WO2013056657A1 - 活性提高的l-天冬酰胺酶变体 - Google Patents

活性提高的l-天冬酰胺酶变体 Download PDF

Info

Publication number
WO2013056657A1
WO2013056657A1 PCT/CN2012/083140 CN2012083140W WO2013056657A1 WO 2013056657 A1 WO2013056657 A1 WO 2013056657A1 CN 2012083140 W CN2012083140 W CN 2012083140W WO 2013056657 A1 WO2013056657 A1 WO 2013056657A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
variant
asparaginase
sequence
amino acid
Prior art date
Application number
PCT/CN2012/083140
Other languages
English (en)
French (fr)
Inventor
沈林
李鼎锋
孙志丹
陈星梅
刘勇
Original Assignee
北京安百胜生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京安百胜生物科技有限公司 filed Critical 北京安百胜生物科技有限公司
Publication of WO2013056657A1 publication Critical patent/WO2013056657A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01001Asparaginase (3.5.1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • C12N9/82Asparaginase (3.5.1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase

Definitions

  • the invention belongs to the technical field of medical bioengineering.
  • it relates to L-asparaginase variants with increased activity and the use of these variants in the treatment of tumors.
  • Leukemia is a malignant disease that seriously endangers human life in the world today, accounting for the sixth highest incidence of cancer, accounting for the first incidence of malignant tumors in adolescents [1].
  • acute lymphocytic leukaemia (AL book L) is a high incidence of hematological malignancies, especially in adolescents and children, and its incidence accounts for about 25% of all adolescent cancer incidence and The incidence of leukemia is about 80% [2]. Due to the sharp increase and spread of malignant cells, patients die within months or even weeks without treatment.
  • L-asparaginase (L-ASP, EC 3.5.1.1) is an important leukemia chemotherapy drug and is an important component of almost all ALL combined chemotherapy. Its mechanism of action is to break down L-asparagine in the blood circulation. Because tumor cells cannot synthesize L-asparagine by themselves, they die when they lose exogenous L-asparagine; while normal cells also have L-days. The second synthetic route of cox is therefore unaffected.
  • the combination of L-ASP-based chemotherapy has significantly improved the prognosis, with a complete remission (CR) rate of over 80% and a disease-free survival rate of more than 40% over 5 years [3].
  • L-ASP still has limitations as a leukemia chemotherapy drug.
  • the clinical application of L-ASP has low activity and short half-life in vivo ( ⁇ 5 hours), so the dosage is large (30-50mg), requiring frequent injections (three times a week), often causing allergic reactions and pyrogens in patients. Reactions and other side effects [4].
  • PEGylated L-ASP has a significantly extended half-life, the overall incidence of allergic reactions is lower than that of natural extracts, but PEG modification results in a 30% reduction in enzyme activity, and 11% of patients who are not allergic to natural L-ASP have PEG.
  • Product allergy data source is Enzon PEGylated L-ASP Oncaspar product manual).
  • the present invention transforms Escherichia coli (3 ⁇ 4dien'di fl coli) wild type L-asparaginase (L-ansB) by in vitro directed evolution-error-prone PCR technology to obtain improved activity and improved thermal stability.
  • the invention provides a variant of L-asparaginase which is as SEQ ID NO: 1
  • L-asparaginase variants of the invention have increased activity and thermostability compared to wild-type enzymes.
  • the invention provides an isolated nucleic acid comprising a nucleotide sequence encoding an L-asparaginase variant of the invention, an expression construct comprising the nucleic acid, and a host cell comprising the expression construct.
  • the present invention provides a method of producing the L-asparaginase variant of the present invention.
  • the present invention also provides a pharmaceutical composition for treating a tumor comprising the L-asparaginase variant of the present invention.
  • Figure 1 Schematic diagram of L-asparaginase decomposition of L-asparagine.
  • FIG. 1 Electropherogram showing the purified L-asparaginase variant protein.
  • Lane 1 is a fermentation broth;
  • Lane 2 is a penetrating solution;
  • Lane 3 is an equilibration rinse;
  • Lane 4 is an eluate (L-asparaginase variant protein) eluted with 20 mM PB (pH 8.0) containing 0.2 M NaCl;
  • Lane 5 6 is an eluate eluted with 20 mM PB (pH 8.0) containing 0.5 M and 1 M NaCl;
  • Lane 7 is a protein marker.
  • FIG. 1 Electropherogram of protein after purification of L-asparaginase variant and wild-type enzyme.
  • Lane 1 is a protein marker
  • lane 2 is a wild-type enzyme
  • lane 3 is a variant Ml
  • lane 4 is a variant M13.
  • L-ansB was modified, and surprisingly, the inventors obtained L-asparaginase variants with improved activity and heat stability.
  • the invention provides a variant of L-asparaginase, which is as SEQ ID NO: 1
  • the L-asparaginase variant of the invention comprises a mutation selected from the group consisting of SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO:
  • the amino acid sequence of 8 preferably comprising the amino acid sequence of SEQ ID NO: 4 or SEQ ID NO: 8, most preferably comprising the amino acid sequence of SEQ ID NO: 4, and optionally, the amino acid sequence does not contain the signal peptide SEQ ID NO : 15.
  • the protein or nucleic acid may be comprised of the sequence or may have additional amino acids or cores at one or both ends of the protein or nucleic acid. Glycosylates, but still have the activity described herein.
  • the L-asparaginase variants of the invention may comprise additional linkers or be fused to other tagged proteins.
  • These linkers and/or tags may facilitate the production of the L-asparaginase variants of the invention in a host cell of interest, increase the amount of expression or increase soluble expression, facilitating the isolation and purification of the variant, but essentially Does not affect the activity of the variant.
  • Many such joints and/or labels are known in the art.
  • Suitable linkers and/or tags include, for example, 6 XHis, GST (; glutathione transferase), MBP (maltose binding protein), and the like.
  • Suitable fittings and/or labels are usually available It is obtained by selecting a suitable commercial expression vector.
  • the invention provides an isolated nucleic acid comprising a nucleotide sequence of an L-asparaginase variant of the invention, optionally, the nucleotide sequence does not comprise a signal peptide SEQ ID NO: The coding sequence of 15.
  • the nucleotide sequence encoding the L-asparaginase variant of the present invention can be deduced from the amino acid sequence of the L-asparaginase variant of the present invention according to a standard codon table.
  • the nucleotide sequence encoding the L-asparaginase variants of the invention can be codon optimized for the different expression systems selected to maximize expression. For example, in an E. coli expression system, E. coli preferred codons can be selected to encode the L-asparaginase variants of the invention.
