WO2013057816A1 - 光電変換素子及びその製造方法 - Google Patents

光電変換素子及びその製造方法 Download PDF

Info

Publication number
WO2013057816A1
WO2013057816A1 PCT/JP2011/074124 JP2011074124W WO2013057816A1 WO 2013057816 A1 WO2013057816 A1 WO 2013057816A1 JP 2011074124 W JP2011074124 W JP 2011074124W WO 2013057816 A1 WO2013057816 A1 WO 2013057816A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
organic semiconductor
type organic
semiconductor material
conversion layer
Prior art date
Application number
PCT/JP2011/074124
Other languages
English (en)
French (fr)
Inventor
百瀬 悟
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013539459A priority Critical patent/JP5741702B2/ja
Priority to CN201180074244.9A priority patent/CN103890989B/zh
Priority to PCT/JP2011/074124 priority patent/WO2013057816A1/ja
Publication of WO2013057816A1 publication Critical patent/WO2013057816A1/ja
Priority to US14/230,760 priority patent/US9318720B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element and a manufacturing method thereof.
  • An organic thin film type solar cell uses a photoelectric conversion layer in which a p-type organic semiconductor polymer and an n-type organic semiconductor such as fullerene are combined, and excitons generated by incident light are p-type organic semiconductor polymer and n-type organic. Charge separation is performed when a contact with the semiconductor is reached.
  • a bulk heterojunction (BHJ) type photoelectric conversion layer is often used. This is called a bulk heterojunction organic thin film solar cell.
  • Such a bulk heterojunction photoelectric conversion layer is formed by applying a liquid mixture of a p-type organic semiconductor polymer and an n-type organic semiconductor and drying it.
  • the p-type organic semiconductor material and the n-type organic semiconductor material spontaneously aggregate and phase separate, resulting in the formation of a pn junction having a large specific surface area.
  • the fill factor (FF) is lower than that of the Si solar cell, the supply voltage is lowered under actual use conditions. That is, the organic thin-film solar cell needs to achieve a high fill factor, that is, improve the fill factor, in order to obtain a high output voltage under actual use conditions. Therefore, in order to improve the fill factor, for example, P3HT (poly [3-hexylthiophene]; Poly [3-hexylthiophene]) is included as a p-type organic semiconductor material, and PCBM ([6,6]) is used as an n-type organic semiconductor material.
  • cesium carbonate having a very high polarity is used for a base layer for forming a photoelectric conversion layer including P3HT as a p-type organic semiconductor material and PCBM as an n-type organic semiconductor material, and high in cesium carbonate and PCBM.
  • a method of preferentially depositing PCBM on the base layer side (cathode side) using affinity has also been proposed (third method).
  • the manufacturing cost increases.
  • the region of only PCBM coated on the cathode side of the photoelectric conversion layer is made of a material constituting the photoelectric conversion layer and has no photoelectric conversion function despite absorbing light. Therefore, it cannot be said that it is effectively used from the viewpoint of improving the photoelectric conversion efficiency. That is, if the material constituting the photoelectric conversion layer is used, it is preferable to improve the fill factor while functioning as the photoelectric conversion layer.
  • coating PCBM after forming a photoelectric converting layer is needed.
  • a high affinity between cesium carbonate provided on the cathode side of the photoelectric conversion layer and PCBM as the n-type organic semiconductor material is used, and a buffer layer is provided on the anode side of the photoelectric conversion layer.
  • This means cannot be used as it is when it is intended to utilize the affinity between the material and the p-type organic semiconductor material.
  • the factors that determine the affinity between materials are not limited to polarity, but vary widely, such as the crystal lattice length of each material, the shape of the electron orbit, and its energy level. It is difficult to predict the affinity.
  • This photoelectric conversion element is composed of an anode, a cathode, and poly- [N-9 ”-heptadecanyl-2,7-carbazole-alt-5,5- (4 ′, 7′-di-2) as a p-type organic semiconductor material.
  • -Thienyl 2 ′, 1 ′, 3′-benzothiadiazole) provided as a n-type organic semiconductor material containing a fullerene or a fullerene derivative, an anode and a photoelectric conversion layer, and MoO 3
  • the ratio of the p-type organic semiconductor material in the region in contact with the buffer layer of the photoelectric conversion layer is higher than the ratio of the p-type organic semiconductor material in the entire photoelectric conversion layer, and the buffer of the photoelectric conversion layer It is a requirement that the ratio of the p-type organic semiconductor material in the region closer to the cathode than the region in contact with the layer is lower than the ratio of the p-type organic semiconductor material in the entire photoelectric conversion layer.
  • the photoelectric conversion element is manufactured by using poly- [N-9 ”-heptadecanyl-2,7-carbazole-alt-5,5- (4 ′, 4 ′, p-type organic semiconductor material on a buffer layer containing MoO 3 . 7′-di-2-thienyl 2 ′, 1 ′, 3′-benzothiadiazole)], and a mixture containing fullerene or a fullerene derivative as an n-type organic semiconductor material is applied and dried at 50 ° C. or lower, It is a requirement to form a photoelectric conversion layer.
  • the fill factor can be improved by utilizing the affinity between the material of the buffer layer provided on the anode side of the photoelectric conversion layer and the p-type organic semiconductor material. There is an advantage.
  • 6 is an IV curve of pseudo-sunlight of the photoelectric conversion element of Example 2 under AM1.5 conditions.
  • 10 is an IV curve of a white fluorescent lamp light with an illuminance of 375 lux of the photoelectric conversion element of Example 3.
  • 10 is an IV curve of pseudo-sunlight of the photoelectric conversion element of Example 3 under AM1.5 conditions. It is an IV curve in the white fluorescent lamp light of the illumination intensity 382lux of the photoelectric conversion element of Example 4.
  • 10 is an IV curve in pseudo sunlight of AM1.5 conditions of the photoelectric conversion element of Example 4.
  • the photoelectric conversion element according to the present embodiment is used as, for example, an organic thin film type solar cell, specifically, a bulk heterojunction type organic thin film solar cell.
  • the photoelectric conversion element includes a substrate 1, an anode 2 as a lower electrode, a buffer layer 3, a photoelectric conversion layer 4, and a cathode 5 as an upper electrode.
  • the photoelectric conversion layer 4 is also referred to as a photoelectric conversion film.
  • the substrate 1 is a transparent substrate that transmits incident light, and is, for example, a glass substrate.
  • the anode 2 is a transparent electrode that is provided on the substrate 1 and transmits incident light, and is, for example, an ITO (Indium Tin Oxide) electrode.
  • the buffer layer 3 is provided on the anode 2, that is, provided between the anode 2 and the photoelectric conversion layer 4, and functions as a hole transport layer.
  • the buffer layer 3 is also referred to as an anode side buffer layer.
  • the buffer layer 3 is a MoO 3 layer, that is, a molybdenum (VI) oxide layer.
  • the buffer layer 3 is not limited as long as containing MoO 3.
  • MoO 3 is also referred to as a hole transporting material.
  • the photoelectric conversion layer 4 is provided on the buffer layer 3. That is, the photoelectric conversion layer 4 is provided between the buffer layer 3 and the cathode 5.
  • the cathode 5 is a metal electrode provided on the photoelectric conversion layer 4, for example, an aluminum electrode.
  • the photoelectric conversion layer 4 is made of poly- [N-9 ′′ -heptadecanyl-2,7-carbazole-alt-5,5- (4) represented by the following chemical formula (1) as a p-type organic semiconductor material.
  • PCDTBT poly [N-9 ”-heptadecanyl-2,7-carbazole-alt-5,5- (4', 7 ('-di-2-thienyl-2', 1 ', 3'-benzothiadiazole)]
  • PCDTBT poly [N-9 ”-heptadecanyl-2,7-carbazole-alt-5,5- (4', 7 ('-di-2-thienyl-2', 1 ', 3'-benzothiadiazole)]
  • PCDTBT poly [N-9 ”-heptadecanyl-2,7-carbazole-alt-5,5- (4', 7 ('-di-2-thienyl-2', 1 ', 3'-benzothiadiazole)]
  • PCDTBT poly [N-9 ”-heptadecanyl-2,7-carbazole-alt-5,5- (4', 7 ('-di-2-thienyl-2', 1 ', 3'-
  • the n-type organic semiconductor material is, for example, [6,6] -phenyl-C 71 -butyric acid methyl ester (PC71BM; [6,6] -Phenyl-C 71 butyric represented by the following chemical formula (2): acid methyl ester) or [6,6] -phenyl-C 61 -butyric acid methyl ester (PC61BM; [6,6] -Phenyl-C 61 butyric acid methyl ester) represented by the following chemical formula (3) (hereinafter, These are called PCBM).
  • PC71BM [6,6] -phenyl-C 71 -butyric acid methyl ester
  • PC61BM [6,6] -Phenyl-C 61 butyric acid methyl ester
  • the n-type organic semiconductor material may be a fullerene or a fullerene derivative that is soluble in an organic solvent and compatible with PCDTBT.
  • the n-type organic semiconductor material includes [6,6] -phenyl-C 71 -butyric acid methyl ester, [6,6] -phenyl-C 61 -butyric acid methyl ester, represented by the following chemical formula (4): Fullerene C60, C70, C84 (Fullerene, C60, C70 or C84), C60 indene diadduct (ICBA) represented by the following chemical formula (5), represented by the following chemical formula (6) [6.6] diphenyl C 62 bis (butyric acid methyl ester) ([6.6] diphenyl C 62 bis (butyric acid methyl ester)), [6.6] diphenyl C 72 bis (butyric acid methyl ester) ([6.6] diphenyl C 72 bis (butyric acid methyl ester )),
  • the ratio of the p-type organic semiconductor material in the region of the photoelectric conversion layer 4 in contact with the buffer layer 3 is higher than the ratio of the p-type organic semiconductor material in the entire photoelectric conversion layer 4, and photoelectric conversion is performed.
  • the ratio of the p-type organic semiconductor material in the region closer to the cathode than the region in contact with the buffer layer 3 of the layer 4 is lower than the ratio of the p-type organic semiconductor material in the entire photoelectric conversion layer 4.
  • the region in contact with the buffer layer 3 of the photoelectric conversion layer 4 is a region on the anode side of the photoelectric conversion layer 4, that is, a region close to the anode 2 or a region near the buffer layer of the photoelectric conversion layer 4.
  • the region on the cathode side of the photoelectric conversion layer 4 that is in contact with the buffer layer 3 is the region on the cathode side of the photoelectric conversion layer 4, that is, the region near the cathode 5, or the region near the cathode of the photoelectric conversion layer 4. is there.
  • the photoelectric conversion layer 4 has a high ratio (ratio) of PCDTBT as the p-type organic semiconductor material.
  • the conduction resistance of holes at the interface between the MoO 3 buffer layer 3 and the photoelectric conversion layer 4 decreases.
  • the ratio (ratio) of fullerene or fullerene derivative (PCBM) as the n-type organic semiconductor material is high in the vicinity of the metal electrode that becomes the cathode 5, the metal that becomes the cathode 5
  • the conduction resistance of electrons at the interface between the electrode and the photoelectric conversion layer 4 decreases. Thereby, the series resistance of the photoelectric conversion layer 4 decreases.
