WO2013056535A1 - 一种提高诱导生成多能性干细胞效率的方法 - Google Patents

一种提高诱导生成多能性干细胞效率的方法 Download PDF

Info

Publication number
WO2013056535A1
WO2013056535A1 PCT/CN2012/073375 CN2012073375W WO2013056535A1 WO 2013056535 A1 WO2013056535 A1 WO 2013056535A1 CN 2012073375 W CN2012073375 W CN 2012073375W WO 2013056535 A1 WO2013056535 A1 WO 2013056535A1
Authority
WO
WIPO (PCT)
Prior art keywords
pluripotent stem
leu
cells
stem cell
glu
Prior art date
Application number
PCT/CN2012/073375
Other languages
English (en)
French (fr)
Other versions
WO2013056535A9 (zh
Inventor
裴端卿
王涛
Original Assignee
中国科学院广州生物医药与健康研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州生物医药与健康研究院 filed Critical 中国科学院广州生物医药与健康研究院
Priority to ES12801798.5T priority Critical patent/ES2627799T3/es
Priority to EP12801798.5A priority patent/EP2647700B1/en
Priority to US13/808,596 priority patent/US9163217B2/en
Priority to JP2013539131A priority patent/JP5736052B2/ja
Publication of WO2013056535A1 publication Critical patent/WO2013056535A1/zh
Publication of WO2013056535A9 publication Critical patent/WO2013056535A9/zh
Priority to US14/011,714 priority patent/US9163218B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a method for increasing the efficiency of induction of pluripotent stem cells.
  • it relates to a method for increasing the efficiency of induction of pluripotent stem cells by using the modified group proteins jhdmlb and jhdmla. Background technique
  • Cell transplantation therapy is an important direction in regenerative medicine research. Specific types of cell transplantation can be used to treat heart damage, neurodegenerative diseases, spinal cord injury, kidney failure, blood system diseases and more. However, cell transplantation therapy faces many problems that are difficult to solve, such as allogeneic rejection and limited cell sources.
  • Stem cells are a type of self-replicating cell that, under certain conditions, can differentiate into multiple functional cells. Embryonic stem cells and adult stem cells are classified according to the developmental stage in which stem cells are located. According to the developmental potential of stem cells, they are divided into three categories: totipotent stem cells, pluripotent stem cells, and pluripotent stem cells. Stem cells are an under-differentiated, immature cell that has the potential to regenerate various tissues and organs and the human body. The medical community calls it "universal cells.”
  • Induced plurium ipotent stem cells are embryonic stem cells, cells with developmental pluripotency, and induce stem cells by introducing specific genes to obtain stem cell characteristics.
  • Japanese scientist Yamanaka introduced 24 candidate genes into mouse fibroblasts together with retrovirus, and screened FBX15-positive cells by G418 resistance to isolate iPS clones resembling embryonic stem cells, and finally identified Oct 3/4, Sox2.
  • the four factors c-Myc and Klf 4 are sufficient to induce the production of mouse FBX15_iPS cells, which have similar morphology, proliferative capacity and ability to form teratomas as embryonic stem cells, but in terms of gene expression and thiolation patterns.
  • the ability to successfully induce the transformation of somatic cells into iPS is not limited to mice and humans, but also rats, pigs and monkeys.
  • Cells that can be successfully reprogrammed are not limited to fibroblasts.
  • Many other types of adult cells can be induced into iPS cells, including pancreatic beta cells, adult neural stem cells, hepatocytes, gastric cells, mature B cells, hematopoietic cells, and meningeal cells. , adipose stem cells, cord blood cells, peripheral blood CD34 positive cells, keratinocytes. Cells at different stages of differentiation have different degrees of difficulty in inducing reprogramming to iPS.
  • Hematopoietic stem cells and hematopoietic progenitors can achieve a reprogramming efficiency of 28%, which is terminally differentiated T cells. 300 times that of B cells.
  • a foreign gene is often introduced into a cell by means of a retrovirus or a lentivirus.
  • a retrovirus or a lentivirus In this way, a high gene transduction efficiency can be obtained, but since the viral sequence is integrated into the genome of the cell, a gene insertion mutation is caused. Occurrence, even carcinogenicity, so this potentially dangerous gene introduction method is clearly not conducive to the application of iPS technology in the field of regenerative medicine, so different research groups have used non-integrated vectors to induce iPS and have achieved success.
  • Vectors include adenoviral vectors, common expression vectors, transposons, episomal vectors, minicircle DNA vectors.
  • Sox2, Klf4, Oct 3/4, c_Myc and Sox2, Oct 3/4, Nanog, Lin28 can successfully induce iPS production.
  • c-Myc is not required for reprogramming, only three transcription factors Sox2, Klf4, Oct 3/4 are sufficient to promote somatic cell reprogramming in humans and mice.
  • Neural stem cells endogenously express high levels of Sox2, Klf4, and c-Myc, so only the introduction of exogenous Oct 3/4 is sufficient to successfully induce iPS.
  • Sox2, Klf 4 and c-Myc can be replaced by other members of the same family.
  • Klf 2 and Klf 5 can replace Klf 4; Soxl and Sox3 can replace Sox2; N-Myc and L -Myc can replace c-Myc; but Oct l and 0ct6 are not a substitute for 0ct4.
  • Esrrb directly binds to Oct 3/4 protein to regulate stem cell self-renewal and pluripotency. Esrrb can replace Klf 4 during reprogramming, and can induce iPS in combination with Sox2 and Oct 3/4. Oct 3/4 is the reprogramming process.
  • Nr5a2 nuclear receptors LHR-1 (Nr5a2) and Nr5al can replace Oct 3/4, which, in combination with Klf 4 and Sox2, can induce the transformation of mouse adult cells into iPS.
  • the transcription factor combinations currently reprogrammable are 0ct4, Klf4, Sox2, c-Myc; 0ct4,
  • the following technical solution provides a method for improving the efficiency of induced pluripotent stem cells, including the following steps:
  • a transferring a transcription factor and Jhdmlb into a mammalian adult cell, culturing in an induction medium, and inducing obtaining a pluripotent stem cell clone, which is a combination of Oct4, or Oct4 and Klf4 and Sox2, or a combination of 0ct4, Klf 4, c-Myc and Sox2;
  • the induced pluripotent stem cell clone is cultured and expanded in a stem cell culture medium.
  • Another technical solution of the present invention is to provide a method for improving the efficiency of inducing the production of pluripotent stem cells, comprising the following steps:
  • the induction medium comprises vitamin C, which induces the acquisition of a pluripotent stem cell clone, which is a single combination of Oct 4, or a combination of Oct 4 and Sox 2 , or a combination of Oct 4, Klf 4 , or 0ct 4, Klf 4 and a combination of Sox2, or a combination of 0ct 4 and Klf 4 and Sox2 and c-myc;
  • the induced pluripotent stem cell clone is cultured and expanded in a stem cell culture medium.
  • the above steps are:
  • a transferring the transcription factor and Jhdmlb into adult mammalian cells, culturing in an induction medium, and inducing the pluripotent stem cell clone, which is a single combination of Oct 4, or combination of 0ct 4 and Sox2, or 0ct a combination of 4 and Klf 4, or a combination of 0ct 4 and Klf 4 and Sox2;
  • the induced pluripotent stem cell clone is cultured and expanded in a stem cell culture medium.
  • the transcription factor and Jhdmlb are coding or non-coding with pluripotent stem cell induction function
  • RNA protein or peptide
  • the adult cells which transfer Jhdmlb into a mammal are introduced into a cell containing a vector capable of expressing Jhdmlb.
  • the vector is a viral vector, a plasmid vector, an exogenous vector, an mRNA vector or a direct chemical synthesis.
  • the viral vector is a retrovirus
  • the retrovirus is a pMXs vector.
  • the Jhdmlb is a polypeptide which undergoes dethiolation modification, a functional variant thereof and a functional fragment thereof.
  • the adult cells of the mammal are fibroblasts, nerve cells, hematopoietic cells, and glial cells.
  • the adult cells of the mammal are mouse embryonic fibroblasts.
  • the present invention also provides yet another technical solution to provide a method for increasing the efficiency of inducing the production of pluripotent stem cells, comprising the steps of:
  • a Transferring the transcription factor to Jhdmlb and Jhdmla into mammalian adult cells, culturing in an induction medium, and inducing the pluripotent stem cell clone, which is a combination of 0ct 4 alone or 0ct 4 and Sox2, Or a combination of 0ct 4 and Klf 4, or a combination of 0ct 4 and Klf 4 and Sox2;
  • the induced pluripotent stem cell clone is cultured and expanded in a stem cell culture medium.
  • the above method comprises the following steps:
  • the transcription factor and Jhdmlb and Jhdmla were transferred into mammalian adult cells, cultured in an induction medium containing vitamin C, induced to obtain pluripotent stem cell clones, the transcription factor is 0ct 4;
  • the induced pluripotent stem cell clone is cultured and expanded in a stem cell culture medium containing vitamins. .
  • the beneficial effects of the present invention are that the polypeptides modified with histones, Jhdmlb, Jhdmla and stem cell-inducing factors, increase the efficiency of induced pluripotent stem cells and improve the quality of induced pluripotent stem cells.
  • the method of the invention achieves better results with fewer stem cell-inducing factor species, preferably the method of the invention uses 0ct 4, Klf 4 and Sox2, 0ct 4 and Klf 4, 0ct 4 and Sox2, and 0ct 4 alone.
  • the method of the present invention further comprises exposing said cells to vitamin C, which further increases the efficiency of inducing pluripotent stem cells compared to the absence of vitamin C.
  • the method of the present invention reduces potential carcinogenicity by using fewer stem cell-inducing factors, while at the same time obtaining higher induction efficiency, and obtaining high-quality induced pluripotent stem cells having germline transmission ability.
  • Figure 1 shows data showing that Jhdmla or Jhdmlb enhances SK0-mediated induction of pluripotent stem cell efficiency.
  • the control is a pMXs-FLAG empty vector without any gene sequence inserted;
  • Figure 1 is a graph showing the efficiency of SK0M-mediated reprogramming efficiency by Jhdmla or jhdmlb;
  • Figure 3 shows that in the presence of vitamin C, the combination of jhdmla and jhdmlb can be only S0,
  • a, d is 0ct 4+jhdmlb (abbreviated as OB), which is the result of induced pluripotent stem cells:
  • b, e is the final chimera formed by inducing pluripotent stem cells after injection into the embryo.
  • Progeny photograph; c, f is 0B. Photograph of the progeny produced by the chimera developed after the injection of the blast induced by the induced pluripotent stem cells and the wild type mouse.
  • Figure 5 shows that PCR amplification of genomic A clones of pluripotent stem cell clones showed that only 0ct 4 and Jhdmlb were integrated in the B4-induced pluripotent stem cell clones C4, C14, C15 and C16 genomes, and the control was infected with Sox2, klf 4.
  • the genomic extracts of cells extracted by oct 4, cMyc and Jhdmlb, MEF represent the genome A extracted from mouse embryonic fibroblasts;
  • Figure 6 shows quantitative PCR results showing 0B-induced pluripotent stem cell clones C4, C14, C15 and
  • the C16 foreign gene was silenced, and the OB D4 control was a c-A template obtained by reverse transcription of mRNA extracted from cells infected with 0ct 4 and Jhdmlb for 4 days, and MEF was mouse embryonic fibroblasts;
  • Figure 7 shows the results of real-time quantitative PCR indicating that 0B-induced pluripotent stem cell clones C4, C14, C15 and C16 express embryonic stem cell-specific genes, wherein R1 is a mouse embryonic stem cell line and MEF is a mouse embryonic fibroblast;
  • Figure 8 shows the results of immunofluorescence showing that the 0B-induced pluripotent stem cell clone C14 expresses the embryonic stem cell-specific gene Rexl and the embryonic stem cell-specific surface marker SSEA-1, wherein Marker represents a stem cell-specific marker molecule (ie Rexl or SSEA-1);
  • Figure 9 shows the results of the analysis of the degree of CpGs thiolation in the 0ct 4 adjacent promoter region of mouse embryonic fibroblasts and induced pluripotent stem cells
  • Figure 10 shows the results of the analysis of the degree of CpGs thiolation in the Nanog adjacent promoter region of mouse embryonic fibroblasts and induced pluripotent stem cells
  • Figure 11 shows the karyotypes of pluripotent stem cells induced by 0ct 4 and Jhdmlb;
  • Figure 12 shows the efficiency of different mutants of Jhdmlb in inducing pluripotent stem cells.
  • the Jmjc mutation mutates the histidine at position 221, the isoleucine at position 222, and the aspartic acid at position 223 to alanine;
  • the CxxC mutation mutates the cysteine at positions 586, 589, and 592 to Alanine
  • Figure 13 shows the pMXs-FLAG plasmid map.
  • polypeptide and protein as used herein interchangeably denote a string of at least two amino acid residues linked to each other by a covalent bond (eg, a peptide bond), which may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide.
  • a covalent bond eg, a peptide bond
  • the polypeptides described herein are polypeptides derived from human and/or mouse.
  • variants mean by one or more substitutions, A polypeptide that differs in amino acid sequence by deletion, insertion, fusion, truncation, or any combination thereof.
  • a variant polypeptide can be fully functional or can lack the function of one or more activities.
  • functional variant denotes a function that contains, for example, only conservative changes or changes in non-critical or non-critical regions, and retains the original polypeptide. Functional variants may also include substitutions of similar amino acids that result in unaltered or insignificant changes in function.
  • Functionally important amino acids can be identified by methods known in the art, such as site-directed mutagenesis or glycine scanning mutagenesis (Cunningham, B. and Wells, J., Science, 244: 1081-1085, 1989).
  • Sites critical for polypeptide activity can be determined, for example, by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith, L. et al, J. Mol. Biol., 224: 899-904, 1992; de Vos , A. et al, Science, 255: 306-312, 1992).
  • the variant of Jhdmla is selected from the group consisting of: comprising at least 70% homology to the amino acid sequence encoded by SEQ ID NO: 1 (preferably 80%, 90%, 95%, 98%, 99%) a polypeptide of the amino acid sequence.
  • the variant of Jhdmlb is selected from the group consisting of: comprising at least 70% homology to the amino acid sequence encoded by SEQ ID NO: 2 (preferably 80%, 90%, 95%, 98%, 99%) of the amino acid sequence of the polypeptide.
  • the amino acid sequence encoded by Jhdmla is SEQ ID NO: 7
  • the amino acid sequence encoded by Jhdmlb is SEQ ID NO: 8.
  • fragment refers to a molecule that is only part of a full length sequence.
  • the Jhdmlb polypeptide fragment is a truncated Jhdmlb. Fragments may contain sequences from either end of the full length sequence, or they may contain sequences from the middle of the full length sequence.
  • a fragment can be a "functional fragment”, such as a fragment that retains one or more functions of the full length polypeptide.
  • the term "functional fragment” as used herein means that the fragment retains the function of a full length polypeptide, such as inducing pluripotent stem cells or increasing the efficiency of induced pluripotent stem cells.
  • Jhdmlb and Jhdmla also represent functional variants and functional fragments of native Jhdmlb and Jhdmla, respectively.
  • Jhdmlb may refer to an evolutionarily conserved and ubiquitous member of the JmjC-domain-containing histone demethylase (JHDM) family, also known as Fbxll0. .
  • JHDM histone demethylase
  • the polypeptide is of human and/or mouse origin.
  • Jhdmla may refer to another member of the JmjC-domain-containing histone demethylase (JHDM) family, which is also referred to as Fbx 111.
  • JHDM histone demethylase
  • the polypeptide is of human and/or mouse origin.
  • induced pluripotent stem cells induced pluripotent stem cells
  • induced pluripotent stem cells induced pluripotent stem cells
  • induced pluripotent stem cells induced pluripotent stem cells
  • iPS induced pluropotent stem cells
  • stem cell inducing factor denotes a factor, such as a protein, polypeptide, coding or non-coding RNA, which is capable of inducing cells into pluripotent stem cells, either alone or in combination with other factors.
  • the stem cell inducing factor is a transcription factor, including Oct-3/4, a Sox family member, a Klf family member, a Myc family member, Nanog, LIN28, and the like.
  • the stem cell inducing factor is selected from one or more of the group consisting of 0ct4, Klf4, Sox2 and c-myc. More preferably, the stem cell inducing factor comprises at least 0ct4.
  • the polypeptide is of human and/or mouse origin.
  • 0ct4 refers to a member of the family of octamer transcription factors that plays a key role in maintaining cellular pluripotency. In the literature, 0ct4 was also known as 0ct3.
  • Klf 4" refers to the Kr uppel-like transcription factor family (Kr ii ppel-1 ike family) A member of the t ranscr ipt ion factors ).
  • Sox2 refers to one of the members of the Sox transcription factor family.
  • c-myc denotes a transcription factor well known to those skilled in the art that regulates the expression of many genes, recruits histone acetyltransferases, and is mutated in connection with many cancers.
  • histone modification refers to a variety of modifications to histones, such as acetylation, thiolation, dethiolation, phosphorylation, adenylation, ubiquitination, ADP ribosylation and the like.
  • group of protein modifications includes demethylation of histones.
  • subject refers to a mammal, such as a human, but may also be other animals, such as domestic animals (such as dogs, cats, etc.), livestock (such as cattle, sheep, pigs, horses, etc.) or experimental animals (such as monkeys, rats, mice, rabbits, guinea pigs, etc.).
