainstream because of their large energy density and long cycle life. Mobile devices and the like have diversified functions and have increased power consumption. Therefore, the lithium ion secondary battery is required to further increase its energy density and at the same time improve the charge / discharge cycle characteristics. Recently, there has been an increasing demand for high-power, large-capacity secondary batteries such as electric tools such as electric drills and hybrid vehicles. Conventionally, lead secondary batteries, nickel cadmium secondary batteries, and nickel metal hydride secondary batteries have been mainly used in this field. However, expectations for high-density lithium-ion secondary batteries that are small and light are high. A lithium ion secondary battery having excellent current load characteristics is demanded.
  • the main required characteristics are long-term cycle characteristics over 10 years and large current load characteristics for driving high-power motors.
  • a high volumetric energy density is required to extend the cruising range, which is harsh compared to mobile applications.
  • the lithium ion secondary battery uses a metal oxide such as lithium cobaltate or lithium manganate as a positive electrode active material or a composite oxide thereof, a lithium salt as an electrolyte, and a graphite as a negative electrode active material. Carbonaceous materials such as are used.
  • the graphite used for the negative electrode active material includes natural graphite and artificial graphite.
  • Natural graphite is generally inexpensive and has the advantage of high capacity due to its high crystallinity. However, since the shape is scaly, when it is made into a paste together with a binder and applied to a current collector, natural graphite is oriented in one direction. When charged with such an electrode, the electrode expands in only one direction, and the performance as an electrode, such as current characteristics and cycle life, is reduced. Although spheroidized natural graphite obtained by granulating natural graphite to make a sphere has been proposed, the spheroidized natural graphite is crushed and oriented by pressing at the time of electrode production.
  • Japanese Patent No. 3534391 (US Pat. No. 6,632,569; Patent Document 1) and the like propose a method of coating artificial carbon on the surface of natural graphite processed into a spherical shape.
  • the material produced by this method can handle the high capacity, low current, and medium cycle characteristics required by mobile applications, etc., but demands such as the large current and long cycle characteristics of large batteries as described above. It is very difficult to meet.
  • Natural graphite has many metal impurities such as iron, and has a problem in terms of quality stability.
  • artificial graphite examples include mesocarbon microsphere graphitized products described in JP-A-4-190555 (Patent Document 2) and the like. This is a well-balanced negative electrode material that can achieve high-capacity, high-current batteries, but the long-term cycle characteristics required for large batteries such as the conductive contacts between electrode powders tend to deteriorate. Is difficult to achieve.
  • a carbon raw material powder is filled in a graphite crucible and graphitized in an Atchison furnace (Patent No. 3838618 (US Pat. No. 6,783747); Patent Document 4).
  • Carbon raw material powder is formed into a fixed shape using a binder such as pitch or polymer, graphitized in an Atchison furnace, and then the formed body is crushed (Patent Document 3).
  • Carbon raw material powder is put into a graphite material container and heated by a heater as a heat source to be graphitized.
  • the carbon raw material powder or its molded body is moved in a space heated by a heater.
  • Japanese Patent No. 3534391 (US Pat. No. 6,632,569) Japanese Patent Laid-Open No. 4-190555 Japanese Patent No. 3361510 (European Patent No. 0918040) Japanese Patent No. 3838618 (US Pat. No. 6,783,747)
  • an object of the present invention is to provide a method capable of producing a graphite material for a high-quality negative electrode for a lithium ion secondary battery having a low level of impurities and excellent stability with high productivity and low cost. .
  • the present invention relates to a method for producing an electrode material for lithium ion batteries according to [1] to [14] below.
  • a method for producing an electrode material for a lithium ion battery including a step of generating heat by directly passing an electric current through the carbon material and graphitizing, wherein the carbon material 1 before graphitization has a density of 1.4 g / cm 3.
  • the angle of repose of the carbon material 1 before graphitization is 30 ° or more and 50 ° or less, and the compressibility calculated from the loose bulk density and the hard bulk density ((hard bulk density ⁇ loose bulk density) ⁇ 100 / loose bulk. 4.
  • Material manufacturing method [10] The method for producing an electrode material for a lithium ion battery as described in any one of 1 to 9 above, wherein the carbon material 1 before graphitization contains 10 to 100000 ppm by mass of a boron compound and / or a silicon compound. . [11] The method for producing an electrode material for a lithium ion battery as described in 1 above, wherein in the graphitization step, a rectangular parallelepiped furnace body made of ceramic brick and having an open top is used.
  • Example 2 is a SEM photograph of the graphite material obtained in Example 1.
  • the pulverized surface (edge portion) is easily exposed and the specific surface area is increased, side reactions with the electrolyte increase when used as a negative electrode.
  • the amount exceeds 20% by mass the binding between the graphitized particles increases, which affects the yield.
  • the heating loss of the organic carbon raw material is in the above range, the surface of the obtained graphite material is stabilized, and side reactions with the electrolytic solution are reduced when used as a negative electrode. The reason for this is thought to be that the exposed edge portion crystals are reconstructed and stabilized by graphitization after carbonization and the particle surface becomes smooth due to the components that volatilize when heated at 300-1200 ° C. It is done.
  • the heating loss can be measured by using a commercially available apparatus capable of simultaneous differential heat-thermogravimetric measurement (TG-DTA) at a heating rate of 10 ° C./min.
  • TGDTAw6300 manufactured by Seiko Instruments Inc.
  • argon gas is flowed at 200 ml / min, 300 at 10 ° C./min.
  • the temperature is raised from 1200C to 1200C and measured.
  • ⁇ -alumina manufactured by Wako Pure Chemical Industries, Ltd. was used at 1500 ° C. for 3 hours in advance to remove volatile components.
  • the organic carbon raw material having such a heat loss is preferably selected from, for example, petroleum pitch, coal pitch, coal coke, petroleum coke, and mixtures thereof. Of these, petroleum coke is more preferable, and raw coke is preferable among petroleum coke. Since raw coke is undeveloped, it becomes spherical when crushed, and its specific surface area tends to be small. Further, the organic carbon raw material is preferably non-needle-like, and particularly preferably non-needle-like coke not subjected to heat treatment.
  • Petroleum coke is a black, porous solid residue obtained by cracking or cracking distillation of petroleum or bituminous oil. Petroleum coke is classified into fluid coke and delayed coke depending on the method of coking. However, fluid coke is in the form of powder and is not used for much as it is used for refinery's own fuel. In general, petroleum coke is called delayed coke. There are two types of delayed coke: raw coke and calcined coke. Raw coke is the raw coke collected from the coking apparatus, and the calcined coke is further baked to remove volatile components. Since raw coke has a high possibility of causing a dust explosion, in order to obtain fine-particle petroleum coke, raw coke was calcined to remove volatile components and then pulverized. Conventionally, calcined coke has generally been used for electrodes and the like. Since raw coke has less ash than coal coke, it is used only for carbon materials, casting coke and alloy iron coke in the carbide industry.
  • sulfur in the organic carbon raw material is preferable. Sulfur is volatilized during the graphitization process, and has the adverse effect of bumping the carbon material and roughening the surface after graphitization.
  • the sulfur content in the organic carbon raw material is preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the organic carbon material preferably has an average coefficient of thermal expansion (CTE) of 30 to 100 ° C. of 4.0 ⁇ 10 ⁇ 6 / ° C. or more and 6.0 ⁇ 10 ⁇ 6 / ° C. or less.
  • the CTE of the carbon raw material can be measured by the following method, for example. First, 500 g of the carbon raw material is pulverized to 28 mesh or less with a vibration mill. This sample is sieved and mixed in a ratio of 28 to 60 mesh 60 g, 60 to 200 mesh 32 g, 200 mesh or less 8 g to make the total amount 100 g.
  • 100 g of this blended sample is put in a stainless steel container, 25 g of binder pitch is added, and the mixture is heated and uniformly mixed in an oil bath at 125 ° C. for 20 minutes.
  • the mixture is cooled and pulverized with a vibration mill to reduce the total amount to 28 mesh or less.
  • 30 g of the sample is placed in a pressure molding machine at 125 ° C., and pressed at a gauge pressure of 450 kg / cm 2 for 5 minutes to be molded.
  • the molded product is placed in a magnetic crucible, heated from room temperature to 1000 ° C. in a firing furnace in 5 hours, and held at 1000 ° C. for 1 hour to cool.
  • This fired product is cut into 4.3 ⁇ 4.3 ⁇ 20.0 mm with a precision cutting machine to obtain a test piece.
  • the test piece is subjected to thermal expansion measurement at 30 to 100 ° C. with a TMA (thermomechanical analyzer), for example, TMA / SS 350 manufactured by Seiko Electronics, and CTE is calculated.
  • TMA thermomechanical analyzer
  • the carbon material 1 before graphitization can be obtained, for example, by pulverizing the organic carbon raw material to a target particle size and then performing a process for reducing the resistance of the obtained powder to some extent.
  • pulverizing an organic type carbon raw material For example, it grind
  • the pulverization is preferably performed with a heat history as low as possible. When heat is applied by pulverization, the components that volatilize at 300 ° C. to 1200 ° C. volatilize, the surface of the graphite material is stabilized, and when used as a negative electrode, the effect of reducing side reactions with the electrolyte cannot be obtained. There is a fear.
  • the carbon material 1 before graphitization preferably has a low resistance because an electric current flows directly through the carbon material during graphitization.
  • the compacted powder resistance value when compressed to a density of 1.4 g / cm 3 is set to 0.4 ⁇ cm or less.
  • the method for lowering the resistance of the powder is not particularly limited, but preferably, the carbonization degree is increased by low-temperature heat treatment at 800 ° C. to 1500 ° C.
  • the preferred heat treatment temperature is 900 to 1300 ° C., although it varies depending on the type of organic carbon raw material used and the graphitization conditions in the next step.
  • the temperature of the heat treatment should be lowered as much as possible, but if it is too low, the resistance will not be lowered sufficiently.
  • the hardness of the carbon material is also increased by the low temperature heat treatment. Therefore, it is preferable to perform the pulverization first from the viewpoint of the degree of freedom of the pulverization method and productivity.
  • D90 is preferably 120 ⁇ m or less, more preferably D90 is 80 ⁇ m or less, and still more preferably D90 is 70 ⁇ m or less in a volume-based particle size distribution measured by a laser diffraction method.
  • the D50 average particle size
  • the D50 is preferably classified so as to be 30 ⁇ m or less, more preferably 4 ⁇ m or more and 25 ⁇ m or less.
  • the average particle size is large, there are merits such as increased stability with the electrolytic solution and easy coating, but conversely, the high current characteristics proceed in a bad direction and the electrode density is difficult to increase. Conversely, if it is small, side reactions tend to occur during charge and discharge.
  • the particle size of the powder can be measured with a laser scattering / diffraction particle size distribution analyzer (CILAS).
  • the aspect ratio (long axis length / short axis length) of the carbon material 1 before graphitization is preferably 6 or less, and more preferably 1 or more and 5 or less. If the aspect ratio is too large, it is difficult to control the current distribution during graphitization, and there are disadvantages in terms of coating properties and stability when used as the negative electrode of a battery.
  • the aspect ratio can be obtained from an optical microscope image. For simplicity, the measurement may be performed by image analysis using an FPIA 3000 manufactured by Sysmex.
  • the repose angle of the carbon material 1 before graphitization is preferably 20 ° or more and 50 ° or less.
  • the angle of repose is less than 20 °, the fluidity of the carbon material 1 increases, so that the powder may be scattered during filling of the furnace body or the powder may be ejected during energization.
  • the angle of repose exceeds 50 °, the fluidity of the carbon material 1 is lowered, so that the filling property in the furnace body is lowered and the productivity is lowered, and the energization resistance of the whole furnace may be extremely increased.
  • a more preferred angle of repose has a lower limit of 30 ° and an upper limit of 45 °. The angle of repose can be measured using a tap denser.
  • the carbon material 1 before graphitization has a compressibility ((hardened bulk density ⁇ relaxed bulk density) ⁇ 100 / relaxed bulk density) calculated from the loose bulk density (0 times tapping) and the hardened bulk density (tap density). It is preferably ⁇ 50%. If it exists in this range, when producing the electrode slurry knead
  • the loose bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm onto a measuring cylinder and measuring the volume and mass without applying vibration.
  • the solid bulk density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap. These are measurement methods based on ASTM B527 and JIS K5101-12-2, and the drop height of the auto tap in the tap density measurement was 5 mm.
  • (2) Graphitization Graphitization is performed by causing a current to flow directly through the carbon material 1 to generate heat.
  • a rectangular parallelepiped furnace body made of ceramic bricks and having an open top can be used.
  • the length in the longitudinal direction as viewed from the opening direction is set to about twice or more than the length in the short direction, and electrodes for energization are arranged on both inner sides of the longitudinal direction.
  • Carbon material is put into this furnace and graphitized by heat generated by energization.
  • heat is uniformly applied to the carbon material, so that there is an advantage that no agglomeration occurs during graphitization.
  • a graphite material with few impurities can be obtained because the temperature distribution is uniform and there is no trapping part for impurity volatilization.
  • the graphitization treatment is preferably performed in an atmosphere in which the carbon material is not easily oxidized.
  • a method of performing a heat treatment in an inert gas atmosphere such as nitrogen, or a method of providing a layer that barriers oxygen on a surface in contact with air can be given.
  • the barrier layer include a method of separately providing a carbon plate or a carbon powder layer and consuming oxygen.
  • the lower limit of the graphitization temperature is usually 2000 ° C., preferably 2500 ° C., more preferably 2900 ° C., and most preferably 3000 ° C.
  • the upper limit of the graphitization temperature is not particularly limited, but is preferably 3200 ° C. from the viewpoint that a high discharge capacity is easily obtained.
  • a graphitization cocatalyst such as a boron compound such as B 4 C or a silicon compound such as SiC can be added in order to increase the heat treatment efficiency and productivity of graphitization.
  • the blending amount is preferably 10 to 100,000 ppm by mass in the carbon material.
  • Graphitization is performed so that the average interplanar spacing d002 of the (002) plane by the X-ray diffraction method of the carbon material 2 after graphitization is in the range of 0.3354 nm or more and 0.3450 nm or less. Preferably, it is performed until d002 becomes 0.3360 nm or more and 0.3370 nm or less.
  • d002 can be measured by a known method using a powder X-ray diffraction (XRD) method (Inayoshi Noda, Michio Inagaki, Japan Society for the Promotion of Science, 117th Committee Material, 117-71-A-1 (1963). ), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee Materials, 117-121-C-5 (1972), Michio Inagaki, “Carbon”, 1963, No. 36, pages 25-34).
  • XRD powder X-ray diffraction
  • Graphitization is performed by (consolidated powder resistance when the graphitized carbon material 2 is compressed to a density of 1.4 g / cm 3 ) / (carbon material 1 before graphitization to a density of 1.4 g / cm 3 . It is preferable to carry out such that the compacted powder resistance when compressed) ⁇ 0.5.
  • a uniform current distribution can be obtained from the beginning of energization, and graphitization can be performed with a uniform temperature distribution. This range can be adjusted by selecting the organic carbon raw material or carbon material 1 or selecting the graphitization conditions.