  • the photoelectric conversion layer 4 has a high percentage of PCDTBT as a p-type organic semiconductor material on the anode side where the hole concentration is high, and a fullerene as an n-type organic semiconductor material on the cathode side where the electron concentration is high.
  • the ratio of the fullerene derivative (PCBM here) is high. For this reason, the recombination probability of electrons and holes decreases, and the leakage current due to recombination decreases. Thereby, the parallel resistance of the photoelectric conversion layer 4 increases.
  • the series resistance decreases and the parallel resistance increases, so that the fill factor is improved.
  • PCDTBT and fullerene or fullerene derivative are mixed in the respective regions on the cathode side and the anode side, and the photoelectric conversion function is achieved.
  • the entire region between the buffer layer 3 and the cathode 5 functions as the photoelectric conversion layer 4.
  • the material constituting the photoelectric conversion layer is effectively used, and the entire region between the buffer layer and the cathode is used as the photoelectric conversion layer.
  • the fill factor can be improved while functioning.
  • the manufacturing cost can be reduced as compared with the case where a hole blocking layer is provided separately from the photoelectric conversion layer.
  • PCDTBT as a p-type organic semiconductor material used in the photoelectric conversion layer 4 of the present embodiment is a polymer compound with poor crystallinity, and fullerene or n-type organic semiconductor material in the photoelectric conversion layer 4 It is in a state of random mixing with the fullerene derivative (PCBM here).
  • PCDTBT in normal p-type organic semiconductor materials, holes are conducted by hopping between molecules, so that it is difficult to conduct holes in a disordered mixed state.
  • PCDTBT has both a p-type part and an n-type part on the main chain. Since electrons are donated from the former to the latter in the molecule, holes are conducted on the main chain. To do. Therefore, by using PCDTBT as the p-type organic semiconductor material, high charge separation efficiency can be realized even when the inside of the photoelectric conversion layer 4 is in a disordered mixed state.
  • the photoelectric conversion layer 4 of the present embodiment is formed by preferentially adsorbing (depositing) PCDTBT as a p-type organic semiconductor material on the surface of the MoO 3 buffer layer 3 as described later.
  • 3 PCDTBT adsorbed on the surface of the buffer layer 3 is a very small part of the whole.
  • most of PCDTBTs are connected from the surface of the MoO 3 buffer layer to the vicinity of the cathode. That is, one PCDTBT molecule has both a portion adsorbed on the surface of the MoO 3 buffer layer 3 and a portion mixed with the surrounding n-type organic semiconductor material.
  • Such a state is very important for simultaneously realizing high charge separation efficiency, high charge transport efficiency, low charge recombination probability, and low series resistance in PCDTBT, which has a high ability to conduct holes on the main chain.
  • This is advantageous.
  • high charge separation efficiency, high charge transport efficiency, and high fill factor can be realized at the same time by the PCDTBT that exists in a large amount in such a state on the surface of the MoO 3 buffer layer 3, and a photoelectric conversion layer with high photoelectric conversion efficiency can be realized. become.
  • PCDTBT as a p-type organic semiconductor material can not only increase the ratio of PCDTBT on the anode side by utilizing high affinity with the MoO 3 buffer layer 3 provided on the anode side of the photoelectric conversion layer 4. It is characterized by being non-crystalline and capable of conducting holes on the main chain. For this reason, by using PCDTBT as the p-type organic semiconductor material of the photoelectric conversion layer 4, it is possible to improve the fill factor and the photoelectric conversion efficiency very effectively.
  • P3HT used as a p-type organic semiconductor material of the photoelectric conversion layer has a relatively high energy level of the highest occupied molecular orbital (HOMO), and therefore it is difficult to increase the open-circuit voltage of the photoelectric conversion element.
  • HOMO highest occupied molecular orbital
  • PCDTBT has a HOMO energy level lower by about 0.3 eV than P3HT, the open voltage of the photoelectric conversion element can be increased.
  • PCDTBT having a lower HOMO energy level as the p-type organic semiconductor material, the open-circuit voltage and the photoelectric conversion efficiency can be improved.
  • the choices of the transparent electrode material that can be provided on the transparent substrate of the photoelectric conversion element are limited. Therefore, in practice, it is easier to reduce the work function of the metal electrode than to increase the work function of the transparent electrode. Therefore, the transparent electrode is used as the anode and the metal electrode is used as the cathode as in this embodiment, rather than the transparent electrode as the cathode and the metal electrode as the anode as in the third method described above. Easy to obtain output voltage.
  • the manufacturing method of the photoelectric conversion element concerning this embodiment is demonstrated.
  • the anode 2 transparent electrode
  • the photoelectric conversion layer 4 is formed on the buffer layer 3 containing MoO 3 . That is, a mixed liquid containing PCDTBT as a p-type organic semiconductor material and fullerene or a fullerene derivative (PCBM in this case) as an n-type organic semiconductor material is applied to the surface of the buffer layer 3 containing MoO 3 formed on the anode 2. (Application process) and dried at about 50 ° C. or less (drying process) to form the photoelectric conversion layer 4.
  • the bulk heterojunction photoelectric conversion layer 4 having a high ratio of PCDTBT on the anode side and a high ratio of fullerene or fullerene derivative (here, PCBM) on the cathode side can be spontaneously formed.
  • PCBM fullerene or fullerene derivative
  • a bulk heterojunction with a high ratio of PCDTBT on the anode side and a high ratio of fullerene or fullerene derivative (PCBM in this case) is obtained by using a single mixed solution and applying it only once.
  • Type photoelectric conversion layer 4 can be spontaneously formed. For this reason, the photoelectric conversion layer 4 can be easily formed.
  • MoO 3 which is a material of the buffer layer 3 provided on the anode side of the photoelectric conversion layer 4
  • PCDTBT which is a p-type organic semiconductor material of the photoelectric conversion layer 4
  • the bulk heterojunction photoelectric conversion layer 4 having a high ratio and a high PCBM ratio on the cathode side is spontaneously formed. That is, MoO 3 serving as a base when forming the photoelectric conversion layer 4 is a metal oxide having a polarity on the surface, although not as strong as a highly hydrophilic salt such as cesium carbonate.
  • PCDTBT as a p-type organic semiconductor material is a p-type material as a whole, but in the main chain, a portion acting as a p-type (thiophene ring, carbazole ring) and a portion acting as an n-type (benzothiadiazole ring) Therefore, there is a constant dipole moment on the main chain. That is, PCDTBT as a p-type organic semiconductor material is not so strong but has polarity.
  • PCBM as an n-type organic semiconductor material has almost no polarity in a single molecule, but has a very high electron density. Therefore, it is considered that strong polarization occurs due to intermolecular interaction in an aggregated state. Then, during the photoelectric conversion layer forming step, PCBM is in an aggregated state, and therefore, if there is a substrate with strong polarity, it is deposited on the surface with priority. However, the polarity of the surface of MoO 3 serving as a base when forming the photoelectric conversion layer 4 is not so strong.
  • the bulk heterojunction photoelectric conversion layer 4 having a high PCDTBT ratio on the anode side that is, the buffer layer side containing MoO 3 and a high PCBM ratio on the cathode side is spontaneously formed.
  • the PCDTBT and PCBM mixed liquid is applied on the MoO 3 layer 3 and then dried at about 50 ° C. or less, so that the PCDTBT ratio is high on the anode side and the PCBM ratio is on the cathode side.
  • a high bulk heterojunction photoelectric conversion layer 4 can be obtained.
  • the ratio of PCDTBT is high on the anode side and the cathode side is high by controlling the temperature to about 50 ° C. or less during the period from application of the mixed solution of PCDTBT and PCBM onto the MoO 3 layer 3 to drying.
  • a bulk heterojunction photoelectric conversion layer 4 having a high PCBM ratio can be obtained.
  • the thermal disturbance is more than the material selection mechanism on the surface of MoO 3 described above.
  • a bulk heterojunction photoelectric conversion layer having a uniform internal composition is formed. That is, if the temperature of the mixed solution becomes higher than about 50 ° C. until the mixed solution of PCDTBT and PCBM applied on the MoO 3 layer 3 is dried, the ratio of PCDTBT is high on the anode side, A bulk heterojunction photoelectric conversion layer having a high PCBM ratio cannot be obtained.
  • a cathode 5 (metal electrode) is formed on the photoelectric conversion layer 4. And it seals, for example in nitrogen atmosphere, and a photoelectric conversion element is completed. Therefore, according to the photoelectric conversion element and the manufacturing method thereof according to the present embodiment, the affinity between MoO 3 that is the material of the buffer layer 3 provided on the anode side of the photoelectric conversion layer 4 and PCDTBT that is the p-type organic semiconductor material. This has the advantage that the fill factor can be improved.
  • the drying process is performed after the coating process.
  • the present invention is not limited to this.
  • the coating process and the drying process are performed in one process in parallel.
  • the applied mixed liquid is dried in the process after the mixed liquid is applied.
  • the mixed liquid is applied and dried in one process in parallel.
  • heat treatment may be performed at a temperature higher than 50 ° C.
  • Example 1 a photoelectric conversion element was produced as follows. First, an ITO electrode (anode) having a width of about 2 mm and a film thickness of about 200 nm was formed on a glass substrate.
  • a MoO 3 buffer layer having a film thickness of about 6 nm was formed on the entire surface of the ITO electrode as the anode by vacuum deposition.
  • the glass substrate on which the ITO electrode and the MoO 3 buffer layer are formed is transferred to a glove box filled with nitrogen, and PCDTBT as a p-type organic semiconductor material and PCBM (here, [ 6,6] -phenyl-C 71 -butyric acid methyl ester; hereinafter referred to as PC71BM) at a weight ratio of 1: 3, a monochlorobenzene solution (mixed solution; concentration of about 2% by weight) at about 30 ° C., about 500 rpm, A spin coat film was formed under the condition of about 10 seconds (application process). After the spin coat film formation, the film was left to dry at about 30 ° C. for about 30 minutes (drying process) to form a photoelectric conversion layer.
  • FIG. 2 shows a surface analysis by electron energy loss spectroscopy (EELS) on the cross section of the photoelectric conversion element of Example 1 manufactured as described above. The result (mapping image) of mapping the corresponding signal is shown.
  • EELS electron energy loss spectroscopy
  • FIG. 3 shows a signal caused by sulfur atoms by performing point analysis inside the photoelectric conversion layer of the photoelectric conversion element of Example 1 similarly manufactured using EELS in the film thickness direction in five points.
