WO2013056387A1 - 一种通用的色域映射及色彩管理方法 - Google Patents

一种通用的色域映射及色彩管理方法 Download PDF

Info

Publication number
WO2013056387A1
WO2013056387A1 PCT/CN2011/001729 CN2011001729W WO2013056387A1 WO 2013056387 A1 WO2013056387 A1 WO 2013056387A1 CN 2011001729 W CN2011001729 W CN 2011001729W WO 2013056387 A1 WO2013056387 A1 WO 2013056387A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
equation
liu
gray
mapping
Prior art date
Application number
PCT/CN2011/001729
Other languages
English (en)
French (fr)
Inventor
刘·特拉维斯
刘世昌
刘筠
Original Assignee
Liu Travis
Liu Shichang
Liu Yun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Travis, Liu Shichang, Liu Yun filed Critical Liu Travis
Priority to CN201180042671.9A priority Critical patent/CN103931169B/zh
Priority to US13/818,303 priority patent/US20140152687A1/en
Priority to PCT/CN2011/001729 priority patent/WO2013056387A1/zh
Publication of WO2013056387A1 publication Critical patent/WO2013056387A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention is a practical and completely new technology for transmitting image information across media and accurately reproducing color images according to perceptual intent.
  • the main application object is an image input device (for example, a digital camera, a home digital video camera, a scanner, a television camera, PHOTOCD). ), image display devices (such as CRT, PDP, LCD, LED display) and image output devices (such as color printers, multi-color offset presses, remote image transfer, image mobile communication, network image exchange, etc.) and color management using them.
  • image input device for example, a digital camera, a home digital video camera, a scanner, a television camera, PHOTOCD).
  • image display devices such as CRT, PDP, LCD, LED display
  • image output devices such as color printers, multi-color offset presses, remote image transfer, image mobile communication, network image exchange, etc.
  • the design and manufacturing fields of systems, computer graphics systems, multimedia television systems, image transmission and reception systems, etc. provide a universal and completely innovative technical support path for software production and hardware
  • CIE LAB In its own color management system, CIE LAB (CIECAM02) is routinely selected as PCS (characteristic file connection space). However, systems that represent colors such as CIE LAB and CIECAM02 still have errors that cannot be ignored; and CMM (color) Management Module)
  • CIE XYZ When converting CIE XYZ into data in RGB or CMYK color space, the attenuation of X, Y and Z values is inconsistent between the device and the media, making CIE XYZ and RGB or CMYK complex nonlinear Relationship, but the way to solve this nonlinear relationship so far is not uniform and inaccurate.
  • the crux of the problem is that it does not solve the independence of its own attributes, the independence of the channel, the independence of the gray component, but also the independence of the three primary colors.
  • the look-up table method is not only cumbersome, but also the conversion result lacks uniqueness; in terms of the reproduction intention of the color image, Cross-media gamut mapping is difficult due to the lack of a common gamut mapping method, until now There is no real goal of "what you see is what you get”.
  • the present invention has established a general cross-media gamut mapping method, which enables the main principles of the entire color management system to adopt a unified principle, a unified method and a unified mathematical description model.
  • the measures to improve the accuracy of gamut mapping are placed in the stage of establishing the characterization file, so that the accuracy of the predicted color is guaranteed, and in real-time work, the new gamut is adopted.
  • the mapping method and the analytical calculation method not higher than the quadratic method make the accuracy of the gamut mapping and the production efficiency at the same time; this method is transparent, the process is regular, and the result is unique, which increases the participation of enterprises. Opportunities and the potential to fully realize the potential of the equipment.
  • Color image reproduction should give priority to ensure that gray tone reproduction is correct, which involves gray balance, gray balance curve setting, visual adaptation and gamma correction for media attenuation effects, but existing technologies exist in gray and color. Copying the defects of mutual restraint, the priority independent copying of the gray tone can not be achieved, and an obvious color copying error occurs in a certain area of the color gamut;
  • the lookup table method Since the existing technology cannot solve the contradiction between the complexity of the conversion model and the efficiency of the algorithm, the lookup table method has to be used to solve the problem, but the lookup table method is difficult to achieve the uniqueness of the image mapping and the gamut mapping. Coherence; As time goes by, it is difficult for users to take corrective measures when the equipment ages and the characteristics are shifted.
  • the invention creates a brand new color mapping technology based on solving the above-mentioned key difficulties one by one, and finally makes the mapped color ⁇ Maintain the original hue, the original chromaticity coordinates, and the brightness mapped according to the perceived intent.
  • the basic methods of sharing various devices in the mapping system and the mathematical models for implementing these methods are listed first, and then these basic inventions are connected in series. Form a complete color mapping system.
  • a color target structure that is common to input, display, and output devices and that has correspondingly driven values.
  • the drive variable is represented by d ki ;
  • d is a parameter indicating the scale drive variable, because it is customary to use CMYK to indicate the input value of the printing device, and RGB to indicate the drive value of the display and scanning device, so we hereby agree that d ei , d mi , d y dki, d ri, d gi, d bi respectively C, M, Y, K, R, G, B equivalent, the former represents the variable, which represents the number of specific .
  • the scanner it is not only necessary to measure the CIEXYZ value of the sample color with a spectrophotometer, but also to obtain the RGB average of sufficient pixels of each sample color by software, in order to prepare for calculating the CIEXYZ value of the scanning color.
  • the present invention utilizes the created Liu's primary color clamping equation.
  • the derived Liu's primary color amount clamps the hue, chroma and brightness of the primary color interfered by the media, thereby making the hue of the primary color independent.
  • the tristimulus values X s , Y s , Z s where we specify the tristimulus values Xs, Y s , Z s of the primary color field are the unit basis color of the primary color, and then expressed by the Liu's primary color clamp equation as shown below.
  • the clamp equation of this format is applicable to the color target of the printer, the color target of the scanner, and the color target of the normally white display. It can be called the printer basic color clamp equation, the scanner basic color clamp equation and the normally white type in different occasions. Display base color clamp equation.
  • the value of the clamp brightness calculated above is substituted into the Liu's reference base color amount formula, and the reference base color amount a of the sample color is calculated.
  • the primary color amount a represents blue respectively. (:, the base color of magenta m, yellow y base color, for the display, the primary color of the red, green 9, and blue b primary colors, namely:
  • c, m, y is the area of the dot in the printing industry; if it is the calibration calculation of the normally white LCD and LED display, the reference primary color amount a represents the reference primary color of red r, green 9 and blue b.
  • the reference primary color amount a represents the reference primary color of red r, green 9 and blue b.
  • the present invention refers to it as an RGB scan clamp equation, and the former is called an XYZ scan clamp equation, and RGB-CMY color space conversion is performed on the scan sample color.
  • the clamp luminance Gt of the sample color and the reference primary color amount a can be calculated by the RGB scan clamp equation, and the calculation formula is as follows:
  • the clamp brightness calculated from the basic color clamp equation eliminates the interference caused by the 'red shift' phenomenon, which is detrimental to the correctness of the calculation of the primary color amount, but with Liu
  • the primary color amount a determined by the base color amount formula excludes such harmful interference, so that the color represented by the reference primary color amount a and the unit primary color amount maintain a uniform hue, and the primary stimulation amount has a tristimulus value no longer equal to the measured tristimulus.
  • the values X, ⁇ , ⁇ are modified to X, Y t , Z.
  • the reference base color amount will be used as an independent parameter of the color matching or the three primary color matching equations, which provides an accurate method for the standardization, systemization and precision of the three primary color matching methods.
  • the present invention sets a 'channel primary color amount' parameter for each color matching channel for each primary color, and the 'channel primary color amount' can be further accurately expressed as a function of the reference primary color amount parameter, and at the same time, the primary color amount parameter and the primary color amount are generated. There is an accurate and reversible conversion relationship between the driving parameters.
  • the color matching equation based on this can maintain the independence of the three primary colors participating in the color matching in the color matching space.
  • Liu's subtractive color matching equation based on subtractive color method has two purposes: one is to establish a gray balance equation for the basic color cmy of Liu's four-color color matching equation, and the second is Used as a color prediction equation for the scanner.
  • the Liu's subtractive color matching equation can be called a three-color printing color matching equation in the former case, and can be called a scanning color prediction equation in the latter case.
  • the format of Liu's subtractive color matching equation is as follows:
  • the left end XYZ represents the tristimulus value of the color to be matched
  • the tristimulus values X w Y w Z w , XcYeZc, X m Y m Z m , X y Y y Z y , X r Y, Z, , XgY g , X b Y b Z b , XsY s Z s respectively represent three solid colors (white, cyan, magenta, yellow, red, green, blue, three primary colors, black dots) measured on the color target.
  • Stimulus value It should be noted that if the scanner problem is involved, then the 8 thrill values of the 8 solid colors are measured on the scanner color target. If the printer problem is involved, then the color target of the printer is required. The three tristimulus values of the solid color are measured. Please pay attention to it. The following problems are not repeated.
  • the variables y x , y y , y z , m x , m y , m z , c x , c y , c z represents the amount of channel base color of yellow, magenta, and cyan, respectively.
  • k dd represents the gray component substitution amount of the black ink
  • the reference primary color amount of the black ink is represented by k
  • the present invention allows k dd to represent four colors.
  • the amount of gray component substitution in the copy will be described in detail later.
  • the extended equation contains four parameters c, m, y, and k, since k dd is a predetermined value before the equation is solved, the four-color color matching equation actually has only three variables c, m, and y.
  • the static three-primary equation can be solved by an iterative method when it is used for calibration calculation.
  • X m , Y m , Z m correspond to the tristimulus value of magenta obtained by (R+ B) simultaneous driving when R and B take the maximum value;
  • variable parameters r x , r y , r z , g x , g y , g z , b x , b y , b z at the right end of the equation are named the channel base color quantities, and they are used to match the X, ⁇ , Z at the left end of the equation.
  • the stimuli value, from this point of view, the channel base color quantity has a 'channel independent characteristic'.
  • the channel base color The quantity is not a simple variable, but a function of the base color quantity, g, and b, respectively.
  • the function format is:
  • c', m', and ⁇ are used to represent the three primary color amount parameters of cyan, magenta, and yellow, and y x ', y y ', y z ', m x ', m y ', m z ', c x ', c y ', c z ' represents the channel primary color amount.
  • the XYZ Liu's color matching equation and the RGB scanning color separation equation based on the subtractive method are like the same weight in kilograms and pounds, and the color targets are described in different coordinate systems in the RGB and XYZ color spaces.
  • the three primary colors of cyan, magenta and yellow in order to distinguish the two basic color quantities calculated in different color spaces, the present invention refers to the amount of primary colors c, m, y calculated in the XYZ color space as the scanning basis color amount, which is in RGB.
  • the primary color quantities c', m', and y' calculated in the color space are called twin scan base colors.
  • the format of Liu's RGB scanning color separation equation is as follows:
  • the important position of Liu's color matching equation in the gamut mapping method In order to achieve the goal of gray balance, when establishing characterization files for scanners, printers, and displays, they must use the Liu's color matching equation to characterize their gray balance functions.
  • the calibration is performed to obtain the coefficient values in the gray balance function, so that the obtained values are placed in the property file; since the Liu's color matching equation needs to be solved by an iterative method, and the obtained solution is an exact solution, the characterization is established. It is very suitable to use the Liu's color matching equation to calibrate the gray balance polynomial or power function. This method also provides a way to quickly complete the gamut mapping calculation using the Liu's gamut mapping equation.
  • characterization Observing the channel basis color quantity function in Liu's color matching equation, the channel primary color quantity is a power function of the reference base color quantity, and the constant coefficient contained in the polynomial is a value that needs to be obtained by characterization. .
  • Normal white computer display class [Xqwrt* Yqwrh Z qwr i], [Xqwgi» Yqwgi, Zq Wg i], [Xqwbi, Yqwbi, Z qw bi]
  • c x , c v , and c z respectively represent the channel primary color of the cyan ink in the X, Y, and ⁇ channels, so that the channel primary color amount array [c xi , c yi , cj can be obtained.
  • is the array of base color quantities [m xi , m yi , m zi ] and [y xi , y yi , y zi ];
  • r x , r y , and r z respectively represent the channel primary color of the red primary color in the X, Y, and ⁇ channels.
  • For the green primary color change the character r in the above three models to g; for the blue primary color, change the characters in the above three formulas to b, so that the primary color amount array fexi, 9yp g zi can be obtained and [b xi , b yi , b zi ];
  • r x , r y , and r z respectively represent the channel primary color of the primary color in the X, Y ⁇ channel.
  • For the green base color change the characters in the above three models to "g; for the blue base color, change the characters in the above three formulas to b, so you can get the channel base color quantity array [g xj , g yj , g Z j] and [b xj , b yj , b zj ] ;
  • Gray tone reproduction quality is the primary quality indicator for determining the quality of color image reproduction. It generates the ideal tristimulus value of a pure gray scale for each scanner, printer and display, and uses this as the basis for the reproduction of the gray component of the image.
  • the so-called pure gray scale means that the gray tristimulus value of the step has been excluded from the red shift component.
  • [D qkai ] IgfY ⁇ / Y qwai ),
  • the character d is a parameter indicating the driving value of the ladder. It represents both the driving parameter CMYK and the input value of the driving parameter RGB. ;
  • D will be separately.
  • b Do'b, D pb , D qb , D qt) are denormalized and the character D is used.
  • [Do'ai], [Dpai], [D qwi ]> [D qki j is not equal, because the purpose of implementing the previous data fitting step is to transform the initial density array to play the role of the original source, D.
  • D. , D P , D qw , D qk are the pure gray tone density of the scanners, printers, white displays and regular black displays we need.
  • the gray tone of the color target scale has been set to Class i, so the pure gray density arrays of scanners, printers, white displays, and regular black displays are [D. Ij and [D. [D pi ], [D qwi ], [D qki ] ;
  • the tristimulus value Xow, Yow> Zow of the white color of the measured scanning target target is used as the tristimulus value of the white point of the scanner in the XYZ color space, and the tristimulus values F and G of the white color of the measured scanning target target.
  • OBJECTIVE Characterizing Liu's pure gray scales with Liu's color matching equation is to calculate the component basis color of the pure gray scale and express it as a function of the pure gray density parameter. Gray balance is an important indicator to determine the quality of color image reproduction.
  • the color of the 'grey core' component of any color can be obtained by the basic color quantity function of gray balance. The meaning of 'grey core' can be understood in this way, for example, using three primary colors c.
  • the three primary colors are not equal, wherein the primary color with the smallest reference primary color is the 'grey core' that forms the gray component of the color, and the gray kernel is the minimum of the three primary colors, but It combines with two other primary colors to form a gray core of composite color.
  • the invention achieves the purpose of quickly and accurately decomposing a color into three primary color components by means of the concept of 'grey core', and at the same time achieves the purpose of preferentially copying gray components.
  • twin primary color quantities ⁇ , rrW, y d d' will be used as gray kernels.
  • [qki, Yqki, Zqki] Perform color matching calculation, get the array of primary color of gray scales [r qwi , g qwi , bqwi ] , [ r qki , g qki , b qki ], and then use pure gray density array [D qwi ], [D qki ] is an independent variable, and curve fitting is performed with [r qwi , g qwi , b « , wi ], [ , g qki , b qki ] as the dependent variable, and the white display and the normally black type are obtained.
  • the gray balance power function above is called the three-color printer gray balance power function, c p , m p , y P is the basis color of the component calculated according to the pure neutral gray [X pi , Y pi , Z pi ], with Liu
  • the c p , m p , y P calculated by the subtractive color matching equation are not used as the 'grey kernel', but in the Liu's four-color mapping equation, which is used to calculate the driving input value of cmy.
  • the pure neutral gray of the four-color printer is also [X pi , Ypi, Zpi], but the component basis color amount of [X pi , Y pi , Zpi] also includes the gray substitution parameter k p .
  • the determined index as long as the value of n is given, the length of the black tone can be easily adjusted; please note that the gray component substitution amount k p is a purified black component, which is called a pure gray component substitution amount;
  • the c P , m p , y P obtained by the above function are the basic color quantities of the components calculated according to the visual neutral gray, and are the primary color amount data calculated under the gray balance condition.
  • collectively referred to as c P , m p , y P are the gray balance base color of the printing color space.
  • c P , m p , y P must have a gray balance base color amount and k p together to form a gray core matching the visual color. This gray level ⁇ Heng base color amount referred to as 'grey core'.
  • the three formulas are the Liu's gamma correction formula for calculating the gamma correction density.
  • Color input devices such as digital cameras and scanners always transmit acquired color information to output devices such as monitors and printers.
  • the existing method is to select CIE LAB (CIECAM02) as the connection space of the PCS feature file.
  • CIECAM02 CIE LAB
  • This method of borrowing a uniform color space as the connection link is correct.
  • the problem is that such a uniform color space has not yet reached the ideal uniformity, as a PCS characteristic.
  • the file connection space is used, the resulting color conversion error is more obvious, and the steps are cumbersome; another problem involves the transmission method of color values. It is very common to transmit images over long distances across media, and mobile communication, digital TV and ground-to-air image communication are all broken. A pattern of color management at one time.
  • the present invention proposes a new D lX iy i profile connection space with multiple functions.
  • the following describes a method for establishing a D, xiyi profile connection color space for a scanner in an XYZ space.
  • the D lXiyi color space is built using the Liu's color segmentation equation as a tool.
  • the basic principle of the equation is: Although any color is generated based on the principle of three primary color synthesis, changing the angle of observation can also be considered: Any color is composed of two parts, one is the ratio of p The gray component, the second is the inter-color component generated by the two primary colors of the ratio (1 - p), that is, the structural characteristics of [1 visual gray component + 2 primary color components], and the two thinking methods are equivalent.
  • the Liu's color segmentation equation can be divided into the Liu's scanning color segmentation equation established by the scanner and the Liu's shooting color segmentation equation established for digital cameras, digital video cameras and television cameras, because the color acquired by the scanner is to be colored to the printing device. Domain transfer, so use a Liu's color segmentation equation based on subtractive color reproduction.
  • a Liu's color segmentation equation based on the normally white color matching equation is used, and the color acquired by the television camera is transmitted to the normally black display, so a Liu's color segmentation equation for the normally black color matching equation.
  • Each Liu's color segmentation equation contains three subtypes.
  • the first step is to construct the Liu's color segmentation equation for the scanner - the format of the scanner's Liu's color segmentation equation:
  • the segmentation equation is a set of equations that are composed of three basic equations. The difference between the three is: one is the division equation of a green base color + 1 magenta base color + 1 visual gray.
  • CMK complementary metal-oxide-semiconductor
  • CYK CYK
  • MYK-type segmentation equations CYK-type segmentation equations
  • X, ⁇ , ⁇ are the tristimulus values obtained by the scanner
  • X w , Y w , z w represent the triple turbulence values of the white solids measured on the scanner color target
  • Xc, Yc Zc Indicates the measured tristimulus values of the cyan field
  • X m , Ym, Z m represent the measured tristimulus values of the magenta field
  • X y , Y y , Z y represent the measured tristimulus values of the yellow field
  • ground synthetic Huangsan Ji referred to as 'black spot' three stimulation value
  • Xw, Yw, chromaticity coordinates Z w is consistent.
  • the Liu's partition equation becomes the gray scale format of the Liu's partition equation as follows:
  • the second step is to use the above knowledge to construct the D
  • R [(1 -c')(1- y')R w +c'(1-y')R c +(1- c')y'R y + c'y'R g ]-(1 -p) + pR s ,
  • ⁇ G [(1-c')(1-y')G w +c'(1-y')G c + (1- C) y'G y + c'y'G g ⁇ (1- p) + pG sk
  • 'R [(1-m')(1-y')R w +m'(1-y') m +(1-m')y'R y +myR r ]-(1-p k ) + p,- s ,
  • ⁇ 6 [(1-m')(1-y')G w +m'(1-y')G m +(1-m')y'G y +myG r ].(1-p) + pG sk
  • Liu's segmentation equation gray ladder format [(1-m')(1-y')S w +m'(1-y')B m +(1-m')y'B y +myB f ]-(1-p) + Pe s / (
  • the value in the square brackets at the right end of the equation equal the tristimulus values R w , G w , Bw of the white field measured on the scanner color target.
  • the Liu's segmentation equation evolves as follows Liu's segmentation equation gray ladder format:
  • Liu's three-color clamp equation format Liu's three-color clamp equation inherits the category attribute of Liu's partition equation, and is also divided into three sub-types: CMK, CYK, and MYK. As for which Liu's three-color clamp equation is chosen. The conversion calculation for color RGB is determined by the minimum value in RGB. The three-color clamp equations for these three subtypes are listed below:
  • is Liu
  • the color appearance retention parameters, c dd ', m dd ', y dd ' are gray kernel parameters from the gray balance power function of the scanner.
  • the RGB-XYZ color space coordinate data conversion can be completed by substituting any set of RGB values acquired by the CCD sensing element into the above RGB-XYZ matrix equation;
  • Xg rey Y grey Z grey represents the tristimulus value of the pure gray of the standard display
  • X W Y W Z W and X k Y k Z k are the three-shot values of the white and black points of the standard display, respectively.
  • the gamut mapping between the scanner and the printing device is the D of the connection space by passing the properties file. , x. , y.
  • the value is implemented in the color gamut of the printing device and by means of a printer mapping equation of the Liu's scanner.
  • the first step is to select the subtype of the printer's mapping equation based on the RGB values obtained by scanning:
  • Liu's scanner-printer mapping equation has three subtypes of CMK, CYK, YK, and three of the Liu's segmentation equation The subtypes correspond one-to-one, and the equations of the three subtypes are listed in turn below:
  • V (1- c rfd )(1-m)(1- y)(1- - m)(1- y )(1- ⁇ - ⁇ - ; ⁇ -/ ⁇ +...+ ⁇ / ⁇ ⁇
  • the second step is to adjust the gray tone density D of the scanner color space.
  • the color X P Y P Z P at the left end of the equation is matched.
  • the variable ⁇ ⁇ also functions as a color retention factor. The function is to ensure that the new color X P ⁇ ⁇ Z p and the color XYZ output by the scanner remain the same.
  • the quantity cmyk is further a function of driving the input value cWmdydk, whereby the method for converting the printer reference base color amount cmyk value into the drive input value CMYK is:
  • the gamut mapping between the digital camera and the display device is performed by transmitting the parameters D n , ⁇ and ⁇ of the feature file connection space to the display device and through the digital camera-display mapping equation.
  • the gray tone density D of the digital camera color space is mapped to the gray tone density Dq of the display device color gamut, namely:
  • Liu's digital camera-display mapping equation also has three sub-types of r dd gb, rg dd b rgb dd , and one-to-one correspondence with the three sub-types of Liu's partition equation.
  • the equations of these three sub-types are listed in turn below: Sk
  • the driving input value drd g d b is further a function of the reference primary color amount rgb, whereby the method for converting the reference white color amount rb value of the normally white display into the driving input value RGB is:
  • RGB is the drive value required to display color, Y qw , w .
  • the gamut mapping between the television camera and the television display device is performed by transmitting the parameters D n , ⁇ and y n of the feature file connection space to the display device and through the television camera-display mapping equation.
  • [(1- - )/y n ] (i- - ) +(1- r)6f(1 - )Z m + (1- r)(1-g) Z y + ... +rS ⁇ Z s , according to the r dd gb, rg dd b, rgb dd subtype selected by the program, substitute r dd , g dd , b dd obtained in the first step into the right end of the equation, and clamp the values of the parameters ⁇ and y n
  • the bit luminance Y qk is placed at the left end of the equation, and the reference base color quantities r, g, b and luminance value Y qk subjected to gamma correction and gamut mapping processing are solved.
  • the drive input value cWgdb is further a function of the reference primary color amount rgb, whereby the method for converting the reference primary color amount rb value of the television display into the drive input value RGB is
  • the three primary colors calculated by the three different subtypes of the Liu's comprehensive mapping equation are the gamma corrected primary colors.
  • RGB is the drive value required to display colors Xq k , ⁇ qk , k.
  • the first step the density D p gray tone mapping of the color space of the printing apparatus becomes a gray tone density D q gamut of the display device, Burgundy Jie:
  • RGB is the drive value required to display colors Xq w , Y QW , w .
  • Fig.1 Flow diagram of the gamut mapping from scanner to printer device color space and via printer device color space to display device color space: from scanner color prediction ⁇ convert predicted color to Liu's D
  • Fig.2 Converting the color RGB obtained by the digital camera into an XYZ value and calculating the flow chart of the computer display drive value RGB according to the XYZ value;
  • Fig.3 Converting the color RGB obtained by the digital video camera and the television camera into an XYZ value and calculating the flow chart of the TV display driving value RGB according to the XYZ value;
  • the next step is to transfer D to the printer module. , x. , y.
  • the data is:
  • mapping process "TV camera or digital video camera (DV) converts the predicted color XYZ to the Liu's D lXiyi characteristic file connection space according to the CGD perception value RGB prediction color XYZ ⁇ color XYZ color separation into a TV driver Entering the value RGB ⁇ generating a television image on the display" illustrates the versatility, creativity and high conversion efficiency of the present invention in gamut mapping:
  • Solution GBK type TV display mapping equation get the base color amount rgb and the predicted display color) YqkZqk;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Abstract