  • domestic animals such as dogs, cats, etc.
  • livestock such as cattle, sheep, pigs, horses, etc.
  • experimental animals Such as monkeys, rats, mice, rabbits, guinea pigs, etc.
  • sequence identity refers to sequence identity between two amino acid sequences or between nucleic acid sequences. Percent identity can be determined by aligning two sequences, which refers to the number of identical residues (i.e., amino acids or nucleotides) shared by the sequences being compared. Standard algorithms in the art can be used (e.g., Smi th and Wa terman, 1981, Adv. Appl. Ma th. 2: 482; Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443; Pearson and Lipman, 1988, Proc. Na t l. Acad. Sc i .
  • the GCG with a gap weight of 1 can be used to determine the percent identity of the two sequences such that each amino acid gap gives a weight as if it were a single amino acid mismatch between the two sequences.
  • ALIGN program version 2.0
  • GCG Acthe rys, San Diego, CA
  • the term "vector” as used herein is used in the sense well known to those skilled in the art and may be an expression vector.
  • the vector may include a virus (e.g., poxvirus, adenovirus, baculovirus, etc.); a yeast vector, a phage, a chromosome, an artificial chromosome, a plasmid, a cosmid, an episomal vector, an mRNA vector, or a direct chemical synthesis.
  • the viral vector is a retrovirus and/or a lentiviral vector. More preferably, the retrovirus is a pMXs vector.
  • excess means significantly higher than normal, particularly indicating that the amount of expression of the polypeptide is statistically significantly higher than that in normal cells. Preferably, it is 20%, 50%, 100%, 200% or even 5 times, 10 times or 100 times higher.
  • overexpression means that the expression level is significantly higher than the normal level, in particular indicating that the expression level of the polypeptide is statistically significantly higher than that in normal cells. Preferably, it is 20%, 50%, 100%, 200% or even 5 times, 10 times or 100 times higher.
  • introduction refers to the process of introducing a foreign substance, such as a nucleic acid or a protein, into a cell, for example, by phosphorylate transfection, viral infection, lipofection, electroporation or gene gun.
  • delivery of a foreign polypeptide into a cell can be carried out in a variety of ways, such as by a carrier and/or a transport factor, preferably by liposome, bacterial polypeptide fragments, etc. (see WO 2002/079417, the content of which is This is incorporated herein by reference.
  • the cells which can be used in the method of the invention are preferably mammalian cells, more preferably human and mouse cells.
  • the cells are somatic cells, such as epithelial cells, nerve cells, fibroblasts, endothelial cells, muscle cells, hematopoietic cells, immune cells, lymphocytes, and the like.
  • the cell is a pancreatic beta cell, Adult neural stem cells, hepatocytes, gastric cells, mature B cells, hematopoietic cells, meningeal cells, adipose stem cells, cord blood cells, peripheral blood CD34 positive cells, keratinocytes, and the like.
  • the sequence information of the cDNAs of Jhdmla and Jhdmlb was obtained from ht tp: //www.ncbi.nlm.nih.gov/ubmed.
  • the sequence of the Jhdmla cDNA cloning region is SEQ ID NO: 1
  • the sequence of the Jhdmlb cDNA cloning region is SEQ ID NO: 2
  • the coding sequences of Jhdmla and Jhdmlb are amplified by designing specific primers.
  • the base sequence of the Jhdmla upstream primer is as shown in SEQ ID NO: 3;
  • the base sequence of the downstream primer of Jhdmla is as shown in SEQ ID NO: 4.
  • the base sequence of the Jhdmlb upstream primer is as shown in SEQ ID NO: 5;
  • the base sequence of the Jhdmlb downstream primer is shown in SEQ ID NO: 6.
  • PBS normal saline
  • Tr izol Takara
  • RNAse inhibition RNAse inhibition
  • the primers were designed by the above method, and the target gene was amplified by polymerase chain reaction using the reagent of high-fidelity polymerase K0D and its buffer ( Toyobo), dNTP (Takara), primers, run the following procedure on the PCR machine: denaturation at 96 °C for 5 minutes, 95 °C for 30 seconds, annealing at 60 °C for 25 seconds, extension at 68 °C for 3.5 minutes, Loop 2-3 times in 2-4 steps.
  • the PCR product was subjected to agarose gel electrophoresis, and the PCR fragment was extracted using a gel recovery kit (Tiangen, DP214-03).
  • the pMXs vector vector purchased from addgene, inserted into the multiple cloning site and the FLAG tag sequence
  • the engineered pMXs vector is called pMXs-FLAG
  • the plasmid map is shown in Figure 13. It was digested with pmel and dephosphorylated by CIAP calf intestinal alkaline phosphatase to prevent vector self-ligation.
  • the treated vector was recovered by a gel recovery kit (Tiangen, DP214-03).
  • the pMX-FLAG vector and the gene fragment of Jhdmla/Jhdmlb were subjected to ligation kit ( Takara, Li A Ligat ion Ki t ), and then the ligation product was transformed into E. coli competent bacteria, positive clones were selected, plasmids were extracted, and sequencing was confirmed. A large number of plasmids were prepared.
  • Jhdmla/Jhdmlb and pluripotent stem cell-inducing factor was introduced into mouse embryonic fibroblasts. Unless otherwise specified, mouse-based somatic cell reprogramming was performed as follows.
  • the medium of feeder cells, MEF cells and PlatE cells consisted of: high-glucose basal medium DMEM (gibco) plus 10% fetal bovine serum (FBS, PAA).
  • the present invention uses a laboratory conventional induction medium, preferably using an induction medium component including DMEM high glucose medium (Gibco), 15% fetal bovine serum (FBS, Gibco), 0.1 mM non-essential amino acids. (NEAA, Gibco), 2mML-glutamine (Glutamax, Gibco), ImM sodium pyruvate (Gibco), 55 ⁇ M ⁇ -mercaptoethanol ( ⁇ -ME, Gibco), penicillin (50U/mL) and chain Toxin (5 ( ⁇ g/mL), leukemia inhibitory factor 1000 U/ml (LIF, Millipore), vitamin C (sigma) was added as needed, and its concentration was 50 micrograms per milliliter.
  • an induction medium component including DMEM high glucose medium (Gibco), 15% fetal bovine serum (FBS, Gibco), 0.1 mM non-essential amino acids. (NEAA, Gibco), 2mML-glutamine (Glutamax, Gibco), ImM sodium pyruv
  • Stem cell culture medium uses a laboratory conventional stem cell culture medium, preferably mES stem cell culture medium, the components of which are: high glucose DMEM medium supplemented with 15% fetal bovine serum, 0.1 mM non-essential amino acids (NEAA, Gibco), 2mML - Glutamax, Gibco, ImM sodium pyruvate, Gibco, 55 ⁇ ⁇ -mercaptoethanol (gibco), penicillin (50 U/mL) and streptomycin (50 g/mL) ), leukemia inhibitory factor 1000 U/ml (LIF, Millipore). Add vitamin C (sigma) as needed at a concentration of 50 micrograms per milliliter.
  • high glucose DMEM medium supplemented with 15% fetal bovine serum
  • NEAA non-essential amino acids
  • 2mML - Glutamax Gibco
  • ImM sodium pyruvate Gibco
  • Gibco 55 ⁇ ⁇ -mercaptoethanol
  • penicillin 50 U/mL
  • KSR serum-free medium KSR is the abbreviation of Knockout Serum Replace, a commercial generation of serum stem cell culture additive for the complete KSR serum-free medium for culturing stem cells or iPS clones. Its composition is: KNOCKOUT DMED (a kind) Osmotic pressure optimized basal medium for stem cell culture ;), 15% KSR additive, 0 ⁇ ImM non-essential amino acids (NEAA, Gibco), 2mML-glutamine (Glutamax, Gibco), ImM sodium pyruvate (sodium) Pyruvate, Gibco), 55
  • LIF murine leukocyte inhibitory factor
  • the somatic cell types used for reprogramming were 0G2 mouse embryonic fibroblasts (made by the laboratory;), and the passage number was no more than three generations.
  • a feature of 0G2 mice is the attachment of green fluorescent protein (GFP) to the promoter of stem cell-specific gene 0ct4.
  • GFP green fluorescent protein
  • the reprogrammed cells were prepared as described below.
  • the cells were seeded at a density of 20,000 cells/well in a 12-well culture plate (Corning), and after 6-18 hours of cell growth, the virus was loaded with a mouse reprogramming factor depending on its density and status.
  • Transcription factors for reprogramming include d)NA retroviral vector pMXs of mouse Oct4, Sox2, Klf4, c-Myc (from Addgene Corporation, numbered 1313, Plasmid 13367, Plasmid 13370 and Plasmid 13375, respectively); 0ct4, NCBI accession number is NM—013663; Sox2, NCBI accession number is ⁇ -011443; Klf4, NCBI accession number is 010637; c-Myc, NCBI accession number is NM_001177353.
  • the reprogramming factor plasmid on the pMX vector was transfected into viral packaging cells (PlatE) using a self-made calcium phosphate transfection reagent.
  • Procedure Inoculate 7.5 million PlatE cells in a 10 cm diameter plate (Corning), 12 hours later Replace the old medium with 7.5 ml of penicillin/streptomycin-free medium and place the cells in the incubator.
  • prepare the transfection mixture Add 25 ⁇ g of plasmid to a 15 ml centrifuge tube, add 156.25 liters of 2M calcium chloride solution in sequence, add appropriate amount of water to make the total volume of the three 1.25 ml, mix Evenly, then add 1.25 ml of HBS solution, mix well immediately, then let stand for 2 minutes, then add dropwise to the PlatE plate and mix well.
  • the infection was carried out in two rounds.
  • the inducing factors used were all infected at the same time.
  • the amount of virus in each well of the 12-well plate was 1 ml.
  • the second round of infection was performed 24 hours after the first round of infection, and 24 hours after the second round of infection.
  • the virus solution was changed to mES medium (described above).
  • the day of the change was recorded as day 0 (DO); at different time points after infection, the number of GFP fluorescent clones in the original well or the ratio of GFP fluorescent cells was analyzed by flow cytometry according to the experiment.
  • a single clone of morphologically elevated, sharp-edged embryonic stem cell-like cells was selected and transferred directly to a culture plate in which feeder cells (flock cells treated with mitomycin-treated ICR mice) were prepared in advance. (Corning) was cultured in KSR medium. On the second day after infection, the culture system was changed to fresh induction medium, and then the induction medium was changed every day until the experiment was completed.
  • pluripotent stem cell inducing factors The combination of pluripotent stem cell inducing factors is as follows:
  • Kif4, Sox2, c-Myc, and 0ct4 is abbreviated as SK0M.
  • Kif4, Sox2, and 0ct4 is abbreviated as SK0.
  • K0 The combination of Kif4, 0ct4 is abbreviated as K0.
  • 0B The combination of 0ct4 and Jhdmlb is abbreviated as 0B.
  • C4, C14, C15, and C16 are four clones selected from OB-induced reprogrammed cells.
  • Jhdmla or Jhdmlb has significantly improved reprogramming efficiency regardless of the presence of vitamin C. In the presence of vitamin C, the increase is more significant.
  • Figure 1 shows that Jhdmla or Jhdmlb improves SK0.
  • Jhdmla or Jhdmlb has significantly improved reprogramming efficiency regardless of the presence of vitamin C. In the presence of vitamin C, the increase is more significant.
  • Figure 1 shows that Jhdmla or Jhdmlb improves SK0M. Mediated data for inducing pluripotent stem cell efficiency, wherein the control is a pMXs-FLAG empty vector without any gene sequence inserted;
  • Jhdmla and Jhdmlb work together to induce pluripotent stem cells under conditions of only S0, K0 or Oct4.
  • mESC+Vc indicates that the medium used in the induction process is a stem cell.
  • the medium was mES, and 50 ⁇ ⁇ / ⁇ of vitamin C was added, wherein the control was a pMXs-FLAG empty vector.
  • Jhdmla and Jhdmlb can significantly improve the efficiency of inducing pluripotent stem cells, greatly reducing the types of transcription factors to be introduced while maintaining high reprogramming efficiency, thereby reducing the accumulation of reprogrammed cell mutations, Reducing its carcinogenicity offers significant benefits.
  • the method of the present invention also improves the operability of the reprogramming technique, reduces the difficulty of operation, and provides convenience for subsequent medical use.
  • a series of identification experiments were performed on cloning of pluripotent stem cells induced by Oct4 and Jhdmlb to prove whether they were iPS cells (induced pluripotent stem cells).
  • the assay was performed by sodium bisulfite sequencing. 5 ul. 5 ul. 5 ul. 5 ul. 5 ul. 5 ul. 5 ul. 5 ul. 5 ul. 5 ul ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the pipette tip was inserted into the paraffin oil layer, and the mixture was pipetted into a clean 1.5 ml centrifuge tube, and the decorated DNA was recovered using a Promega Wizard Cleanup DNA Purification System (Promega, A7280). Store at 20 °C or proceed to the next experiment. 50 ng of the above extracted Li A was used as a template for PCR reaction, followed by gel recovery of the PCR product (Tiangen, DP214-03), and then the PCR product was ligated and transformed with the T vector (Takara) to select positive clones. The sequencing company was sent to perform sequencing, and the results were compared to calculate the thiolation state of the CpG island.
  • the karyotype identification of the iPS cells was carried out according to the following method: The cells to be subjected to karyotype analysis were added 0. lml 5 ug/ml colchicine (commercially available, final concentration 0. lug/ml) and mixed. Continue to incubate for 2-3 hours, transfer to a 10 ml centrifuge tube, centrifuge at 1500-2000 rpm for 10 minutes, remove the supernatant, and add 8 ml of hypotonic solution (0. 075M Kc l, 37 °C preheat).
  • the cell pellet was evenly blown, placed in an incubator at 37 ° C for half an hour, and 1 ml of a newly prepared fixative solution (sterol: a mixture of water and acetic acid in a volume ratio of 3:1, commercially available) was added, and the mixture was gently mixed. Centrifuge at the same speed and time as before, and aspirate the supernatant. Add 8 mL of fixative and mix the cells well, fix at room temperature for at least half an hour, repeat the centrifugation, remove the supernatant, and add fresh fixative for another at least half an hour (preferably overnight) after centrifugation and supernatant removal. Add about 0.2 ml of fresh fixative to the pellet, mix the cells with the droplets on the pre-cooled slides (3 drops of cell suspension per slide), bake the drops with alcohol light, and then cool. With processing.
  • a newly prepared fixative solution sterol: a mixture of water and acetic acid in a volume ratio of 3:1, commercially available
  • iPS cells were injected into the embryo cavity of the donor mouse, and the injected embryos were transplanted into the uterus of the pseudopregnant female to make chimeric mice. The born mice were based on the coat color. It is determined whether or not chimerism has occurred.
  • the C15 and C16 exogenous genes were silenced, and the 0B D4 control was a C-A template obtained by reverse transcription of mRNA extracted from cells infected with Oct 4 and Jhdmlb and cultured for 4 days, and MEF was mouse embryonic fibroblasts;
  • FIG 7 shows real-time quantitative PCR results indicating that 0B-induced pluripotent stem cell clones C4, C14, C15 and C16 express embryonic stem cell-specific genes, of which R1 is mouse embryonic stem
  • R1 is mouse embryonic stem
  • MEF is a mouse embryonic fibroblast
  • the expression level of the endogenous embryonic stem cell transcription factor of the stem cells obtained by using the combination of 0ct 4 and Jhdmlb is substantially identical to that of the embryonic stem cell.
  • pluripotent stem cell clones C4, C14, C15 and C16 express embryonic stem cell-specific genes, thus indicating that pluripotent stem cells induced by the method of the present invention are characterized by pluripotent stem cells.
  • the CpG island thiolation state analysis of the promoter region of the 0ct 4 shows that the CpG island of the donor cell is not thiolated, and the CpG island of the corresponding pluripotent stem cell is significantly delocalized.
  • 0B_C14, 0B-C15 and 0B-C16 are three pluripotent stem cells of pluripotent stem cells induced by 0ct 4 and Jhdmlb, respectively.
  • the black part indicates that it has been thiolated, and the white indicates that it has no thiolation.
  • the CpG island of the donor cell is not thiolated, and the CpG island in the corresponding position of the induced pluripotent stem cell undergoes significant dethiolation;
  • Nanog and Oct 4 are genes specifically expressed by embryonic stem cells, and the expression state is closely related to the fate of the cell.
  • the karyotypes of the stem cells obtained by the method of the present invention are normal, and 0B-C14, 0B-C15 and 0B-C16 are three pluripotent stem cells of pluripotent stem cells induced by Oct 4 and Jhdmlb, respectively. Both have a normal karyotype.
  • a d is a photomicrograph of the resulting induced pluripotent stem cells of 0ct 4+jhdmlb (abbreviated as 0B);
  • b e is the final induced pluripotent stem cell injection of B Photograph of chimeric progeny formed after postembryonic development;
  • c f is a photograph of the progeny produced by the chimera formed after the induction of pluripotent stem cells by injection of the primordial stem cells and the wild type mouse individuals after mating;
  • the stem cells obtained by the method can form a chimera, wherein the donor cells are induced pluripotent stem cells, the cell source thereof is OG2/129 cells, and the pseudopregnant mice are experimentally fed ICR mice.
  • the resulting chimera has the ability to deliver the original donor cells to the next generation through the germ line, indicating that the stem cells have good quality.
  • the Jhdmlb variant in which mutation occurs does not have an activity to increase reprogramming efficiency, so the Li A binding domain (CXXC) and the catalytic domain (Jmjc) of Jhdmlb are for reprogramming. Requirement, the absence of any one can not promote reprogramming. Moreover, the combination of 0ct 4 and Jhdmlb can be reprogrammed under normal medium conditions, and the effect is more pronounced in the presence of vitamin C.
  • Val Asp Asp Asp Pro Thr Leu Ala lie Thr Gly Val Pro Val Val Ser 530 535 540