  • strength of the signal resulting from a carbon atom were measured, and the result of having calculated these ratios (signal intensity ratio; C / S) is shown.
  • error bars indicate standard deviations of measured values, and dotted lines indicate average values of C / S.
  • the position in the film thickness direction is indicated by the distance from the surface of the MoO 3 buffer layer.
  • the ratio (C / S) of the signal intensity of carbon atoms and the signal intensity of sulfur atoms is the ratio of PCDTBT and PC71BM in the photoelectric conversion layer to PCDTBT ((PC71BM + PCDTBT) / PCDTBT; weight ratio; composition ratio) ; Mixing ratio).
  • the average value of C / S is the ratio of the total of PCDTBT and PC71BM and PCDTBT in the mixed solution, that is, the ratio of PCDTBT and PC71BM to PCDTBT in the entire photoelectric conversion layer (weight ratio; composition ratio). ; Mixing ratio).
  • the ratio of PCDTBT in the liquid mixture corresponding to the average value of C / S (that is, the ratio of PCDTBT to the total of PC71BM and PCDTBT), that is, the ratio of PCDTBT in the entire photoelectric conversion layer (that is, PC71BM and PCDTBT).
  • the ratio of PCDTBT to the sum of the above is called the average ratio.
  • the value of C / S is smaller than the average value of C / S, that is, the ratio of PCDTBT (that is, PCDTBT relative to the sum of PC71BM and PCDTBT). Ratio) is higher than the average ratio. Further, in the cathode side region far from the opposite MoO 3 buffer layer, the value of C / S is larger than the average value of C / S, that is, the ratio of PCDTBT (that is, the ratio of PCDTBT to the sum of PC71BM and PCDTBT). ) Is lower than the average ratio.
  • FIG. 4 shows the relationship between the drying temperature and the series resistance when the photoelectric conversion layer is formed as described above.
  • FIG. 5 shows the relationship between the drying temperature and the parallel resistance when the photoelectric conversion layer is formed as described above.
  • the drying temperature is changed under conditions of simulated sunlight (AM1.5, irradiance 100 mW / cm 2 ) in which series resistance and parallel resistance can be measured with high accuracy because the generated current is large. The results of measuring the series resistance and the parallel resistance are shown respectively.
  • Example 1 By performing drying at about 30 ° C. as in Example 1, it can be seen that the series resistance decreases and the parallel resistance increases as shown in FIGS. That is, in the photoelectric conversion element of Example 1 manufactured by drying at about 30 ° C., as described above, the ratio of PCDTBT is high on the anode side, that is, the MoO 3 buffer layer side, and the ratio of PC71BM on the cathode side. It can be seen that a high structure is obtained, the series resistance decreases, and the parallel resistance increases. Similarly, when the drying temperature is lowered, that is, when drying is performed at a low temperature of about 50 ° C. or lower, the series resistance decreases and the parallel resistance increases. Thus, by lowering the drying temperature, the series resistance is decreased and the parallel resistance is increased.
  • the fill factor is improved.
  • the decrease in series resistance is more remarkable than the increase in parallel resistance. This is because the effect of improving the fill factor is mainly due to the carrier at the interface between the MoO 3 buffer layer and the cathode and the photoelectric conversion layer. It is suggested that this is due to a decrease in the conduction resistance of the above, that is, a decrease in the series resistance.
  • FIG. 6 shows an IV curve under the white fluorescent lamp light (illuminance 383 lux, irradiance 88.7 ⁇ W / cm 2 ) of the photoelectric conversion element of Example 1 manufactured as described above.
  • the open circuit voltage (Voc) is about 0.743 V
  • the short-circuit current density (Jsc) is about 21.8 ⁇ A / cm. 2.
  • the fill factor (FF) was about 0.59
  • the maximum power density (Pmax) was about 9.58 ⁇ W / cm 2
  • the photoelectric conversion efficiency was about 10.8%.
  • FIG. 7 shows an IV curve under pseudo sunlight (AM (air mass) 1.5, irradiance 100 mW / cm 2 ) of the photoelectric conversion element of Example 1 manufactured as described above. Yes.
  • AM air mass
  • irradiance 100 mW / cm 2 under simulated sunlight (AM (air mass) 1.5, irradiance 100 mW / cm 2 )
  • Voc is about 0.875 V
  • Jsc is about 4.73 mA / cm 2
  • FF is about 0.
  • the photoelectric conversion efficiency was about 1.85%.
  • the FF is improved by about 31% and the photoelectric conversion efficiency by about 82% under white fluorescent light, and the FF is about 25% and the photoelectric conversion efficiency is about 80 under simulated sunlight.
  • % Improved in other words, in the drying process, when the case where the drying is performed at about 30 ° C. for about 30 minutes is compared with the case where the heat drying process is performed at about 70 ° C. for about 10 minutes, the FF is about 31% under the white fluorescent light, and the photoelectric Conversion efficiency was improved by about 82%, FF was improved by about 25%, and photoelectric conversion efficiency was improved by about 80% under simulated sunlight.
  • the FF is improved by about 31% and the photoelectric conversion efficiency by about 82% under white fluorescent light, and the photoelectric Conversion efficiency was improved by about 82%, FF was improved by about 25%, and photoelectric conversion efficiency was improved by about 80% under simulated sunlight.
  • the ratio (concentration) of PCDTBT is high on the anode side, that is, the MoO 3 buffer layer side, and the ratio (concentration) of PC71BM on the cathode side.
  • a FF was improved by about 31% and photoelectric conversion efficiency by about 82% under white fluorescent light, and FF was improved by about 25% and photoelectric conversion efficiency by about 80% under simulated sunlight.
  • the photoelectric conversion element was fabricated in the same manner as in Example 1 except that the drying process, that is, the heat drying process at about 70 ° C. for about 10 minutes was performed after the spin coat film formation. Produced.
  • FIG. 8 shows the result of performing surface analysis by electron energy loss spectroscopy on the cross section of the photoelectric conversion element of this comparative example manufactured as described above, and mapping the signal corresponding to the sulfur atom. (Mapping image) is shown.
  • the brightness of the photoelectric conversion layer is uniform, which indicates that the concentration of sulfur atoms, that is, the concentration of PCDTBT is substantially uniform. This indicates that the composition has been made uniform due to thermal disturbance by drying under heating conditions.
  • FIG. 9 shows an IV curve under the white fluorescent lamp light (illuminance 375 lux, irradiance 84.9 ⁇ W / cm 2 ) of the photoelectric conversion element of this comparative example manufactured as described above.
  • Voc was about 0.751 V
  • Jsc was about 15.0 ⁇ A / cm 2
  • FF was about 0.45
  • the photoelectric conversion efficiency was about 5.93%.
  • FIG. 10 shows an IV curve under pseudo sunlight (AM 1.5, irradiance 100 mW / cm 2 ) of the photoelectric conversion element of this comparative example manufactured as described above.
  • Example 2 a photoelectric conversion element was obtained in the same manner as in Example 1 except that a drying process, that is, a heat drying process at about 50 ° C. for about 10 minutes was performed after spin coating film formation. Was made.
  • FIG. 11 shows an IV curve under the white fluorescent lamp light (illuminance 375 lux, irradiance 84.9 ⁇ W / cm 2 ) of the photoelectric conversion element of Example 2 manufactured as described above.
  • Voc was about 0.748 V
  • Jsc was about 21.6 ⁇ A / cm 2
  • FF was about 0.59
  • the photoelectric conversion efficiency was about 11.1%.
  • FIG. 12 shows an IV curve under pseudo sunlight (AM 1.5, irradiance 100 mW / cm 2 ) of the photoelectric conversion element of Example 2 manufactured as described above.
  • Voc was about 0.897 V
  • Jsc was about 5.32 mA / cm 2
  • FF was about 0.41
  • the photoelectric conversion efficiency was about 1.97%.
  • FF and photoelectric conversion efficiency were equivalent to the case of the above-mentioned Example 1. That is, in the drying process, the FF and photoelectric conversion equivalent to those in the above-described embodiment 1 can be performed by performing the heat drying treatment at about 50 ° C. for about 10 minutes instead of the standing drying at about 30 ° C. for about 30 minutes. Efficiency was obtained.
  • Example 3 In the third embodiment, the coating process and the drying process are performed in one process in parallel, that is, spin coating is performed at approximately 30 ° C. with a spin time of approximately 5 minutes.
  • a photoelectric conversion element was produced in the same manner as in Example 1 except that the photoelectric conversion layer was dried.
  • FIG. 13 shows an IV curve under the white fluorescent lamp light (illuminance 375 lux, irradiance 84.9 ⁇ W / cm 2 ) of the photoelectric conversion element of Example 3 manufactured as described above.
  • Voc was about 0.746 V
  • Jsc was about 20.9 ⁇ A / cm 2
  • FF was about 0.57
  • the photoelectric conversion efficiency was about 10.3%.
  • FIG. 14 shows an IV curve under pseudo sunlight (AM 1.5, irradiance 100 mW / cm 2 ) of the photoelectric conversion element of Example 3 manufactured as described above.
  • Voc was about 0.880 V
  • Jsc was about 4.25 mA / cm 2
  • FF was about 0.46
  • the photoelectric conversion efficiency was about 1.72%.
  • the FF and the photoelectric conversion efficiency were the same as those in Example 1 described above. That is, in the coating process and the drying process, instead of performing spin-coating film formation at about 30 ° C. at about 500 rpm for about 10 seconds, and then leaving to dry at about 30 ° C.
  • Example 4 In Example 4, the heat treatment was performed at a temperature higher than about 50 ° C. after the drying step, that is, the heat treatment was performed at about 70 ° C. for about 10 minutes after the drying step. Except for this, a photoelectric conversion element was produced in the same manner as in Example 1 described above.
  • FIG. 15 shows an IV curve under the white fluorescent lamp light (illuminance 382 lux, irradiance 88.3 ⁇ W / cm 2 ) of the photoelectric conversion element of Example 4 manufactured as described above.
  • Voc was about 0.743 V
  • Jsc was about 24.8 ⁇ A / cm 2
  • FF was about 0.61
  • the photoelectric conversion efficiency was about 12.6%.
  • FIG. 16 shows an IV curve under pseudo sunlight (AM 1.5, irradiance 100 mW / cm 2 ) of the photoelectric conversion element of Example 4 manufactured as described above.
  • Voc was about 0.884 V
  • Jsc was about 5.65 mA / cm 2
  • FF was about 0.45
  • the photoelectric conversion efficiency was about 2.26%.
  • Jsc is improved as compared with the case of Example 1 described above, and as a result, the photoelectric conversion efficiency is improved.
  • This is considered to be a result of the PC71BM becoming denser and the electron conductivity being improved by applying heat treatment to the photoelectric conversion layer after the drying step.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 光電変換素子を、陽極(2)と、陰極(5)と、p型有機半導体材料としてポリ-[N-9"-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4',7'-ジ-2-チエニル2',1',3'-ベンゾチアジアゾール)]を含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体を含む光電変換層(4)と、陽極と光電変換層との間に設けられ、MoOを含むバッファ層(3)とを備え、光電変換層のバッファ層に接する領域におけるp型有機半導体材料の比率が、光電変換層の全体におけるp型有機半導体材料の比率よりも高く、かつ、光電変換層のバッファ層に接する領域よりも陰極側の領域におけるp型有機半導体材料の比率が、光電変換層の全体におけるp型有機半導体材料の比率よりも低くなっているものとする。