通用的色域映射及色彩管理方法,包括采用结构相同的标定色靶,采用统一的原理和方法进行颜色空间的坐标变换和设备之间的色域映射;设置通道基色量参数并使通道基色量、基准基色量和驱动参数之间形成可逆的幂函数关系;创建生成纯净灰色梯尺的方法,并以此生成灰核参数、灰色平衡幂函数;对图像的灰阶进行伽玛校正;创建了刘氏D| x| y|特性文件连接颜色空间;创建能够同时完成色域映射、伽马校正并能够用快速解析算法实施的颜色空间映射方法;创建把刘氏色域映射方程得到的基色量数值精确转换到驱动输入数值的方法。该方法排除了红移干扰、合成和分解颜色时三基色能够保持自身独立性和通道独立性、优先复制灰色成分、按照亮度独立原则传送亮度和色度信息,具有良好的通用性。

Description

一种通用的色域映射及色彩管理方法 技术领域
本发明是跨媒体传送图像信息和按感知意图精确重现彩色图像的一种实用的、 全新的技术, 主要 应用对象是图像输入设备(例如数字照相机、家用数码摄像机、扫描仪、电视摄像机、 PHOTOCD), 图像显示设备 (例如 CRT、 PDP、 LCD、 LED显示器) 和图像输出设备 (例如彩色打印机、 多色胶 印机、 远程图像传送、 图像移动通讯、 网络图像交换等) 和用它们构成的彩色管理系统、 计算机 图像系统、 多媒体电视系统、 图像发送和接受系统等的设计制造领域, 它为前述各类实用系统的 软件生产和硬件制造提供了一种通用的完全创新的技术支持途径。
背景技术
在己有的色彩管理系统中, 例行地的选择 CIE LAB ( CIECAM02 ) 作为 PCS (特性文件连接空间), 然而, CIE LAB和 CIECAM02等表示颜色的系统仍然存在不可忽视的误差;而 CMM (色彩管理模块) 在将 CIE XYZ转换成 RGB或 CMYK颜色空间的数据时, 由于设备和媒体对 X值、 Y值和 Z值的衰 减并不一致, 使得 CIE XYZ与 RGB或 CMYK之间成为复杂的非线性关系, 但是到目前为止解决这 种非线性关系的方法是不统一、不精确的,其症结在于没有解决三基色配色时自身属性的独立性、 通道的独立性、 灰色成分的独立性, 更没有考虑到基色的红移特性等技术问题, 影响所及, 人们 不得不采用査找表方法解决实际遇到的困难, 査找表方法不仅繁琐, 而且转换结果缺乏唯一性; 在彩色图像的再现意图方面, 由于缺乏通用的色域映射方法, 实现跨媒体色域映射是困难的, 直 到现在也没有真正达到 "所见即所得" 的目标。 在这样的技术背景之下, 本发明另辟蹊径, 建立 了一种通用的跨媒体的色域映射方法, 它使得整个色彩管理系统的主要环节能够采用统一的原 理、 统一的方法和统一的数学描述模型, 在具体运用这些原理和方法解决实际问题时, 把提高色 域映射精确性的措施放在建立特性化文件阶段,使得预测色彩的准确性得到保证,在实时工作时, 则采用新的色域映射方法和不高于二次方的解析计算方法, 这使得色域映射的精确性和生产效率 同时得到兼顾; 这种方法是透明的, 过程是规律的, 结果是唯一的, 增加了企业参与的机会和充 分发挥设备潜能的可能性。
发明内容
本发明之所以能够把一个具有创新特点的、 方法统一的色域映射系统建立起来, 就在于解决了如 下关键性的问题:
( 1 ) 在用三基色复制色彩的整个流程中, 始终保持基色属性的不变性是最为根本的问题, 然而 已有的 Marry-Davis公式、 Yule-Nielson公式、 G0G色度预测模型等准确度都是不够的;
( 2 ) 在颜色合成空间内三基色在满足自身色相属性不变性的同时, 每种基色在每个通道内还必 须保持空间的独立性, 但是己有的颜色转换方法和数学模型, 例如 Neugebauer方程和常用的色空 间矩阵转换方程等都不能真正满足这样的要求;
( 3 ) 彩色图像复制应当优先确保灰色阶调复制是正确的, 这涉及到灰色平衡、 灰平衡曲线设置、 视觉适应和对媒体衰减效应的伽玛校正问题, 但是己有的技术存在灰色和彩色复制互相牵制的缺 陷, 不能做到灰色阶调的优先独立复制, 在色域的某个区域会产生明显的色彩复制误差;
( 4 ) 作为 PCS特性文件连接空间应当是精确的, 但是已有的特性文件连接空间并不是完全均匀 的, 本发明用新创的 Dwyi特性文件连接空间解决了色域映射和颜色传送的准确性的问题; '
( 5 ) 由于己有的技术不能解决转换模型的复杂度和算法效率之间的矛盾, 因而不得不采用查找 表方法解决问题, 但是査找表方法难以做到图像映射的唯一性和色域映射的连贯性; 随着时间的 推移, 当设备老化、 特性偏移的时候, 用户难以主动采取纠正措施;
(6 ) 面对跨媒体色彩输入设备、 输出设备的多样性, 已有的色域映射方法缺乏统一的处理原则 和方法, 这使色域映射技术本身在原理方面就存在产生随机误差和系统误差的因素。
本发明在逐一解决上述关键难点的基础上创立的一种全新的色彩映射技术, 最终使被映射的颜色 ~~保持原有的色相、 原有的色度坐标和按照感知意图映射的亮度。 由于涉及到较多的非传统的新东 西, 为了降低理解的难度, 下面首先逐项列出映射系统中各类设备共用的基本方法和实现这些方 法的数学模型, 而后把这些基础性发明串联起来构成一个完整的色彩映射系统。
声明: 本说明书中出现的数学模型采用统一的命名和标示符号, 为了避免不必要的重复解释, 只 在该数学符号首次出现的时候注明含义, 敬请读者注意。
1. 一种为输入、 显示和输出设备所通用的、 驱动数值也对应相等的色靶结构
用途和目的: 本步骤主要解决系统各类设备的统一标定问题。 为标定输入设备、 显示设备和输出 设备生成一种具有共性的互相联通的色靶结构, 在不同设备之间用色相上具有对应关系、 驱动数 值相同的颜色样本进行标定, 其目的是让彩色管理系统中的各类设备有一个统一的输入标准, 获 得连续性和继承性良好的映射效果。
色靶的结构和生成步骤:
1 ) 给定基础输入数据: 在为输入设备、 显示设备和打印输出设备建立特性化文件时, 用来实际 测量输入数据生成三刺激值, 色靶上的颜色样本包括:
( 1 ) 单色的三基色梯尺: 从最小值 0到最大值 20 之间把驱动数值设定为 21级, 即让梯级数 i = 21, 对于显示器来说, 就是让三基色 rgb的 21个驱动数据 dri、 dgi、 dbi都是: 0.00, 12.75, 25.50, 38.25, 51.00, 63.75, 76.50, 89.25, 102.00, 114.75, 127.50, 140.25, 153.00, 165.75 , 178.50, 191.25, 204.00, 216.75, 229.50, 242.25, 255.00, 在显示器上逐个显示驱动数值生成的颜色并进行实测; 对于数码照相机和电视摄像机之类的标定色靶来说, 按照与此同样的数据制作成相纸色靶; 对于 打印机和扫描仪色靶来说, 就是让三基色 cmy的 21个驱动数据 dd、 dmi、 dyi是: 0%=0.00/255,
5% = 1275/255, 10% = 25.50/255 , 15% =38.25/255 , 20% = 51.00/255, 25% = 63.75/255, 30% =76.50/255, 35% =89.25/255, 40% = 102.00/255, 45% = 114.75/255, 50% = 127.50/255, 55% = 140.25/255,
60% = 153.00/255, 65% = 165.75/255 , 70% = 178.50/255 , 75% = 191.25/255 , 80% = 204.00/255 ,
85%=216.75/255, 90% = 229.50/255, 95% = 242.25/255 , 100% = 255/255; 对于打印机色靶来说, 还应 加上一条 21级单色黑墨梯尺, 其驱动变量用 dki表示;
( 2 ) 二次颜色样本: 对于显示器来说, 它们是用 (dr255+dg255)、 (dr255+db255)、 (dg255+db255) 三对驱动数值显示的三个二次色; 对于打印机和扫描仪来说, 它们是用 (dJ00%+dm100%)、
(dm100% + dy100%)> (dd00% +dy100%) 合成的三个二次色; 对 CMYK 四色打印来说还需要增加 (dc100%+dk100%), (dm100°/。+dk100%)、 (dy100%+dk100%) 合成的三个二次色;
( 3 ) 三次颜色样本: 对于显示器来说, 它们是用具有相同 (dri+dgi+ ) 驱动数值、 从 0 到 255 顺序显示的基于加色法的灰色样本序列; 对于打印机或扫描仪来说, 它们是用具有相同驱动数值
(dci + dmi + dyi), 从 0到 100%顺序显示的灰色样本序列, 虽然打印机和扫描仪色靶的结构设计是一 样的, 但制作扫描色靶和打印机色靶的材质和样本颜色的三刺激值并不对应相等, 在利用色靶建 立特性文件时, 还必须分别实测样本色的三剌激值, 对于扫描仪的标定色靶来说, 可以制作成模 拟相纸的色靶; 对 CMYK四色打印来说还需要增加 (dc100°/。+dm100%+ dk100°/。)、 (dm100%+dy100% + dk100%)、 (dd00% +dy100% + dk100%) 合成的三个三次色及一个用 (dc100% + dm100°/。 + dy100%+ dk100%) 生成的叠印色; 请注意: 字符 d是表示梯尺驱动变量的参数, 因为习惯上用 CMYK表示 打印设备的输入数值, 用 RGB表示显示和扫描类设备的驱动数值, 所以我们在此约定 dei、 dmi、 dy dki, dri、 dgi、 dbi分别和 C、 M、 Y、 K、 R、 G、 B等效, 前者表示变量, 后者表示具体数据。 对于扫描仪来说, 不仅需要用分光光度计实测样本色的 CIEXYZ数值, 而且还需要借助软件获取 每个样本色的足够像素的 RGB平均值, 目的是为计算扫描色的 CIEXYZ数值做好准备。
2. 为输入设备、 显示设备和输出设备所通用的一种保持基色通道独立性的方法
目的: 在本发明的色域映射方法中这是一个关键步骤, 这种方法能够保证参与配色的每种基色成 分保持恒定的色相。保持基色的通道独立性是精确合成颜色和实施色域映射的基础, 已有的技术, 例如 Marry-Davis公式、 Yule-Nielson公式和 Gain-Offset-Gamma公式都不能确保基色以恒定的色相 参加配色, 例如在计算网点面积时用 Marry-Davis公式和 Yule-Nielson公式算出的网点面积数值实 际是在几何扩大和光学扩大之间游走的模糊量, 本方法的目标在于改变这种状况。
方法: 当驱动数值在 0— 255变化时, 让生成的各个基色量都和单位基色量保持一致的色相, 如果 用数学方法描述这种方法, 那么本发明是利用创建的刘氏基色鉗位方程及其衍生的刘氏基色量公 式对被媒体干扰的基色的色相、 彩度和亮度进行钳位, 从而使基色的色相具有独立性。
保持基色通道独立性的三个步骤: 首先以减色基色钳位方程及其基准基色量公式为例进行解说。 第一步, 在基色色靶上用分光光度计实测打印样本色的三刺激值, 设实测值为 XYZ, 同时也测得 白点的三刺激值 Xw、 Yw、 Zw和基色实地的三刺激值 Xs、 Ys、 Zs, 在此我们规定基色实地的三刺激 值 Xs、 Ys、 Zs是该基色的单位基色量, 然后用如下所示的刘氏基色钳位方程表示该样本色的钳位 基色量 at、 钳位亮度 Yt和色貌保持系数 λ等三个变量之间的关系 -
Figure imgf000005_0001
这个格式的钳位方程对打印机色靶、 扫描仪色靶、 常白型显示器的色靶都适用, 在不同的场合可 以分别称为打印机基色钳位方程、 扫描仪基色钳位方程和常白型显示器基色钳位方程。
第二步, 求解上面的刘氏基色钳位方程, 可以得到该样本色的钳位亮度 Yt, Yt的解析表达式如下 所示, 根据下式可以计算出样本色的钳位亮度 Yt的数值:
γ— (;- η){ζ[ ρς- η)_>;ρς- xs)]- 4ζ -η)- " - zs)]}
f-(zw-zs)[xw(yw-ys)-yw( w-xs)]-(xw-xs)[z,(yw-Ys)-v (zw-zs)]
第三步,将上面算得的钳位亮度 ¼的数值代入刘氏基准基色量公式,算出样本色的基准基色量 a, 刘氏基准基色量公式如右所示: a = ^ ^ 由上面的公式可以看出, 设单位基色量的数值为 1, 那么基色量 (在印刷工业中俗称网点面积) 是分布在 0~1的数。 在不同场合应用上面所述的刘氏基色钳位方程和刘氏基准基色量公式时, 应 辨别清楚公式中参数的具体含义, 例如, 对于打印机和显示器来说, 基色量 a代表的分别是青(:、 品红 m、 黄 y基色的基色量, 对于显示器来说代表的分别是红 r、 绿9、 蓝 b基色的基色量, 即:
Y -yt y -v. y -y Y -Y. Y -Y. YW-Y( c =——— L, m =——— L, y =——— L, r =——— '-, g =——— L, b =——— L
YW-Yc w-ym y.-yy n v
c、 m、 y就是在印刷工业中所称的网点面积; 如果是对常白型 LCD、 LED显示器进行标定计算, 基准基色量 a代表的则是红 r、 绿9、 蓝 b等基准基色量, 电视机显示器所用的常黑型基色钳位方 程和基色量公式的格式参见我们的国际申请号为 PCT/2011/000327的专利说明书。
在为扫描仪建立特性文件时, 不仅需要在扫描色靶上实际测量出三基色梯尺的三刺激值 、 Yi、 Zi, 而且还需要用软件的数据采集模块读取梯尺上的样本颜色的扫描三刺激值 l¾、 Gi、 Bi, 因为 Xi、 Yi、 和 [¾、 Gi、 Bi是在不同的颜色空间内对同一样本色的描述, 所以只需把刘氏钳位方程稍 加改动, 即把其中的字符 X、 Y、 Ζ改写成 R、 B、 G就可以了, 改写后的方程具有如下所示的格式,
XR = ^-at)Rw+aiRs
XGt=^-at)Gw+atGs
B = (1-at)Bw+atBs 显然这是一种扫描仪特有的情况, 为了便于区分, 本发明把它称为 RGB扫描钳位方程, 而把前者 称为 XYZ扫描钳位方程, 在对扫描样本色进行 RGB— CMY色空间转换时, 要使用这个方程。 通过 RGB扫描钳位方程可以计算出样本色的钳位亮度 Gt和基准基色量 a, 计算公式如下:
(6,-65)}β[^(6,-65)-6,(/?,-^)]-^[5,(6,-65)-0,(Β,-65)]}
, = (e,-es)[^(G,-Gs)-Gw(Rw-Rs)]-(Rw-Rs)[e,(Gw-Gs)-6w(Bw-es)]
G -G.
a =——— L
Gw -Gs
本项发明所带来的利益: 由基色钳位方程算出的钳位亮度 ¼排除了 '红移' 现象所带来的干扰, 这种干扰对于计算基色量的正确性是有害的, 但是用刘氏基色量公式确定的基色量 a排除了这样 的有害干扰, 使得基准基色量 a所表示的颜色和单位基色量保持一致的色相, 同时该基色量所具 有的三刺激值不再等于实测三刺激值 X、 Υ、 Ζ, 而被修改成为 X、 Yt、 Z。 在下面的内容中, 基准 基色量将作为配色或者三基色配色方程的独立参数使用, 它为三基色配色方法走向规范化、 系统 化、 精确化提供了一种准确方法。
确保基色在配色空间的三个通道内具有独立性的方法及刘氏配色方程
方法:在己有的技术中, 用 Neugebauer方程和蒙版方程实施三基色配色是的最典型方法, 但是这 些方法在三通道中, 基色参数的独立性很差, 在通道间发生互相串扰, 计算误差甚至超过 10。 从 1937年至今, 己提出的许多改良方案, 但都达不到期望的精确度。 时下流行的以插值逼近算法为 基础的査找表方法, 只能算作模拟方法, 不能获得确定性的、 准确的色域映射结果。 本发明为每 个基色在每个配色通道设置 '通道基色量' 参数, 而 '通道基色量' 进一步可以精确地表示为基 准基色量参数的函数, 与此同时, 基色量参数和生成该基色的驱动参数之间又存在精确的、 可逆 的转换关系, 以此为基础构建的配色方程可以保持三基色在配色空间内参加配色的独立性。 刘氏配色方程的种类-
1) 基于减色法复制的刘氏减色配色方程: 在本发明中, 刘氏减色配色方程有两个用途: 一是为 刘氏四色配色方程的基色 cmy建立灰平衡方程式, 二是作为扫描仪的颜色预测方程使用, 为了区 别起见, 在前一种情况下使用刘氏减色配色方程时可称为三色打印配色方程, 在后一种情况下可 称为扫描颜色预测方程, 刘氏减色配色方程的格式如下,:
Figure imgf000006_0001