  • the isolated nucleic acid of the invention comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: ll, SEQ ID NO: 12, SEQ ID NO: 13 and SEQ ID NO: 14, preferably A nucleotide sequence comprising SEQ ID NO: 10 or SEQ ID NO: 14, most preferably comprising the nucleic acid sequence of SEQ ID NO: 10, and optionally, the nucleotide sequence does not comprise a signal peptide SEQ ID NO: 15 The coding sequence.
  • the invention provides a recombinant expression construct comprising a nucleic acid of the invention, wherein the nucleotide sequence is operably linked to one or more regulatory sequences on an expression vector.
  • a "regulatory sequence" present in an expression vector can include an enhancer, a promoter, a splice donor/acceptor signal, a Kozak sequence, a terminator, and a polyadenylation sequence, which can be promoted as is well known in the art.
  • Expression of a nucleotide sequence operably linked thereto, or promoting expression of the encoded protein for the promoter, a T71ac, CAT, Tip or T5 promoter which expresses the L-asparaginase variant of the present invention, for example, in Escherichia coli or other similar microorganisms can be used.
  • These regulatory sequences are known in the art and are used under suitable and known conditions.
  • Expression vectors useful for construction of the recombinant expression constructs of the invention include plasmid vectors, yeast shuttle vectors, baculoviruses, replication-defective adenoviruses, and the like.
  • plasmid vectors yeast shuttle vectors
  • baculoviruses baculoviruses
  • replication-defective adenoviruses and the like.
  • a large number of available expression vectors suitable for expressing the L-asparaginase variants of the invention are known in the art.
  • the expression vector for expressing the L-asparaginase variant of the invention is the pBV220 plasmid vector (Shanghai Spark Crystal Molecular Biotechnology Co., Ltd.).
  • the invention provides a recombinant host cell for use in the production of an L-asparaginase variant of the invention, comprising a recombinant expression construct of the invention.
  • Host cells for expressing L-asparaginase variants of the invention include prokaryotes, yeast, and higher eukaryotes.
  • Exemplary prokaryotic hosts include Eich Bacillus (BadZZi ⁇ ), Salmonella 03 ⁇ 4 ⁇ 20 «£?//”) and Pseudomonas (Z ⁇ eMifomiWiM) and Streptomyces Cftreptomyci ⁇ .
  • the host cell is Eich Of the genus Escherichia coli, preferably Escherichia coli.
  • the host cell used is an E. coli Top 10 strain cell.
  • the recombinant expression constructs of the invention can be introduced into a host cell by any of a number of well-known techniques, including but not limited to: heat shock transformation, electroporation, DEAE-dextran transfection, microinjection, lipid Body-mediated transfection, calcium precipitation, protoplast fusion, particle bombardment, viral transformation and similar techniques.
  • the L-asparaginase variants of the invention can be obtained by a variety of protein-producing methods known in the art. For example, chemical synthesis, including solid phase or liquid phase synthesis. However, for reasons of production cost, it is preferred to use a genetic engineering method.
  • the invention provides a method of producing an L-asparaginase variant of the invention, comprising:
  • the invention also provides a pharmaceutical composition for treating a tumor comprising the L-asparaginase variant of the invention.
  • the tumor is a hematological tumor, more preferably an acute lymphocytic leukemia or a lymphoma.
  • the pharmaceutical composition further comprises a pharmaceutically acceptable carrier, diluent or excipient.
  • “Pharmaceutically acceptable carrier, diluent or excipient” means a solid or liquid filler, diluent or capsule-forming material which can be safely administered systemically, and the like.
  • a variety of different carriers well known in the art can be used, depending on the particular route of administration.
  • These carriers may be selected from the group consisting of sugars, starches, celluloses and derivatives thereof, maltose, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, pity buffers, emulsifiers, isotonic saline and Salts, salts are mineral salts including hydrogen chloride, bromides and sulfides, organic acids such as acetate, propionate and malonate, and pyrogen-free water.
  • the pharmaceutical composition of the invention can be provided to a patient by any safe route.
  • intravenous injection is preferred.
  • the pharmaceutical composition of the present invention can be administered in a pharmaceutically effective amount by a method compatible with the design of the agent.
  • the dose administered to the patient should be sufficient to produce a favorable response in the patient after a suitable period of time.
  • the dosage administered should be judged by the physician, depending on various factors such as age, sex, weight, and general health.
  • Example 1 Cloning of Escherichia coli L-ansB gene
  • MansB-001 5'-CGGAAITCATGGAGTTTTTCAAAAAGACG-3'
  • MansB-002 5'-CGGGATCCTTAGTACTGATTGAAGATCTG-3' ⁇ SEO ID NO: 2), wherein the additional EcoRI and BamHI restriction sites are respectively underlined, and two protective bases are additionally added to the 5' end of the primer.
  • the PCR reaction was carried out using the E. coli DH5a genome as a template.
  • the reaction conditions were: 95 °C pre-variability 5 min, and then cycled 30 times according to the following parameters: 95 ° C denaturation 30 s, 55 ° C annealing 30 s, 72 ° C extension 90 s; finally 72 ° C extension lOmino
  • the gel piece containing the target fragment was cut out and placed in a 1.5 mL Eppendorf tube, and recovered using an EZNA Gel Extraction Kit (Omega Bio-Tek). ( ⁇ L pre-heated to 55 ° C sterile water for elution, take 3 L for electrophoresis detection, stored at -20 °C for use.
  • the purified PCR product fragment and the T vector pMD18T (Bao Bioengineering (Dalian) Co., Ltd.) were subjected to the ligation reaction using NEB T4 ligase according to the following system:
  • the mixed reaction solution was placed at 25 ° C for 30 min, used at 4 ° C or used directly for the conversion reaction.
  • the reaction solution after the completion of the mixing was placed at 37 ° C overnight, and then purified by the method of Example 1.
  • the pBV220 expression vector was subjected to EcoRI and BamHI double digestion in the same manner, and the linear pBV220 expression vector fragment was purified and recovered.
  • the purified L-ansB gene fragment and the linear pBV220 expression vector fragment were ligated in the following systems:
  • the mixed reaction solution was placed at 25 ° C for 30 min, used at 4 ° C or used directly for the conversion reaction.
  • the plasmid was extracted using EZNA Plasmid Mini Kit (Omega Bio-Tek), identified by EcoRI and BamHI electrophoresis, and the correct clone was sent to sequencing, and nucleotide sequencing was performed by Beijing Nuo.
