WO2013054504A1 - 半導体パッケージおよび半導体装置 - Google Patents

半導体パッケージおよび半導体装置 Download PDF

Info

Publication number
WO2013054504A1
WO2013054504A1 PCT/JP2012/006459 JP2012006459W WO2013054504A1 WO 2013054504 A1 WO2013054504 A1 WO 2013054504A1 JP 2012006459 W JP2012006459 W JP 2012006459W WO 2013054504 A1 WO2013054504 A1 WO 2013054504A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing member
semiconductor package
insulating layer
wiring board
conductor pattern
Prior art date
Application number
PCT/JP2012/006459
Other languages
English (en)
French (fr)
Inventor
岡田 亮一
賢也 橘
小野塚 偉師
猛 八月朔日
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2013054504A1 publication Critical patent/WO2013054504A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to a semiconductor package and a semiconductor device.
  • a wiring substrate (for example, an interposer) used for a new package such as BGA or CSP is generally formed by forming a conductor pattern or a conductor post on a substrate obtained by impregnating a fiber base material with a resin composition.
  • Such an interposer has a large difference in thermal expansion coefficient from the chip. Further, since the interposer usually has a larger area than the chip, the area of the portion not in contact with the chip is large. Such a portion not in contact with the chip has extremely low rigidity, and due to the difference in thermal expansion between the chip and the interposer as described above, it tends to warp to the chip side at a high temperature, thereby reducing the reliability of electrical connection. There was a problem. Further, since the chip generates heat, a wiring board such as an interposer is required to have excellent heat dissipation.
  • a substrate including a fiber base; a first conductor pattern provided on one surface of the substrate; and a second conductor provided on the other surface of the substrate and electrically connected to the first conductor pattern.
  • a wiring board comprising a conductor pattern; A semiconductor element bonded to the one surface of the substrate and electrically connected to the first conductor pattern; A metal reinforcing member bonded to the wiring board and having a smaller coefficient of thermal expansion than the wiring board; An insulating layer provided to cover at least part of the surface of the reinforcing member; Have A semiconductor package in which the insulating layer is an insulating resin layer or a ceramic layer is provided.
  • the thermal expansion coefficient of the reinforcing member is smaller than the thermal expansion coefficient of the wiring board, the wiring board is hardly warped by joining the reinforcing member to the wiring board. Therefore, the connection reliability between the semiconductor element and the wiring board can be improved.
  • the thermal expansion coefficient means an average linear expansion coefficient in the plane direction at 50 ° C. to 150 ° C.
  • an insulating layer is provided on the surface of the metal reinforcing member.
  • the insulating layer is a resin layer or a ceramic layer, and is excellent in thermal radiation as compared with a metal reinforcing member. Therefore, heat transmitted to the reinforcing member can be efficiently radiated through the insulating layer.
  • the heat of the wiring board can be radiated through the reinforcing member and the insulating layer, and the warpage generated in the wiring board can be suppressed. Thereby, it can be set as the semiconductor package excellent in connection reliability.
  • a semiconductor device having the above-described semiconductor package can also be provided.
  • a highly reliable semiconductor package and a semiconductor device including the semiconductor package can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor package according to a first embodiment of the present invention. It is a top view which shows the semiconductor package shown in FIG. It is a bottom view which shows the semiconductor package shown in FIG. It is a figure which shows an example of the manufacturing method of the semiconductor package shown in FIG. It is sectional drawing which shows typically the semiconductor package which concerns on 2nd Embodiment of this invention. It is a figure which shows an example of the manufacturing method of the semiconductor package shown in FIG. It is sectional drawing which shows typically an example of embodiment of the semiconductor device of this invention. It is sectional drawing which shows the manufacturing process of the manufacturing method of the semiconductor package of this invention.
  • FIGS. 1 is a cross-sectional view schematically showing a semiconductor package according to a first embodiment of the present invention
  • FIG. 2 is a top view showing the semiconductor package shown in FIG. 1
  • FIG. 3 shows the semiconductor package shown in FIG.
  • FIG. 4 is a bottom view
  • FIG. 4 is a view showing an example of a method for manufacturing the semiconductor package shown in FIG.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • each part of the semiconductor package is exaggerated for convenience of explanation.
  • the semiconductor package 1 of the present embodiment is provided with a substrate 21, a first conductor pattern 221 provided on one surface side of the substrate 21, and the other surface side of the substrate 21.
  • a wiring board 2 having a second conductor pattern 224 electrically connected to the first conductor pattern 221, and a semiconductor element 3 bonded to one surface of the board 21 and electrically connected to the first conductor pattern 221;
  • the metal reinforcing members 4 and 5 bonded to the wiring board 2 and having a smaller thermal expansion coefficient than the wiring board 2 and an insulating resin layer provided so as to cover at least a part of the surface of the reinforcing member 4 (Insulating layer) 61 and an insulating resin layer (insulating layer) 62 provided so as to cover at least a part of the surface of the reinforcing member 5.
  • the thermal expansion coefficient means an average linear expansion coefficient in the plane direction at 50 ° C. to 150 ° C.
  • the semiconductor package 1 includes a wiring board 2, a semiconductor element 3 mounted on the wiring board 2, a first reinforcing member 4, a second reinforcing member 5, The insulating layer 61 provided on the first reinforcing member 4 and the insulating layer 62 provided on the second reinforcing member 5 are included.
  • a portion of the wiring board 2 other than the portion joined to the semiconductor element 3 is reinforced by the first reinforcing member 4 and the second reinforcing member 5. Increased rigidity.
  • the thermal expansion coefficients of the first reinforcing member 4 and the second reinforcing member 5 are smaller than that of the wiring substrate 2 (and also the substrate 21), respectively, this is caused by the difference in thermal expansion coefficient between the wiring substrate 2 and the semiconductor element 3. Warping of the wiring board 2 can be suppressed or prevented.
  • an insulating layer 61 made of resin is provided on the first reinforcing member 4 made of metal.
  • a resin insulating layer 62 is provided on the metal second reinforcing member 5.
  • the insulating layers 61 and 62 are excellent in heat radiation compared to the metal reinforcing members 4 and 5.
  • the thermal emissivity of a metal is about 0.1 when a black body is 1, but the thermal emissivity of a resin is larger than the emissivity of a metal and is generally 0.8 or more. . Therefore, the heat transmitted to the reinforcing members 4 and 5 can be efficiently radiated through the insulating layers 61 and 62.
  • the heat of the wiring board 2 can be radiated from the insulating layers 61 and 62 via the reinforcing members 4 and 5. For this reason, it is possible to suppress the warpage generated in the wiring substrate 2 and to obtain a semiconductor package having excellent connection reliability.
  • the wiring board 2 is a board (first wiring board) that supports the semiconductor element 3, and is, for example, a relay board (interposer) that relays electrical connection between the mounted semiconductor element 3 and a mother board 200 as will be described later. is there.
  • the wiring substrate 2 is usually a quadrangle such as a square or a rectangle in plan view.
  • the wiring board 2 includes a substrate 21, conductor patterns 221, 222, 223, 224, conductor posts 231, 232, 233, a heat transfer portion including the heat transfer post 24 that is a heat transfer portion, and insulating layers 251, 261. And have.
  • the conductor pattern 221 constitutes a first conductor pattern provided on one surface side of the substrate 21, and the conductor pattern 224 is provided on the other surface side of the substrate 21.
  • a second conductor pattern electrically connected to the conductor pattern is formed.
  • the substrate 21 is composed of a plurality (three layers in this embodiment) of insulating layers 211, 212, and 213. More specifically, the substrate 21 is configured by laminating an insulating layer 211, an insulating layer 212, and an insulating layer 213 in this order. In addition, the number of the insulating layers which comprise the board
  • substrate 21 is not limited to this, One layer or two layers may be sufficient, and four or more layers may be sufficient.
  • the insulating layers 211, 212, and 213 are made of an insulating material.
  • each insulating layer 211, 212, 213 is composed of a base material (fiber base material) and a resin composition impregnated in the base material.
  • a base material fiber base material
  • resin composition impregnated in the base material may include a base material, and the other layers may include only the resin composition without including the base material.
  • the base material is used as a core material for each of the insulating layers 211, 212, and 213. By having such a base material, the rigidity of the substrate 21 can be increased.
  • the base material examples include glass fiber base materials composed of glass fibers such as glass woven fabrics and glass nonwoven fabrics, polyamide resin fibers such as polyamide resin fibers, aromatic polyamide resin fibers, wholly aromatic polyamide resin fibers, and polyesters. Synthesis composed of woven or non-woven fabric mainly composed of at least one of resin fiber, aromatic polyester resin fiber, polyester resin fiber such as wholly aromatic polyester resin fiber, polyimide resin fiber, fluororesin fiber, etc. Examples thereof include a fiber base material, or a paper base material mainly containing any one of craft paper, cotton linter paper, mixed paper of linter and kraft pulp, and the like. Among these, as such a base material, a glass fiber base material is preferable. Thereby, the rigidity of the substrate 21 can be increased and the substrate 21 can be thinned. Furthermore, the thermal expansion coefficient of the substrate 21 can be reduced.
  • any 1 or more types such as E glass, C glass, A glass, S glass, D glass, NE glass, T glass, H glass, Q glass, are mentioned, for example. Can be mentioned. Among these, T glass is preferable. Thereby, the thermal expansion coefficient of a glass fiber base material can be made small, and, thereby, the thermal expansion coefficient of the board
  • substrate 21 can be made small.
  • the content of the base material in the insulating layers 211, 212, and 213 is preferably 30 to 70 wt%, and preferably 40 to 60 wt%. Is more preferable. Thereby, the electric insulation and thermal expansion coefficient of each insulating layer can be made sufficiently low while reliably preventing damage such as cracks of these insulating layers.
  • the resin composition impregnated in such a base material contains a resin material.
  • a resin material a thermosetting resin is preferably used.
  • thermosetting resin examples include novolak type phenol resins such as phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, unmodified resole phenol resin, oil-modified resole modified with tung oil, linseed oil, walnut oil, and the like.
  • Phenol resin such as phenolic resin, bisphenol type epoxy resin such as bisphenol A epoxy resin, bisphenol F epoxy resin, novolac epoxy resin, novolac epoxy resin such as cresol novolac epoxy resin, biphenyl type epoxy resin, etc.
  • cyanate resin is particularly preferable.
  • substrate 21 can be made small enough.
  • the electrical characteristics (low dielectric constant, low dielectric loss tangent, etc.) of the substrate 21 can be made excellent.
  • the resin composition preferably contains a filler. That is, each of the insulating layers 211, 212, and 213 preferably contains a filler. Thereby, the thermal expansion coefficient of the insulating layers 211, 212, and 213 can be lowered.
  • Examples of the filler include various inorganic fillers or organic fillers.
  • Examples of the inorganic filler include oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide and metal ferrite, and hydroxide such as aluminum hydroxide and magnesium hydroxide.
  • organic filler synthetic resin powder
  • synthetic resin powder examples include alkyd resin, epoxy resin, silicone resin, phenol resin, polyester, acrylic resin, acetal resin, polyethylene, polyether, polycarbonate, polyamide, polysulfone, polystyrene, polyvinyl chloride, fluororesin, and polypropylene.
  • various thermosetting resins such as ethylene-vinyl acetate copolymers or powders of thermoplastic resins, or powders of copolymers of these resins may be mentioned.
  • organic fillers include aromatic or aliphatic polyamide fibers, polypropylene fibers, polyester fibers, and aramid fibers. Any one or more of these can be used.
  • the thermal expansion coefficient of the insulating layers 211, 212, and 213 can be effectively lowered.
  • the heat transfer properties of the insulating layers 211, 212, and 213 can be increased.
  • silica is preferable, and fused silica (especially spherical fused silica) is preferable in terms of excellent low thermal expansion.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 0.05 to 2.0 ⁇ m, particularly preferably 0.1 to 1.0 ⁇ m. Accordingly, the inorganic filler can be more uniformly dispersed in the insulating layers 211, 212, and 213, and the physical strength and insulating properties of the insulating layers 211, 212, and 213 can be made particularly excellent. .
  • the average particle size of the inorganic filler can be measured by, for example, a particle size distribution meter (manufactured by HORIBA, LA-500). Moreover, in this specification, an average particle diameter refers to the average particle diameter on a volume basis.
  • the content of the inorganic filler in the insulating layers 211, 212, and 213 is not particularly limited, but is preferably 30 to 80 wt%, particularly 45 to 75 wt% when the resin composition excluding the substrate is 100 wt%. Is preferred. When the content is within the above range, the insulating layers 211, 212, and 213 have sufficiently low thermal expansion coefficients and particularly low hygroscopicity.
  • the resin composition may contain a thermoplastic resin such as a phenoxy resin, a polyimide resin, a polyamideimide resin, a polyphenylene oxide resin, or a polyethersulfone resin in addition to the thermosetting resin described above. Any one or more of these can be used as the thermoplastic resin.
  • a thermoplastic resin such as a phenoxy resin, a polyimide resin, a polyamideimide resin, a polyphenylene oxide resin, or a polyethersulfone resin in addition to the thermosetting resin described above. Any one or more of these can be used as the thermoplastic resin.
  • the resin composition may contain additives other than the above components such as pigments and antioxidants as necessary.
  • the insulating layers 211, 212, and 213 may be made of the same material, or may be made of different materials.
  • the average thickness of the substrate 21 composed of a plurality of layers as described above is not particularly limited, but is preferably 30 ⁇ m or more and 800 ⁇ m or less, and more preferably 30 ⁇ m or more and 400 ⁇ m or less.
  • a conductor pattern 221 is provided on the upper surface of the insulating layer 211 of the substrate 21.
  • a conductor pattern 222 is interposed between the insulating layer 211 and the insulating layer 212.
  • a conductor pattern 223 is interposed between the insulating layer 212 and the insulating layer 213.
  • a conductor pattern 224 is provided on the lower surface of the insulating layer 213.
  • an insulating layer 251 that is, for example, a solder resist is provided on the upper surface of the insulating layer 211, and the conductor pattern 221 is interposed between the insulating layer 211 and the insulating layer 251.
  • An insulating layer 252 that is, for example, a solder resist is provided on the lower surface of the insulating layer 213, and the conductor pattern 224 is interposed between the insulating layer 213 and the insulating layer 252.
  • a thermosetting resist whose main material is an epoxy resin can be used as the insulating layers 251 and 252
  • the insulating layers 251 and 252 can be made of the same material as the insulating layers 61 and 62 described later.
  • the conductor patterns 221, 222, 223, and 224 each function as a circuit having a plurality of wirings.
  • the conductor pattern 221 has a plurality of terminals 221 a that are electrically connected to the semiconductor element 3.
  • the constituent material of the conductor patterns 221, 222, 223, and 224 is not particularly limited as long as it has conductivity, and examples thereof include various metals such as copper, copper-based alloys, aluminum, and aluminum-based alloys, and various alloys. One of them. Among these, it is preferable to use copper or a copper-based alloy as the constituent material. Copper and copper-based alloys have relatively high electrical conductivity. Therefore, the electrical characteristics of the wiring board 2 can be improved. Moreover, since copper and a copper-type alloy are excellent also in heat conductivity, the heat dissipation of the wiring board 2 can also be improved.
  • the average thickness of the conductor patterns 221, 222, 223, and 224 is not particularly limited, but is preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • a via hole penetrating in the thickness direction is formed, and a conductor post (via post) 231 is provided in the via hole.
  • the conductor post 231 passes through the insulating layer 211 in the thickness direction, and has an upper end connected to the conductor pattern 221 and a lower end connected to the conductor pattern 222. Thereby, the conductor pattern 221 and the conductor pattern 222 are electrically connected.
  • the semiconductor element 3 is bonded to a plurality of terminals 221a of the conductor pattern 221 via a plurality of metal bumps (solder bumps) 31 described later.
  • the plurality of metal bumps 31 penetrate the insulating layer 251 in the thickness direction.
  • the insulating layer 212 is provided with a conductor post (via post) 232 that penetrates in the thickness direction.
  • the conductor post 232 has an upper end connected to the conductor pattern 222 and a lower end connected to the conductor pattern 223. Thereby, the conductor pattern 222 and the conductor pattern 223 are electrically connected.
  • the insulating layer 213 is provided with a conductor post (via post) 233 that penetrates in the thickness direction.
  • the conductor post 233 has an upper end connected to the conductor pattern 223 and a lower end connected to the conductor pattern 224. Thereby, the conductor pattern 223 and the conductor pattern 224 are electrically connected.
  • the insulating layer 251 is provided with a plurality of openings 251A penetrating in the thickness direction, and a part of the conductor pattern 221 (terminal 221a) is exposed from each opening 251A.
  • a metal bump 31 is bonded onto each exposed terminal 221 a of the conductor pattern 221, as will be described later, and the semiconductor element 3 is electrically connected via the metal bump 31.
  • the plurality of openings 251 ⁇ / b> A of the insulating layer 251 are located inside the openings 40 of the reinforcing member 4.
  • the insulating layer 252 is provided with a plurality of openings 252A penetrating in the thickness direction, and a part (terminal) of the conductor pattern 224 is exposed from each opening.
  • Metal bumps (solder bumps) 71 are bonded on the exposed portions (terminals) of the conductor pattern 224. That is, a plurality of metal bumps 71 are bonded to the surface of the conductor pattern 224 that is the second conductor pattern on the side opposite to the substrate 21.
  • Each opening 51 of the reinforcing member 5 is formed so as to surround the outer peripheral edge of each opening 252A formed in the insulating layer 252 in a plan view from the substrate surface side.
  • the diameter of the opening 252A formed in the insulating layer 252 is smaller than the diameter of the opening 51 formed in the reinforcing member 5 (the inner diameter of the opening 51 covered with the insulating layer 62). Thereby, the contact between the conductor pattern 224 and the reinforcing member 5 can be suppressed. Further, since the insulating layer 252 serves as a solder resist that covers and protects the conductor pattern 224, the reinforcing member 5 does not have to function as the solder resist, and the diameter of the opening 51 can be increased. Easy to place.
  • the metal bumps 71 are for electrically connecting the semiconductor package 1 to, for example, a mother board as will be described later.
  • the metal bumps 71 provided on the wiring board 2 will be described.
  • the metal bump 71 has a substantially spherical shape.
  • the metal bump 71 has an arcuate curved surface that protrudes in a convex shape from the opening of the insulating layer 252 and the protruding portion is curved.
  • the shape of the metal bump 71 is not limited to this.
  • the constituent material of the metal bump 71 is not particularly limited.
  • tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, tin-- Various brazing materials (solder) such as copper and tin-silver-copper can be used. Any one or more of these can be used as the metal bump 71.
  • each metal bump 71 is not particularly limited, but is, for example, about 100 ⁇ m or more and 1000 ⁇ m or less.
  • the distance between the plurality of metal bumps 71 is not particularly limited, but is, for example, about 50 ⁇ m to 500 ⁇ m.
  • the distance between the plurality of metal bumps 71 has become extremely small with the recent miniaturization of semiconductor packages and the increase in the number of pins. Therefore, as will be described in detail later, short-circuiting between the metal bumps 71 can be prevented by forming the insulating layer 62 on the surface of the second reinforcing member 5 having a portion located between the metal bumps 71. .
  • the wiring board 2 has a heat transfer portion including the heat transfer post 24.
  • the substrate 21 of the wiring board 2 is formed with a plurality of via holes penetrating over the entire region in the thickness direction, and the heat transfer post 24 is provided in each via hole.
  • Each heat transfer post 24 penetrates the entire substrate 21 in the thickness direction, and its upper end is exposed from the upper surface of the substrate 21 and its lower end is exposed from the lower surface of the substrate 21.
  • the heat transfer post 24 has an upper end connected to the first reinforcing member 4 via the connecting portion 261 (first connecting portion) and a lower end connected to the second reinforcing member 5 via the connecting portion 262 (second connecting portion). Connected to.
  • each heat transfer post 24 thermally connects the first reinforcing member 4 and the second reinforcing member 5.
  • the upper end surface of the heat transfer post 24 is flush with the upper surface of the substrate 21, and the lower end surface of the heat transfer post 24 is flush with the lower surface of the substrate 21.
  • the heat transfer post 24 and the connection portions 261 and 262 constitute a heat transfer portion.
  • the heat transfer section including the heat transfer post (heat conduction section) 24 has higher heat transfer performance than the substrate 21 (insulating layer) described above. Thereby, the heat generated in the semiconductor element 3 can be efficiently transferred from the first reinforcing member 4 to the second reinforcing member 5 through the heat transfer portion including the heat transfer post 24. As a result, the heat dissipation of the semiconductor package 1 can be improved. Further, the heat accumulated in the wiring board 2 can be transmitted to the first reinforcing member 4 and the second reinforcing member 5 through the heat transfer post.
  • each heat transfer post 24 penetrates the substrate 21 in the thickness direction, it can be formed easily and with high accuracy in the same manner as a known conductor post.
  • each heat transfer post 24 may be hollow or solid. Moreover, it does not specifically limit as a cross-sectional shape of each heat-transfer post
  • each heat transfer post 24 does not contribute to transmission of an electric signal and is insulated from each conductor pattern 221, 222, 223, 224. Thereby, heat can be more efficiently transferred from the first reinforcing member 4 to the second reinforcing member 5 through the heat transfer post 24.
  • the plurality of heat transfer posts 24 are arranged in parallel along the outer peripheral portion of the wiring board 2 at intervals when the wiring board 2 is viewed in plan.
  • the plurality of heat transfer posts 24 are preferably arranged side by side at equal intervals in the circumferential direction along the outer peripheral portion of the wiring board 2 when the wiring board 2 is viewed in plan. Thereby, the temperature distribution of the wiring board 2 can be made uniform.
  • the plurality of heat transfer posts 24 are provided so as not to overlap the conductor patterns 221, 222, 223, and 224 described above when the wiring board 2 is viewed in plan view. Thereby, formation of the heat transfer post 24 is simplified, and a short circuit of the conductor patterns 221, 222, 223, and 224 by the heat transfer post 24 can be prevented.
  • each heat transfer post 24 is not particularly limited as long as it has a higher heat transfer property than the substrate 21 (insulating layer) described above, but a metal material is preferably used.
  • metal materials include various metals and various alloys such as copper, copper-based alloys, aluminum, and aluminum-based alloys, and any one or more of them can be used.
  • a metal material since it is excellent in heat conductivity, it is preferable to use any of copper, a copper alloy, aluminum, and an aluminum alloy.
  • the constituent material of the heat transfer post 24 may be different from the constituent material of the conductor posts 231 to 233 described above, but is preferably the same as the constituent material of the conductor posts 231 to 233. Thereby, the heat transfer post 24 can be formed together with the formation of the conductor posts 231 to 233. Therefore, the manufacturing of the semiconductor package 1 is simplified, and the semiconductor package 1 can be made inexpensive.
  • the connecting portion 261 is provided between the heat transfer post 24 and the first reinforcing member 4 and is in direct contact with the first reinforcing member 4.
  • the connecting portion 262 is provided between the heat transfer post 24 and the second reinforcing member 5 and is in direct contact with the second reinforcing member 5.
  • tin-lead tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, tin
  • tin-zinc tin-bismuth
  • tin-antimony tin-silver-bismuth
  • tin-silver-bismuth tin
  • tin examples thereof include any of various types of brazing materials (solder) such as copper-based, tin-silver-copper-based, or a resin composition including an inorganic filler and a resin material.
  • connection parts 261 and 262 are made of a resin composition
  • examples of the inorganic filler (inorganic filler) used in the resin composition include metals such as Au, Ag, and Pt, silica, alumina, diatomaceous earth, and oxidation.
  • Oxides such as titanium, iron oxide, zinc oxide, magnesium oxide and metal ferrite, nitrides such as boron nitride, silicon nitride, gallium nitride and titanium nitride, hydroxides such as aluminum hydroxide and magnesium hydroxide, calcium carbonate ( Light, heavy), carbonates such as magnesium carbonate, dolomite, dosonite, sulfates or sulfites such as calcium sulfate, barium sulfate, ammonium sulfate, calcium sulfite, talc, mica, clay, glass fiber, calcium silicate, montmorillonite, Silicates such as bentonite, zinc borate, barium metaborate, boric acid Borate such as luminium, calcium borate, sodium borate, carbon such as carbon black, graphite, carbon fiber, other iron powder, copper powder, aluminum powder, zinc white, molybdenum sulfide, boron fiber, potassium titanate, titanium A lead acid zir
  • oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, metal ferrite, boron nitride, Any one or more of nitrides such as silicon nitride, gallium nitride, and titanium nitride are preferable.
  • connection parts 261 and 262 are made of a resin composition
  • examples of the resin material used for the resin composition include various thermoplastic resins and various thermosetting resins.
  • thermoplastic resin used for the connecting portions 261 and 262 examples include polyolefins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, modified polyolefins, polyamides (eg, nylon 6, nylon 46, nylon 66).
  • Thermoplastic polyimide Liquid crystalline polymer such as aromatic polyester, Polyphenylene oxide, Polyphenylene sulfide, Polycarbonate, Polymethyl methacrylate, Polyether , Polyether ether ketone, polyether imide, polyacetal, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene
  • thermoplastic elastomers such as transpolyisoprene, fluororubber, chlorinated polyethylene, and the like, copolymers, blends, polymer alloys, etc. mainly include one or two of these The above can be mixed and used.
  • thermosetting resin used for the connection parts 261 and 262 for example, epoxy resin, phenol resin, urea resin, melamine resin, polyester (unsaturated polyester) resin, polyimide resin, silicone resin, polyurethane Resins etc. are mentioned, 1 type or 2 types or more of these can be mixed and used.
  • the semiconductor element (first semiconductor element) 3 is, for example, an integrated circuit element (IC), and more specifically, is any one of a logic IC, a memory, a light emitting / receiving element, and the like.
  • IC integrated circuit element
  • the semiconductor element 3 is provided on the upper surface (one surface) side of the substrate 21 of the wiring substrate 2 described above, and is electrically connected to the conductor pattern 221 that is the first conductor pattern.
  • the semiconductor element 3 is provided with a plurality of terminals (not shown) on its lower surface, and each terminal is electrically connected to the plurality of terminals 221 a of the conductor pattern 221 through the metal bumps 31. It is connected.
  • the constituent material of the metal bump 31 is not particularly limited, but is similar to the metal bump 71 described above, for example, tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin Any one or more of various brazing materials (solder) such as silver-bismuth, tin-copper, tin-silver-copper can be used.
  • the semiconductor element 3 is bonded (bonded) to the upper surface of the wiring board 2 through the adhesive layer 32.
  • the adhesive layer 32 is made of a material having adhesiveness and insulating properties, for example, a cured product of an underfill material.
  • the underfill material is not particularly limited, and a known underfill material can be used, but the same solder bonding resist as that for forming an insulating material 81 described later can also be used.
  • the first reinforcing member (stiffener) 4 is bonded to a portion of the upper surface (one surface) of the substrate 21 of the wiring substrate 2 described above where the semiconductor element 3 is not bonded.
  • the first reinforcing member 4 and the substrate 21 can be joined through an adhesive, for example. Thereby, installation of the 1st reinforcement member 4 becomes easy.
  • Such an adhesive is not particularly limited as long as it has an adhesive function, and various adhesives can be used, but those having excellent thermal conductivity are preferable, and include an inorganic filler and a resin material.
  • Resin compositions can be used. As this resin composition, the thing similar to the resin composition used for the connection part 261,262 mentioned above can be used.
  • an adhesive can constitute at least a part of the insulating layer 251 described above.
  • the insulating layer 251 functions as an adhesive for the first reinforcing member 4.
  • the first reinforcing member 4 has a smaller thermal expansion coefficient than the substrate 21 and the wiring substrate 2. Thereby, the thermal expansion of the substrate 21 can be suppressed.
  • the first reinforcing member 4 has a plate shape. Thereby, the structure of the 1st reinforcement member 4 can be made simple and small.
  • the surface (namely, the upper surface) of the first reinforcing member 4 opposite to the substrate 21 is positioned closer to the substrate 21 than the surface (namely, the upper surface) opposite to the substrate 21 of the semiconductor element 3.
  • the first reinforcing member 4 has a shape surrounding the semiconductor element 3.
  • the first reinforcing member 4 is formed with an opening 40 in which the semiconductor element 3 is arranged at the center, and the first reinforcing member 4 is annular (more specifically, so as to surround the semiconductor element 3). In the form of a square ring).
  • the first reinforcing member 4 is formed with a plurality of through holes 42 penetrating in the thickness direction. Specifically, a plurality of through holes (openings) 42 are formed so as to surround the opening 40 of the first reinforcing member 4. By forming the through hole 42, the heat of the first reinforcing member 4 can be radiated from the inside of the through hole 42, and the heat is suppressed from being accumulated in the first reinforcing member 4. Furthermore, if a plurality of through holes 42 having a small diameter are formed, the surface area of the first reinforcing member 4 is increased, so that the heat dissipation of the first reinforcing member 4 can be improved. As will be described in detail later, the entire inner peripheral surface of the through hole 42 is covered with an insulating layer 61.
  • each through hole 42 is circular in plan view.
  • the planar view shape of each through-hole 42 is not limited to a circle, For example, polygons, such as a quadrangle
  • the opening 40 has a quadrangular shape in plan view, but is not limited thereto. However, it is preferable that the diameter of the through hole 42 and the opening 40 is uniform without changing the diameter along the through direction. By setting it as such a simple shape, the through-hole 42 and the opening part 40 can be formed easily.
  • the distance between the first reinforcing member 4 and the semiconductor element 3 (the distance between the inner peripheral surface 41 of the first reinforcing member 4 and the outer peripheral surface 33 of the semiconductor element 3) is on the entire circumference of the semiconductor element 3. It is formed so as to be constant throughout. Thereby, the integrity of the 1st reinforcement member 4 and the semiconductor element 3 increases, and the reinforcement effect of the wiring board 2 by these is exhibited suitably.
  • the first reinforcing member 4 preferably has a difference in thermal expansion coefficient from the semiconductor element 3 of 7 ppm / ° C. or less.
  • the semiconductor element 3 and the 1st reinforcement member 4 can reinforce the wiring board 2 integrally, and can suppress the thermal expansion of the semiconductor package 1 whole.
  • the 1st reinforcement member 4 is comprised with the metal material, the heat conductivity of the 1st reinforcement member 4 can be improved. As a result, it is possible to suppress heat from being accumulated in the wiring board 2 and the semiconductor element 3.
  • Such a metal material is not particularly limited as long as it has a thermal expansion coefficient as described above, and various metal materials can be used. From the viewpoint of realizing heat dissipation and low thermal expansion, an alloy containing Fe is used. Is preferably used.
  • Fe-containing alloys examples include any of Fe—Ni alloys, Fe—Co—Cr alloys, Fe—Co alloys, Fe—Pt alloys, Fe—Pd alloys, and the like. It is preferable to use an Fe—Ni alloy.
  • the wiring board 2 can be integrally reinforced by the semiconductor element 3 and the first reinforcing member 4.
  • the Fe—Ni alloy is not particularly limited as long as it contains Fe and Ni.
  • the balance (M) is a metal such as Co, Ti, Mo, Cr, Pd, and Pt. Of these, one or more metals may be included.
  • Fe—Ni alloys include Fe—Ni alloys such as Fe-36Ni alloy (Invar), Fe-32Ni-5Co alloy (Super Invar), and Fe-29Ni-17Co alloy (Kovar).
  • Fe-Ni-Co alloys such as Fe-36Ni-12Co alloy (Erin bar), Ni-Mo-Fe alloys such as Fe-Ni-Cr-Ti alloy and Ni-28Mo-2Fe alloy.
  • Fe—Ni—Co alloys are commercially available under trade names such as KV series (manufactured by NEOMAX Materials) such as KV-2, KV-4, KV-6, KV-15, KV-25, and Nivarox. ing.
  • Fe—Ni alloys are commercially available under trade names such as NS-5 and D-1 (manufactured by NEOMAX Materials).
  • Fe-Ni-Cr-Ti alloys are commercially available under trade names such as Ni-Span C-902 (manufactured by Daido Special Metal) and EL-3 (manufactured by NEOMAX Materials).
  • the Fe—Co—Cr alloy is not particularly limited as long as it contains Fe, Co, and Cr.
  • an Fe—Co—Cr alloy such as Fe-54Co-9.5Cr (stainless invar) is used. Is mentioned.
  • the Fe—Co—Cr-based alloy may contain one or more metals of metals such as Ni, Ti, Mo, Pd, and Pt in addition to Fe, Co, and Cr.
  • the Fe—Co alloy is not particularly limited as long as it contains Fe and Co.
  • one of metals such as Ni, Ti, Mo, Cr, Pd, and Pt is used. It may contain seeds or two or more metals.
  • the Fe—Pt alloy is not particularly limited as long as it contains Fe and Pt.
  • one of metals such as Co, Ni, Ti, Mo, Cr, and Pd is used. It may contain seeds or two or more metals.
  • the Fe—Pd alloy is not particularly limited as long as it contains Fe and Pd.
  • one of metals such as Co, Ni, Ti, Mo, Cr, and Pt is used. It may contain seeds or two or more metals.
  • the thermal expansion coefficient of the first reinforcing member 4 is preferably 0.5 ppm / ° C. or more and 10 ppm / ° C. or less, more preferably 1 ppm / ° C. or more and 7 ppm / ° C. or less, and 1 ppm / ° C. or more and 5 ppm / ° C. or less. More preferably, it is not higher than ° C. Thereby, the difference in thermal expansion coefficient between the semiconductor element 3 and the first reinforcing member 4 can be reduced, and these can integrally reinforce the wiring board 2. Therefore, warping of the wiring board 2 can be effectively prevented.
  • the absolute value of the difference in thermal expansion coefficient between the first reinforcing member 4 and the semiconductor element 3 is preferably 7 ppm / ° C. or less, more preferably 5 ppm / ° C. or less, and 2 ppm / ° C. or less. Is more preferable. Thereby, the difference in thermal expansion coefficient between the semiconductor element 3 and the first reinforcing member 4 can be reduced, and these can integrally reinforce the wiring board 2. Therefore, warping of the wiring board 2 can be effectively prevented.
  • the metal material constituting the first reinforcing member 4 is an Fe—Ni alloy
  • the Fe—Ni alloy has a Ni content of 30 wt% or more and 50 wt% or less. It is preferable that the Ni content is 35 wt% or more and 45 wt% or less.
  • the thermal expansion coefficient of the first reinforcing member 4 can be brought close to the thermal expansion coefficient of the semiconductor element 3.
  • the Fe—Ni-based alloy preferably has an Fe content of 50 wt% or more and 70 wt% or less, and more preferably an Fe content of 55 wt% or more and 65 wt% or less.
  • the Fe—Ni alloy preferably has a total content of Fe and Ni of 85 wt% or more and 100 wt% or less, The total content of Fe and Ni is more preferably 90 wt% or more and 100 wt% or less. That is, in the Fe—Ni-based alloy, the content of the balance (M) is preferably 0 wt% or more and 15 wt% or less, and the content of the balance (M) is more preferably 0 wt% or more and 10 wt% or less. . Thereby, the thermal expansion coefficient of the first reinforcing member 4 can be brought close to the thermal expansion coefficient of the semiconductor element 3.
  • the average thickness of the first reinforcing member 4 is determined according to the thermal expansion coefficient of the wiring board 2, the shape, size, constituent material, and the like of the first reinforcing member 4 and the second reinforcing member 5 of the wiring board 2. Although it is a thing and is not specifically limited, For example, it is about 0.02 mm or more and 0.8 mm or less. In addition, although the thickness of the 1st reinforcement member 4 is uniform in this embodiment, you may have a part from which thickness differs. For example, the thickness may decrease or increase continuously or stepwise from the inside to the outside of the first reinforcing member 4.
  • a gap is formed between the insulating layer 61 that covers the inner peripheral surface 41 of the opening 40 of the first reinforcing member 4 and the semiconductor element 3. May be filled with a functional material. Thereby, heat can be efficiently transmitted from the semiconductor element 3 to the first reinforcing member 4 through the thermally conductive material. As a result, the heat dissipation of the semiconductor package 1 can be improved.
  • Such a heat conductive material is not particularly limited, and examples thereof include a resin composition including an inorganic filler and a resin material.
  • a resin composition including an inorganic filler and a resin material.
  • this resin composition the thing similar to the resin composition used for the connection part 261,262 mentioned above can be used.
  • the heat conductive material may be the same as that of the adhesive layer 32 (underfill material) described above. When the same material as the adhesive layer 32 is used as the heat conductive material, the heat conduction material may be used.
  • the adhesive material and the adhesive layer 32 can also be formed collectively.
  • the second reinforcing member (stiffener) 5 is joined to the lower surface (the other surface) of the substrate 21 of the wiring substrate 2.
  • the second reinforcing member 5 and the substrate 21 can be joined via an adhesive. Thereby, installation of the 2nd reinforcement member 5 becomes easy.
  • Such an adhesive is not particularly limited as long as it has an adhesive function, and various adhesives can be used, but those having excellent thermal conductivity are preferable, and include an inorganic filler and a resin material.
  • Resin compositions can be used. As this resin composition, the thing similar to the resin composition used for the connection part 261,262 mentioned above can be used.
  • an adhesive can constitute at least a part of the insulating layer 252 described above.
  • the insulating layer 252 functions as an adhesive for the second reinforcing member 5.
  • the second reinforcing member 5 has a smaller coefficient of thermal expansion than the substrate 21 and the wiring substrate 2, similarly to the first reinforcing member 4 described above.
  • the second reinforcing member 5 has a plate shape. Thereby, the structure of the 2nd reinforcement member 5 can be made simple and small.
  • the second reinforcing member 5 includes a portion (frame portion) 52 provided along the outer peripheral portion (outside the conductor pattern 224) of the wiring substrate 2 (substrate 21), and metal bumps. And a portion 53 provided between 71.
  • the second reinforcing member 5 has a plurality of openings 51 formed so as to surround each metal bump 71 in a non-contact manner with each metal bump 71 described above.
  • One metal bump 71 is disposed in each opening 51.
  • each opening 51 is circular in plan view.
  • the planar view shape of each opening part 51 is not limited to this, For example, an ellipse, a polygon, etc. may be sufficient.
  • each opening 51 is provided corresponding to each metal bump 71 (corresponding one-to-one).
  • the rigidity of the second reinforcing member 5 can be made uniform.
  • the heat dissipation of the 2nd reinforcement member 5 can also be improved.
  • the distance between the second reinforcing member 5 and each metal bump 71 extends over the entire circumference of the metal bump 71. It is formed to be constant. Thereby, the integrity of the 2nd reinforcement member 5 and each metal bump 71 increases, and the reinforcement effect of the wiring board 2 by these is exhibited suitably.
  • the diameter of the opening 51 is not particularly limited, but is, for example, about 20 ⁇ m or more and 470 ⁇ m or less.
  • the distance (center-to-center distance) between the plurality of openings 51 is not particularly limited, and is, for example, about 50 ⁇ m to 500 ⁇ m.
  • the openings 51 are arranged in a matrix in a plan view from the substrate surface side of the wiring board 2 as shown in FIG.
  • the second reinforcing member 5 preferably has a difference in thermal expansion coefficient from the semiconductor element 3 of 7 ppm / ° C. or less.
  • the 2nd reinforcement member 5 can reinforce the wiring board 2 effectively, and can suppress the thermal expansion of the semiconductor package 1 whole.
  • the second reinforcing member 5 is made of a metal material.
  • the metal material the same material as the first reinforcing member 4 can be used. Thereby, the heat dissipation of the 2nd reinforcement member 5 can be improved. As a result, the heat dissipation of the semiconductor package 1 can be improved.
  • the metal material is not particularly limited, but it is preferable to use an Fe—Ni-based alloy from the viewpoint of realizing heat dissipation and low thermal expansion.
  • the same material as the first reinforcing member 4 described above can be used.
  • the thermal expansion coefficient of the second reinforcing member 5 is preferably 0.5 ppm / ° C. or more and 10 ppm / ° C. or less, more preferably 1 ppm / ° C. or more and 7 ppm / ° C. or less, and 1 ppm / ° C. or more and 5 ppm / ° C. or less. More preferably, it is not higher than ° C. Thereby, the difference in thermal expansion coefficient between the semiconductor element 3 and the second reinforcing member 5 can be reduced, and the second reinforcing member 5 can effectively reinforce the wiring board 2. Therefore, warping of the wiring board 2 can be effectively prevented.
  • the absolute value of the difference in thermal expansion coefficient between the second reinforcing member 5 and the semiconductor element 3 is preferably 7 ppm / ° C. or less, more preferably 5 ppm / ° C. or less, and 2 ppm / ° C. or less. Is more preferable. Thereby, the difference in thermal expansion coefficient between the semiconductor element 3 and the second reinforcing member 5 can be reduced, and the second reinforcing member 5 can effectively reinforce the wiring board 2. Therefore, warping of the wiring board 2 can be effectively prevented.
  • the absolute value of the difference in thermal expansion coefficient between the second reinforcing member 5 and the first reinforcing member 4 is preferably 2 ppm / ° C. or less, more preferably 1 ppm / ° C. or less, and 0 ppm / ° C. Is more preferable.
  • the constituent material of the second reinforcing member 5 is preferably the same or the same as the constituent material of the first reinforcing member 4.
  • the average thickness of the second reinforcing member 5 is determined according to the thermal expansion coefficient of the wiring board 2, the shape, size, constituent material, and the like of the first reinforcing member 4 and the second reinforcing member 5 of the wiring board 2. Although it is a thing and is not specifically limited, For example, it is about 0.02 mm or more and 0.8 mm or less.
  • an insulating material 81 is provided (filled) between the second reinforcing member 5 and each metal bump 71. Thereby, the contact with the 2nd reinforcement member 5 and each metal bump 71 can be prevented.
  • the insulating material 81 has a shape surrounding the portion (upper part) of the metal bump 71 on the substrate 21 side, and is joined to each metal bump 71. Thereby, the insulating material 81 reinforces the metal bump 71.
  • the insulating material 81 surrounds the base side surface of the metal bump 71 on the conductor pattern 224 side and is in contact with the metal bump 71.
  • the metal bump 71 is substantially spherical and has a curved spherical surface.
  • the metal bump 71 protrudes on the opposite side of the wiring board from the reinforcing member 5.
  • the insulating material 81 is in contact with the metal bump 71 along a spherical surface (curved surface) constituting the peripheral surface of the metal bump 71, and a part of the metal bump 71 is embedded in the insulating material 81. ing. Further, the insulating material 81 has a shape that spreads from the peripheral surface side of the metal bump 71 toward the conductor pattern 224 side. That is, the insulating material 81 has a trapezoidal shape in a side view from a direction orthogonal to the wiring board thickness direction. Thereby, the metal bump 71 is reinforced by the insulating material 81.
  • the insulating material 81 may be semi-cured in the semiconductor package or may be completely cured. As the metal bump 71, the same material as that of the metal bump 31 described above can be used. However, the shape of the insulating material 81 is not limited to this.
  • the insulating material 81 preferably has higher thermal conductivity than the substrate 21 of the wiring board 2 described above. Thereby, the thermal conductivity between the metal bump 71 and the second reinforcing member 5 can be made excellent, and the heat dissipation of the semiconductor package 1 can be improved.
  • Such an insulating material 81 has an insulating property and includes a resin material.
  • Such an insulating material 81 is not particularly limited, but is preferably made of a curable material, and is preferably formed of, for example, a thermosetting resin composition for solder bonding.
  • solder bonding resin composition is a thermosetting resin composition having a flux active compound, which acts as a flux during solder bonding and is then heated. It hardens and acts as a reinforcing material for the solder joint.
  • the solder bonding resin composition removes harmful substances such as the solder bonding surface and the oxide of the solder material at the time of solder bonding, protects the solder bonding surface, and refines the solder material. Enables good bonding with high strength.
  • the resin composition for solder bonding does not need to be removed by washing or the like after the solder bonding, and is heated as it is to become a three-dimensionally crosslinked resin, which acts as a reinforcing material for the solder bonding portion.
  • Such a resin composition for solder bonding can be configured to include, for example, a resin (A) having a phenolic hydroxyl group and a curing agent (B) of the resin.
  • the resin (A) having a phenolic hydroxyl group is not particularly limited, and examples thereof include a phenol novolak resin, an alkylphenol novolak resin, a polyhydric phenol novolak resin, a resole resin, and a polyvinyl phenol resin. Any one or more of these can be used.
  • the content of the resin (A) having a phenolic hydroxyl group is preferably 20 to 80% by weight, and more preferably 25 to 60% by weight of the entire curable flux. If the content of the resin (A) is less than 20% by weight, the effect of removing dirt such as solder and oxides on the metal surface may be reduced, and solder jointability may be deteriorated. When content of resin (A) exceeds 80 weight%, the hardened
  • the phenolic hydroxyl group of the resin (A) having a phenolic hydroxyl group effectively removes dirt such as solder and oxide on the metal surface by its reducing action, and thus effectively acts as a solder joint flux.
  • examples of the curing agent (B) of the resin (A) having a phenolic hydroxyl group include an epoxy compound and an isocyanate compound.
  • examples of epoxy compounds and isocyanate compounds include bisphenol-based, phenol novolac-based, alkylphenol novolak-based, biphenol-based, naphthol-based, resorcinol-based phenol-based epoxy compounds, isocyanate compounds, saturated aliphatic, cycloaliphatic, Examples thereof include an epoxy compound and an isocyanate compound modified based on a skeleton such as a saturated aliphatic group. Any one or more of these can be used.
  • the compounding amount of the curing agent (B) is such that the reactive functional group such as epoxy group or isocyanate group of the curing agent is 0.5 to 1.5 equivalent times the phenolic hydroxyl group of the resin (A). It is preferably 0.8 to 1.2 equivalent times.
  • the reactive functional group of the curing agent is less than 0.5 equivalents of the hydroxyl group, a cured product having sufficient physical properties cannot be obtained, and the reinforcing effect may be reduced, thereby reducing the bonding strength and reliability. There is.
  • the reactive functional group of the curing agent exceeds 1.5 equivalents of the hydroxyl group, the action of removing dirt such as oxides on the solder and the metal surface is lowered, and there is a possibility that the solderability is deteriorated.
  • solder bonding resin composition (curable flux)
  • a cured product having good physical properties is formed by the reaction of the resin (A) having a phenolic hydroxyl group and the curing agent (B) of the resin. Therefore, it is not necessary to remove the flux by washing after soldering, the soldered part is protected by the cured product, electrical insulation is maintained even in high temperature and high humidity atmosphere, and soldering with high bonding strength and reliability is possible. It becomes.
  • the solder bonding resin as described above is dispersed in a microcrystalline state as a curable antioxidant (C).
  • the resin composition for solder bonding may include a thermosetting resin, a flux active compound, and a curing accelerator such as imidazole.
  • Thermosetting resins include epoxy resin, phenoxy resin, silicone resin, oxetane resin, phenol resin, (meth) acrylate resin, polyester resin (unsaturated polyester resin), diallyl phthalate resin, maleimide resin, polyimide resin (polyimide precursor) Resin), bismaleimide-triazine resin, cyanate resin and the like.
  • thermosetting resin containing at least one selected from the group consisting of epoxy resins, (meth) acrylate resins, phenoxy resins, polyester resins, polyimide resins, silicone resins, maleimide resins, bismaleimide-triazine resins, and cyanate resins. It is preferable to use it. Among these, it is preferable to use an epoxy resin from the viewpoints of curability and storage stability and moisture resistance of the cured product.
  • a flux active compound the compound which has a phenolic hydroxyl group and / or a carboxyl group is preferable.
  • Examples of the compound having a phenolic hydroxyl group include phenol, o-cresol, 2,6-xylenol, p-cresol, m-cresol, o-ethylphenol, 2,4-xylenol, 2,5-xylenol, m- Ethylphenol, 2,3-xylenol, meditol, 3,5-xylenol, p-tert-butylphenol, catechol, p-tert-amylphenol, resorcinol, p-octylphenol, p-phenylphenol, bisphenol F, bisphenol AF, biphenol Monomers containing phenolic hydroxyl groups such as diallyl bisphenol F, diallyl bisphenol A, trisphenol, tetrakisphenol, phenol novolac resins, o-cresol novolac resins, bisphenols Nord F novolak resins, resins containing a phenolic hydroxyl group such as bis
  • Examples of the compound having a carboxyl group include an aliphatic acid anhydride, an alicyclic acid anhydride, an aromatic acid anhydride, an aliphatic carboxylic acid, and an aromatic carboxylic acid.
  • Examples of the aliphatic acid anhydride include succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, and polysebacic acid anhydride.
  • Examples of the alicyclic acid anhydride include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene dicarboxylic acid. An anhydride etc. are mentioned.
  • Examples of the aromatic acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, and glycerol tris trimellitate. Any one or more of these can be used.
  • compounds having a carboxyl group and a phenolic hydroxyl group include salicylic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, gentisic acid (2,5-dihydroxybenzoic acid), 2,6- Benzoic acid derivatives such as dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid (3,4,5-trihydroxybenzoic acid); 1,4-dihydroxy-2-naphthoic acid, 3,5-dihydroxy- Naphthoic acid derivatives such as 2-naphthoic acid; phenolphthaline; diphenolic acid and the like.
  • phenolphthaline, gentisic acid, 2,4-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid are preferable, and phenolphthalin and gentisic acid are particularly preferable. Any one or more of these can be used.