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Transplantation (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供一种将组蛋白去甲基化酶基因Jhdmlb和/或Jhdmla与转录因子转入哺乳动物的成体细胞,提高诱导生成多能性干细胞效率的方法,其中转录因子为Oct4、Klf4的组合,或Sox2、Oct4和Klf4的组合,或Oct4和Sox2的组合,以及单独的Oct4。通过利用Jhdmlb、Jhdmla和转录因子提高了诱导多能干细胞的效率和质量。该方法还包括在诱导培养基中添加维生素C,其相比于不使用维生素C进一步提高了诱导多能干细胞的效率。

Description

一种提高诱导生成多能性干细胞效率的方法 技术领域
本发明涉及一种提高诱导生成多能性干细胞效率的方法。 尤其涉及用修饰组蛋 白基因 jhdmlb和 jhdmla提高诱导生成多能性干细胞效率的方法。 背景技术
我国是世界人口大国, 每年因为创伤、 疾病、 衰老、 以及遗传所导致的器官缺 损、 衰竭、 功能障碍也居世界之首, 以药物和手术治疗为基本支柱的经典医学治疗 手段已不能满足临床医学的巨大需求, 所以对干细胞与再生医学的研究受到了相当 多科研单位以及社会各界的普遍重视。
细胞移植治疗是再生医学研究的一个重要方向, 特定类型的细胞移植可被用来 治疗心脏损伤, 神经系统退行性疾病, 脊髓损伤, 肾衰竭、 血液系统疾病等等。 然 而, 细胞移植治疗面临着异体排斥、 细胞来源有限等很多难以解决的问题。
干细胞是一类具有自我复制能力的细胞, 在一定条件下, 它可以分化成多种功 能细胞。 根据干细胞所处的发育阶段分为胚胎干细胞和成体干细胞。 根据干细胞的 发育潜能分为三类: 全能干细胞、 多能干细胞和单能干细胞。 干细胞是一种未充分 分化, 尚不成熟的细胞, 具有再生各种组织器官和人体的潜在功能, 医学界称之为 "万用细胞"。
为了解决细胞移植治疗面临的问题, 细胞命运的转化受到越来越多科学家的重 视。虽然细胞分化和命运的决定一直认为是发育过程中不可逆转而且是稳定的过程, 而在体外, 越来越多的证据表明, 这一过程是可以被逆转的。
对于细胞命运调节的研究还只是处于实验室研究状态, 离临床实验还有很长的 距离。 这些通过转录因子过表达获得的转化的细胞还存在很多应用上的难题, 比如 说, 病毒插入、 潜在致瘤性、 获得转分化细胞的纯度、 在机体内能否弥补正常细胞 发挥应有的功能等等。
诱导多能性干细胞 ( iPS , Induced p lur ipotent s tem ee l 1)是一种类似于胚胎 干细胞、 具有发育全能性的细胞, 通过导入特定的基因诱导体细胞使其获得干细胞 特性。 2006年日本科学家 Yamanaka将 24个候选基因用逆转录病毒一起导入小鼠成 纤维细胞, 通过 G418抗性筛选 FBX15 阳性细胞从而分离出类似胚胎干细胞的 iPS 克隆, 最终鉴定出 Oct 3/4、 Sox2、 c-Myc、 Klf 4这 4个因子足以诱导小鼠 FBX15_iPS 细胞产生, 这些细胞具有与胚胎干细胞相似的形态、 增殖能力以及形成畸胎瘤的能 力, 但是在基因表达以及曱基化模式方面却与胚胎干细胞不同, 也不能够得到活体 的嵌合体小鼠; 随后, 该小组和其他两个小组改变筛选方法, 他们以 Nanog阳性细 胞作为标准, 得到了在多个方面均与胚胎干细胞相似的 iPS , 这种细胞能够产生嵌 合体后代。 最近, 三个研究组应用四倍体互补试验分别独立证明了小鼠的 iPS细胞 能够发育成一个个体, 具有发育全能性。
遵循诱导小鼠 iPS试验的方法, 2007年 Yamanaka [8]和俞君英 [9]两个小组分别 成功地将人的体细胞重编程为 iPS 细胞, 前者应用逆转录病毒将 Oct 3/4, Sox2, c-Myc, Klf 4 转导入人的表皮成纤维细胞, 后者则是应用慢病毒将 Oct 3/4, Sox2, Nanog, Lin28导入包皮细胞。 基因表达语分析, Oct 3/4, Nanog基因启动子区域曱 基化分析都表明人的 iPS细胞系与相应的胚胎干细胞系非常相似, 将这些细胞注射 到棵鼠体内, 都能够发育成 3个胚层组织。 此外, 能够成功诱导体细胞转变成 iPS 不仅限于小鼠和人, 还有大鼠、 猪和猴。 能够成功重编程的细胞不仅限于成纤维细胞, 很多其他类型的成体细胞也能够 被诱导成为 iPS细胞, 包括胰腺 beta细胞、 成体神经干细胞、 肝细胞、 胃细胞、 成 熟 B细胞、造血细胞、脑膜细胞、脂肪干细胞、脐带血细胞、外周血 CD34阳性细胞、 角质细胞。 处于分化不同阶段的细胞, 诱导其重编程为 iPS的难易程度也不同, 以 小鼠的造血细胞为例: 造血干细胞和造血祖细胞的重编程效率可以达到 28%, 是末 端分化 T细胞、 B细胞的 300倍。
在诱导 iPS过程中常借助于逆转录病毒、 慢病毒将外源基因导入细胞, 通过这 种方式可以得到很高的基因转导效率, 但是由于病毒序列整合到细胞的基因组中, 会导致基因插入突变发生, 甚至具有致癌性, 所以这种具有潜在危险性的基因导入 方法显然不利于 iPS技术在再生医学领域的应用, 因此不同的研究小组釆用了非整 合载体来诱导 iPS并取得了成功, 这些载体包括腺病毒载体、 普通表达载体、 转座 子、 附加体载体、 小环丽 A ( minicircle DNA )载体。
Sox2 , Klf4 , Oct 3/4 , c_Myc和 Sox2 , Oct 3/4 , Nanog, Lin28两种组合都能够 成功诱导 iPS产生, 进一步的研究发现 c-Myc不是重编程所必需的, 仅有三个转录 因子 Sox2 , Klf4 , Oct 3/4足以推动人和小鼠的体细胞重编程。 神经干细胞内源表达 高水平的 Sox2、 Klf4、 c-Myc, 因此只需要导入外源 Oct 3/4就足以成功诱导 iPS。 重编程所用的转录因子中, Sox2、 Klf 4和 c-Myc都能够被同家族的其他成员所替代, 例如 Klf 2 和 Klf 5能够替代 Klf 4; Soxl和 Sox3能够替代 Sox2; N-Myc和 L-Myc能 够替代 c-Myc; 但是 Oct l和 0ct6 并不能替代 0ct4。 Esrrb直接与 Oct 3/4蛋白相结 合调控干细胞自我更新和全能性, 在重编程过程中 Esrrb能够替代 Klf 4 , 与 Sox2、 Oct 3/4组合即能够诱导 iPS; Oct 3/4是重编程过程中极为重要的一个转录因子, 最 近研究发现核受体 LRH-1 (Nr5a2)和 Nr5al能够替代 Oct 3/4 , 其与 Klf 4、 Sox2组合 即能够诱导小鼠成体细胞转变成 iPS。 但是, 目前能够重编程的转录因子组合有 0ct4 , Klf4 , Sox2 , c-Myc; 0ct4,
Nanog, Lin28, Sox2; Sox2, Klf4和 Lrhl; 0ct4, bmi l等几种不同的组合以及 esrrb, tbx3等与重编程相关的基因, 现有的重编程方法所需要的转录因子组合需要导入的 转录因子多达三个或四个, 而且诱导效率低下, 如何减少转录因子并且保持较高的 重编程效率对于减少重编程细胞突变的积累, 提高重编程技术的可操作性具有重要 的意义。 而且, 寻找替代常用转录因子的基因有利于重编程机理的研究和重编程技 术的改进。 发明内容
本发明的目的是提供一减少转录因子并且保持较高的重编程效率对于减少重编 程细胞突变的积累, 提高重编程技术的可操作性的方法。
为实现该目的, 釆用如下技术方案提供一种提高诱导生成多能性干细胞效率的 方法, 包括如下步骤:
a、 将转录因子与 Jhdmlb转入哺乳动物的成体细胞, 在诱导培养基中培养,, 诱 导获得多能性干细胞克隆, 所述转录因子为单独的 0ct4 , 或 0ct4和 Klf4和 Sox2 的组合,或 0ct4、 Klf 4、 c-Myc和 Sox2的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增。
本发明的另一个技术方案为提供一种提高诱导生成多能性干细胞效率的方法, 包括如下步骤:
a、 将转录因子与 Jhdmlb转入哺乳动物的成体细胞, 在诱导培养基中培养, 所 述诱导培养基包含维生素 C, 诱导获得多能性干细胞克隆, 所述转录因子为单独的 0ct 4 , 或 0ct 4和 Sox2的组合, 或 0ct 4、 Klf 4的组合, 或 0ct 4、 Klf 4和 Sox2的组 合, 或 0ct 4和 Klf 4和 Sox2和 c-myc的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增,。
优选的, 以上步骤为:
a、 将转录因子与 Jhdmlb转入哺乳动物的成体细胞, 在诱导培养基中培养, 诱 导获得多能性干细胞克隆, 所述转录因子为单独的 0ct 4 , 或 0ct 4和 Sox2的组合, 或 0ct 4和 Klf 4的组合, 或 0ct 4和 Klf 4和 Sox2的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增。
优选的, 所述转录因子和 Jhdmlb 为具有多能干细胞诱导功能的编码或非编码
RNA、 蛋白质或多肽。
优选的, 所述将 Jhdmlb转入哺乳动物的成体细胞是以包含能够表达 Jhdmlb的 载体导入细胞中来实现的。
优选的, 所述载体为病毒载体、 质粒载体、 外随体载体、 mRNA载体或直接化学 合成。
优选的, 所述病毒载体为逆转录病毒, 所述逆转录病毒为 pMXs载体。
优选的, 所述 Jhdmlb是进行去曱基化修饰的多肽, 其功能性变体以及其功能性 片段。
优选的, 所述哺乳动物的成体细胞为成纤维细胞、 神经细胞、 造血细胞和神经 胶质细胞。
优选的, 所述哺乳动物的成体细胞为小鼠胚胎成纤维细胞。
本发明还提供又一个技术方案为提供一种提高诱导生成多能性干细胞效率的方 法, 包括如下步骤:
a、将转录因子与 Jhdmlb和 Jhdmla转入哺乳动物的成体细胞,在诱导培养基中 培养, 诱导获得多能性干细胞克隆, 所述转录因子为单独的 0ct 4 , 或 0ct 4和 Sox2 的组合, 或 0ct 4和 Klf 4的组合, 或 0ct 4和 Klf 4和 Sox2的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增。
优选的, 上述方法包括如下步骤:
a、将转录因子与 Jhdmlb和 Jhdmla转入哺乳动物的成体细胞,在诱导培养基中 培养, 所述诱导培养基包含维生素 C, 诱导获得多能性干细胞克隆, 所述转录因子 为 0ct 4;
b、将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增, 所述干细胞培 养基包含维生素。。
本发明的有益效果为利用对组蛋白进行修饰的多肽 Jhdmlb、 Jhdmla和干细胞诱 导因子提高了诱导多能干细胞的效率, 提高了诱导多能干细胞的质量。 相比于现有 的诱导多能干细胞的方法, 本发明的方法用较少的干细胞诱导因子种类实现了更好 的效果,优选地本发明的方法使用 0ct 4、 Klf 4和 Sox2 , 0ct 4和 Klf 4 , 0ct 4和 Sox2 , 以及单独的 0ct 4。 本发明的方法还包括将所述细胞暴露于维生素 C, 其相比于不使 用维生素 C进一步提高了诱导多能干细胞的效率。 本发明的方法通过使用较少的干 细胞诱导因子降低了潜在的致癌性, 同时获得了较高的诱导效率, 并可以得到高质 量的具有生殖系传递能力的诱导多能干细胞。 附图说明
图 1显示了 Jhdmla或 Jhdmlb提高 SK0介导的诱导多能性干细胞效率的数据, 其中对照是没有插入任何基因序列的 pMXs-FLAG空载体;
图 1为 Jhdmla或 jhdmlb促进 SK0M介导的重编程效率数据图;
图 3显示了在维生素 C存在的条件下, jhdmla和 jhdmlb共同作用能够在只有 S0、
K0以及 0ct 4的条件下进行重编程;
图 4中 a, d为 0ct 4+jhdmlb (简写为 OB)最终形成的诱导多能干细胞的显^:照片; b, e为 0B最终形成的诱导多能干细胞注射嚢胚后发育形成的嵌合体后代照片; c, f 为 0B 最终形成的诱导多能干细胞注射嚢胚后发育形成的嵌合体与野生型小鼠个体 交配后产生的后代的照片;
图 5显示了对多能干细胞克隆的基因组丽 A进行 PCR扩增的结果表明 0B诱导的 多能干细胞克隆 C4、 C14、 C15和 C16基因组中只有 0ct 4和 Jhdmlb整合, 对照是感 染 Sox2、 k lf 4、 oct 4、 cMyc和 Jhdmlb的细胞提取的基因组丽 A, MEF表示从小鼠胚 胎成纤维细胞中提取的基因组丽 A;
图 6显示了定量 PCR结果, 表明 0B诱导的多能性干细胞克隆 C4、 C14、 C15和
C16外源基因被沉默表达, 其中 OB D4对照是从感染 0ct 4和 Jhdmlb并培养 4天后 的细胞中提取的 mRNA反转录得到的 c丽 A模板, MEF是小鼠胚胎成纤维细胞;
图 7显示了实时定量 PCR结果,其表明 0B诱导的多能干细胞克隆 C4、 C14、 C15 和 C16表达胚胎干细胞特异性基因, 其中 R1是小鼠胚胎干细胞系, MEF是小鼠胚胎 成纤维细胞;
图 8显示了免疫荧光的结果,其表明 0B诱导的多能干细胞克隆 C14表达胚胎干 细胞特异性基因 Rexl和胚胎干细胞特异性表面标记物 SSEA-1 , 其中 Marker表示干 细胞特异性标记分子 (即 Rexl或 SSEA-1 );
图 9显示了小鼠胚胎成纤维细胞和诱导的多能性干细胞的 0ct 4邻近启动子区域 里 CpGs曱基化实测程度分析结果;
图 10显示了小鼠胚胎成纤维细胞和诱导的多能性干细胞的 Nanog邻近启动子区 域里 CpGs曱基化实测程度分析结果;
图 11显示了 0ct 4和 Jhdmlb诱导产生的多能干细胞的核型图;
图 12显示了 Jhdmlb的不同突变体诱导多能性干细胞的效率。 Jmjc突变是将 221 位的组氨酸、 222位的异亮氨酸、 223位的天冬氨酸均突变为丙氨酸; CxxC突变是 将 586、 589和 592位的半胱氨酸突变为丙氨酸;
图 13显示了 pMXs-FLAG质粒图谱。 具体实施方式
本文使用的所有科技术语具有本领域普通技术人员所理解的相同含义。 关于本 领域的定义及术语, 专业人员例如具体可参考 Current Protoco l s in Mo lecular Bio logy, edi ted by Ausube l , et a l , John Wi ley & Sons , 2009。 氨基酸残基的 缩写是本领域中所用的指代 20个常用 L-氨基酸之一的标准 3字母和 /或 1字母代码。
尽管本发明的广义范围所示的数字范围和参数近似值, 但是具体实施例中所示 的数值尽可能准确的进行记载。 然而, 任何数值本来就必然含有一定的误差, 其是 由它们各自的测量中存在的标准偏差所致。 另外, 本文公开的所有范围应理解为涵 盖其中包含的任何和所有子范围。
本文中所使用的术语 "多肽"、 "蛋白质" 可互换地表示通过共价键(例如肽键) 相互连接的一串至少两个氨基酸残基, 其可以是重组多肽、 天然多肽或合成多肽。 特别地, 本文所述多肽是人和 /或小鼠来源的多肽。
本文使用的术语 "变体"、 "多肽变体" 或 "类似物"表示通过一个或多个取代、 缺失、 插入、 融合、 截短或其任意组合在氨基酸序列上有所不同的多肽。 变体多肽 可以是完全功能性的或者可缺乏一种或多种活性的功能。 本文使用的术语 "功能性 变体" 表示含有例如仅仅保守性改变或非关键残基或非关键区域的改变, 并且保留 原始多肽的功能。 功能性变体还可包含相似氨基酸的替换, 其导致功能未改变或不 显著的改变。 可以通过本领域已知的方法鉴定对于功能来说重要的氨基酸, 所述方 法例如定点诱变或甘氨酸扫描诱变(Cunningham, B.和 Wells, J. , Science, 244: 1081-1085, 1989 )。 可以例如通过结构分析如结晶、 核磁共振或光亲和标记来确定 对于多肽活性来说关键的位点(Smith, L.等, J.Mol. Biol. , 224: 899-904, 1992; de Vos, A.等, Science, 255: 306-312, 1992 )。
在本发明的实施方案中, Jhdmla的变体选自: 包含与 SEQ ID NO: 1所编码的 氨基酸序列有至少 70%同源性(优选 80%、 90%、 95%、 98%、 99%) 的氨基酸序列的 多肽。 在本发明的另一些实施方案中, Jhdmlb 的变体选自: 包含与 SEQ ID NO: 2 所编码的氨基酸序列有至少 70%同源性(优选 80%、 90%、 95%、 98%、 99%) 的氨基 酸序列的多肽。 所述 Jhdmla编码的氨基酸序列为 SEQ ID NO: 7, 所述 Jhdmlb编码 的氨基酸序列为 SEQ ID NO: 8.