  • the genomic research center Co., Ltd. completed the check and agreed with the NCBI published L-ansB nucleotide sequence, and the obtained construct was named pBV-ansB.
  • the error-prone PCR reaction conditions were: pre-denaturation at 95 °C for 5 min, and then cyclically reacted 20 times according to the following parameters: denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 90 s; final extension of lOmin PCR product at 72 °C
  • the gel piece containing the target fragment was cut out and placed in a 1.5 mL Eppendorf tube, and recovered using an EZNA Gel Extraction Kit (Omega Bio-Tek), taking 50 ⁇ L of the pre-preparation.
  • the cells were eluted with sterile water heated to 55 °C, and 3 L was taken for electrophoresis and stored at -20 °C until use.
  • Example 4 Construction of L-ansB variant library
  • the EZNA Cycle Pure Kit (Omega Bio-Tek) was used to directly recover the fragment, and 50 ⁇ was preheated to 55 °.
  • the purified water of C was eluted, and 3 L was taken for electrophoresis, stored at -20 °C or used directly for the ligation reaction.
  • the pBV220 expression vector was subjected to EcoRI and BamHI double digestion in the same manner, and the linear pBV220 expression vector fragment was purified and recovered.
  • the purified error-prone PCR product fragment and the linear pBV220 expression vector fragment were ligated in the following system:
  • the mixed reaction solution was placed at 25 ° C for 30 min, used at 4 ° C or used directly for the conversion reaction.
  • L-asparaginase is based on colorimetric methods, since L-asparagine, a specific substrate for L-asparaginase, can be hydrolyzed to form ammonia (see Figure 1). The ammonia can react specifically with Nessler's reagent to form a reddish brown complex iodized bismuthramine, which has a maximum absorption at 460 nm. By colorimetric analysis, L-asparaginase with increased activity can be screened. body. Reagents:
  • L-asparagine solution Accurately weigh 0.15g L-asparagine, dissolved in 25mL of 0.1M PB buffer (pure sodium dihydrogen-dihydrogen acid disodium buffer), pH 8.0 (fresh preparation) .
  • PB buffer pure sodium dihydrogen-dihydrogen acid disodium buffer
  • pH 8.0 fresh preparation
  • Cell lysate 0.2 mg/mL lysozyme, 50 mM PB, pH 8.0.
  • TCA solution 25% Trichloroacetic acid (TCA) solution: Precision weighed 34g TCA dissolved in 60mL of deionized water (room temperature protected from light).
  • Nessler reagent Take 11.5g of mercury iodide, 8g of potassium iodide, dissolve in 50mL of deionized water, mix well, place overnight to get potassium iodide solution, mix the same volume with 20% sodium hydroxide solution when used (room temperature Keep away from light).
  • Primary screening :
  • the 96 deep well plate is taken out. Absorb the bacteria solution induced by ⁇ to another depth In the well plate, 2500 g was centrifuged for 10 min, the medium supernatant was discarded, and the lid was placed at -80 ° C for 15 min.
  • the primary variant single colony with increased enzyme activity obtained by primary screening was inoculated into a small shake flask containing 20 mL of LB medium, and cultured at 32 ° C, shaking at 170 rpm.
  • Trichloroacetic acid TCA
  • the absorption value is compared with the primary screening absorption value to obtain an activity higher than that of the wild type enzyme.
  • the 2L fermentation broth was centrifuged at 8000 rpm for 20 min at 4 ° C to collect the bacterial pellet. After resuspending the cells with 20 mL of 20 mM PB (pH 8.0), the cells were sonicated on an ice bath, centrifuged at 12000 rpm and centrifuged at 4 ° C. At 20 min, the sonicated supernatant was collected.
  • a DEAE sepharose FastFlow column (3 cmX IO cm) (filler purchased from GE Healthcare, Cat. No. 17-0709-01) was equilibrated with 20 mM PB (pH 8.0). 20 mL of the sonicated supernatant containing the L-asparaginase variant was filtered through a 0.45 ⁇ filter, slowly passed through the column (AKTA-Prime, 0.3 MPa, 2 mL/min), and then used with 20 mM containing 0.05 M to 1 M NaCl. PB (pH 8.0) fractionally eluted protein. The results of SDS-PAGE are shown in Figure 2.
  • the harvested L-asparaginase variant protein was dialyzed into 20 mM PB (pH 8.0) buffer, concentrated by ultrafiltration, and quantified by BCA protein concentration assay kit (Pierce Biotechnology) to adjust the concentration to 20 mg. /ml, vial dispensing, freeze-dried, stored at -20 °C.
  • BCA protein concentration assay kit Pieris Biotechnology
  • the amount of product ammonia produced per unit time is determined, and the amount of ammonia-Nyle reagent formed by specific ammonia-red reagent is determined by OD460 to calculate the enzyme activity unit.
  • the specific activity of the L-asparaginase variant is shown in Table 2: Amino acid Relative wild type Obtaining method Name Specific activity (U/mg)
  • the purified wild-type enzyme and the variant M1 were heat-treated in a hot water bath at 37 ° C, 42 ° C, 50 ° C, 55 ° C, 60 ° C, 70 ° C for 60 min, respectively, without heat treatment.
  • the wild type enzyme and the variant M1 were used as controls to carry out residual enzyme activity assays.
  • the semi-inactivation temperature of the variant M1 was increased by about 6.5 ° C compared with the wild type enzyme, and the thermal stability was remarkably improved. Stability measurement under common temperature conditions
  • the purified wild-type enzyme and variant Ml were placed in an environment of 50 ° C, 37 ° C and 4 ° C, respectively, with untreated wild-type enzyme and variant M1 as controls, and each temperature condition was set.
  • the enzyme stored in the environment at 50 °C was measured every hour for residual enzyme activity (Fig. 5-A); the enzyme placed in the environment at 37 °C was used to measure residual enzyme activity every day (Fig. 5-B); The enzyme activity was measured once a month in an environment placed at 4 ° C (Fig. 5-C).
  • Fig. 5-A residual enzyme activity
  • Fig. 5-B The enzyme activity was measured once a month in an environment placed at 4 ° C
  • Fig. 5-C As a result, as shown in Fig. 5, the stability of the variant M1 under various temperature conditions was improved as compared with the wild type enzyme.
  • Example 10 Determination of variability-specific substrate kinetic parameters
  • L-asparagine + H 2 0 L-aspartic acid + NH 3
  • L-asparagine solution 0.09375 mM, 0.1875 mM, 0.375 mM, 0.5625 mM, 0.75 mM, 1.125 mM, 1.5 mM, 3 mM, 6 mM.
  • Reaction solution 66.7 mM Tris, 7.5 mM a-ketoglutaric acid, 0.25 mM NADH, pH 8.0.
  • a solution of glutamate dehydrogenase (Toyobo CO., Ltd. Bio Chemical Department): a purified wild-type or variant enzyme solution (see Figure 3 for electrophoresis): concentration of 0.0025 mg/mL.
  • Example 11 Determination of therapeutic effect of variants on acute lymphoma leukemia mice [11]
  • mice Institute of Laboratory Animals, Chinese Academy of Medical Sciences
  • 18 and 22 g were divided into two groups.
  • the L5178Y-R ascites tumor (ATCC catalog number CRL-1722) was inoculated according to the transplant tumor research method [12].