在上面的方程中,左端的 XYZ表示待匹配颜色的三刺激值,三刺激值 XwYwZw、XcYeZc、XmYmZm、XyYyZy、 XrY,Z,、 XgYg 、 XbYbZb、 XsYsZs分别表示在色靶上实测 8个实地色 (白、 青、 品红、 黄、 红、 绿、 蓝、 三基色合成黑点) 的三刺激值; 应当注意, 如果涉及的是扫描仪问题, 那么就要在扫描仪色 靶上实测者 8个实地色的三刺激值, 如果涉及的是印刷机问题, 那么就要在印刷机色靶上实测这 8个实地色的三刺激值, 请读者随时注意, 下面不再重述同类问题; 变量 yx、 yy、 yz、 mx、 my、 mz、 cx、 cy、 cz分别表示黄、 品红、 青的通道基色量。 通道基色量参数 cx、 c cz是基准基色量 c的函 数, mx、 mr mz是基准基色量 m的函数, yx、 yy、 yz是基准基色量 y的函数, 函数格式如下- cx = c ,c , cy = cYvc , cz = cr'c , mx = 7m , my = mr'm , z = mrm , yx = yy" , yy = yY y , yz = !y 请注意: 基色量参数 c、 m和 y又进一步是驱动参数 dd、 dm、 dy的函数, 即存在如下的函数关系: c = dj m = dm Ym , y = of y 对此三式求反解得: ofc = c1/l\ dm = mV - , dy = χ1/γ'
2 ) 刘氏四色配色方程: 这种配色方程只是上述刘氏减色配色方程的扩展形式, 对于打印机和印 刷机来说, cmyk四色复制是标准复制方法, 当 k=0或者当 k为己知数时, 四色配色方程退化成 普通的刘氏减色预测方程, 又返回到标准的三基色复制工艺。 刘氏四色配色方程的格式如下: )λ
Figure imgf000007_0001
变量 yx、 yy、 y2 mx、 my、 mz、 cx、 cy、 cz的含义和函数格式和刘氏减色配色方程完全相同, 即有: cx = crm , cy = cr,c , cz = cYzc , mx = mYm , my = mY , mz = n m , yx = yr" , yy = yrry , yz = fiy 基色量参数 c、 m和 y又进一步是驱动参数 dd、 dm、 dy的函数, 即存在如下的函数关系: c二 m = d/m , y - c//y 对此三式求反解得: dc = c1/ dm = mv^ , dy = yVy'
方程中相关的色靶实测值也和三色打印配色方程中的一致, kdd表示黑墨的灰成分取代量, 假定黑 墨的基准基色量用 k表示, 那么本发明让 kdd表示四色复制中的灰色成份取代量, 后面将有详细的 叙述。 扩展式中虽然包含 c、 m、 y、 k四个参数, 可是由于 kdd是在解方程之前预先给定的数值, 所以四色配色方程实际上仍然是只有三个变量 c、 m、 y的静定的三基色方程, 在用它作标定计算 时, 可用迭代方法解这个方程。
3 ) 基于加色法复制的刘氏常白型显示器配色方程(计算机用): 为了给常白型 CRT、 PDP、 LCD,
LED显示器建立特性文件, 也就是说, 为了获取常白型显示器灰平衡幂函数式, 就需要使用如下 的基于加色法复制的常白型刘氏加色配色方程:
Figure imgf000007_0002
在上面的方程中: X、 Y、 Ζ表示待匹配颜色的三刺激值, XWYWZW 、 XkYkZk分别表示显示器白点和 黑点的实测三刺激值; X Zr、 XgYgZg, XbYbZb分别表示驱动数值 A、 dg、 (Jb取最大值时红、 绿、 蓝 基色的实测三刺激值;
Xc、 Yc> Zc对应于 G、 B取最大值时, 由 (G + B) 同时驱动所得到的青色的三刺激值;
Xm、 Ym、 Zm对应于 R、 B取最大值时, 由 (R+ B) 同时驱动所得到的品红色的三刺激值;
Xy、 Yy、 Zy对应于 R、 G取最大值时, 由 (R+ G) 同时驱动所得到的黄色的刺激值;
方程右端的变量参数 rx、 ry、 rz、 gx、 gy、 gz、 bx、 by、 bz被命名为通道基色量, 拿它们去匹配方程 左端的 X、 丫、 Z剌激值, 从这个角度看, 通道基色量具有 '通道独立的特性'。 然而, 通道基色 量并不是简单变量, 而分别是基色量「、 g和 b的函数, 函数格式是:
rx = ΓΊ", ry = , rz = rYzr; gx = g" , gy = g,s, gz = g ■ bx = bb, by = by≠, bz = b 请注意: 基色量参数 r、 g和 b又进一步是驱动参数 df、 dg、 db的函数, 即存在如下的函数关系:
Figure imgf000008_0001
, db = r1/v"
4)基于加色法复制的刘氏常黑型显示器配色方程: 为了给常黑型电视显示器建立特性文件, 也 就是说, 为了获取常黑型电视显示器灰平衡幂函数式, 就需要使用如下的基于加色法复制的常黑 型刘氏加色配色方程: 其格式如下所示,
Figure imgf000008_0002
+ r2('\-92)bzZm +r2gz^-b2)Zy +r2gzbzZsw
在我们的国际申请号为 PCT/2011/000327的专利说明书中, 提供过一个与此格式相同的方程, 但在 当时被称为 '灰色标定方程', 常黑型显示器配色方程就是那里的 '灰色标定方程'。
5)刘氏 RGB扫描分色方程: 在为扫描仪建立特性文件时, 要在 RGB颜色空间为扫描仪的灰平衡 函数式作标定计算, 需要使用如下所示的 RGB扫描分色方程, RGB扫描分色方程是利用 CCD获 取的 RGB三剌激值对被扫描梯尺的青、 品红、 黄三种基色量进行计算, 为了和用刘氏减色配色方 预测扫描梯尺的 XYZ问题相区别, 在 RGB扫描分色方程中使用 c'、 m'、 γ表示青、 品红、 黄三种 基色量参数, 并用 yx'、 yy'、 yz'、 mx'、 my'、 mz'、 cx'、 cy'、 cz'表示通道基色量。 实际上, 基于减色法 复制的 XYZ刘氏配色方程和 RGB扫描分色方程就像是用千克和磅描述同一个物重那样,是在 RGB、 XYZ色空间用不同的坐标体系描述色靶上的青、 品红和黄三种基色, 为了便于区别这两种在不同 色空间算出的基色量, 本发明把在 XYZ色空间算出的基色量 c、 m、 y叫做扫描基色量, 把在 RGB 色空间算出的基色量 c'、 m'、 y' 叫做孪生扫描基色量。 刘氏 RGB扫描分色方程的格式如下:
R +(1_yx')(1_mx')c Rc +
Figure imgf000008_0003
+ yx'(1_mx')(1— cx')Ry +«(1— cx')Rr +y (1-mx' )cx'Rg + ^1 - yx' j mx'cx'Rb + yx'mx'cx'R,
(? = (1-yx')(1_mx')(1_cx')Gw +(1— yx')(1— m )cx'Gc + 1- y )<(1-cx')Gm + yx'(1-mx')(1— cx')Gy +y mx'(1— c )Gr +yx'(1— mx' )c x'Gg+i/\-y^mx'cx'Gb+yx'mx'cx'Gs β = (1 - y )(1 - m: )(1 - cx' )8W + (1— yx' )(1 - mx' jc'6c + 1- ) (1-c;)Bm
+ yx'(l-mx')(l-cx')s +yx'm (l-cx')6r +yx'(l-mx' cx'B +(/\-yx')m>!'cx'Bb+yx'mx'cx'Bs RGB扫描分色方程中的通道基色量是基准基色量的函数, 其函数格式和 XYZ扫描配色方程相同: c'r'c' ,c
Figure imgf000009_0001
刘氏配色方程在本色域映射方法中的重要地位: 为达到灰色平衡的目标, 在为扫描仪、 打印机、 显示器建立特性化文件时, 必须利用刘氏配色方程对它们的灰平衡函数式进行特性化标定, 以便 获得灰平衡函数式中的系数数值, 以便把得到的数值放在特性文件之中; 因为刘氏配色方程需要 用迭代方法求解, 并且得到的解是精确解, 所以在建立特性化文件的阶段用刘氏配色方程对灰平 衡多项式或者幂函数式进行标定计算是非常合适的, 这种方法也为后面使用刘氏色域映射方程来 快速完成色域映射计算提供了途径。
特性化刘氏配色方程的方法
特性化的目的:观察刘氏配色方程中的通道基色量函数可知,通道基色量是基准基色量的幂函数, 多项式中包含的常系数是需要通过特性化获得的数值。 .
实施步骤: 对于上列四种刘氏配色方程来说, 特性化的步骤是一致的:
1 ) 为了获取三基色梯尺的三刺激值, 分别在色靶梯尺的样本色上测量 XYZ和 RGB三刺激值, 我 们约定用下标 o, p, qw, qk区分扫描仪、 打印机、 常白型计算机显示器、 常黑型电视显示器的相 关技术数据, 那么可以得到 1 5个三刺激值数组:
对偶的两种扫描仪数据: [X。d, Yoci . Z„ci] , [Xomi - Yomi > Z。mi], [Xoyi , Y。yi, Zoyi] 和
[R。ci、 G。ci、 B。ci], [R。mi、 G。mi、 B。mi], [R。yi、 G。yi、 Boyi]
打印机类: [Xpci, Ypci, Zpci], [ Xpmr, Ypmi, Zpmi], [Xpyi, Ypyi, Zpyj]
常白型计算机显不器类: [Xqwrt* Yqwrh Zqwri】, [Xqwgi» Yqwgi, ZqWgi】, [Xqwbi, Yqwbi, Zqwbi]
常黑型电视显不器类: [Xqkri, Yqkri, Zqkr i], [Xqkgi, Yqkgh Zqkgi], [Xqkbi, Yqkbi, Zqkbi]
2 ) 根据以上 15组三刺激值数组, 用基色钳位亮度模型分别为扫描仪、 打印机、 常白型计算机显 示器、 常黑型电视显示器计算钳位亮度数值 [Yt。ei , Yt。mi, Ytoyi] 和 [Gtei, Gtmi, Gloyi] ,
[Ytpci' Ytpmi > Ytpyi] > [Ylqwri > Y|qwgi> Ytqwbi] > [Ylqkri > Ytqkgi> Ytqkbi];
3) 将算得的钳位亮度数值代入基准基色量公式计算基准基色量:
Figure imgf000009_0002
cn, = - Y Y - Y tpmi y - y tpyi tki
- yc ' y.— y— yP! Y - Y„
Y
Figure imgf000009_0003
'b - Y 'k
4) 用下列模型为刘氏减色配色方程、 刘氏四色配色方程和显示器配色方程计算通道基色量 cxi、 cv, czi:
Figure imgf000009_0004
上式中, cx、 cv、 cz分别表示青油墨在 X、 Y、 Ζ通道的通道基色量, 于是可以得到通道基色量数组 [cxi, cyi, cj。 对于品红基色和黄基色, 只需将以上三个等式中的字符 c分别改成 m和 y即可, 于 "~是可以得到基色量数组 [mxi, myi , mzi] 和 [yxi, yyi, yzi];
5 ) 用下列模型为 RGB扫描分色方程 "t十算通道基色量 cxi'、 cvi czi':
Figure imgf000010_0001
-Rc), cy' = (Gw - G)/(Gw - Gc), - Bc)
上式中, c/、 cg'、 cb' 分别表示青油墨在 R、 G、 B通道的通道基色量, 于是可以得到通道基色量数 组 [ 、 cgi、 c 对于品红基色和黄基色, 只需将以上三个等式中的字符 c分别改成 m和 y即可, 于是可以得到基色量数组 [mri'、 mgi'、 mbi'] 和 [yr、 ygi'、 ybi'];
6 ) 用下列模型为常白型显示配色方程计算通道基色量 rxP gyj、 bzj
rx = (xw -x)/(xw -xr), ry = (yw― y)/(yw - yr ), r2 = (zw ~ z)/(zw― τ' )
上式中, rx、 ry、 rz分别表示红基色在 X、 Y、 Ζ通道的通道基色量。 对于绿基色, 将以上三个模型 中的字符 r改成 g即可; 对于蓝基色, 将以上三式中的字符「改成 b即可, 于是可以得到基色量 数组 fexi, 9yp gzi] 和 [bxi, byi, bzi];
7 ) 用下列模型为常黑型显示配色方程计算通道基色量 、 gyj、 bzj=
Figure imgf000010_0002
上式中, rx、 ry、 rz分别表示基色在 X、 Y Ζ通道的通道基色量。 对于绿基色, 将以上三个模型中 的字符「改成 g即可; 对于蓝基色, 将以上三式中的字符「改成 b即可, 于是可以得到通道基色 量数组 [gxj, gyj, gZj] 和 [bxj, byj, bzj];
8) 用曲线拟合方法为基于减色法复制的、 用于打印机或者扫描仪的刘氏减色配色方程构造通道 基色量函数: 将青基色的基准基色量数组 Ci分别与对应的通道网点面积率数组 、 cyi、 czi进行曲 线拟合, 即得通道基色量的函数表达式, 对于青基色来说, 可得如下的通道基色量的函数模型:
C, = c7tc , cu = c7yc, c7 = CYzc
对于品红基色, 只需将以上三个等式中的字符 c改成 m即可; 对于黄基色, 只需将以上三个等式 中的字符 c改成 y即可;
9 ) 用曲线拟合方法为常白型显示配色方程构造通道基色量函数: 将红基色的基准基色量数组 分别与对应的通道基色量数组 rxi、 ryi、 rzj进行曲线拟合, 即得通道基色量的函数表达式, 对于红 基色来说, 可得如下的通道基色量函数-
X ~ ' y ~~ ' 'ζ — '
对于绿基色的通道基色量函数, 只需将以上三个等式中的字符「改成 g即可; 对于蓝基色的通道 基色量函数, 只需将以上三个等式中的字符 r改成 b即可;
10 ) 用曲线拟合方法为数字照相机或者电视摄像机配色方程构造通道基色量函数: (为常黑型显 示配色方程构造通道基色量函数: 详见我们的 PCT/2011/000327专利说明书。) 将红基色的基准基 色量数组 ri分别与对应的通道基色量数组 ryi、 rzj进行曲线拟合,即得通道基色量的函数表达式, 对于红基色来说, 可得如下的通道基色量函数:
― 一
'χ ' 'y - ' ' 'ζ - '
对于绿基色的通道基色量函数, 只需将以上三个等式中的字符「改成 g即可; 对于蓝基色的通道 基色量函数, 只需将以上三个等式中的字符 r改成 b即可;
通过以上数据拟合步骤, 获得了通道多项式中的所有系数值, 特性化任务即告完成。
5. 一种为扫描仪、 打印机、 常白型显示器和常黑型显示器生成纯净灰色梯尺的方法 目的: 灰色阶调复制质量是决定彩色图像复制质量的首要质量指标, 为扫描仪、 打印机和显示器 各生成一条纯净灰色梯尺的理想三刺激值并以此作为图像灰色成分复制的基础, 是本发明的一个 重要举措, 所谓纯净灰色梯尺是指该梯尺的灰色三刺激值己经被排除了红移成分。
实施步骤:
1 ) 为扫描仪、 打印机和显示器生成纯净灰色梯尺: 在前述为扫描仪、 打印机制作的色靶上以及 在显示器上逐一显示的梯尺样本色上, 分别实测复色梯尺 (即用等驱动数值量生成的近似灰色) 的亮度值, 分别得初始亮度数组 [Y。ai]、 [G。.aij、 [Ypai]、 [Yqwai] 、 [Yqkai] , 它们不是纯净的亮度数值;
2 )将初始亮度数组 [Y。ai]、 [Go'ai], [Ypai]、 [Yqwa,l、 [Yqkai] 转换成初始密度数组 [D。ai]、 [Όΰ^ Ppai] [Dqwaij、
[Dqkai】, 即让: [D。ai】 = lg(Y。w / Y。ai), [D。'a,j = lg(G。w / G。'ai), [Dpaij = lg(Ypw / Ypai), [Dqwai] = IgfY^ / Yqwai),
[Dqkai] = lg(Ywq / Yqkai)
3)对初始密度数组 [D。ai】、 [D。'ai]、 [Dpai]、 [Dqwi]、 [Dqki] 进行归一化处理得归一化的初始密度数组, 用 [D。bi]、 [Do'bi], [Dpbi]、 【Dqwbi]、 [Dqkbi] 表示归一化的初始密度数组, 则有: [D。bij = [D。ai] / D。amax,
[Do'bi]― [D。'ai】 I Do'amax, [Dpbi] = [Dpai] I Dpamax, [Dqwbi] = [Dqwai] I Dqwamax, [Dqkbi] = [Dqkai] I Dqkamax > 式中的 Doamax、 Do'amax > Dpamax Dqwamax、 Dqkamax 分别是数组 [D0aij、 [D0'ai]、 [Dpai]、 [Dqwai] [Dqkai] 中的最大值;