本文使用的术语 "片段" 指仅有全长序列一部分的分子。 例如, Jhdmlb多肽片 段是截短的 Jhdmlb。 片段可含有来自全长序列任一端的序列, 或者它们可含有来自 全长序列中间的序列。 片段可以是 "功能性片段", 例如保留全长多肽的一种或多种 功能的片段。 本文使用的术语 "功能性片段"表示所述片段保留了全长多肽的功能, 例如诱导多能性干细胞或者提高诱导多能性干细胞效率。
除非另外指明, 在本文中提到多肽、 核酸或其它分子时, 其含义包括了功能性 变体和功能性片段。 例如, Jhdmlb和 Jhdmla还分别表示天然 Jhdmlb和 Jhdmla的 功能性变体和功能性片段。
本文使用的术语 "Jhdmlb" 可以表示含 JmjC 结构域的组蛋白去曱基化酶 ( JmjC-domain-containing histone demethylase, JHDM ) 家族中一个进化上保守 且普遍表达的成员, 其也被称为 Fbxll0。 特别地, 所述多肽是人和 /或小鼠来源的。
本文使用的术语 "Jhdmla" 可以表示含 JmjC 结构域的组蛋白去曱基化酶 ( JmjC-domain-containing histone demethylase, JHDM ) 家族中的另一个成员, 其也被称为 Fbx 111。 特别地, 所述多肽是人和 /或小鼠来源的。
本文使用的术语 "诱导的多能干细胞"、 "诱导的多能性干细胞"、 "诱导性多能 干细胞"、 "诱导多能干细胞" 或者 "iPS" ( induced pluropotent stem cells )可 互换地使用, 表示人工地将非多能性细胞(例如体细胞)诱导而成的多能性干细胞。 所述诱导通常是通过强制 (forced)表达特定基因来实现的, 这一过程在本文中也 称为 "将细胞诱导成多能性干细胞"。
本文使用的术语 "干细胞诱导因子" 表示能够单独地或与其他因子相组合地将 细胞诱导成多能性干细胞的因子, 例如蛋白质、 多肽、 编码或非编码 RNA等。 优选 地, 所述干细胞诱导因子是转录因子, 包括 Oct-3/4、 Sox家族成员、 Klf 家族成员、 Myc家族成员、 Nanog、 LIN28等。 优选地, 所述干细胞诱导因子选自 0ct4、 Klf4、 Sox2和 c-myc中的一种或多种。 更优选地, 所述干细胞诱导因子至少包括 0ct4。 特 别地, 所述多肽是人和 /或小鼠来源的。
本文使用的术语 "0ct4" 表示八聚体转录因子家族 ( the family of octamer transcription factors )的一个成员, 其在维持细胞的多能性上起到关键作用。 在 文献中, 0ct4也曾被称为 0ct3。
本文使用的术语" Klf 4"表示 Kr uppel样转录因子家族( Kr ii ppel-1 ike family of t ranscr ipt ion factors ) 的一个成员。
本文使用的术语 "Sox2" 表示 Sox转录因子家族的成员之一。
本文使用的术语 "c-myc"表示本领域技术人员熟知的一种转录因子, 其调控许 多基因的表达, 募集组蛋白乙酰基转移酶, 并且其突变与许多癌症有关。
本文使用的术语 "组蛋白修饰" 表示多种对组蛋白的修饰, 例如乙酰化、 曱基 化、 去曱基化、 磷酸化、 腺苷酸化、 泛素化、 ADP核糖基化等。 特别地, 所述组蛋 白修饰包括组蛋白的去曱基化。
本文所使用的术语 "对象" 是指哺乳动物, 如人类, 但也可以是其它动物, 如 家养动物(如狗、 猫等), 家畜(如牛、 羊、 猪、 马等)或实验动物(如猴子、 大鼠、 小鼠、 兔子、 豚鼠等)。
本文使用的术语 "一致性"、 "百分比一致性"、 "同源性" 或 "同一性" 指两个 氨基酸序列之间或者核酸序列之间的序列同一性。 可以通过比对两个序列来确定百 分比一致性, 百分比一致性指所比较的序列共有位置相同残基(即氨基酸或核苷酸) 的数量。 可使用本领域的标准算法(例如 Smi th 和 Wa terman, 1981 , Adv. App l . Ma th. 2: 482; Needleman 和 Wunsch, 1970, J. Mol. Bio l. 48: 443; Pearson 和 Lipman, 1988, Proc. Na t l. Acad. Sc i . , USA, 85: 2444 )或者通过这些算法的 计算机化版本 ( Wi scons in Genet ics Sof tware Package Re lease 7. 0, Genet ics Computer Group, 575 Sc ience Dr ive, Madi son, WI )进行序歹' J t匕对和 t匕较, 所述 计算机化版本公开可用为 BLAST和 FASTA。另外,通过美国国家卫生研究院( Be t he s da MD )可用的 ENTREZ可用于序列比较。 当使用 BLAST和缺口 BLAST程序时, 可使用各 个程序(例如 BLASTN, 在美国国家生物技术信息中心的因特网站点上可用)的缺省 参数。 在一个实施方案中, 可使用缺口权重为 1的 GCG来确定两个序列的百分比同 一性,使得每个氨基酸缺口给予权重如同它是两个序列间的单氨基酸不匹配。或者, 可使用 ALIGN程序 ( 2. 0版), 其是 GCG ( Acce l rys , San Diego , CA )序列比对软件 包的一部分。
本文中的术语 "载体" 以本领域技术人员熟知的意义使用, 其可以是表达载体。 所述载体可包括病毒(例如痘病毒、 腺病毒、 杆状病毒等); 酵母载体、 噬菌体、 染 色体、 人工染色体、 质粒、 粘粒、 附加体载体、 mRNA载体或直接化学合成。 优选的, 所述病毒载体为逆转录病毒和 /或慢病毒载体。 更优选地, 所述逆转录病毒为 pMXs 载体。
本文中使用的术语 "过量的" 表示显著地高于正常水平, 特别地表示多肽的表 达量统计学显著地高于正常细胞中的表达量。 优选地, 高出 20%、 50%、 100%、 200% 或者甚至 5倍、 10倍或 100倍。
本文中使用的术语 "过表达" 表示表达水平显著地高于正常水平, 特别地表示 多肽的表达量统计学显著地高于正常细胞中的表达量。优选地,高出 20%、 50%、 100%、 200%或者甚至 5倍、 10倍或 100倍。
本文使用的术语 "导入"表示将外源物质(如核酸或蛋白质)引入细胞的过程, 例如通过磷酸弓转染、 病毒感染、 脂质体转染、 电穿孔或基因枪等方式进行。
在本文中,将外源的多肽递送进细胞可通过多种方式进行, 例如通过运载体和 / 或转运因子进行, 优选通过脂质体、 细菌多肽片段等(可参见 WO2002/079417 , 其 内容通过引用并入本文)。
本发明方法可使用的细胞优选地是哺乳动物细胞, 更优选人和小鼠细胞。 特别 地, 所述细胞是体细胞, 例如: 上皮细胞、 神经细胞、 成纤维细胞、 内皮细胞、 肌 细胞、 造血细胞、 免疫细胞、 淋巴细胞等。 更特别地, 所述细胞是胰腺 beta细胞、 成体神经干细胞、 肝细胞、 胃细胞、 成熟 B细胞、 造血细胞、 脑膜细胞、 脂肪干细 胞、 脐带血细胞、 外周血 CD34阳性细胞、 角质细胞等。
实施例 1 :
1、 包含 Jhdmla和 Jhdmlb编码区的载体的构建:
a.克隆引物设计
从 ht tp: //www. ncbi. nlm. nih. gov/ ubmed获取 Jhdmla和 Jhdmlb的 cDNA的序 列信息。 其中 Jhdmla cDNA克隆区序列为 SEQ ID NO: 1 , Jhdmlb cDNA克隆区序列 为 SEQ ID NO: 2 , 通过设计特异性的引物扩增 Jhdmla和 Jhdmlb的编码序列。
Jhdmla 上游引物碱基序列如 SEQ ID NO: 3所示;
Jhdmla 下游引物碱基序列如 SEQ ID NO: 4所示;
Jhdmlb上游引物碱基序列如 SEQ ID NO: 5所示;
Jhdmlb下游引物碱基序列如 SEQ ID NO: 6所示。
b. 通过 RT-PCR扩增编码序列
从分离的 ICR小鼠的胚胎成纤维细胞(MEF )和人 HI胚胎干细胞中按照下述方 法提取总 mRNA: 去除培养盘中的培养基, 以 3-5毫升的生理盐水(PBS ) ( Gibco公 司)清洗细胞并弃去漂洗液然后向培养盘中加入 1毫升细胞裂解液 Tr izol ( Takara 公司), 用移液枪吸取混合液并轻柔吹打细胞使其完全溶解在裂解液中, 随后将其转 移至干净的 1. 5毫升离心管中于负 80°C保存或立即进行下面的提取步骤。 接下来, 加入 200 ^:升的三氯曱烷, 颠倒混匀约 30秒, 然后于 4 °C 12000转离心 5分钟。 小 心吸取上清转移至洁净的 1. 5毫升离心管中, 随后加入等体积的异丙醇并混匀, 室 温放置 5分钟后 12000转 4 °C离心 5分钟, 管底可见白色小块沉淀; 小心弃去上清, 接着加入 80%乙醇溶液 500微升用于漂洗掉残余的异丙醇, 12000转离心, 去除乙醇 溶液,室温放置 30分钟使管底的白色总 mRNA充分干燥。随后,向离心管中加入 30-50 微升的双蒸水于 55 °C孵育, 30分钟后取出, 用分光光度计测定总 mRNA浓度。 所提 取的总 mRNA于负 80°C保存或直接用于反转录制备 ΝΑ备用。
反转录具体过程和方法如下所述。通常取 1微克的总 mRNA进行反转录,加入寡 聚脱氧核糖脲嘧啶核苷酸(ol igodT, takara 公司), dNTP ( takara 公司), RTace ( Toyobo公司;), RT buffer和 RRI( RNAse 抑制剂, takara公司)和不含 RNase/DNase 的水, 于 PCR仪上 42 °C反应 60分钟, 然后 98 °C孵育五分钟, 随后冷却至室温。 反 转录成功后, 从中取出 0. 5微升作为模板, 使用上述方法设计的引物, 釆取聚合酶 链式反应扩增目的基因,所用的试剂有高保真聚合酶 K0D及其緩冲液( Toyobo公司), dNTP (Takara公司), 引物, 在 PCR仪上运行下述程序: 96 °C变性 5分钟, 95 °C 30 秒, 60°C退火 25秒, 68 °C延伸 3. 5分钟, 2-4步循环 32次。
c质粒构建
请参阅图 13, 完成扩增反应后, 将 PCR产物进行琼脂糖凝胶电泳, 应用凝胶回 收试剂盒(天根公司, DP214-03 )提取 PCR片段。 pMXs载体(载体购自 addgene, 插入多克隆位点和 FLAG标签序列), 改造后的 pMXs载体被称为 pMXs-FLAG, 其质粒 图参见图 13。 以 pmel酶切, 应用 CIAP小牛肠碱性磷酸酶对其去磷酸化以防止载体 自连。 用凝胶回收试剂盒(天根公司, DP214-03 )回收处理好的载体备用。 pMX-FLAG 载体和 Jhdmla/Jhdmlb的基因片段应用连接试剂盒( Takara公司,丽 A Ligat ion Ki t ) 进行, 然后将连接产物转化大肠杆菌感受态细菌, 挑选阳性克隆, 提取质粒, 测序 确定, 最后大量制备质粒。
2、 将 Jhdmla /Jhdmlb以及多能性干细胞诱导因子(转录因子)的编码序列导入 小鼠胚胎成纤维细胞。 如无特殊说明, 基于小鼠的体细胞重编程均釆用如下方式进行。
培养基
饲养层细胞、 MEF 细胞和 PlatE 细胞的培养基组成为: 高糖基础培养基 DMEM (gibco), 外加 10%胎牛血清(FBS, PAA)。
诱导培养基: 本发明使用实验室常规的诱导培养基, 优选使用的诱导培养基成 分包括 DMEM高糖培养基(Gibco )、 15%的胎牛血清( FBS, Gibco), 0. ImM非必需氨 基酸(NEAA, Gibco), 2mML-谷氨酰胺( Glutamax, Gibco), ImM丙酮酸钠 ( sodium pyruvate, Gibco), 55 μ M β巯基乙醇 ( β -ME, Gibco ), 青霉素(50U/mL)和链霉素 (5(^g/mL), 白血病抑制因子 1000U/ml (LIF, Millipore), 根据需要添加维生 C ( sigma), 其浓度是 50微克每毫升。
干细胞培养基: 本发明使用实验室常规的干细胞培养基, 优选 mES干细胞培养 基, 其组分为: 高糖 DMEM培养基添加 15%胎牛血清、 0. ImM非必需氨基酸(NEAA, Gibco ) , 2mML—谷氛醜胺 ( Glutamax, Gibco ) , ImM 丙 S同酸 ) ( sodium pyruvate, Gibco )、 55 μΜ β疏基乙醇( gibco )、青霉素 (50U/mL)和链霉素 (50 g/mL) , 白血病抑制因子 1000U/ml (LIF, Millipore )。 根据需要添加维生素 C (sigma), 其 浓度是 50微克每毫升。
KSR无血清培养基: KSR为 Knockout Serum Replace的缩写, 为一种商品化代 血清干细胞培养添加剂, 用于培养干细胞或 iPS克隆的完全 KSR无血清培养基, 其 组成成分为: KNOCKOUT DMED (一种渗透压经过优化的适于干细胞培养的基础培养 基;), 15%KSR添加剂, 0· ImM非必需氨基酸( NEAA, Gibco ), 2mML-谷氨酰胺( Glutamax, Gibco), ImM丙酮酸钠( sodium pyruvate, Gibco ), 55 |3巯基乙醇( β -ME, Gibco), 青霉素(50U/mL)和链霉素(50 g/mL) ,白血病抑制因子 1000U/ml( LIF, Millipore),。 所^ iPS 过程与克隆培养基都添加鼠白细胞抑制因子 LIF (millipore, 商品名为 ESGR0, 为一种抑制小鼠干细胞分化的生长因子), 添加的终浓度为 1000U/ml。
3、 用于重编程的细胞
重编程釆用的体细胞类型均为 0G2小鼠胚胎成纤维细胞(由实验室自制;),传代 数不超过三代。 0G2小鼠的一个特点是在干细胞特异表达基因 0ct4基因的启动子后 连有绿色荧光蛋白 (GFP)。 在重编程过程中, 当 0G2小鼠胚胎成纤维细胞内源 0ct4 被激活时, 绿色荧光蛋白伴随表达, 在荧光显微镜下, 可见成功重编程的细胞或克 隆细胞团块呈现绿色, 通过直接统计重编程克隆即绿色荧光克隆数或釆用流式细胞 仪分析绿色荧光细胞的比率, 可以容易地比较不同条件下的重编程效率。
如下所述准备重编程细胞。 以 20000个细胞 /孔的密度种植细胞于 12孔培养板 (Corning), 细胞种植 6-18小时后,视其密度和状态用带有小鼠重编程因子的病毒 进行感染。
4、 病毒的制备
用于重编程的转录因子包括小鼠 0ct4、 Sox2、 Klf4、 c-Myc的 d)NA的逆转录病 毒载体 pMXs (来自 Addgene公司,编号分别为 Plasmid 13366, Plasmid 13367, Plasmid 13370和 Plasmid 13375 ); 0ct4, NCBI登录号为 NM—013663; Sox2, NCBI登录号为 丽― 011443; Klf4, NCBI登录号为 010637; c-Myc, NCBI登录号为 NM_001177353。 应用自制的磷酸钙转染试剂将 pMX 载体上的重编程因子质粒转染进病毒包装细胞 (PlatE), 具体过程: 接种 750万 PlatE细胞于 10厘米直径的培养盘(Corning), 12 小时后以 7.5 毫升不含青霉素 /链霉素的培养基更换掉旧的培养基, 随后将细胞 放进培养箱。 接下来准备转染混合物: 取 25微克质粒加入 15毫升离心管, 按序依 次加入 156.25 升 2M的氯化钙溶液, 补加适量水使三者的总体积为 1.25毫升, 混 合均匀, 然后加入 1.25毫升 HBS溶液, 立即混合均匀, 然后静置 2分钟, 随后逐滴 加入 PlatE培养盘中, 混合均匀。 转染后 9-12小时, 更换 10毫升新鲜培养液, 转 染后 48小时收集培养液并以 0.45 米滤膜过滤培养液,作为第一次感染用病毒液, 添加新鲜培养液 24小时后如此再收集培养液作为第二次感染病毒液。
5、 用病毒感染 MEF细胞:
感染分两轮进行, 所用的诱导因子均同时感染细胞, 12孔板的每个孔感染病毒 用量为 1毫升,第一轮感染后 24小时后进行第二轮感染,第二轮感染后 24小时将病 毒液更换成 mES培养基 (前述 )。 换液当天记为第 0天( DO ); 感染后不同时间点, 按实验需要在原孔内数 GFP荧光克隆数或釆用流式细胞仪分析 GFP荧光细胞的比率。
6、 对感染后的细胞进行培养直到干细胞克隆形成:
使用玻璃针将形态隆起, 边缘清晰的胚胎干细胞样的单个克隆挑选出来, 直接 转移至提前铺好饲养层细胞(饲养层细胞为丝裂霉素处理过的 ICR小鼠成纤维细胞) 的培养板 (Corning) 中以 KSR培养基进行培养。 感染后的第 2天, 将培养体系更换 为新鲜的诱导培养基, 之后每天更换诱导培养基直到实验完成。
按上文所述干细胞克隆形成的方法, 用不同的多能干细胞诱导因子组合进行实 验。
各多能干细胞诱导因子组合说明如下:
Kif4, Sox2, c-Myc, 0ct4的组合简写为 SK0M。
Kif4, Sox2, 0ct4的组合简写为 SK0。
Kif4, 0ct4的组合简写为 K0。
Sox2, 0ct4的组合简写为 S0。
0ct4与 Jhdmlb的组合简写为 0B。
C4、 C14、 C15、 C16是从 OB诱导的重编程细胞中挑选的四株克隆。