Description

光電変換素子及びその製造方法
 本発明は、光電変換素子及びその製造方法に関する。
 有機薄膜型太陽電池は、p型有機半導体ポリマーと、フラーレンを例とするn型有機半導体とを組み合わせた光電変換層を用い、入射光によって生じた励起子がp型有機半導体ポリマーとn型有機半導体との接点に至ったときに、電荷分離が行われるようになっている。
 このような有機薄膜型太陽電池では、バルクヘテロ接合(BHJ:bulk heterojunction)型の光電変換層が用いられる場合が多い。これをバルクへテロ接合型有機薄膜太陽電池という。
 このようなバルクへテロ接合型の光電変換層は、p型有機半導体ポリマーとn型有機半導体との混合液を塗布し、乾燥させることによって形成される。そして、混合液を乾燥させる過程で、p型有機半導体材料、n型有機半導体材料がそれぞれ自発的に凝集して相分離する結果、比表面積が大きいpn接合が形成される。
 ところで、有機薄膜型太陽電池は、低光量の室内環境で高い光電変換効率が得られるため、主流のSi太陽電池と棲み分け可能であり、将来性が高い。
 しかし、Si太陽電池と比較すると、曲線因子(Fill Factor:FF)が低いため、実使用条件では供給電圧が低くなってしまう。つまり、有機薄膜太陽電池は、実使用条件において、高い出力電圧を得るには、高い曲線因子を達成する、即ち、曲線因子を向上させる必要がある。
 そこで、曲線因子を向上させるべく、例えば、p型有機半導体材料としてP3HT(ポリ[3-ヘキシルチオフェン];Poly[3-hexylthiophene])を含み、n型有機半導体材料としてPCBM([6,6]-フェニル-C61-酪酸メチルエステル;[6,6]-Phenyl-C61 butyric acid methyl ester)を含む光電変換層と陰極との間にTiO正孔ブロック層を挿入する方法が提案されている(第1の方法)。また、例えば、p型有機半導体材料としてP3HTを含み、n型有機半導体材料としてPCBMを含む光電変換層の陰極側にPCBMを塗布する方法も提案されている(第2の方法)。また、例えば、p型有機半導体材料としてP3HTを含み、n型有機半導体材料としてPCBMを含む光電変換層を形成する下地層に、極性が非常に強い炭酸セシウムを用い、炭酸セシウムとPCBMとの高い親和性を利用して、下地層側(陰極側)にPCBMを優先的に堆積させる方法も提案されている(第3の方法)。
米国特許第5331183号明細書
Akinobu Hayakawa et al., "High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer", APPLIED PHYSICS LETTERS 90, 163517 (2007) Bertrand Tremolet de Villers et al., "Improving the Reproducibility of P3HT:PCBM solar Cells by Controlling the PCBM/Cathode Interface", THE JOURNAL OF PHYSICAL CHEMISTRY C, Vol.113, No.44, 2009 Zheng Xu et al., "Vertical Phase Separation in Poly(3-hexylthiophene):Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells", ADVANCED FUNCTIONAL MATERIALS, 2009, 19, 1227-1234
 しかしながら、上記第1の方法では、光電変換層を構成する材料と異なる材料からなる正孔ブロック層を、光電変換層とは別に設ける必要があるため、製造コストが高くなる。
 また、上記第2の方法では、光電変換層の陰極側に塗布されたPCBMのみの領域は、光電変換層を構成する材料からなり、光を吸収するにもかかわらず、光電変換機能を持たないため、光電変換効率を向上させるという観点からは、有効に利用されているとは言えない。つまり、光電変換層を構成する材料を用いるのであれば、光電変換層として機能させながら、曲線因子を向上させるのが好ましい。また、光電変換層を形成した後にさらにPCBMを塗布する工程が必要になる。
 また、上記第3の方法では、光電変換層の陰極側に設けられる炭酸セシウムと、n型有機半導体材料としてのPCBMとの高い親和性を利用しており、光電変換層の陽極側にバッファ層を設け、その材料とp型有機半導体材料との親和性を利用しようという場合には、この手段をそのまま用いることはできない。さらにいえば、材料間の親和性を決定する要因は、極性だけでなく、各材料の結晶の格子長、電子軌道の形状とそのエネルギーレベルなど、多岐にわたっているため、実験によらずに材料間の親和性を予見することは困難である。
 そこで、光電変換層の陽極側に設けられるバッファ層の材料とp型有機半導体材料との親和性を利用して、曲線因子を向上させたい。
 本光電変換素子は、陽極と、陰極と、p型有機半導体材料としてポリ-[N-9”-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4’,7’-ジ-2-チエニル2’,1’,3’-ベンゾチアジアゾール)]を含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体を含む光電変換層と、陽極と光電変換層との間に設けられ、MoOを含むバッファ層とを備え、光電変換層のバッファ層に接する領域におけるp型有機半導体材料の比率が、光電変換層の全体におけるp型有機半導体材料の比率よりも高く、かつ、光電変換層のバッファ層に接する領域よりも陰極側の領域におけるp型有機半導体材料の比率が、光電変換層の全体におけるp型有機半導体材料の比率よりも低いことを要件とする。
 本光電変換素子の製造方法は、MoOを含むバッファ層上に、p型有機半導体材料としてポリ-[N-9”-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4’,7’-ジ-2-チエニル2’,1’,3’-ベンゾチアジアゾール)]を含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体を含む混合液を塗布し、50℃以下で乾燥させて、光電変換層を形成することを要件とする。
 したがって、本光電変換素子及びその製造方法によれば、光電変換層の陽極側に設けられるバッファ層の材料とp型有機半導体材料との親和性を利用して、曲線因子を向上させることができるという利点がある。
本実施形態にかかる光電変換素子の構成を示す模式図である。 実施例1の光電変換素子の断面に対して電子エネルギー損失分光法の面分析を行ない、硫黄原子に対応する信号のマッピングを行なった結果、即ち、実施例1の光電変換素子の断面の硫黄原子を対象にした電子エネルギー損失分光法によるマッピング像を示す図である。 実施例1の光電変換素子の断面に対する硫黄原子を対象にした電子エネルギー損失分光法による点分析で得られた、炭素原子の信号強度と硫黄原子の信号強度との比(EELS信号強度比)の膜厚方向の分布を示す図である。 光電変換素子のAM1.5条件の擬似太陽光下での直列抵抗と、光電変換層の乾燥温度との関係を示す図である。 光電変換素子の、AM1.5条件の擬似太陽光下での並列抵抗と、光電変換層の乾燥温度との関係を示す図である。 実施例1の光電変換素子の照度383luxの白色蛍光灯光におけるI-V曲線である。 実施例1の光電変換素子のAM1.5条件の擬似太陽光におけるI-V曲線である。 比較例1の光電変換素子の断面に対して電子エネルギー損失分光法の面分析を行ない、硫黄原子に対応する信号のマッピングを行なった結果、即ち、比較例1の光電変換素子の断面の硫黄原子を対象にした電子エネルギー損失分光法によるマッピング像を示す図である。 比較例1の光電変換素子の照度375luxの白色蛍光灯光におけるI-V曲線である。 比較例1の光電変換素子のAM1.5条件の擬似太陽光におけるI-V曲線である。 実施例2の光電変換素子の照度375luxの白色蛍光灯光におけるI-V曲線である。 実施例2の光電変換素子のAM1.5条件の擬似太陽光におけるI-V曲線である。 実施例3の光電変換素子の照度375luxの白色蛍光灯光におけるI-V曲線である。 実施例3の光電変換素子のAM1.5条件の擬似太陽光におけるI-V曲線である。 実施例4の光電変換素子の照度382luxの白色蛍光灯光におけるI-V曲線である。 実施例4の光電変換素子のAM1.5条件の擬似太陽光におけるI-V曲線である。
 以下、図面により、本発明の実施の形態にかかる光電変換素子及びその製造方法について、図1を参照しながら説明する。
 本実施形態にかかる光電変換素子は、例えば有機薄膜型太陽電池、具体的には、バルクへテロ接合型有機薄膜太陽電池として用いられる。
 本光電変換素子は、図1に示すように、基板1と、下部電極としての陽極2と、バッファ層3と、光電変換層4と、上部電極としての陰極5とを備える。なお、光電変換層4を光電変換膜ともいう。
 ここで、基板1は、入射する光を透過する透明基板であり、例えばガラス基板である。
 陽極2は、基板1上に設けられ、入射する光を透過する透明電極であり、例えばITO(Indium Tin Oxide;酸化インジウムスズ)電極である。
 バッファ層3は、陽極2上に設けられ、即ち、陽極2と光電変換層4との間に設けられ、正孔輸送層として機能する。なお、バッファ層3を陽極側バッファ層ともいう。また、バッファ層3は、MoO層、即ち、酸化モリブデン(VI)層である。なお、バッファ層3は、MoOを含むものであれば良い。なお、MoOを正孔輸送性材料ともいう。
 光電変換層4は、バッファ層3上に設けられている。つまり、光電変換層4は、バッファ層3と陰極5との間に設けられている。
 陰極5は、光電変換層4上に設けられた金属電極であり、例えばアルミニウム電極である。
 本実施形態では、光電変換層4は、p型有機半導体材料として、以下の化学式(1)で示すポリ-[N-9”-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4’,7’-ジ-2-チエニル2’,1’,3’-ベンゾチアジアゾール)](poly[N-9”-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)])(以下、PCDTBTという)を含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体を含むバルクへテロ接合型光電変換層である。ここでは、光電変換層4は、PCDTBTとフラーレン又はフラーレン誘導体との混合物からなる。
Figure JPOXMLDOC01-appb-C000001
 本実施形態では、n型有機半導体材料は、例えば、以下の化学式(2)で示す[6,6]-フェニル-C71-酪酸メチルエステル(PC71BM;[6,6]-Phenyl-C71 butyric acid methyl ester)、又は、以下の化学式(3)で示す[6,6]-フェニル-C61-酪酸メチルエステル(PC61BM;[6,6]-Phenyl-C61 butyric acid methyl ester)(以下、これらをPCBMという)である。
Figure JPOXMLDOC01-appb-C000002
 なお、n型有機半導体材料は、有機溶媒に可溶で、PCDTBTと相溶性がある、フラーレン又はフラーレン誘導体であれば良い。具体的には、n型有機半導体材料は、[6,6]-フェニル-C71-酪酸メチルエステル、[6,6]-フェニル-C61-酪酸メチルエステル、以下の化学式(4)で示すフラーレンC60、C70、C84(Fullerene, C60, C70 or C84)、以下の化学式(5)で示すC60インデン二付加体(ICBA;indene-C 60 bisadduct)、以下の化学式(6)で示す[6.6] ジフェニルC62ビス(酪酸メチルエステル)([6.6] Diphenyl C62bis(butyric acid methyl ester))、[6.6] ジフェニルC72ビス(酪酸メチルエステル)([6.6] Diphenyl C72bis(butyric acid methyl ester))、以下の化学式(7)で示す[6,6]-フェニル-C61 酪酸(3- エチルチオフェン)エステル([6,6]-Phenyl-C61 butyric acid (3-ethylthiophene) ester)、以下の化学式(8)で示す1-(3-メチルカルボニル)プロピル-1-チエニル-[6,6]-メタノフラーレン(ThCBM;1-(3-methoxycarbonyl)propyl-1-thienyl-6,6-methanofullerene)、以下の化学式(9)で示す[6,6]-フェニル-C61 酪酸(2,5-ジブロモ-3-エチルチオフェン)エステル([6,6]-Phenyl-C61 butyric acid (2,5-dibromo-3-ethylthiophene) ester)からなる群から選ばれるいずれか一種の材料を含むものであれば良い。
Figure JPOXMLDOC01-appb-C000003
 また、本実施形態では、光電変換層4のバッファ層3に接する領域におけるp型有機半導体材料の比率が、光電変換層4の全体におけるp型有機半導体材料の比率よりも高く、かつ、光電変換層4のバッファ層3に接する領域よりも陰極側の領域におけるp型有機半導体材料の比率が、光電変換層4の全体におけるp型有機半導体材料の比率よりも低くなっている。なお、光電変換層4のバッファ層3に接する領域は、光電変換層4の陽極側の領域、即ち、陽極2に近い領域、又は、光電変換層4のバッファ層近傍領域である。また、光電変換層4のバッファ層3に接する領域よりも陰極側の領域は、光電変換層4の陰極側の領域、即ち、陰極5に近い領域、又は、光電変換層4の陰極近傍領域である。
 このように、まず、陽極2となる透明電極上に形成したMoOバッファ層3の近傍で、光電変換層4はp型有機半導体材料としてのPCDTBTの割合(比率)が高くなっているため、MoOバッファ層3と光電変換層4との界面での正孔の伝導抵抗が減少する。一方、陰極5となる金属電極の近傍で、光電変換層4はn型有機半導体材料としてのフラーレン又はフラーレン誘導体(ここではPCBM)の割合(比率)が高くなっているため、陰極5となる金属電極と光電変換層4との界面での電子の伝導抵抗が減少する。これにより、光電変換層4の直列抵抗が減少する。
 また、光電変換層4は、正孔の濃度が高くなる陽極側で、p型有機半導体材料としてのPCDTBTの割合が高く、電子の濃度が高くなる陰極側で、n型有機半導体材料としてのフラーレン又はフラーレン誘導体(ここではPCBM)の割合が高くなっている。このため、電子と正孔の再結合確率が減少し、再結合によるリーク電流が減少する。これにより、光電変換層4の並列抵抗が増加する。
 このように、本実施形態の光電変換層4では、直列抵抗が減少し、並列抵抗が増加するため、曲線因子が向上する。また、本実施形態の光電変換層4では、陰極側及び陽極側のそれぞれの領域においても、PCDTBTとフラーレン又はフラーレン誘導体(ここではPCBM)とが混合された状態となっており、光電変換機能を有する。つまり、バッファ層3と陰極5との間の領域の全体が光電変換層4として機能する。このため、例えば光電変換層の陰極側にPCBMを塗布する場合と比較して、光電変換層を構成する材料を有効に利用し、バッファ層と陰極との間の領域の全体を光電変換層として機能させながら、曲線因子を向上させることができる。また、光電変換層とは別に正孔ブロック層を設ける場合と比較して、製造コストを低く抑えることが可能である。
 ところで、P3HTを代表とするp型有機半導体材料の多くは結晶性が高く、親和性が高い下地層を用いると、下地層との界面を基点として結晶が成長する。有機半導体中での励起子の拡散長は約10nm程度であるため、p型有機半導体材料の結晶サイズが大きくなりすぎると、励起子の多くが無駄になり、電荷分離効率が下がってしまう。
 これに対し、本実施形態の光電変換層4で用いるp型有機半導体材料としてのPCDTBTは、結晶性が乏しい高分子化合物であり、光電変換層4の内部ではn型有機半導体材料としてのフラーレン又はフラーレン誘導体(ここではPCBM)と全体にわたって無秩序に混合された状態になっている。また、通常のp型有機半導体材料は、分子間でのホッピングによって正孔が伝導するため、無秩序な混合状態では正孔の伝導は困難である。これに対し、PCDTBTは、主鎖上にp型として働く部分と、n型として働く部分の両方があり、分子内で前者から後者への電子供与が起こるため、主鎖上を正孔が伝導する。このため、p型有機半導体材料としてPCDTBTを用いることで、光電変換層4の内部が無秩序な混合状態であっても、高い電荷分離効率を実現することが可能である。
 また、本実施形態の光電変換層4は、後述するように、MoOバッファ層3の表面にp型有機半導体材料としてのPCDTBTが優先的に吸着(堆積)することで形成されるが、MoOバッファ層3の表面に吸着するPCDTBTは全体のごく一部である。また、PCDTBTの多くはMoOバッファ層の表面から陰極近傍までつながった状態となる。つまり、一つのPCDTBT分子は、MoOバッファ層3の表面に吸着した部分と、周囲のn型有機半導体材料と混合した部分の両方を持つ状態となる。このような状態は、主鎖上を正孔が伝導する能力が高いPCDTBTにおいては、高い電荷分離効率、高い電荷輸送効率、低い電荷再結合確率、及び、低い直列抵抗を同時に実現するのに非常に有利なものである。つまり、MoOバッファ層3の表面にこのような状態で多く存在するPCDTBTによって、高い電荷分離効率、高い電荷輸送効率、高い曲線因子を同時に実現し、光電変換効率の高い光電変換層を実現できることになる。
 このように、p型有機半導体材料としてのPCDTBTは、光電変換層4の陽極側に設けられるMoOバッファ層3との高い親和性を利用して、陽極側でPCDTBTの割合を高くできるだけでなく、非結晶性かつ主鎖上を正孔が伝導可能という特徴を持つ。このため、光電変換層4のp型有機半導体材料としてPCDTBTを用いることで、非常に効果的に曲線因子及び光電変換効率を向上させることが可能である。
 また、例えば光電変換層のp型有機半導体材料として用いられるP3HTは、最高被占有分子軌道(HOMO)のエネルギーレベルが比較的高いため、光電変換素子の開放電圧を上げにくい。これに対し、PCDTBTは、P3HTと比較して、HOMOのエネルギーレベルが約0.3eV低いため、光電変換素子の開放電圧を上げることができる。このように、よりHOMOのエネルギーレベルが低いPCDTBTをp型有機半導体材料として用いることで、開放電圧及び光電変換効率を向上させることができる。
 また、光電変換素子の透明基板上に設けることができる透明電極材料の選択肢は限られている。このため、現実には、透明電極の仕事関数を大きくするよりも、金属電極の仕事関数を小さくする方が容易である。したがって、上述の第3の方法のように透明電極を陰極に用い、金属電極を陽極に用いるよりも、本実施形態のように透明電極を陽極に用い、金属電極を陰極に用いた方が高い出力電圧を得やすい。
 次に、本実施形態にかかる光電変換素子の製造方法について説明する。
 まず、基板1(透明基板)上に陽極2(透明電極)を形成する。
 次いで、陽極2上に、MoOを含むバッファ層3を形成する。
 次に、MoOを含むバッファ層3上に、光電変換層4を形成する。
 つまり、陽極2上に形成したMoOを含むバッファ層3の表面に、p型有機半導体材料としてPCDTBTを含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体(ここではPCBM)を含む混合液を塗布し(塗布工程)、約50℃以下で乾燥させて(乾燥工程)、光電変換層4を形成する。これにより、陽極側でPCDTBTの比率が高く、陰極側でフラーレン又はフラーレン誘導体(ここではPCBM)の比率が高いバルクへテロ接合型光電変換層4を自発的に形成することができる。このように、1種類の混合液を用い、それを一回塗布するだけで、陽極側でPCDTBTの比率が高く、陰極側でフラーレン又はフラーレン誘導体(ここではPCBM)の比率が高いバルクへテロ接合型光電変換層4を自発的に形成することができる。このため、光電変換層4の形成が容易である。
 ここでは、光電変換層4の陽極側に設けられるバッファ層3の材料であるMoOと光電変換層4のp型有機半導体材料であるPCDTBTとの親和性を利用して、陽極側でPCDTBTの比率が高く、陰極側でPCBMの比率が高いバルクへテロ接合型光電変換層4が自発的に形成されるようにしている。
 つまり、光電変換層4を形成する際の下地となるMoOは、炭酸セシウムのような親水性が高い塩ほど強くはないものの、表面に極性を持つ金属酸化物である。
 また、p型有機半導体材料としてのPCDTBTは、全体としてはp型材料であるが、主鎖に、p型として働く部分(チオフェン環、カルバゾール環)と、n型として働く部分(ベンゾチアジアゾール環)の両方を持つため、主鎖上に一定の双極子モーメントが存在する。つまり、p型有機半導体材料としてのPCDTBTは、それほど強くはないが、極性を持つ。
 一方、n型有機半導体材料としてのPCBMは、単分子ではほとんど極性を持たないが、電子密度が非常に高いため、凝集状態では、分子間相互作用によって強い分極が生じると考えられている。そして、光電変換層形成工程中は、PCBMは凝集状態であるため、極性が強い下地があれば、その表面に優先して堆積することになる。
 しかしながら、光電変換層4を形成する際の下地となるMoOの表面の極性は、それほど強くない。
 このため、中程度の極性を持つPCDTBTが、MoO上に優先して堆積し、PCBMはむしろMoOの表面から排除されることになる。この結果、陽極側、即ち、MoOを含むバッファ層側でPCDTBTの比率が高く、陰極側でPCBMの比率が高いバルクへテロ接合型光電変換層4が自発的に形成されることになる。
 特に、上述のように、PCDTBTとPCBMの混合液をMoO層3上に塗布した後、約50℃以下で乾燥させることで、陽極側でPCDTBTの比率が高く、陰極側でPCBMの比率が高いバルクへテロ接合型光電変換層4を得ることができる。つまり、PCDTBTとPCBMの混合液をMoO層3上に塗布した後、乾燥するまでの期間において、温度を約50℃以下に制御することで、陽極側でPCDTBTの比率が高く、陰極側でPCBMの比率が高いバルクへテロ接合型光電変換層4を得ることができる。なお、MoO層3上に塗布されたPCDTBTとPCBMの混合液が乾燥するまでの間に混合液の温度が高くなりすぎると、上述のMoOの表面での材料選択機構よりも、熱擾乱の効果が勝ることになり、内部組成が均一なバルクへテロ接合型光電変換層が形成されてしまう。つまり、MoO層3上に塗布されたPCDTBTとPCBMの混合液が乾燥するまでの間に混合液の温度が約50℃よりも高くなってしまうと、陽極側でPCDTBTの比率が高く、陰極側でPCBMの比率が高いバルクへテロ接合型光電変換層を得ることができない。
 その後、光電変換層4上に陰極5(金属電極)を形成する。
 そして、例えば窒素雰囲気中で封止して、光電変換素子が完成する。
 したがって、本実施形態にかかる光電変換素子及びその製造方法によれば、光電変換層4の陽極側に設けられるバッファ層3の材料であるMoOとp型有機半導体材料であるPCDTBTとの親和性を利用して、曲線因子を向上させることができるという利点がある。
 なお、本発明は、上述した実施形態に記載した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形することが可能である。
 例えば、上述の実施形態では、塗布工程の後に乾燥工程を行なうようにしているが、これに限られるものではなく、例えば、塗布工程と乾燥工程とを一つの工程で並行して行なうようにしても良い。つまり、上述の実施形態では、混合液を塗布した後の工程で、塗布された混合液を乾燥させるようにしているが、例えば、混合液の塗布及び乾燥を一つの工程で並行して行なうようにしても良い。また、乾燥工程の後に、即ち、混合液を乾燥させた後に、50℃よりも高い温度で熱処理を行なうようにしても良い。これにより、短絡電流密度を向上させ、これにより、光電変換効率を向上させることができる。
 また、上述の実施形態では、光電変換素子を有機薄膜型太陽電池に用いる場合を例に挙げて説明しているが、これに限られるものではなく、例えばカメラなどの撮像装置のセンサなどに用いることもできる。
 以下、実施例によって更に詳細に説明する。ただし、本発明は以下の実施例によって限定されるものではない。
[実施例1]
 本実施例1では、以下のようにして光電変換素子を作製した。
 まず、ガラス基板上に、幅約2mm、膜厚約200nmのITO電極(陽極)を形成した。
 次に、陽極としてのITO電極上の全面に、膜厚約6nmのMoOバッファ層を真空蒸着によって形成した。
 次に、ITO電極及びMoOバッファ層を形成したガラス基板を、窒素を内部に満たしたグローブボックスに移し、p型有機半導体材料としてのPCDTBTと、n型有機半導体材料としてのPCBM(ここでは[6,6]-フェニル-C71-酪酸メチルエステル;以下PC71BMという)とを重量比1:3で含むモノクロロベンゼン溶液(混合溶液;濃度約2重量%)を、約30℃で、約500rpm、約10秒の条件でスピンコート成膜した(塗布工程)。このスピンコート成膜後、約30℃で約30分間の放置乾燥を行なって(乾燥工程)、光電変換層を形成した。
 このようにして光電変換層を形成した後、熱処理を行なうことなく、光電変換層上に幅約2mm、膜厚約150nmのアルミニウム電極(陰極)を真空蒸着で形成した。
 そして、窒素雰囲気中で封止して、光電変換素子を作製した。
 ここで、図2は、上述のようにして作製した本実施例1の光電変換素子の断面に対して、電子エネルギー損失分光法(EELS;Electron Energy Loss Spectroscopy)による面分析を行ない、硫黄原子に対応する信号のマッピングを行なった結果(マッピング像)を示している。
 図2では、光電変換層のMoOバッファ層近傍領域が明るく見えており、これはこの領域で硫黄の信号強度が強くなっていることを示している。
 上述のようにして作製した光電変換素子では、PCDTBTは硫黄原子を含み、PC71BMは硫黄原子を含まない。このため、EELS分析の結果は、光電変換層中のMoOバッファ層近傍領域でPCDTBTの濃度が高くなっていることを示している。
 また、図3は、同じくEELSを用いて、上述のようにして作製した本実施例1の光電変換素子の光電変換層内部の点分析を膜厚方向に5点行ない、硫黄原子に起因する信号の強度及び炭素原子に起因する信号の強度を計測して、これらの比(信号強度比;C/S)を計算した結果を示している。なお、図3中、エラーバーは測定値の標準偏差、点線はC/Sの平均値を示している。また、膜厚方向位置はMoOバッファ層の表面からの距離で示している。
 ここで、炭素原子の信号強度と硫黄原子の信号強度の比(C/S)は、光電変換層中のPCDTBTとPC71BMの合計とPCDTBTとの比((PC71BM+PCDTBT)/PCDTBT;重量比;組成比;混合比)に対応するものである。また、C/Sの平均値は、混合液中でのPCDTBTとPC71BMの合計とPCDTBTとの比、即ち、光電変換層の全体におけるPCDTBTとPC71BMの合計とPCDTBTとの比(重量比;組成比;混合比)に対応するものである。また、C/Sの平均値に対応する混合液中でのPCDTBTの比率(即ち、PC71BMとPCDTBTの合計に対するPCDTBTの比率)、即ち、光電変換層の全体におけるPCDTBTの比率(即ち、PC71BMとPCDTBTの合計に対するPCDTBTの比率)を、平均比率という。
 図3に示すように、光電変換層のMoOバッファ層近傍領域で、C/Sの値がC/Sの平均値よりも小さく、即ち、PCDTBTの比率(即ち、PC71BMとPCDTBTの合計に対するPCDTBTの比率)が平均比率よりも高くなっている。また、反対側のMoOバッファ層から遠い陰極側の領域で、C/Sの値がC/Sの平均値よりも大きく、即ち、PCDTBTの比率(即ち、PC71BMとPCDTBTの合計に対するPCDTBTの比率)が平均比率よりも低くなっている。
 また、図4は、上述のようにして光電変換層の形成する際の乾燥温度と直列抵抗との関係を示している。また、図5は、上述のようにして光電変換層を形成する際の乾燥温度と並列抵抗との関係を示している。なお、図4、図5では、発生電流が大きいために直列抵抗と並列抵抗を精度良く測定できる、擬似太陽光(AM1.5、放射照度100mW/cm)の条件で、乾燥温度を変化させて直列抵抗及び並列抵抗を測定した結果を、それぞれ示している。
 本実施例1のように約30℃で乾燥を行なうことで、図4、図5に示すように、直列抵抗が減少し、並列抵抗が増加することが分かる。つまり、約30℃で乾燥を行なって作製した本実施例1の光電変換素子では、上述のように、陽極側、即ち、MoOバッファ層側でPCDTBTの比率が高く、陰極側でPC71BMの比率が高い構造が得られ、直列抵抗が減少し、並列抵抗が増加することが分かる。同様に、乾燥温度を低くした場合、即ち、約50℃以下の低温で乾燥を行なった場合、直列抵抗が減少し、並列抵抗が増加することが分かる。このように、乾燥温度を低くすることで、直列抵抗が減少し、並列抵抗が増加する結果、曲線因子が向上する。ここでは、並列抵抗の増加よりも、直列抵抗の減少の方がより顕著であり、これは、曲線因子の向上という効果が、主にMoOバッファ層及び陰極と光電変換層との界面におけるキャリアの伝導抵抗の減少、即ち、直列抵抗の減少によるものであることを示唆している。
 また、図6は、上述のようにした作製した本実施例1の光電変換素子の白色蛍光灯光(照度383lux、放射照度88.7μW/cm)下におけるI-V曲線を示している。
 図6に示すように、白色蛍光灯光(照度383lux、放射照度88.7μW/cm)下において、開放電圧(Voc)は約0.743V、短絡電流密度(Jsc)は約21.8μA/cm、曲線因子(FF)は約0.59、最大電力密度(Pmax)は約9.58μW/cmで、光電変換効率は約10.8%であった。なお、曲線因子は、(Pmax)/(Voc×Jsc)で定義される。また、光電変換効率は、光電変換効率=(Voc×Jsc×FF)/入射光の放射照度×100という式によって求めることができる。
 また、図7は、上述のようにして作製した本実施例1の光電変換素子の擬似太陽光(AM(エアマス)1.5、放射照度100mW/cm)下におけるI-V曲線を示している。
 図7に示すように、擬似太陽光(AM(エアマス)1.5、放射照度100mW/cm)下において、Vocは約0.875V、Jscは約4.73mA/cm、FFは約0.45で、光電変換効率は約1.85%であった。
 これらを後述の比較例の場合と比較すると、白色蛍光灯光下においてFFが約31%、光電変換効率が約82%向上し、擬似太陽光下においてFFが約25%、光電変換効率が約80%向上した。つまり、乾燥工程において、約30℃で約30分間の放置乾燥を行なう場合を約70℃で約10分間の加熱乾燥処理を行なう場合と比較すると、白色蛍光灯光下においてFFが約31%、光電変換効率が約82%向上し、擬似太陽光下においてFFが約25%、光電変換効率が約80%向上した。このように、約50℃以下の低温で乾燥を行なうことで、上述のように、陽極側、即ち、MoOバッファ層側でPCDTBTの比率(濃度)が高く、陰極側でPC71BMの比率(濃度)が高い構造が得られ、白色蛍光灯光下においてFFが約31%、光電変換効率が約82%向上し、擬似太陽光下においてFFが約25%、光電変換効率が約80%向上した。
[比較例]
 本比較例では、乾燥工程、即ち、スピンコート成膜後、約70℃で約10分間の加熱乾燥処理を行なったことを除いて、上述の実施例1と同様の方法で、光電変換素子を作製した。
 ここで、図8は、上述のようにして作製した本比較例の光電変換素子の断面に対して、電子エネルギー損失分光法による面分析を行ない、硫黄原子に対応する信号のマッピングを行なった結果(マッピング像)を示している。
 図8では、光電変換層の明るさは均一であり、これは、硫黄原子の濃度、即ち、PCDTBTの濃度がほぼ均一であることを示している。これは、加熱条件での乾燥を行なうことで、熱擾乱による組成の均一化が進んだことを示している。
 また、図9は、このようにして作製した本比較例の光電変換素子の白色蛍光灯光(照度375lux、放射照度84.9μW/cm)下におけるI-V曲線を示している。
 図9に示すように、Vocは約0.751V、Jscは約15.0μA/cm、FFは約0.45で、光電変換効率は約5.93%であった。
 また、図10は、上述のようにして作製した本比較例の光電変換素子の擬似太陽光(AM1.5、放射照度100mW/cm)下におけるI-V曲線を示している。
 図10に示すように、Vocは約0.853V、Jscは約3.35mA/cm、FFは約0.36で、光電変換効率は約1.03%であった。
[実施例2]
 本実施例2では、乾燥工程、即ち、スピンコート成膜後、約50℃で約10分間の加熱乾燥処理を行なったことを除いて、上述の実施例1と同様の方法で、光電変換素子を作製した。
 ここで、図11は、上述のようにして作製した本実施例2の光電変換素子の白色蛍光灯光(照度375lux、放射照度84.9μW/cm)下におけるI-V曲線を示している。
 図11に示すように、Vocは約0.748V、Jscは約21.6μA/cm、FFは約0.59で、光電変換効率は約11.1%であった。
 また、図12は、上述のようにして作製した本実施例2の光電変換素子の擬似太陽光(AM1.5、放射照度100mW/cm)下におけるI-V曲線を示している。
 図12に示すように、Vocは約0.897V、Jscは約5.32mA/cm、FFは約0.41で、光電変換効率は約1.97%であった。
 このように、FF及び光電変換効率は、上述の実施例1の場合と同等であった。つまり、乾燥工程において、約30℃で約30分間の放置乾燥に代えて、約50℃で約10分間の加熱乾燥処理を行なっても、上述の実施例1の場合と同等のFF及び光電変換効率が得られた。このように、約50℃以下の低温で乾燥を行なえば、上述の実施例1の場合と同様に、FF及び光電変換効率が向上することが分かった。
[実施例3]
 本実施例3では、塗布工程と乾燥工程とを一つの工程で並行して行なうようにした、即ち、約30℃で、スピン時間を約5分間としてスピンコート成膜し、スピンコート成膜中に光電変換層が乾燥するようにしたことを除いて、上述の実施例1と同様の方法で、光電変換素子を作製した。
 ここで、図13は、上述のようにして作製した本実施例3の光電変換素子の白色蛍光灯光(照度375lux、放射照度84.9μW/cm)下におけるI-V曲線を示しいている。
 図13に示すように、Vocは約0.746V、Jscは約20.9μA/cm、FFは約0.57で、光電変換効率は約10.3%であった。
 また、図14は、上述のようにして作製した本実施例3の光電変換素子の擬似太陽光(AM1.5、放射照度100mW/cm)下におけるI-V曲線を示している。
 図14に示すように、Vocは約0.880V、Jscは約4.25mA/cm、FFは約0.46で、光電変換効率は約1.72%であった。
 このように、スピンコート成膜(塗布)と乾燥とを同時並行で行なっても、FF及び光電変換効率は、上述の実施例1の場合と同等であった。つまり、塗布工程及び乾燥工程において、約30℃で、約500rpm、約10秒の条件でスピンコート成膜した後、約30℃で約30分間の放置乾燥を行なうのに代えて、約30℃で、スピン時間を約5分間としてスピンコート成膜し、スピンコート成膜中に光電変換層が乾燥するようにしても、上述の実施例1の場合と同等のFF及び光電変換効率が得られた。このように、約50℃以下の低温で塗布及び乾燥を行なえば、上述の実施例1の場合と同様に、FF及び光電変換効率が向上することが分かった。
[実施例4]
 本実施例4では、乾燥工程の後に、約50℃よりも高い温度で熱処理を行なうようにした、即ち、乾燥工程の後に、約70℃で、約10分間の熱処理を行なうようにしたことを除いて、上述の実施例1と同様の方法で、光電変換素子を作製した。
 ここで、図15は、上述のようにして作製した本実施例4の光電変換素子の白色蛍光灯光(照度382lux、放射照度88.3μW/cm)下におけるI-V曲線を示している。
 図15に示すように、Vocは約0.743V、Jscは約24.8μA/cm、FFは約0.61で、光電変換効率は約12.6%であった。
 また、図16は、上述のようにして作製した本実施例4の光電変換素子の擬似太陽光(AM1.5、放射照度100mW/cm)下におけるI-V曲線を示している。
 図16に示すように、Vocは約0.884V、Jscは約5.65mA/cm、FFは約0.45で、光電変換効率は約2.26%であった。
 このように、乾燥工程の後に約50℃よりも高い温度で熱処理を行なうことで、上述の実施例1の場合と比較して、Jscが向上し、この結果、光電変換効率が向上することが分かった。これは、乾燥工程の後に光電変換層に加熱処理を施すことによって、PC71BMがより稠密になり、電子の伝導性が向上した結果であると考えられる。
 1 基板(透明基板)
 2 陽極(透明電極)
 3 バッファ層(MoO層)
 4 光電変換層(p型有機半導体材料:PCDTBT、n型有機半導体材料:PCBM)
 5 陰極(金属電極)

Claims (8)

  1.  陽極と、
     陰極と、
     p型有機半導体材料としてポリ-[N-9”-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4’,7’-ジ-2-チエニル2’,1’,3’-ベンゾチアジアゾール)]を含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体を含む光電変換層と、
     前記陽極と前記光電変換層との間に設けられ、MoOを含むバッファ層とを備え、
     前記光電変換層の前記バッファ層に接する領域における前記p型有機半導体材料の比率が、前記光電変換層の全体における前記p型有機半導体材料の比率よりも高く、かつ、前記光電変換層の前記バッファ層に接する領域よりも前記陰極側の領域における前記p型有機半導体材料の比率が、前記光電変換層の全体における前記p型有機半導体材料の比率よりも低いことを特徴とする光電変換素子。
  2.  前記n型有機半導体材料は、[6,6]-フェニル-C71-酪酸メチルエステル、[6,6]-フェニル-C61-酪酸メチルエステル、フラーレンC60、C70、C84、C60インデン二付加体、[6.6] ジフェニルC62ビス(酪酸メチルエステル)、[6.6] ジフェニルC72ビス(酪酸メチルエステル)、[6,6]-フェニル-C61 酪酸(3- エチルチオフェン)エステル、1-(3-メチルカルボニル)プロピル-1-チエニル-[6,6]-メタノフラーレン、[6,6]-フェニル-C61 酪酸(2,5-ジブロモ-3-エチルチオフェン)エステルからなる群から選ばれるいずれか一種の材料を含むことを特徴とする、請求項1に記載の光電変換素子。
  3.  MoOを含むバッファ層上に、p型有機半導体材料としてポリ-[N-9”-ヘプタデカニル-2,7-カルバゾール-alt-5,5-(4’,7’-ジ-2-チエニル2’,1’,3’-ベンゾチアジアゾール)]を含み、n型有機半導体材料としてフラーレン又はフラーレン誘導体を含む混合液を塗布し、50℃以下で乾燥させて、光電変換層を形成することを特徴とする光電変換素子の製造方法。
  4.  前記混合液を塗布した後の工程で、塗布された前記混合液を乾燥させることを特徴とする、請求項3に記載の光電変換素子の製造方法。
  5.  前記混合液の塗布及び乾燥を一つの工程で並行して行なうことを特徴とする、請求項3に記載の光電変換素子の製造方法。
  6.  前記混合液を乾燥させた後に、50℃よりも高い温度で熱処理を行なうことを特徴とする、請求項3~5のいずれか1項に記載の光電変換素子の製造方法。
  7.  前記混合液として、1種類の混合液を用いることを特徴とする、請求項3~6のいずれか1項に記載の光電変換素子の製造方法。
  8.  前記n型有機半導体材料は、前記n型有機半導体材料は、[6,6]-フェニル-C71-酪酸メチルエステル、[6,6]-フェニル-C61-酪酸メチルエステル、フラーレンC60、C70、C84、C60インデン二付加体、[6.6] ジフェニルC62ビス(酪酸メチルエステル)、[6.6] ジフェニルC72ビス(酪酸メチルエステル)、[6,6]-フェニル-C61 酪酸(3- エチルチオフェン)エステル、1-(3-メチルカルボニル)プロピル-1-チエニル-[6,6]-メタノフラーレン、[6,6]-フェニル-C61 酪酸(2,5-ジブロモ-3-エチルチオフェン)エステルからなる群から選ばれるいずれか一種の材料を含むことを特徴とする、請求項3~7のいずれか1項に記載の光電変換素子の製造方法。
PCT/JP2011/074124 2011-10-20 2011-10-20 光電変換素子及びその製造方法 WO2013057816A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013539459A JP5741702B2 (ja) 2011-10-20 2011-10-20 光電変換素子及びその製造方法
CN201180074244.9A CN103890989B (zh) 2011-10-20 2011-10-20 光电转换元件及其制造方法
PCT/JP2011/074124 WO2013057816A1 (ja) 2011-10-20 2011-10-20 光電変換素子及びその製造方法
US14/230,760 US9318720B2 (en) 2011-10-20 2014-03-31 Photoelectric conversion device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074124 WO2013057816A1 (ja) 2011-10-20 2011-10-20 光電変換素子及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/230,760 Continuation US9318720B2 (en) 2011-10-20 2014-03-31 Photoelectric conversion device and method for producing the same

Publications (1)

Publication Number Publication Date
WO2013057816A1 true WO2013057816A1 (ja) 2013-04-25

Family

ID=48140493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074124 WO2013057816A1 (ja) 2011-10-20 2011-10-20 光電変換素子及びその製造方法

Country Status (4)

Country Link
US (1) US9318720B2 (ja)
JP (1) JP5741702B2 (ja)
CN (1) CN103890989B (ja)
WO (1) WO2013057816A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176180A1 (ja) * 2012-05-23 2013-11-28 東レ株式会社 光起電力素子および光起電力素子の製造方法
WO2015045123A1 (ja) * 2013-09-27 2015-04-02 富士通株式会社 光電変換素子及びその製造方法
WO2015096797A1 (en) * 2013-12-26 2015-07-02 The Hong Kong University Of Science And Technology Polymer/fullerene formations and their use in electronic/photonic devices
JP2019091908A (ja) * 2013-12-17 2019-06-13 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 金属ハロゲン化物ペロブスカイト及び不動態化剤を含む光起電力デバイス
JP2020088170A (ja) * 2018-11-26 2020-06-04 住友化学株式会社 有機光電変換素子

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199587B2 (en) 2012-08-09 2019-02-05 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
KR102491494B1 (ko) 2015-09-25 2023-01-20 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 및 이미지 센서
KR102529631B1 (ko) 2015-11-30 2023-05-04 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102557864B1 (ko) 2016-04-06 2023-07-19 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
US10236461B2 (en) 2016-05-20 2019-03-19 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
KR102605375B1 (ko) 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102589215B1 (ko) 2016-08-29 2023-10-12 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
KR102067546B1 (ko) * 2017-02-24 2020-01-17 단국대학교 산학협력단 X-선 검출용 유기소자 및 그 제조방법
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
US11557741B2 (en) 2018-11-14 2023-01-17 Samsung Electronics Co., Ltd. Photoelectric conversion devices and organic sensors and electronic devices
EP3739641A1 (en) 2019-05-15 2020-11-18 Samsung Electronics Co., Ltd. N-type semiconductor composition, and thin film, organic photoelectric device, image sensor, and electronic device including the same
EP3739643A1 (en) 2019-05-17 2020-11-18 Samsung Electronics Co., Ltd. Organic photoelectric device, image sensor, and electronic device
KR20200132537A (ko) 2019-05-17 2020-11-25 삼성전자주식회사 광전 변환 소자, 유기 센서 및 전자 장치
KR20210109158A (ko) 2020-02-27 2021-09-06 삼성전자주식회사 광전 변환 소자, 유기 센서 및 전자 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120082A2 (ko) * 2009-04-13 2010-10-21 광주과학기술원 고분자 전해질층을 이용한 적층형 유기태양전지 및 그 제조방법
JP2010263039A (ja) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc 照明装置
JP2011187852A (ja) * 2010-03-11 2011-09-22 Toshiba Corp 有機薄膜太陽電池およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331183A (en) 1992-08-17 1994-07-19 The Regents Of The University Of California Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010120082A2 (ko) * 2009-04-13 2010-10-21 광주과학기술원 고분자 전해질층을 이용한 적층형 유기태양전지 및 그 제조방법
JP2010263039A (ja) * 2009-05-01 2010-11-18 Konica Minolta Holdings Inc 照明装置
JP2011187852A (ja) * 2010-03-11 2011-09-22 Toshiba Corp 有機薄膜太陽電池およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN Y. ET AL: "Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer", ADVANCED MATERIALS, vol. 23, no. 19, 17 May 2011 (2011-05-17), pages 2226 - 2230, XP003031161 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176180A1 (ja) * 2012-05-23 2013-11-28 東レ株式会社 光起電力素子および光起電力素子の製造方法
WO2015045123A1 (ja) * 2013-09-27 2015-04-02 富士通株式会社 光電変換素子及びその製造方法
CN105580152A (zh) * 2013-09-27 2016-05-11 富士通株式会社 光电转换元件及其制造方法
JP6052422B2 (ja) * 2013-09-27 2016-12-27 富士通株式会社 光電変換素子及びその製造方法
CN105580152B (zh) * 2013-09-27 2017-12-22 富士通株式会社 光电转换元件及其制造方法
JP2019091908A (ja) * 2013-12-17 2019-06-13 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 金属ハロゲン化物ペロブスカイト及び不動態化剤を含む光起電力デバイス
JP2019096891A (ja) * 2013-12-17 2019-06-20 オックスフォード ユニヴァーシティ イノヴェーション リミテッド 金属ハロゲン化物ペロブスカイト及び不動態化剤を含む光起電力デバイス
WO2015096797A1 (en) * 2013-12-26 2015-07-02 The Hong Kong University Of Science And Technology Polymer/fullerene formations and their use in electronic/photonic devices
JP2020088170A (ja) * 2018-11-26 2020-06-04 住友化学株式会社 有機光電変換素子

Also Published As

Publication number Publication date
CN103890989A (zh) 2014-06-25
CN103890989B (zh) 2017-08-08
JP5741702B2 (ja) 2015-07-01
JPWO2013057816A1 (ja) 2015-04-02
US9318720B2 (en) 2016-04-19
US20140209173A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5741702B2 (ja) 光電変換素子及びその製造方法
Chen et al. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress
Zhang et al. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer
Yin et al. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt
US10236460B2 (en) Photovoltaic cell enhancement through UVO treatment
Chen et al. The effect of C60 on the ZnO-nanorod surface in organic–inorganic hybrid photovoltaics
US20160197281A1 (en) Photoelectric conversion device and fabrication method therefor
Zhang et al. High photocurrent PbSe solar cells with thin active layers
Morvillo et al. Influence of annealing treatments on solution-processed ZnO film deposited on ITO substrate as electron transport layer for inverted polymer solar cells
Chen et al. Performance improvement of perovskite solar cells using electron and hole transport layers
Duan et al. Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P3CT salt as hole transport layer
Das et al. Self-assembled monolayer modified ITO in P3HT: PC61BM organic solar cells with improved efficiency
US20090071538A1 (en) Photovoltaic device and method of manufacturing the same
Zhang et al. High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
Qin et al. Composition-dependent phase separation effects of organic solar cells using P3HT: PCBM as active layer and chromium oxide as hole transporting layer
Chen et al. High performance thermal-treatment-free tandem polymer solar cells with high fill factors
Yang et al. Morphology optimization of organic solar cells enabled by interface engineering of zinc oxide layer with a conjugated organic material
Park et al. Water-processable electron-collecting layers of a hybrid poly (ethylene oxide): Caesium carbonate composite for flexible inverted polymer solar cells
JP6070714B2 (ja) 光電変換素子及びその製造方法
Patel et al. Solution processed approaches for bulk-heterojunction solar cells based on Pb and Cd chalcogenide nanocrystals
Sahdan et al. Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT: PCBM using various thicknesses of ZnO buffer layer
Yusoff et al. Comparison of organic photovoltaic with graphene oxide cathode and anode buffer layers
Chen et al. Solution-processed polymer bilayer heterostructures as hole-transport layers for high-performance opaque and semitransparent organic solar cells
Gautam et al. AD–π–A1–π–A2 push–pull small molecule donor for solution processed bulk heterojunction organic solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874362

Country of ref document: EP

Kind code of ref document: A1