  • Graphite Material for Electrode Material for Lithium Ion Battery Graphite material obtained by graphitizing the carbon material (carbon material after graphitization) has a peak intensity (I D) in the vicinity of 1360 cm ⁇ 1 measured by Raman spectroscopy. ) And the peak intensity (I G ) in the vicinity of 1580 cm ⁇ 1 , the intensity ratio I D / I G (R value) is preferably 0.01 or more and 0.2 or less. When the R value is greater than 0.2, many highly active edge portions are exposed on the surface, and many side reactions are likely to occur during charge and discharge. On the other hand, if it is less than 0.01, the barrier to the entry and exit of lithium is increased, and the current load characteristics are liable to deteriorate.
  • the laser Raman R value is measured using NRS3100 manufactured by JASCO Corporation under the conditions of an excitation wavelength of 532 nm, an incident slit width of 200 ⁇ m, an exposure time of 15 seconds, a total of 2 times, and a diffraction grating of 600 lines / mm.
  • the graphite material preferably has an average coefficient of thermal expansion (CTE) of 30 ° C. to 100 ° C. of 4.0 ⁇ 10 ⁇ 6 / ° C. to 5.0 ⁇ 10 ⁇ 6 / ° C.
  • the coefficient of thermal expansion is used as one of the indexes indicating the acicularity of coke.
  • the CTE is less than 4.0 ⁇ 10 ⁇ 6 / ° C.
  • the graphite has high crystallinity, so that the discharge capacity increases, but the particle shape tends to be plate-like.
  • the CTE is larger than 5.0 ⁇ 10 ⁇ 6 / ° C., the aspect ratio is decreased, but the graphite crystal is not developed and the discharge capacity is decreased.
  • the CTE of the graphite material is measured in the same manner as the CTE of the carbon raw material.
  • the graphite material preferably has an (002) plane distance d002 of 0.3354 nm or more and 0.3450 nm or less, more preferably 0.3362 nm or more and 0.3370 nm or less, as determined by X-ray diffraction.
  • the d002 of the graphite material is measured by the same method as described above.
  • the graphite material preferably has an aspect ratio (major axis length / minor axis length) of 6 or less, particularly 1 or more and 5 or less.
  • the aspect ratio can be obtained from an optical microscope image.
  • the measurement may be performed by image analysis using an FPIA 3000 manufactured by Sysmex.
  • the graphite material preferably has a specific surface area (BET method) of 6 m 2 / g or less, particularly 1.0 m 2 / g or more and 5.0 m 2 / g or less. Although it depends on the particle size, when the specific surface area exceeds 6 m 2 / g, the surface activity of the particles becomes high, and degradation of the Coulomb efficiency, cycle life, and high temperature storage stability are caused by decomposition of the electrolyte.
  • BET method specific surface area
  • graphite material is obtained by graphitizing by directly energizing the powder, it is moderately oxidized although its surface oxidation is suppressed compared to the graphite material obtained by the conventional graphitization method. It is in the state. Thereby, the surface is stabilized and a side reaction with the electrolytic solution is suppressed.
  • the degree of oxidation in the peak intensity of O 1s obtained by HAX-PES measurement using hard X-rays of 7940 eV, the amount of oxygen a (mass%) between the particle surface and the depth direction up to 40 nm is It is preferable that 0.010 ⁇ a ⁇ 0.04, and more preferably 0.010 ⁇ a ⁇ 0.03.
  • the graphite material has a loose bulk density (0 tapping) of 0.7 g / cm 3 or more and a hardened bulk density (tap density) of 400 g tapping of 1.0 g / cm 3 to 1.35 g / It is preferable that it is cm 3 or less.
  • the loose bulk density is 0.7 g / cm 3 or more, it is possible to further increase the electrode density before pressing when applied to the electrode. From this value, it can be predicted whether or not a sufficient electrode density can be obtained with a single roll press.
  • the compacted bulk density (tap density) is within the above range, the electrode density reached during pressing can be sufficiently increased. These are measured by the same method as described above.
  • the graphite material preferably has an average particle size (D50) of 4 ⁇ m or more and 25 ⁇ m or less in a volume-based particle size distribution measured by a laser diffraction method.
  • D50 average particle size
  • the iron content of the graphite material is preferably 0 to 30 ppm by mass. When the iron content is within this range, it is possible to prevent a minute short circuit in the case of a battery, and it is possible to improve safety and improve battery product yield. If the iron content is high, there is a high possibility that a micro short circuit will occur in the case of a battery, which may cause a reduction in safety and a decrease in battery product yield.
  • the iron content (residual iron amount) is decomposed by weighing 50 to 100 mg of sample, adding sulfuric acid and heating, and after allowing to cool, adding nitric acid to thermally decompose, repeating this until the solution becomes transparent,
  • the obtained liquid is made up to a volume of 50 ml, and further measured by performing ICP mass spectrometry after 10-fold dilution.
  • Slurry for a lithium ion battery electrode includes the graphite material and a binder.
  • the slurry is obtained by kneading a graphite material and a binder.
  • known apparatuses such as a ribbon mixer, a screw kneader, a Spartan rewinder, a ladyge mixer, a planetary mixer, and a universal mixer can be used.
  • the electrode paste can be formed into a sheet shape, a pellet shape, or the like.
  • binder examples include known polymers such as fluoropolymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubbers such as SBR (styrene butadiene rubber).
  • the amount of the binder used is preferably 0.5 to 20 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the graphite material.
  • the slurry may contain conductive carbon such as carbon black such as acetylene black and ketjen black, carbon nanofiber such as vapor grown carbon fiber, carbon nanotube, and graphite fine powder as a conductive aid.
  • the blending amount of the conductive assistant is not particularly limited, but is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the graphite material.
  • a solvent can be used when kneading.
  • the solvent include known solvents suitable for each binder, such as toluene and N-methylpyrrolidone for fluorine-based polymers; water for SBR; dimethylformamide, isopropanol and the like.
  • water water for SBR
  • a binder using water as a solvent it is preferable to use a thickener together. The amount of the solvent is adjusted so that the viscosity is easy to apply to the current collector.
  • Lithium ion battery electrode The lithium ion battery electrode is formed by molding the slurry.
  • the electrode can be obtained, for example, by applying the slurry onto a current collector, drying, and pressure forming.
  • the current collector include foils such as aluminum, nickel, copper, and stainless steel, and meshes.
  • the coating thickness of the slurry is usually 20 to 150 ⁇ m. If the coating thickness becomes too large, the electrode may not be accommodated in a standardized battery container.
  • the method for applying the slurry is not particularly limited, and examples thereof include a method in which the slurry is applied with a doctor blade or a bar coater and then molded with a roll press or the like.
  • the pressure molding method include molding methods such as roll pressing and press pressing.
  • the pressure during pressure molding is preferably about 1 to 3 t / cm 2 .
  • the battery capacity per volume usually increases. However, if the electrode density is increased too much, the cycle characteristics tend to generally decrease.
  • the electrode density of the electrode obtained using the slurry is 1.2 to 1.9 g / cm 3 .
  • Lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte. Said electrode is used for the negative electrode of a lithium ion secondary battery.
  • a lithium-containing transition metal oxide is usually used as the positive electrode active material, preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W.
  • An oxide mainly containing one kind of transition metal element and lithium wherein a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn,
  • An oxide mainly containing at least one transition metal element selected from Fe, Co, and Ni and lithium and having a molar ratio of lithium to transition metal of 0.3 to 2.2 is used.
  • Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be contained in a range of less than 30 mole percent with respect to the transition metal present mainly.
  • the value of x is a value before the start of charging / discharging, and increases / decreases by charging / discharging.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
  • the volume of particles of 0.5 to 30 ⁇ m is preferably 95% or more. More preferably, the volume occupied by a particle group having a particle size of 3 ⁇ m or less is 18% or less of the total volume, and the volume occupied by a particle group of 15 ⁇ m or more and 25 ⁇ m or less is 18% or less of the total volume.
  • the specific surface area is not particularly limited, but is preferably 0.01 ⁇ 50m 2 / g by BET method, particularly preferably 0.2m 2 / g ⁇ 1m 2 / g.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a separator may be provided between the positive electrode and the negative electrode.
  • the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene.
  • Solvents for the organic electrolyte include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, ethylene glycol phenyl ether Ethers such as formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N -Diethylacetamide, N, N-dimethylpropionamide, hexamethylphospho Amides such as Luamide; sulfur-containing compounds such as dimethyl sulfoxide and sulfolane; dialkyl ketones such as methyl ethyl ketone and
  • Cyclic ethers of: carbonates such as ethylene carbonate and propylene carbonate; ⁇ -butyrolactone; N-methylpyrrolidone; acetonitrile, nitromethane and the like are preferable.
  • esters such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, etc.
  • Particularly preferred are carbonate-based non-aqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or in admixture of two or more.
  • Lithium salts are used as solutes (electrolytes) for these solvents.
  • Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 and the like. is there.
  • polymer solid electrolyte examples include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative. There are no restrictions on the selection of members other than those described above necessary for the battery configuration.
  • Particle size (D50 and D90) Laser Scattering / Diffraction Method Using CILAS as a particle size distribution measuring device, volume-based average particle diameter (D50) and particle diameter (D90) were determined.
  • the compression ratio is (hardened bulk density ⁇ relaxed bulk density) ⁇ 100 / relaxed bulk density (%).
  • the loose bulk density is obtained by dropping 100 g of a sample from a height of 20 cm onto a measuring cylinder and applying volume and mass without applying vibration.
  • the solid bulk density (tap density) is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap. These are measurement methods based on ASTM B527 and JIS K5101-12-2, and the drop height of the auto tap in the tap density measurement was 5 mm.
  • the aspect ratio of the particles was measured by image analysis using a FPIA 3000 manufactured by Sysmex.
  • the number of measurement points was 3000 points or more, preferably 30000 points or more, more preferably 50000 points or more, and the calculated average value was used.
  • Residual oxygen amount Using a permanent device at SPring-8 (beam line BL46XU), HAX-PES measurement with an incident energy of 7940 eV is performed to quantify the oxygen amount on the surface of the graphite material.
  • the measurement conditions are such that, in the narrow spectrum of C 1s , the energy range of photoelectron Kinetic Energy is 7638-7658 eV, and in the narrow spectrum of O 1s , the energy range of photoelectron Kinetic Energy is 7396-7416 eV.
  • the amount of oxygen on the surface of the graphite material is quantified according to the following method. ⁇ Energy calibration of photoelectron spectrum A plate-like Au sample is measured as a standard sample.
  • Electrode preparation NMP was added to the main agent stock solution to adjust the viscosity, and then applied onto a high purity copper foil to a thickness of 250 ⁇ m using a doctor blade. This was vacuum-dried at 120 ° C. for 1 hour and punched out to 18 mm ⁇ . The punched electrode is sandwiched between super steel press plates, and the press pressure is about 1 ⁇ 10 2 to 3 ⁇ 10 2 N / mm 2 (1 ⁇ 10 3 to 3 ⁇ 10 3 kg / cm 2 ) with respect to the electrode. was pressed as follows. Then, it dried at 120 degreeC and 12 hours with the vacuum dryer, and was set as the electrode for evaluation.
  • a triode cell was produced as follows. The following operation was performed in a dry argon atmosphere with a dew point of -80 ° C or lower. In a cell with a screw-in lid made of polypropylene (inner diameter of about 18 mm), the carbon electrode with copper foil and metal lithium foil prepared in (2) above were separated with a separator (polypropylene microporous film (CellGard 2400)). It was sandwiched and laminated. Further, metallic lithium for reference was laminated in the same manner. An electrolytic solution was added thereto to obtain a test cell.
  • Electrolytic solution LiPF 6 was dissolved in an amount of 1 mol / liter as an electrolyte in a mixed solution of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate).
  • Example 1 Petroleum-based raw coke (non-acicular coke) having a heating loss of 12.5% by mass according to TG measurement at 300 ° C. to 1200 ° C. was pulverized with a Hosokawa Micron bantam mill. Air classification was performed with a turbo classifier manufactured by Nissin Engineering, and an organic carbon raw material having a D50 of 16.0 ⁇ m was obtained. Next, this pulverized organic carbon raw material was treated at 1000 ° C. while flowing nitrogen gas through a roller hearth kiln made by Nippon Choshi, and a carbon material 1 was obtained.
  • the compacted powder resistance was 0.30 ⁇ cm and the angle of repose was 36 °.
  • a furnace having a length of 500 mm, a width of 1000 mm, and a depth of 200 mm was made of ceramic bricks, and electrode plates of 450 ⁇ 180 mm and a thickness of 20 mm were installed on both inner end faces.
  • the furnace was filled with the carbon material 1 and covered with a nitrogen gas inlet and an exhaust port.
  • a carbon material 1 was graphitized by installing a transformer and heating by flowing current between the electrode plates for about 5 hours while flowing nitrogen gas. The maximum temperature was 3200 ° C.
  • FIG. 1 shows an SEM photograph. From d002 and the discharge capacity, it can be seen that crystallization of graphite is progressing over a wide range in the furnace. In other words, in the present graphitization method, all the powder is efficiently processed by heat treatment in a short time at 3000 ° C. or more in the same manner as the conventional method using a graphite crucible container and a non-product packing powder is present in the furnace. It was confirmed that it was graphitized. In addition, a battery having good discharge capacity and initial efficiency could be obtained.
  • Example 2 The same raw petroleum coke as in Example 1 (non-needle coke) and petroleum raw needle coke having a heating loss of 11.5% by mass according to a TG measurement at 300 ° C. to 1200 ° C. were mixed at a ratio of 1: 1. It grind
  • the carbon material 1 When the carbon material 1 was compressed to a density of 1.4 g / cm 3 , the compacted powder resistance was 0.20 ⁇ cm, and the angle of repose was 42 °.
  • the carbon material 1 is graphitized in the same manner as in Example 1, and various physical properties and battery evaluation results of the obtained graphite material (carbon material 2) are summarized in Table 1 together with the organic carbon raw material and the physical properties of the carbon material 1. It was. Compared to Example 1, d002 was small and the capacity was high, but the initial efficiency was slightly low.
  • Example 3 A graphite material (carbon material 2) was obtained in the same manner as in Example 1 except that 1000 ppm by mass of B 4 C was added during graphitization. Various physical properties of the obtained graphite material (carbon material 2) and battery evaluation results are shown in Table 1 together with the physical properties of the organic carbon raw material and carbon material 1. Compared to Example 1, the addition of the graphitization cocatalyst resulted in a small d002 and a high capacity, but the initial efficiency was slightly lower.
  • Comparative Example 1 Carbon material 1 obtained by the same method as in Example 1 was filled in a graphite crucible with a lid and graphitized at 3000 ° C. in an Atchison furnace. Various physical properties of the obtained graphite material (carbon material 2) and battery evaluation results are shown in Table 1 together with the physical properties of the organic carbon raw material and carbon material 1. Compared to Example 1, the physical properties were almost the same, but the initial efficiency was slightly low because the amount of oxygen was slightly low. Also, there was a lot of iron remaining.
  • Comparative Example 2 The same petroleum-based raw coke as in Example 1 (non-acicular coke) was pulverized with a bantam mill manufactured by Hosokawa Micron. Air classification was performed with a turbo classifier manufactured by Nissin Engineering, and an organic carbon raw material having a D50 of 16.0 ⁇ m was obtained. Subsequently, this pulverized organic carbon raw material was treated at 700 ° C. with a roller hearth kiln made by Nippon Choshi while flowing nitrogen gas to obtain a carbon material 1. When the carbon material 1 was compressed to a density of 1.4 g / cm 3 , the compacted powder resistance was 0.60 ⁇ cm, and the angle of repose was 34 °.
  • the carbon material 1 is graphitized in the same manner as in Example 1, and various physical properties and battery evaluation results of the obtained graphite material (carbon material 2) are summarized in Table 1 together with the organic carbon raw material and the physical properties of the carbon material 1. It was. Compared to Example 1, the specific surface area is high, the d002 is large, and the capacity is low. Therefore, it can be understood that graphitization is not sufficiently performed.