选用各干细胞诱导因子组合实验结果如下:
请参阅图 1, 无论是否有维生素 C的存在, Jhdmla或 Jhdmlb对于重编程的效率 都有明显地提高,在维生素 C存在的条件下,增加幅度更为显著,图 1显示了 Jhdmla 或 Jhdmlb提高 SK0介导的诱导多能性干细胞效率的数据,其中对照是没有插入任何 基因序列的 pMXs-FLAG空载体;
请参阅图 2, 无论是否有维生素 C的存在, Jhdmla或 Jhdmlb对于重编程的效率 都有明显地提高,在维生素 C存在的条件下,增加幅度更为显著,图 1显示了 Jhdmla 或 Jhdmlb提高 SK0M介导的诱导多能性干细胞效率的数据, 其中对照是没有插入任 何基因序列的 pMXs-FLAG空载体;
请参阅图 3, 在维生素 C存在的条件下, Jhdmla和 Jhdmlb共同作用, 能够使得 在只有 S0、 K0或者 0ct4的条件下诱导多能性干细胞, mESC+Vc表示诱导过程中所 用的培养基是干细胞培养基 mES, 并且添加了 50μ§/ηα 的维生素 C, 其中对照是 pMXs-FLAG空载体。
因此, 本发明得出, Jhdmla和 Jhdmlb能够显著改善诱导多能性干细胞的效率, 在保持较高的重编程效率大大减少所需导入的转录因子的种类, 从而对于减少重编 程细胞突变的积累, 减少其致癌性提供了重大的益处。 另外, 本发明的方法也提高 重编程技术的可操作性, 降低了操作的难度, 为后续的医药用途提供了便利。
实施例 2:
对实施例 1所得诱导性多能干细胞的鉴定:
如图 3以及图 6至图 10所示,对 0ct4和 Jhdmlb诱导的多能干细胞克隆进行一 系列鉴定实验, 以证明其是否为 iPS细胞(诱导性多能干细胞), 鉴定实验包括: 定 量 PCR、 免疫荧光分析其表面标记物、 启动子曱基化程度分析、 核型鉴定、 嵌合体 形成等。
定量 PCR实验:
所有定量 PCR实验均应用 Takara公司的试剂盒在 Biorad公司 CFX-96型定量 PCR仪上完成, 所用反应条件是 95 °C 2分钟; 95 °C 10秒, 60 °C 30秒, 读取荧光值, 如此重复 40个循环。
启动子区域曱基化状况分析
该分析通过亚硫酸氢钠测序方法进行测定。 提取目的细胞中的基因组 丽 A ( Promega公司 , Wizard® Genomic DNA Pur if ica t ion Ki t ),测定浓度值,将约 2ugDNA 于 1. 5mlEP管中使用 ddH20稀释至 50 μ 1 ,加入 5. 5ul新鲜配制的 3M Na0H并于 42 °C 水浴 30min; 随后取出溶液, 加 30 μ 1体积的 10mM对苯二酚(氢醌)( s igma )至上 述水浴后混合液中,然后再加 520 μ ΐ体积的 3. 6Μ 亚 υ酸氢钠 (S igma , S9000 )至 上述水浴后溶液中, EP管外裹以铝箔纸, 避光, 轻柔颠倒混匀溶液; 加 200 μ 1石 蜡油, 防止水分蒸发, 防制氧化并于 50 °C避光水浴 16h。
随后, 将移液器枪头伸入石蜡油层下, 吸取混合液至一洁净 1. 5ml 离心管中, 使用 Promega Wizard Cleanup DNA纯 ^匕回收系统 ( Promega , A7280 )对 饰后 DNA 进行回收, -20 °C保存或进行下一步的实验。 取 50ng上述提取的丽 A作为模板进行 PCR反应, 随后对 PCR产物进行凝胶回收(天根公司, DP214-03 ), 然后将 PCR产物 与 T载体(Takara公司)进行连接和转化, 挑选阳性克隆送测序公司进行测序, 得 到结果进行比对, 统计 CpG岛的曱基化状态。
iPS细胞的核型鉴定
iPS细胞的核型鉴定按照下述方法进行: 待做核型分析的细胞在收获前 2-3小 时加入 0. lml 5ug/ml秋水仙素 (市售, 终浓度 0. lug/ml ) 混匀后继续培养 2-3小 时, 转入 10ml离心管中, 以 1500-2000转 /分钟离心 10分钟, 去上清液, 加入 8ml 低渗液( 0. 075M Kc l , 37 °C预热)将细胞沉淀吹打均匀, 放入温箱中 37 °C半小时, 加入 lml新配制的固定液(曱醇:水醋酸体积比为 3: 1的混合物, 原料市售), 轻轻 混匀后以与前面相同的转速和时间离心, 吸去上清液。 加入 8mL固定液并充分将细 胞混匀, 室温固定至少半小时, 重复离心后, 去掉上清液, 加入新鲜固定液再次固 定至少半小时 (最好过夜)经离心和去上清液后的细胞沉淀中加入约 0. 2ml新鲜固 定液混匀, 细胞悬液滴于预冷的载玻片上(以每张玻片 3滴细胞悬液为宜), 酒精灯 烘烤滴片, 冷却后进行分带处理。
嚢胚嵌合体试验
嚢胚嵌合体试验,将 iPS细胞注射到供体小鼠的嚢胚腔中,再将注射后的嚢胚移 植到假孕雌鼠的子宫中制作嵌合体小鼠,出生的小鼠根据毛色来判定是否产生嵌合。
按以上方法进行实验, 结果分析为:
请参阅图 5 , 显示了对多能干细胞克隆的基因组丽 A进行 PCR扩增的结果表明 0B诱导的多能干细胞克隆 C4、 C14、 C15和 C16基因组中只有 0ct 4和 Jhdmlb整合, 对照是感染 Sox2、 k lf 4、 oct 4、 cMyc和 Jhdmlb的细胞提取的基因组丽 A, MEF表示 从小鼠胚胎成纤维细胞中提取的基因组丽 A;
请参阅图 6 , 显示了定量 PCR结果, 表明 0B诱导的多能性干细胞克隆 C4、 C14、
C15和 C16外源基因被沉默表达, 其中 0B D4对照是从感染 0ct 4和 Jhdmlb并培养 4 天后的细胞中提取的 mRNA反转录得到的 c丽 A模板, MEF是小鼠胚胎成纤维细胞; 请参阅图 7 , 如图 7所示, 显示了实时定量 PCR结果, 其表明 0B诱导的多能干 细胞克隆 C4、 C14、 C15和 C16表达胚胎干细胞特异性基因, 其中 R1是小鼠胚胎干 细胞系, MEF是小鼠胚胎成纤维细胞; 使用 0ct 4和 Jhdmlb组合得到的干细胞的内 源性胚胎干细胞转录因子等表达量与胚胎干细胞表达基本一致。表明 0B诱导的多能 干细胞克隆 C4、 C14、 C15和 C16表达胚胎干细胞特异性基因, 因此说明通过本发明 方法诱导得到的多能性干细胞具有多能性干细胞的特征。
请参阅图 8 , 如图 8 所示, 免疫荧光结果显示 0B得到的多能干细胞表面表达
SSEA-1 , 而且表达 Rexl。
请参阅图 9 , 显示 0ct 4启动子区域的 CpG岛曱基化状态分析, 供体细胞的 CpG 岛未曱基化, 而诱导多能干细胞相应位置的 CpG岛发生显著的去曱基化。
请参阅图 10 ,显示 Nanog启动子区域的 CpG岛曱基化状态分析, 0B_C14、 0B-C15 和 0B-C16分别是由 0ct 4和 Jhdmlb诱导产生的多能干细胞的三株多能干细胞。黑色 部分为表示已曱基化, 白色表示没有曱基化。 供体细胞的 CpG岛未曱基化, 而诱导 多能干细胞相应位置的 CpG岛发生显著的去曱基化; Nanog和 0ct 4是胚胎干细胞特 异性表达的基因, 表达状态与细胞的命运密切相关, 这些结果说明, 使用 0B组获得 的细胞其命运发生了改变, 也就是说被诱导成为了多能性干细胞。
请参阅图 11 , 显示通过本发明方法得到的干细胞的核型正常, 0B-C14、 0B-C15 和 0B-C16分别是由 0ct 4和 Jhdmlb诱导产生的多能干细胞的三株多能干细胞,它们 都具有正常的核型。
请参阅图 4 , 如图 4所示: a, d为 0ct 4+jhdmlb (简写为 0B)最终形成的诱导多能 干细胞的显微照片; b, e为 0B最终形成的诱导多能干细胞注射嚢胚后发育形成的嵌 合体后代照片; c, f 为 0B最终形成的诱导多能干细胞注射嚢胚后发育形成的嵌合体 与野生型小鼠个体交配后产生的后代的照片; 显示了通过本发明方法得到的干细胞 可以形成嵌合体, 其中供体细胞为诱导的多能干细胞, 其细胞来源是 OG2/129细胞, 而假孕小鼠是实验饲养的 ICR小鼠。 得到的嵌合体具有将原来供体细胞通过生殖系 传递到下一代, 说明此干细胞具有良好的质量。
Jhdmlb变体的功能性测定:
请参阅图 12 , 如图 12所示, 在中发生突变的 Jhdmlb变体不具有提高重编程效 率的活性, 因此 Jhdmlb的丽 A结合结构域( CXXC )和催化结构域( Jmjc )对于重编 程是必须的, 缺少任何一个均不能促进重编程。 而且, 0ct 4和 Jhdmlb的组合在普 通的培养基条件下就可以完成重编程, 在维生素 C存在的条件下效果更加显著。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在其他 相关的技术领域, 均同理包括在本发明的专利保护范围内。
SEQUENCE LISTING
<110> 中国科学院广州生物医药与健康研究院
<120> 一种提高诱导生成多能性干细胞效率的方法
<160> 8
<170> Patent In vers ion 3.3
<210> 1
<211> 3486
<212> DNA
<213> 人工序列
<400> 1
atggaacctg aagaagaaag gat tcggtac agccagagat tgcgtggtac catgcgtcgt cgctatgaag atgatggcat t tcagatgat gaaat tgaag ggaaaagaac t t t tgact tg gaagagaagc tCC8.8-8.CC8.8- caaatataat gccaat t t tg t tact tt tat ggagggaaaa gattttaatg tagagtatat ccagcggggt ggcttgagag accctctcat t t tcaagaat tctgatggac t tggaataaa gatgccggat ccagact tea cagtgaatga tgtcaaaatg tgtgtgggga gtcgtcggat ggtggatgtc atggatgtga acacacagaa ggggattgaa atgaccatgg cacaatggac acgatactat gagactccag aggaagagcg agaaaaactc tataatgtta tcagcctaga gtt tagccac accaggct tg agaatatggt gcagcggcct tccacggtgg at t teat tga ctgggtagat aacatgtggc caaggcact t gaaagaaagt cagacagaat caacaaatgc catct tagag atgcagtacc ctaaagtgca aaagtactgt ctaatgagtg ttcgaggctg ctatactgac ttccatgtgg attttggagg tact tctgt t tggtatcaca tccaccaagg tggaaaggtc t tctggctca tcccccctac agcccacaac ctggagctgt acgagaat tg gctgctatca gggaaacagg gagacatct t tctgggtgac cgggtgtcag at tgccaacg aat tgagctc aagcagggct atacct tcgt tat tccctca ggttggattc atgctgtgta tactcctaca gacacat tag tgtttggagg caat t t t t tg catagcttca acatccccat gcaat taaag atatacagca t tgaagatcg aacacgggt t ccaaa taaa t tccgt taccc at t t tactat gaaatgtgt t ggtatgtgtt ggagcgctat gtatactgca taaccaaccg atcccaccta actaaggat t t tcagaaaga atccct tagc atggatatgg agt taaatga gttggagtct ggaaatggtg atgaggaagg ggtggacaga gaagcccgac gcatgaacaa taagcgatct gtgct tacca gccctgttgc taatggagtg aacctggat t acgatggact tggcaaagcc tgccgaagtc t tccaagtct gaagaaaact ttgtctggag actcatcctc agactctacc cggggatccc acaatggcca agtttgggat ccccaatgta gccctaaaaa ggataggcaa gtgcatctca cccat tt tga act tgaaggt ct tcgatgtc t tgtagataa gt tagagtca ctgccactgc acaagaagtg tgtccccaca ggaatagaag acgaagatgc tctgat tgct gatgtaaaga t t t tgctgga agaact tgcc agtagcgatc ccaagt tagc cctcactgga gtccctatag tacagtggcc aaaaagggat aagct taaat tccctaccag gccaaaggtg agggt tccta caat tcccat cacaaagcct cacaccatga agccagctcc acgct taaca cctgtaaggc ctgctgcagc ctcccccat t gtgtcaggag ccaggcggag aagagtgcgg tgcaggaaat gcaaagct tg tgtgcaagga gaatgtggag tctgccacta ctgcagggac atgaagaaat ttggtggacc tggacgcatg aagcaatcct gtgtcctccg acagtgct ta gcacccagac tgcctcat tc agt tacgtgt tctctctgtg gagaagtaga tcagaatgaa gagacccagg act t tgaaaa gaaactcatg gaatgctgca tctgcaacga gatagt teat cctggctgcc tccagatgga tggagagggg t tgctgaacg aggaat tgcc aaat tgctgg gagtgtccaa agtgt tacca ggaagacagc tcggacaaag cccagaagcg gaaaatagaa gagagtgatg aagaagctgt acaagccaaa gtct tacggc ccctgaggag ctgcgaggag cctctcacac ccccgcctca ctcacctact tccatgctgc agctcatcca cgacccggt t tctccccggg gtatggtgac tcggtcatcc cctggggctg gccccagcga ccaccacagt gccagccgtg atgaacgct t caaacggcgg cagt tgctgc ggctacaagc caccgagcgc accatggtac gggaaaagga gaacaatccc agcggcaaaa aggagctgtc tgaagttgag aaagccaaga tccggggatc gtacctcact gtcactctac agaggcccac caaagagctc cacgggacat ccat tgtgcc caagctgcag gccatcacgg cctcctctgc caacct tcgc cctaaccccc gcgtgctaat gcagcactgc ccagcccgaa acccccagca tggggatgag gaggggcttg ggggagagga ggaggaagag gaggaggagg aggaagatga cagtgcagag gaggggggtg cagccaggct gaatggccgg ggcagttggg ctcaggatgg agacgaaagc tggatgcagc gggaggtctg gatgtctgtc t tccgctacc tcagccgcaa agaact t tgt gaatgtatgc gagtgtgcaa gacatggtat aaatggtgct gtgataaacg act t tggaca aaaat tgact tgagtaggtg taaggccatc gtaccacaag ctctcagtgg tatcatcaag cggcagccag taagcctcga cctcagctgg actaacatct ccaaaaagca gctgacatgg ctggtcaata ggctgccagg at taaaagac ctcctcctag caggctgt tc ctggtctgca gtatctgccc tcagcact tc cagctgcccg ct tctcagga ccct tgatct tcggtgggca gtaggaat ta aagaccctca aat tcgggac t tgctgactc cacccacaga taagccaggt caagacaatc gaagcaaact ccggaacatg actgact tec ggctggcagg cct tgacatc acagatgcta ctctccgact catcat tcgc cacatgcccc ttt tgtctcg act tgacctc agtcactgca gtcacct tac agatcagtcc tccaacctac taactgctgt cgggtcttcc actcgatact ccct tacaga gctcaatatg gcaggttgca ataaat tgac agaccagacc ctgt tct tec taaggcgaat tgctaatgtc acct tgat tg acct tcgagg atgcaaacag atcacgagaa aagcctgtga gcact tcatc tcagact tgt ccatcaacag cctctactgc ctgtctgatg agaaactgat acagaagat t agctaa