4) 将基色梯尺的驱动数值进行归一化处理, 得归一化的驱动数组【di], 字符 d 是表示梯尺驱动数 值的参数它既代表驱动参数 CMYK也代表驱动参数 RGB的输入值;
5 )以归一化的驱动数组 [dij 为自变量数组, 分别以归一化初始密度数组 [D。bi]、 [Dc bi]、 [Dpbi]. [Dqwbij、 [Dqkbi] 为因变量进行幂函数拟合, 得灰色梯尺的归一化初始密度模型:
Figure imgf000011_0001
6) 分别将 D。b、 Do'b 、 Dpb、 Dqb、 Dqt)进行去归一化处理, 并用字符 D。、 D。'、 Dp、 Dqw、 Dqk表示去归 一化初始密度数组, 可得: [D。i】 = [doi]AYo Doamax, [D。'] = X Do'amax, [Dpi] = [doi]AYp X Dpamax,
[Dqwi] = [doi]AYqw X Dqwamax, [Dqki] = [d0i]AYqk X Dqkamax
请注意:虽然 D。、 D0s DP、 Dqw、 Dqk称为去归一化初始密度数组,但它们的数值和初始密度数组 [D。ai]、
[Do'ai], [Dpai], [Dqwi]> [Dqkij并不相等, 因为实施前面的数据拟合步骤的目的就是为了改造初始密度数 组, 起到正本清源的作用, D。和 D。,、 DP、 Dqw、 Dqk才是我们所需要的扫描仪、 打印机、 常白型显 示器和常黑型显示器的纯净灰色阶调密度, 色靶梯尺的灰色阶调己经设定为 i级, 所以扫描仪、 打印机、 常白型显示器和常黑型显示器的纯净灰色密度数组分别是 [D。ij和 [D。 [Dpi], [Dqwi], [Dqki];
7)分别为扫描仪、打印机、 常白型显示器、常黑型显示器生成理想灰色亮度数组 [Υ。ί]和 [G。i], [Ypi] , [Yqwi] , [Yqki] , 即让:
Figure imgf000011_0002
Gwo / (10ΛοΊ), [YPi] / (10ADpi),
Figure imgf000011_0003
I (10ADqkl)
8) 为扫描仪、 打印机和显示器计算参考白点的色度坐标值:
把实测扫描色靶基底白色的三剌激值 Xow、 Yow> Zow作为扫描仪在 XYZ色空间内白点的三刺激值、 把实测扫描色靶基底白色的三刺激值 F 、 G。w、 B。w作为扫描仪在 RGB色空间内白点的三刺激值、 把实测打印机色靶基底白色的三刺激值 XPW、 Ypw, Zpw作为打印机在 XYZ色空间内的白点三刺激值、 把 D65光源的色度坐标值作为显示器参考白点的三刺激值,可得三剌激值 R。WG。WB。W,设下标 o、 p、 q分别表示扫描仪、 打印机和显示器等三种设备, 参考白点的色度坐标可用如下模型计算出来- I (Χ。ιν + + Z。w ) Ί - ^ow / (^ow + ¾ + ^o )
R。 /(R。 + G0lv + B。w ), 9。 - G + G。w + 8
w / ), pw pw / pw pw p }
W 0.3127, y = = 0.3290
9)利用 7)中给出的纯净灰色亮度数组 [Y。i]、 [G。i]、 [Ypi] [Yqwi]> [Yqki] 和色度坐标值 x。w、 y。w、 row、 g。 xPw, ypw、 yqw、 xqk、 yqk为扫描仪、 打印机、 常白型显示器、 常黑型显示器分别构造一条纯净灰 色梯尺, 每 色梯尺的三剌激值如下 - 扫描仪
常白型显示 常黑型显示
Figure imgf000012_0001
一种特性化纯净灰色梯尺组分基色量的方法
目的:用刘氏配色方程对刘氏纯净灰色梯尺特性化是为了把纯净灰色梯尺的组分基色量算出来并 表示成纯净灰色密度参数的函数。 灰色平衡是决定彩色图像复制质量的重要指标, 通过灰色平衡 时的基色量函数式可以获得任一颜色的 '灰核' 组分参数, 可以这样理解 '灰核' 的含义, 例如 利用三基色 c、 m、 y匹配了一个颜色, 三个基色量并不相等, 其中具有最小基准基色量的基色就 是形成该颜色灰色成分的 '灰核', 灰核是三个基色量中的最小值, 但是它和另外两个基色相结 合, 形成一个复合颜色的灰色核心。 本发明借助 '灰核' 的概念达到了把一个颜色快速、 精确地 分解成为三种基色成分的目的, 同时也达到了优先复制灰色成分的目的。
方法步骤-
1 ) 在扫描仪的 RGB色空间为扫描仪建立灰平衡幂函数式 c' (Dr9b), g' (Drgb), b' (Drgb) , 方法是: 用 RGB扫描分色方程对扫描仪的灰色梯尺数组 t , Goi . Boi] 进行配色计算, 得扫描仪灰色梯尺的基 准基色量数组 [c , mi' , yi']; 再利用灰色梯尺亮度数组 [G。i】 计算灰色梯尺的密度数组序列 [D bj, 方 法是:将亮度数组 ί 1 代入密度公式 D¾b= lg(G。w / G。i) 即可算得密度数组 [ bi]; 最后以 [ gbj为自变 量、 分别以孪生基色量 [c'i, m'i, 为因变量进行曲线拟合, 最终得扫描仪的灰平衡幂函数式如下-
^dd 一 urgb , '"dd - υ ' drf = - D "nφ
在后面的扫描仪分色钳位方程中, 孪生基色量 < 、 rrW、 ydd' 将作为灰核使用。
2 )为扫描仪建立从基色量 c', m', γ 向基色量 c, m, y转换的 c'm'y'— cmy幂函数式, 方法是: 用 刘氏减色配色方程对数组 [Xoi, Yoi. Zoi] 进行配色计算, 得到扫描仪在 CMY色空间组成灰色梯尺 的基准基色量数组 [G, m, i]? 然后分别以 [Q'】, [m,'], [y,1] 为自变量、 分别以 [(¾], [rrii], [yj 为因变 量进行曲线拟合, 得到 c'm'y'— cmy的幂函数转换式: C二 C'y"' , m = m y = fw
3) 为计算机使用的常白型显示器和电视机使用的常黑型显示器建立灰色平衡基色量幂函数式: 计算机用的常白型显示器与电视机使用的常黑型显示器所使用的配色方程仅存在微小的差别, 前 后两种情况分别加下标 w或者下标 k加以区分。
分别用常白型显示器的配色方程和常黑型显示器的配色方程对灰色梯尺数组 fX^ , Yqwi,
[ qki , Yqki , Zqki] 进行配色计算, 得灰色梯尺的基色量数组 [rqwi, gqwi , bqwi] , [rqki, gqki , bqki], 然后分 别以纯净灰色密度数组 [Dqwi], [Dqki] 为自变量, 分别以 [rqwi, gqwi, b«,wi], [ , gqki, bqki] 为因变量进 行曲线拟合, 得常白型显示器和常黑型显示器灰色平衡基色量函数式如下: :0 σ =D b =D Tbw
Figure imgf000013_0001
求上式的反函数得 :
D qw =r qw , D =g D =b 1/
D = r 1〃*
Figure imgf000013_0002
rqw、 gqw、 bqw、 rqk、 gqk、 bqk是根据纯净中性灰色算得的组分基色量, 为了表明这一特殊性质, 统称 rqw gqw、 bqw和 rqk、 gqk、 bqk为灰平衡基色量, 其中有一个将被用作构成彩色的灰色核心, 也就是 说,在一个理想灰色的三个组分基色量中,只有用作灰色核心的那个组分基色量才被称为 '灰核'。
4) 为三色打印机建立灰色平衡幂函数式:
用刘氏三色配色方程对灰色梯尺数组 (pi, Ypi, Zpi] 进行配色计算, 得灰色梯尺的基色量数组 [cpi, mpi, ypi], 然后分别以纯净灰色密度数组 [Dpij为自变量, 分别以 [cpi, mpi, ypi]为因变量进行曲线拟合, 得三色打印机灰色平衡基色量幂函数式如下:
Figure imgf000013_0003
求上 数得-
Figure imgf000013_0004
上面的灰平衡幂函数称为三色打印机灰平衡幂函数式, cp, mp, yP是根据纯净中性灰色 [Xpi, Ypi, Zpi]算得的组分基色量, 用刘氏减色配色方程算出的 cp, mp, yP并不作为 '灰核' 使用, 而是在刘 氏四色映射方程中, 为计算 cmy的驱动输入值服务的。 在本发明中, 四色打印机的纯净中性灰色 也是 [Xpi, Ypi, Zpi], 但是 [Xpi, Ypi, Zpi] 的组分基色量还包括灰色取代参数 kp
5) 为四色打印机 (或四色胶印机) 建立灰色平衡多项式-
(1) 决定灰成分取代量: 首先在色靶上测量黑墨印刷梯尺, 记录样本色的三刺激值: 接着用钳 位亮度公式算出黑基色的钳位亮度数组 [Ytki】; 然后根据黑基色的钳位明度值 Ylki用如下公式计算黑 基色的基准基色量数组 kl: 即让 ki=(Ywp— Ytki)/(Ywp—Ysk)
(2) 以归一化驱动数组 [dki] 为自变量数组, 以 [kil 为因变量数组进行曲线拟合, 得函数: k=dk A Yk
(3)最后, 灰色成分取代量用 kdd表示, 让 kdd=Q(cW)n, Q是一个预先设定的比例常数, 用来控 制最大黑版量, n是根据黑版阶调长短决定的指数, 只要给定 n的数值, 就可方便的调节黑色阶 调的长度; 请注意, 灰色成分取代量 kp是经过净化的黑色成分, 称为纯净的灰色成分取代量;
(4) 求解与 相配套的纯净灰色的基色量数组 、 [mi], [yi]:
将纯净灰色梯尺的 i组三刺激值 [Xpi、 Ypi Zpi] 逐组放在四色配色方程的左端和同步将 [kpi】 逐一代 入刘氏四色配色方程, 那么四色配色方程蜕变成只有未知量0、 m、 y的静定的刘氏配色方程, 与 此同时, 逐一用迭代法解方程,那么得到基准基色量数组 [Cil、 [mi], [yi];
(5) 以纯净灰色密度数组 [Dpi] 为自变量、 分别以 [cpi]、 [mpi]、 [ypi], [kpi] 为因变量进行曲线拟合, 可得四色打印的灰平衡多项式, 基色量 cP、 mp、 yP及灰色成份取代量 kp如下所示:
cp=a0+a ,+a2D2+a3Dp 3+- yP=c0 + c,Dp + c2Dp 2 + c3Dp 3 +■■; kp=d0+ d,Dp + d2Dp 2 + d3Dp 3 +···
用上面函数求得的 cP、 mp、 yP是根据视觉中性灰色算得的组分基色量, 是在灰平衡条件下算得的 基色量数据, 为了表明这一特殊性质, 统称 cP、 mp、 yP为打印色空间的灰平衡基色量, 在打印色 空间内, cP、 mp、 yP中必有一个灰平衡基色量和 kp—起形成匹配视觉彩色的灰色核心, 这个灰平 ~衡基色量简称 '灰核'。
7. 一种对图像的灰色阶调进行伽玛校正的方法
目的: 由于再现图像的媒体和设备总是导致显示和打印图像的色调向偏暗的一端移动, 为了校正 这种弊病, 必须对图像的色调进行总体性的伽玛校正, 本发明采取了与现有技术完全不同的伽玛 校正方法, 它使得伽玛校正和色域映射得以同步进行。
步骤:
1 )把纯净灰色密度参数表示成为驱动参数的函数: 第 5项第 6 )段中给出的打印机、 常白型显示 器和常黑型显示器的纯净灰色密度数组分别是 [Dpi] 、 [Dqwi] 、 【Dqki], 将 [Dpi] 、 [Dqwi] 、 [Dqki] 进行 归一化处理, 处理之后仍然用 【Dpi】 、 [D 、 [Dqki] 表示, 再把它表示成归一化驱动参数 的函 数: 分别以 [dil 为自变量、 分别以纯净灰色密度数值 [Dpij、 [Dqwi】、 [Dqki]为因变量进行曲线拟合, 得 纯净灰色密度的幂函数表达式如下:
Dp = d DQW = d^ , D = d^
2 ) 把伽玛校正密度表示成纯净灰色密度的函数: 即把校正后的密度 Dp、 Dqw、 Dqk'分别表示成原 始密度 Dp、 Dqw、 Dqk的函数, 即让
n ' - H - n 1 n ' - 1/ 一 n 1 2 n '— w 、ly* - n 1/ r«*2 以上三式就是计算伽玛校正密度的刘氏伽玛校正公式。
8. 在 XYZ空间为扫描仪建立 DlXiyi特性文件连接颜色空间的方法:
目的: 数码照相机和扫描仪等颜色输入设备, 总是要把获取的颜色信息向显示器、 打印机之类的 输出设备传送。 已有的方法是选择 CIE LAB ( CIECAM02 ) 作为 PCS特性文件连接空间, 这种借用 均匀颜色空间作为连接纽带的方法是正确的, 问题是此类匀色空间还没有达到理想的均匀, 作为 PCS特性文件连接空间使用, 导致的颜色转换误差还比较明显, 而且步骤繁琐; 再一个问题涉及 颜色数值的传送方法, 跨媒体远距离传送图像已非常普遍, 移动通讯、 数字电视和地空图像通讯 都打破了一时一地进行色彩管理的格局。 但是, 传统的构成亮度信号和色差信号的方法在非线性 的情况下并不满足恒亮度原则, 明显影响电视图像细节的重现质量。 针对这样的情况, 本发明提 出一种全新的、 兼有多种功能的 DlX iy i 特性文件连接空间, 下面介绍在 XYZ空间内为扫描仪建立 D,xiyi特性文件连接颜色空间的方法。
. 方法: DlXiyi颜色空间是利用刘氏颜色分割方程作为工具建立起来的。 该方程的基本原理是: 虽然 任何一个颜色都是基于三基色合成原理生成的, 但是改变一下观察问题的角度, 也可以认为: 任 何一个颜色都是由两部分组成的, 一是比例为 p的灰色成分, 二是比例为 (1一 p) 的两个基色生 成的间色成分, 即具有 [1个视感灰色成分 +2个基色成分] 的结构特点, 前后两种思考方法是等 效的, 乍一看, 后面的思考方式似乎使问题变得更加复杂, 但是这种 '复杂' 只是表面上的, 它 不仅能带来许多好处, 而且可以使本来影响计算机工作效率的高阶算法变成为算法效率的解析算 法, 能够达到事半功倍的效果。 刘氏颜色分割方程可以划分成为扫描仪建立的刘氏扫描色分割方 程和为数码相机、 数码摄像机和电视摄像机建立的刘氏拍摄色分割方程两种, 因为扫描仪获取的 颜色要向打印设备色域传送, 所以要用一个基于减色法复制的刘氏颜色分割方程。 因为数码相机 获取的颜色一般要向常白型显示器传送, 所以要用一个基于常白型配色方程的刘氏颜色分割方 程, 电视摄像机获取的颜色要向常黑型显示器传送, 所以要用一个基于常黑型配色方程的刘氏颜 色分割方程。 每种刘氏颜色分割方程都包含三个子类型。
1 )在 XYZ空间内为扫描仪建立 DlXiyi特性文件连接颜色空间的方法
第一步, 为扫描仪构建刘氏颜色分割方程- 扫描仪用刘氏颜色分割方程的格式: 三个子类型的方程式如下所示: X = [(1-c)(1-/r?)Xw+c(1-m)Xc+(1-c)mXm+cmXb].(1-p) + p-Xs)(
.y = [(1-c)(1-m)yw+c(1-m)yc+(1-c)mym +cmyb].(1-p) + p.ysA
Z = [(1-c)(1-m)Zw+c(1-m)Zc + (1-c)mZm+cmZt)]-(1-p) + p-Zs,
X = [(1-c)(1-y)X.+c(1-y)Xc+(1-c)yXy+cyXg]-(1-p) + p-Xsk
.y = [(1-c)(1-y)yw+C(1-y)Yc+(1-c)yYr+cyY9]-(1-p) + p-ys,
Z = [(1-C)(1-y)Zw+c(1-y)Zc+(1-c)yZ/+cyZg].(1-p) + p-Zsk
X = [(1-/77)(1- )X,+m(1-y)Xm+(1-m)y y +myXr]-(1-p) + p-Xsk
• y = [(1-m)(1-y)Y.+m(1-y)ym+(1-m)yyy +Ar7yyr]-(1-p) + p-ys,
Z = [(1-m)(1-y)Zw+m(1-y)Zm+(1-m)yZy+myZr]-(1-p) + p-Zs)( 刘氏颜色分割方程是由三个基本方程组合起来工作的一组方程, 三者之间的差别之处在于: 一个是 Π个青基色 +1个品红基色 +1个视感灰色]的分割方程,
一个是 [1个青基色 + 1个黄基色 + 1个视感灰色] 的分割方程,
一个是 [1个品红基色 + 1个黄基色 +1个视感灰色 1 的分割方程,
为简便起见, 可把这三种情况分别简记为 CMK、 CYK和 MYK型分割方程, 这三个方程貌似复杂, 实际上是简单的二次方程式, 可以用简单的解析方法进行快速计算。
在上面的方程中: X、 Υ、 Ζ是由扫描仪获取的三刺激值, Xw、 Yw、 zw表示在扫描仪色靶上实测的 白色实地的三剌激值, Xc、 Yc Zc表示青色实地的实测三刺激值, Xm、 Ym、 Zm表示品红色实地的 实测三刺激值, Xy、 Yy、 Zy表示黄色实地的实测三刺激值, Xsk、 Ysk, zsk表示由青、 品红和黄三 基色实地合成的、 被称为 '黑点' 的三剌激值, 并且和 Xw、 Yw、 Zw的色度坐标是一致的。.通过程 序的判断, 可以从三个分割方程中选出一个来执行颜色分割任务并算得 XYZ中的灰色量 p。 在刘氏分割方程中, 让方程右端方括号中的数值等于在扫描仪色靶上实测的白色实地的三剌激值