Abstract

 本発明は、密度1.4g/cm3に圧縮したときの圧密粉体抵抗値が0.4Ωcm以下で、安息角が20°以上50°以下、レーザー回折法により測定した体積基準の粒子径分布におけるD90が120μm以下である炭素材料に直接電流を流すことにより発熱させて黒鉛化する工程を含む、黒鉛化後の炭素材料がX線回折法による(002)面の平均面間隔d002が0.3354nm以上0.3450nm以下であるリチウムイオン電池用電極材料乃製造方法を提供する。本発明の方法により得られるリチウムイオン電池用電極材料は、不純物の混入が少なく、安定性に優れた高品質のリチウムイオン二次電池用負極材料として有用である。

Description

リチウムイオン電池用電極材料の製造方法
 本発明は、リチウムイオン電池用電極材料に関する。
 携帯機器の電源として、リチウムイオン二次電池がそのエネルギー密度の大きさやサイクル寿命が長いことなどの理由で、ほぼ主流になってきた。携帯機器等はその機能が多様化し消費電力が大きくなっている。そのため、リチウムイオン二次電池には、そのエネルギー密度をさらに増加させ、同時に充放電サイクル特性を向上させることが求められている。また、最近では、さらに、電動ドリル等の電動工具や、ハイブリッド自動車用等、高出力で大容量の二次電池への要求が高まっている。この分野は従来より、鉛二次電池、ニッケルカドミウム二次電池、ニッケル水素二次電池が主に使用されているが、小型軽量で高エネルギー密度のリチウムイオン二次電池への期待は高く、大電流負荷特性に優れたリチウムイオン二次電池が求められている。
 特に、バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)等の自動車用途においては、10年間以上にわたる長期間のサイクル特性と、ハイパワーモーターを駆動させるための大電流負荷特性を主たる要求特性とし、さらに航続距離を伸ばすための高い体積エネルギー密度も要求され、モバイル用途に比して過酷なものとなっている。
 このリチウムイオン二次電池は、一般に、正極活物質にコバルト酸リチウム、マンガン酸リチウムなどの金属酸化物やこれらの複合酸化物が使用され、電解液にリチウム塩が使用され、負極活物質に黒鉛などの炭素質材料が使用されている。
 負極活物質に使用される黒鉛としては、天然黒鉛と人造黒鉛とがある。
 天然黒鉛は一般的に安価であり、高結晶性であるため高容量であるとの利点がある。しかし、形状が鱗片状であるため、バインダーとともにペーストにし、それを集電体に塗布すると、天然黒鉛が一方向に配向してしまう。そのような電極で充電すると電極が一方向にのみ膨張し、電流特性やサイクル寿命など、電極としての性能を低下させる。天然黒鉛を造粒して球状にした球状化天然黒鉛が提案されているが、電極作製時のプレスによって球状化天然黒鉛が潰れて配向してしまう。また、高結晶性の欠点として、天然黒鉛の表面活性が高いために初回充電時にガスが多量に発生し、初期効率が低く、それによって、さらに、サイクル寿命が悪化する。これらを解決するため、特許第3534391号公報(米国特許第6632569号明細書;特許文献1)等では、球状に加工した天然黒鉛の表面に、人造カーボンをコーティングする方法が提案されている。しかし、本方法で作製された材料は、モバイル用途等が要求する高容量・低電流・中サイクル特性については対応可能であるが、上記のような大型電池の大電流、長期サイクル特性といった要求を満たすことは非常に難しい。また、天然黒鉛は鉄などの金属不純物が多く、品質安定性の面でも問題がある。
 人造黒鉛としては、特開平4-190555号公報(特許文献2)等に記載されているメソカーボン小球体の黒鉛化品が挙げられる。これは非常にバランスの良い負極材であり、高容量、大電流の電池を達成可能であるが、電極粉同士の導電性接点が悪化しやすいなど、大型電池に要求される、長期にわたるサイクル特性を達成することは困難である。
 人造黒鉛として、石油、石炭ピッチ、コークス等を黒鉛化処理したものは比較的安価に入手できる。しかし、結晶性のよい針状コークスは鱗片状になり配向しやすい。この問題を解決するため、特許第3361510号公報(欧州特許第0918040号明細書;特許文献3)等に記載された方法が成果を上げている。この方法は、人造黒鉛原料の微粉の他、天然黒鉛等の微粉も使用可能であり、これまでの小型リチウムイオン二次電池用黒鉛としては、高容量で優れた特性を有する。しかし、自動車用途の要求特性を満足するためには、使用量の増加に向けた生産性の向上や製造コスト低減、不純物管理、サイクル特性、保存特性の向上などが必須である。
 リチウムイオン二次電池の負極に使用する人造黒鉛系材料の製造工程において、未黒鉛化物である炭素原料粉体を黒鉛化する方法としては、例えば以下のような方法が知られている。
(1)炭素原料粉体を黒鉛製ルツボに充填してアチソン炉で黒鉛化する(特許第3838618号公報(米国特許第6783747号明細書);特許文献4)。
(2)炭素原料粉体をピッチやポリマーなどのバインダーを用いて一定の形に成形し、アチソン炉で黒鉛化し、その後、成形体を解砕する(特許文献3)。
(3)炭素原料粉体を黒鉛材の容器に入れて、熱源としてのヒーターにより加熱して黒鉛化する。
(4)炭素原料粉体またはその成形体をヒーターによって加熱した空間の中を移動させる。
特許第3534391号公報(米国特許第6632569号明細書) 特開平4-190555号公報 特許第3361510号公報(欧州特許第0918040号明細書) 特許第3838618号公報(米国特許第6783747号明細書)
 自動車などに使用される大型のリチウムイオン二次電池は大きな発展が期待される。そのため、その負極に使用する黒鉛材料としても、使用量の増加に伴う生産性の向上や製造コスト低減、不純物管理、品質管理、サイクル特性、保存特性の向上などが必須である。
 しかし、前記の(1)~(4)で示した従来のリチウムイオン電池用負極のための人造黒鉛の黒鉛化方法には、以下のような問題が存在する。
(a)黒鉛材料からなるルツボ等の容器の消耗、るつぼからの不純物の混入。
(b)アチソン炉の詰め粉コークスからのコンタミによる汚染。
(c)アチソン方式の場合は、詰め粉コークスなど製品以外の材料をあわせて熱処理するので生産性が落ちる。
(d)成形体の場合は、黒鉛化後の解砕時の不純物の混入、粉体表面の劣化。
(e)ヒーターを用いる場合は、ヒーター部材が消耗する上に、3000℃以上の高温にすることは難しいこと。
(f)ヒーターを用いる場合は、不活性ガスの使用によるコストアップ。
 従って、本発明の課題は、不純物の混入が少なく、安定性に優れた高品質のリチウムイオン二次電池用負極のための黒鉛材料を生産性よく低コストで製造できる方法を提供することにある。
 本発明は、下記[1]~[14]のリチウムイオン電池用電極材料の製造方法に関する。
[1]リチウムイオン電池用電極材料の製造方法であって、炭素材料に直接電流を流すことにより発熱させて黒鉛化する工程を含み、黒鉛化前の炭素材料1が密度1.4g/cm3に圧縮したときの圧密粉体抵抗値が0.4Ωcm以下で、安息角が20°以上50°以下、レーザー回折法により測定した体積基準の粒子径分布におけるD90が120μm以下であり、黒鉛化後の炭素材料2がX線回折法による(002)面の平均面間隔d002が0.3354nm以上0.3450nm以下であるリチウムイオン電池用電極材料の製造方法。
[2](前記黒鉛化後の炭素材料2を密度1.4g/cm3に圧縮したときの圧密粉体抵抗)/(前記黒鉛化前の炭素材料1を密度1.4g/cm3に圧縮したときの圧密粉体抵抗)≦0.5である前記1に記載のリチウムイオン電池用電極材料の製造方法。
[3]前記黒鉛化前の炭素材料1のレーザー回折法により測定した体積基準の粒子径分布におけるD50が30μm以下である前記1または2に記載のリチウムイオン電池用電極材料の製造方法。
[4]前記黒鉛化前の炭素材料1の安息角が30°以上50°以下、緩め嵩密度と固め嵩密度から算出される圧縮率((固め嵩密度-緩め嵩密度)×100/緩め嵩密度)が20%以上50%以下である前記1乃至3のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
[5]前記黒鉛化前の炭素材料1が、有機系炭素原料を800℃以上1500℃以下で熱処理してなるものである前記1乃至4のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
[6]前記熱処理の前に前記有機系炭素原料の粉砕処理を行う前記5に記載のリチウムイオン電池用電極材料の製造方法。
[7]前記有機系炭素材料が、不活性雰囲気下で300℃から1200℃まで加熱した際、この温度領域における加熱減量分が5質量%以上20質量%以下である前記5または6に記載のリチウムイオン電池用電極材料の製造方法。
[8]前記有機系炭素原料中の硫黄分が2質量%以下である前記5乃至7のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
[9]前記有機系炭素原料が、石油ピッチ、石炭ピッチ、石炭コークス、石油コークスおよびこれらの混合物から選ばれる1種以上である前記5乃至8のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
[10]前記黒鉛化前の炭素材料1が、ホウ素系化合物および/または珪素系化合物を10~100000質量ppm含む前記1乃至9のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
[11]黒鉛化の工程において、セラミックスレンガ製であって、上方が開口した直方体状の炉体を用いる前記1に記載のリチウムイオン電池用電極材料の製造方法。
[12]前記炉体が、開口部方向から見て長手方向の長さが短手方向の長さの2倍以上である前記11に記載のリチウムイオン電池用電極材料の製造方法。
[13]前記炉体の長手方向の両端面内側に通電用の電極を配置させる前記11または12に記載のリチウムイオン電池用電極材料の製造方法。
[14]空気と接する面に酸素をバリヤする層を設ける前記11乃至13のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
 本発明の方法によれば、不純物の混入が少なく、安定性に優れた高品質のリチウムイオン電池用電極材料に使用することのできる黒鉛材料を生産性よく低コストで製造することができる。
実施例1で得られた黒鉛材料のSEM写真である。
 以下、本発明を詳細に説明する。
1.リチウムイオン電池用電極材料のための黒鉛材料の製造方法
(1)黒鉛化前の炭素材料1の物性、製法
 本発明では炭素材料1(炭素粉体)を黒鉛化して黒鉛材料を製造する。
 炭素材料の原料としては、特に制限はないが、不活性雰囲気下で300℃から1200℃まで加熱した際、この温度領域における加熱減量分が5質量%以上20質量%以下である有機系炭素原料が好ましく使用できる。加熱減量分が5質量%未満になると黒鉛化後の粒子形状が板状になりやすい。また、粉砕面(エッジ部分)が露出しやすく比表面積が大きくなるため、負極として用いた場合に電解液との副反応が多くなる。逆に20質量%を超えると黒鉛化後の粒子同士の結着が多くなり、収率に影響する。有機系炭素原料の加熱減量分が上記範囲にあることによって、得られる黒鉛材料の表面が安定化し、負極として用いた場合に電解液との副反応が減少する。この理由は300~1200℃の加熱で揮発する成分のために、露出したエッジ部分の結晶が、炭化後黒鉛化することにより再構成し安定化され、また粒子表面もなめらかになることによると考えられる。
 前記加熱減量分は、昇温速度10℃/分で、示差熱-熱重量同時測定(TG-DTA)が行える市販の装置を用いることによって測定することができる。実施例ではセイコーインスツルメント社製 TGDTAw6300を使用し、測定サンプル約15mgを正確に測りとり、プラチナ製パンにのせて装置にセットし、アルゴンガスを200ml/分で流し、10℃/minで300℃から1200℃まで昇温して測定する。リファレンスとして和光純薬製αアルミナを1500℃で3時間あらかじめ処理し、揮発分を除去したものを用いる。
 このような加熱減量分を有する有機系炭素原料は、例えば、石油ピッチ、石炭ピッチ、石炭コークス、石油コークスおよびこれらの混合物から選択することが好ましい。中でも石油コークスがより好ましく、石油コークスの中でも生コークスが好ましい。生コークスは、結晶が未発達であるので粉砕したときに球状になり、比表面積が小さくなりやすい。また、有機系炭素原料は、非針状のものであることが好ましく、加熱処理を行っていない非針状コークスであることが特に好ましい。
 石油コークスは、石油または歴青油のクラッキングまたは分解蒸留により得られる黒色で多孔質の固形残留物である。石油コークスには、コーキングの方法によって、フルード・コークス(fluid coke)とディレード・コークス(delayed coke)とがある。しかし、フルード・コークスは粉状で、製油所の自家燃料に使用される程度であまり用途がなく、一般に石油コークスと称するのはディレード・コークスのことである。ディレード・コークスには、生コークス(raw coke)とカ焼コークス(calcined coke)とがある。生コークスはコーキング装置から採取されたそのままのコークスで、カ焼コークスはこれを更にもう一度焼いて揮発分を除去したものである。生コークスは粉塵爆発を起こす可能性が高いので、微粒子状の石油コークスを得るためには、生コークスをカ焼して揮発分を除去してから粉砕されていた。また、従来、電極などにはカ焼コークスが一般に使われていた。生コークスは石炭コークスよりも灰分が少ないので、カーバイド工業の炭素材、鋳物用コークス、合金鉄用コークスなどに使用されるにとどまっている。
 有機系炭素原料中の硫黄は少ないほうが好ましい。硫黄は黒鉛化工程時に揮発し、炭素材料を突沸させたり、黒鉛化後の表面を荒らすという悪影響をもたらす。有機系炭素原料中の硫黄分は、3質量%以下が好ましく、2質量%以下がさらに好ましい。
 硫黄の量は試料数十mgを専用容器に秤量し、高周波加熱(助燃剤としてW1.5g、及びSn0.2g)により分解した後、鉄鋼用炭素標準試料を用い、炭素硫黄同時測定装置(堀場製作所製EMIA-920V)により測定する。
 有機系炭素原料は30~100℃の平均熱膨張係数(CTE)が4.0×10-6/℃以上6.0×10-6/℃以下であることが好ましい。炭素原料のCTEは例えば次のような方法で測定できる。まず、炭素原料500gを振動ミルで28メッシュ以下に粉砕する。この試料を篩い分けて、28~60メッシュ60g、60~200メッシュ32g、200メッシュ以下8gの割合で混合し、全量を100gにする。この配合試料100gをステンレス容器に入れ、バインダーピッチ25gを加え、125℃のオイルバスで20分間加熱し均一に混合する。該混合物を冷却し、振動ミルで粉砕し、全量を28メッシュ以下にする。該試料30gを125℃の加圧成形機に入れ、ゲージ圧450kg/cm2で5分間加圧し、成形する。成形品を磁性ルツボに入れ、焼成炉で室温から1000℃まで5時間で昇温し、1000℃で1時間保持して冷却する。この焼成品を精密切断機で4.3×4.3×20.0mmに切断し、テストピースを得る。本テストピースをTMA(熱機械分析装置)、例えばセイコー電子製TMA/SS 350等で30~100℃の熱膨張測定を行い、CTEを算出する。
 黒鉛化前の炭素材料1は、例えば、前記の有機系炭素原料を目的の粒度に粉砕したのち、得られた粉体の抵抗をある程度下げる処理を行うことにより得ることができる。
 有機系炭素原料を粉砕する方法に特に制限はないが、例えば、公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等を用いて粉砕する。粉砕はできるだけ熱履歴が低い状態で行うことが好ましい。粉砕によって熱が加わると前記の300℃~1200℃で揮発する成分が揮発し、黒鉛材料の表面が安定化し、負極として用いた場合に電解液との副反応が減少するとの効果が得られなくなるおそれがある。
 粉砕後、粉体の抵抗を下げる。黒鉛化前の炭素材料1は、黒鉛化時に直接炭素材料に電流を流すため、抵抗は低いほうがよい。具体的には、密度1.4g/cm3に圧縮したときの圧密粉体抵抗値を0.4Ωcm以下とする。粉体の抵抗を下げる方法には特に限定はないが、好ましくは、800℃~1500℃の低温熱処理し炭化度を上げる。好ましい熱処理温度は、用いる有機系炭素原料の種類や次工程の黒鉛化条件によって異なるが、900~1300℃である。生産性の観点からは、熱処理の温度はできるだけ下げたいが、低すぎると抵抗が十分に下がらない。
 低温熱処理により炭素材料の硬さも増す。そのため粉砕を先に行うことが、粉砕方式の自由度や生産性の観点から好ましい。
 黒鉛化前の炭素材料1はレーザー回折法により測定した体積基準の粒子径分布においてD90は120μm以下が好ましく、より好ましいD90は80μm以下、さらに好ましいD90は70μm以下である。D90が大きすぎると、電極薄膜化に対応できない、プレス電極密度が上がりにくい、電流負荷特性が低い、などの問題が生じる。
 D50(平均粒度)は30μm以下になるように分級することが好ましく、さらに好ましくは4μm以上25μm以下になるように分級する。平均粒度が大きいと、電解液との安定性が増す、塗工しやすいなどのメリットを有するが、逆に、高電流特性は悪い方向に進み、電極密度が上がりにくくなる。逆に小さいと充放電時に副反応が起きやすくなる。
 粉体の粒度はレーザー散乱・回折式粒度分布測定装置(CILAS)にて測定することができる。
 黒鉛化前の炭素材料1のアスペクト比(長軸の長さ/短軸の長さ)は、6以下であることが好ましく、1以上5以下がより好ましい。アスペクト比が大きすぎると黒鉛化時の電流分布制御が難しくなりやすく、また電池の負極として用いる場合に塗工性や安定性面でデメリットとなる。アスペクト比は光学顕微鏡画像から求めることができる。簡易的には、シスメックス製のFPIA3000を用い、画像解析で測定してもよい。
 黒鉛化前の炭素材料1の安息角は、20°以上50°以下が望ましい。安息角が20°未満となると炭素材料1の流動性が高くなることから、炉体への充填中に飛散したり通電中に粉体が噴出する場合がある。安息角が50°を超えると炭素材料1の流動性が低下するため炉体内での充填性が低くなって生産性が低下したり、炉全体の通電抵抗が極端に上がったりする場合がある。さらに好ましい安息角は下限が30°であり、上限が45°である。
 安息角はタップデンサーを用いて測定することができる。具体的には、セイシン企業製KYT-4000を用い、50gの測定用サンプルを装置上部の専用投入口より自由落下させて、付属のテーブル上に三角錐型に堆積させ、次いで前記テーブルと三角錐の立ち上がり角度を分度器により測定し、それを安息角とすることができる。
 黒鉛化前の炭素材料1は、緩め嵩密度(0回タッピング)と固め嵩密度(タップ密度)から算出される圧縮率((固め嵩密度-緩め嵩密度)×100/緩め嵩密度)が20~50%であることが好ましい。この範囲にあれば、バインダー及び溶剤と混練した電極スラリーを作製する際に、良好な流動性を持ち集電体上へ塗布しやすい電極スラリーを得ることができる。
 緩め嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。また、固め嵩密度(タップ密度)は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。
 これらはASTM B527およびJIS K5101-12-2に準拠した測定方法であるが、タップ密度測定におけるオートタップの落下高さは5mmとした。
(2)黒鉛化
 黒鉛化は、上記の炭素材料1に直接電流を流して発熱させることにより行う。
 炭素材料に直接電流を流す方法としては、例えば、セラミックスレンガ製であって、上方が開口した直方体状の炉体を用いて行うことができる。この炉体は、開口部方向から見て長手方向の長さを短手方向の長さの2倍程度あるいはそれ以上とし、前記の長手方向の両端面内側に通電用の電極を配置させる。この炉に炭素材料を入れ、通電による発熱によって黒鉛化する。
 このような炉体構造を採用することにより、炭素材料に熱が均一に加わるため、黒鉛化の際に凝集が生じないとの利点を有する。また、温度分布が均一で、不純物揮発のトラップ部分がないという理由から不純物の少ない黒鉛材料が得られる。
 黒鉛化処理は、炭素材料が酸化しにくい雰囲気で行うことがよい。例えば、窒素等の不活性ガス雰囲気で熱処理する方法や、空気と接する面に酸素をバリヤする層を設ける方法が挙げられる。バリヤ層としては、例えば、炭素板や炭素粉体層などを別途設け、酸素を消費させる方法などが挙げられる。
 黒鉛化処理温度の下限は、通常2000℃、好ましくは2500℃、さらに好ましくは2900℃、もっとも好ましくは3000℃である。黒鉛化処理温度の上限は特に限定されないが、高い放電容量が得られやすいという観点から、好ましくは3200℃である。
 黒鉛化においては、黒鉛化の熱処理効率や生産性を上げるために、B4Cなどのホウ素化合物やSiCなどの珪素化合物のような黒鉛化助触媒を添加することができる。配合量は炭素材料中10~100000質量ppmが好ましい。
 黒鉛化は、黒鉛化後の炭素材料2のX線回折法による(002)面の平均面間隔d002が0.3354nm以上0.3450nm以下の範囲となるように行う。好ましくはd002が0.3360nm以上0.3370nm以下になるまで行う。d002は、既知の方法により粉末X線回折(XRD)法を用いて測定することができる(野田稲吉、稲垣道夫,日本学術振興会,第117委員会資料,117-71-A-1(1963)、稲垣道夫他,日本学術振興会,第117委員会資料,117-121-C-5(1972)、稲垣道夫,「炭素」,1963,No.36,25-34頁参照)。
 また、黒鉛化は、(黒鉛化後の炭素材料2を密度1.4g/cm3に圧縮したときの圧密粉体抵抗)/(黒鉛化前の炭素材料1を密度1.4g/cm3に圧縮したときの圧密粉体抵抗)≦0.5となるように行うことが好ましい。このように黒鉛化を行うことにより、通電開始初期から、均一な電流分布が得られ、均一な温度分布で黒鉛化できる。この範囲は、有機系炭素原料あるいは炭素材料1の選定や黒鉛化条件を選択することにより調整することができる。
2.リチウムイオン電池用電極材料のための黒鉛材料
 前記炭素材料を黒鉛化してなる黒鉛材料(黒鉛化後の炭素材料)は、ラマン分光スペクトルで測定される1360cm-1の付近にあるピーク強度(ID)と1580cm-1の付近にあるピーク強度(IG)との強度比ID/IG(R値)が0.01以上0.2以下であることが好ましい。R値が0.2より大きいと表面に活性の高いエッジ部分が多く露出して充放電時に副反応が多く発生しやすくなる。一方0.01未満ではリチウムの出入りの障壁が高くなり、電流負荷特性が低下しやすくなる。レーザーラマンR値は、日本分光製NRS3100を用いて、励起波長532nm、入射スリット幅200μm、露光時間15秒、積算2回、回折格子600本/mmの条件で測定する。
 黒鉛材料は、30℃~100℃の平均熱膨張係数(CTE)が4.0×10-6/℃以上5.0×10-6/℃以下であることが好ましい。熱膨張係数は、コークスの針状性を表す指標のひとつとして利用されている。CTEが4.0×10-6/℃より小さいものは黒鉛の結晶性が高いことから放電容量が大きくなるけれど、粒子形状が板状になりやすい。一方、CTEが5.0×10-6/℃より大きいとアスペクト比が小さくなるが黒鉛結晶が未発達で放電容量が低くなる。黒鉛材料のCTEは炭素原料のCTEと同様にして測定する。
 黒鉛材料は、X線回折法による(002)面の平均面間隔d002が0.3354nm以上0.3450nm以下であることが好ましく、0.3362nm以上0.3370nm以下であることがより好ましい。黒鉛材料のd002は前記と同様の方法により測定する。
 黒鉛材料は、アスペクト比(長軸の長さ/短軸の長さ)が6以下であること、特に1以上5以下であることが好ましい。アスペクト比は光学顕微鏡画像から求めることができる。簡易的には、シスメックス製のFPIA3000を用い、画像解析で測定してもよい。
 黒鉛材料は、比表面積(BET法)が6m2/g以下であること、特に1.0m2/g以上5.0m2/g以下であることが好ましい。粒度にもよるが、比表面積が6m2/gを超えると粒子の表面活性が高くなり、電解液の分解等によって、クーロン効率やサイクル寿命の低下、高温保存性の悪化の要因になる。
 黒鉛材料は、粉体に直接通電することにより黒鉛化して得られるものであるため、これまでの黒鉛化法で得られる黒鉛材料よりも、表面の酸化が抑えられてはいるものの適度に酸化された状態となっている。それにより、表面が安定化され、電解液との副反応が抑えられる。
 酸化の度合いとしては、7940eVの硬X線を用いたHAX-PES測定により得られるO1sのピーク強度において、粒子の表面から深さ方向に対し40nmまでの間の酸素量a(質量%)が0.010≦a≦0.04であることが好ましく、0.010≦a≦0.03がさらに好ましい。酸素量aが多すぎると黒鉛材料中に存在する黒鉛結晶の導電性低下が顕著となり、抵抗成分が高まる結果、充放電反応を阻害して容量の低下や大電流特性の低下に繋がる場合がある。
 黒鉛材料は、ゆるめ嵩密度(0回タッピング)が0.7g/cm3以上で、かつ400回タッピングを行った際の固め嵩密度(タップ密度)が1.0g/cm3以上1.35g/cm3以下であることが好ましい。緩め嵩密度が0.7g/cm3以上であることにより、電極へ塗工した際の、プレス前の電極密度をより高めることが可能となる。この値により、ロールプレス一回で十分な電極密度を得ることが可能かどうかを予測できる。また、固め嵩密度(タップ密度)が上記範囲内にあることによりプレス時に到達する電極密度が充分高くすることが可能となる。
 これらは前記と同様の方法により測定する。
 黒鉛材料はレーザー回折法により測定した体積基準の粒子径分布において平均粒度(D50)が4μm以上25μm以下であることが好ましい。
 黒鉛材料の鉄含量は0~30質量ppmが好ましい。鉄含量がこの範囲にあることにより、電池とした場合の微小短絡を防止することができ、安全性の向上、電池製品収率の向上を図ることができる。鉄含量が多いと、電池とした場合に微小短絡が起こる可能性が高くなり、安全性低下や電池製品収率の低下が起こる場合がある。
 鉄含量(残鉄量)は、試料50~100mgを秤量して硫酸を加えて加熱することにより分解し、放冷後に硝酸を加えて加熱分解を行い、これを溶液が透明になるまで繰り返し、得られた液体を50mlに定容し、さらに10倍に希釈後ICP質量分析を行うことにより測定する。
3.リチウムイオン電池用電極のためのスラリー
 スラリーは、前記黒鉛材料とバインダーとを含む。
 スラリーは、黒鉛材料とバインダーとを混練することによって得られる。混錬には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の公知の装置が使用できる。電極用ペーストは、シート状、ペレット状等の形状に成形することができる。
 バインダーとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)等のゴム系など公知のものが挙げられる。バインダーの使用量は黒鉛材料100質量部に対して0.5~20質量部が好ましく、1~20質量部がさらに好ましい。
 スラリーは、導電助剤としてアセチレンブラックやケッチェンブラックなどのカーボンブラック、気相法炭素繊維などのカーボンナノファイバー、カーボンナノチューブ、黒鉛微粉などの導電性カーボンを含んでいてもよい。前記導電助剤の配合量は特に限定されないが、黒鉛材料100質量部に対して0.5~30質量部が好ましい。
 混練する際に溶媒を用いることができる。溶媒としては、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーならトルエン、N-メチルピロリドン等;SBRなら水等;その他にジメチルホルムアミド、イソプロパノール等が挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量は集電体に塗布しやすいような粘度となるように調整される。
4.リチウムイオン電池用電極
 リチウムイオン電池用電極は前記スラリーを成形してなる。電極は、例えば前記スラリーを集電体上に塗布し、乾燥し、加圧成形することによって得られる。
 集電体としては、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。スラリーの塗布厚は、通常20~150μmである。塗布厚が大きくなりすぎると、規格化された電池容器に電極を収容できなくなることがある。スラリーの塗布方法は特に制限されず、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。
 加圧成形法としては、ロール加圧、プレス加圧等の成形法を挙げることができる。加圧成形するときの圧力は1~3t/cm2程度が好ましい。電極の電極密度が高くなるほど体積あたりの電池容量が通常大きくなるが、電極密度を高くしすぎるとサイクル特性が通常低下する傾向にある。前記スラリーを用いると電極密度を高くしてもサイクル特性の低下が小さいので、高い電極密度の電極を得ることができる。前記スラリーを用いて得られる電極の電極密度は、1.2~1.9g/cm3である。
5.リチウムイオン二次電池
 リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造を有する。上記の電極はリチウムイオン二次電池の負極に使用される。
 リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属元素のモル比が0.3乃至2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0~1.2。)、またはLiy24(Nは少なくともMnを含む。y=0~2。)で表されるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。
 さらに、正極活物質はLiya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0~1.2、a=0.5~1。)を含む材料、またはLiz(Nb1-b24(NはMn、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1~0.2z=0~2。)で表されるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。
 具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02~1.2、a=0.1~0.9、b=0.8~0.98、c=1.6~1.96、z=2.01~2.3。)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02~1.2、a=0.1~0.9、b=0.9~0.98、z=2.01~2.3。)が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。
 正極活物質の平均粒子サイズは特に限定されないが、0.1~50μmが好ましい。0.5~30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積は特に限定されないが、BET法で0.01~50m2/gが好ましく、特に0.2m2/g~1m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
 リチウム二次電池では正極と負極との間にセパレーターを設けることがある。セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどを挙げることができる。
 リチウム二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。好ましくは、電気伝導性の観点から有機電解液が好ましい。
 有機電解液の溶媒としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2-メトキシテトラヒドロフラン、1,2-ジメトキシエタン、1,3-ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ-ブチロラクトン;N-メチルピロリドン;アセトニトリル、ニトロメタン等が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が挙げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、単独でまたは2種以上を混合して使用することができる。
 これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。
 高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
 以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
 実施例及び比較例において、d002等は、「発明を実施するための形態」に詳述した方法により測定する。また、その他の物性の測定方法は以下の通りである。
(1)300℃~1200℃での加熱減量
 示差熱-熱重量同時測定装置(セイコーインスツルメント社製TGDTAw6300)を用い、測定サンプル約15mgを正確に測りとり、プラチナ製パンにのせて装置にセットし、アルゴンガスを200ml/分で流し、昇温速度10℃/分で昇温して、300℃~1200℃の範囲における質量変化を測定した。リファレンスとして和光純薬製αアルミナを1500℃で3hrあらかじめ処理し、揮発分を除去したものを用いた。
(2)平均熱膨張係数(CTE)
 試料500gを振動ミルで28メッシュ以下に粉砕した。この試料を篩い分けて、28~60メッシュ60g、60~200メッシュ32g、200メッシュ以下8gの割合で混合し、全量を100gにした。この配合試料100gをステンレス容器に入れ、バインダーピッチ25gを加え、125℃のオイルバスで20分間加熱し均一に混合した。混合物を冷却し、振動ミルで粉砕し、全量を28メッシュ以下にした。該試料30gを125℃の加圧成形機に入れ、ゲージ圧450kg/cm2で5分間加圧し、成形した。成形品を磁性ルツボに入れ、焼成炉で室温から1000℃まで5時間で昇温し、1000℃で1時間保持して冷却した。この焼成品を精密切断機で4.3×4.3×20.0mmに切断し、テストピースを得た。本テストピースをTMA(熱機械分析装置)で30~100℃の熱膨張測定を行い、CTEを算出した。TMAとしては、セイコー電子製TMA/SS350を用いた。
(3)粒子径(D50およびD90)
 レーザー散乱・回折式 粒度分布測定装置としてCILASを用いて、体積基準の平均粒子径(D50)および粒子径(D90)を求めた。
(4)圧密粉体抵抗
 電流電圧端子が側面に設置された樹脂製容器に試料10gを充填し、縦方向に下に向かって荷重をかけ、試料を圧縮しながら100mAの電流を流して試料に流れる電流の抵抗値を測定した。試料の密度が1.4g/cm3となった時点で読み取った抵抗を圧密粉体抵抗とした。
(5)圧縮率および固め嵩密度(タップ密度)
 圧縮率は(固め嵩密度-緩め嵩密度)×100/緩め嵩密度(%)であり、緩め嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度であり、固め嵩密度(タップ密度)は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。
 これらはASTM B527およびJIS K5101-12-2に準拠した測定方法であるが、タップ密度測定におけるオートタップの落下高さは5mmとした。
(6)硫黄量
 試料数十mgを専用容器に精秤し、高周波加熱(助燃剤としてW1.5gおよびSn0.2g)により分解した後、鉄鋼用炭素標準試料を用い、炭素硫黄同時測定装置(堀場製作所製EMIA―920V)により測定した。
(7)安息角
 タップデンサー(セイシン企業製KYT-4000)を用い、50gの測定用サンプルを装置上部の専用投入口より自由落下させて、付属のテーブル上に三角錐型に堆積させ、次いで前記テーブルと三角錐の立ち上がり角度を分度器により測定し、それを安息角とした。
(8)比表面積
 比表面積測定装置NOVA-1200(ユアサアイオニクス(株)製)を用いて、一般的な比表面積の測定方法であるBET法により測定した。
(9)アスペクト比
 粒子のアスペクト比は、シスメックス製のFPIA3000を用い、画像解析で測定した。測定点数は3000点以上、好ましくは30000点以上、さらに好ましくは50000点以上測定し、算出した平均値を使用した。
(10)ラマンR値
 日本分光製NRS3100を用いて、励起波長532nm、入射スリット幅200μm、露光時間15秒、積算2回、回折格子600本/mmの条件でラマン分光スペクトルを測定し、1360cm-1の付近にあるピーク強度(ID)と1580cm-1の付近にあるピーク強度(IG)との強度比ID/IGをR値とした。
(11)残酸素量
 SPring-8(ビームラインBL46XU)に常設の装置を用いて、入射エネルギー7940eVのHAX-PES測定を行い、黒鉛材表面の酸素量を定量する。
 測定条件は、C1sのナロースペクトルでは光電子のKinetic Energyが7638~7658eVのエネルギー範囲を測定し、O1sのナロースペクトルでは光電子のKinetic Energyが7396~7416eVのエネルギー範囲を測定する。
 黒鉛材料表面の酸素量は以下の方法に従って定量する。
・光電子スペクトルのエネルギー校正
 標準試料として板状のAu試料の測定を行う。Au4fのナロースペクトルとしてKinetic Energyが7648~7859eVのエネルギー範囲を測定し、測定で得られたAu4f7/2のピーク位置とAu4f7/2の理論ピーク位置との差を計算することでBL46XUの常設装置の仕事関数φ値を算出した。算出したφ値を元に、黒鉛材のナロースペクトルのエネルギー校正を行う。
・光電子スペクトル強度の規格化
 黒鉛材のO1sナロースペクトル強度を任意のC1sナロースペクトル強度と測定で得られたC1sナロースペクトル強度をもとに規格化する。ノーマライズ強度x(O1s)は下記式1から算出する。
[式1]
   ノーマライズ強度x(O1s)=測定強度(O1s)×任意の強度(C1s)/測定強度(C1s
・黒鉛材表面の酸素量の定量
 上記に基づき、実施例及び比較例の黒鉛材のノーマライズ強度(O1s)から、黒鉛材料の表面酸素量を下記式2より定量する。ここで、式2における任意の強度(C1s)は式1で用いた値である。
[式2]
   黒鉛材料表面酸化量a(mol%)=(ノーマライズ強度x(O1s)/c任意の強度(C1s))×測定積算回数d(C1s)/測定積算回数e(O1s
 本測定は、非常に高輝度の放射光を用いることで、黒鉛材料表面から40nm程度の深度までの情報を積算している。そのため、黒鉛材料表面の汚染の影響をほとんど受けずに、精度の高い測定結果が得られる。
 黒鉛材料は主成分の炭素の占める割合が圧倒的に高いため、炭素のC1sナロースペクトル強度から規格化した上記方法による酸素量の算出は妥当である。
(12)残鉄量
 試料50~100mgを秤量して硫酸を加えて加熱することにより分解し、放冷後に硝酸を加えて加熱分解を行い、溶液が透明になるまで繰り返した。この操作によって得た液体を50mlに定容し、さらに10倍に希釈後ICP質量分析により残鉄量を測定した。
(13)電池評価方法
 a)スラリー作製:
 黒鉛材料1質量部に呉羽化学社製KFポリマーL1320(ポリビニリデンフルオライド(PVDF)を12質量%含有したN-メチルピロリドン(NMP)溶液品)0.1質量部を加え、プラネタリーミキサーにて混練し、主剤原液とした。
 b)電極作製:
 主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて250μm厚に塗布した。これを120℃で1時間真空乾燥し、18mmφに打ち抜いた。打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102~3×102N/mm2(1×103~3×103kg/cm2)となるようにプレスした。その後、真空乾燥器で120℃、12時間乾燥して、評価用電極とした。
 c)電池作製:
 下記のようにして3極セルを作製した。なお以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
 ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製した銅箔付き炭素電極と金属リチウム箔をセパレーター(ポリプロピレン製マイクロポ-ラスフィルム(セルガ-ド2400))で挟み込んで積層した。さらにリファレンス用の金属リチウムを同様に積層した。これに電解液を加えて試験用セルとした。
 d)電解液:
 EC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合液に、電解質としてLiPF6を1モル/リットル溶解した。
 e)放電容量および初期効率:
 電流密度1.0mA/cm2(0.5C相当)で定電流低電圧充放電試験を行った。
 充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで1.0mA/cm2でCC(コンスタントカレント:定電流)充電を行った。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させた。
 放電(炭素からの放出)は1.0mA/cm2(0.5C相当)でCC放電を行い、電圧1.5Vでカットオフした。
実施例1:
 300℃~1200℃のTG測定による加熱減量分が12.5質量%の石油系生コークス(非針状コークス)をホソカワミクロン製バンタムミルで粉砕した。日清エンジニアリング製ターボクラシファイアーで気流分級し、D50が16.0μmの有機系炭素原料を得た。ついで、この粉砕された有機系炭素原料を、日本碍子製ローラーハースキルンで窒素ガスを流しながら、1000℃で処理し、炭素材料1を得た。この炭素材料1を密度1.4g/cm3に圧縮したときの圧密粉体抵抗は0.30Ωcm、安息角は36°であった。
 セラミックレンガで縦500mm、横1000mm、深さ200mmの炉を作り、内側の両端面に450×180mm、厚み20mmの電極板を設置した。その炉の中に、上記炭素材料1を詰め込み、窒素ガス投入口と排気口が設けられた蓋をした。トランスを設置し、窒素ガスを流しながら、電極板間に約5時間電流を流すことで加熱し、炭素材料1を黒鉛化した。最高温度は3200℃であった。
 得られた黒鉛材料(炭素材料2)の各種物性および電池評価結果を、有機系炭素原料および炭素材料1の物性と共に表1にまとめた。また、図1にSEM写真を示す。
 d002および放電容量から、炉内の広範囲に渡って黒鉛結晶化が進んでいることがわかる。すなわち、本黒鉛化方法では、黒鉛ルツボ容器を用いるものであって製品とならない詰め粉が炉内に存在する従来法と同様以上に、3000℃以上に短時間で熱処理され全粉体が効率的に黒鉛化されていることが確認された。また、放電容量、初期効率ともに良好な電池を得ることができた。
実施例2:
 実施例1と同様の石油系生コークス(非針状コークス)と300℃~1200℃のTG測定による加熱減量分が11.5質量%の石油系生ニードルコークスを1:1で混合し、ホソカワミクロン製バンタムミルで粉砕した。日清エンジニアリング製ターボクラシファイアーで気流分級し、D50が15.5μmの有機系炭素原料を得た。ついで、この粉砕された有機系炭素原料を、日本碍子製ローラーハースキルンで、窒素ガスを流しながら、1300℃で処理し、炭素材料1を得た。この炭素材料1を密度1.4g/cm3に圧縮したときの圧密粉体抵抗は0.20Ωcm、安息角は42°であった。
 この炭素材料1を実施例1と同様の方法で黒鉛化し、得られた黒鉛材料(炭素材料2)の各種物性および電池評価結果を、有機系炭素原料および炭素材料1の物性と共に表1にまとめた。実施例1に比較し、d002が小さく、高容量であるが、初期効率がやや低かった。
実施例3:
 黒鉛化時にB4Cを1000質量ppm加えた以外は、実施例1と同様に操作をし、黒鉛材料(炭素材料2)を得た。得られた黒鉛材料(炭素材料2)の各種物性および電池評価結果を、有機系炭素原料および炭素材料1の物性と共に表1にまとめた。実施例1に比較し、黒鉛化助触媒を添加したことによりd002が小さく高容量であるが、初期効率がやや低かった。
比較例1:
 実施例1と同様の方法で得られた炭素材料1を蓋つき黒鉛ルツボに充填し、アチソン炉にて3000℃で黒鉛化処理した。得られた黒鉛材料(炭素材料2)の各種物性および電池評価結果を、有機系炭素原料および炭素材料1の物性と共に表1にまとめた。
 実施例1と比較して、ほぼ同等の物性であるが、酸素量がやや低いためか、初期効率がやや低かった。また、鉄残量も多かった。
比較例2:
 実施例1と同様の石油系生コークス(非針状コークス)をホソカワミクロン製バンタムミルで粉砕した。日清エンジニアリング製ターボクラシファイアーで気流分級し、D50が16.0μmの有機系炭素原料を得た。ついで、この粉砕された有機系炭素原料を、日本碍子製ローラーハースキルンで、窒素ガスを流しながら、700℃で処理し、炭素材料1を得た。この炭素材料1を密度1.4g/cm3に圧縮したときの圧密粉体抵抗は0.60Ωcm、安息角は34°であった。
 この炭素材料1を実施例1と同様の方法で黒鉛化し、得られた黒鉛材料(炭素材料2)の各種物性および電池評価結果を、有機系炭素原料および炭素材料1の物性と共に表1にまとめた。実施例1に比較し、比表面積が高く、d002が大きく、容量が低いことから、黒鉛化が十分に行われてないことが理解できる。
Figure JPOXMLDOC01-appb-T000001

Claims (14)

  1.  リチウムイオン電池用電極材料の製造方法であって、炭素材料に直接電流を流すことにより発熱させて黒鉛化する工程を含み、黒鉛化前の炭素材料1が密度1.4g/cm3に圧縮したときの圧密粉体抵抗値が0.4Ωcm以下で、安息角が20°以上50°以下、レーザー回折法により測定した体積基準の粒子径分布におけるD90が120μm以下であり、黒鉛化後の炭素材料2がX線回折法による(002)面の平均面間隔d002が0.3354nm以上0.3450nm以下であるリチウムイオン電池用電極材料の製造方法。
  2.  (前記黒鉛化後の炭素材料2を密度1.4g/cm3に圧縮したときの圧密粉体抵抗)/(前記黒鉛化前の炭素材料1を密度1.4g/cm3に圧縮したときの圧密粉体抵抗)≦0.5である請求項1に記載のリチウムイオン電池用電極材料の製造方法。
  3.  前記黒鉛化前の炭素材料1のレーザー回折法により測定した体積基準の粒子径分布におけるD50が30μm以下である請求項1または2に記載のリチウムイオン電池用電極材料の製造方法。
  4.  前記黒鉛化前の炭素材料1の安息角が30°以上50°以下、緩め嵩密度と固め嵩密度から算出される圧縮率((固め嵩密度-緩め嵩密度)/緩め嵩密度)が20%以上50%以下である請求項1乃至3のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
  5.  前記黒鉛化前の炭素材料1が、有機系炭素原料を800℃以上1500℃以下で熱処理してなるものである請求項1乃至4のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
  6.  前記熱処理の前に前記有機系炭素原料の粉砕処理を行う請求項5に記載のリチウムイオン電池用電極材料の製造方法。
  7.  前記有機系炭素材料が、不活性雰囲気下で300℃から1200℃まで加熱した際、この温度領域における加熱減量分が5質量%以上20質量%以下である請求項5または6に記載のリチウムイオン電池用電極材料の製造方法。
  8.  前記有機系炭素原料中の硫黄分が2質量%以下である請求項5乃至7のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
  9.  前記有機系炭素原料が、石油ピッチ、石炭ピッチ、石炭コークス、石油コークスおよびこれらの混合物から選ばれる1種以上である請求項5乃至8のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
  10.  前記黒鉛化前の炭素材料1が、ホウ素系化合物および/または珪素系化合物を10~100000質量ppm含む請求項1乃至9のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
  11.  黒鉛化の工程において、セラミックスレンガ製であって、上方が開口した直方体状の炉体を用いる請求項1に記載のリチウムイオン電池用電極材料の製造方法。
  12.  前記炉体が、開口部方向から見て長手方向の長さが短手方向の長さの2倍以上である請求項11に記載のリチウムイオン電池用電極材料の製造方法。
  13.  前記炉体の長手方向の両端面内側に通電用の電極を配置させる請求項11または12に記載のリチウムイオン電池用電極材料の製造方法。
  14.  空気と接する面に酸素をバリヤする層を設ける請求項11乃至13のいずれか1項に記載のリチウムイオン電池用電極材料の製造方法。
PCT/JP2012/077037 2011-10-21 2012-10-19 リチウムイオン電池用電極材料の製造方法 WO2013058347A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137033352A KR101380730B1 (ko) 2011-10-21 2012-10-19 리튬 이온 전지용 전극 재료의 제조 방법
JP2013516898A JP5401631B2 (ja) 2011-10-21 2012-10-19 リチウムイオン電池用電極材料の製造方法
CN201280033284.3A CN103650220B (zh) 2011-10-21 2012-10-19 锂离子电池用电极材料的制造方法
US14/126,961 US9284192B2 (en) 2011-10-21 2012-10-19 Method for producing electrode material for lithium ion batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-232290 2011-10-21
JP2011232290 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058347A1 true WO2013058347A1 (ja) 2013-04-25

Family

ID=48140990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077037 WO2013058347A1 (ja) 2011-10-21 2012-10-19 リチウムイオン電池用電極材料の製造方法

Country Status (6)

Country Link
US (1) US9284192B2 (ja)
JP (4) JP5401631B2 (ja)
KR (1) KR101380730B1 (ja)
CN (1) CN103650220B (ja)
TW (1) TWI455880B (ja)
WO (1) WO2013058347A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156098A1 (ja) * 2013-03-28 2014-10-02 エム・ティー・カーボン株式会社 リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
CN111380777A (zh) * 2018-12-28 2020-07-07 天津国安盟固利新材料科技股份有限公司 一种锂离子电池正极材料粉末压实密度的测量模具及测试方法
WO2022131262A1 (ja) * 2020-12-16 2022-06-23 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2022177023A1 (ja) * 2021-02-22 2022-08-25 株式会社Adeka 導電性アンダーコート剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328378B (zh) * 2011-10-06 2014-12-17 昭和电工株式会社 石墨材料、其制造方法、电池电极用碳材料和电池
JP6170149B2 (ja) * 2013-06-27 2017-07-26 日本ゼオン株式会社 リチウムイオン電池用電極の製造方法
CN104681793A (zh) * 2014-12-30 2015-06-03 东莞市凯金新能源科技有限公司 一种高容量高压密锂离子电池用负极材料的制备方法
US20190207219A1 (en) * 2017-12-28 2019-07-04 Samsung Sdi Co., Ltd. Negative electrode active mass for rechargeable battery, negative electrode for rechargeable battery, and rechargeable battery
US11784355B2 (en) * 2018-03-30 2023-10-10 Mitsui Chemicals, Inc. Negative electrode including microcapsule and lithium ion secondary battery including the negative electrode
WO2021189408A1 (zh) * 2020-03-27 2021-09-30 宁德新能源科技有限公司 负极活性材料及使用其的电化学装置和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252726A (ja) * 1991-12-25 1995-10-03 Tokai Carbon Co Ltd 低密度炭素繊維成型体の黒鉛化処理方法
JPH11335113A (ja) * 1998-05-22 1999-12-07 Ishikawajima Harima Heavy Ind Co Ltd 黒鉛化電気炉
JP2000034111A (ja) * 1998-07-15 2000-02-02 Ishikawajima Harima Heavy Ind Co Ltd 連続黒鉛化処理装置
JP2002100359A (ja) * 2000-09-26 2002-04-05 Petoca Ltd リチウム二次電池負極用黒鉛材およびその製造方法
JP2007172901A (ja) * 2005-12-20 2007-07-05 Showa Denko Kk 黒鉛材料、電池電極用炭素材料、及び電池
JP4738553B2 (ja) * 2009-10-22 2011-08-03 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126030B2 (ja) 1990-11-22 2001-01-22 大阪瓦斯株式会社 リチウム二次電池
US6344296B1 (en) 1996-08-08 2002-02-05 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
JP3361510B2 (ja) 1996-10-30 2003-01-07 日立化成工業株式会社 リチウム二次電池用負極及びその製造法並びにリチウム二次電池
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP3534391B2 (ja) 1998-11-27 2004-06-07 三菱化学株式会社 電極用炭素材料及びそれを使用した非水系二次電池
JP3838618B2 (ja) 1999-08-06 2006-10-25 昭和電工株式会社 黒鉛炭素粉末、その製造方法及び装置
US6783747B1 (en) 1999-08-06 2004-08-31 Showa Denko Kabushiki Kaisha Graphite carbon powder, and method and apparatus for producing the same
JP4701484B2 (ja) * 2000-08-30 2011-06-15 中央電気工業株式会社 二次電池負極に適した黒鉛粉末とその製造方法及び用途
JP2002329494A (ja) * 2001-02-28 2002-11-15 Kashima Oil Co Ltd リチウムイオン二次電池負極用黒鉛材およびその製造方法
JP4945029B2 (ja) * 2001-03-06 2012-06-06 新日鐵化学株式会社 リチウム二次電池負極用材料とその製造方法およびリチウム二次電池
CN101184825A (zh) * 2005-03-30 2008-05-21 大阪瓦斯株式会社 中间相碳微球的制备方法
KR101391217B1 (ko) 2005-12-05 2014-05-07 쇼와 덴코 가부시키가이샤 흑연 재료, 전지 전극용 탄소 재료 및 전지
JP5033325B2 (ja) * 2005-12-05 2012-09-26 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池
KR101096936B1 (ko) 2009-07-23 2011-12-22 지에스칼텍스 주식회사 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 그를 포함하는 리튬 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252726A (ja) * 1991-12-25 1995-10-03 Tokai Carbon Co Ltd 低密度炭素繊維成型体の黒鉛化処理方法
JPH11335113A (ja) * 1998-05-22 1999-12-07 Ishikawajima Harima Heavy Ind Co Ltd 黒鉛化電気炉
JP2000034111A (ja) * 1998-07-15 2000-02-02 Ishikawajima Harima Heavy Ind Co Ltd 連続黒鉛化処理装置
JP2002100359A (ja) * 2000-09-26 2002-04-05 Petoca Ltd リチウム二次電池負極用黒鉛材およびその製造方法
JP2007172901A (ja) * 2005-12-20 2007-07-05 Showa Denko Kk 黒鉛材料、電池電極用炭素材料、及び電池
JP4738553B2 (ja) * 2009-10-22 2011-08-03 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156098A1 (ja) * 2013-03-28 2014-10-02 エム・ティー・カーボン株式会社 リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
CN111380777A (zh) * 2018-12-28 2020-07-07 天津国安盟固利新材料科技股份有限公司 一种锂离子电池正极材料粉末压实密度的测量模具及测试方法
WO2022131262A1 (ja) * 2020-12-16 2022-06-23 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2022177023A1 (ja) * 2021-02-22 2022-08-25 株式会社Adeka 導電性アンダーコート剤

Also Published As

Publication number Publication date
JP5401631B2 (ja) 2014-01-29
JP2014053314A (ja) 2014-03-20
JP6352362B2 (ja) 2018-07-04
US20140205532A1 (en) 2014-07-24
JP2018166106A (ja) 2018-10-25
JPWO2013058347A1 (ja) 2015-04-02
JP6035223B2 (ja) 2016-11-30
KR101380730B1 (ko) 2014-04-02
JP2017033946A (ja) 2017-02-09
TWI455880B (zh) 2014-10-11
CN103650220B (zh) 2015-10-07
US9284192B2 (en) 2016-03-15
CN103650220A (zh) 2014-03-19
KR20140010181A (ko) 2014-01-23
TW201336782A (zh) 2013-09-16

Similar Documents

Publication Publication Date Title
JP6352363B2 (ja) リチウムイオン電池用電極材料用黒鉛材料の製造方法
JP6352362B2 (ja) リチウムイオン電池用電極材料用黒鉛材料の製造方法
JP5033325B2 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
JP5913169B2 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
WO2013058349A1 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
WO2007066673A1 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
WO2018123967A1 (ja) 全固体リチウムイオン電池
JP5162092B2 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
US10508038B2 (en) Carbon material, method for manufacturing same, and use thereof
JP2018006270A (ja) リチウムイオン二次電池負極用黒鉛質炭素材料、その製造方法、それを用いた負極又は電池
JP5162093B2 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
JP2018055999A (ja) リチウムイオン二次電池の負極活物質用低結晶性炭素材料及びその製造方法並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7009049B2 (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013516898

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033352

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126961

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840930

Country of ref document: EP

Kind code of ref document: A1