<210> 2
<211> 3930
<212> DNA
<213> 人工序列
<400> 2
atggaggcag agaaagactc tggaagaaga ttgcgtgcga t tgaccgcca gagatacgac gagaacgaag acttgtcgga cgtggaggaa attgtcagcg tccgtggctt cagcctggag gagaagctac gtagccagt t ataccagggg gact tcgtgc atgctatgga aggcaaagat tt taactatg agtacgtaca gagagaagct ctcagggtcc ccctggt ttt tcgggacaag gatggactag ggatcaagat gccagaccct gat t tcacag tccgagacgt caaactcctg gtggggagcc gccgtttggt ggatgtcatg gacgtcaaca cccagaaggg taccgagatg agcatgtccc agtttgtgcg ctactacgag acaccagagg cacagcggga taaactgtac aacgtcatca gcctcgagt t cagccatacg aagctggagc atctggtcaa gcgtcccact gtggtggacc tggtcgactg ggtggacaac atgtggcctc agcatctaaa ggaaaagcag acagaagcca ccaatgccct tgcagagatg aagtacccca aagtgaaaaa gtactgtctg atgagcgtga agggctgttt cactgact tc cacat tgact ttggaggcac ctccgtgtgg taccatgtgt tccgtggtgg caagatct tt tggctgatcc ctccaaccct gcacaact tg gctttgtacg aggagtgggt gctgtctggc aaacagagcg acatct t tct gggagaccgc gtggaacgct gccaaagaat tgagctgaag caaggctaca cct ttt teat ccct tccggt tggatccatg cggt t tatac gcctgtggac tctctggtgt tcggcgggaa catcctgcat agct tcaacg tgcccatgca gctgcggatc tacgagatcg aggacaggac ccgggttcag cccaagt tec gt tacccct t ctactatgag atgtgctggt atgtct tgga gagatatgtg tactgtgtga cccagcgctc ctacctcact caggaatacc agagagaat t aatgct tat t QQ^I ιι οι§ουυυοπ ι ι υ§ο§υυο§ου §§ι§υ§ιο§υ ^ ^ §υ§ουιυυυ§ §ο§υυ§§υ§§ υ§ιοουο§ι§ ιυ§ιυ§ιοι§ υυυ§οο§οοι οοιυ裏ιυ§
08^ υο§ιοο§ι§§ ο§υ§ου§υοι §§υ§§οι§οο οοι裏υ§υυ §ι§ι§υ§ι§υ υ§υ§§ο§υυο ο§ιοο§υ§υυ 裏§υυ§§υυ 3υυου§§§33 υυ§ιυ§υυ§υ ο§υ§§υυοιο
09Π §η οι裏ι οο§ιοουυοο ιοο§ιυι§υυ πΐ §§ιοοο §§ι§ο§υυυυ ουυυ§§§οου
00Π §¾υ裏οο§ι υοουυι§ι§υ υ§οοι§ι§υ§ §§ιο§ιουυο οοπ §υ§ιυ §ουυο駧ι§
Ot^O^ !§§§υ§§οιυ υ§§υυπ^§^ υπ ο§ιυ§§ : ιυ§υ§ουυο§ : ιυ33: §:ι
0861 ¾υ§§ιυοιο§ ιυοιοουυπ ΐ§¾υ裏υυ§ υυ§§υ§υυ§§ ι§υουου§§υ §§υυ§§§υο§
0^61 §Β§Ο§§Ι§Ι§ ι§π ο§ι§ι ^ ^ οοο§ιο§ι§υ ι^ ι§υ裏ο§ιυ
0981 οιυο§ιο§υ§ υο§υυ§ιυο§ ο§§§ιοο駧 υ§§πΐ§^^§ υυ§ιυου§§υ υο§ππ υο
0081 ο§ι§υ§υ§§ι §ι§υ§§ου§§ ο§ιοο§ιοο§ §υ§ο§ι§υυο §οο§ιυ§ο§ο υ§§οο§ο§§υ
0|7Π ο§οιο§υ§§υ ο§υουυουυ§ οουυοο§ιο§ §ιι§υυ§ι§§ ο§υοιο裏ο 00§§§Π§^^
0891 裏§υυιοο§ §01§§§1§§1 §§§οουυ§υυ υο§ιουυυυ§ υυυο裏ιο§ υο駧ι§ιοο
0^91 ΟΙ§§§§ΟΟΒΟ ιυο裏ιοοο υοοοου§ου§ ιυ§§ι§ουο§ υ§υυυ§ιουι §ιυυ§υυυι§
0951 駧υυ§§ιοο ιοο裏υοοο οου§§υ§οιυ υ§§§υ§ιοοο ι§ι§ι§υυ§υ υιυυ§υ§§οο
0051 η οοι§υ§υ ιο§υυυυ§π §§ΐοοο§υυυ §π §§§υυ§ ιουυ§πΐ^^ §οουιιοουο
ΟΙ^ΐ ιου§§ι§υυο ουιοπΐ§§^ §33B33§§;^ oo: §§§3B3 33§3υ§υυ33 οιυ§ου§§ου
08 οοο§ιυ§οιο ου§οι§υυοι §ι§υυυ§§υ§ υοι§υ§ιυυο οι§π§ υ§§ υ§υυοιοοπ
0^ §§ουιυοο§ι οοοο§υυυιο ο§υυ§υυ§§§ υουο§υου§§ υοου§υυ§οο ο§οοοουο§υ
09Π ^ ^ ι ^ ^ι^ Έ ^ ^ §υυοοουουυ υυιυ§υο§ι§ §ιυ§υ§§υυ§
00Π §υ§§υ§§υυο υ§§υ§§υ§§υ §§υ§§υ§υυ§ §υ§§υουοο§ υϋ §ο§ ιοοι§υ§§υ§
0|7Π §¾§§ιυου§§ ι ι ι ^ ι^ ιιιι 裏ου§υι§ι §υοουυυυυ§ υυοοοο§ιυ§ L££L0/Zl0ZSD/lDd SeS9S0/CT0∑; OAV 0B0§§01§00 Β00υ§ΐυυ01
υυ υ
§§§10§0
§§οο§ο§ιυ§ s-ee-o/iToiM3/i3d SeS9S0/CT0∑; OAV gactcgctga cagaggtcaa cctatcagac tgtaataagg taactgacct gtgcctgtcc 3780 ttcttcaaac gctgtggaaa tatctgtcat attgacctga ggtactgcaa gcaagtcacc 3840 aaggaaggct gtgagcaatt catagctgaa atgtctgtga gtgtccaatt tgggcaagtg 3900 gaagagaaac tcctgcaaaa actaagttag 3930
<210> 3
<211> 21
<212> DNA
<213> 人工序列
<400> 3
atggaggcag agaaagactc t 21
<210> 4
<211> 23
<212> DNA
<213> 人工序列
<400> 4
acttagtttt tgcaggagtt tct 23
<210> 5
<211> 25
<212> DNA
<213> 人工序列
<400> 5
atggaacctg aagaagaaag gattc 25
<210> 6
<211> 25
<212> DNA
<213> 人工序列
<400> 6
ttagctaatc ttctgtatca gtttc 25 <210> 7
<211> 1162
<212> PRT
<213> 人类
<400> 7
Met Glu Pro Glu Glu Glu Arg He Arg Tyr Ser Gin Arg Leu Arg Gly 1 5 10 15
Thr Met Arg Arg Arg Tyr Glu Asp Asp Gly lie Ser Asp Asp Glu He
20 25 30
Glu Gly Lys Arg Thr Phe Asp Leu Glu Glu Lys Leu His Thr Asn Lys
35 40 45
Tyr Asn Ala Asn Phe Val Thr Phe Met Glu Gly Lys Asp Phe Asn Val 50 55 60
Glu Tyr He Gin Arg Gly Gly Leu Arg Asp Pro Leu He Phe Lys Asn 65 70 75 80
Ser Asp Gly Leu Gly lie Lys Met Pro Asp Pro Asp Phe Thr Val Asn
85 90 95
Asp Val Lys Met Cys Val Gly Ser Arg Arg Met Val Asp Val Met Asp
100 105 110
Val Asn Thr Gin Lys Gly He Glu Met Thr Met Ala Gin Trp Thr Arg
115 120 125
Tyr Tyr Glu Thr Pro Glu Glu Glu Arg Glu Lys Leu Tyr Asn Val He 130 135 140 Ser Leu Glu Phe Ser His Thr Arg Leu Glu Asn Met Val Gin Arg Pro 145 150 155 160
Ser Thr Val Asp Phe lie Asp Trp Val Asp Asn Met Trp Pro Arg His
165 170 175
Leu Lys Glu Ser Gin Thr Glu Ser Thr Asn Ala He Leu Glu Met Gin
180 185 190
Tyr Pro Lys Val Gin Lys Tyr Cys Leu Met Ser Val Arg Gly Cys Ty]
195 200 205
Thr Asp Phe His Val Asp Phe Gly Gly Thr Ser Val Trp Tyr His He 210 215 220
His Gin Gly Gly Lys Val Phe Trp Leu He Pro Pro Thr Ala His Asn 225 230 235 240
Leu Glu Leu Tyr Glu Asn Trp Leu Leu Ser Gly Lys Gin Gly Asp lie
245 250 255
Phe Leu Gly Asp Arg Val Ser Asp Cys Gin Arg lie Glu Leu Lys Gin
260 265 270
Gly Tyr Thr Phe Val He Pro Ser Gly Trp He His Ala Val Tyr Thr
275 280 285
Pro Thr Asp Thr Leu Val Phe Gly Gly Asn Phe Leu His Ser Phe Asn 290 295 300
He Pro Met Gin Leu Lys lie Tyr Asn lie Glu Asp Arg Thr Arg Val 305 310 315 320 Pro Asn Lys Phe Arg Tyr Pro Phe Tyr Tyr Glu Met Cys Trp Tyr Val 325 330 335
Leu Glu Arg Tyr Val Tyr Cys He Thr Asn Arg Ser His Leu Thr Lys
340 345 350
Glu Phe Gin Lys Glu Ser Leu Ser Met Asp Leu Glu Leu Asn Gly Leu
355 360 365
Glu Ser Gly Asn Gly Asp Glu Glu Ala Val Asp Arg Glu Pro Arg Arg 370 375 380
Leu Ser Ser Arg Arg Ser Val Leu Thr Ser Pro Val Ala Asn Gly Val 385 390 395 400
Asn Leu Asp Tyr Asp Gly Leu Gly Lys Thr Cys Arg Ser Leu Pro Ser
405 410 415
Leu Lys Lys Thr Leu Ala Gly Asp Ser Ser Ser Asp Cys Ser Arg Gly
420 425 430
Ser His Asn Gly Gin Val Trp Asp Pro Gin Cys Ala Pro Arg Lys Asp
435 440 445
Arg Gin Val His Leu Thr His Phe Glu Leu Glu Gly Leu Arg Cys Leu 450 455 460
Val Asp Lys Leu Glu Ser Leu Pro Leu His Lys Lys Cys Val Pro Thr 465 470 475 480
Gly He Glu Asp Glu Asp Ala Leu He Ala Asp Val Lys He Leu Leu
485 490 495 Glu Glu Leu Ala Asn Ser Asp Pro Lys Leu Ala Leu Thr Gly Val Pro 500 505 510 lie Val Gin Trp Pro Lys Arg Asp Lys Leu Lys Phe Pro Thr Arg Pro
515 520 525
Lys Val Arg Val Pro Thr lie Pro lie Thr Lys Pro His Thr Met Lys 530 535 540
Pro Ala Pro Arg Leu Thr Pro Val Arg Pro Ala Ala Ala Ser Pro He 545 550 555 560
Val Ser Gly Ala Arg Arg Arg Arg Val Arg Cys Arg Lys Cys Lys Ala
565 570 575
Cys Val Gin Gly Glu Cys Gly Val Cys His Tyr Cys Arg Asp Met Lys
580 585 590
Lys Phe Gly Gly Pro Gly Arg Met Lys Gin Ser Cys Val Leu Arg Gin
595 600 605
Cys Leu Ala Pro Arg Leu Pro His Ser Val Thr Cys Ser Leu Cys Gly 610 615 620
Glu Val Asp Gin Asn Glu Glu Thr Gin Asp Phe Glu Lys Lys Leu Met 625 630 635 640
Glu Cys Cys He Cys Asn Glu He Val His Pro Gly Cys Leu Gin Met
645 650 655
Asp Gly Glu Gly Leu Leu Asn Glu Glu Leu Pro Asn Cys Trp Glu Cys
660 665 670 。。0Oylv1I £ s §j ds C〇 n 3
Figure imgf000024_0001
ddΛId s s¾ S s Asp Glu Glu Gly Leu Gly Gly Glu Glu Glu Glu Glu Glu Glu Glu Glu 850 855 860
Glu Glu Asp Asp Ser Ala Glu Glu Gly Gly Ala Ala Arg Leu Asn Gly 865 870 875 880
Arg Gly Ser Trp Ala Gin Asp Gly Asp Glu Ser Trp Met Gin Arg Glu
885 890 895
Val Trp Met Ser Val Phe Arg Tyr Leu Ser Arg Arg Glu Leu Cys Glu
900 905 910
Cys Met Arg Val Cys Lys Thr Trp Tyr Lys Trp Cys Cys Asp Lys Arg
915 920 925