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

提供活性提高的L-天冬酰胺酶变体,其是如SEQ ID NO:3所示的大肠杆菌野生型L-天冬酰胺酶的变体,并且包含在对应于SEQ ID NO:3的第48、49、152和283位上具有一个或多个氨基酸取代的氨基酸序列。提供包含该L-天冬酰胺酶变体的核苷酸序列的分离的核酸、包含所述核酸的重组表达构建体以及包含所述表达构建体的重组宿主细胞。还提供产生该L-天冬酰胺酶变体的方法以及包含该L-天冬酰胺酶变体的用于治疗肿瘤的药物组合物。

Description

技术领域
本发明属于医药生物工程技术领域。 具体涉及活性提高的 L-天冬酰胺 酶变体以及这些变体在肿瘤治疗中的用途。 说
背景技术
白血病是当今世界上严重危及人类生命的一种恶性疾病, 占肿瘤发病 率的第六位, 占青少年恶性肿瘤发病率的第一位 [1]。 这其中, 急性淋巴细 胞白血病 (acute lymphocytic leukaemia, AL书L)是发病率较高的血液系统恶性 肿瘤, 特别在青少年和儿童中比较普遍, 其发病率占所有青少年癌症发病 率的约 25%以及白血病发病率的约 80%[2]。 由于恶性细胞的急剧增加和扩 散, 在不治疗的情况下病人在数月甚至数周内死亡。
在各种治疗方法中, L-天冬酰胺酶 (L-asparaginase, L-ASP, EC 3.5.1.1) 是一种重要的白血病化疗药物, 是几乎所有的 ALL联合化疗的重要组成部 分。 它的作用机理是分解血液循环中的 L-天冬酰胺, 肿瘤细胞由于不能自 身合成 L-天冬酰胺, 当失去外源 L-天冬酰胺后导致死亡; 而正常细胞由于 还具有 L-天冬酰胺的第二合成途径, 因此不受影响。 应用以 L-ASP为主的 联合化疗, 使预后有了明显改观, 完全缓解 (CR)率达 80%以上, 5年以上无 病生存率大于 40%[3]。
已上市的 L-ASP作为白血病化疗药物仍然具有局限性。 目前临床上应 用的 L-ASP 酶活性低, 体内半衰期短 (<5 小时), 因而用药剂量很大 (30-50mg), 需要频繁注射 (每周 3 次), 常引起患者过敏反应、 热原反应及 其它副作用 [4]。 PEG化修饰的 L-ASP虽然有明显延长的半衰期, 过敏反应 总体发生率较天然提取产物降低, 但 PEG修饰造成酶活性降低 30%, 而且 对天然 L-ASP不过敏的患者有 11%对 PEG化产品过敏 (数据来源为 Enzon 公司 PEG化 L-ASP Oncaspar的产品说明书)。加之 PEG化修饰的 L-ASP价 格昂贵, 其加重了患者的经济负担, 因而目前的治疗仍然主要采用从大肠 杆菌提取的天然产物。 上述不足使得 L-ASP的应用受到限制。 蛋白质体外定向进化技术能够用来对各种酶进行改造, 如: Moon-soo Kim等人 [8]通过易错 PCR技术增强了来源于大肠杆菌肌醇六憐酸酶 AppA2 的热稳定性; An YF等人 [9]将易错 PCR与 StEP重组技术结合提高了 S-腺 苷基蛋氨酸合成酶 Saml 的酶活性, 使体内合成 S-腺苷基蛋氨酸累积量增 加了 56%。
曾有研究报道: 利用蛋白质体外定向进化技术对来源于欧文氏菌 (Erwinia c/i ^w ^m )的 L-ASP进行改造,获得热稳定性提高的变体 L-ASP (D133V) , 其体外半失活温度 (Tm)较野生型 L-ASP提高 9.4°C [10]。
本领域仍需要能够降低蛋白剂量, 延长给药间隔, 大幅降低副反应, 降低生产成本和治疗费用的具有较高酶活性和热稳定性的 L-ASP。 本发明 使用蛋白质体外定向进化技术获得了这样的 L-ASP。 发明概述
本发明通过体外定向进化 -易错 PCR技术对大肠杆菌 (¾dien'di fl coli) 野生型 L-天冬酰胺酶 (L-ansB)进行改造, 获得活性提高和热稳定性提高的
L-天冬酰胺酶变体。
因此,在一个方面,本发明提供了 L-天冬酰胺酶的变体,其是如 SEQ ID
NO:3所示的大肠杆菌野生型 L-天冬酰胺酶的变体,所述 L-天冬酰胺酶变体 包含在对应于 SEQ ID NO:3的第 48、 49、 152和 283位上具有一或多个氨 基酸取代的氨基酸序列。 本发明的 L-天冬酰胺酶变体与野生型酶相比具有 提高的活性和热稳定性。
另一方面, 本发明提供了包含编码本发明的 L-天冬酰胺酶变体的核苷 酸序列的分离的核酸、 包含所述核酸的表达构建体以及包含所述表达构建 体的宿主细胞。
另外, 本发明还提供了产生本发明的 L-天冬酰胺酶变体的方法。
最后, 本发明还提供了包含本发明的 L-天冬酰胺酶变体的用于治疗肿 瘤的药物组合物。 附图说明
图 1. L-天冬酰胺酶分解 L-天冬酰胺反应示意图。
图 2. 示出纯化的 L-天冬酰胺酶变体蛋白电泳图。 泳道 1为发酵液; 泳道 2为穿透液;泳道 3为平衡漂洗液;泳道 4为用含 0.2M NaCl的 20mM PB (pH8.0)洗脱的洗脱液 (L-天冬酰胺酶变体蛋白); 泳道 5、 6为用含有 0. 5M和 lM NaCl的 20mM PB (pH8.0)洗脱的洗脱液; 泳道 7为蛋白标记物。
图 3. L-天冬酰胺酶变体与野生型酶纯化后的蛋白电泳图。 泳道 1为 蛋白标记物, 泳道 2为野生型酶, 泳道 3为变体 Ml , 泳道 4为变体 M13。
图 4. L-天冬酰胺酶变体 Ml与野生型酶体外半失活温度测定比较图。 图 5. L-天冬酰胺酶变体 Ml与野生型酶热稳定性比较图。 发明详述
通过体外定向进化 -易错 PCR技术对大肠杆菌野生型 L-天冬酰胺酶
(L-ansB)进行改造, 令人惊奇地, 本发明人获得了具有提高的活性和热稳定 性的 L-天冬酰胺酶变体。
在第一个方面, 本发明提供了 L-天冬酰胺酶的变体, 其是如 SEQ ID
NO:3所示的大肠杆菌野生型 L-天冬酰胺酶的变体,所述 L-天冬酰胺酶变体 包含在对应于 SEQ ID NO:3的第 48、 49、 152和 283位上具有一或多个氨 基酸取代的氨基酸序列, 任选地, 所述氨基酸序列不含有信号肽 SEQ ID
NO: 15。
在一个优选的实施方案中, 本发明的 L-天冬酰胺酶变体包含选自 SEQ ID NO:4、 SEQ ID NO:5、 SEQ ID NO:6、 SEQ ID NO:7和 SEQ ID NO:8的 氨基酸序列, 优选包含 SEQ ID NO:4或 SEQ ID NO:8的氨基酸序列, 最优 选包含 SEQ ID NO:4的氨基酸序列, 以及任选地, 所述氨基酸序列不含有 信号肽 SEQ ID NO: 15。
"包含"一词在本文中用于描述蛋白质或核酸的序列时, 所述蛋白质 或核酸可以是由所述序列组成, 或者在所述蛋白质或核酸的一端或两端可 以具有额外的氨基酸或核苷酸, 但仍然具有本发明所述的活性。
在一些实施方案中, 本发明的 L-天冬酰胺酶变体可以包含额外的接头 或者与其它标签蛋白融合。 这些接头和 /或标签可以有利于本发明的 L-天冬 酰胺酶变体在目标宿主细胞中的产生, 增加表达量或增加可溶性表达, 有 利于所述变体的分离和纯化, 但基本上不会影响变体的活性。 本领域已知 许多这样的接头和 /或标签。合适的接头和 /或标签包括例如 6 XHis、 GST (;谷 胱甘肽转移酶)、 MBP (麦芽糖结合蛋白)等等。 合适的接头和 /或标签通常可 以通过选择合适的商品化表达载体而获得。
在第二个方面, 本发明还提供了分离的核酸, 其包含本发明的 L-天冬 酰胺酶变体的核苷酸序列, 任选地, 所述核苷酸序列不含有信号肽 SEQ ID NO: 15的编码序列。
编码本发明的 L-天冬酰胺酶变体的核苷酸序列可以由本发明的 L-天冬 酰胺酶变体的氨基酸序列根据标准密码子表推导得出。 本领域技术人员应 当了解可以针对所选择的不同表达系统对编码本发明的 L-天冬酰胺酶变体 的核苷酸序列进行密码子优化以获得表达的最大化。 例如在大肠杆菌表达 系统中, 可以选择大肠杆菌偏好的密码子来编码本发明的 L-天冬酰胺酶变 体。
在一个实施方案中, 本发明分离的核酸包含选自 SEQ ID NO: 10、 SEQ ID NO: ll、 SEQ ID NO: 12, SEQ ID NO: 13和 SEQ ID NO: 14的核苷酸序列, 优选包含 SEQ ID NO: 10或 SEQ ID NO: 14的核苷酸序列, 最优选包含 SEQ ID NO: 10的核酸序列, 以及任选地, 所述核苷酸序列不含有信号肽 SEQ ID NO: 15的编码序列。