  • the insulating material 81 may include a heat conductive filler (filler).
  • the filler include inorganic fillers, such as metals such as Au, Ag, and Pt, oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, and metal ferrite, boron nitride.
  • Nitrides such as silicon nitride, gallium nitride and titanium nitride, hydroxides such as aluminum hydroxide and magnesium hydroxide, carbonates such as calcium carbonate (light and heavy), magnesium carbonate, dolomite and dawsonite, calcium sulfate, Sulfates or sulfites such as barium sulfate, ammonium sulfate, calcium sulfite, talc, mica, clay, glass fiber, silicates such as calcium silicate, montmorillonite, bentonite, zinc borate, barium metaborate, aluminum borate, boron Borate such as calcium and sodium borate, car Down black, graphite, carbon, such as carbon fibers, other iron powder, copper powder, aluminum powder, zinc oxide, molybdenum sulfide, boron fiber, potassium titanate, and a lead zirconate titanate. Any one or more of these can be used. In addition, when the thing which has electroconductivity is
  • oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, metal ferrite, boron nitride, Any one or more of nitrides such as silicon nitride, gallium nitride, and titanium nitride are preferable.
  • the insulating layer 61 is provided on the first reinforcing member 4, and the insulating layer 62 is provided on the second reinforcing member 5.
  • the insulating layer 61 is formed on the entire surface of the first reinforcing member 4 opposite to the substrate 21, on the inner peripheral surface 41 of the opening 40, and on the inner peripheral surface of each through hole 42. Is formed.
  • the insulating layer 61 in the opening 40 is formed along the inner peripheral surface 41, and between the insulating layers 61 covering the opposing inner peripheral surface 41 in a cross-sectional view along the thickness direction of the substrate 21. A void is formed.
  • a gap is formed between the insulating layers 61 covering the opposing inner peripheral surfaces of the through holes 42.
  • the thermal emissivity of the resin layer is higher than that of the metal layer, the heat transmitted to the first reinforcing member 4 can be efficiently radiated through the insulating layer 61. Thereby, the heat dissipation of a semiconductor package can be improved.
  • the heat dissipation of a semiconductor package can be improved.
  • FIG. 1 in the cross section along the thickness direction of the substrate 21 of the semiconductor package 1, in the region sandwiched between the opening 40 and the through hole 42 of the first reinforcing member 4, Since the three surfaces of the surface and both side surfaces (the inner peripheral surface of the opening 40 and the inner peripheral surface of the through hole 42) are covered with the insulating layer 61, the heat dissipation can be reliably improved.
  • the insulating layer 61 is not formed on the surface of the first reinforcing member 4 on the substrate 21 side. That is, in the present embodiment, the first reinforcing member 4 is in direct contact with the wiring board 2. Thereby, the heat from the wiring board 2 can be directly transferred to the first reinforcing member 4.
  • An adhesive may be provided on the surface of the first reinforcing member 4 on the substrate 21 side, and the first reinforcing member 4 and the solder resist of the wiring board may be bonded.
  • the insulating layer 61 is not provided on the surface of the first reinforcing member 4 on the substrate 21 side, and an adhesive having a composition different from that of the insulating layer 61 is provided.
  • the surface of the first reinforcing member 4 opposite to the substrate 21, the inner peripheral surface 41, and the inner peripheral surface of each through hole 42 are covered with the insulating layer 61, so that the semiconductor package is incorporated into the semiconductor device. In this case, it is possible to prevent other members other than the semiconductor package and the first reinforcing member 4 from being unintentionally short-circuited.
  • the insulating layer 62 is provided on the entire surface of the second reinforcing member 5 on the side opposite to the substrate 21 and on the inner peripheral surface of each opening 51.
  • the heat emissivity of the resin layer is higher than that of the metal layer, the heat transferred to the second reinforcing member 5 can be efficiently radiated through the insulating layer 62. Thereby, the heat dissipation of a semiconductor package can be improved. In particular, as shown in FIG.
  • the heat dissipation can be reliably improved.
  • the insulating layer 62 is not formed on the surface of the second reinforcing member 5 on the substrate 21 side. That is, in the present embodiment, the second reinforcing member 5 is in direct contact with the wiring board 2. Thereby, the heat from the wiring board 2 can be directly transferred to the second reinforcing member 5.
  • an adhesive may be provided on the surface of the second reinforcing member 5 on the substrate 21 side, and the second reinforcing member 5 and the solder resist of the wiring substrate may be bonded.
  • the insulating layer 61 is not provided on the surface of the second reinforcing member 5 on the substrate 21 side, and an adhesive having a composition different from that of the insulating layer 61 is provided.
  • the insulating layer 62 only needs to be provided so as to cover at least a part of the second reinforcing member 5.
  • the insulating layer 61 should just be provided so that at least one part of the 1st reinforcement member 4 may be coat
  • the insulating layer 61 is made of the same material as the insulating layer 251 of the wiring board 2 described above, and the insulating layer 62 is made of the same material as the insulating layer 252 of the wiring board described above. Yes.
  • a resin composition containing a resin material can be suitably used as the constituent material of the insulating layers 61 and 62.
  • the resin material used in the resin composition examples include various thermoplastic resins and various thermosetting resins.
  • the resin composition preferably contains a resin component as a main component, and the resin component is composed of a thermoplastic resin and / or a thermosetting resin.
  • thermoplastic resin used for the insulating layers 61 and 62 examples include polyolefins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, modified polyolefins, and polyamides (eg, nylon 6, nylon 46, nylon 66, nylon 610).
  • Thermoplastic polyimide Liquid crystal polymer such as aromatic polyester, Polyphenylene oxide, Polyphenylene sulfide, Polycarbonate, Polymethyl methacrylate, Polyether, Polyether Ether ketone, polyether imide, polyacetal, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, Various thermoplastic elastomers such as polyisoprene-based, fluororubber-based, chlorinated polyethylene, etc., or copolymers, blends, polymer alloys, etc. mainly composed of these are included, one or more of these Can be mixed and used.
  • thermosetting resin used for the insulating layers 61 and 62 examples include epoxy resin, phenol resin, urea resin, melamine resin, polyester (unsaturated polyester) resin, polyimide resin, silicone resin, and polyurethane resin. These can be used alone or in combination of two or more.
  • the insulating layers 61 and 62 preferably have higher thermal conductivity than the substrate 21. Thereby, the heat from the first reinforcing member 4 can be efficiently transmitted to the insulating layer 61, and the heat from the first reinforcing member 4 can be efficiently radiated from the insulating layer 61. Similarly, heat from the second reinforcing member 5 can be efficiently transmitted to the insulating layer 62, and heat from the second reinforcing member 5 can be efficiently radiated from the insulating layer 62. Moreover, in this embodiment, since both the 1st reinforcement member 4 and the 2nd reinforcement member 5 are coat
  • the insulating layers 61 and 62 each include a resin material (resin component) and a heat conductive filler (particularly an inorganic filler).
  • a resin material resin component
  • a heat conductive filler particularly an inorganic filler.
  • the insulating layers 61 and 62 preferably contain 10 wt% to 80 wt% of the resin component and 20 wt% to 90 wt% of the filler from the viewpoint of heat dissipation.
  • Examples of the inorganic filler (inorganic filler) used for the insulating layers 61 and 62 include metals such as Au, Ag, and Pt, silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, and metal ferrite.
  • Oxides such as boron nitride, silicon nitride, gallium nitride, titanium nitride, hydroxides such as aluminum hydroxide and magnesium hydroxide, calcium carbonate (light and heavy), magnesium carbonate, dolomite, dosonite, etc.
  • oxides such as silica, alumina, diatomaceous earth, titanium oxide, iron oxide, zinc oxide, magnesium oxide, metal ferrite, boron nitride, Nitride such as silicon nitride, gallium nitride and titanium nitride is preferable. Any one or more of these can be used.
  • the insulating layers 61 and 62 can be formed of a solder resist in the same manner as the insulating layers 251 and 252 of the substrate 21 described above.
  • the semiconductor package 1 as described above can be manufactured as follows, for example.
  • the manufacturing method of the semiconductor package 1 is not limited to this.
  • a substrate 21 provided with conductor patterns 221 to 224, conductor posts 231 to 233, and heat transfer posts 24 is prepared.
  • an insulating layer 212 is prepared in which a metal layer to be a conductor pattern 223 is attached to one surface side and a metal layer to be a conductor pattern 222 is attached to the other surface side.
  • a through hole in which the conductor post 232 is formed is formed, and the conductor post 232 is filled by plating or the like.
  • the metal patterns described above are etched to form conductor patterns 222 and 223.
  • an insulating layer 211 to which a metal layer to be the conductor pattern 221 is attached is prepared.
  • an insulating layer 213 to which a metal layer to be the conductor pattern 224 is attached is prepared.
  • the insulating layer 211 is disposed on one surface side of the insulating layer 212 so as to cover the conductor pattern 222.
  • the insulating layer 213 is disposed on the other surface side of the insulating layer 212 so as to cover the conductor pattern 223.
  • a through hole for the conductor post 231 is formed in the insulating layer 211, and further, a through hole for the conductor post 233 is formed in the insulating layer 213.
  • the conductor posts 231 and 233 are filled by plating or the like. Then, the metal layers are etched to form conductor patterns 221 and 224. Thereafter, a through hole penetrating the insulating layers 211 to 213 is formed, and the heat transfer post 24 is filled.
  • a sheet-like member 104 for forming the first reinforcing member 4 is prepared, and the sheet-like member 104 is placed on the upper surface of the substrate 21 with an adhesive 106. Join.
  • the sheet-like member 104 is a member that becomes the first reinforcing member 4 by processing described later, and is made of the same constituent material as the constituent material of the first reinforcing member 4 described above.
  • the adhesive 106 includes a resin material, and becomes the insulating layer 251. In a state where the adhesive 106 is applied to at least one of the sheet-like member 104 and the substrate 21, the sheet-like member 104 and the substrate 21 are bonded together via the adhesive 106. 21 is joined.
  • the adhesive 106 includes a thermosetting resin, and is in an uncured or semi-cured state.
  • metal bumps to be the connection portions 261 are formed on the joining surface of the sheet-like member 104 with the substrate 21. Specifically, metal bumps to be the connection portions 261 are solder-bonded to the sheet-like member 104, and protrusions that protrude from the sheet-like member 104 are formed. When the sheet-like member 104 and the substrate 21 are bonded together, the metal bumps penetrate the adhesive 106 provided on the substrate 21 and are connected to the heat transfer post 24. As a result, the metal bumps constitute the connection portion 261. In the reflow process described later, the connection portion 261 and the heat transfer post 24 are solder-bonded by being heated to the melting point of the metal bump or higher.
  • the sheet-like member 105 for forming the second reinforcing member 5 is joined to the lower surface of the substrate 21 via the adhesive 107.
  • the sheet-like member 105 is a member that becomes the second reinforcing member 5 by processing to be described later, and is made of the same constituent material as the constituent material of the second reinforcing member 5 described above.
  • the adhesive 107 is configured to include a resin material and becomes the insulating layer 252. In a state where the adhesive 107 is applied to at least one of the sheet-like member 105 and the substrate 21, the sheet-like member 105 and the substrate 21 are bonded together via the adhesive 107. 21 is joined.
  • the adhesive 107 includes a thermosetting resin, and is in an uncured or semi-cured state.
  • metal bumps to be the connection portions 262 are formed on the joining surface of the sheet-like member 105 with the substrate 21. Specifically, metal bumps to be the connecting portions 262 are soldered to the sheet-like member 105. Specifically, metal bumps to be the connection portions 262 are soldered to the sheet-like member 105 to form protrusions that protrude from the sheet-like member 105. By bonding the sheet-like member 105 and the substrate 21 together, the metal bumps penetrate the adhesive 107 provided on the substrate 21 and are connected to the heat transfer post 24. As a result, the metal bumps constitute the connection part 262.
  • connection portion 262 and the heat transfer post 24 are solder-bonded by being heated to the melting point of the metal bump or higher.
  • connection portion 261 (262) is made of a resin material
  • an opening is formed in a portion on the heat transfer post 24 of the insulating layer 251 (252), and the resin material is disposed in the opening.
  • the sheet-like member 104 (105) may be disposed on the resin material so that the resin material and the sheet-like member 104 (105) are in contact with each other.
  • the first reinforcing member 4 is formed by selectively removing a part of the sheet-like member 104 as shown in FIG.
  • the second reinforcing member 5 is formed by selectively removing a part of the sheet-like member 105.
  • a method for removing a part of the sheet-like members 104 and 105 (that is, a method for forming the through-hole 42, the opening 40, the opening 51, etc.) is not particularly limited, but for example, it is removed by laser irradiation. Any of the method, the method of removing by etching, etc. is mentioned. These methods are excellent in processing accuracy. Therefore, even when the metal bumps 71 are arranged at a narrow pitch, the contact between the metal bumps 71 and the second reinforcing member 5 can be prevented.
  • the laser for example, a CO 2 laser, a UV-YAG laser, or the like can be used.
  • the etching may be dry etching or wet etching, but is preferably wet etching. Thereby, the 1st reinforcement member 4 and the 2nd reinforcement member 5 can be formed, preventing the damage of the board
  • FIG. 1st reinforcement member 4 and the 2nd reinforcement member 5 can be formed, preventing the damage of the board
  • the removal position based on the alignment marks provided on the sheet-like members 104 and 105 or the substrate 21.
  • the insulating layer 61 is formed on the first reinforcing member 4 and the insulating layer 62 is formed on the second reinforcing member 5.
  • the method for forming the insulating layers 61 and 62 is not particularly limited.
  • a method in which a liquid resin composition is applied and cured or solidified can be suitably used.
  • the insulating layers 61 and 62 are made of a thermosetting resin composition, a liquid resin composition is applied and cured as described later, so that the insulating layers 61 and 62 are cured. 62 is formed.
  • the insulating layer 61 is applied so as to cover the inner peripheral surface of the opening 40 of the first reinforcing member 4 and the inner peripheral surface of the through hole 42, but the inside of the opening 40, the through hole 42. Apply so that the inside of the is not completely embedded.
  • the insulating layer 61 may cover the insulating layer 251 in the opening 40 and the through hole 42.
  • the insulating layer 62 is applied so as to cover the inner peripheral surface of the opening 51 of the second reinforcing member 5, but is applied so as not to completely bury the inside of the opening 51.
  • the insulating layer 62 may cover the insulating layer 252 in the opening 51.
  • the insulating layers 61 and 62 are made of a thermosetting resin composition like the insulating layers 251 and 252, and in this step, the insulating layers 61 and 62 are uncured and semi-cured. is there.
  • an insulating material 81 is disposed in each opening 51.
  • This insulating material 81 is in an uncured (or semi-cured) state.
  • the metal bump 71 is disposed in the opening 51.
  • the insulating material 81 is pushed by the metal bump 71 and is disposed so as to surround the metal bump 71.
  • the insulating material 81 forms a meniscus between the inner surface of the opening 51 and the metal bump 71.
  • the metal bump 71 and the conductor pattern 224 are brought into contact with each other so that the metal bump 71 bites into the insulating layer 252.
  • the metal bumps 71 are digged into the insulating layer 62 and the insulating layer 252.
  • the opening 252A is formed. Thereafter, reflow is performed, and the metal bump 71 and the conductive pattern 224 are soldered.
  • solder bonding is not particularly limited, but can be performed by placing each metal bump 71 in contact with the lower surface of the wiring board 2 and heating in that state, for example, 200 to 280 ° C. ⁇ 10 to 60 seconds. .
  • the semiconductor element 3 is bonded by solder reflow through the metal bumps 31.
  • the metal bumps 31 are arranged so as to bite into the insulating layer 251, and the metal bumps 31 are brought into contact with the conductor pattern 221.
  • the insulating layer 61 is applied on the insulating layer 251 in the opening 40, the metal bumps 31 are digged into the insulating layer 61 and the insulating layer 251. As a result, an opening 251A is formed in the insulating layer 251.
  • a resin having a flux activity similar to that of the insulating material 81 described above is used as the underfill material. Further, after mounting the semiconductor element 3 and bonding the semiconductor element 3 to the wiring board 2 by reflow using a flux or solder paste, a normal capillary underfill material is placed between the wiring board 2 and the semiconductor element 3. It can also be filled and cured. Thereafter, the degree of cure of the insulating material 81, the insulating layers 251 and 252 and the insulating layers 61 and 62 is adjusted by appropriately performing a heating process as necessary. The semiconductor package 1 is obtained as described above.
  • FIG. 5 is a cross-sectional view schematically showing a semiconductor package according to the second embodiment of the present invention
  • FIG. 6 is a view showing an example of a manufacturing method of the semiconductor package shown in FIG.
  • the upper side in FIG. 5 is referred to as “upper” and the lower side is referred to as “lower”. 5 and 6, each part of the semiconductor package is exaggerated for convenience of explanation.
  • the semiconductor package 1A of the second embodiment differs in the configuration of the insulating layer on the reinforcing member 5 and does not have the insulating material 81. Other points are the same as in the first embodiment.
  • the semiconductor package 1 ⁇ / b> A has an insulating layer 61 ⁇ / b> A provided on the first reinforcing member 4 and an insulating layer 62 ⁇ / b> A provided on the second reinforcing member 5.
  • the insulating layer 61A is the same as the insulating layer 61 of the first embodiment, on the surface of the first reinforcing member 4 opposite to the substrate 21, on the inner peripheral surface 41, and each through hole 42. It is formed on the inner peripheral surface.
  • the insulating layer 61 ⁇ / b> A is not formed on the surface of the first reinforcing member 4 on the wiring board 2 side.
  • the insulating layer 62 ⁇ / b> A is provided on the surface of the second reinforcing member 5 on the side opposite to the substrate 21 and on the inner peripheral surface of each opening 51.
  • the insulating layer 62 ⁇ / b> A is formed on the second reinforcing member 5 similarly to the insulating layer 62, and is not formed on the surface of the second reinforcing member 5 on the wiring board 2 side.
  • the insulating material 81 is not disposed inside the opening 51.
  • the insulating layer 62 ⁇ / b> A surrounds the periphery of the metal bump 71 and is in contact with the metal bump 71 along the curved surface of the peripheral surface of the metal bump 71.
  • the insulating layer 62 ⁇ / b> A fills a gap between the metal bump 71 in the opening 51 and the inner peripheral surface of the opening 51.
  • the curable material for reinforcing the metal bump 71 and the insulating layer covering the second reinforcing member 5 are integrated to form the insulating layer 62A.
  • the metal bump 71 protrudes from the insulating layer 62A to the side opposite to the substrate 21.
  • the insulating layers 61A and 62A are made of the same material as the insulating material 81 of the first embodiment described above.
  • the constituent material of the insulating layers 61A and 62A can be a thermosetting solder bonding resin.
  • the semiconductor package 1A as described above can be manufactured, for example, as follows. Note that the manufacturing method of the semiconductor package 1A is not limited to this.
  • a substrate 21 provided with conductor patterns 221 to 224 and heat transfer posts 24 is prepared in the same manner as in the above embodiment.
  • a sheet-like member 104 for forming the first reinforcing member 4 is prepared, and the sheet-like member 104 is formed on the upper surface of the substrate 21. Are bonded through an adhesive 106. Further, similarly to the above-described embodiment, a sheet-like member for forming the second reinforcing member 5 is prepared and joined to the substrate 21 via the adhesive 107.
  • the first reinforcing member 4 is formed as shown in FIG.
  • the second reinforcing member 5 is formed by removing a part of the sheet-like member 105.
  • the insulating layer 61 ⁇ / b> A is formed on the first reinforcing member 4, and the insulating layer 62 ⁇ / b> A is formed on the second reinforcing member 5.
  • the method for forming the insulating layers 61A and 62A is not particularly limited, but for example, a liquid resin composition is applied.
  • the insulating layer 61A is configured so as to cover the inner peripheral surface of the opening 40 and the inner peripheral surface of the through hole 42, and not to embed the opening 40 and the through hole 42.
  • Apply resin material On the other hand, the resin material constituting the insulating layer 62 ⁇ / b> A is applied so that the inside of the opening 51 of the second reinforcing member 5 is completely embedded. More specifically, the resin material is applied so that the inside of the opening 51 is embedded and the surface of the second reinforcing member 5 opposite to the substrate 21 is covered with the resin material constituting the insulating layer 62A. To do.
  • metal bumps 71 are arranged inside the openings 51. Since the insulating layer 62A is in an uncured or semi-cured state, the metal bump 71 is disposed inside the opening 51 by causing the metal bump 71 to bite into the insulating layer 62A. Further, as described above, since the insulating layer 252 is uncured or semi-cured, the metal bump 71 is arranged so that the metal bump 71 bites into the insulating layer 252, and the metal bump 71 and the conductor pattern 224 are brought into contact with each other. . As a result, the opening 252A is formed. Thereafter, reflow is performed, and the metal bump 71 and the conductive pattern 224 are soldered.
  • the semiconductor element 3 is bonded by solder reflow via the metal bumps 31. . Thereafter, the degree of cure of the insulating layers 251 and 252 and the insulating layers 61A and 62A is adjusted by appropriately performing a heating step as necessary.
  • the semiconductor package 1A is obtained as described above.
  • semiconductor device semiconductor device
  • semiconductor device 100 having the semiconductor package 1 of the first embodiment will be described here
  • semiconductor package 1A of the second embodiment may be used instead of the semiconductor package 1.
  • FIG. 7 is a cross-sectional view schematically showing an example of the embodiment of the semiconductor device of the present invention.
  • the semiconductor device 100 includes a mother board (substrate) 200 and a semiconductor package 1 mounted on the mother board 200.
  • the metal bumps 71 of the semiconductor package 1 are joined to the terminals 201 of the motherboard 200.
  • the semiconductor package 1 and the mother board 200 are electrically connected, and electrical signals are transmitted between them.
  • the heat of the semiconductor package 1 can be released to the mother board 200 through this joint.
  • the semiconductor package 1 having excellent heat dissipation and reliability as described above is provided, the reliability is excellent.
  • the first reinforcing member 4 is provided so as to surround the entire circumference of the semiconductor element 3.
  • the present invention is not limited to this.
  • a cut-out portion (notch) may be formed.
  • the opening formed in the second reinforcing member 5 may not correspond to each metal bump 71 on a one-to-one basis. That is, an opening may be formed in the second reinforcing member 5 so that one corresponds to the plurality of metal bumps 71.
  • the insulating layer provided on the reinforcing member is made of a resin composition
  • the present invention is not limited to this.
  • the insulating layer provided on the reinforcing member is a metal.
  • the insulating layer can be formed on the reinforcing member by thermal oxidation, vapor phase film formation, or the like.
  • the opening part 40 and the opening part 51 are each formed in the reinforcement members 4 and 5, and it insulates each reinforcement member 4 and 5 after that.
  • the layers 61 and 62 are provided, the semiconductor package manufacturing method is not limited to this.
  • the opening 40 may be formed in the reinforcing member 4 in advance, and the opening 51 may be formed in the reinforcing member 5 and then attached to the substrate 21.
  • the openings 40 and the opening 51 are formed in the reinforcing members 4 and 5. And the opening 51 and the conductor pattern 224 are easily aligned.
  • the present invention includes the following configurations. (1) A substrate, a first conductor pattern provided on one surface side of the substrate, and a second conductor pattern provided on the other surface side of the substrate and electrically connected to the first conductor pattern A wiring board comprising: A semiconductor element bonded to the one surface of the substrate and electrically connected to the first conductor pattern; A reinforcing member bonded to at least one of the one surface and the other surface of the substrate and having a smaller coefficient of thermal expansion than the substrate; A semiconductor package having an insulating layer provided to cover at least a part of the surface of the reinforcing member.
  • the said reinforcement member is a semiconductor package as described in (1) which has a part joined to the said other surface of the said board
  • the reinforcing member has a plurality of openings, and a portion between the openings of the reinforcing member is located between the metal bumps.
  • the insulating layer is provided on at least a portion between the openings.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 半導体パッケージ(1)は、基板(21)と、基板(21)の一方の面側に設けられた第1導体パターン(221)と、基板(21)の他方の面側に設けられ、第1導体パターン(221)と電気的に接続された第2導体パターン(224)とを備える配線基板(2)と、基板(21)の一方の面に接合され、第1導体パターン(221)に電気的に接続される半導体素子(3)と、配線基板(2)に接合され、配線基板(2)よりも熱膨張係数の小さい金属製の補強部材(4、5)と、補強部材(4)の表面の少なくとも一部を覆うように設けられた絶縁性樹脂層(61)と、補強部材(5)の表面の少なくとも一部を覆うように設けられた絶縁性樹脂層(62)と、を有する。

Description

半導体パッケージおよび半導体装置
 本発明は、半導体パッケージおよび半導体装置に関する。
 近年の電子機器の高機能化並びに軽薄短小化の要求に伴い、電子部品の高密度集積化、さらには高密度実装化が進んできており、これらの電子機器に使用される半導体パッケージは、従来にも増して益々小型化かつ多ピン化が進んできている。
 半導体パッケージはその小型化に伴って、従来のようなリードフレームを使用した形態のパッケージでは、小型化に限界がきているため、最近では回路基板上にチップを実装したものとして、BGA(Ball Grid Array)や、CSP(Chip Scale Package)と言った、エリア実装型の新しいパッケージ方式が提案されている。
 BGAやCSP等の新しいパッケージに用いられる配線基板(たとえば、インターポーザ)は、一般に、繊維基材に樹脂組成物を含浸してなる基板に導体パターンや導体ポストが形成されてなる。
特開2009-81261号公報 特開2003-142617号公報 特開2004-311598号公報 特開平9-266231号公報
 このようなインターポーザは、チップとの熱膨張係数差が大きい。また、インターポーザは、通常、チップよりも大面積となるため、チップと接触していない部分の面積が大きい。このようなチップと接触していない部分は、剛性が極めて低く、前述したようなチップとインターポーザの熱膨張差に起因して、高温時にチップ側に反りやすく、電気的接続の信頼性を低下させるという問題があった。
 また、チップは発熱するため、インターポーザ等の配線基板には優れた放熱性が要求されている。
 本発明によれば、
 繊維基材を含む基板と、前記基板の一方の面側に設けられた第1導体パターンと、前記基板の他方の面側に設けられ、前記第1導体パターンと電気的に接続された第2導体パターンとを備える配線基板と、
 前記基板の前記一方の面に接合され、前記第1導体パターンに電気的に接続される半導体素子と、
 前記配線基板に接合され、前記配線基板よりも熱膨張係数の小さい金属製の補強部材と、
 前記補強部材の表面の少なくとも一部を覆うように設けられた、絶縁層と、
を有し、
 前記絶縁層は、絶縁性樹脂層あるいは、セラミックス層である半導体パッケージが提供される。
 この構成の発明によれば、補強部材の熱膨張係数が、配線基板の熱膨張係数よりも小さいため、補強部材を配線基板に接合することで、配線基板が反りにくくなる。そのため、半導体素子と配線基板との接続信頼性を高めることができる。
 ここで熱膨張係数とは、50℃~150℃における面方向の平均線膨張係数を意味する。
 さらに、本発明においては、金属製の補強部材の表面に絶縁層が設けられている。絶縁層は、樹脂層あるいはセラミックス層であり、金属製の補強部材に比べて熱放射性に優れているため、補強部材に伝達された熱を、絶縁層を介して効率よく放熱することができる。配線基板の熱を補強部材、絶縁層を介して放熱することができ、配線基板に発生する反りを抑制することができる。これにより、接続信頼性に優れた半導体パッケージとすることができる。
 さらに、本発明によれば、上述した半導体パッケージを有する半導体装置も提供できる。
 本発明によれば、信頼性の高い半導体パッケージおよびこの半導体パッケージを備える半導体装置を提供できる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明の第1実施形態に係る半導体パッケージを模式的に示す断面図である。 図1に示す半導体パッケージを示す上面図である。 図1に示す半導体パッケージを示す下面図である。 図1に示す半導体パッケージの製造方法の一例を示す図である。 本発明の第2実施形態に係る半導体パッケージを模式的に示す断面図である。 図5に示す半導体パッケージの製造方法の一例を示す図である。 本発明の半導体装置の実施形態の一例を模式的に示す断面図である。 本発明の半導体パッケージの製造方法の製造工程を示す断面図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、すべての図面において、同様な構成要素には同一符号を付し、その詳細な説明は重複しないように適宜省略される。
<第1実施形態>
(半導体パッケージ)
 まず、半導体パッケージを説明する。
 図1~図4、図8を参照して、本実施形態の半導体パッケージについて説明する。
 図1は、本発明の第1実施形態に係る半導体パッケージを模式的に示す断面図、図2は、図1に示す半導体パッケージを示す上面図、図3は、図1に示す半導体パッケージを示す下面図、図4は、図1に示す半導体パッケージの製造方法の一例を示す図である。なお、以下の説明では、説明の便宜上、図1中の上側を「上」、下側を「下」と言う。また、図1ないし4では、それぞれ、説明の便宜上、半導体パッケージの各部が誇張して描かれている。
 はじめに、半導体パッケージ1の概要について説明する。
 本実施形態の半導体パッケージ1は、図1に示すように、基板21と、基板21の一方の面側に設けられた第1導体パターン221と、基板21の他方の面側に設けられ、第1導体パターン221と電気的に接続された第2導体パターン224とを備える配線基板2と、基板21の一方の面に接合され、第1導体パターン221に電気的に接続される半導体素子3と、前記配線基板2に接合され、前記配線基板2よりも熱膨張係数の小さい金属製の補強部材4、5と、補強部材4の表面の少なくとも一部を覆うように設けられた絶縁性樹脂層(絶縁層)61と、補強部材5の表面の少なくとも一部を覆うように設けられた絶縁性樹脂層(絶縁層)62と、を有する。
ここで、本明細書において、熱膨張係数とは、50℃~150℃における面方向の平均線膨張係数を意味する。
 次に、半導体パッケージ1について詳細に説明する。
 前述したように、図1に示すように、半導体パッケージ1は、配線基板2と、この配線基板2上に搭載された半導体素子3と、第1補強部材4と、第2補強部材5と、第1補強部材4上に設けられた絶縁層61と、第2補強部材5上に設けられた絶縁層62とを有する。
 このような半導体パッケージ1によれば、配線基板2のうち、半導体素子3と接合された部分以外の部分が、第1補強部材4および第2補強部材5により補強されるため、半導体パッケージ1全体の剛性が増す。特に、第1補強部材4および第2補強部材5の熱膨張係数がそれぞれ配線基板2(さらには、基板21)よりも小さいため、配線基板2と半導体素子3との熱膨張係数差に起因する配線基板2の反りを抑制または防止することができる。
 また、金属製の第1補強部材4上に、樹脂製の絶縁層61が設けられている。同様に、金属製の第2補強部材5上に樹脂製の絶縁層62が設けられている。絶縁層61,62は、金属製の補強部材4,5に比べて熱放射性に優れている。たとえば、金属の熱放射率は、黒体を1とした場合、0.1程度であるが、樹脂の熱放射率は、金属の放射率よりも大きく、一般的には0.8以上となる。そのため、補強部材4,5に伝達された熱を、絶縁層61,62を介して効率よく放熱することができる。これによって、配線基板2の熱を、補強部材4,5を介し、絶縁層61,62から放熱できる。そのため、配線基板2に発生する反りを抑制することができ、接続信頼性に優れた半導体パッケージとすることができる。
 以下、半導体パッケージ1の各部を順次詳細に説明する。
[配線基板]
 配線基板2は、半導体素子3を支持する基板(第1配線基板)であり、例えば、その搭載した半導体素子3と後述するようなマザーボード200との電気的接続を中継する中継基板(インターポーザ)である。また、配線基板2は、その平面視形状は、通常、正方形、長方形等の四角形とされる。
 配線基板2は、基板21と、導体パターン221、222、223、224と、導体ポスト231、232、233と、熱伝導部である伝熱ポスト24を含む伝熱部と、絶縁層251,261とを有している。
 なお、本実施形態では、導体パターン221は、基板21の一方の面側に設けられた第1導体パターンを構成し、導体パターン224は、基板21の他方の面側に設けられ、前記第1導体パターンと電気的に接続された第2導体パターンを構成する。
 基板21は、複数(本実施形態では3層)の絶縁層211、212、213で構成されている。より具体的には、基板21は、絶縁層211、絶縁層212、絶縁層213がこの順で積層されて構成されている。なお、基板21を構成する絶縁層の数は、これに限定されず、1層または2層であってもよいし、4層以上であってもよい。
 各絶縁層211、212、213は、絶縁性を有する材料で構成されている。
 具体的には、各絶縁層211、212、213は、基材(繊維基材)と、その基材に含浸された樹脂組成物とで構成されている。なお、絶縁層211、212、213のうちの少なくとも1層は、基材を含み、他の層は、基材を含まずに樹脂組成物のみで構成されていてもよい。
 基材は、各絶縁層211、212、213の芯材として用いられるものである。このような基材を有することにより、基板21の剛性を高めることができる。
 基材としては、例えば、ガラス織布、ガラス不織布等のガラス繊維で構成されたガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等のいずれか1種以上を主成分とする織布または不織布で構成される合成繊維基材、あるいは、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等のいずれかを主成分とする紙基材等が挙げられる。これらの中でも、かかる基材としては、ガラス繊維基材が好ましい。これにより、基板21の剛性を高めるとともに、基板21の薄型化を図ることができる。さらに、基板21の熱膨張係数も小さくすることができる。
 このようなガラス繊維基材を構成するガラスとしては、例えば、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Hガラス、Qガラス等のいずれか1種以上が挙げられる。これらの中でもTガラスが好ましい。これにより、ガラス繊維基材の熱膨張係数を小さくすることができ、それによって基板21の熱膨張係数を小さくすることができる。
 また、絶縁層211、212、213が基材を含む場合、絶縁層211、212、213における基材の含有率は、それぞれ、30~70wt%であることが好ましく、40~60wt%であることがより好ましい。これにより、これらの絶縁層のひび割れ等の破損を確実に防ぎつつ、各絶縁層の電気絶縁性および熱膨張係数を十分に低いものとすることができる。
 このような基材に含浸される樹脂組成物は、樹脂材料が含まれている。かかる樹脂材料としては、熱硬化性樹脂が好適に用いられる。
 前記熱硬化性樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、ビスフェノールAエポキシ樹脂、ビスフェノールFエポキシ樹脂等のビスフェノール型エポキシ樹脂、ノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等のエポキシ樹脂、シアネート樹脂、ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、シアネートエステル樹脂等が挙げられる。これらのうち、いずれか1種以上を使用できる。
 これらの中でも、特に、シアネート樹脂が好ましい。これにより、基板21の熱膨張係数を十分に小さくすることができる。さらに、基板21の電気特性(低誘電率、低誘電正接等)を優れたものとすることができる。
 また、前記樹脂組成物は、フィラーを含むのが好ましい。すなわち、絶縁層211、212、213は、それぞれ、フィラーを含むことが好ましい。これにより、絶縁層211、212、213の熱膨張係数を低くすることができる。
 前記フィラーとしては、各種無機フィラーまたは有機フィラーが挙げられる。
 無機フィラー(無機充填材)としては、例えば、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、炭酸カルシウム(軽質、重質)、炭酸マグネシウム、ドロマイト、ドーソナイト等の炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、タルク、マイカ、クレー、ガラス繊維、ケイ酸カルシウム、モンモリロナイト、ベントナイト等のケイ酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、カーボンブラック、グラファイト、炭素繊維等の炭素、その他鉄粉、銅粉、アルミニウム粉、亜鉛華、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸ジルコン酸鉛が挙げられる。これらのうち、いずれか1種以上を使用できる。
 また、有機フィラーとしては、合成樹脂粉末が挙げられる。この合成樹脂粉末としては、例えば、アルキド樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ポリエステル、アクリル樹脂、アセタール樹脂、ポリエチレン、ポリエーテル、ポリカーボネート、ポリアミド、ポリスルホン、ポリスチレン、ポリ塩化ビニル、フッ素樹脂、ポリプロピレン、エチレン-酢酸ビニル共重合体等の各種熱硬化性樹脂または熱可塑性樹脂の粉末、またはこれらの樹脂の共重合体の粉末が挙げられる。また、有機フィラーの他の例としては、芳香族または脂肪族ポリアミド繊維、ポリプロピレン繊維、ポリエステル繊維、アラミド繊維等が挙げられる。これらのうち、いずれか1種以上を使用できる。
 前述したようなフィラーの中でも、無機フィラーを用いるのが好ましい。これにより、絶縁層211、212、213の熱膨張係数を効果的に低めることができる。また、絶縁層211、212、213の伝熱性を高めることもできる。
 特に、無機フィラーの中でも、シリカが好ましく、溶融シリカ(特に球状溶融シリカ)が低熱膨張性に優れる点で好ましい。
 無機フィラーの平均粒子径は、特に限定されないが、0.05~2.0μmが好ましく、特に0.1~1.0μmが好ましい。これにより、絶縁層211、212、213中で、無機フィラーは、より均一に分散することができ、絶縁層211、212、213の物理的強度および絶縁性を特に優れたものとすることができる。
 なお、上記無機フィラーの平均粒子径は、例えば、粒度分布計(HORIBA製、LA-500)により測定することができる。また、本明細書において、平均粒子径とは、体積基準での平均粒子径を指す。
 絶縁層211、212、213における無機充填材の含有量は、それぞれ、特に限定されないが、基材を除く樹脂組成物を100wt%としたときに、30~80wt%が好ましく、特に45~75wt%が好ましい。含有量が前記範囲内であると、絶縁層211、212、213は、熱膨張係数が十分に低く、吸湿性が特に低いものとなる。
 また、前記樹脂組成物は、前述した熱硬化性樹脂の他、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂等の熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては、これらのうち、いずれか1種以上を使用できる。
 また、前記樹脂組成物は、必要に応じて、顔料、酸化防止剤等の上記成分以外の添加物を含んでいてもよい。
 また、絶縁層211、212、213は、互いに同じ材料で構成されていてもよいし、互いに異なる材料で構成されていてもよい。
 上述したような複数の層で構成された基板21の平均厚さは、特に限定されないが、30μm以上800μm以下であることが好ましく、30μm以上400μm以下であることがより好ましい。
 このような基板21の絶縁層211の上面上には、導体パターン221が設けられている。また、絶縁層211と絶縁層212との間には、導体パターン222が介挿されている。また、絶縁層212と絶縁層213との間には、導体パターン223が介挿されている。また、絶縁層213の下面上には、導体パターン224が設けられている。
 本実施形態では、絶縁層211の上面上には、例えばソルダーレジストである絶縁層251が設けられており、導体パターン221は、絶縁層211と絶縁層251との間に介挿されている。また、絶縁層213の下面上には、例えばソルダーレジストである絶縁層252が設けられており、導体パターン224は、絶縁層213と絶縁層252との間に介挿されている。
 絶縁層251,252としては、例えば、エポキシ樹脂を主材料とする熱硬化性レジスト等を用いることができる。また、例えば、PSR4000/AUS308、AUS703(太陽インキ製造製)およびSR-7200G(日立化成工業製)の商品名で市販されているものを用いることもできる。さらには、絶縁層251,252として、後述する絶縁層61,62と同様の材料を使用することができる。
 導体パターン221、222、223、224は、それぞれ、複数の配線を有する回路として機能するものである。
 また、導体パターン221は、半導体素子3に電気的に接続される複数の端子221aを有する。
 導体パターン221、222、223、224の構成材料としては、導電性を有するものであれば、特に限定されず、例えば、銅、銅系合金、アルミ、アルミ系合金等の各種金属および各種合金のいずれかが挙げられる。中でも、かかる構成材料としては、銅あるいは銅系合金を用いるのが好ましい。銅および銅系合金は、電気伝導率が比較的高いものである。そのため、配線基板2の電気的特性を良好なものとすることができる。また、銅および銅系合金は熱伝導性にも優れるので、配線基板2の放熱性を向上させることもできる。
 また、導体パターン221、222、223、224の平均厚さは、特に限定されないが、5μm以上30μm以下であることが好ましい。
 また、絶縁層211には、その厚さ方向に貫通するビアホールが形成され、そのビアホール内に導体ポスト(ビアポスト)231が設けられている。この導体ポスト231は、絶縁層211をその厚さ方向に貫通しており、上端部が導体パターン221に接続されるとともに、下端部が導体パターン222に接続されている。これにより、導体パターン221と導体パターン222とが導通している。
 導体パターン221の複数の端子221aには、後述する複数の金属バンプ(半田バンプ)31を介して半導体素子3が接合されている。この複数の金属バンプ31は、絶縁層251を厚さ方向に貫通している。
 また、絶縁層212には、その厚さ方向に貫通する導体ポスト(ビアポスト)232が設けられている。この導体ポスト232は、上端部が導体パターン222に接続されるとともに、下端部が導体パターン223に接続されている。これにより、導体パターン222と導体パターン223とが導通している。
 また、絶縁層213には、その厚さ方向に貫通する導体ポスト(ビアポスト)233が設けられている。この導体ポスト233は、上端部が導体パターン223に接続されるとともに、下端部が導体パターン224に接続されている。これにより、導体パターン223と導体パターン224とが導通している。
 また、絶縁層251には、その厚さ方向に貫通する複数の開口部251Aが設けられ、その各開口部251Aから導体パターン221の一部(端子221a)が露出している。そして、その導体パターン221の露出した各端子221a上には、後述するように金属バンプ31が接合され、この金属バンプ31を介して半導体素子3が電気的に接続されている。
 絶縁層251の複数の開口部251Aは、補強部材4の開口部40の内側に位置している。
 また、絶縁層252には、その厚さ方向に貫通する複数の開口部252Aが設けられ、その各開口部から導体パターン224の一部(端子)が露出している。そして、その導体パターン224の露出した各部分(端子)上には、金属バンプ(半田バンプ)71が接合されている。すなわち、第2導体パターンである導体パターン224の基板21と反対側の面には、複数の金属バンプ71が接合されている。
 基板面側からの平面視において、絶縁層252に形成された各開口部252Aの外周縁を取り囲むように、補強部材5の各開口部51が形成されている。そして、絶縁層252に形成された開口部252Aの径は、補強部材5に形成された開口部51の径(絶縁層62で被覆された開口部51の内径)よりも小さい。これにより、導体パターン224と補強部材5との接触を抑制することができる。また、絶縁層252が導体パターン224を被覆し、保護するソルダーレジストとしての役割を果たすため、補強部材5をソルダーレジストとして機能させなくてよく、開口部51の径を大きくできるので、金属バンプ71を配置しやすい。
 この金属バンプ71は、半導体パッケージ1を例えば後述するようなマザーボードに対して電気的に接続するためのものである。
 ここで、配線基板2に設けられる金属バンプ71について説明する。本実施形態では、金属バンプ71は、略球状をなしている。具体的には、金属バンプ71は、絶縁層252の開口部から凸状に突出し、突出した部分が湾曲した円弧状の曲面を有している。なお、金属バンプ71の形状は、これに限定されない。
 金属バンプ71の構成材料としては、特に限定されないが、例えば、錫-鉛系、錫-銀系、錫-亜鉛系、錫-ビスマス系、錫-アンチモン系、錫-銀-ビスマス系、錫-銅系、錫-銀-銅系等の各種ろう材(半田)を用いることができる。金属バンプ71としては、これらのうち、いずれか1種以上を使用できる。
 また、各金属バンプ71の直径は、特に限定されないが、例えば、100μm以上1000μm以下程度である。
 また、複数の金属バンプ71同士の距離(中心間距離)は、特に限定されないが、例えば、50μm以上500μm以下程度である。このように、複数の金属バンプ71同士の間の距離は、近年の半導体パッケージの小型化および多ピン化に伴い極めて小さくなっている。したがって、詳しくは後述するが、このような金属バンプ71同士の間に位置する部分を有する第2補強部材5の表面上に絶縁層62を形成することにより、金属バンプ71間の短絡を防止できる。
 配線基板2は、伝熱ポスト24を含んで構成される伝熱部を有する。
 配線基板2の基板21には、その厚さ方向の全域に亘って貫通する複数のビアホールが形成され、その各ビアホールに前記伝熱ポスト24が設けられている。
 この各伝熱ポスト24は、基板21全体をその厚さ方向に貫通しており、上端が基板21の上面から露出するとともに、下端が基板21の下面から露出している。そして、伝熱ポスト24は、上端が接続部261(第1接続部)を介して第1補強部材4に接続し、下端が接続部262(第2接続部)を介して第2補強部材5に接続している。これにより、各伝熱ポスト24は、第1補強部材4と第2補強部材5とを熱的に接続している。
 伝熱ポスト24の上端面は、基板21の上面と面一であり、伝熱ポスト24の下端面は、基板21の下面と面一である。
 なお、伝熱ポスト24と、接続部261,262とで伝熱部が構成される。
 伝熱ポスト(熱伝導部)24を含む伝熱部は、前述した基板21(絶縁層)よりも高い伝熱性を有する。これにより、半導体素子3で発生した熱を、第1補強部材4から伝熱ポスト24を含む伝熱部を介して第2補強部材5へ効率的に伝達することができる。その結果、半導体パッケージ1の放熱性を向上させることができる。
 また、伝熱ポストを介して、配線基板2にたまった熱を第1補強部材4、第2補強部材5に伝達することもできる。
 また、この各伝熱ポスト24は、基板21をその厚さ方向に貫通するものであるため、公知の導体ポストと同様に、簡単かつ高精度に形成することができる。
 また、各伝熱ポスト24は、中空であってもよいし、中実であってもよい。また、各伝熱ポスト24の横断面形状としては、特に限定されず、例えば、円形、楕円形、多角形等が挙げられる。また、伝熱ポスト24の数は、特に限定されず、任意であるが、配線基板2の機械的強度を損ねない程度に、できるだけ多くするのが好ましい。
 また、各伝熱ポスト24は、電気信号の伝送に寄与しないものであり、各導体パターン221,222,223,224と絶縁している。これにより、第1補強部材4から伝熱ポスト24を介して第2補強部材5へ熱をより効率的に伝達することができる。
 本実施形態では、複数の伝熱ポスト24は、配線基板2を平面視したときに、配線基板2の外周部に沿って互いに間隔を隔てて並設されている。特に、複数の伝熱ポスト24は、配線基板2を平面視したときに、配線基板2の外周部に沿って周方向に等間隔で並設されているのが好ましい。これにより、配線基板2の温度分布を均一化することができる。
 また、複数の伝熱ポスト24は、配線基板2を平面視したときに、前述した導体パターン221、222、223、224に重ならないように設けられている。これにより、伝熱ポスト24の形成が簡単となるとともに、伝熱ポスト24による導体パターン221、222、223、224の短絡を防止することができる。
 このような各伝熱ポスト24の構成材料としては、前述した基板21(絶縁層)よりも高い伝熱性を有するものであれば、特に限定されないが、金属材料を用いるのが好ましい。
 かかる金属材料としては、例えば、銅、銅系合金、アルミ、アルミ系合金等の各種金属および各種合金が挙げられ、いれずれか1種以上を使用できる。中でも、かかる金属材料としては、伝熱性に優れるので、銅、銅系合金、アルミ、アルミ系合金のいずれかを用いるのが好ましい。
 また、伝熱ポスト24の構成材料は、前述した導体ポスト231~233の構成材料と異なっていてもよいが、導体ポスト231~233の構成材料と同じであるのが好ましい。これにより、伝熱ポスト24を導体ポスト231~233の形成とともに形成することができる。そのため、半導体パッケージ1の製造が簡単化され、また、半導体パッケージ1を安価なものとすることができる。
 接続部261は、伝熱ポスト24と第1補強部材4との間に設けられ、第1補強部材4に直接接触している。接続部262は、伝熱ポスト24と第2補強部材5との間に設けられ、第2補強部材5に直接接触している。これにより、伝熱ポスト24と第1補強部材4との間の熱的接続、および、伝熱ポスト24と第2補強部材5との間の熱的接続が簡単かつ確実になされる。ただし、伝熱ポスト24と補強部材4、5とは接着剤等を介して間接的に接触していてもよい。
 また、接続部261、262の構成材料としては、それぞれ、例えば、錫-鉛系、錫-銀系、錫-亜鉛系、錫-ビスマス系、錫-アンチモン系、錫-銀-ビスマス系、錫-銅系、錫-銀-銅系等の各種ろう材(半田)のいずれか、あるいは、無機フィラーおよび樹脂材料を含んで構成された樹脂組成物等が挙げられる。
 接続部261、262を樹脂組成物で構成した場合、その樹脂組成物に用いる無機フィラー(無機充填材)としては、例えば、Au、Ag、Pt等の金属、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、炭酸カルシウム(軽質、重質)、炭酸マグネシウム、ドロマイト、ドーソナイト等の炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、タルク、マイカ、クレー、ガラス繊維、ケイ酸カルシウム、モンモリロナイト、ベントナイト等のケイ酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、カーボンブラック、グラファイト、炭素繊維等の炭素、その他鉄粉、銅粉、アルミニウム粉、亜鉛華、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸ジルコン酸鉛が挙げられる。これらのいずれか1種以上を使用することができる。なお、無機フィラーとして導電性を有するものを用いた場合、必要に応じて、絶縁処理を施す。
 中でも、前記無機フィラーとしては、絶縁性および熱伝導性に優れるという観点から、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物のいずれか1種以上が好ましい。
 また、接続部261、262を樹脂組成物で構成した場合、その樹脂組成物に用いる樹脂材料としては、各種熱可塑性樹脂、各種熱硬化性樹脂が挙げられる。
 接続部261、262(樹脂組成物)に用いる熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体等のポリオレフィン、変性ポリオレフィン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6-12、ナイロン6-66)、熱可塑性ポリイミド、芳香族ポリエステル等の液晶ポリマー、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリカーボネート、ポリメチルメタクリレート、ポリエーテル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアセタール、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
 また、接続部261、262(樹脂組成物)に用いる熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリエステル(不飽和ポリエステル)樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
[半導体素子]
 半導体素子(第1半導体素子)3は、例えば、集積回路素子(IC)であり、より具体的には、例えば、ロジックIC、メモリおよび受発光素子等のいずれかである。
 この半導体素子3は、前述した配線基板2の基板21の上面(一方の面)側に設けられ、第1導体パターンである導体パターン221に電気的に接続されている。
 具体的には、半導体素子3は、その下面に、図示しない複数の端子が設けられており、その各端子が金属バンプ31を介して、前述した導体パターン221の複数の端子221aに電気的に接続されている。
 金属バンプ31の構成材料としては、特に限定されないが、前述した金属バンプ71と同様、例えば、錫-鉛系、錫-銀系、錫-亜鉛系、錫-ビスマス系、錫-アンチモン系、錫-銀-ビスマス系、錫-銅系、錫-銀-銅系等の各種ろう材(半田)のいずれか1種以上を用いることができる。
 また、半導体素子3は、接着層32を介して、配線基板2の上面に接着(接合)されている。
 この接着層32は、接着性および絶縁性を有する材料で構成され、例えば、アンダーフィル材の硬化物で構成されている。
 アンダーフィル材としては、特に限定されず、公知のアンダーフィル材を用いることができるが、後述する絶縁材81を形成するための半田接合用レジストと同様のものを用いることもできる。
[第1補強部材]
 第1補強部材(スティフナー)4は、前述した配線基板2の基板21の上面(一方の面)の、半導体素子3が接合されていない部分に接合されている。
 この第1補強部材4と基板21とは、例えば接着剤を介して接合することができる。これにより、第1補強部材4の設置が簡単となる。
 かかる接着剤としては、接着機能を有するものであれば、特に限定されず、各種接着剤を用いることができるが、熱伝導性に優れたものが好ましく、無機フィラーおよび樹脂材料を含んで構成された樹脂組成物を用いることができる。かかる樹脂組成物としては、前述した接続部261、262に用いる樹脂組成物と同様のものを用いることができる。
 また、かかる接着剤は、前述した絶縁層251の少なくとも一部を構成することができる。本実施形態では、絶縁層251が第1補強部材4の接着剤として機能する。
 この第1補強部材4は、基板21、さらには、配線基板2よりも熱膨張係数が小さい。これにより、基板21の熱膨張を抑えることができる。
 また、第1補強部材4は、板状をなしている。これにより、第1補強部材4の構成を簡単かつ小型なものとすることができる。
 本実施形態では、第1補強部材4の基板21と反対側の面(すなわち上面)が、半導体素子3の基板21と反対側の面(すなわち上面)よりも基板21側に位置している。これにより、半導体パッケージ1の製造に際し、第1補強部材4の設置後に半導体素子3を設置する場合、半導体素子3の設置が容易となる。
 また、第1補強部材4は、半導体素子3の周囲を囲むような形状をなしている。本実施形態では、第1補強部材4は、その中央部に半導体素子3が配置される開口部40が形成されており、第1補強部材4は、半導体素子3を囲むように環状(より具体的には四角環状)をなしている。これにより、第1補強部材4と半導体素子3との一体性が増し、第1補強部材4による配線基板2の剛性を高める効果を優れたものとすることができる。
 また、図2に示すように、第1補強部材4には、その厚さ方向に貫通する複数の貫通孔42が形成されている。具体的には、第1補強部材4の開口部40を取り囲むように、複数の貫通孔(開口部)42が離間して形成されている。貫通孔42を形成することで、貫通孔42内部側から第1補強部材4の熱を放熱することができ、第1補強部材4に熱がたまってしまうことが抑制される。さらに、径が小さい貫通孔42を複数形成すれば、第1補強部材4の表面積が大きくなるので、第1補強部材4の放熱性を向上させることができる。
 なお、詳しくは後述するが、貫通孔42の内周面全面が、絶縁層61で被覆されている。
 本実施形態では、各貫通孔42は、平面視にて、円形をなしている。なお、各貫通孔42の平面視形状は、円形に限定されず、例えば、四角形、五角形、六角形等の多角形であってもよい。
 開口部40は、本実施形態では、平面視にて、四角形となっているが、これに限られるものではない。
 ただし、貫通孔42、開口部40はその貫通方向に沿って径が変化せずに均一であることが好ましい。このような単純な形状とすることで、貫通孔42、開口部40を簡単に形成することができる。
 また、第1補強部材4は、半導体素子3との間の距離(第1補強部材4の内周面41と半導体素子3の外周面33との間の距離)が半導体素子3の全周に亘って一定となるように形成されている。これにより、第1補強部材4および半導体素子3の一体性が増し、これらによる配線基板2の補強効果が好適に発揮される。
 また、第1補強部材4は、半導体素子3との熱膨張係数差が7ppm/℃以下であることが好ましい。これにより、半導体素子3および第1補強部材4が一体的に配線基板2を補強し、半導体パッケージ1全体の熱膨張を抑えることができる。
 また、第1補強部材4の構成材料としては金属材料があげられる。第1補強部材4が金属材料で構成されていると、第1補強部材4の熱伝導性を高めることができる。その結果、配線基板2や半導体素子3に熱がたまってしまうことを抑制できる。
 かかる金属材料としては、前述したような熱膨張係数を有するものであれば、特に限定されず、各種金属材料を用いることができるが、放熱性および低熱膨張を実現する観点から、Feを含む合金を用いるのが好ましい。
 かかるFeを含む合金としては、例えば、Fe-Ni系合金、Fe-Co-Cr系合金、Fe-Co系合金、Fe-Pt系合金、Fe-Pd系合金等のいずれかが挙げられ、特に、Fe-Ni系合金を用いるのが好ましい。
 このような金属材料は、熱伝導性に優れるだけでなく、熱膨張係数が低く、かつ、一般的な半導体素子3の熱膨張係数に近い熱膨張係数を有する。そのため、半導体素子3および第1補強部材4により、一体的に配線基板2を補強することができる。
 Fe-Ni系合金としては、FeおよびNiを含むものであれは、特に限定されず、FeおよびNiの他に、残部(M)として、Co、Ti、Mo、Cr、Pd、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。
 より具体的には、Fe-Ni系合金としては、例えば、Fe-36Ni合金(インバー)等のFe-Ni合金、Fe-32Ni-5Co合金(スーパーインバー)、Fe-29Ni-17Co合金(コバール)、Fe-36Ni-12Co合金(エリンバー)等のFe-Ni-Co合金、Fe-Ni-Cr-Ti合金、Ni-28Mo-2Fe合金等のNi-Mo-Fe合金等が挙げられる。また、Fe-Ni-Co合金は、例えば、KV-2、KV-4、KV-6、KV-15、KV-25等のKVシリーズ(NEOMAXマテリアル社製)、Nivarox等の商品名で市販されている。また、Fe-Ni合金は、例えば、NS-5、D-1(NEOMAXマテリアル社製)等の商品名で市販されている。また、Fe-Ni-Cr-Ti合金は、例えば、Ni-Span C-902(大同スペシャルメタル社製)、EL-3(NEOMAXマテリアル社製)等の商品名で市販されている。
 また、Fe-Co-Cr系合金としては、Fe、CoおよびCrを含むものであれば、特に限定されないが、例えば、Fe-54Co-9.5Cr(ステンレスインバー)等のFe-Co-Cr合金が挙げられる。なお、Fe-Co-Cr系合金は、Fe、CoおよびCrの他に、Ni、Ti、Mo、Pd、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。
 また、Fe-Co系合金としては、FeおよびCoを含むものであれば、特に限定されず、FeおよびCoの他に、Ni、Ti、Mo、Cr、Pd、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。
 また、Fe-Pt系合金としては、FeおよびPtを含むものであれば、特に限定されず、FeおよびPtの他に、Co、Ni、Ti、Mo、Cr、Pd等の金属のうちの1種または2種以上の金属を含んでいてもよい。
 また、Fe-Pd系合金としては、FeおよびPdを含むものであれば、特に限定されず、FeおよびPdの他に、Co、Ni、Ti、Mo、Cr、Pt等の金属のうちの1種または2種以上の金属を含んでいてもよい。
 特に、第1補強部材4の熱膨張係数は、0.5ppm/℃以上10ppm/℃以下であるのが好ましく、1ppm/℃以上7ppm/℃以下であるのがより好ましく、1ppm/℃以上5ppm/℃以下であるのがさらに好ましい。これにより、半導体素子3と第1補強部材4との熱膨張係数差を小さくし、これらが一体として配線基板2を補強することができる。そのため、配線基板2の反りを効果的に防止することができる。
 また、第1補強部材4と半導体素子3との熱膨張係数差の絶対値は、7ppm/℃以下であるのが好ましく、5ppm/℃以下であるのがより好ましく、2ppm/℃以下であるのがさらに好ましい。これにより、半導体素子3と第1補強部材4との熱膨張係数差を小さくし、これらが一体として配線基板2を補強することができる。そのため、配線基板2の反りを効果的に防止することができる。
 上述したような熱膨張係数の観点から、第1補強部材4を構成する金属材料がFe-Ni系合金である場合、前記Fe-Ni系合金は、Niの含有量が30wt%以上50wt%以下であるのが好ましく、Niの含有量が35wt%以上45wt%以下であるのがより好ましい。これにより、第1補強部材4の熱膨張係数を半導体素子3の熱膨張係数に近づけることができる。この場合、前記Fe-Ni系合金は、Feの含有量が50wt%以上70wt%以下であるのが好ましく、Feの含有量が55wt%以上65wt%以下であるのがより好ましい。
 また、第1補強部材4を構成する金属材料がFe-Ni系合金である場合、前記Fe-Ni系合金は、FeおよびNiの合計含有量が85wt%以上100wt%以下であるのが好ましく、FeおよびNiの合計含有量が90wt%以上100wt%以下であるのがより好ましい。すなわち、前記Fe-Ni系合金は、残部(M)の含有量が0wt%以上15wt%以下であるのが好ましく、残部(M)の含有量が0wt%以上10wt%以下であるのがより好ましい。これにより、第1補強部材4の熱膨張係数を半導体素子3の熱膨張係数に近づけることができる。
 また、第1補強部材4の平均厚さは、配線基板2の熱膨張係数、配線基板2の第1補強部材4および第2補強部材5の形状、大きさ、構成材料等に応じて決められるものであり特に限定されないが、例えば、0.02mm以上0.8mm以下程度である。なお、本実施形態では第1補強部材4の厚さは均一であるが、厚さの異なる部分を有していてもよい。例えば、第1補強部材4の内側から外側に向けて厚さが連続的または段階的に減少または増加していてもよい。
 また、本実施形態では、第1補強部材4の開口部40の内周面41を被覆する絶縁層61と、半導体素子3との間に隙間が形成されているが、この隙間に、熱伝導性材料が充填されていてもよい。これにより、半導体素子3から熱伝導性材料を介して第1補強部材4へ効率的に熱を伝達することができる。その結果、半導体パッケージ1の放熱性を向上させることができる。
 このような熱伝導性材料としては、特に限定されないが、無機フィラーおよび樹脂材料を含んで構成された樹脂組成物が挙げられる。この樹脂組成物としては、前述した接続部261、262に用いる樹脂組成物と同様のものを用いることができる。
 また、この熱伝導性材料は、前述した接着層32(アンダーフィル材)と同様のものを用いてもよく、熱伝導性材料として接着層32と同様のものを使用する場合には、熱伝導性材料および接着層32を一括して形成することもできる。
[第2補強部材]
 第2補強部材(スティフナー)5は、配線基板2の基板21の下面(他方の面)に接合されている。
 この第2補強部材5と基板21とは、接着剤を介して接合することができる。これにより、第2補強部材5の設置が簡単となる。
 かかる接着剤としては、接着機能を有するものであれば、特に限定されず、各種接着剤を用いることができるが、熱伝導性に優れたものが好ましく、無機フィラーおよび樹脂材料を含んで構成された樹脂組成物を用いることができる。かかる樹脂組成物としては、前述した接続部261、262に用いる樹脂組成物と同様のものを用いることができる。
 また、かかる接着剤は、前述した絶縁層252の少なくとも一部を構成することができる。本実施形態では、絶縁層252が第2補強部材5の接着剤として機能する。
 この第2補強部材5は、前述した第1補強部材4と同様、基板21、さらには、配線基板2よりも熱膨張係数が小さい。
 第2補強部材5は、板状をなしている。これにより、第2補強部材5の構成を簡単かつ小型なものとすることができる。
 また、図3に示すように、第2補強部材5は、配線基板2(基板21)の外周部(導体パターン224よりも外側)に沿って設けられた部分(枠部)52と、金属バンプ71同士の間に設けられた部分53とを有している。第2補強部材5の部分52と配線基板2(基板21)との接合により、第2補強部材5が配線基板2を効果的に補強することができる。また、第2補強部材5の部分53と配線基板2との接合により、第2補強部材5の剛性が高められる。
 より具体的に説明すると、第2補強部材5は、前述した各金属バンプ71に非接触で各金属バンプ71を囲むように形成された複数の開口部51を有する。各開口部51には、金属バンプ71が一つずつ配置されることとなる。これにより、第2補強部材5が配線基板2の下面に占める面積の割合を大きくすることができる。その結果、第2補強部材5による配線基板2の剛性を高める効果を優れたものとすることができる。
 本実施形態では、各開口部51は、平面視にて、円形をなしている。なお、各開口部51の平面視形状は、これに限定されず、例えば、楕円形、多角形等であってもよい。
 また、各開口部51は、各金属バンプ71に対応して(一対一で対応して)設けられている。これにより、第2補強部材5の剛性の均一化を図ることができる。また、第2補強部材5の放熱性も向上させることができる。
 また、第2補強部材5は、各金属バンプ71との間の距離(平面視における開口部51の壁面と金属バンプ71の外周面との間の距離)が金属バンプ71の全周に亘って一定となるように形成されている。これにより、第2補強部材5および各金属バンプ71の一体性が増し、これらによる配線基板2の補強効果が好適に発揮される。
 また、開口部51の直径は、特に限定されないが、例えば、20μm以上470μm以下程度である。
 また、複数の開口部51同士の距離(中心間距離)は、特に限定されないが、例えば、50μm以上500μm以下程度である。
 ここで、本実施形態では、開口部51は、図3に示すように、配線基板2の基板面側からの平面視において、マトリクス状に配置されている。
 また、前述した第1補強部材4と同様、第2補強部材5は、半導体素子3との熱膨張係数差が7ppm/℃以下であるのが好ましい。これにより、第2補強部材5が効果的に配線基板2を補強し、半導体パッケージ1全体の熱膨張を抑えることができる。
 また、第2補強部材5は、金属材料で構成されている。金属材料としては、第1補強部材4と同様のものを使用できる。これにより、第2補強部材5の放熱性を高めることができる。その結果、半導体パッケージ1の放熱性を向上させることができる。
 かかる金属材料としては、特に限定されないが、放熱性および低熱膨張を実現する観点から、Fe-Ni系合金を用いるのが好ましい。
 Fe-Ni系合金としては、前述した第1補強部材4と同様のものを用いることができる。
 特に、第2補強部材5の熱膨張係数は、0.5ppm/℃以上10ppm/℃以下であるのが好ましく、1ppm/℃以上7ppm/℃以下であるのがより好ましく、1ppm/℃以上5ppm/℃以下であるのがさらに好ましい。これにより、半導体素子3と第2補強部材5との熱膨張係数差を小さくし、第2補強部材5が配線基板2を効果的に補強することができる。そのため、配線基板2の反りを効果的に防止することができる。
 また、第2補強部材5と半導体素子3との熱膨張係数差の絶対値は、7ppm/℃以下であるのが好ましく、5ppm/℃以下であるのがより好ましく、2ppm/℃以下であるのがさらに好ましい。これにより、半導体素子3と第2補強部材5との熱膨張係数差を小さくし、第2補強部材5が配線基板2を効果的に補強することができる。そのため、配線基板2の反りを効果的に防止することができる。
 また、第2補強部材5と第1補強部材4との熱膨張係数差の絶対値は、2ppm/℃以下であるのが好ましく、1ppm/℃以下であるのがより好ましく、0ppm/℃であるのがさらに好ましい。これにより、第1補強部材4と第2補強部材5との熱膨張係数差を小さくし、これらの熱膨張差に起因する配線基板2の反りを防止することができる。
 このような観点から、第2補強部材5の構成材料は、第1補強部材4の構成材料と同種または同じであるのが好ましい。
 また、第2補強部材5の平均厚さは、配線基板2の熱膨張係数、配線基板2の第1補強部材4および第2補強部材5の形状、大きさ、構成材料等に応じて決められるものであり、特に限定されないが、例えば、0.02mm以上0.8mm以下程度である。
 また、第2補強部材5と各金属バンプ71との間には、絶縁材81が設けられている(充填されている)。これにより、第2補強部材5と各金属バンプ71との接触を防止することができる。
 また、絶縁材81は、金属バンプ71の基板21側の部分(上部)の周囲を囲むような形状をなし、かつ、各金属バンプ71に接合されている。これにより、絶縁材81は、金属バンプ71を補強している。
 絶縁材81は、金属バンプ71の導体パターン224側の基部側面を取り囲み、金属バンプ71に接触している。ここで、金属バンプ71は、略球状であり、湾曲した球面を有している。そして、この金属バンプ71は、補強部材5よりも、配線基板と反対側に突出している。絶縁材81は、金属バンプ71の周面を構成する球面(湾曲面)に沿って、金属バンプ71に接触しており、絶縁材81中に金属バンプ71の一部が埋め込まれた状態となっている。また、絶縁材81は、金属バンプ71の周面側から、導体パターン224側に向けて末広がりとなる形状となっている。すなわち、絶縁材81は、配線基板厚み方向から直交する方向からの側面視において、台形形状となっている。これにより、絶縁材81により、金属バンプ71が補強される。なお、絶縁材81は半導体パッケージにおいて半硬化の状態であってもよく、完全硬化した状態であってもよい。
 なお、金属バンプ71としては、前述した金属バンプ31と同様の材料を使用することができる。
 ただし、絶縁材81の形状は、これに限られるものではない。
 また、絶縁材81は、前述した配線基板2の基板21よりも高い熱伝導性を有するのが好ましい。これにより、金属バンプ71と第2補強部材5の間の熱伝導性を優れたものとし、半導体パッケージ1の放熱性を向上させることができる。このような絶縁材81は、絶縁性を有し、樹脂材料を含んで構成されている。
 このような絶縁材81は、特に限定されないが、硬化性材料で構成されていることが好ましく、例えば、熱硬化性を有する半田接合用樹脂組成物により形成されるのが好ましい。
 このような半田接合用樹脂組成物(以下、「硬化性フラックス」とも言う)は、フラックス活性化合物を有する熱硬化性の樹脂組成物であり、半田接合時にフラックスとして作用し、次いで加熱することにより、硬化して半田接合部の補強材として作用する。また、かかる半田接合用樹脂組成物は、半田接合の際に、半田接合面および半田材料の酸化物などの有害物を除去し、半田接合面を保護するとともに、半田材料の精錬を行って、強度の大きい良好な接合を可能にする。さらに、半田接合用樹脂組成物は、半田接合後に洗浄などにより除去する必要がなく、そのまま加熱することにより、三次元架橋した樹脂となり、半田接合部の補強材として作用する。
 かかる半田接合用樹脂組成物は、例えば、フェノール性ヒドロキシル基を有する樹脂(A)および該樹脂の硬化剤(B)を含んで構成することができる。
 フェノール性ヒドロキシル基を有する樹脂(A)としては、特に制限はないが、例えば、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、多価フェノールノボラック樹脂、レゾール樹脂、ポリビニルフェノール樹脂などを挙げることができる。これらのうち、いずれか1種以上を使用することができる。
 また、硬化性フラックスにおいて、フェノール性ヒドロキシル基を有する樹脂(A)の含有量は、硬化性フラックス全体の20~80重量%であることが好ましく、25~60重量%であることがより好ましい。樹脂(A)の含有量が20重量%未満であると、半田および金属表面の酸化物などの汚れを除去する作用が低下し、半田接合性が不良となるおそれがある。樹脂(A)の含有量が80重量%を超えると、十分な物性を有する硬化物が得られず、接合強度と信頼性が低下するおそれがある。
 また、フェノール性ヒドロキシル基を有する樹脂(A)のフェノール性ヒドロキシル基は、その還元作用により、半田および金属表面の酸化物などの汚れを除去するので、半田接合のフラックスとして効果的に作用する。
 また、フェノール性ヒドロキシル基を有する樹脂(A)の硬化剤(B)としては、例えば、エポキシ化合物、イソシアネート化合物などを挙げることができる。エポキシ化合物およびイソシアネート化合物としては、例えば、ビスフェノール系、フェノールノボラック系、アルキルフェノールノボラック系、ビフェノール系、ナフトール系、レゾルシノール系などのフェノールベースのエポキシ化合物、イソシアネート化合物や、飽和脂肪族、環状脂肪族、不飽和脂肪族などの骨格をベースとして変性されたエポキシ化合物、イソシアネート化合物などを挙げることができる。これらのうち、いずれか1種以上を使用することができる。
 また、硬化剤(B)の配合量は、硬化剤のエポキシ基、イソシアネート基などの反応性の官能基が、樹脂(A)のフェノール性ヒドロキシル基の0.5~1.5当量倍であることが好ましく、0.8~1.2当量倍であることがより好ましい。硬化剤の反応性の官能基がヒドロキシル基の0.5当量倍未満であると、十分な物性を有する硬化物が得られず、補強効果が小さくなって、接合強度と信頼性が低下するおそれがある。硬化剤の反応性の官能基がヒドロキシル基の1.5当量倍を超えると、半田および金属表面の酸化物などの汚れを除去する作用が低下し、半田接合性が不良となるおそれがある。
 このような半田接合用樹脂組成物(硬化性フラックス)は、フェノール性ヒドロキシル基を有する樹脂(A)と該樹脂の硬化剤(B)の反応により、良好な物性を有する硬化物が形成されるために、半田接合後に洗浄によりフラックスを除去する必要がなく、硬化物により半田接合部が保護されて、高温、多湿雰囲気でも電気絶縁性を保持し、接合強度と信頼性の高い半田接合が可能となる。
 なお、前述したような半田接合用樹脂は、フェノール性ヒドロキシル基を有する樹脂(A)と該樹脂の硬化剤(B)の他に、硬化性酸化防止剤(C)、微結晶状態で分散するフェノール性ヒドロキシル基を有する化合物(D)および該化合物の硬化剤(E)、溶剤(F)、硬化触媒、密着性や耐湿性を向上させるためのシランカップリング剤、ボイドを防止するための消泡剤、あるいは液状または粉末の難燃剤等を含んでいてもよい。
 また、半田接合用樹脂組成物としては、次のようなものも使用できる。
 たとえば、半田接合用樹脂組成物は、熱硬化性樹脂と、フラックス活性化合物と、イミダゾール等の硬化促進剤とを含むものであってもよい。
 熱硬化性樹脂としては、エポキシ樹脂、フェノキシ樹脂、シリコーン樹脂、オキセタン樹脂、フェノール樹脂、(メタ)アクリレート樹脂、ポリエステル樹脂(不飽和ポリエステル樹脂)、ジアリルフタレート樹脂、マレイミド樹脂、ポリイミド樹脂(ポリイミド前駆体樹脂)、ビスマレイミド-トリアジン樹脂、シアネート樹脂などが挙げられる。特に、エポキシ樹脂、(メタ)アクリレート樹脂、フェノキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂、マレイミド樹脂、ビスマレイミド-トリアジン樹脂、シアネート樹脂からなる群より選ばれる少なくとも1種を含む熱硬化性樹脂を用いることが好ましい。中でも、硬化性と保存性、硬化物の耐湿性の観点からエポキシ樹脂を使用することが好ましい。
 また、フラックス活性化合物としては、フェノール性水酸基および/またはカルボキシル基を有する化合物が好ましい。フェノール性水酸基を有する化合物としては、例えば、フェノール、o-クレゾール、2,6-キシレノール、p-クレゾール、m-クレゾール、o-エチルフェノール、2,4-キシレノール、2,5-キシレノール、m-エチルフェノール、2,3-キシレノール、メジトール、3,5-キシレノール、p-tert-ブチルフェノール、カテコール、p-tert-アミルフェノール、レゾルシノール、p-オクチルフェノール、p-フェニルフェノール、ビスフェノールF、ビスフェノールAF、ビフェノール、ジアリルビスフェノールF、ジアリルビスフェノールA、トリスフェノール、テトラキスフェノールなどのフェノール性水酸基を含有するモノマー類、フェノールノボラック樹脂、o-クレゾールノボラック樹脂、ビスフェノールFノボラック樹脂、ビスフェノールAノボラック樹脂などのフェノール性水酸基を含有する樹脂が挙げられる。
 これらのうち、いずれか1種以上を使用することができる。
 カルボキシル基を有する化合物としては、例えば、脂肪族酸無水物、脂環式酸無水物、芳香族酸無水物、脂肪族カルボン酸、芳香族カルボン酸などが挙げられる。前記脂肪族酸無水物としては、無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物などが挙げられる。前記脂環式酸無水物としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などが挙げられる。前記芳香族酸無水物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、グリセロールトリストリメリテートなどが挙げられる。これらのうち、いずれか1種以上を使用することができる。
 さらには、カルボキシル基とフェノール性水酸基とを有する化合物としては、サリチル酸、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、ゲンチジン酸(2,5-ジヒドロキシ安息香酸)、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、浸食子酸(3,4,5-トリヒドロキシ安息香酸)などの安息香酸誘導体;1,4-ジヒドロキシ-2-ナフトエ酸、3,5-ジヒドロキシ-2-ナフトエ酸などのナフトエ酸誘導体;フェノールフタリン;ジフェノール酸などが挙げられる。中でも、フェノールフタリン、ゲンチジン酸、2,4-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸が好ましく、フェノールフタリン、ゲンチジン酸が特に好ましい。これらのうち、いずれか1種以上を使用することができる。
 絶縁材81は伝熱性のフィラー(充填材)を含んでもよい。フィラーとしては、無機フィラーがあげられ、例えば、Au、Ag、Pt等の金属、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、炭酸カルシウム(軽質、重質)、炭酸マグネシウム、ドロマイト、ドーソナイト等の炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、タルク、マイカ、クレー、ガラス繊維、ケイ酸カルシウム、モンモリロナイト、ベントナイト等のケイ酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、カーボンブラック、グラファイト、炭素繊維等の炭素、その他鉄粉、銅粉、アルミニウム粉、亜鉛華、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸ジルコン酸鉛が挙げられる。これらのいずれか1種以上を使用することができる。なお、無機フィラーとして導電性を有するものを用いた場合、必要に応じて、絶縁処理を施す。
 中でも、前記無機フィラーとしては、絶縁性および熱伝導性に優れるという観点から、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物のいずれか1種以上が好ましい。
[絶縁層]
 絶縁層61は、第1補強部材4上に設けられ、また、絶縁層62は、第2補強部材5上に設けられている。
 より具体的に説明すると、絶縁層61は、第1補強部材4の基板21とは反対側の面の全面および、開口部40の内周面41上および各貫通孔42の内周面上に形成されている。開口部40内の絶縁層61は、内周面41に沿って形成されており、基板21の厚さ方向に沿った断面視において、対向する内周面41を被覆する絶縁層61間には空隙が形成されている。
 同様に、基板21の厚さ方向に沿った断面視において、貫通孔42の対向する内周面を被覆する絶縁層61間には空隙が形成されている。
 一般に樹脂層の熱放射率は金属層よりも高いため、第1補強部材4に伝達された熱を、絶縁層61を介して効率よく熱放射することができる。これにより、半導体パッケージの放熱性を高めることができる。特に、図1に示すように、半導体パッケージ1の基板21の厚さ方向に沿った断面において、第1補強部材4の開口部40、貫通孔42で挟まれた領域では、基板21と反対側の表面および両側面(開口部40の内周面、貫通孔42の内周面)の3つの面が絶縁層61で被覆されることとなるので、放熱性を確実に高めることができる。
 また、絶縁層61は第1補強部材4の基板21側の面上には形成されていない。すなわち、本実施形態では、第1補強部材4は、配線基板2に直接接触している。これにより、配線基板2からの熱を第1補強部材4に直接伝熱させることができる。
 なお、第1補強部材4の基板21側の面上に接着剤が設けられ、第1補強部材4と、配線基板のソルダーレジストとを接着してもよい。この場合、第1補強部材4の基板21側の面には、絶縁層61は設けられず、絶縁層61とは異なる組成の接着剤が設けられることとなる。
 さらに、第1補強部材4の基板21とは反対側の面上、内周面41上および各貫通孔42の内周面が絶縁層61で被覆されているため、半導体装置に半導体パッケージを組み込んだ際に、半導体パッケージ以外の他の部材と第1補強部材4とが不本意に短絡してしまうことを防止できる。
 また、絶縁層62は、第2補強部材5の基板21とは反対側の面の全面および各開口部51の内周面上に設けられている。一般に樹脂層の熱放射率は金属層よりも高いため、第2補強部材5に伝達された熱を、絶縁層62を介して効率よく熱放射することができる。これにより、半導体パッケージの放熱性を高めることができる。特に、図1に示すように、半導体パッケージ1の基板21の厚さ方向に沿った断面において、第2補強部材5の開口部51で挟まれた領域では、基板21と反対側の表面および両側面(開口部51の内周面)の3つの面が絶縁層61で被覆されることとなるので、放熱性を確実に高めることができる。
 また、絶縁層62は第2補強部材5の基板21側の面上には形成されていない。すなわち、本実施形態では、第2補強部材5は、配線基板2に直接接触している。これにより、配線基板2からの熱を第2補強部材5に直接伝熱させることができる。
 なお、第2補強部材5の基板21側の面上に接着剤が設けられ、第2補強部材5と、配線基板のソルダーレジストとを接着してもよい。この場合、第2補強部材5の基板21側の面には、絶縁層61は設けられず、絶縁層61とは異なる組成の接着剤が設けられることとなる。
 さらには、開口部51の内周面上に絶縁層62を設けることで、第2補強部材5の開口部51内周面と金属バンプ71との短絡を防止できる。
 なお、絶縁層62は、第2補強部材5の少なくとも一部を被覆するように、設けられていればよい。同様に、絶縁層61は、第1補強部材4の少なくとも一部を被覆するように、設けられていればよい。
 本実施形態では、絶縁層61は、前述した配線基板2の絶縁層251と同様の材料で構成され、また、絶縁層62は、前述した配線基板の絶縁層252と同様の材料で構成されている。
 具体的に説明すると、絶縁層61、62の構成材料は、樹脂材料を含む樹脂組成物を好適に用いることができる。
 かかる樹脂組成物に用いる樹脂材料としては、各種熱可塑性樹脂、各種熱硬化性樹脂が挙げられる。前記樹脂組成物は、樹脂成分を主成分とすることが好ましく、樹脂成分は、熱可塑性樹脂および/または熱硬化性樹脂で構成される。
 絶縁層61、62に用いる熱可塑性樹脂としては、それぞれ、例えば、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体等のポリオレフィン、変性ポリオレフィン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6-12、ナイロン6-66)、熱可塑性ポリイミド、芳香族ポリエステル等の液晶ポリマー、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリカーボネート、ポリメチルメタクリレート、ポリエーテル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアセタール、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
 また、絶縁層61、62に用いる熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリエステル(不飽和ポリエステル)樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
 また、絶縁層61、62は、それぞれ、基板21よりも高い熱伝導性を有するのが好ましい。これにより、第1補強部材4からの熱を絶縁層61に効率よく伝達させることができ、第1補強部材4からの熱を絶縁層61から効率よく放射させることができる。同様に、第2補強部材5からの熱を絶縁層62に効率よく伝達させることができ、第2補強部材5からの熱を絶縁層62から効率よく放射させることができる。
 また、本実施形態では、第1補強部材4、第2補強部材5の双方を絶縁層で被覆しているため、半導体パッケージの放熱性を確実に高めることができる。
 このような観点から、絶縁層61、62は、それぞれ、樹脂材料(樹脂成分)および伝熱性フィラー(特に無機フィラー)を含んで構成されているのが好ましい。これにより、絶縁層61、62の絶縁性および熱伝導性を優れたものとすることができる。また、絶縁層61、62を簡単に形成することができる。
 絶縁層61、62は、放熱性の観点から、樹脂成分を10wt%~80wt%、フィラーを20wt%~90wt%含むことが好ましい。
 絶縁層61、62に用いる無機フィラー(無機充填材)としては、例えば、Au、Ag、Pt等の金属、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、炭酸カルシウム(軽質、重質)、炭酸マグネシウム、ドロマイト、ドーソナイト等の炭酸塩、硫酸カルシウム、硫酸バリウム、硫酸アンモニウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、タルク、マイカ、クレー、ガラス繊維、ケイ酸カルシウム、モンモリロナイト、ベントナイト等のケイ酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、カーボンブラック、グラファイト、炭素繊維等の炭素、その他鉄粉、銅粉、アルミニウム粉、亜鉛華、硫化モリブデン、ボロン繊維、チタン酸カリウム、チタン酸ジルコン酸鉛が挙げられる。これらのうち、いずれか1種以上を使用できる。なお、無機フィラーとして導電性を有するものを用いた場合、必要に応じて、絶縁処理を施す。
 中でも、前記無機フィラーとしては、絶縁性および熱伝導性に優れるという観点から、シリカ、アルミナ、ケイ藻土、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、金属フェライト等の酸化物、窒化ホウ素、窒化ケイ素、窒化ガリウム、窒化チタン等の窒化物が好ましい。これらのうち、いずれか1種以上を使用できる。
 また、絶縁層61、62は、前述した基板21の絶縁層251、252と同様、ソルダーレジストにより形成することができる。
(半導体パッケージの製造方法)
 以上説明したような半導体パッケージ1は、例えば、以下のようにして製造することができる。なお、半導体パッケージ1の製造方法は、これに限定されるものではない。
 以下、図4に基づき、半導体パッケージ1の製造方法の一例を簡単に説明する。
[A1]
 まず、図4(a)に示すように、導体パターン221~224、導体ポスト231~233、伝熱ポスト24が設けられた基板21を用意する。
 具体的には、一方の面側に導体パターン223となる金属層が貼り付けられ、他方の面側に導体パターン222となる金属層が貼り付けられた絶縁層212を用意する。そして、導体ポスト232が形成される貫通孔を形成して、導体ポスト232をめっき等により充填する。そして、前述した各金属層をエッチングして、導体パターン222,223を形成する。次に、導体パターン221となる金属層が貼り付けられた絶縁層211を用意する。また、導体パターン224となる金属層が貼り付けられた絶縁層213を用意する。
 そして、絶縁層211を、導体パターン222を被覆するように絶縁層212の一方の面側に配置する。同様に、絶縁層213を、導体パターン223を被覆するように、絶縁層212の他方の面側に配置する。次に、絶縁層211に導体ポスト231用の貫通孔を形成し、さらに、絶縁層213に導体ポスト233用の貫通孔を形成する。導体ポスト231,233をめっき等により充填する。そして、前記金属層をエッチングして、導体パターン221,224を形成する。
 その後、絶縁層211~213を貫通する貫通孔を形成し、伝熱ポスト24を充填する。
[A2]
 次に、図4(b)に示すように、第1補強部材4を形成するためのシート状部材104を用意し、そして、基板21の上面に、シート状部材104を接着剤106を介して接合する。
 シート状部材104は、後述する加工により第1補強部材4となる部材であり、前述した第1補強部材4の構成材料と同様の構成材料で構成されている。
 また、接着剤106は、樹脂材料を含んで構成され、絶縁層251となるものである。この接着剤106がシート状部材104および基板21のうちの少なくとも一方に塗布された状態で、接着剤106を介してシート状部材104と基板21とを貼り合わせることにより、シート状部材104と基板21とを接合する。ここで接着剤106は、熱硬化性樹脂を含んで構成されており、未硬化あるいは半硬化の状態となっている。
 この接合の際、シート状部材104の基板21との接合面には、接続部261となるべき金属バンプを形成しておく。具体的には、シート状部材104に接続部261となる金属バンプを半田接合しておき、シート状部材104から突出する突起を形成しておく。シート状部材104と基板21とを貼り合わせる際に、金属バンプが基板21上に設けられた接着剤106を突き抜けて伝熱ポスト24と接続される。これにより、かかる金属バンプが接続部261を構成する。後述するリフロー工程において、この金属バンプの融点以上に加熱されることで、接続部261と伝熱ポスト24とが半田接合されることとなる。
 このようなシート状部材104の接合と同様に、基板21の下面に、第2補強部材5を形成するためのシート状部材105を接着剤107を介して接合する。
 シート状部材105は、後述する加工により第2補強部材5となる部材であり、前述した第2補強部材5の構成材料と同様の構成材料で構成されている。
 また、接着剤107は、樹脂材料を含んで構成され、絶縁層252となるものである。この接着剤107がシート状部材105および基板21のうちの少なくとも一方に塗布された状態で、接着剤107を介してシート状部材105と基板21とを貼り合わせることにより、シート状部材105と基板21とを接合する。ここで接着剤107は、熱硬化性樹脂を含んで構成されており、未硬化あるいは半硬化の状態となっている。
 この接合の際、シート状部材105の基板21との接合面には、接続部262となるべき金属バンプを形成しておく。具体的には、シート状部材105に接続部262となる金属バンプを半田接合しておく。具体的には、シート状部材105に接続部262となる金属バンプを半田接合しておき、シート状部材105から突出する突起を形成しておく。シート状部材105と基板21とを貼り合わせることにより、その金属バンプが基板21上に設けられた接着剤107を突き抜けて伝熱ポスト24と接続される。これにより、かかる金属バンプが接続部262を構成する。後述するリフロー工程において、この金属バンプの融点以上に加熱されることで、接続部262と伝熱ポスト24とが半田接合されることとなる。
 なお、接続部261(262)を、樹脂材料で構成する場合には、絶縁層251(252)の伝熱ポスト24上の部分に開口部を形成しておき、この開口部内に樹脂材料を配置する。その後、樹脂材料と、シート状部材104(105)とが接触するように、シート状部材104(105)を樹脂材料上に配置すればよい。
[A3]
 次に、シート状部材104の一部を選択的に除去することにより、図4(c)に示すように、第1補強部材4を形成する。同様に、シート状部材105の一部を選択的に除去することにより、第2補強部材5を形成する。
 シート状部材104、105の一部を除去する方法(すなわち、貫通孔42、開口部40、開口部51等の形成方法)としては、それぞれ、特に限定されないが、例えば、レーザーの照射により除去する方法、エッチングにより除去する方法等のいずれかが挙げられる。これらの方法は、加工精度に優れる。そのため、金属バンプ71が挟ピッチで配される場合においても、金属バンプ71と第2補強部材5との接触を防止することができる。
 前記レーザーとしては、例えばCOレーザー、UV-YAGレーザー等を用いることができる。
 また、前記エッチングは、ドライエッチングであっても、ウエットエッチングであってもよいが、ウエットエッチングであるのが好ましい。これにより、基板21の損傷を防止しつつ、第1補強部材4および第2補強部材5を形成することができる。
 また、このようなシート状部材104、105の一部を除去するに際しては、シート状部材104、105または基板21に設けられたアライメントマークに基づいて、除去位置を定めるのが好ましい。
[A4]
 次に、図4(d)に示すように、第1補強部材4上に絶縁層61を形成するとともに、第2補強部材5上に絶縁層62を形成する。
 絶縁層61、62の形成方法としては、それぞれ、特に限定されないが、例えば、液状の樹脂組成物を塗布し硬化またか固化させる方法を好適に用いることができる。なお、本実施形態では、絶縁層61,62は、熱硬化性の樹脂組成物で構成されているので、液状の樹脂組成物を塗布し、後述するように、硬化させて、絶縁層61,62を形成する。
 本実施形態では、絶縁層61は、第1補強部材4の開口部40の内周面および貫通孔42の内周面を被覆するように塗布されるが、開口部40の内部、貫通孔42の内部を完全に埋め込まないように塗布する。ただし、開口部40、貫通孔42内の絶縁層251上を絶縁層61が被覆してもよい。
 同様に、絶縁層62は、第2補強部材5の開口部51の内周面を被覆するように塗布されるが、開口部51の内部を完全に埋め込まないように塗布する。ただし、開口部51内の絶縁層252上を絶縁層62が被覆してもよい。
 前述したように、絶縁層61,62は、絶縁層251,252同様、熱硬化性の樹脂組成物で構成されており、この工程では、絶縁層61,62は未硬化、半硬化の状態である。
[A5]
 次に、図8に示すように各開口部51内に絶縁材81を配置する。この絶縁材81は、未硬化(あるいは半硬化)の状態である。その後、図4(e)に示すように、金属バンプ71を開口部51内に配置する。金属バンプ71を開口部51内に挿入することで、絶縁材81が金属バンプ71に押しよけられて、金属バンプ71を取り囲むように配置されることとなる。この際、絶縁材81は、開口部51の内面と金属バンプ71との間でメニスカスを形成する。
 また、絶縁層252は前述したように、未硬化あるいは半硬化であるため、金属バンプ71が絶縁層252に食い込むように配置して、金属バンプ71と導体パターン224とを接触させる。なお、開口部51内の絶縁層252上に絶縁層62が塗布されている場合には、絶縁層62および絶縁層252に金属バンプ71を食い込ませる。これにより、開口部252Aが形成されることとなる。その後、リフローを行い、金属バンプ71と導電パターン224とを半田接合する。
 かかる半田接合は、特に限定されないが、配線基板2の下面に各金属バンプ71が当接するように配置し、その状態で、例えば200~280℃×10~60秒間加熱することにより行うことができる。
 また、図4(e)に示すように、配線基板2の上面に、アンダーフィル材を塗布した後、半導体素子3を金属バンプ31を介して半田リフローにより接合する。このとき、前述したように、絶縁層251は未硬化あるいは半硬化であるため、金属バンプ31を絶縁層251に食い込むように配置し、金属バンプ31を導体パターン221に接触させる。なお、開口部40内の絶縁層251上に絶縁層61が塗布されている場合には、絶縁層61および絶縁層251に金属バンプ31を食い込ませる。これにより、絶縁層251に開口部251Aが形成されることとなる。
 アンダーフィル材として前述した絶縁材81と同じようなフラックス活性のある樹脂を用いる。また、半導体素子3を搭載し、フラックスあるいは半田ペースト等を用いてリフローにより半導体素子3を配線基板2に接合させた後、通常のキャピラリーアンダーフィル材を配線基板2と半導体素子3との間に充填・硬化させることもできる。
 その後、必要に応じて適宜加熱工程を実施することで、絶縁材81、絶縁層251,252、絶縁層61,62の硬化度を調整する。
 以上のようにして半導体パッケージ1が得られる。
<第2実施形態>
 次に、本発明の第2実施形態を説明する。
 図5は、本発明の第2実施形態に係る半導体パッケージを模式的に示す断面図、図6は、図5に示す半導体パッケージの製造方法の一例を示す図である。なお、以下の説明では、説明の便宜上、図5中の上側を「上」、下側を「下」と言う。また、図5および図6では、説明の便宜上、半導体パッケージの各部が誇張して描かれている。
 以下、第2実施形態の半導体パッケージについて、前述した実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。なお、図5および図6において、前述した実施形態と同様の構成については、同一符号を付している。
 第2実施形態の半導体パッケージ1Aは、補強部材5上の絶縁層の構成が異なり、絶縁材81を有していない。他の点は、第1実施形態と同様である。
 図5に示すように、半導体パッケージ1Aは、第1補強部材4上に設けられた絶縁層61Aと、第2補強部材5上に設けられた絶縁層62Aとを有する。
 より具体的に説明すると、絶縁層61Aは、第一実施形態の絶縁層61と同様に、第1補強部材4の基板21とは反対側の面上、内周面41上および各貫通孔42の内周面上に形成されている。絶縁層61Aは、絶縁層61と同様、第1補強部材4の配線基板2側の面には形成されていない。
 また、絶縁層62Aは、第2補強部材5の基板21とは反対側の面上および各開口部51の内周面上に設けられている。絶縁層62Aは、絶縁層62と同様に第2補強部材5上に形成されており、第2補強部材5の配線基板2側の面には形成されていない。また、本実施形態では、開口部51内部には絶縁材81は配置されていない。
 絶縁層62Aは、金属バンプ71の周囲を取り囲むとともに、金属バンプ71の周面の湾曲面に沿って金属バンプ71に接触している。換言すると、絶縁層62Aは、開口部51内部の金属バンプ71と、開口部51内周面との間の隙間を充填している。本実施形態では、金属バンプ71を補強するための硬化性材料と、第2補強部材5を被覆する絶縁層とが一体化して、絶縁層62Aを構成している。
 そして、金属バンプ71は、絶縁層62Aから基板21と反対側に突出している。
 本実施形態では、絶縁層61A、62Aは、前述した第1実施形態の絶縁材81と同様の材料で構成されている。
 具体的に説明すると、絶縁層61A、62Aの構成材料は、それぞれ、熱硬化性を有する半田接合用樹脂を用いることができる。
(半導体パッケージの製造方法)
 以上説明したような半導体パッケージ1Aは、例えば、以下のようにして製造することができる。なお、半導体パッケージ1Aの製造方法は、これに限定されるものではない。
 以下、図6に基づき、半導体パッケージ1Aの製造方法の一例を簡単に説明する。
[B1]
 まず、図6(a)に示すように、前記実施形態と同様に、導体パターン221~224、伝熱ポスト24が設けられた基板21を用意する。
[B2]
 次に、前記実施形態と同様に、図6(b)に示すように、第1補強部材4を形成するためのシート状部材104を用意し、そして、基板21の上面に、シート状部材104を接着剤106を介して接合する。
 また、前記実施形態と同様に、第2補強部材5を形成するための、シート状部材を用意して、基板21上に、接着剤107を介して接合する。
[B3]
 次に、前記実施形態と同様、シート状部材104の一部を除去することにより、図6(c)に示すように、第1補強部材4を形成する。同様に、シート状部材105の一部を除去することにより、第2補強部材5を形成する。
[B4]
 次に、図6(d)に示すように、第1補強部材4上に絶縁層61Aを形成するとともに、第2補強部材5上に絶縁層62Aを形成する。
 絶縁層61A、62Aの形成方法としては、それぞれ、特に限定されないが、例えば液状の樹脂組成物を塗布する。ここで、前記実施形態と同様、開口部40の内周面および貫通孔42の内周面を被覆するとともに、開口部40内、貫通孔42内を埋め込まないように、絶縁層61Aを構成する樹脂材料を塗布する。
 一方で、絶縁層62Aを構成する樹脂材料は、第2補強部材5の開口部51内部を完全に埋め込むように、塗布する。より具体的には、絶縁層62Aを構成する樹脂材料により、開口部51内部が埋め込まれるとともに、第2補強部材5の基板21と反対側の表面が被覆されるように、前記樹脂材料を塗布する。
[B5]
 次に、図6(e)に示すように、開口部51内部に金属バンプ71を配置する。絶縁層62Aは、未硬化あるいは半硬化の状態であるため、金属バンプ71を絶縁層62Aに食い込ませることで、金属バンプ71が開口部51の内側に配置されることとなる。
 また、絶縁層252は前述したように、未硬化あるいは半硬化であるため、金属バンプ71が絶縁層252に食い込むように金属バンプ71を配置して、金属バンプ71と導体パターン224とを接触させる。これにより、開口部252Aが形成されることとなる。その後、リフローを行い、金属バンプ71と導電パターン224とを半田接合する。
 また、図6(e)に示すように、第一実施形態と同様、配線基板2の上面に、アンダーフィル材を塗布した後、半導体素子3を、金属バンプ31を介して半田リフローにより接合する。
 その後、必要に応じて適宜加熱工程を実施することで、絶縁層251,252、絶縁層61A,62Aの硬化度を調整する。
 以上のようにして半導体パッケージ1Aが得られる。
 以上説明したような第2実施形態の半導体パッケージ1Aによっても、熱による不具合の発生を防止することができる。
(半導体装置)
 次に、本発明の半導体装置について好適な実施形態に基づいて説明する。
 ここでは、第1実施形態の半導体パッケージ1を有する半導体装置100について説明するが、半導体パッケージ1にかえて第2実施形態の半導体パッケージ1Aを使用してもよい。
 図7は、本発明の半導体装置の実施形態の一例を模式的に示す断面図である。
 図7に示すように、半導体装置100は、マザーボード(基板)200と、このマザーボード200に搭載された半導体パッケージ1とを有している。
 このような半導体装置100においては、半導体パッケージ1の金属バンプ71がマザーボード200の端子201に接合されている。これにより、半導体パッケージ1とマザーボード200とが電気的に接続され、これらの間で電気的信号の伝送が行われる。また、この接合部を介して、半導体パッケージ1の熱をマザーボード200へ逃すことができる。
 以上説明したような半導体装置100によれば、前述したような放熱性および信頼性に優れた半導体パッケージ1を備えるので、信頼性に優れる。
 以上、本発明の半導体パッケージおよび半導体装置を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものでない。
 例えば、前述した実施形態では、第1補強部材4が半導体素子3の全周に亘って囲むように設けられていたが、これに限定されず、例えば、半導体素子3の周囲の一部に欠損した部分(切り欠き)が形成されていてもよい。
 また、第2補強部材5に形成される開口部は、各金属バンプ71と一対一で対応していなくてもよい。すなわち、第2補強部材5には、複数の金属バンプ71に対して1つが対応するように、開口部が形成されていてもよい。
 また、前述した実施形態では、補強部材上に設けた絶縁層が樹脂組成物で構成されている場合を例に説明したが、これに限定されず、例えば、補強部材に設けられる絶縁層は金属酸化物、金属窒化物、金属フッ化物等の無機化合物(セラミックス)で構成されていてもよい。この場合、例えば、熱酸化、気相成膜等により補強部材上に絶縁層を形成することができる。
 また、前記実施形態では、補強部材4,5を、基板21に取り付けた後、補強部材4,5にそれぞれ開口部40、開口部51を形成し、その後、それぞれの補強部材4,5に絶縁層61,62を設けたが、半導体パッケージの製造方法は、これに限られるものではない。あらかじめ、補強部材4に開口部40を形成するとともに、補強部材5に開口部51を形成してから、基板21に取り付けてもよい。ただし、前記実施形態のように、補強部材4,5を、基板21に取り付けた後、補強部材4,5に開口部40、開口部51を形成する方が、開口部40と導体パターン221との位置あわせ、開口部51と導体パターン224との位置あわせが容易となる。
 本発明は、以下の構成を含むものである。
(1)基板と、前記基板の一方の面側に設けられた第1導体パターンと、前記基板の他方の面側に設けられ、前記第1導体パターンと電気的に接続された第2導体パターンとを備える配線基板と、
前記基板の前記一方の面に接合され、前記第1導体パターンに電気的に接続される半導体素子と、
前記基板の前記一方の面および前記他方の面のうちの少なくとも一方の面に接合され、前記基板よりも熱膨張係数の小さい補強部材と、
前記補強部材の表面の少なくとも一部を覆うように設けられ、絶縁性を有する絶縁層と
を有することを特徴とする半導体パッケージ。
(2)前記第2導体パターンの前記基板とは反対の面には、複数の金属バンプが接合され、
前記補強部材は、前記基板の前記他方の面に接合され、前記各金属バンプに非接触で前記金属バンプ同士の間に位置する部分を有する(1)に記載の半導体パッケージ。
(3)前記補強部材は、複数の開口部を有し、前記補強部材の前記開口部同士の間の部分が前記金属バンプ同士の間に位置する(2)に記載の半導体パッケージ。
(4)前記絶縁層は、少なくとも前記開口部同士の間の部分上に設けられている(3)に記載の半導体パッケージ。
(5)前記絶縁層は、前記基板よりも高い熱伝導性を有する(1)ないし(4)のいずれかに記載の半導体パッケージ。
(6)前記絶縁層は、樹脂材料および伝熱性フィラーを含んで構成されている(1)ないし(5)のいずれかに記載の半導体パッケージ。
(7)前記補強部材は、金属材料で構成されている(1)ないし(6)のいずれかに記載の半導体パッケージ。
(8)前記金属材料は、Fe-Ni系合金である(7)に記載の半導体パッケージ。
(9)(1)ないし(8)のいずれかに記載の半導体パッケージを備えることを特徴とする半導体装置。
 この出願は、2011年10月13日に出願された日本特許出願2011-226022を基礎とする優先権を主張し、その開示をすべてここに取り込む。

Claims (15)

  1.  繊維基材を含む基板と、前記基板の一方の面側に設けられた第1導体パターンと、前記基板の他方の面側に設けられ、前記第1導体パターンと電気的に接続された第2導体パターンとを備える配線基板と、
     前記基板の前記一方の面に接合され、前記第1導体パターンに電気的に接続される半導体素子と、
     前記配線基板に接合され、前記配線基板よりも熱膨張係数の小さい金属製の補強部材と、
     前記補強部材の表面の少なくとも一部を覆うように設けられた絶縁層と、
    を有し、
     前記絶縁層は、絶縁性樹脂層あるいは、セラミックス層であることを特徴とする半導体パッケージ。
  2.  請求項1に記載の半導体パッケージにおいて、
     当該半導体パッケージは、前記補強部材として、前記配線基板の第1導体パターン側に配置された第一補強部材と、前記配線基板の第2導体パターン側に配置された第二補強部材とを備え、
     前記第一補強部材および前記第二補強部材は、それぞれ前記絶縁層に被覆され、
     前記第一補強部材には、前記半導体素子を配置するための開口部が形成されており、
     前記第二補強部材には、金属バンプを配置するための開口部が形成されている半導体パッケージ。
  3.  請求項2に記載の半導体パッケージにおいて、
     複数の前記金属バンプが離間配置されており、
     前記第二補強部材には、各前記金属バンプを配置するための複数の開口部が形成されており、
     各前記開口部の内周面、および、前記配線基板と反対側の面であり、隣接する開口部間に位置する部分が、前記絶縁層で被覆されている半導体パッケージ。
  4.  請求項1乃至3のいずれかに記載の半導体パッケージにおいて、
     前記第2導体パターンに接合され、第2導体パターンとは反対側に向かって凸状に湾曲した複数の金属バンプが離間配置されており、
     前記補強部材として、前記配線基板の第2導体パターン側に配置された第二補強部材を備え、
     この第二補強部材には、複数の前記金属バンプをそれぞれ配置するための複数の開口部が形成されており、
     各開口部の内周面および、前記配線基板と反対側の面のうち、隣接する開口部間に位置する部分が前記絶縁層で被覆され、
     前記開口部内側には、前記金属バンプの周囲を取り囲むとともに、前記金属バンプの周囲面を構成する湾曲面に沿って前記金属バンプに接触する絶縁性の硬化性材料が配置されている半導体パッケージ。
  5.  請求項4に記載の半導体パッケージにおいて、
     前記硬化性材料は、前記絶縁層を構成する樹脂組成物と同じ樹脂組成物で構成されており、
     前記硬化性材料と前記絶縁層とは一体的に構成されている半導体パッケージ。
  6.  請求項5に記載の半導体パッケージにおいて、
     前記硬化性材料および前記絶縁層は、フラックス活性化合物を含んだ樹脂組成物を硬化したものである半導体パッケージ。
  7.  請求項1乃至6のいずれかに記載の半導体パッケージにおいて、
     前記絶縁層は、樹脂材料および伝熱性フィラーを含んで構成されている半導体パッケージ。
  8.  請求項1乃至7のいずれかに記載の半導体パッケージにおいて、
     前記配線基板は、前記第2導体パターンを被覆するとともに、前記第2導体パターンの一部を露出する貫通孔が形成されたソルダーレジスト層を有し、
     前記補強部材には、金属バンプを配置するための開口部が形成されており、
     前記ソルダーレジスト層の貫通孔および前記補強部材の開口部内に前記第2導体パターンに接合された金属バンプが配置されている半導体パッケージ。
  9.  請求項8に記載の半導体パッケージにおいて、
     前記補強部材の開口部の周縁の内側に、前記ソルダーレジスト層の貫通孔の周縁が位置する半導体パッケージ。
  10.  請求項1乃至9のいずれかに記載の半導体パッケージにおいて、
     前記絶縁層は、絶縁性樹脂層であり、前記補強部材の開口部の内周面および前記補強部材の前記配線基板と反対側の面を被覆し、
     前記補強部材の前記配線基板側の面は、前記絶縁層には被覆されておらず、前記配線基板に直接接触している半導体パッケージ。
  11.  請求項1乃至10のいずれかに記載の半導体パッケージにおいて、
     前記配線基板には、当該配線基板を貫通する熱伝導性の伝熱部が形成されており、
     前記補強部材の前記配線基板側の面は、前記配線基板の前記伝熱部に接触している半導体パッケージ。
  12.  請求項1乃至11のいずれかに記載の半導体パッケージにおいて、
     前記補強部材として、前記配線基板の第1導体パターン側に配置された第一補強部材を備え、
     前記第一補強部材には、前記半導体素子を配置するための開口部と、この開口部とは異なる他の開口部とが形成されており、
     前記絶縁層は、前記第一補強部材の前記配線基板と反対側の表面、前記開口部の内周面および前記他の開口部の内周面を被覆している半導体パッケージ。
  13.  前記絶縁層は、前記基板よりも高い熱伝導性を有する請求項1ないし12のいずれかに記載の半導体パッケージ。
  14. 前記補強部材を構成する金属材料は、Fe-Ni系合金である請求項1乃至13のいずれかに記載の半導体パッケージ。
  15. 請求項1ないし14のいずれかに記載の半導体パッケージを備えることを特徴とする半導体装置。
PCT/JP2012/006459 2011-10-13 2012-10-09 半導体パッケージおよび半導体装置 WO2013054504A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-226022 2011-10-13
JP2011226022 2011-10-13

Publications (1)

Publication Number Publication Date
WO2013054504A1 true WO2013054504A1 (ja) 2013-04-18

Family

ID=48081572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006459 WO2013054504A1 (ja) 2011-10-13 2012-10-09 半導体パッケージおよび半導体装置

Country Status (3)

Country Link
JP (1) JP6048050B2 (ja)
TW (1) TWI611521B (ja)
WO (1) WO2013054504A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175642A (ja) * 2013-03-13 2014-09-22 Sony Corp 半導体装置、半導体装置の製造方法
CN109727965A (zh) * 2017-10-27 2019-05-07 三星电机株式会社 扇出型半导体封装模块及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592977B2 (ja) * 2015-06-12 2019-10-23 凸版印刷株式会社 半導体パッケージ基板、半導体パッケージおよびその製造方法
US10356916B2 (en) 2015-06-29 2019-07-16 Samsung Electro-Mechanics Co., Ltd. Printed circuit board with inner layer and outer layers and method of manufacturing the same
JP6729044B2 (ja) * 2016-06-20 2020-07-22 大日本印刷株式会社 配線基板およびその製造方法、ならびに半導体装置の製造方法
JP6991014B2 (ja) 2017-08-29 2022-01-12 キオクシア株式会社 半導体装置
JP2019057546A (ja) * 2017-09-19 2019-04-11 東芝メモリ株式会社 半導体記憶装置
DE112018001935T5 (de) * 2017-10-19 2019-12-24 Sumitomo Riko Company Limited Kapazitiver kopplungssensor und verfahren zur herstellung desselben
KR102456321B1 (ko) * 2017-11-08 2022-10-19 삼성전기주식회사 인쇄회로기판 및 이를 포함하는 전자소자 패키지
TWI694566B (zh) * 2019-06-06 2020-05-21 恆勁科技股份有限公司 半導體封裝載板及其製法與電子封裝件
TWI697081B (zh) * 2019-06-10 2020-06-21 恆勁科技股份有限公司 半導體封裝基板及其製法與電子封裝件
CN113437033B (zh) * 2021-06-28 2022-07-15 珠海格力电器股份有限公司 封装结构、其制备方法及电子器件
JP2023069417A (ja) * 2021-11-05 2023-05-18 日東電工株式会社 再配線基板およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265960A (ja) * 1998-03-18 1999-09-28 Hitachi Chem Co Ltd 金属製補強材付き半導体装置
JP2005340596A (ja) * 2004-05-28 2005-12-08 Toppan Printing Co Ltd 複合スティフナー及びそれを取り付けた半導体装置用基板並びに半導体装置
JP2009252859A (ja) * 2008-04-03 2009-10-29 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010129810A (ja) * 2008-11-28 2010-06-10 Fujitsu Ltd 半導体素子搭載用基板及び半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163871B1 (ko) * 1995-11-25 1998-12-01 김광호 하부에 히트 싱크가 부착된 솔더 볼 어레이 패키지
JP2000243869A (ja) * 1999-02-18 2000-09-08 Ngk Spark Plug Co Ltd 配線基板
JP4194408B2 (ja) * 2003-04-03 2008-12-10 日本特殊陶業株式会社 補強材付き基板、半導体素子と補強材と基板とからなる配線基板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265960A (ja) * 1998-03-18 1999-09-28 Hitachi Chem Co Ltd 金属製補強材付き半導体装置
JP2005340596A (ja) * 2004-05-28 2005-12-08 Toppan Printing Co Ltd 複合スティフナー及びそれを取り付けた半導体装置用基板並びに半導体装置
JP2009252859A (ja) * 2008-04-03 2009-10-29 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010129810A (ja) * 2008-11-28 2010-06-10 Fujitsu Ltd 半導体素子搭載用基板及び半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175642A (ja) * 2013-03-13 2014-09-22 Sony Corp 半導体装置、半導体装置の製造方法
CN109727965A (zh) * 2017-10-27 2019-05-07 三星电机株式会社 扇出型半导体封装模块及其制造方法
CN109727965B (zh) * 2017-10-27 2022-11-01 三星电子株式会社 扇出型半导体封装模块及其制造方法

Also Published As

Publication number Publication date
JP2013102143A (ja) 2013-05-23
TW201324697A (zh) 2013-06-16
JP6048050B2 (ja) 2016-12-21
TWI611521B (zh) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6048050B2 (ja) 半導体パッケージおよび半導体装置
JP5994776B2 (ja) 半導体パッケージ、半導体装置、半導体パッケージの製造方法
JP5304940B2 (ja) 半導体パッケージの製造方法
JP5712615B2 (ja) 電子部品パッケージおよび電子部品パッケージの製造方法
JP5228908B2 (ja) 半導体装置
US9691676B2 (en) Semiconductor device and method for manufacturing the same
CN104576547B (zh) 印刷电路板、其制造方法及其半导体封装
WO2012029549A1 (ja) 半導体パッケージおよび半導体装置
JP2013084861A (ja) 半導体パッケージおよび半導体装置
JP5015065B2 (ja) 配線基板
WO2012035972A1 (ja) 半導体パッケージおよび半導体装置
WO2012029526A1 (ja) 半導体パッケージおよび半導体装置
WO2012029579A1 (ja) 半導体パッケージおよび半導体装置
JP2013080806A (ja) 補強部材の製造方法
JP2013080805A (ja) 補強部材の製造方法
JP2013080802A (ja) 補強部材の製造方法
JP2013080804A (ja) 補強部材の製造方法
JP2013055291A (ja) 半導体パッケージの製造方法
JP2013055290A (ja) 半導体パッケージおよび半導体装置
JP2011222943A (ja) 回路基板、半導体装置、回路基板の製造方法および半導体装置の製造方法
JP2013080803A (ja) 補強部材の製造方法
KR101664481B1 (ko) 솔더볼 내부 관통 범핑 구조를 갖는 웨이퍼 및 기판의 접합구조 및 이들의 제조 방법
JP2009260084A (ja) 部品内蔵配線板
JP2007096025A (ja) 半導体装置の製造方法
JP2017017231A (ja) エレクトロニクス用部材に用いられる構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839694

Country of ref document: EP

Kind code of ref document: A1