Leu Trp Thr Lys He Asp Leu Ser Arg Cys Lys Ala He Val Pro Gin 930 935 940
Ala Leu Ser Gly lie lie Lys Arg Gin Pro Val Ser Leu Asp Leu Ser 945 950 955 960
Trp Thr Asn He Ser Lys Lys Gin Leu Thr Trp Leu Val Asn Arg Leu
965 970 975
Pro Gly Leu Lys Asp Leu Leu Leu Ala Gly Cys Ser Trp Ser Ala Val
980 985 990
Ser Ala Leu Ser Thr Ser Ser Cys Pro Leu Leu Arg Thr Leu Asp Leu
995 1000 1005
Trp Ala Val Gly He Lys Asp Pro Gin He Arg Asp Leu Leu 1010 1015 1020 Thr Pro Pro Ala Asp Lys Pro Gly Gin Asp Asn Arg Ser Lys Leu 1025 1030 1035
Asn Met Thr Asp Phe Arg Leu Ala Gly Leu Asp lie Thr Asp 1040 1045 1050
Ala Thr Leu Arg Leu lie lie Arg His Met Pro Leu Leu Ser Arg 1055 1060 1065
Leu Asp Leu Ser His Cys Ser His Leu Thr Asp Gin Ser Ser Asn 1070 1075 1080
Leu Leu Thr Ala Val Gly Ser Ser Thr Arg Tyr Ser Leu Thr Glu 1085 1090 1095
Leu Asn Met Ala Gly Cys Asn Lys Leu Thr Asp Gin Thr Leu He 1100 1105 1110
Leu Arg Arg He Ala Asn Val Thr Leu He Asp Leu Arg Gly 1115 1120 1125
Lys Gin He Thr Arg Lys Ala Cys Glu His Phe He Ser Asp 1130 1135 1140
Leu Ser He Asn Ser Leu Tyr Cys Leu Ser Asp Glu Lys Leu lie 1145 1150 1155
Gin Lys He Ser
1160
<210> 8
<211> 1309
<212> PRT <213> 老鼠
<400> 8
Met Glu Ala Glu Lys Asp Ser Gly Arg Arg Leu Arg Ala lie Asp Arg 1 5 10 15
Gin Arg Tyr Asp Glu Asn Glu Asp Leu Ser Asp Val Glu Glu lie Val
20 25 30
Ser Val Arg Gly Phe Ser Leu Glu Glu Lys Leu Arg Ser Gin Leu Ty]
35 40 45
Gin Gly Asp Phe Val His Ala Met Glu Gly Lys Asp Phe Asn Tyr Glu 50 55 60
Tyr Val Gin Arg Glu Ala Leu Arg Val Pro Leu Val Phe Arg Asp Lys 65 70 75 80
Asp Gly Leu Gly lie Lys Met Pro Asp Pro Asp Phe Thr Val Arg Asp
85 90 95
Val Lys Leu Leu Val Gly Ser Arg Arg Leu Val Asp Val Met Asp Val
100 105 110
Asn Thr Gin Lys Gly Thr Glu Met Ser Met Ser Gin Phe Val Arg Ty]
115 120 125
Tyr Glu Thr Pro Glu Ala Gin Arg Asp Lys Leu Tyr Asn Val He Ser 130 135 140
Leu Glu Phe Ser His Thr Lys Leu Glu His Leu Val Lys Arg Pro Thr 145 150 155 160 Val Val Asp Leu Val Asp Trp Val Asp Asn Met Trp Pro Gin His Leu 165 170 175
Lys Glu Lys Gin Thr Glu Ala Thr Asn Ala Leu Ala Glu Met Lys Ty]
180 185 190
Pro Lys Val Lys Lys Tyr Cys Leu Met Ser Val Lys Gly Cys Phe Thr
195 200 205
Asp Phe His He Asp Phe Gly Gly Thr Ser Val Trp Tyr His Val Phe 210 215 220
Arg Gly Gly Lys He Phe Trp Leu He Pro Pro Thr Leu His Asn Leu 225 230 235 240
Ala Leu Tyr Glu Glu Trp Val Leu Ser Gly Lys Gin Ser Asp He Phe
245 250 255
Leu Gly Asp Arg Val Glu Arg Cys Gin Arg He Glu Leu Lys Gin Gly
260 265 270
Tyr Thr Phe Phe lie Pro Ser Gly Trp lie His Ala Val Tyr Thr Pro
275 280 285
Val Asp Ser Leu Val Phe Gly Gly Asn He Leu His Ser Phe Asn Val 290 295 300
Pro Met Gin Leu Arg He Tyr Glu He Glu Asp Arg Thr Arg Val Gin 305 310 315 320
Pro Lys Phe Arg Tyr Pro Phe Tyr Tyr Glu Met Cys Trp Tyr Val Leu
325 330 335 Glu Arg Tyr Val Tyr Cys Val Thr Gin Arg Ser Tyr Leu Thr Gin Glu 340 345 350
Tyr Gin Arg Glu Leu Met Leu lie Asp Ala Pro Arg Lys Thr Ser Val
355 360 365
Asp Gly Phe Ser Ser Asp Ser Trp Leu Asp Met Glu Glu Glu Ser Cys 370 375 380
Glu Gin Gin Pro Gin Glu Glu Glu Glu Glu Glu Glu Asp Lys Glu Glu 385 390 395 400
Glu Gly Asp Gly Ala Asp Lys Thr Pro Lys Pro Pro Thr Asp Asp Pro
405 410 415
Thr Ser Pro Thr Ser Thr Pro Pro Glu Asp Gin Asp Ser Thr Gly Lys
420 425 430
Lys Pro Lys Ala Pro Ala He Arg Phe Leu Lys Arg Thr Leu Ser Asn
435 440 445
Glu Ser Glu Glu Ser Val Lys Ser Thr Ser Met Pro Thr Asp Asp Pro 450 455 460
Lys Thr Pro Thr Gly Ser Pro Ala Thr Glu Val Ser Thr Lys Trp Thr 465 470 475 480
His Leu Thr Glu Phe Glu Leu Lys Gly Leu Lys Ala Leu Val Glu Lys
485 490 495
Leu Glu Ser Leu Pro Glu Asn Lys Lys Cys Val Pro Glu Gly He Glu
500 505 510 Asp Pro Gin Ala Leu Leu Glu Gly Val Lys Asn Val Leu Lys Glu His 515 520 525
Val Asp Asp Asp Pro Thr Leu Ala lie Thr Gly Val Pro Val Val Ser 530 535 540
Trp Pro Lys Lys Thr Ala Lys Asn Arg Val Val Gly Arg Pro Lys Gly 545 550 555 560
Lys Leu Gly Pro Ala Ser Ala Val Lys Leu Ala Ala Asn Arg Thr Thr
565 570 575
Ala Gly Ala Arg Arg Arg Arg Thr Arg Cys Arg Lys Cys Glu Ala Cys
580 585 590
Leu Arg Thr Glu Cys Gly Glu Cys His Phe Cys Lys Asp Met Lys Lys
595 600 605
Phe Gly Gly Pro Gly Arg Met Lys Gin Ser Cys He Met Arg Gin Cys 610 615 620
He Ala Pro Val Leu Pro His Thr Ala Val Cys Leu Val Cys Gly Glu 625 630 635 640
Ala Gly Lys Glu Asp Thr Val Glu Glu Glu Glu Gly Lys Phe Asn Leu
645 650 655
Met Leu Met Glu Cys Ser He Cys Asn Glu He He His Pro Gly Cys
660 665 670
Leu Lys He Lys Glu Ser Glu Gly Val Val Asn Asp Glu Leu Pro Asn
675 680 685 Cys Trp Glu Cys Pro Lys Cys Asn His Ala Gly Lys Thr Gly Lys Gin 690 695 700
Lys Arg Gly Pro Gly Phe Lys Tyr Ala Ser Asn Leu Pro Gly Ser Leu 705 710 715 720
Leu Lys Glu Gin Lys Met Asn Arg Asp Asn Lys Glu Gly Gin Glu Pro
725 730 735
Ala Lys Arg Arg Ser Glu Cys Glu Glu Ala Pro Arg Arg Arg Ser Asp
740 745 750
Glu His Pro Lys Lys Val Pro Ala Asp Gly He Leu Arg Arg Lys Ser
755 760 765
Asp Asp Val His Leu Arg Arg Lys Arg Lys Tyr Glu Lys Pro Gin Glu 770 775 780
Leu Ser Gly Arg Lys Arg Ala Ser Ser Leu Gin Thr Ser Pro Gly Ser 785 790 795 800
Ser Ser His Leu Ser Pro Arg Pro Pro Leu Gly Ser Ser Leu Ser Pro
805 810 815
Trp Trp Arg Ser Ser Leu Thr Tyr Phe Gin Gin Gin Leu Lys Pro Gly
820 825 830
Lys Glu Asp Lys Leu Phe Arg Lys Lys Arg Arg Ser Trp Lys Asn Ala
835 840 845
Glu Asp Arg Leu Ser Leu Ala Asn Lys Pro Leu Arg Arg Phe Lys Gin 850 855 860 Glu Pro Glu Asp Asp Leu Pro Glu Ala Pro Pro Lys Thr Arg Glu Ser 865 870 875 880
Asp Gin Ser Arg Ser Ser Ser Pro Thr Ala Gly Pro Ser Thr Glu Gly
885 890 895
Ala Glu Gly Pro Glu Glu Lys Lys Lys Val Lys Met Arg Arg Lys Arg
900 905 910
Arg Leu Val Asn Lys Glu Leu Ser Lys Glu Leu Ser Lys Glu Leu Asn
915 920 925
His Glu He Gin Lys Thr Glu Ser Thr Leu Ala His Glu Ser Gin Gin 930 935 940
Pro lie Lys Ser Glu Pro Glu Ser Glu Asn Asp Glu Pro Lys Arg Pro 945 950 955 960
Leu Ser His Cys Glu Arg Pro His Arg Phe Ser Lys Gly Leu Asn Gly
965 970 975
Thr Pro Arg Glu Leu Arg His Ser Leu Gly Pro Gly Leu Arg Ser Pro
980 985 990
Pro Arg Val Met Ser Arg Pro Pro Pro Ser Ala Ser Pro Pro Lys Cys
995 1000 1005
He Gin Met Glu Arg His Val lie Arg Pro Pro Pro lie Ser Pro 1010 1015 1020
Pro Pro Asp Ser Leu Pro Leu Asp Asp Gly Ala Ala His Val Met 1025 1030 1035 His Arg Glu Val Trp Met Ala Val Phe Ser Tyr Leu Ser His Arg 1040 1045 1050
Asp Leu Cys Val Cys Met Arg Val Cys Arg Thr Trp Asn Arg Trp 1055 1060 1065
Cys Cys Asp Lys Arg Leu Trp Thr Arg He Asp Leu Asn Arg Cys 1070 1075 1080
Ser lie Thr Pro Leu Met Leu Ser Gly lie lie Arg Arg Gin 1085 1090 1095
Pro Val Ser Leu Asp Leu Ser Trp Thr Asn He Ser Lys Lys Gin 1100 1105 1110
Leu Ser Trp Leu He Asn Arg Leu Pro Gly Leu Arg Asp Leu Val 1115 1120 1125
Leu Ser Gly Cys Ser Trp lie Ala Val Ser Ala Leu Cys Ser Ser 1130 1135 1140
Ser Cys Pro Leu Leu Arg Thr Leu Asp Val Gin Trp Val Glu Gly 1145 1150 1155
Leu Lys Asp Ala Gin Met Arg Asp Leu Leu Ser Pro Pro Thr Asp 1160 1165 1170
Asn Arg Pro Gly Gin Met Asp Asn Arg Ser Lys Leu Arg Asn He 1175 1180 1185
Val Glu Leu Arg Leu Ala Gly Leu Asp He Thr Asp Val Ser Leu 1190 1195 1200 Leu lie lie Arg His Met Pro Leu Leu Ser Lys Leu Gin Leu 1205 1210 1215
Ser Tyr Cys Asn His He Asn Asp Gin Ser He Asn Leu Leu Thr 1220 1225 1230
Ala Val Gly Thr Thr Thr Arg Asp Ser Leu Thr Glu Val Asn Leu 1235 1240 1245
Ser Asp Cys Asn Lys Val Thr Asp Leu Cys Leu Ser Phe Phe Lys 1250 1255 1260
Arg Cys Gly Asn He Cys His He Asp Leu Arg Tyr Cys Lys Gin 1265 1270 1275
Val Thr Lys Glu Gly Cys Glu Gin Phe He Ala Glu Met Ser Val 1280 1285 1290
Ser Val Gin Phe Gly Gin Val Glu Glu Lys Leu Leu Gin Lys Leu 1295 1300 1305
Ser