Xw、 Yw、 zw代替, 那么, 刘氏分割方程蜕变成如下的刘氏分割方程的灰色梯尺格式:
K=vw(i- )+ k
Zv=Zw(1-p) + pZsk
如果将 [Pil逐一代到刘氏分割方程灰色梯尺格式的左端, 那么生成的三刺激值数组 [ 、 Gvi、 Bvi] 等 效于纯净灰色梯尺的三刺激值 [R。i、 Goi Boi];
第二步, 利用上述知识构建 D|Xiyi特性文件连接空间-
( 1 ) 根据刘氏分割方程左端的 XvYvZv值计算颜色 XVYVZV的色度坐标值: D|Xiyi特性文件连接空间所 需要的 ^就是根据这组 XYZ值、 按照下式计算出来的:
Figure imgf000015_0001
(2) 应用刘氏颜色分割方程对 XYZ进行分割, 即通过解刘氏颜色分割方程算出灰色量 p的数值;
(3) 将算得的 p值代入刘氏分割方程灰色梯尺格式中的亮度式, 计算颜色 中灰阶的亮度值:
Figure imgf000015_0002
(4) 把灰阶的亮度值丫!换算成灰色密度值 Q, 即:
Figure imgf000015_0003
经过上面 4个步骤,就把在 XYZ色空间内的任一颜色 XYZ或者扫描 XYZ颜色变换成了特性文件连 11 729
14
接空间的数值 D。x。y。。
2)在 RGB颜色空间为扫描仪建立 DlXly,特性文件连接颜色空间的方法- 第一步, 为扫描仪构建刘氏颜色分割方程:
(1)在 RGB色空间里扫描仪用刘氏颜色分割方程的格式: 三个子类型的方程式如下所示:
R = [(1 - c')(1 - m')Rw + c(1 - m')Rc + (1 - c')m'Rm + c'm'Rb ]-(1-p) + p-Rs,
<G = [(1-c')(1-/77')Gw+c(1-m')6c+(1-c 'Gm+c'/77'6t)]-(1-p) + p-6sfc
B = [( -c^-m')Bw+c'{^m')Bc+^-c')m'Bm +c'm'Bb}{ -P)+p-Bsk
R = [(1 -c')(1- y')Rw +c'(1-y')Rc+(1- c')y'Ry + c'y'Rg ]-(1-p) + p.Rs,
<G = [(1-c')(1-y')Gw+c'(1-y')Gc +(1- C) y'Gy + c'y'Gg }(1-p) + p-Gsk
Z = [(1-c')(1-y')Sw+c'(1-y')ec+(1-c')y'ey+cyeff]-(1-p) + p.¾
'R = [(1-m')(1-y')Rw+m'(1-y') m+(1-m')y'Ry+myRr]-(1-pk) + p,- s,
<6 = [(1-m')(1-y')Gw+m'(1-y')Gm+(1-m')y'Gy+myGr].(1-p) + p-Gsk
B = [(1-m')(1-y')Sw+m'(1-y')Bm+(1-m')y'By+myBf]-(1-p) + p-es/( 在上面的方程中, 让方程右端方括号中的数值等于在扫描仪色靶上实测的白色实地的三刺激值 Rw、 Gw、 Bw. 那么, 刘氏分割方程演变成如下的刘氏分割方程灰色梯尺格式:
Bv=Bw{ p) + p-Bsk
如果将 [pi】 逐一代到刘氏分割方程灰色梯尺格式的左端,那么生成的三刺激值数组 [Rvi、Gvi、Bvil 等 效于纯净灰色梯尺的三刺激值 [ 、 G。i、 Boi];
第二步, 计算灰色成分 Rv、 Gv 8的灰色密度值:
(1)应用刘氏颜色分割方程对 RGB进行分割, 即通过解刘氏颜色分割方程算出灰色量 p的数值;
(2)将算得的 p值代入刘氏分割方程灰色梯尺格式中的亮度式,计算颜色 RvGvBv中灰阶的亮度值:
Figure imgf000016_0001
(3)把灰阶的亮度值 Gi换算成灰色密度值 Drgb, BP:
Figure imgf000016_0002
/ Gv)
D,特性文件连接颜色空间带来的利益: (1)从 XYZ到 的转换是精确的, 不会给后续的映射 变换带来误差; (2) Qxiyi特性文件连接颜色空间是以刘氏颜色分割方程为工具建立起来的, 其实 质是把一个用 XYZ表示的颜色分解成为以 Q表示的亮度信号和以 xiyi表示的色度信号, 像电视、 卫星通讯这样的场合, 由于刘氏颜色分割方程 p的特殊作用, 可以实现恒亮度、 恒色度传送彩色 图像信号、可以在节省带宽的情况下以高压缩比无损传送彩色图像信号; (3)在色彩管理系统中, 这种 D|Xiyi特性文件连接颜色空间是实现通用颜色映射方法的一条通途。
在 RGB色空间快速计算基准基色量 c'm'y'的方法及刘氏三色钳位方程
目的: 已有的把扫描的 RGB数据转换到成 CEXYZ的方法是利用回归分析方法建立转换多项式, 不仅转换误差较大, 而且回归分析方法是一种数学逼近方法, 不涉及色域映射这样的视觉心理学 问题, 并不遵循色域映射的规律。 本发明从色度学入手, 首先在 RGB色空间把 RGB数据转换成 的基准色量 c'm'y', 然后把基准基色量 c'my转换成为 XYZ色空间的扫描基色量 cmy, 最后把得到 的数据 cmy代入扫描仪颜色预测方程,就可以把扫描得到的 RGB数据准确地转换成 CIEXYZ数据。 在这几个步骤中, 把 RGB数据转换成的孪生基色量 c'm'y' 的方法是借助于刘氏三色钳位方程完成 的。
刘氏三色钳位方程的格式: 刘氏三色钳位方程继承了刘氏分割方程的类别属性, 也分为 CMK、 CYK、 MYK三种子类型, 至于选用哪一个刘氏三色钳位方程对颜色 RGB进行转换计算, 是由 RGB 中的最小值决定的, 下面列出这三种子类型的刘氏三色钳位方程:
^=(1- ^)(1-m')(1-c')R w+(1-y*')(1-m')c'Rc+i1- *')m '(1-c')^
+ ydd' l-m' l-c' /? + ydd'm' 1 - c' Rr + ydd' I - m c'R + 1 - ydd' m'c'Rb + ydd'm'c'Rs
Figure imgf000017_0001
iR = (1— /)(1— m')(1-cd( Rw + 1— m' + (1 _ / )mx' (1 - cdd' )Rm +… + y'm'c /^ AG = (l-y'J(l-m'j l-c£id' G,+l 1 - m' )cdd'Gc + -y')m' -cdd')Gm+--- + y'm'c Gs
Bw+ -y') - m' )cdd'Bc + -y')m' -cdd')Bm+--- + y'm'c B^, 上式中: λ是刘氏色貌保持参数, cdd'、 mdd'、 ydd' 是来自于扫描仪灰平衡幂函数式的灰核参数, 如 果选用 CMK型刘氏三色钳位方程对颜色 RGB进行转换计算, 那么只需计算灰核 ydd的数值, 然后 把 y*i动态地代入 CMK型刘氏三色钳位方程, 使该方程变成只有未知量 λ、 c'、 m' 的二次方程, 所以可以用解析算法快速求解。 同样重要的是: 由于刘氏色貌保持参数 λ和灰核 ydd的联合作用, CMK型三色钳位方程能够使基色量 c'、 m'、 y'=ydd获得基准基色量的特性。 如果选用 CYK和 MYK 型刘氏三色钳位方程, 那么方程就分别与灰核 mdd和 cdd配套使用。
把扫描颜色从 RGB色空间转换到 CIEXYZ色空间的方法
目的: 扫描仪是通过 CCD感像器件获取色靶图像反射的 RGB数据, 可以认为扫描仪的 CCD感像 器件对感受光量具有线性相应, 然而被扫描的色靶产生的 XYZ数据却是非线性的, 借助于下面叙 述的方法可以使扫描的 RGB数据依据色度学原理完成 RGB— CIEXYZ色空间的转换。
方法和步骤-
1)对扫描仪获取的 R,G,B三刺激值进行判断, 根据 R,G,B 中的最小数值选择对颜色 RGB进行分割的 方程格式。 选择原则是: 如果 R是最小值, 那么选用 GBK 型分割方程; 如果 G 是最小值, 那么 选用 RBK 型分割方程; 如果 B是最小值, 那么选用 RGK 型分割方程。 为免赘述, 下面仅以选用 了 GBK 型分割方程的流程进行解说, 另外两种情况依此类推;
2) 将扫描仪获取的 RGB三刺激值放在 GBK 型颜色分割方程左端, 解方程后得到黑色量 p 的数值;
3) 将黑色量 p代入刘氏分割方程的灰色梯尺格式, 可以算得灰色灰色亮度刺激值 Gi, 即有:
Figure imgf000017_0002
4)将 换算成密度值 D¾b: 即 g^^GJd),式中的 Gw。是在扫描色靶白色面上测得的亮度数值;
5) 将 Digb代入扫描仪灰平衡幂函数式, 算得灰核 ( 的数值; 6 )将算出的灰核数值 cdd'代入 GBK型刘氏三色钳位方程, 算得颜色 RGB的组分基色量 c'、 m'、 y';
7 )将算出的基色量 c'、 m'、 y'代入扫描仪的 c'my— cmy转换式, 算得基准基色量(;、 m、 y的数值;
8) 将算出的基准基色量 c、 m、 y代进扫描仪配色方程, 即可算得目标值 XYZ。
为数码照相机 (或者数码电枧摄像机) 建立 D,xi y i特性文件连接颜色空间的方法
目的:数码照相机和扫描仪等图像输入设备可以认为是由 CCD感像器件的 RGB— CIEXYZ坐标变换 模块和处理色靶非线性反射的模块组成的,这样处理可以使问题变得准确、简单和符合映射需要。 方法步骤- 数码照相机和数码电视摄像机所用的 CCD元件虽有区别,但是可以用一个格式相同的刘氏颜色分 割方程生成 DlXiyi特性文件连接颜色空间, 生成的步骤如下:
1 ) 在综合考虑当前多媒体设备的普遍需要之后, 可以为配色的 RGB三基色制定一组普遍认可的 色度坐标数值, 让白点的色度坐标都等于基准白 D65的色度坐标, 建立实施 RGB— XYZ坐标变换 的矩阵方程式和亮度方程式如下所示, 因为这种方法是对同一颜色在不同颜色度量系统中所进行 的几何线性变换, 所以这样的变换结果是正确的: a21 + a21G + a216
Figure imgf000018_0001
将 CCD感像元件获取的任意一组 RGB数值代入上面的 RGB— XYZ矩阵方程式就可以完成 RGB— XYZ 色空间坐标数据转换;
2)为标准显示器构造刘氏分割方程的灰色梯尺格式如下所示:
X = . (1 _ y ) + y .
上式中: XgreyYgreyZgrey表示标准显示器纯净灰色的三刺激值, XWYWZW和 XkYkZk分别是标准显示器白 点和黑点的三剌激值。
3 ) 把灰阶的亮度值 Ygrey换算成灰色密度值 D BP : D, = Dn = lg(Yw / Ygrey)
4) 根据 RGB— XYZ矩阵方程式左端的 XYZ值计算颜色 XYZ的色度坐标值: D,xiy,特性文件连接空间 所需要的 Xh ¼就是根据这组 XYZ值、 按照下式计算出来的:
χ, = χ„ = Χ/(Χ + Υ + Ζ), Υι = γη = Υ/(Χ + Υ + Ζ) 经过上面 4个步骤, 就把扫描 XYZ颜色变换成了特性文件连接空间的数值 Dnxny„。
一种将特性文件连接空间的参数 D,映射成为目标设备色域的灰色阶调参数方法
目的: 建立把特性文件连接空间的参数 Di和目标色域的灰色阶调密度实现无缝连接的通用方法。 方法: 在前面的工作中, 己经得到数码相机 (或数码摄像机和电视摄像机)、 扫描仪、 显示器和 打印机 (或印刷机) 在设备色域内的灰色阶调密度数组 [ 】、 [D。i]、 [Dpi], [Dqwij、 [Dqki] , 利用这些 数组之间的映射关系, 就可以得到以输入设备灰色阶调密度数组为自变量、 以输出设备灰色阶调 密度数组为因变量的密度映射函数, 下面叙述这些密度映射函数。
1 ) 将数码相机的灰色阶调密度数组 pni】 映射到常白型显示器 (计算机显示器): 以数码相机的 灰色阶调密度数组 ί 】 为自变量数组,以常白型显示器的设备灰色阶调密度数组 [Dqwi] 为因变量 数组进行幂函数拟合, 得数码相机一计算机显示器灰密度映射函数式: D。„= D/'" 2) 将电视摄像机的灰色阶调密度数组 [Dni] 映射到常黑型显示器 (电视机显示器) 色域中去: 以 电视摄像机的灰色阶调密度数组 [ ] 为自变量数组, 以常黑型显示设备灰色阶调密度数组 [Dqki] 为因变量数组进行幂函数拟合, 得电视摄像机一电视机显示器灰密度映射函数式: D二 Dn
3) 将扫描仪的灰色阶调密度数组 [D。i】 映射到打印机 (印刷机) 设备色域中去: 以扫描仪的的灰 色阶调密度数组 [D。i] 为自变量数组, 以打印设备灰色阶调密度数组 [Dpij 为因变量数组进行幂函 数拟合, 得扫描仪一打印机 (印刷机) 灰密度映射函数式: Dp = D0
4) 将打印机 (印刷机) 灰色阶调密度数组 [Dpi] 映射到显示设备色域中去: 以打印机 (印刷机) 的灰色阶调密度数组 [Dpi】 为自变量数组,以常白型显示器灰色阶调密度数组 [Dqwi] 为因变量数组 进行幂函数拟合, 得打印机 (印刷机) 一显示器灰密度映射函数式: Dqw = Dp r
一种将源设备获取的颜色映射到目标设备色域的方法
目的: 建立一种把特性文件连接空间的颜色 DlXiyi无损传递到目标色域的方法。
1)将扫描仪获取的颜色映射到打印设备色域的方法
方法: 扫描仪和打印设备之间的色域映射是通过传递特性文件连接空间的 D。、 x。、 y。的数值到打 印设备色域和借助于刘氏扫描仪一打印机映射方程实现的。
步骤:
第一步, 根据扫描得到的 RGB数值, 选择刘氏扫描仪一打印机映射方程的子类型: 刘氏扫描仪一 打印机映射方程具有 CMK、 CYK, YK三个子类型,并且和刘氏分割方程的三个子类型一一对应 的, 下面依次列出这三个子类型的方程式:
。 。) =(1_ )(1一 — y)(1— /¾) C+Crfd(1- — y)(1 - — Cdrf)m(1_y)(1— /crfrf)Xm
+ (1-¾)(1-m)y(1-^)Xy+(1-¾)/r7y(1-^) r+¾(1-m)y(1-^)Xg +c^(1-y)(1-/(dd)^
+ cddmy(1-k Xs+(1-cdd)(1-m)(1-y)kddXk+cM(1-m)(1-y)kMXck+(1-c m(1-^^
' + -cdd)(1- )ykdclXyk +( -cd,)mykddXl1< + cdd (1 - )ykMX + cddm (1 -y)kddXbk + cMwykMXsk
V =(1- crfd)(1-m)(1- y)(1- - m)(1-y)(1- ^ -^ - ;^-/^ +…+ ^/^ ^
,[(1 - χ。- y。)/y。]> =(i- y)(i- )zw+ (i-m)(i-y)(i— )4+...+ /77
(x。/y。)yp=(1- c)(1- )(1- (1- /cdd)Xw +c(1- y)(1- )Xc+... +drf)sk
■ c)(1- m(W)(1- y)(1- )V +C(1-¾)(1 - (1- ^)yc +(i_c; d(i - (1- )ν +.·· + (¾^ν, [(1_x。_y。)/y。]yp=(1_c)(1— — — ) +c(1— — /( Zc . + cm /^Z
(x0/y0) =( -c)(1-m)(1- , (1-i(drf) w+c(1-m)(1-yrfd)(1-^) c +--- + cmy A*
^:^-。;^- - ^/^;) -/^ ^/^^ ^。^ - ;^- +cmydAdv
[(1- x。- y。)/y。¾=(1- c)(1- j^)(1- )Zw+c(1— m)(1- y — /^Z^-. + cmy A
为简明起见, 下面仅以第一组 MYK型方程为例解说。 从 DlX,yi特性文件连接空间传来的扫描仪色 度坐标数据 χ。和 y。放在方程的左端, 参数 YP是未知的亮度参数, ΥΡ实际上具有钳位亮度的特性, 称为刘氏钳位亮度, 方程左端表示经过扫描一打印映射方程处理之后, 扫描输出色 D。x。y。将被打 印成一个新的颜色, 如果这个新颜色是 XP、 ΥΡ、 Ζρ, 那么 ΧΡΥΡΖΡ实际就是方程左端代表的数值, CMYK就是显示颜色 Χρ、 Υρ、 Ζρ 所需要的驱动数值。 即有: XP=(x。 / y。)YP、 YP=YP、 Ζρ=[(1-χ0 一 y0)/y。]YP
第二步, 把扫描仪色空间的灰色阶调密度 D。映射成为打印设备色域的灰色阶调密度 Dp: ( 1 ) 让 0P = D ^ (2) 计算伽玛校正密度: 让 Dp' = D;ly' = (D;-†' = D W
(3)用伽玛校正密度 Dp' 取代下列打印机的灰平衡多项式中的 Dp, 生成如下所示的刘氏四色打印 反伽玛灰平衡多项式, 可用它计算伽玛校正后的灰色平衡组分色量 cp、 mp 、 yp和灰色取代参数 kp, 并且把 cp、 mp 、 yP、 kp作为可以选用的灰核使用:
cp = cdd =a0+ a^ + a2Dp'2 + a3p'3 +···, mp=mM=b0+ b,Dp' + b2Dp'2 + b3Dp'3 +■■■ yP = ydd = c0 + c,Dp' + c2Dp'2 + c3D/3 +···, kp =kdd=d0+ d,Dp' + d2Dp'2 + d3Dp'" +■■■
根据所选子类型的不同, 只需计算 kdd,cdd, 或者 kdd,mdd, 或者 kdd,ydd;
(4) 根据程序选定的刘氏扫描仪一打印机映射方程子类型, 将 kdd和 cdd (或者 mdd 、 或者 ydd) 数值代入己选定的四色映射方程的右端:
由此可见, 方程右边出现的两个新符号 cdd、 kdd. 不是变量, 而是由 cmyk灰平衡多项式动态传来 的两个数值, 对于 MYK型方程来说, cdd=c, 来源于打印机灰色平衡方程式。 但灰色平衡多项式 中的自变量最终变成了 Dp, 由此可见, 来自 D。x。y。特性文件连接空间的灰色量参数 D。是通过 DP、 cdt)和刘氏扫描一打印映射方程发生联系的。 kdd是被转换颜色的灰成分取代量, 方程的变量是 m、 y和 Υρ , 在 YP、 m和 y的协同作用下, 匹配出方程左端的颜色 XPYPZP。 和刘氏基色钳位方程的原 理一样, 变量 ΥΡ还起到色貌保持系数的作用, 其功能是确保得到的新颜色 XP ΥΡ Zp和扫描仪输出 的颜色 XYZ保持视感一致的色貌,通过 MYK子类型刘氏扫描一打印映射方程计算出来的三个基色 量0=(¾、 m、 y和 cdd是经过伽玛校正的三个基准基色量。
第三步, 根据刘氏扫描仪一打印机映射方程解得的三个基色量 c=cdd、 m、 y计算生成颜色 XP、 Yp、 所需要的驱动数值 CMYK- 在方程中, 基准基色量 cmyk进一步是驱动输入数值 cWmdydk的函数, 由此可得把打印机基准基色 量 cmyk数值转换成驱动输入值 CMYK的方法是:
Figure imgf000020_0001
y = rj =n1n = (
yp ~ P 一 y 1/ ) ρ = i^) K = ri =D 1^ =(k 〃
~■> ' ~ ukp ' _ V 1/ V ) p 1( )
~ = k
~~ p
2)将数码相机获取的颜色 XYZ映射到常白型显示器色域的方法
方法:数码相机和显示设备之间的色域映射是通过把特性文件连接空间的参数 Dn、 ^和^传送到 显示设备并通过数码相机一显示器映射方程完成。
步骤:
第一步, 把数码相机色空间的灰色阶调密度 D„映射成为显示设备色域的灰色阶调密度 Dq, 即:
(1)让 Dqw=D (2) 计算伽玛校正密度- 让0^'=¾ 2
(3) 将伽玛校正密度 Dqw'代入常白型显示器的灰平衡组分基色量幂函数式, 计算作为灰核利用的 灰色平衡组分基色量和灰色取代参数 kP:
Figure imgf000020_0002
第二步,把输入设备特性文件连接空间的色度坐标 xn和 yn映射到常白型显示器并通过数码相机一 显示器映射方程完成映射过程:
刘氏数码相机一显示器映射方程也具有 rddgb、 rgddb rgbdd三个子类型,并且和刘氏分割方程的三 个子类型是一一对应的, 下面依次列出这三个子类型的方程式: sk
Figure imgf000021_0001
(1-Xn-yn)/yn]Kl )(1-g)(1- d)Zw+(1-r)fif(1-/)rfd)Zm +(1-r)(1— g) dZy + 根据程序选定的 rddgb、 rgddb、 rgbdd子类型, 将第一步得到的「dd、 gdd、 bdd代入方程的右端, 将 xnyn 和刘氏钳位亮度 Yqw放在方程的左端, 即可解得经过伽玛校正和色域映射处理的基准基色量 r、 g、 b和亮度值丫 qw
上式中, 驱动输入数值 drdgdb进一步是基准基色量 rgb的函数, 由此可得把常白型显示器基准基色 量 r b数值转换成驱动输入值 RGB的方法是:
Figure imgf000021_0002
通过刘氏映射方程三个不同子类型计算出来的三个基色量都是经过伽玛校正的基色量。
设 Xqw叫 Xn / yn)Y Yqw = Y|, Zqw = [(1-Xn-y„)/yn]Y|, 则最终显示的颜色就是 Xqw、 Zqwo
RGB就是显示颜色 、 Yqww所需要的驱动数值。
3)将电视摄像机获取的颜色 XYZ映射到常黑型电视显示器色域的方法
方法: 电视摄像机和电视显示设备之间的色域映射是通过把特性文件连接空间的参数 Dn、 ^和 yn 传送到显示设备并通过电视摄像机一显示器映射方程完成。
步骤:
第一步, 把电视摄像机色空间的灰色阶调密度 DJ央射成为显示设备色域的灰色阶调密度 Dqk, BP: (1) 让 =0/' (2) 计算伽玛校正密度: 让 Dqk' =Dqk 1 2
(3) 将伽玛校正密度 Dqk'代入常黑型显示器的灰平衡组分基色量幂函数式, 计算作为灰核利用的 灰色平衡组分基色量和灰色取代参数 kdd:
Figure imgf000021_0003
第二步, 把输入设备特性文件连接空间的色度坐标 ^和 yn映射到电视显示器并用刘氏映射方程 完成映射过程, 刘氏四色色域映射方程也具有 rdtigb、 rgddb、 rgbdd三个子类型,并且和刘氏分割方程 的三个子类型是一一对应的, 下面依次列出这三个子类型的方程式-
Figure imgf000022_0001
+ (1— r)gddbXr +r(1- gdd )(1 -b)Xc + Λ(1― gdd)bXg + W(1 -b)Xb + rg^bX^
Figure imgf000022_0002
gJ +' U
ί[(1— — =(1- b)Zm +(1- r)(1— fif bZy +.'.UZs
+ (1-Γ)9^ Γ +Γ(1-9)(1-όΛε +Γ(1-9)^ 9 +Γ9(1-^) 6 +Γ3^Χ^
Figure imgf000022_0003
09(1- 9) Λ+··· +
[(1- - )/yn] =(i- - ) +(1- r)6f(1 - )Zm +(1- r)(1-g) Zy +...+rS^Zs, 根据程序选定的 rddgb、 rgddb、 rgbdd子类型, 将第一步得到的 rdd、 gdd、 bdd代入方程的右端, 将参数 ^和 yn的值和氏钳位亮度 Yqk放在方程的左端, 即可解得经过伽玛校正和色域映射处理的基准基 色量 r、 g、 b和亮度值 Yqk
上式中, 驱动输入数值 cWgdb进一步是基准基色量 rgb的函数, 由此可得把电视显示器基准基色量 r b数值转换成驱动输入值 RGB的方法是
Figure imgf000022_0004
通过刘氏综合映射方程三个不同子类型计算出来的三个基色量都是经过伽玛校正的基色量。
设 Xqk = (Xn / yn)Yn、 Yqk = Yn, ¾k = [(1 -Xn-yn) / Yn] Yn- 那么, 最终显示的颜色就是 Xqk、 Yqk、 。 RGB就是显示颜色 Xqk、 丫 qk、 k所需要的驱动数值。
4)将打印设备获取的颜色 XYZ映射到常白型显示器色域的方法
方法:从打印设备到显示设备之间实施色域映射是通过特性文件连接空间的密度参数 Dp和目标色 域的灰色密度参数 0^的映射及色度坐标参数 xp和 yp的传递并通过打印机一显示器映射方程完成。 步骤:
第一步, 把打印设备色空间的灰色阶调密度 Dp映射成为显示设备色域的灰色阶调密度 Dq, 艮卩:
(2) 计算伽玛校正密度: 让 0。 qw
Figure imgf000022_0005
将伽玛校正密度 D。' 代入打印机的灰平衡组分基色量幂函数式, 计算作为灰核利用的灰色平衡组 分基色量和灰色取代参数 kp:
r - _ η
'dd -
Figure imgf000022_0006
' iddd ~ uqw ' 一 udd — υφι
根据所选打印机一常白型显示器映射方程型式, 只需选择计算其中的 rdd, 或者 gdd, 或者 bdd: ( 3 ) 将算得的 或 gdd, 或 bdd数值代入己选定的打印机一常白型显示器映射方程的右端; 第二步, 把打印设备特性文件连接空间的色度坐标 xP和 yP映射到显示设备色域, 方法是利用刘氏 打印机一常白型显示器色域映射方程作为工具完成映射过程, 刘氏打印机一常白型显示器色域映 射方程的三个子类型 rddgb、 rgddb、 rgbdd的方程式如下:
Figure imgf000023_0001
上式中, 驱动输入数值 cWgdb进一步是基准基色量 rgb的函数, 由此可得把常白型显示器基准基色 量数值 rgb转换成驱动输入值 RGB的方法是- qw qw qw J ' wuqw一 ^qw 一 I » ) ~ i) _ fV = n = = h1/( w? )
一 ^qw ― ^qw ― ( h 〃'""
qw 1/ J ~ u
通过刘氏综合映射方程三个不同子类型计算出来的三个基色量都是经过伽玛校正的基色量。 设: Xqw = (Xn / yn)Yt, Yqw = Yt、 Zqw = [(1— ΧΠ— yn) / Yt, 那么, 最终显示的颜色就是 Xqw、 Yqw、 ZqW
RGB就是显示颜色 Xqw、 YQWw所需要的驱动数值。
四、 附图说明
Fig.1 从扫描仪到打印机设备颜色空间和经由打印机设备颜色空间再到显示器设备颜色空间实施 色域映射的流程原理图:从扫描仪颜色预测→将预测色转换到刘氏 D|Xiyi特性文件连接空间→到打 印机设备颜色空间和经由打印机设备颜色空间→显示器设备颜色空间实施色域映射的流程原理 图;
Fig.2 把数码相机获取的颜色 RGB转换为 XYZ数值和根据 XYZ数值计算计算机显示器驱动数值 RGB的流程原理图;
Fig.3 把数码摄像机和电视摄像机获取的颜色 RGB转换为 XYZ数值和根据 XYZ数值计算电视显示 器驱动数值 RGB的流程原理图;
五、 具体实施方式
1. 下面参照 Fi g. 1, 以映射流程 "从扫描仪根据扫描数值 RGB预测颜色 XYZ 把预测色 XYZ转 换到刘氏 DlXiy i特性文件连接空间→把颜色 XYZ分色成为驱动输入数值 GMYK→在常白型显示 器上生成预打样彩色图像"说明本发明在色域映射中的通用性、 创造性、 和工作效率:
1 ) 用本发明提供的方法将 R,G,B 转换成三刺激值 Χ,Υ,Ζ; 2) 对扫描仪 CCD元件获取的 RGB 三刺激值进行判断, 根据 R,G,B 中的最小数值选择对颜色 RGB 进行分割的方程格式。 选择原则是:
如果 B 是最小值, 则选用 MYK 型刘氏扫描分割方程;
如果 R 是最小值, 则选用 CYK 型刘氏扫描分割方程;
如果 G 是最小值, 则选用 CMK 型刘氏扫描分割方程。
为免赘述, 下面仅以选用了 MYK 型分割方程的流程进行解说, 另外两种情况依此类推;
3) 将目标值 XYZ放在 MYK 型颜色分割方程的左端, 解方程后得到黑色量 p 的数值;
4) 黑色量 p代入刘氏扫描分割方程的灰色梯尺格式, 可以算得灰色灰色亮度剌激值 即有:
Figure imgf000024_0001
5)将 Yi换算成密度值 D。: 即让。。:^:^^^/^, 式中的 Yw。是在扫描色靶白色面上测得的亮度 数值;
6) 把算得的 XYZ三刺激值换算成色度坐标值 X。和 y。, 即让-
Figure imgf000024_0002
通过上述步骤, RGB色空间一 CIEXYZ色空间一 DiXiyi特性文件连接色空间的转换即告结束。 接着的 步骤就是向打印机模块传送 D。、 x。、 y。数据了:
7) 把扫描仪特性文件连接空间的 D。值映射到打印机空间, 即让 Dp=D。
8) 根据 DP计算伽玛校正密度: 让 DP'
Figure imgf000024_0003
9)将伽玛校正密度 Dp' 代入打印机的灰平衡多项式,计算作为灰核利用的组分基色量和灰色取代 参数 kdd和 cdd, 即让: cp = cdd =a0+ a,Dp' + a2Dp'2 + a3D/3 +■··, kp=kdd =da+ d,Dp' + d2Dp'2 + d3Dp'3 +■■■ 注意: 根据所选四色映射方程型式, 只需计算 kdd,cdd, 或者 kdd,mdd, 或者 kdd,ydd;
10) 将算得的 kdd, cdd代入己选定的 MYK型四色映射方程的右端, 算出基色量
Figure imgf000024_0004
m和 y;
11) 把基色量 k, c, m和 y进一步转换成驱动数值 CMYK;
12) 计算扫描仪在映射到打印机色域的颜色 XPYPZP:
XP=(XO I y0)Yp. Υρ=ΥΡ, ZP=[(1 -xo-yo) I y。] YP
13) 将打印机 (印刷机) 灰色阶调密度数组 [Dpij 映射到显示设备色域中去, 即让: Dq =Dp
14) 计算密度值 Dq的伽玛校正值 Dq', 即让 Dq'=Dq^2
15) 将显示器灰平衡多项式中的变量 Dq用 Dq' 数据代入, 算出灰核 cdd的数值;
16) 将算得的三刺激值 XpYPZp换算成色度坐标值 χρ和 yp, 即
― ― XP ― _
X' ~XP ~ Υ , V , 7 ' yi -yP ~ y , y , γ
XP + YP + 1P Ρ + Υρ + Δρ
17) 将 cdd, Χρ, yp同时代入显示器的 RGK 型加色映射方程, 解此方程可以算得基色量 r, g, b=bdd- 以及被显示颜色的三刺激值 XqYq ; 18)为了在显示器上 一步的工作是把算得的基 转换到它们的驱 动色空间去, 即让:
Figure imgf000025_0001
用 RGB值驱动显示器, 就会显示一个待印刷的预打样图像。
2. 下面参照 F i g.2,以映射流程 "数码照相机根据 CCD感知的 RGB数值预测颜色 XYZ 把预测色 XYZ 转换到刘氏 D y '特性文件连接空间→把颜色 XYZ分色成为驱动输入数值 RGB→在显示器上生 成彩色图像" 说明本发明在色域映射中的通用性、 创造性和实时转换效率:
1) 将 R,G,B代入 RGB— XYZ色坐标变换式把 RGB 转换成为 XYZ;
2) 将 R,G,B代入亮度方程式计算出亮度数值 Y;
3) 将亮度 Y代入刘氏分割方程的灰色梯尺格式算出灰阶亮度 Ygrey;
4) 把亮度数值换算成灰色密度数值
Figure imgf000025_0002
5) 将 Dn映射到显示器色域的密度 Dqw=Dn qw; 对 Dqw进行伽玛正, 得 Dqw';
6) 由 Dqw' 计算灰核 并将灰核 rdd代入 GBK 型显示器映射方程;
7) 把颜色的 XYZ三刺激值换算成色度坐标值 ^和 yn, 即让:
w
Figure imgf000025_0003
8) 将 χπ和 yn代入 GBK型显示器映射方程;
9) 解 GBK型显示器映射方程: 得基色量 rgb和预示的显示颜色
Figure imgf000025_0004
10) 从基色量空间的 rgb 转换到驱动数值 RGB, 用驱动数值 RGB 驱动显示器, 在显示器上就 显示出数码相机所拍摄的彩色图像。
下面参照 Fig.3, 以映射流程 "电视摄像机或数码摄像机 (DV) 根据 CGD感知数值 RGB预测颜色 XYZ 把预测色 XYZ转换到刘氏 DlXiyi特性文件连接空间→把颜色 XYZ分色成为电视机驱动输入数 值 RGB→在显示器上生成电视图像"说明本发明在色域映射中的通用性、 创造性和高转换效率:
1) 将 R,G,B 代入 RGB— XYZ 色坐标变换式, 把 RGB 转换成为 XYZ;
2) 将 R,G,B 代入亮度方程式计算出亮度数值 Y;
3) 将亮度 Y代入刘氏分割方程的灰色梯尺格式算出灰阶亮度 Ysrey;
4) 把亮度数值换算成灰色密度数值
Figure imgf000025_0005
5) 将 Dn映射到显示器色域的密度 Dqk=Dn Ayqk; 对 Dqk进行伽玛正, 得 Dqk';
6) 由 Dqk' 计算灰核 rdd并将灰核 rdd代入 GBK 型显示器映射方程;
7 ) 把颜色的 XYZ三刺激值换算成色度坐标值 xn和 yn, 即让:
X Y
" ' X + Y + Z y" yi X + Y + Z
8 ) 将 χπ和 yn代入 GBK型电视显示器映射方程;
9) 解 GBK型电视显示器映射方程: 得基色量 rgb和预示的显示颜色) YqkZqk;
10) 从基色量空间的 rgb 转换到驱动数值 RGB, 用驱动数值 RGB 驱动电视显示器, 在显示器 上就显示出电视摄像机所拍摄的彩色图像。
比较 Fig.2 和 Fig.3可知, 除了黑、 白场颠倒之外, 两者并无本质上的不同。

Claims

1. 一种通用的色域映射及色彩管理方法, 其特征是:
1 ) 本方法建立了能够按照感知意图进行色域映射的方法, 被映射的颜色最终能够保持原有的色 相、 色度坐标和符合感知意图的亮度映射; 2) 为了尽量避免颜色空间转换的系统误差和随机误 差, 本方法采用结构相同的标定色靶, 颜色空间的坐标变换和设备之间的色域映射采用统一的原 理和方法; 3) 在色域映射的整个流程中, 始终保持基色色相恒定不变; 4) 创立了通道基色 量参数并使通道基色量、 基准基色量和驱动参数之间形成可逆的幂函数关系, 藉此确保颜色预 测的正确性, 驱动参数、 基准基色量和通道基色量是沟通彩色管理系统的桥梁; 5) 创建了一种 生成纯净灰色梯尺的方法并以此为基础生成灰核参数、 灰色平衡函数式和用密度作参数的伽玛校 正方法, 藉此确保图像的灰色平衡、 灰色阶调的优先复制; 6) 创建了一种把颜色精确分割成灰 色成分和间色成分的方法并以此为基础建立了刘氏 Dwy!特性文件连接空间; 7) 创建了能够同 时完成色域映射、伽玛校正并能够用快速解析算法实施的颜色空间映射方法; 8) 创建了把刘氏 色域映射方程得到的基色量数值转精确换到驱动输入数值的方法;
2. 一种为了实施权利要求 1的、 为了使跨媒体色域映射方法具有通用特性的色靶结构, 其特征是: 用来对输入设备和输出设备进行标定的色靶都是在梯级数对应相等、 驱动数值一致的条件下生成 的样本颜色;
3. 一种为了实施权利要求 1 的、 保持基色色相恒定的方法, 其特征是: 1 ) 刘氏基色钳位方程和刘 氏基准基色量公式是描述本方法的关键技术; 2) 利用刘氏基色钳位方程对三基色梯尺上的实测 数值进行钳位处理, 以获得样本色的钳位亮度值; 3) 由刘氏基色钳位方程导出的刘氏基准基色 量公式是基色成分的色相预示器和色相保持器, 它所预示的颜色与单位基色量始终保持一致的色 相; 4) 基准基色量的刺激值总是等于 XYtZ, 其中 X和 Z是样本色的实测刺激数值, Yt是由刘氏 基色钳位方程所决定的钳位亮度值; 5 ) 刘氏色貌保持系数 λ是一个与基色波长相关的参数;
4. 一种为了实施权利要求〗的、 能够正确预示配色结果的方法及刘氏配色方程, 其特征是: 1 ) 刘 氏颜色预测方程是实现这种方法的主体和关键技术, 包括基于减色法复制的刘氏配色方程、 基于 加色法复制的刘氏配色方程、基于四色复制的刘氏四色配色方程、 扫描颜色预测方程和 RGB扫描 分色方程; 2) 在刘氏配色方程式中, 每种基色在每个通道都有自己的通道基色量参数, 通道 基色量参数和基准基色量之间、基准基色量和驱动参数之间存在可逆的幂函数关系; 3) 刘氏配 色方程式都能准确地预示基色合成结果; 4) RGB扫描分色方程和刘氏扫描颜色预测方程是描 述同一个样本色的孪生方程;
5. 一种为了实施权利要求 1 的、 特性化刘氏配色方程的方法, 其特征是: 1 ) 要用刘氏基色钳位方 程和刘氏基准基色量公式对三基色梯尺样本色进行标定,从而使基色获得独立的配色属性; 2) 要 用基色梯尺的基准基色量序列对基色的三种通道基色量进行标定, 使每种基色在三维配色空间内 获得空间独立性; 3) 这种方法使基准基色量参数和颜色驱动数值之间形成正确的幂函数关系;
6. 一种为了实施权利要求 1的为扫描仪、 打印机、 常白型显示器和常黑型显示器生成纯净灰色梯尺 的方法, 其特征是: 1 ) 利用本发明生成的纯净灰色梯尺作为灰色阶调复制的基础模板; 2) 构造 纯净灰色梯尺的原始数据是在扫描仪、 打印机和显示器上显示的梯尺上实际测得的初始亮度数组 [Yoai]. [G。ai]、 [Ypai]、 [Yqwai] , [Yqkai], 纯净灰色梯尺的理想亮度数组是根据这些原始数据、 经过 9个变 换步骤得到的、 不包含光学畸变成份在内的纯净数据, 光学畸变成份是利用幂函数拟合法的特殊 办法排除的; 3) 在纯净灰色梯尺上, 每一点的色度坐标值都与媒体白点的色度坐标保持一致;
7. 一种为了实施权利要求 1 的特性化纯净灰色梯尺组分基色量的方法, 其特征是: 1 ) 纯净灰色梯 尺组分基色量是用刘氏配色方程对纯净灰色梯尺的三刺激值数组进行标定计算得到的; 2) 纯净灰 色梯尺组分基色量是以纯净灰色密度为自变量的幂函数, 对于四色打印来说, 则是以纯净灰色密 度为自变量的多项式函数; 3) 纯净灰色梯尺组分基色量中的最小值被视为匹配视觉彩色的灰核; 4) 灰核既被用作优先复制灰色阶调的工具、伽玛校正的载体, 同时还是实现快速解析运算方法的 钥匙; 5) 在为四色打印设备建立的纯净灰色梯尺组分基色量多项式中, 黑基色量是基准基色量 ^并已经被纯净化; 6) 灰色成分取代量用 kdd表示, 并让 kdd = CMdk )n; 7) 对四色灰平衡多项式 的标定方法是预先给定黑基色的阶调曲线使四色配色方程蜕变成三色配色方程, 然后用三色配色 方程对三基色的灰平衡多项式进行标定;
8. 一种为了实施权利要求 1 的对图像的灰色阶调进行伽玛校正的方法, 其特征是: 1) 本方法是用 纯净灰色梯尺的纯净灰色密度作为实施伽玛校正的变量参数; 2) 伽玛值等于 2; 3)对于 cmyk 四色复制来说, 是通过把灰平衡多项式中的纯净灰色密度参数 D置换成伽玛校正密度 D'实现的, 也就是通过刘氏四色打印反伽玛灰平衡多项式实现的;
9. 一种为了实施权利要求 1 的为扫描仪建立 DlXiyi 特性文件连接颜色空间的方法, 其特征是: 1) 刘氏颜色分割方程和刘氏颜色分割方程的灰色梯尺格式是建立 DlXiyi 特性文件连接颜色空间的关 键工具和核心技术; 要用刘氏分割方程对扫描色 XYZ进行分割, 藉此获得灰色量 p, 扫描 色 XYZ是来自刘氏扫描颜色预测方程计算出来的 XYZ数值; 3) 该方法通过参数 p对灰色成分 钳位、 通过 (1一 p ) 对彩色成分钳位; 4) Qx 特性文件连接颜色空间的密度参数 取决于参 数 p,密度参数 Q是用刘氏分割方程的灰色梯尺格式算出的,色度参数 取决于待分割颜色 XYZ; 5) 刘氏扫描颜色分割方程分为三个子类型, 把待分割颜色划分成三个区域进行分割; 6) 在 向目标颜色空间传送或者压缩颜色 XYZ时, 颜色空间具有恒亮度、 恒色度、 高压縮比传送颜 色的特征; 7) 刘氏分割方程可以被简化成三元二次方程进行快速运算;
10. 一种为了实施权利要求 9的在 RGB色空间为扫描仪快速计算孪生基色量 c'm'y' 的方法及刘氏三色 钳位方程, 其特征是: 1) 本发明创建的刘氏三色钳位方程是快速计算孪生基色量 c'm'y1 的工具, 是贯彻本方法的核心技术; 2) 刘氏三色钳位方程利用色貌保持参数 λ和灰核参数对孪生基色量 c'm'y' 的解进行钳位, 使得 c'm'y' 具有基准基色量的属性并且保持颜色 RGB的色相及色度坐标不 发生改变; 3) 刘氏三色钳位方程属于三元二次方程, 可以用解析方法对颜色进行快速处理;
11. 一种把扫描颜色从 RGB色空间转换到 C I EXYZ色空间的方法, 其特征是: 1) 这是一种基于色度 学原理的转换方法, 而不是借助于回归分析原理的近似方法; 2) 利用本发明创建的刘氏颜色分 割方程计算灰核参数, 可以确保颜色 RGB中的灰色成分得到准确计算; 3) 利用本发明创建的刘 氏三色钳位方程可以确保孪生基色量 c'm'y1 的色相独立性; 4) 实现颜色坐标精确换算的目标是 通过本发明创建的 c'm'y'— cmy 孪生基色量转换式完成的; 5) 利用本发明创建的扫描颜色预测 方程完成从 RGB到 XYZ的精确变换; 6) 利用 RGB扫描分色方程和刘氏扫描颜色预测方程所生 成的孪生基色量转换式实现准确的 RGB— XYZ坐标转换;
12. 一种为了实施权利要求 1 的为数码照相机或数码电视摄像机建立 D|Xiyi特性文件连接颜色空间的 方法, 其特征是: 1) 用本发明创建的刘氏分割方程灰色梯尺方程式计算标准显示器灰色阶调的 三刺激值, 该方程中的钳位参数 Y是由亮度方程式决定的亮度数值; 2) 根据颜色 XYZ的亮度 数值 Y用刘氏灰色梯尺方程式中的亮度方程式计算灰色阶调亮度 ^和进而把 Ygrey 转换为颜色 连接空间的密度参数 Dl ; 3) 用 RGB— XYZ矩阵方程计算出来的 XYZ数值计算^ 特性文件连 接颜色空间的 ^数值; 4) 对于 CRT、 PDP、 LCD, LED等不同类型的显示设备来说, 用本方 法建立 D|Xiyi特性文件连接颜色空间具有通用性;
13. 一种为了实施权利要求 1的将特性文件连接空间的参数 映射到目标设备色域的方法,其特征 是: 1) 用特性文件连接空间的参数 ^和目标设备色域的纯净灰色阶调密度建立幂函数关系就能 够达到灰色阶调映射的目的,这种方法对各种类型的输出设备都是适用的,是具有通用性的方法; 2) 采用纯净灰色密度参数进行灰色阶调映射的方法不但对于不同种类的设备是通用的,而且对于 基于加色法原理和基于减色法原理生成颜色的设备也是通用的;
14. 一种为了实施权利要求 1的将特性文件连接空间的颜色 D|Xiyi映射到目标设备色域的方法,其特征 是: 1) 实施这种方法的主体和核心技术是刘氏色域映射方程; 2) 特性文件连接空间的颜色 D,x,y,分为两个支路向刘氏色域映射方程传送, 然后在刘氏色域映射方程交汇; 3) 传送 Di的分支 首先对灰色阶调进行伽玛校正, 然后根据伽玛校正密度计算灰核参数, 最后将灰核数值动态插入 ~~刘氏色域映射方程; 4) 色度参数 xiyi直接进入刘氏色域映射方程, 并协同方程中的刘氏钳位亮 度 YP、 Yqw、 Ygk 及灰核数值对刘氏色域映射方程进行钳位; 5) 刘氏色域映射方程是一个颜色分 解引擎, 由它得到的基准基色量数值都继承色相不变的特性; 6) 根据刘氏色域映射方程解得的 基准基色量可以直接算出基色的驱动输入数值; 7) 刘氏色域映射方程都是三元二次方程, 可以 用解析算法进行快速转换;
15. 一种为了实施权利要求 14的将扫描仪获取的颜色 XYZ映射到打印设备色域的方法, 本方法除了 继承刘氏色域映射方法的通用特征外, 还具用如下特征: 1) 色域映射是借助于刘氏扫描仪一打 印机映射方程实现的; 2) 该方法利用刘氏四色打印反伽玛灰平衡多项式计算灰色阶调的组分 基色量和灰色取代参数 kdd,灰色阶调的组分基色量是为灰核提供数值的方法,灰色成分参数 kdd是 一个具有纯净阶调分布曲线的、 经过伽马校正的灰色成分取代参数; 3) 映射后得到的颜色 XpYpZp 是打印颜色的预示; 4) 生成打印颜色 ΧΡΥΡΖΡ的驱动数值 CMYK是根据刘氏扫描仪一打 印机映射方程算出的基准基色量 cmy和 kdd算得的, CMYK是用双伽玛校正函数表示的;
16. 一种为了实施权利要求 14的将数码相机获取的颜色 XYZ映射到常白型显示器色域的方法, 本方 法除了继承刘氏色域映射方法的通用特征外, 还具用如下特征: 1 ) 该方法是借助于刘氏数码相 机一显示器映射方程实现的; 2) 刘氏数码相机一显示器映射方程具有三个子类型,分别在参数
Yqw 禾卩 、 Yqw 和 gdd、 Yqw 和 t½的共同作用下, 能确保映射到目标色域的颜色能够继承它在源 色域中的色相和色度, 同时又能使二者的亮度分布具有良好的相似度; 3) 映射后得到的颜色 Xqw Yqw Zcw 是在常白型显示器上显示颜色的预示: 4) 常白型显示器生成的颜色 XqwYqw Zqw 的驱 动输入数值 RGB是根据刘氏数码相机一显示器映射方程算出的基准基色量 rgb得出的, RGB是用 双伽玛校正函数表示的;
17. 一种为了实施权利要求 14的将电视摄像机或者数码摄像机获取的颜色 XYZ映射到常黑型电视显 示器色域的方法, 本方法除了继承刘氏色域映射方法的通用特征外, 还具用如下特征: 1) 该方 法是借助于数刘氏电视摄像机一电视显示器映射方程实现的; 2) 刘氏电视摄像机一电视显示器 映射方程具有三个子类型,分别在参数 Yqk 和 、 丫 ^和9^、 Yqk 和 bdd的共同作用下, 能够确保 映射到目标色域的颜色能够继承它在源色域中的色相和色度, 同时又能使二者的亮度分布具有良 好的相似度; 3) 映射后得到的颜色 )^丫^4是在常黑型电视显示器上显示颜色的预示; 4) 常 黑型显示器生成的颜色 Xqk Yqk Zqk的驱动输入数值 RGB是利用刘氏电视摄像机一电视显示器映射 方程算出的的基准基色量 rgb算出的, RGB是用双伽玛校正函数表示的;
18. 一种为了实施权利要求 14的将打印设备获取的颜色 XYZ映射到常白型显示器色域的方法, 其特 征是: 1) 该方法是借助于打印机一常白型显示器色域映射方程实现的; 2) 刘氏打印机一显示 器映射方程具有三个子类型,能够确保映射到目标色域的颜色能够继承它在源色域中的色相和色 度, 同时又能使二者的亮度分布具有良好的相似度; 3) 映射得到的颜色 XqkYqkZqk是在常白型显 示器上显示颜色的预示; 4) 常白型显示器生成的颜色 X^YqwZqw的驱动输入数值 RGB是利用刘 氏打印机一常白型显示器色域映射方程算出的基准基色量 rgb算出的, RGB是用双伽玛校正函数 表示的;
19. 一种为了实施权利要求 1的把设备的基准基色量数值转换成驱动输入值的双伽玛校正方法, 其特 征是: 1) 不管对于基于加色法原理生成颜色的设备还是一种基于减色法原理生成颜色的设备, 本发明的方法具有通用性; 2) 这种根据映射得到的基准基色量计算输入驱动数值的方法本质 上是一种具有双重校正特点的反伽玛校正阶调的方法, 它既包含着对基色本身阶调的反伽玛校 正, 同时还包含着对纯净灰色阶调的反伽玛校正。
PCT/CN2011/001729 2011-10-17 2011-10-17 一种通用的色域映射及色彩管理方法 WO2013056387A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180042671.9A CN103931169B (zh) 2011-10-17 2011-10-17 一种通用的色域映射及色彩管理方法
US13/818,303 US20140152687A1 (en) 2011-10-17 2011-10-17 Color management system based on universal gamut mapping method
PCT/CN2011/001729 WO2013056387A1 (zh) 2011-10-17 2011-10-17 一种通用的色域映射及色彩管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001729 WO2013056387A1 (zh) 2011-10-17 2011-10-17 一种通用的色域映射及色彩管理方法

Publications (1)

Publication Number Publication Date
WO2013056387A1 true WO2013056387A1 (zh) 2013-04-25

Family

ID=48140277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001729 WO2013056387A1 (zh) 2011-10-17 2011-10-17 一种通用的色域映射及色彩管理方法

Country Status (3)

Country Link
US (1) US20140152687A1 (zh)
CN (1) CN103931169B (zh)
WO (1) WO2013056387A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937018A (zh) * 2017-01-12 2017-07-07 浙江大学 基于rbf神经网络用于纺织品喷墨印染的色彩映射方法
CN107316602A (zh) * 2017-08-28 2017-11-03 京东方科技集团股份有限公司 N基色显示屏的显示控制方法、装置及显示器件
CN113129222A (zh) * 2020-01-13 2021-07-16 华为技术有限公司 颜色阴影校正方法、终端设备及计算机可读存储介质
CN114792363A (zh) * 2022-04-19 2022-07-26 江南大学 基于三原色纤维混色纺纱的全色域网格化混色模型构建方法及彩色纺纱方法
CN117395825A (zh) * 2023-11-24 2024-01-12 北京同步风云科技有限公司 一种基于实时led亮度和色差的校正软件控制方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018853B2 (en) * 2008-09-24 2015-04-28 B/E Aerospace, Inc. Methods, apparatus and articles of manufacture to calibrate lighting units
US20160053977A1 (en) 2008-09-24 2016-02-25 B/E Aerospace, Inc. Flexible led lighting element
US8953876B2 (en) * 2012-08-22 2015-02-10 Facebook, Inc. Creation of a color profile of an image
US9697796B2 (en) 2015-03-26 2017-07-04 Intel Corporation Adaptive linear luma domain video pipeline architecture
CN104766585B (zh) * 2015-04-29 2017-08-25 深圳市华星光电技术有限公司 设定液晶面板成像时的像素的灰阶值的方法
CN104965970B (zh) * 2015-04-30 2017-09-12 华文包装股份有限公司 用于包装印刷多介质数字打样的专色确定方法
EP3593340B1 (en) * 2017-03-06 2021-11-03 E Ink Corporation Method for rendering color images
CN107093031A (zh) * 2017-05-10 2017-08-25 广东溢达纺织有限公司 颜色数据互联网管理方法与系统
CN108205812B (zh) * 2017-11-22 2021-12-17 广东工业大学 一种颜料色彩混合比例匹配的方法
CN109410876B (zh) * 2018-12-17 2021-01-26 惠科股份有限公司 三色数据到四色数据的转换方法及装置
CN110490328A (zh) * 2019-08-06 2019-11-22 刘世昌 以统一场论和全息电视为基础实现量子计算机的方法
CN110490981B (zh) * 2019-08-14 2020-05-12 愉悦家纺有限公司 八基色hsb颜色空间的网格化模型及其离散色谱构建方法
CN112885300B (zh) * 2019-11-29 2024-04-05 美国像素公司 使用多个非线性模型的面板校准
TWI745871B (zh) 2020-02-24 2021-11-11 佳世達科技股份有限公司 顯示裝置及顏色調整方法
JP7428090B2 (ja) 2020-06-25 2024-02-06 セイコーエプソン株式会社 校正装置、校正方法、校正プログラム、及び分光カメラ
US11615763B2 (en) 2020-11-05 2023-03-28 Samsung Electronics Co., Ltd. Color gamut compression and extension
CN114905851B (zh) * 2022-07-15 2022-11-11 浙江工业大学 一种印刷色密度特征曲线采集方法
CN115174881B (zh) * 2022-07-15 2024-02-13 深圳市火乐科技发展有限公司 色域映射方法、装置、投影设备及存储介质
CN117253459B (zh) * 2023-11-20 2024-01-09 汕头市超声仪器研究所股份有限公司 一种对液晶显示器进行Gamma调校的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050112319A (ko) * 2004-05-25 2005-11-30 삼성전자주식회사 원형 색역 사상에 따른 색변환 장치 및 그 방법
CN1867963A (zh) * 2003-10-21 2006-11-22 克雷沃耶提公司 色域转换系统和方法
CN101316311A (zh) * 2007-05-28 2008-12-03 佳能株式会社 颜色处理设备和方法
CN101489145A (zh) * 2008-01-15 2009-07-22 奥多比公司 在颜色变换中平滑地改变灰度级
US20090238456A1 (en) * 2008-03-19 2009-09-24 Seiko Epson Corporation Image Data Analysis Apparatus, Image Data Analysis Method, and Program
CN101621700A (zh) * 2008-10-21 2010-01-06 青岛海信电器股份有限公司 一种多媒体设备的色域匹配方法及电视机
CN101635858A (zh) * 2008-07-23 2010-01-27 胜华科技股份有限公司 色彩校正方法与应用其的集成型芯片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243414A (en) * 1991-07-29 1993-09-07 Tektronix, Inc. Color processing system
US7728845B2 (en) * 1996-02-26 2010-06-01 Rah Color Technologies Llc Color calibration of color image rendering devices
US5991456A (en) * 1996-05-29 1999-11-23 Science And Technology Corporation Method of improving a digital image
JP2000278546A (ja) * 1999-01-22 2000-10-06 Sony Corp 画像処理装置及び画像処理方法、色域変換テーブル作成装置及び色域変換テーブル作成方法、画像処理プログラムを記録した記録媒体、並びに色域変換テーブル作成プログラムを記録した記録媒体
EP1667063A4 (en) * 2003-09-11 2008-11-19 APPARATUS, METHOD AND PROGRAM FOR PROCESSING IMAGES
CN101421758B (zh) * 2006-04-18 2011-09-21 国立大学法人东京工业大学 图像变换装置和图像变换方法
CN100551080C (zh) * 2006-08-28 2009-10-14 华为技术有限公司 视频通讯中视频输入设备伽玛特性校正方法和装置
US9049410B2 (en) * 2009-12-23 2015-06-02 Samsung Display Co., Ltd. Color correction to compensate for displays' luminance and chrominance transfer characteristics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867963A (zh) * 2003-10-21 2006-11-22 克雷沃耶提公司 色域转换系统和方法
KR20050112319A (ko) * 2004-05-25 2005-11-30 삼성전자주식회사 원형 색역 사상에 따른 색변환 장치 및 그 방법
CN101316311A (zh) * 2007-05-28 2008-12-03 佳能株式会社 颜色处理设备和方法
CN101489145A (zh) * 2008-01-15 2009-07-22 奥多比公司 在颜色变换中平滑地改变灰度级
US20090238456A1 (en) * 2008-03-19 2009-09-24 Seiko Epson Corporation Image Data Analysis Apparatus, Image Data Analysis Method, and Program
CN101635858A (zh) * 2008-07-23 2010-01-27 胜华科技股份有限公司 色彩校正方法与应用其的集成型芯片
CN101621700A (zh) * 2008-10-21 2010-01-06 青岛海信电器股份有限公司 一种多媒体设备的色域匹配方法及电视机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106937018A (zh) * 2017-01-12 2017-07-07 浙江大学 基于rbf神经网络用于纺织品喷墨印染的色彩映射方法
CN106937018B (zh) * 2017-01-12 2019-03-05 浙江大学 基于rbf神经网络用于纺织品喷墨印染的色彩映射方法
CN107316602A (zh) * 2017-08-28 2017-11-03 京东方科技集团股份有限公司 N基色显示屏的显示控制方法、装置及显示器件
US11328645B2 (en) 2017-08-28 2022-05-10 Boe Technology Group Co., Ltd. Display control method and device for N-primary-color display panel, and display device
CN113129222A (zh) * 2020-01-13 2021-07-16 华为技术有限公司 颜色阴影校正方法、终端设备及计算机可读存储介质
WO2021143281A1 (zh) * 2020-01-13 2021-07-22 华为技术有限公司 颜色阴影校正方法、终端设备及计算机可读存储介质
CN114792363A (zh) * 2022-04-19 2022-07-26 江南大学 基于三原色纤维混色纺纱的全色域网格化混色模型构建方法及彩色纺纱方法
CN117395825A (zh) * 2023-11-24 2024-01-12 北京同步风云科技有限公司 一种基于实时led亮度和色差的校正软件控制方法

Also Published As

Publication number Publication date
US20140152687A1 (en) 2014-06-05
CN103931169B (zh) 2018-02-02
CN103931169A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2013056387A1 (zh) 一种通用的色域映射及色彩管理方法
US7054035B2 (en) Method and system for management of color through conversion between color spaces
US7450281B2 (en) Image processing apparatus and information processing apparatus, and method thereof
JP3630835B2 (ja) 画像処理方法
CN1323373C (zh) 投影机的投影平面色彩校正方法、系统
CN101449589A (zh) 彩色图像显示设备和色彩变换设备
KR101680254B1 (ko) 타깃 컬러 재현 디바이스의 교정 방법
US8427722B2 (en) Color transform insensitive to process variability
JPH05191641A (ja) 画像処理方法及び装置
WO2012116468A1 (zh) 按色度和视觉保真原则传送及显示图像的方法
KR20070090374A (ko) 출력 예측을 이용한 영상 재현 방법 및 장치
CN101132472A (zh) 图像处理器、计算机可读介质以及图像处理方法
CN104010176B (zh) 一种利用人眼实现从显示器到打印机颜色校正方法
JP2010268294A (ja) カラーマネジメントシステム及びプログラム
JP6780442B2 (ja) 色処理装置、色処理方法、色処理システムおよびプログラム
JP5322326B2 (ja) 色補正テーブル算出回路、色補正装置、表示装置、色補正方法、及びプログラム
Usui et al. Neural networks for device-independent digital color imaging
Fleming et al. Color management and ICC profiles; can’t live without it so learn to live with it!
TWI267448B (en) Simulation of profile gives prediction of specific colors
KR101157832B1 (ko) 스캐너의 색 보정 장치 및 그 제어방법
JP5748236B2 (ja) 色補正情報の生成方法、及び色補正装置
JP2000287096A (ja) カラープリンタにおけるガマット圧縮方法及びそれを用いた色再現処理装置
JP2003283846A (ja) ガマット処理方法
JPH10117289A (ja) カラー画像形成システム及びその色合わせ方法
JP2023161937A (ja) カラー画像のモノトーン化印刷方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13818303

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874347

Country of ref document: EP

Kind code of ref document: A1