在第三个方面, 本发明提供了包含本发明的核酸的重组表达构建体, 其中所述核苷酸序列可操纵地连接至表达载体上的一或多个调控序列。
在本领域中已知有适用于各种宿主细胞的大量的各种调控序列。例如, 存在于表达载体中的 "调控序列"可包括增强子, 启动子, 剪接供体 /受体 信号, Kozak序列, 终止子及聚腺苷酸化序列, 其如本领域所熟知的那样促 进可操纵地连接于其上的核苷酸序列的表达, 或促进被编码的蛋白质的表 达。 对于启动子, 可以使用例如在大肠杆菌或其他类似微生物中表达本发 明的 L-天冬酰胺酶变体的 T71ac、 CAT, Tip或 T5启动子。 这些调控序列 是本领域已知的并在合适和已知条件下使用。
可用于构建本发明的重组表达构建体的表达载体包括质粒载体、 酵母 穿梭载体、 杆状病毒、 复制缺陷的腺病毒等。 本领域中已知大量可获得的 适于表达本发明的 L-天冬酰胺酶变体的表达载体。
在一个优选的实施方案中, 用于表达本发明的 L-天冬酰胺酶变体的表 达载体是 pBV220质粒载体 (上海闪晶分子生物科技有限公司)。
在第四个方面, 本发明提供了用于产生本发明的 L-天冬酰胺酶变体的 重组宿主细胞, 其包含本发明的重组表达构建体。 用于表达本发明的 L-天冬酰胺酶变体的宿主细胞包括原核生物、 酵母 和高等真核细胞。 示例性的原核宿主包括埃希
Figure imgf000006_0001
芽孢杆 菌属 (BadZZi^)、 沙门氏菌属0¾½0«£?//")以及假单胞菌属 (Z^eMifomiWiM)和链 霉菌属 Cftreptomyci^的细菌。 在优选的实施方案中, 宿主细胞是埃希氏菌 属的, 优选是大肠杆菌。 在本发明的一个实施方案中, 所使用的宿主细胞 为大肠杆菌 Top 10菌株细胞。
可以通过许多已熟知的任一技术将本发明的重组表达构建体导入宿主 细胞, 这样的技术包括但不限于: 热激转化, 电穿孔, DEAE-葡聚糖转染, 显微注射, 脂质体接介导的转染, 憐酸钙沉淀, 原生质融合, 微粒轰击, 病毒转化及类似技术。
本发明的 L-天冬酰胺酶变体可以通过本领域已知的各种产生蛋白质的 方法获得。 例如化学合成, 包括固相或液相合成。 然而, 出于生产成本的 原因, 优选使用遗传工程的方法。
因此, 在第五个方面, 本发明提供了产生本发明的 L-天冬酰胺酶变体 的方法, 其包括:
a) 在适合本发明的 L-天冬酰胺酶变体表达的条件下培养本发明的重 组宿主细胞; 和
b ) 从培养物中回收产生的 L-天冬酰胺酶变体。
在最后一个方面, 本发明还提供了包含本发明的 L-天冬酰胺酶变体的 用于治疗肿瘤的药物组合物。 优选地, 所述肿瘤是血液系统肿瘤, 更优选 是急性淋巴细胞白血病或淋巴瘤。
适当地, 所述药物组合物进一步包含药物学上可接受的载体, 稀释剂 或赋形剂。
"药物学上可接受的载体、 稀释剂或赋形剂"是指可以安全地进行系 统性施用的固体或液体填充物、 稀释剂或做成胶囊的物质等。 依照施用时 的特殊途径, 可以使用本领域中所熟知的各种不同的载体。 这些载体可以 选自包括糖类, 淀粉, 纤维素及其衍生物, 麦芽糖, 明胶, 滑石, 硫酸钙, 植物油, 合成油, 多元醇, 藻酸, 憐酸缓冲液, 乳化剂, 等张盐水与盐类, 盐类是如同包括了氯化氢的矿物酸盐, 溴化物与硫化物, 有机酸如醋酸盐, 丙酸盐与丙二酸盐以及无热原水。 可用任何安全途径为患者提供本发明的药物组合物。可使用例如经口, 直肠, 肠外注射, 舌下, 口腔, 静脉内, 关节内, 肌肉内, 真皮内与皮下 的注射, 或经吸入, 眼球内, 腹膜内, 脑室内或经透皮肤等及其类似途径。 优选静脉注射。
可用与药剂设计兼容的方法来以药物有效量施用本发明的药物组合 物。 对患者施用的剂量应当足以在一段适当时间后在患者身上产生有利的 应答。 施用剂量应由医师判断, 视施用对象的各种因素而定, 如年龄、 性 另 |J、 体重及其一般健康状况等。 实施例
下面将通过实施例的方式进一步说明本发明, 但并不因此将本发明限 制在所描述的实施例范围中。 实施例 1: 大肠杆菌 L-ansB基因的克隆
根据 NCBI 公布 的 L-ansB 核苷酸序列设计上游 引物 mansB-001 (5'-CGGAAITCATGGAGTTTTTCAAAAAGACG-3')(SEQ ID NO: 1 )禾口下游弓 | 物 mansB-002(5'-CGGGATCCTTAGTACTGATTGAAGATCTG-3'¥SEO ID NO: 2), 其中 下划线示出分别额外添加的 EcoRI和 BamHI酶切位点, 引物 5'末端还额外 添加两个保护碱基。
以 E.coli DH5a基因组为模板进行 PCR反应。 反应条件为: 95°C预变 性 5min, 再按如下参数循环反应 30次: 95°C变性 30s, 55°C退火 30s, 72 °C延伸 90s; 最后 72°C延伸 lOmino
PCR产物经 1%低融点琼脂糖凝胶电泳后,切出含目的片段的胶块并放 入 1.5mL Eppendorf管中, 使用 E.Z.N.A Gel Extraction Kit试剂盒 (Omega Bio-Tek公司)进行回收, 取 5(^L预热至 55°C的无菌水进行洗脱, 取 3 L 进行电泳检测, -20 °C保存备用。
纯化后的 PCR产物片段和 T载体 pMD18T(宝生物工程(大连)有限公 司)按以下体系使用 NEB公司的 T4连接酶进行连接反应:
T载体 pMD18T ΙμΙ
PCR产物片段 4 L 10 X T4连接酶缓冲液 l L
T4连接酶 l L
加双蒸水至 1( L
将混匀后的连接反应液, 放置于 25 °C反应 30min, 4°C备用或直接用于转化 反应。
将 1( L连接反应液加入 ΙΟΟμΙ^大肠杆菌 DH5a感受态细胞中,轻轻混 匀, 冰浴 30min, 42 °C水浴热激 90s, 再冰浴 3min, 加 LB培养基至 lmL, 置于 37°C、 170rpm摇床中振荡培养 lh, 取 200μΙ^上述培养物涂布于含 100mg/mL氨苄青霉素的 LB平板, 经 37°C恒温培养过夜。挑取菌落扩大培 养后使用 E.Z.N.A Plasmid Mini Kit试剂盒 (Omega Bio-Tek公司)提取质粒, 经 EcoRI和 BamHI酶切电泳鉴定, 将正确克隆送往测序, 核苷酸测序由北 京诺赛基因组研究中心有限公司完成, 经核对与 NCBI公布 L-ansB核苷酸 序列一致, 将该测序构建体命名为 pMD18T-ansB。 实施例 2 : 重组表达构建体 pBV-ansB的构建
对实施例 1中测序构建体 pMD18T-ansB进行 EcoRI和 BamHI(宝生物 工程 (大连) 有限公司)双酶切反应以回收 L-ansB目的基因片段:
质粒 pMD18T-ansB 20μ
ΙΟχΚ缓冲液 5 L
EcoRI 1 μ
BamHI Ι μΙ
无菌水补至 5(^L
混匀完毕后的酶切反应液, 放置于 37°C保温过夜后, 用实施例 1中的方法 纯化回收。 pBV220表达载体以同样的方式进行 EcoRI和 BamHI双酶切反 应, 纯化回收线性 pBV220表达载体片段。
纯化后的 L-ansB目的基因片段和线性 pBV220表达载体片段按以下体 系进行连接反应:
pBV220片段 l L
L-ansB片段 4 L
10 X T4连接酶缓冲液 1
T4连接酶 l L 加双蒸水至 1( L
将混匀后的连接反应液, 放置于 25 °C反应 30min, 4°C备用或直接用于转化 反应。
将 1( L连接反应液加入 ΙΟΟμΙ^ E.coli ToplO感受态细胞 (天根生化科技 (北京)有限公司, 目录号 CB104)中, 轻轻混匀, 冰浴 30min, 42 °C水浴热激 90s, 再冰浴 3min, 力 B SOC培养基至 lmL, 置于 32°C、 170 rpm摇床中振 荡培养 lh, 取 200μΙ^菌液涂布于含 100mg/mL氨苄青霉素的 LB平板, 32 °C温育过夜。 挑取菌落扩大培养后使用 E.Z.N.A Plasmid Mini Kit试剂盒 (Omega Bio-Tek公司)提取质粒, 经 EcoRI和 BamHI酶切电泳鉴定,将正确 克隆送往测序, 核苷酸测序由北京诺赛基因组研究中心有限公司完成, 经 核对与 NCBI 公布 L-ansB 核苷酸序列一致, 将获得的构建体命名为 pBV-ansB。
;施例 3: 易错 PCR随机突变 L-ansB基因
按如下体系配制易错 PCR反应溶液:
■ lOxPCR缓冲液 ΙΟμΕ
■ 50xdNTPs混合物
- 10mM dCTP
- 10mM dTTP
■ 10xMgCl2 ΙΟμΙ
. MnCl2 5μL
■ 上游引物 mansB-001
■ 下游引物 mansB-002
■ 模板 BV-ansB 10〜100ng
- rTaq DNA聚合酶
- 加双蒸水至 ΙΟΟμΙ^
10 X PCR缓冲液: 20mM MgC12 , 200mM KCl, 50mM Tris-HCl, pH8.3 ; 50 X dNTPs 混合物: 含有 dATP、 dGTP、 dTTP, dCTP各 lOmM; rTaq DNA聚合酶: 购自宝生物工程 (大连)有限公司, 目录号 DR001。 易错 PCR反应条件为: 95°C预变性 5min, 再按如下参数循环反应 20 次: 95°C变性 30s, 55°C退火 30s, 72 °C延伸 90s; 最后 72°C延伸 lOmin PCR产物经 1%低融点琼脂糖凝胶电泳后,切出含目的片段的胶块并放 入 1.5mL Eppendorf管中, 使用 E.Z.N.A Gel Extraction Kit试剂盒 (Omega Bio-Tek公司)进行回收, 取 50 μ L预热至 55 °C的无菌水进行洗脱, 取 3 L 进行电泳检测, -20 °C保存备用。 实施例 4: L-ansB变体库的构建
取实施例 3 中纯化后的易错 PCR产物片段按以下体系进行 EcoRI和
BamHI双酶切反应:
易错 PCR产物片段 4(^L
ΙΟχΚ缓冲液 5 L
EcoRI 1 μΐ^
BamHI lμL
无菌水补至 5(^L
混匀完毕后的酶切反应液,放置于 37°C温育 3h后,使用 E.Z.N.A Cycle Pure Kit试剂盒 (Omega Bio-Tek公司)对酶切片段进行直接回收, 取 50μΙ^预热至 55°C的无菌水进行洗脱, 取 3 L进行电泳检测, -20 °C保存备用或直接用于 连接反应。 pBV220表达载体以同样的方式进行 EcoRI和 BamHI双酶切反 应, 纯化回收线性 pBV220表达载体片段。
纯化后的易错 PCR产物片段和线性 pBV220表达载体片段按以下体系 进行连接反应:
PBV220片段
易错 PCR产物片段
10 X T4连接酶缓冲液
T4连接酶
加双蒸水至
将混匀后的连接反应液, 放置于 25°C反应 30min, 4°C备用或直接用于转化 反应。
将 1( L连接反应液加入 lOO L E.coli ToplO感受态细胞中,轻轻混匀, 冰浴 30min, 42°C水浴热激 90s, 再冰浴 3min, 力 B SOC培养基至 lmL, 置 于 32°C、 170rpm摇床中振荡培养 lh, 离心上述培养物, 剩余 200μΙ^上清 并吹吸混匀后涂布于含 100mg/mL氨苄青霉素的 LB平板, 32 °C恒温培养过 夜。 实施例 5 : L-天冬酰胺酶变体的筛选
原理:
L-天冬酰胺酶的高通量筛选是基于比色法而建立的, 由于 L-天冬酰胺 酶的特异性底物 L-天冬酰胺可以被水解生成氨 (见图 1),而生成的氨可以与 奈氏试剂发生特异性化学反应生成红棕色络合物碘化双汞胺, 在 460nm处 有最大吸收值,通过比色可以筛选出具有增加的活性的 L-天冬酰胺酶变体。 试剂:
L-天冬酰胺溶液: 精密称取 0.15g L-天冬酰胺, 溶于 25mL的 0.1M PB缓冲 液 (憐酸二氢钠-憐酸氢二钠缓冲液), pH8.0(新鲜配制)。
细胞裂解液: 0.2 mg/mL溶菌酶, 50mM PB, pH8.0。
25% 三氯乙酸 (TCA)溶液: 精密称取 34g TCA溶于 60mL去离子水 (室温避 光保存)。
奈氏试剂: 取碘化汞 11.5g, 碘化钾 8g, 溶于 50mL去离子水中, 充分混匀, 放置过夜得到碘化汞钾溶液, 临用时取等体积与 20%氢氧化钠溶液混合使 用 (室温避光保存)。 初级筛选:
1) 吸取 30(^L含有氨苄抗性 LB液体培养基加至 96深孔板, 并用灭菌牙 签挑取实施例 4所得单菌落至各个孔中轻微晃动 (分别在 94、 95、 96号孔中 挑入含有表达野生型 L-天门冬酰胺酶的单菌落作为筛选对照), 再在已画有 方格并标有序号的新鲜 LB平板上进行保种, 平板置于 32 °C培养过夜。
2) 将 96深孔板固定于 32°C摇床中, 170rpm振荡 24h。
3) 培养结束后, 再向各孔中加入 30(^L含有氨苄抗性 LB液体培养基, 再 固定于 42°C摇床中, 170rpm振荡诱导培养 5h。
4) 诱导培养结束后, 取出 96深孔板。 吸取 ΙΟΟμΙ^诱导后的菌液至另一深 孔板中, 2500g离心 10min, 弃去培养基上清, 加盖置于 -80°C放置 15min。
5) 再加入 20(^L预冷的细胞裂解液, 加盖放置于 4°C冰箱中 lOmin, 再固 定于微孔板振荡器上, 室温 200rpm振荡 lOmin, 充分裂解菌体。
6) 充分裂解后, 向各孔中加入 20(^L已预热的 0.04M L-天冬酰胺溶液, 放 置于 37°C培养箱中振荡反应 15min。准确反应 15min后,立即加入 50 L 25% 三氯乙酸 (TCA) 终止反应, 轻微振荡数十秒。
7) 2500g离心 lOmin, 吸取 ΙΟμΙ^上清至含有 90 μ L ΡΒ的 96孔板中, 再加 入 4(^L奈氏试剂进行显色, 反应 lOmin后在主波长 450nm, 副波长 630nm 处进行测定, 吸光值 A=A450-A630。 次级筛选
1) 初级筛选获得的酶活性提高的初级变体单菌落接种入含有 20mL LB培 养基的小摇瓶中, 32°C、 170rpm振荡培养。
2) 当 OD600至 0.6左右时, 将温度调至 42°C进行诱导培养 5h。
3) 诱导培养结束后, 取 ImL菌液进行 5000rpm离心 5min, 弃去上清液, 置于 -80°C放置 15min。
4) 再加入 ImL预冷的细菌裂解液, 室温振荡 5min, 充分裂解菌体, 然后 5000rpm离心 5min。
5) 取 ΙΟΟμΙ^裂解上清液与 20(^L已预热的 0.04M L-天冬酰胺溶液,放置于 37°C培养箱中振荡反应 15min。 准确反应 15min后, 立即加入 50μΙ^ 25%三 氯乙酸 (TCA) 终止反应, 轻微振荡数十秒。
6) 5000rpm离心 5min, 向上述反应液中加入 ΙΟΟμ 奈氏试剂进行显色, 反 应 lOmin 后在主波长 450nm, 副波长 630nm 处进行测定, 吸光值
Figure imgf000012_0001
7) 将吸收值与初级筛选吸收值进行核对比较, 获得较野生型酶活性提高的
L-天冬酰胺酶变体。
将活性提高的 L-天冬酰胺酶变体的编码基因进行 DNA序列测定,证实 获得了三种具有提高的活性的 L-天冬酰胺酶变体, 总结于下表 1 : 1
Figure imgf000013_0001
实施例 6: L-天冬酰胺酶变体的纯化
2L发酵菌液经 8000rpm, 4°C离心 20min,收集菌体沉淀,加 20mL 20mM PB(pH8.0)重悬菌体后, 在冰浴上进行超声破碎, 破碎完成后 12000rpm, 4 °C离心 20min, 收集超声破碎上清液。
取 DEAE sepharose FastFlow柱 (3 cmX IO cm)(填料购自 GE Healthcare 公司, 目录号 17-0709-01), 用 20mM PB(pH8.0)平衡。 20mL含 L-天冬酰胺 酶变体的超声破碎上清液经 0.45μηι滤膜过滤后, 缓慢过柱 (AKTA-Prime, 0.3MPa, 2mL/min), 然后用含有 0.05M〜lM NaCl的 20mM PB(pH8.0)分段 洗脱蛋白。 SDS-PAGE结果见图 2。
将收获的 L-天冬酰胺酶变体蛋白透析至 20mM PB(pH8.0)缓冲液中,超 滤浓縮后采用 BCA蛋白浓度测定试剂盒 (Pierce Biotechnology)进行蛋白浓 度定量, 调整浓度至 20mg/ml, 小瓶分装, 冷冻干燥, -20°C保存。 实施例 7: 变体的活性测定
按照中国药典-天冬酰胺酶比活测定方法, 测定单位时间内产物氨的生 成量, OD460测定氨与奈氏试剂生成特异性棕红色络合物碘化双汞胺生成 量, 计算酶活性单位。 L-天冬酰胺酶变体比活测定结果见表 2: 氨基酸 相对野生型 获得方法 名称 比活性 (U/mg)
突变位置 倍数
野生型
无 260 1.0
L-ASP
易错 PCR+高
Ml 48、 49 1296 5
通量筛选 易错 PCR+高
M2 152 598 2.3
通量筛选 易错 PCR+高
M3 283 676 2.6
通量筛选 实施例 8: 组合不同突变位点的变体
获得了活性提高的 Ml、 M2、 M3的 3种变体。 为了考察不同突变位点 的组合对变体酶活性的影响, 对已获得的突变位点进行组合, 获得多种变 体。 按照实施例 6的方法获得纯化后的变体, 再通过实施例 7的方法进行 酶活测定并比较酶活。 变体的比活性测定结果见下表 3 :
Figure imgf000014_0001
Figure imgf000014_0002
实施例 9: 变体热稳定性的测定
体外半失活温度测定
将纯化后的野生型酶和变体 Ml在 37°C、 42°C、 50°C、 55°C、 60°C、 70°C热水浴中进行热处理 60min后, 分别以未经热处理的野生型酶和变体 Ml作为对照, 进行残留酶活测定。 结果如图 4所示, 变体 Ml体外半失活 温度较野生型酶提高了约 6.5°C, 热稳定性明显得到提高。 常见温度条件下稳定性测定
考虑到酶在生产、 运输、 储存和治疗中及极端条件下的实际情况, 我 们进一步分别在 50°C、 37°C和 4°C条件下测定了酶的热稳定性情况。
将纯化后的野生型酶和变体 Ml分别置于 50°C、 37°C和 4°C环境中,分 别以未经处理的野生型酶和变体 Ml作为对照,每个温度条件各设置 6个测 定点, 置于 50°C环境中的酶每小时测定一次残留酶活 (图 5-A); 置于 37°C 环境中的酶每天测定一次残留酶活 (图 5-B); 置于 4°C环境中的酶每月测定 一次残留酶活 (图 5-C)。 结果如图 5所示, 变体 Ml在各温度条件下的稳定 性较野生型酶都得到了提高。 实施例 10: 变体特异性底物动力学参数的测定
通过以下两种酶偶联催化反应对 L-ASP进行动力学参数测定: L-天冬酰胺 + H20 = L-天冬氨酸 + NH3
α-酮戊二酸 + NH3 + NADH + H+= L-谷氨酸 + H20 + NAD+ 试剂溶液:
L-天门冬酰胺溶液: 0.09375mM、0.1875mM、0.375mM、0.5625mM、0.75mM、 1.125mM、 1.5mM、 3mM、 6mM。
反应溶液: 66.7mM Tris、 7.5mM a-酮戊二酸、 0.25mM NADH, pH8.0。 谷氨酸脱氢酶溶液 (Toyobo CO., Ltd. Bio Chemical Department) : 浓度为 纯化后野生型或变体酶溶液 (电泳图见图 3): 浓度为 0.0025mg/mL。 实验方法:
在 3ml的体系中,首先加入 2.4ml反应溶液和 0.2ml的不同浓度 L-天冬 酰胺溶液, 混合后置于 37°C预热 5min, 加入 0.2ml谷氨酸脱氢酶溶液, 反 应 2min,加入野生型酶或变体酶溶液 0.2ml,每 lmin测定一次,持续 10min。
以双倒数作图法Lineweaver-Burk Plot)求取 Km及其 kcat值。测定结果 示于下表 4:
4
Figure imgf000015_0001
实施例 11 : 变体对急性淋巴瘤白血病小鼠治疗效果测定 [11]
取 18〜22g的 DBA/2小鼠 (中国医学科学院实验动物研究所 )70只, 雌 雄各半, 按移植性肿瘤研究法 [12]接种 L5178Y-R腹水瘤 (ATCC 目录号 CRL-1722)。 接种后随机分为 7组, 每组 10只, 分别按以下剂量给药: 野 生型酶溶液 (4000 IU/kg体重); Ml酶溶液 (4000 IU/kg体重); M2酶溶液 (4000 IU/kg体重); M3酶溶液 (4000 IU/kg体重); Ml 2酶溶液 (4000 IU/kg体重); M13酶溶液 (4000 IU/kg体重); 另设立 PBS空白对照组 (20ml/kg体重)。 于 接种 L5178Y-R腹水瘤后, 24h腹腔注射给药, 每天一次, 共给药 10d, 观 察荷瘤 DBA/2小鼠接种腹水瘤后的存活天数。
L5178Y-R 小鼠腹腔注射野生型酶和变体的平均生存时间 (均值士标准 差, n=10)测定结果总结于下表 5, 差异用统计学进行分析 (t-test)。
Figure imgf000016_0001
注: a为野生型酶组对比对照组, PO.01 ; b为 Ml组对比野生型酶组, PO.01 ; c为 M13组对比野生型酶组, PO.05
取 18〜22g昆明种小鼠 (军事医学科学院实验动物中心) 300只, 雌雄各 半, 随机分为 30组, 每组 10只将野生型酶和变体分别按剂距比为 1 :0.5分 成剂量 25 X 103、 50 X 103、 100 X 103、 200 X 103、 400 X 103IU/kg体重, 进 行静脉注射给药, 给药体积为 25ml/kg体重。 给药后观察 14d, 逐日记录小 鼠活动和死亡情况。正常小鼠静脉注射野生型酶和变体的死亡率 (n=10)测定 结果示于下表 6。 剂量 死亡率 /%
χΐο3ιυ½_1 野生型酶组 Ml组 M2组 M3组 M12组 M13组
25 0 0 0 0 0 0
50 0 0 0 0 0 0
100 10 0 0 0 0 0
200 30 0 0 0 0 0
400 100 0 20 20 0 0 参考文献
[I] 郭霞,李强.急性白血病发病机制研究进展.实用儿科临床杂志, 2005, 20(7): 690-693 [2] Pui CH. Acute lymphoblastic leukemia in children. Curr Opin Oncol. 2000; 12: 3-12.
[3] Margolin JF, Steuber CP, Poplack DG. Acute Lymphoblastic Leukemia. In Principles and practice of pediatric oncology. P.A.P. Pizzo, D. G., editor. 2002; 489-544.
[4] 崔彦琴, 陈福雄, 吴梓梁. 左旋门冬酰胺治疗小儿白血病的研究进展, 中华儿科杂 志, 2004; 42(3): 227-230
[5] Crameri A, Railard S A, Bermudez E, et al. DNA shuffling of a family of genes from diverse species accelerates evolution [J]. Nature, 1998, 391(6664):288-291.
[6] You L, Arnold F H. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformaide [J]. Protein Eng, 1996, 9(l):77-83
[7] Stemmer W P. Rapid evolution of a protein in vitro by DNA shuffling [J]. Nature, 1994, 370(6488):389-391.
[8] Moon-Soo Kim, Xin GL. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol (2008) 79:69-75
[9] An YF, Ji JF, Wu WF, et al. Random mutagenesis and recombination of saml gene by integrating error-prone PCR with staggered extension process. Biotechnol Lett (2008) 30:1227-1232
[10] Kotzia GA, Labrou NE. Engineering thermal stability of L-asparaginase by in vitro directed evolution. FEBS J. 2009; 276(6):1750-61
[II] Thomas L. Avery, DeWayne Roberts. Combination Chemotherapy with Cytosine Arabinoside, 1-Asparaginase, and 6-Azauridine for Transplantable Murine Leukemias. Cancer Res. 1973 33; 791
[12] 徐叔云, 卞如廉, 陈修主编.药理学实验方法 [M]. 第 1 版.北京:人民卫生出版社, 1991. 1424

Claims

权 利 要 求 书
1. L-天冬酰胺酶变体, 其是如 SEQ ID NO:3所示的大肠杆菌野生型 L- 天冬酰胺酶的变体, 所述 L-天冬酰胺酶变体包含在对应于 SEQ ID NO:3的 第 48、 49、 152和 283位上具有一或多个氨基酸取代的氨基酸序列, 任选 地, 所述氨基酸序列不含有如 SEQ ID NO: 15所示的信号肽序列。
2. 权利要求 1的 L-天冬酰胺酶变体,其包含选自 SEQ ID NO:4、 SEQ ID NO: 5. SEQ ID NO:6. SEQ ID NO:7和 SEQ ID NO: 8的氨基酸序列, 任选 地, 所述氨基酸序列不含有如 SEQ ID NO: 15所示的信号肽序列。
3. 分离的核酸, 其包含编码权利要求 1或 2的 L-天冬酰胺酶变体的核 苷酸序列, 任选地, 所述核苷酸序列不含有如 SEQ ID NO:15所示的信号肽 序列的编码序列。
4. 权利要求 3 的分离的核酸, 其包含选自 SEQ ID NO: 10、 SEQ ID NO:ll、 SEQ ID NO: 12, SEQ ID NO: 13和 SEQ ID NO: 14的核苷酸序列, 任选地,所述核苷酸序列不含有如 SEQ ID NO: 15所示的信号肽序列的编码 序列。
5. 重组表达构建体, 其包含权利要求 3或 4的核酸, 其中所述核苷酸 序列可操纵地连接至表达载体上的一或多个调控序列。
6. 重组宿主细胞, 其包含权利要求 5的重组表达构建体。
7. 产生权利要求 1或 2的 L-天冬酰胺酶变体的方法, 其包括: a) 在适合所述变体表达的条件下培养权利要求 6的重组宿主细胞; 和 b) 从培养物中回收产生的 L-天冬酰胺酶变体。
8. 用于治疗肿瘤的药物组合物, 其包含权利要求 1或 2的 L-天冬酰胺 酶变体。
9. 权利要求 8 的药物组合物, 其还包含药物学上可接受的载体, 稀释 剂或赋形剂。
10.权利要求 8或 9的药物组合物, 其中所述肿瘤是血液系统肿瘤。
11.权利要求 10的药物组合物, 其中所述血液系统肿瘤选自急性淋巴细 胞白血病和淋巴瘤。
PCT/CN2012/083140 2011-10-19 2012-10-18 活性提高的l-天冬酰胺酶变体 WO2013056657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110318250.6A CN103060299B (zh) 2011-10-19 2011-10-19 活性提高的l‑天冬酰胺酶变体
CN201110318250.6 2011-10-19

Publications (1)

Publication Number Publication Date
WO2013056657A1 true WO2013056657A1 (zh) 2013-04-25

Family

ID=48103198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083140 WO2013056657A1 (zh) 2011-10-19 2012-10-18 活性提高的l-天冬酰胺酶变体

Country Status (2)

Country Link
CN (1) CN103060299B (zh)
WO (1) WO2013056657A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709236B (zh) * 2013-12-23 2015-04-15 江南大学 一种可提高分泌效率的信号肽及其应用
CN103954762B (zh) * 2014-05-08 2016-08-24 重庆医科大学 一种快速比较未纯化融合酶及其突变体比活性的方法
CN105062997A (zh) * 2015-08-25 2015-11-18 江南大学 一种酶活提高的l-天冬酰胺酶突变体及其构建方法
CN105062998A (zh) * 2015-08-25 2015-11-18 江南大学 一种定点突变改造的基因工程l-天冬酰胺酶
CN106596428A (zh) * 2016-12-15 2017-04-26 南京市儿童医院 一种测定急性白血病患者体内培门冬酰胺酶活力的试剂盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237633A (zh) * 1998-06-01 1999-12-08 中国科学院微生物研究所 新构建的l-天门冬酰胺酶工程菌及其发酵培养
US20020038014A1 (en) * 2000-03-24 2002-03-28 Meyers Rachel A. 26443 and 46837, novel human asparaginase family members and uses therefor
CN1654639A (zh) * 2004-12-29 2005-08-17 中国药科大学 一种具有防治ⅰ型糖尿病作用的重组门冬酰胺酶
CN101641439A (zh) * 2007-03-09 2010-02-03 诺维信公司 天冬酰胺酶

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663395B (zh) * 2007-04-20 2012-09-05 帝斯曼知识产权资产管理有限公司 新颖的天冬酰胺酶及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237633A (zh) * 1998-06-01 1999-12-08 中国科学院微生物研究所 新构建的l-天门冬酰胺酶工程菌及其发酵培养
US20020038014A1 (en) * 2000-03-24 2002-03-28 Meyers Rachel A. 26443 and 46837, novel human asparaginase family members and uses therefor
CN1654639A (zh) * 2004-12-29 2005-08-17 中国药科大学 一种具有防治ⅰ型糖尿病作用的重组门冬酰胺酶
CN101641439A (zh) * 2007-03-09 2010-02-03 诺维信公司 天冬酰胺酶

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE DATABASE GENBANK 9 November 2010 (2010-11-09), "L-asparaginase 2 [Escherichia coli 53638]", accession no. P_02999704 *
LISA TALLAL ET AL.: "E.coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children", CANCER, vol. 25, no. 2, 28 February 1970 (1970-02-28), pages 306 - 320 *
LIU, HONG ET AL.: "Progress in Study of Anti-cancer Drug L-asparaginase", JOURNAL OF SICHUAN OF LIGHT INDUSTRY AND CHEMICAL TECHNOLOGY, vol. 13, no. 2, 30 June 2000 (2000-06-30), pages 31 - 36 *

Also Published As

Publication number Publication date
CN103060299A (zh) 2013-04-24
CN103060299B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
USRE47233E1 (en) Albumin-binding arginine deiminase and the use thereof
RU2728334C1 (ru) Новая дегидрогеназа 5&#39;-инозиновой кислоты и способ получения 5&#39;-инозиновой кислоты с ее использованием
KR20220076467A (ko) 신규 핵염기 편집기 및 이의 사용 방법
ES2887078T3 (es) Variantes de ligasa diseñadas
WO2013056657A1 (zh) 活性提高的l-天冬酰胺酶变体
JP6648345B1 (ja) 新規ポリペプチド及びこれを用いたimpの生産方法
EP3478301A1 (en) Engineered parasites for delivering protein to the central nervous system (cns)
KR20140109510A (ko) Oas1 유전자에서의 돌연변이
JP2021512647A (ja) Pd−l1結合力が増大したpd−1変異体
Zarei et al. Arginine deiminase: Current understanding and applications
Xia et al. A-type ATP binding consensus sequences are critical for the catalytic activity of the calmodulin-sensitive adenylyl cyclase from Bacillus anthracis.
EP1908478B1 (en) Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation
US9322008B2 (en) Mutants of L-asparaginase
CN108699561B (zh) 重组乳酸菌及其在口服通用流感疫苗中的用途
WO2019084833A1 (zh) 防治家禽滑膜霉浆菌感染的组合物
CN104630172B (zh) 一种血吸虫谷胱甘肽‑s‑转移酶的突变体及其应用
USRE48805E1 (en) Method for cancer targeting treatment and detection of arginine using albumin-binding arginine deiminase fusion protein
Oates Molecular Characterisation of the Trypanosoma brucei Flap Endonuclease
WO2023096996A2 (en) Chimeric hsv expressing hil21 to boost anti-tumor immune activity
Khodak et al. Purification of core enzyme of Escherichia coli RNA polymerase by affinity chromatography
JP6399589B2 (ja) 肺炎球菌における発現プロモーター
OA17472A (en) Pharmaceutical composition comprising albumin-binding arginine deiminase for cancer targeting treatment.
KR20050024361A (ko) 아르기닌 결핍에 의한 인간 악성 종양의 치료제 및 치료방법
NZ711234B2 (en) Pharmaceutical composition comprising albumin-binding arginine deiminase for cancer targeting treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842415

Country of ref document: EP

Kind code of ref document: A1