Claims

1、 一种提高诱导生成多能性干细胞效率的方法, 其特征在于, 包括如下步骤: a、 将转录因子与 Jhdmlb转入哺乳动物的成体细胞, 在诱导培养基中培养, 诱 导获得多能性干细胞克隆, 所述转录因子为单独的 0ct 4 , 或 0ct 4和 Klf 4和 Sox2 的组合,或 0ct 4、 Klf 4、 c-Myc和 Sox2的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增。
2、 一种提高诱导生成多能性干细胞效率的方法, 其特征在于, 包括如下步骤: a、 将转录因子与 Jhdmlb转入哺乳动物的成体细胞, 在诱导培养基中培养, 所 述诱导培养基包含维生素 C, 诱导获得多能性干细胞克隆, 所述转录因子为单独的 0ct 4 , 或 0ct 4和 Sox2的组合, 或 0ct 4和 Klf 4的组合, 或 0ct 4和 Klf 4和 Sox2 的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增。
3、根据权利要求 1所述的提高诱导生成多能性干细胞效率的方法,其特征在于, 包括如下步骤:
a、 将转录因子与 Jhdmlb转入哺乳动物的成体细胞, 在诱导培养基中培养, 所 述诱导培养基包含维生素 C, 诱导获得多能性干细胞克隆, 所述转录因子为单独的
0ct 4 , 或 0ct 4和 Sox2的组合, 或 0ct 4和 Klf 4的组合, 或 0ct 4和 Klf 4和 Sox2 的组合;
b、将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增, 所述干细胞培 养基包含维生素。。
4、根据权利要求 1所述的提高诱导生成多能性干细胞效率的方法,其特征在于, 所述转录因子和 Jhdmlb为具有多能干细胞诱导功能的编码或非编码 RNA、 蛋白质或 多肽。
5、 根据权利要求 3或 4任一项所述的提高诱导生成多能性干细胞效率的方法, 其特征在于, 所述将 Jhdmlb转入哺乳动物的成体细胞是以包含能够表达 Jhdmlb的 载体导入细胞中来实现的。
6、根据权利要求 5所述的提高诱导生成多能性干细胞效率的方法,其特征在于, 所述载体为病毒载体、 质粒载体、 外随体载体、 mRNA载体或直接化学合成。
7、根据权利要求 5所述的提高诱导生成多能性干细胞效率的方法,其特征在于, 所述病毒载体为逆转录病毒, 所述逆转录病毒为 pMXs载体。
8、根据权利要求 1所述的提高诱导生成多能性干细胞效率的方法,其特征在于, 所述 Jhdmlb是进行去曱基化修饰的多肽。
9、根据权利要求 1所述的提高诱导生成多能性干细胞效率的方法,其特征在于, 所述哺乳动物的成体细胞为成纤维细胞、 神经细胞、 造血细胞和神经胶质细胞。
10、 根据权利要求 1所述的提高诱导生成多能性干细胞效率的方法, 其特征在 于, 所述哺乳动物的成体细胞为小鼠胚胎成纤维细胞。
11、 一种提高诱导生成多能性干细胞效率的方法, 其特征在于, 包括如下步骤: a、将转录因子与 Jhdmlb和 Jhdmla转入哺乳动物的成体细胞,在诱导培养基中 培养, 诱导获得多能性干细胞克隆, 所述转录因子为单独的 0ct 4 , 或 0ct 4和 Sox2 的组合, 或 0ct 4和 Klf 4的组合, 或 0ct 4和 Klf 4和 Sox2的组合;
b、 将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增。
12、根据权利要求 11所述的提高诱导生成多能性干细胞效率的方法, 其特征在 于, 包括如下步骤:
a、将转录因子与 Jhdmlb和 Jhdmla转入哺乳动物的成体细胞,在诱导培养基中 培养, 所述诱导培养基包含维生素 C, 诱导获得多能性干细胞克隆, 所述转录因子 为 0ct 4;
b、将诱导获得的多能性干细胞克隆在干细胞培养基中培养扩增, 所述干细胞培 养基包含维生素。。
PCT/CN2012/073375 2011-10-21 2012-03-31 一种提高诱导生成多能性干细胞效率的方法 WO2013056535A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES12801798.5T ES2627799T3 (es) 2011-10-21 2012-03-31 Método para aumentar la eficiencia de la generación de célula pluripotente inducida
EP12801798.5A EP2647700B1 (en) 2011-10-21 2012-03-31 Method for increasing efficiency of generating inducted pluripotent stem cell
US13/808,596 US9163217B2 (en) 2011-10-21 2012-03-31 Method for increasing the efficiency of inducing pluripotent stem cells
JP2013539131A JP5736052B2 (ja) 2011-10-21 2012-03-31 多能性幹細胞の誘導生成効率を高める方法
US14/011,714 US9163218B2 (en) 2011-10-21 2013-08-27 Method for increasing the efficiency of inducing pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103237797A CN102417894B (zh) 2011-10-21 2011-10-21 一种提高诱导生成多能性干细胞效率的方法
CN201110323779.7 2011-10-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/808,596 A-371-Of-International US9163217B2 (en) 2011-10-21 2012-03-31 Method for increasing the efficiency of inducing pluripotent stem cells
US14/011,714 Division US9163218B2 (en) 2011-10-21 2013-08-27 Method for increasing the efficiency of inducing pluripotent stem cells

Publications (2)

Publication Number Publication Date
WO2013056535A1 true WO2013056535A1 (zh) 2013-04-25
WO2013056535A9 WO2013056535A9 (zh) 2013-07-04

Family

ID=45942538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073375 WO2013056535A1 (zh) 2011-10-21 2012-03-31 一种提高诱导生成多能性干细胞效率的方法

Country Status (6)

Country Link
US (1) US9163217B2 (zh)
EP (2) EP2647700B1 (zh)
JP (2) JP5736052B2 (zh)
CN (1) CN102417894B (zh)
ES (2) ES2628912T3 (zh)
WO (1) WO2013056535A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241087B (zh) * 2012-05-13 2023-02-03 美国绿阳生物技术及医药公司 使用合成的信使rna无饲养细胞地衍生人类诱导性多能干细胞
CN104630136B (zh) * 2013-11-15 2019-10-01 中国科学院广州生物医药与健康研究院 一种制备诱导多能性干细胞的方法以及该方法中所使用的组合物及其应用
EP3129466B1 (en) * 2014-04-07 2020-08-05 Memorial Sloan Kettering Cancer Center Modulating cell proliferation and pluripotency
CN104212762B (zh) * 2014-08-25 2017-01-18 中国人民解放军总医院 一种通过体外小分子诱导培养尿源性多潜能干细胞的方法
CN104611295A (zh) * 2015-02-06 2015-05-13 华南农业大学 一种食蟹猴睾丸间质祖细胞永生系的建立方法
CN105018430B (zh) * 2015-02-06 2018-08-31 华南农业大学 一种长白仔猪骨髓间充质干细胞永生系的建立方法
JP6874994B2 (ja) * 2015-10-28 2021-05-19 学校法人慶應義塾 多能性幹細胞の分化抵抗性を減弱する方法
EP3394250A4 (en) * 2015-12-23 2019-11-27 Monash University ZELLENNEUPROGRAMMIERUNG
CN106544315A (zh) * 2016-10-12 2017-03-29 广东艾时代生物科技有限责任公司 一种脂肪间充质干细胞诱导成多能干细胞的方法
JP2018143239A (ja) 2017-03-01 2018-09-20 エリクサジェン,エルエルシー. 多能性幹細胞を所望の細胞型へ効率的に分化する方法
CN107286232A (zh) * 2017-05-23 2017-10-24 中国科学院广州生物医药与健康研究院 Pou结构域改造蛋白对多能干细胞的高效诱导
CN108220230B (zh) * 2018-02-01 2022-01-18 上海莱馥医疗科技有限公司 一种人脂肪干细胞的分离与培养方法
CN108441517A (zh) * 2018-03-28 2018-08-24 长春博邦企业管理咨询有限公司 一种人诱导多能干细胞的制备方法
CN110724706B (zh) * 2018-07-17 2023-03-10 中国科学院上海营养与健康研究所 Oct4泛素化修饰突变体在提高诱导体细胞重编程效率中的应用
CN112063656A (zh) * 2020-08-28 2020-12-11 中国科学院广州生物医药与健康研究院 Map2k3或Map2k6在提高诱导成体细胞生成多能性干细胞效率中的用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079417A2 (en) 2001-03-28 2002-10-10 President And Fellows Of Harvard College Methods of delivery of exogenous proteins to the cytosol and uses thereof
US20090269763A1 (en) * 2005-08-01 2009-10-29 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through RNA interference
US20090275032A1 (en) * 2005-08-01 2009-11-05 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an HDAC modulator
WO2010108126A2 (en) * 2009-03-19 2010-09-23 Fate Therapeutics, Inc. Reprogramming compositions and methods of using the same
WO2011051264A2 (en) * 2009-10-27 2011-05-05 Glaxo Group Limited Method of treatment
CN102083968A (zh) * 2008-04-07 2011-06-01 纽珀滕索有限公司 通过使用小分子调节剂诱导复能基因而重编程细胞

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1941060B1 (en) * 2005-10-28 2012-02-29 The University of North Carolina At Chapel Hill Protein demethylases comprising a jmjc domain
WO2009143421A2 (en) * 2008-05-22 2009-11-26 The Johns Hopkins University Methods for promoting fusion and reprogramming of somatic cells
US20120115225A1 (en) * 2009-04-23 2012-05-10 Xu C W Reprogramming of somatic cells with purified proteins
CN101684455B (zh) * 2009-07-22 2012-08-08 中国科学院广州生物医药与健康研究院 抗坏血酸在诱导多能干细胞制备和胚胎干细胞培养的应用
WO2011069091A1 (en) * 2009-12-04 2011-06-09 Boston Biomedical Research Institute, Inc. Method for cloning pluripotent stem cells
CN101744808A (zh) * 2009-12-15 2010-06-23 中国科学院广州生物医药与健康研究院 抗坏血酸的新用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079417A2 (en) 2001-03-28 2002-10-10 President And Fellows Of Harvard College Methods of delivery of exogenous proteins to the cytosol and uses thereof
US20090269763A1 (en) * 2005-08-01 2009-10-29 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through RNA interference
US20090275032A1 (en) * 2005-08-01 2009-11-05 Nupotential, Inc. Reprogramming a cell by inducing a pluripotent gene through use of an HDAC modulator
CN102083968A (zh) * 2008-04-07 2011-06-01 纽珀滕索有限公司 通过使用小分子调节剂诱导复能基因而重编程细胞
WO2010108126A2 (en) * 2009-03-19 2010-09-23 Fate Therapeutics, Inc. Reprogramming compositions and methods of using the same
WO2011051264A2 (en) * 2009-10-27 2011-05-05 Glaxo Group Limited Method of treatment

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 2009, JOHN WILEY & SONS
CUNNINGHAM, B.; WELLS, J., SCIENCE, vol. 244, 1989, pages 1081 - 1085
DE VOS, A. ET AL., SCIENCE, vol. 255, 1992, pages 306 - 312
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443
PEARSON; LIPMAN, PROC. NATL. ACAD. SCI., USA, vol. 85, 1988, pages 2444
See also references of EP2647700A4
SMITH, L. ET AL., J. MOL. BIOL., vol. 224, 1992, pages 899 - 904
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482
VERRIER L. ET AL.: "Histone demethylases in chromatin cross-talks", BIOLOGY OF THE CELL, vol. 103, no. 8, 31 August 2011 (2011-08-31), pages 384 - 401, XP055095457 *
WANG T. ET AL.: "The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner", CELL STEM CELL, vol. 9, 2 December 2011 (2011-12-02), pages 575 - 587, XP028335476 *
WERNIG M. ET AL.: "In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state", NATURE, vol. 448, 19 July 2007 (2007-07-19), pages 318 - 325, XP002468993 *
XU L.-Y. ET AL.: "Research progress and prospect of histone demethylases", CHINESE BULLETIN OF LIFE SCIENCE, vol. 22, no. 2, 28 February 2010 (2010-02-28), pages 109 - 114, XP055095455 *

Also Published As

Publication number Publication date
US20130302893A1 (en) 2013-11-14
EP2647700A1 (en) 2013-10-09
US9163217B2 (en) 2015-10-20
EP2647700B1 (en) 2017-03-15
EP2647700A4 (en) 2014-09-17
CN102417894B (zh) 2013-06-05
JP5736052B2 (ja) 2015-06-17
JP5738347B2 (ja) 2015-06-24
EP2778222A1 (en) 2014-09-17
JP2013230150A (ja) 2013-11-14
CN102417894A (zh) 2012-04-18
ES2627799T3 (es) 2017-07-31
ES2628912T3 (es) 2017-08-04
EP2778222B1 (en) 2017-03-22
WO2013056535A9 (zh) 2013-07-04
JP2014502153A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2013056535A1 (zh) 一种提高诱导生成多能性干细胞效率的方法
JP7051748B2 (ja) 細胞を幼若化するための方法
US20190284537A1 (en) Wnt pathway stimulation in reprogramming somatic cells with nuclear reprogramming factors
Lagarkova et al. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale
JP6231253B2 (ja) 体細胞を再プログラムするためのrnaの使用
JP2012530497A (ja) 臍帯血からの人工多能性幹細胞の生成方法
WO2015070756A1 (zh) 一种制备诱导多能性干细胞的方法以及该方法中所使用的组合物及其应用
WO2011110051A1 (zh) 用人工转录因子诱导产生多能干细胞
JP2022101564A (ja) より未分化状態への細胞の誘導方法
JP5751548B2 (ja) イヌiPS細胞及びその製造方法
KR20220027089A (ko) Sox9-유도된 핍지교세포 전구 세포
US20120070419A1 (en) Method of altering the differentiative state of a cell and compositions thereof
US9163218B2 (en) Method for increasing the efficiency of inducing pluripotent stem cells
CN103173490B (zh) 一种提高诱导生成多能性干细胞效率的方法
WO2015178496A1 (ja) 肺前駆細胞の作製方法
WO2011040887A1 (en) A nuclear receptor and mutant thereof and the use of the same in the reprogramming of cells
WO2012165740A1 (en) Composition for improving dedifferentiation of cells and method for producing inducted pluripotent stem cells using the same
CN112063656A (zh) Map2k3或Map2k6在提高诱导成体细胞生成多能性干细胞效率中的用途
Aguirre Maclennan Generation of induced pluripotent stem (iPS) cells from the endangered Tasmanian devil
Taha et al. Research Article Upregulation of Pluripotency Markers in Adipose Tissue-Derived Stem Cells by miR-302 and Leukemia Inhibitory Factor
SG173226A1 (en) A nuclear receptor and mutant thereof and the use of the same in the reprogramming of cells
오진수 Induced pluripotent stem cells derived from human intervertebral disc cell for ameliorating neurologic dysfunctions after spinal cord injury

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012801798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012801798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13808596

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013539131

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE