WO2013054376A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2013054376A1
WO2013054376A1 PCT/JP2011/005720 JP2011005720W WO2013054376A1 WO 2013054376 A1 WO2013054376 A1 WO 2013054376A1 JP 2011005720 W JP2011005720 W JP 2011005720W WO 2013054376 A1 WO2013054376 A1 WO 2013054376A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrolyte secondary
negative electrode
nonaqueous electrolyte
resistant layer
Prior art date
Application number
PCT/JP2011/005720
Other languages
English (en)
French (fr)
Inventor
優 高木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112011105734.2T priority Critical patent/DE112011105734T5/de
Priority to US14/351,193 priority patent/US20140255736A1/en
Priority to CN201180074143.1A priority patent/CN103875119B/zh
Priority to JP2013538342A priority patent/JP5790772B2/ja
Priority to KR1020147012268A priority patent/KR101556486B1/ko
Priority to PCT/JP2011/005720 priority patent/WO2013054376A1/ja
Publication of WO2013054376A1 publication Critical patent/WO2013054376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are generally composed of a positive electrode, a negative electrode, a separator that insulates them, and a non-aqueous electrolyte.
  • a separator a porous resin film such as polyolefin is widely used.
  • a current interruption mechanism that interrupts charging when the battery internal pressure exceeds a predetermined value during charging may be mounted (for example, (Patent Document 1, paragraph 0094).
  • an overcharge inhibitor that decomposes during overcharge and generates protons is added to the non-aqueous electrolyte in order to increase the detection sensitivity of an increase in internal pressure.
  • the overcharge inhibitor is decomposed to generate protons, and the protons are reduced at the negative electrode to generate hydrogen gas.
  • Patent Document 1 discloses, as an overcharge inhibitor, in the description of the prior art, biphenyls, alkylbenzenes, alkyl compounds substituted with two aromatic groups, fluorine atom-substituted aromatic compounds, and chlorine atom-substituted biphenyls. (Paragraphs 0009, 0011, and 0014).
  • Claim 1 of Patent Document 1 includes at least one chlorine atom-substituted fragrance selected from the group consisting of chlorine atom-substituted biphenyl, chlorine atom-substituted naphthalene, chlorine atom-substituted fluorene, and chlorine atom-substituted diphenylmethane as an overcharge inhibitor. Group compounds are mentioned.
  • Patent Document 2 a highly rigid porous heat-resistant layer (HRL layer) containing an insulating inorganic filler and a binder is used instead of a conventional resin separator or in combination with a conventional resin separator.
  • Non-aqueous electrolyte secondary batteries are disclosed (Claim 5, FIG. 1, FIG. 3).
  • As the insulating inorganic filler of the porous heat-resistant layer (HRL layer) at least one selected from the group consisting of Al 2 O 3 , SiO 2 , MgO, TiO 2 , and ZrO 2 is used. 6).
  • JP 2004-087168 A Japanese Unexamined Patent Publication No. 2007-012598
  • the Al described in Patent Document 2 is provided.
  • a porous heat-resistant layer (HRL layer) containing an insulating inorganic filler made of at least one selected from the group consisting of 2 O 3 , SiO 2 , MgO, TiO 2 and ZrO 2 .
  • an insulating inorganic filler made of at least one selected from the group consisting of 2 O 3 , SiO 2 , MgO, TiO 2 and ZrO 2
  • an insulating inorganic When the filler is overcharged, protons generated by the decomposition of the overcharge inhibitor or hydrogen gas generated on the negative electrode may be adsorbed, and the current interruption mechanism may not operate well.
  • the insulating inorganic filler has a hydroxyl group on the surface, it adsorbs protons.
  • the insulating inorganic filler may adsorb hydrogen due to a catalytic effect.
  • the present invention has been made in view of the above circumstances, and is a non-aqueous electrolyte that is excellent in external stress resistance and capable of increasing the detection sensitivity of an increase in internal pressure during overcharge without reducing battery performance such as battery capacity.
  • the object is to provide a secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention is A positive electrode, a negative electrode, a porous heat-resistant layer (HRL (Heat Resistance Layer) layer) containing an insulating inorganic filler and a binder, disposed between the positive electrode and the negative electrode, and decomposed during overcharge to generate protons
  • a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte to which an overcharge inhibitor that is generated and a current interruption mechanism that interrupts charging when the battery internal pressure becomes a predetermined value or more during charging, At least a part of the insulating inorganic filler of the porous heat-resistant layer (HRL layer) is composed of a proton conductive ceramic.
  • nonaqueous electrolyte secondary battery that is excellent in external stress resistance and capable of increasing the detection sensitivity of an increase in internal pressure during overcharge without degrading battery performance such as battery capacity. it can.
  • FIG. 1 is an overall view schematically showing a configuration example of a nonaqueous electrolyte secondary battery according to the present invention. It is a fragmentary sectional view of the nonaqueous electrolyte secondary battery of FIG.
  • the non-aqueous electrolyte secondary battery of the present invention is A positive electrode, a negative electrode, a porous heat-resistant layer (HRL layer) disposed between the positive electrode and the negative electrode and containing an insulating inorganic filler and a binder, and an overcharge prevention that decomposes and generates protons during overcharge
  • a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte to which an agent is added, and a current interruption mechanism that interrupts charging when the battery internal pressure becomes a predetermined value or more during charging, At least a part of the insulating inorganic filler of the porous heat-resistant layer (HRL layer) is composed of a proton conductive ceramic.
  • FIG. 1 and FIG. 2 schematically show a configuration example of a non-aqueous electrolyte secondary battery.
  • 1 is an overall view
  • FIG. 2 is a partial cross-sectional view. Both are schematic diagrams.
  • a non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is a battery in which a laminate 20 shown in FIG. 2 and a non-aqueous electrolyte (reference numeral omitted) to which an overcharge preventing agent is added are accommodated in an exterior body 11. is there.
  • the laminate 20 includes a positive electrode 21 in which a particulate positive electrode active material is applied on a current collector, a negative electrode 22 in which a particulate negative electrode active material is applied on a current collector, a resin separator 23, and a porous material.
  • a heat-resistant layer (HRL layer) 24 is laminated.
  • the porous heat-resistant layer (HRL layer) is used as a member that insulates between the positive electrode and the negative electrode in place of the conventionally widely used resin separator or in combination with the conventionally widely used resin separator. It is done.
  • the arrangement position of the porous heat-resistant layer (HRL layer) 24 is not particularly limited as long as it is between the positive electrode 21 and the negative electrode 22, and the surface of the positive electrode 21, the surface of the negative electrode 22, the surface of the resin separator 23, or the positive electrode 21 and the negative electrode. 22 may be formed on the surface of an electrode mixture layer (not shown) or the like provided as necessary. As shown in FIG. 1 of Patent Document 2 listed in the section “Background Art”, a porous heat-resistant layer (between a pair of positive electrode 21 and negative electrode 22 is used without using a conventionally used resin separator 23. (HRL layer) 24 may be insulated only through.
  • the non-aqueous electrolyte secondary battery 1 is provided with a current interruption mechanism 13 in the exterior body 11 for interrupting charging when the internal pressure of the battery becomes a predetermined value or more during charging.
  • the installation location of the current interruption mechanism 13 is designed according to the current interruption action.
  • an overcharge inhibitor that decomposes during overcharge and generates protons is added to the nonaqueous electrolyte.
  • the overcharge inhibitor in the non-aqueous electrolyte is decomposed to generate protons, and the protons are reduced at the negative electrode to generate hydrogen gas.
  • the internal pressure of the battery rises due to this gas generation, and the current is interrupted by the current interrupt mechanism 13.
  • the current interrupting mechanism 13 includes a structure that is deformed by increasing the battery internal pressure and cuts the contact point of the charging current, an external circuit that detects the battery internal pressure by the sensor and stops charging, and the battery deformation due to the battery internal pressure Examples include an external circuit that detects and stops charging, and a structure that deforms when the battery internal pressure rises to short-circuit the positive electrode and the negative electrode. For example, a structure that is deformed by cutting the contact point of the charging current by increasing the battery internal pressure is preferable because it has a simple structure and a high current blocking effect.
  • Two terminals (plus terminal and minus terminal) 12 for external connection are provided on the outer surface of the exterior body 11.
  • an overcharge inhibitor is added to the non-aqueous electrolyte, and when the internal pressure of the battery exceeds a predetermined value during charging, there is a current interrupting mechanism that interrupts charging.
  • Insulating inorganic material comprising at least one selected from the group consisting of Al 2 O 3 , SiO 2 , MgO, TiO 2 , and ZrO 2 described in Patent Document 2 for the mounted nonaqueous electrolyte secondary battery
  • HRL layer porous heat-resistant layer
  • the insulating inorganic filler adsorbs protons generated by decomposition of the overcharge inhibitor during overcharge or hydrogen gas generated on the negative electrode, The shut-off mechanism may not work well. Since the insulating inorganic filler has a hydroxyl group on the surface, it adsorbs protons. In addition, the insulating inorganic filler may adsorb hydrogen due to a catalytic effect.
  • At least a part of the insulating inorganic filler forming the porous heat-resistant layer (HRL layer) is composed of proton conductive ceramic.
  • the proton generated by the decomposition of the overcharge inhibitor during the overcharge of the insulating inorganic filler is released even if adsorbed to the porous heat resistant layer (HRL layer), and the porous heat resistant layer (HRL layer). It does n’t stop there.
  • the proton conductive ceramic has a low hydrogen adsorption property.
  • adsorption of proton and hydrogen gas in the porous heat-resistant layer (HRL layer) is suppressed, so that the current interruption mechanism operates well.
  • the present invention since it is not necessary to increase the amount of addition of the overcharge inhibitor, it is possible to increase the detection sensitivity of an increase in internal pressure during overcharge without degrading battery performance such as battery capacity.
  • Proton conductive ceramics have higher electrical resistance than non-proton conductive ceramics, and by using this, the insulation performance of the porous heat-resistant layer (HRL layer) is enhanced, and short circuit is prevented to a higher level. The effect that it can do is also acquired.
  • HRL layer porous heat-resistant layer
  • ceramic particles containing at least one proton conductive ceramic, and at least a part of the surface of at least one aprotic conductive ceramic particle is at least one proton.
  • examples thereof include ceramic particles coated with a ceramic including a conductive ceramic.
  • porous heat-resistant layer In the porous heat-resistant layer (HRL layer), ion conduction holes are formed by the gaps between the particulate insulating inorganic fillers.
  • at least a part of the surface of the insulating inorganic filler is a proton conductive ceramic.
  • Such a configuration is preferable because the proton conductive ceramic is present on the wall surface of the ion conduction hole, so that the ion conductivity of the porous heat-resistant layer (HRL layer) is improved.
  • the proton conductive ceramic is not particularly limited as long as it has proton conductivity.
  • the proton conductive ceramic preferably contains at least one metal oxide represented by the following general formula (I). AB 1-x C x O 3-a (I) (Wherein A is Ba and / or Sr, B is Ce and / or Sr, C is at least one additive element, 0 ⁇ x ⁇ 1, a ⁇ 0)
  • Examples of the metal oxide represented by the general formula (I) include BaCeO 3 , SrZrO 3 , SrCeO 3 , BaZrO 3, ceramics in which any of these is added as a base oxide, and combinations thereof. It is done.
  • the proton conductive ceramic contains at least one metal oxide represented by the following general formula (Ia).
  • AB 1-x C x O 3-a (Ia) (Wherein, A is Ba and / or Sr, B is Ce and / or Sr, C is Y and / or Yb, 0 ⁇ x ⁇ 1, a ⁇ 0.)
  • the additive element addition amount x is particularly preferably 0.01 to 0.5.
  • x is excessively small, the effect of adding Y and / or Yb is not sufficiently exhibited, and when it is excessively large, the additive element does not solidly dissolve satisfactorily and a different phase may be precipitated.
  • aprotic conductive ceramic examples include Al 2 O 3 , SiO 2 , MgO, TiO 2 , ZrO 2 , ceramics to which any component is added as a base oxide, and combinations thereof.
  • the method for coating at least a part of the surface of the non-proton conductive ceramic particles with a ceramic containing at least one proton conductive ceramic is not particularly limited.
  • a solution or slurry containing the metal oxide precursor represented by the above general formula (I) may be sprayed onto aprotic conductive ceramic particles, dried, and fired.
  • the precursor of the metal oxide is not particularly limited, and examples thereof include acetates of constituent metals of the metal oxide.
  • An example of the coating method will be described by taking as an example a case where at least a part of the surface of the aprotic conductive ceramic particles is coated with BaCeO 3 .
  • Ethylenediaminetetraacetic acid (EDTA) is dissolved in aqueous ammonia, cerium acetate is added, ethylene glycol is further added as a stabilizer, and dissolved by heating. Further, barium acetate is added and dissolved again by heating.
  • the obtained precursor solution may be used as it is, or may be concentrated as necessary to form a slurry.
  • the concentration of the precursor in the precursor solution or slurry is not particularly limited, and is preferably 0.3 to 0.6 mol / L, for example.
  • the obtained precursor solution or slurry is sprayed onto aprotic conductive ceramic particles, preferably dried at 100 to 150 ° C., and preferably fired at 1000 to 1400 ° C.
  • aprotic conductive ceramic particles preferably dried at 100 to 150 ° C., and preferably fired at 1000 to 1400 ° C.
  • at least a part of the surface of the aprotic conductive ceramic particle can be coated with BaCeO 3 .
  • the thickness of the coating film is not particularly limited, and is preferably 0.5 to 1.0 ⁇ m, for example. When the thickness of the coating film is too small, the effect of coating is not sufficiently exhibited, and when it is too large, uniform coating becomes difficult.
  • the average particle size of the ceramic particles forming the porous heat-resistant layer (HRL layer) is not particularly limited, and is preferably 0.3 to 4 ⁇ m, for example. Within such a range, a good porosity and good strength for ionic conduction are obtained, which is preferable (see paragraph 0034 of Patent Document 2).
  • the binder forming the porous heat-resistant layer As the binder forming the porous heat-resistant layer (HRL layer), known ones can be used, and examples thereof include polyvinylidene fluoride (PVDF), modified acrylic rubber, and combinations thereof.
  • PVDF polyvinylidene fluoride
  • the binder swells by absorbing the nonaqueous electrolyte after the battery construction. For this reason, it is preferable that the amount of the binder added is small.
  • the above-mentioned polyvinylidene fluoride and acrylic rubber are preferable because they show a binding effect even in a small amount, and can be added in a small amount.
  • the amount of the binder is not particularly limited, and it is possible to bind the insulating filler satisfactorily and to suppress swelling due to absorption of the nonaqueous electrolyte, for example, 0.3 to 8.5% by mass with respect to the insulating filler. Is preferable (see paragraph 0036 of Patent Document 2).
  • the method for producing the porous heat-resistant layer (HRL layer) is not particularly limited.
  • the porous heat-resistant layer (HRL layer) is obtained by, for example, applying a mixture obtained by mixing an insulating filler, a binder and a dispersion medium to the surface of a positive electrode, a negative electrode, a separator, etc., far infrared rays, hot air, etc. It can be manufactured by drying with.
  • the non-aqueous electrolyte secondary battery of the present invention uses a highly rigid porous heat-resistant layer (HRL layer) containing an insulating inorganic filler and a binder, and thus has excellent external stress resistance.
  • HRL layer highly rigid porous heat-resistant layer
  • a nonaqueous electrolyte secondary battery includes an insulating inorganic filler made of at least one selected from the group consisting of Al 2 O 3 , SiO 2 , MgO, TiO 2 , and ZrO 2 described in Patent Document 2.
  • the insulating inorganic filler adsorbs protons generated by the decomposition of the overcharge inhibitor during overcharge or hydrogen gas generated on the negative electrode, and the current blocking mechanism It may not work well. Further, if the amount of addition of the overcharge inhibitor is increased in order to increase the detection sensitivity of the increase in internal pressure and increase the safety, the battery capacity tends to decrease, and the amount of addition is limited.
  • At least a part of the insulating filler forming the porous heat-resistant layer (HRL layer) is made of proton conductive ceramic. According to the present invention having such a configuration, there is provided a nonaqueous electrolyte secondary battery that is excellent in external stress resistance and capable of enhancing the detection sensitivity of an increase in internal pressure during overcharge without reducing battery performance such as battery capacity. can do.
  • non-aqueous electrolyte secondary batteries examples include lithium ion secondary batteries.
  • the main components of the nonaqueous electrolyte secondary battery will be described by taking a lithium ion secondary battery as an example.
  • the positive electrode can be produced by applying a positive electrode active material to a positive electrode current collector such as an aluminum foil by a known method.
  • the known positive electrode active material is not particularly limited, and examples thereof include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi x Co (1-x) O 2 , and LiNi x Co y Mn (1-xy). ) Lithium-containing composite oxides such as O 2 are listed.
  • the above-described positive electrode active material, a conductive agent such as carbon powder, and a binder such as polyvinylidene fluoride (PVDF) are mixed to form a slurry.
  • This slurry can be applied onto a positive electrode current collector such as an aluminum foil, dried, and pressed to obtain a positive electrode.
  • the basis weight of the positive electrode is not particularly limited and is preferably 1.5 to 15 mg / cm 2 . If the basis weight of the positive electrode is too small, uniform application is difficult, and if it is too large, there is a risk of peeling from the current collector.
  • the negative electrode can be produced by applying a negative electrode active material to a negative electrode current collector such as a copper foil by a known method.
  • the negative electrode active material is not particularly limited, and a material having a lithium storage capacity of 2.0 V or less on the basis of Li / Li + is preferably used.
  • carbon such as graphite, metallic lithium, lithium alloy, transition metal oxide / transition metal nitride / transition metal sulfide capable of doping / dedoping lithium ions, and these A combination etc. are mentioned.
  • a dispersant such as water
  • the negative electrode active material described above a binder such as a modified styrene-butadiene copolymer latex, and a thickener such as carboxymethyl cellulose Na salt (CMC) as necessary.
  • CMC carboxymethyl cellulose Na salt
  • Mixing is performed to obtain a slurry, and this slurry is applied onto a negative electrode current collector such as a copper foil, dried, and pressed to obtain a negative electrode.
  • the basis weight of the negative electrode is not particularly limited and is preferably 1.5 to 15 mg / cm 2 . If the basis weight of the negative electrode is too small, uniform application is difficult, and if it is too large, there is a risk of peeling from the current collector.
  • a carbon material capable of inserting and extracting lithium is widely used as the negative electrode active material.
  • highly crystalline carbon such as graphite has characteristics such as a flat discharge potential, high true density, and good fillability. Therefore, many negative electrode actives of commercially available lithium ion secondary batteries are used. It is used as a substance. Accordingly, graphite and the like are particularly preferable as the negative electrode active material.
  • Nonaqueous electrolyte As the non-aqueous electrolyte, known ones can be used, and liquid, gel-like or solid non-aqueous electrolytes can be used.
  • a lithium-containing electrolyte is dissolved in a mixed solvent of a high dielectric constant carbonate solvent such as propylene carbonate or ethylene carbonate and a low viscosity carbonate solvent such as diethyl carbonate, methyl ethyl carbonate, or dimethyl carbonate.
  • a water electrolysis solution is preferably used.
  • the mixed solvent for example, a mixed solvent of ethylene carbonate (EC) / dimethyl carbonate (DMC) / ethyl methyl carbonate (EMC) is preferably used.
  • overcharge inhibitor that decomposes during overcharge and generates protons
  • known ones can be used.
  • one or more of the overcharge inhibitors described in Patent Document 1 listed in the “Background Art” section can be used. Seeds can be used.
  • Patent Document 1 discloses, as an overcharge inhibitor, in the description of the prior art, biphenyls, alkylbenzenes, alkyl compounds substituted with two aromatic groups, fluorine atom-substituted aromatic compounds, and chlorine atom-substituted biphenyls. (Paragraphs 0009, 0011, and 0014).
  • Claim 1 of Patent Document 1 includes at least one chlorine atom-substituted fragrance selected from the group consisting of chlorine atom-substituted biphenyl, chlorine atom-substituted naphthalene, chlorine atom-substituted fluorene, and chlorine atom-substituted diphenylmethane as an overcharge inhibitor. Group compounds are mentioned.
  • the resin separator may be a film that electrically insulates the positive electrode and the negative electrode and is permeable to lithium ions, and a porous polymer film is preferably used.
  • a porous film made of polyolefin such as a porous film made of PP (polypropylene), a porous film made of PE (polyethylene), or a laminated porous film of PP (polypropylene) -PE (polyethylene) is preferably used. It is done.
  • Exterior body> A well-known thing can be used as an exterior body.
  • a type of the secondary battery there are a cylindrical type, a coin type, a square type, a film type, and the like, and an exterior body can be selected according to a desired type.
  • Graphite was used as the negative electrode active material.
  • the negative electrode active material a modified styrene-butadiene copolymer latex (SBR) as a binder, and a carboxymethyl cellulose Na salt (CMC) as a thickener are 98/1 / 1 (mass ratio) was mixed to obtain a slurry.
  • the slurry was applied onto a copper foil as a current collector by a doctor blade method, dried at 150 ° C. for 30 minutes, and pressed using a press machine to obtain a negative electrode.
  • the negative electrode had a basis weight of 5 mg / cm 2 and a thickness of 70 ⁇ m.
  • ⁇ Resin separator> A commercially available separator having a thickness of 20 ⁇ m made of a PE (polyethylene) porous film was prepared.
  • Example 6 to 9 as the insulating inorganic filler, the non-proton conductive ceramic surface used in Comparative Examples 1 to 3 was coated with a proton conductive ceramic.
  • Example 6 At least a part of the surface of the aprotic conductive ceramic was coated with the proton conductive ceramic as follows.
  • EDTA was dissolved in aqueous ammonia. To this solution, cerium acetate and ethylene glycol as a stabilizer were added and dissolved by heating. Next, barium acetate was added and dissolved again by heating. The obtained precursor solution was concentrated to obtain 0.45 mol / L BaCeO 3 precursor slurry. This precursor slurry was sprayed onto Al 2 O 3 particles and dried at 100 ° C. for 5 minutes. Then, calcined for 2 hours at 1200 ° C., was coated with the surface of the Al 2 O 3 particles BaCeO 3 film.
  • the thickness of the BaCeO 3 film was 0.75 ⁇ m, and it was observed that the entire surface of the Al 2 O 3 particles was satisfactorily covered with the BaCeO 3 film.
  • the surface of the aprotic conductive ceramic was coated with the proton conductive ceramic using acetate as a precursor.
  • acrylic rubber was used as the binder.
  • the mass ratio between the insulating inorganic filler and the acrylic rubber was 90:10 (mass ratio).
  • the thickness of the porous heat-resistant layer (HRL layer) was 5 ⁇ m.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • LiPF 6 which is a lithium salt as an electrolyte is dissolved at a concentration of 1 mol / L.
  • 2 mass% of cyclohexylbenzene (CHB) was dissolved as an overcharge inhibitor to prepare a non-aqueous electric field solution.
  • Example 1 to 9 and Comparative Examples 2 to 4 the positive electrode, the negative electrode, the resin separator, and the porous heat-resistant layer (HRL layer) were laminated as shown in FIG.
  • a film-type (laminate-type) lithium ion secondary battery was manufactured by a known method using the laminate, the non-aqueous electrolyte, and the film outer package.
  • the nonaqueous electrolyte secondary battery of the present invention can be preferably applied to a lithium ion secondary battery mounted on a plug-in hybrid vehicle (PHV) or an electric vehicle (EV).
  • PGV plug-in hybrid vehicle
  • EV electric vehicle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 耐外部応力に優れ、電池容量等の電池性能を低下させることなく、過充電時の内圧上昇の検知感度を高めることが可能な非水電解質二次電池を提供する。非水電解質二次電池は、正極21と、負極22と、正極21及び負極22の間に配置され、絶縁性無機フィラー及び結着剤を含む多孔質耐熱層24と、過充電時に分解されてプロトンを発生する過充電防止剤が添加された非水電解質と、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構とを備え、多孔質耐熱層24の絶縁性無機フィラーの少なくとも一部がプロトン導電性セラミックにより構成されたものである。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関するものである。
 従来のリチウムイオン二次電池等の非水電解質二次電池は、正極と、負極と、これらの間を絶縁するセパレータと、非水電解質とから概略構成されている。セパレータとしては、ポリオレフィン系等の多孔質樹脂フィルムが広く用いられている。
 リチウムイオン二次電池等の非水電解質二次電池においては、過充電時の安全対策として、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構が搭載されることがある(例えば、特許文献1の段落0094)。
 特許文献1においては、内圧上昇の検知感度を高めるために、非水電界質に過充電時に分解されてプロトンを発生する過充電防止剤を添加している。かかる構成では、過充電時には過充電防止剤が分解されてプロトンが発生し、このプロトンが負極で還元されて水素ガスが発生する。
 特許文献1には、従来技術の説明において、過充電防止剤として、ビフェニル類、アルキルベンゼン類、2個の芳香族基で置換されたアルキル化合物、フッ素原子置換芳香族化合物類、及び塩素原子置換ビフェニルが挙げられている(段落0009、0011、0014)。
 特許文献1の請求項1には、過充電防止剤として、塩素原子置換ビフェニル、塩素原子置換ナフタレン、塩素原子置換フルオレン、及び塩素原子置換ジフェニルメタンからなる群から選ばれる少なくとも1種の塩素原子置換芳香族化合物が挙げられている。
 ところで、ポリオレフィン製等の多孔質樹脂フィルムをセパレータとして用いた非水電解質二次電池においては、外部から応力を受けた場合、セパレータから非水電解質が押し出され、その結果、セパレータのイオン伝導性が低減して、電池性能が低下する恐れがある(特許文献2の段落0004)。
 特許文献2には、従来の樹脂製セパレータの代わりに、又は従来の樹脂製セパレータと併用して、絶縁性無機フィラー及び結着剤を含む剛性の高い多孔質耐熱層(HRL層)を用いた非水電解質二次電池が開示されている(請求項5、図1、図3)。
 多孔質耐熱層(HRL層)の絶縁性無機フィラーとしては、Al、SiO、MgO、TiO、及びZrOよりなる群から選択された少なくとも1種が用いられている(請求項6)。
特開2004-087168号公報 特開2007-012598号公報
 非水電解質に過充電防止剤が添加され、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構が搭載された非水電解質二次電池に対して、特許文献2に記載のAl、SiO、MgO、TiO、及びZrOよりなる群から選択された少なくとも1種からなる絶縁性無機フィラーを含む多孔質耐熱層(HRL層)を用いようとすると、絶縁性無機フィラーが過充電時に過充電防止剤の分解により生成されたプロトンあるいは負極上で発生した水素ガスを吸着して、電流遮断機構が良好に作動しない恐れがある。
 上記の絶縁性無機フィラーは、表面に水酸基を有するため、プロトンを吸着する。また、上記の絶縁性無機フィラーは、触媒効果により水素を吸着する場合がある。
 内圧上昇の検知感度を上げて安全性を高めるために、過充電防止剤の添加量を増加させると、電池容量が低下する傾向があり、添加量には限界がある。
 本発明は上記事情に鑑みてなされたものであり、耐外部応力に優れ、電池容量等の電池性能を低下させることなく、過充電時の内圧上昇の検知感度を高めることが可能な非水電解質二次電池を提供することを目的とするものである。
 本発明の非水電解質二次電池は、
 正極と、負極と、前記正極及び前記負極の間に配置され、絶縁性無機フィラー及び結着剤を含む多孔質耐熱層(HRL(Heat Resistance Layer)層)と、過充電時に分解されてプロトンを発生する過充電防止剤が添加された非水電解質と、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構とを備えた非水電解質二次電池であって、
 前記多孔質耐熱層(HRL層)の前記絶縁性無機フィラーの少なくとも一部がプロトン導電性セラミックにより構成されたものである。
 本発明によれば、耐外部応力に優れ、電池容量等の電池性能を低下させることなく、過充電時の内圧上昇の検知感度を高めることが可能な非水電解質二次電池を提供することができる。
本発明に係る非水電解質二次電池の構成例を模式的に示す全体図である。 図1の非水電解質二次電池の部分断面図である。
 以下、本発明について詳述する。
 本発明の非水電解質二次電池は、
 正極と、負極と、前記正極及び前記負極の間に配置され、絶縁性無機フィラー及び結着剤を含む多孔質耐熱層(HRL層)と、過充電時に分解されてプロトンを発生する過充電防止剤が添加された非水電解質と、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構とを備えた非水電解質二次電池であって、
 前記多孔質耐熱層(HRL層)の前記絶縁性無機フィラーの少なくとも一部がプロトン導電性セラミックにより構成されたものである。
 図1及び図2に、非水電解質二次電池の構成例を模式的に示す。図1は全体図、図2は部分断面図である。いずれも模式図である。
 図1に示す非水電解質二次電池1は、外装体11内に、図2に示す積層体20と、過充電防止剤が添加された非水電解質(符号略)とが収容されたものである。
 積層体20は、集電体上に粒子状の正極活物質が塗布された正極21と、集電体上に粒子状の負極活物質が塗布された負極22と、樹脂製セパレータ23と、多孔質耐熱層(HRL層)24とが積層されたものである。
 多孔質耐熱層(HRL層)は、従来広く用いられている樹脂製セパレータの代わりに、又は従来広く用いられている樹脂製セパレータと併用して、正極と負極との間を絶縁する部材として用いられる。
 多孔質耐熱層(HRL層)24の配置位置は正極21と負極22との間であれば特に制限なく、正極21の表面、負極22の表面、樹脂製セパレータ23の表面、あるいは正極21と負極22とを一体化するために必要に応じて設けられる電極合剤層(図示せず)の表面等に形成することができる。
 「背景技術」の項で挙げた特許文献2の図1のように、従来広く用いられている樹脂製セパレータ23を用いずに、一対の正極21と負極22との間は多孔質耐熱層(HRL層)24のみを介して絶縁してもよい。
 非水電解質二次電池1には、外装体11内に、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構13が設けられている。電流遮断機構13の設置箇所は、電流遮断作用に応じて設計される。
 内圧上昇の検知感度を高めるために、非水電解質には、過充電時に分解されてプロトンを発生する過充電防止剤が添加される。かかる構成では、過充電時には非水電解質中の過充電防止剤が分解されてプロトンが発生し、このプロトンが負極で還元されて水素ガスが発生する。このガス発生によって電池内圧が上昇し、電流遮断機構13によって電流が遮断される。
 電流遮断機構13としては公知の機構を採用することができる。
 電流遮断機構13としては、電池内圧が上昇することによって変形して充電電流の接点を切る構造体、電池内圧をセンサで検知して充電を停止する外部回路、電池内圧による電池の変形をセンサで検知して充電を停止する外部回路、及び、電池内圧が上昇することによって変形して正極と負極とを短絡させる構造体などを例示することができる。
 例えば、電池内圧が上昇することによって変形して充電電流の接点を切る構造体等は、シンプルな構造でかつ電流遮断効果が高いので好ましい。
 外装体11の外面に、外部接続用の2個の端子(プラス端子及びマイナス端子)12が設けられている。
<多孔質耐熱層(HRL層)>
 本発明の非水電解質二次電池は、多孔質耐熱層(HRL層)を備えているので、耐外部応力に優れる。
 ここで、「発明が解決しようとする課題」の項で説明したように、非水電解質に過充電防止剤が添加され、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構が搭載された非水電解質二次電池に対して、特許文献2に記載のAl、SiO、MgO、TiO、及びZrOよりなる群から選択された少なくとも1種からなる絶縁性無機フィラーを含む多孔質耐熱層(HRL層)を用いようとすると、絶縁性無機フィラーが過充電時に過充電防止剤の分解により生成されたプロトンあるいは負極上で発生した水素ガスを吸着して、電流遮断機構が良好に作動しない恐れがある。
 上記の絶縁性無機フィラーは、表面に水酸基を有するため、プロトンを吸着する。また、上記の絶縁性無機フィラーは、触媒効果により水素を吸着する場合がある。
 本発明の非水電解質二次電池において、多孔質耐熱層(HRL層)をなす絶縁性無機フィラーの少なくとも一部をプロトン導電性セラミックにより構成する。
 上記構成では、過充電時に絶縁性無機フィラーが過充電防止剤の分解により生成されたプロトンが、多孔質耐熱層(HRL層)に吸着されても放出されて、多孔質耐熱層(HRL層)に留まらない。また、上記のプロトン導電性セラミックは水素吸着性も低い。本発明では、多孔質耐熱層(HRL層)におけるプロトン及び水素ガスの吸着が抑制されるので、電流遮断機構が良好に作動する。
 本発明は、過充電防止剤の添加量を増加させなくてもよいので、電池容量等の電池性能を低下させることなく、過充電時の内圧上昇の検知感度を高めることができる。
 プロトン導電性セラミックは、非プロトン導電性セラミックに比較して、電気抵抗が大きく、これを用いることで、多孔質耐熱層(HRL層)の絶縁性能が高まり、より高レベルに短絡を防止することができるという効果も得られる。
 本発明で用いる絶縁性無機フィラーとしては例えば、少なくとも1種のプロトン導電性セラミックを含むセラミック粒子、及び、少なくとも1種の非プロトン導電性セラミック粒子の表面の少なくとも一部が、少なくとも1種のプロトン導電性セラミックを含むセラミックで被覆されたセラミック粒子等が挙げられる。
 多孔質耐熱層(HRL層)においては、粒子状の絶縁性無機フィラーの間隙によって、イオン伝導孔が形成される。
 上記に挙げたセラミック粒子はいずれも、絶縁性無機フィラーの表面の少なくとも一部がプロトン導電性セラミックである。かかる構成では、イオン伝導孔の壁面にプロトン導電性セラミックが存在するため、多孔質耐熱層(HRL層)のイオン伝導性が向上し、好ましい。
 プロトン導電性セラミックとしては、プロトン導電性を有するものであれば特に制限されない。
 プロトン導電性セラミッとしては、下記一般式(I)で表される少なくとも1種の金属酸化物を含むことが好ましい。
AB1-x3-a・・・(I)
(式中、AはBa及び/又はSr、BはCe及び/又はSr、Cは少なくとも1種の添加元素、0≦x<1、a≧0である。)
 上記一般式(I)で表される金属酸化物としては、BaCeO、SrZrO、SrCeO、BaZrO3、これらを母体酸化物として任意成分が添加されたセラミック、及びこれらの組合わせ等が挙げられる。
 プロトン導電性セラミッは、下記一般式(Ia)で表される少なくとも1種の金属酸化物を含むことが特に好ましい。
AB1-x3-a・・・(Ia)
(式中、AはBa及び/又はSr、BはCe及び/又はSr、CはY及び/又はYb、0<x<1、a≧0である。)
 BaCeO、SrZrO、SrCeO、あるいはBaZrO等に、Y及び/又はYbを添加することで、CeあるいはZrの価数が変動し、その結果、プロトン導電率が向上し、好ましい。
 上記一般式(Ia)で表される少なくとも1種の金属酸化物において、添加元素の添加量xは、0.01~0.5が特に好ましい。
 xが過小では、Y及び/又はYbの添加効果が充分に発現せず、過大では添加元素が良好に固溶せず、異相が析出される恐れがある。
 非プロトン導電性セラミックとしては、Al、SiO、MgO、TiO、ZrO、これらを母体酸化物として任意成分が添加されたセラミック、及びこれらの組合わせ等が挙げられる。
 非プロトン導電性セラミック粒子の表面の少なくとも一部を、少なくとも1種のプロトン導電性セラミックを含むセラミックで被覆する方法としては特に制限されない。
 例えば、上記一般式(I)で表される金属酸化物の前駆体を含む溶液又はスラリーを、非プロトン導電性セラミック粒子にスプレー噴霧し、乾燥し、焼成する方法が挙げられる。
 金属酸化物の前駆体としては特に制限されず、金属酸化物の構成金属の酢酸塩等が挙げられる。
 非プロトン導電性セラミック粒子の表面の少なくとも一部をBaCeOで被覆する場合を例として、被覆方法の一例を説明する。
 エチレンジアミン四酢酸(EDTA)をアンモニア水に溶解させ、酢酸セリウムを添加し、さらに安定化剤としてエチレングリコールを添加し、加熱溶解する。さらに酢酸バリウムを添加し、再度加熱溶解する。得られた前駆体溶液はそのまま用いてもよいし、必要に応じて濃縮させてスラリーとしてもよい。
 前駆体の溶液又はスラリーにおける前駆体の濃度は特に制限されず、例えば0.3~0.6mol/Lが好ましい。
 得られた前駆体の溶液又はスラリーを非プロトン導電性セラミック粒子にスプレー噴霧し、好ましくは100~150℃で乾燥し、好ましくは1000~1400℃で焼成する。以上のようにして、非プロトン導電性セラミック粒子の表面の少なくとも一部を、BaCeOで被覆することができる。
 被覆膜の厚みは特に制限されず、例えば0.5~1.0μmが好ましい。
 被覆膜の厚みは、過小では被覆の効果が充分に発現せず、過大では均一被覆が困難となる。
 多孔質耐熱層(HRL層)をなすセラミック粒子の平均粒子径は特に制限なく、例えば0.3~4μmが好ましい。かかる範囲であれば、イオン伝導に良好な空孔率と良好な強度とが得られ、好ましい(特許文献2の段落0034を参照)。
 多孔質耐熱層(HRL層)をなす結着剤としては公知のものを使用でき、例えばポリフッ化ビニリデン(PVDF)、変性アクリルゴム、及びこれらの組合わせ等が挙げられる。
 一般に、結着剤は、電池構成後に非水電解質を吸収して膨潤する。このため、結着剤の添加量は、少ない方が好ましい。上記のポリフッ化ビニリデン及びアクリルゴムは、少量でも結着効果を示すため、その添加量を少なくすることができ、好ましい。結着剤の量は特に制限されず、絶縁性フィラーを良好に結着でき、非水電解質の吸収による膨潤を抑制するには、例えば絶縁性フィラーに対して0.3~8.5質量%が好ましい(特許文献2の段落0036を参照)。
 多孔質耐熱層(HRL層)の製造方法は特に制限されない。多孔質耐熱層(HRL層)は例えば、絶縁性フィラーと結着剤と分散媒とを混合して得られた混合物を、正極、負極、あるいはセパレータ等の表面に塗布し、遠赤外線あるいは熱風等で乾燥することで、製造することができる。
 本発明の非水電解質二次電池は、絶縁性無機フィラー及び結着剤を含む剛性の高い多孔質耐熱層(HRL層)を用いているので、耐外部応力に優れる。
 「発明が解決しようとする課題」の項で述べたように、非水電解質に過充電防止剤が添加され、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構が搭載された非水電解質二次電池に対して、特許文献2に記載のAl、SiO、MgO、TiO、及びZrOよりなる群から選択された少なくとも1種からなる絶縁性無機フィラーを含む多孔質耐熱層(HRL層)を用いようとすると、絶縁性無機フィラーが過充電時に過充電防止剤の分解により生成されたプロトンあるいは負極上で発生した水素ガスを吸着して、電流遮断機構が良好に作動しない恐れがある。
 また、内圧上昇の検知感度を上げて安全性を高めるために、過充電防止剤の添加量を増加させると、電池容量が低下する傾向があり、添加量には限界がある。
 本発明では、多孔質耐熱層(HRL層)をなす絶縁性フィラーの少なくとも一部をプロトン導電性セラミックにより構成している。
 かかる構成の本発明によれば、耐外部応力に優れ、電池容量等の電池性能を低下させることなく、過充電時の内圧上昇の検知感度を高めることが可能な非水電解質二次電池を提供することができる。
 非水電解質二次電池としては、リチウムイオン二次電池等が挙げられる。以下、リチウムイオン二次電池を例として、非水電解質二次電池の主な構成要素について説明する。
<正極>
 正極は、公知の方法により、アルミニウム箔などの正極集電体に正極活物質を塗布して、製造することができる。
 公知の正極活物質としては特に制限なく、例えば、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-x)、及びLiNiCoMn(1-x-y)等のリチウム含有複合酸化物等が挙げられる。
 例えば、N-メチル-2-ピロリドン等の分散剤を用い、上記の正極活物質と、炭素粉末等の導電剤と、ポリフッ化ビニリデン(PVDF)等の結着剤とを混合して、スラリーを得、このスラリーをアルミニウム箔等の正極集電体上に塗布し、乾燥し、プレス加工して、正極を得ることができる。
 正極の目付は特に制限なく、1.5~15mg/cmが好ましい。正極の目付が過小では均一な塗布が難しく、過大では集電体から剥離する恐れがある。
<負極>
 負極は、公知の方法により、銅箔などの負極集電体に負極活物質を塗布して、製造することができる。
 負極活物質としては特に制限なく、Li/Li+基準で2.0V以下にリチウム吸蔵能力を持つものが好ましく用いられる。負極活物質としては、黒鉛等の炭素、金属リチウム、リチウム合金、リチウムイオンのド-プ・脱ド-プが可能な遷移金属酸化物/遷移金属窒化物/遷移金属硫化物、及び、これらの組合わせ等が挙げられる。
 例えば、水等の分散剤を用い、上記の負極活物質と、変性スチレン-ブタジエン共重合体ラテックス等の結着剤と、必要に応じてカルボキシメチルセルロースNa塩(CMC)等の増粘剤とを混合して、スラリーを得、このスラリーを銅箔等の負極集電体上に塗布し、乾燥し、プレス加工して、負極を得ることができる。
 負極の目付は特に制限なく、1.5~15mg/cmが好ましい。負極の目付が過小では均一な塗布が難しく、過大では集電体から剥離する恐れがある。
 リチウムイオン二次電池において、負極活物質には、リチウムの吸蔵及び放出が可能な炭素材料が広く使用されている。特に黒鉛等の高結晶性炭素は、放電電位が平坦であり、真密度が高く、かつ充填性が良いなどの特性を有していることから、市販のリチウムイオン二次電池の多くの負極活物質として使用されている。したがって、負極活物質としては黒鉛等が特に好ましい。
<非水電解質>
 非水電解質としては公知のものが使用でき、液状、ゲル状もしくは固体状の非水電解質が使用できる。
 例えば、プロピレンカーボネ-トあるいはエチレンカーボネ-ト等の高誘電率カーボネート溶媒と、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒との混合溶媒に、リチウム含有電解質を溶解した非水電界液が好ましく用いられる。
 混合溶媒としては例えば、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート(EMC)の混合溶媒が好ましく用いられる。
 リチウム含有電解質としては例えば、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1~8の整数)、LiPF{C(2k+1)(6-n)(n=1~5の整数、k=1~8の整数)等のリチウム塩、及びこれらの組合わせが挙げられる。
 過充電時に分解されてプロトンを発生する過充電防止剤としては公知のものが使用でき、例えば、「背景技術」の項で挙げた特許文献1に記載の過充電防止剤などを1種又は複数種使用できる。
 特許文献1には、従来技術の説明において、過充電防止剤として、ビフェニル類、アルキルベンゼン類、2個の芳香族基で置換されたアルキル化合物、フッ素原子置換芳香族化合物類、及び塩素原子置換ビフェニルが挙げられている(段落0009、0011、0014)。
 特許文献1の請求項1には、過充電防止剤として、塩素原子置換ビフェニル、塩素原子置換ナフタレン、塩素原子置換フルオレン、及び塩素原子置換ジフェニルメタンからなる群から選ばれる少なくとも1種の塩素原子置換芳香族化合物が挙げられている。
<樹脂製セパレータ>
 樹脂製セパレータは、正極と負極とを電気的に絶縁し、かつリチウムイオンが透過可能な膜であればよく、多孔質高分子フィルムが好ましく使用される。
 セパレータとしては例えば、PP(ポリプロピレン)製多孔質フィルム、PE(ポリエチレン)製多孔質フィルム、あるいは、PP(ポリプロピレン)-PE(ポリエチレン)の積層型多孔質フィルム等のポリオレフィン製多孔質フィルムが好ましく用いられる。
<外装体>
 外装体としては公知のものが使用できる。
 二次電池の型としては、円筒型、コイン型、角型、あるいはフィルム型等があり、所望の型に合わせて外装体を選定することができる。
 本発明に係る実施例及び比較例について説明する。
(実施例1~9、比較例1~5)
<正極活物質>
 正極活物質として、下記式で表される3元系のリチウム複合酸化物を用いた。
LiMn1/3Co1/3Ni1/3
<正極の製造>
 分散剤としてN-メチル-2-ピロリドン((株)和光純薬工業社製)を用い、上記の正極活物質と、導電剤であるアセチレンブラック(電気化学工業(株)社製HS-100)と、結着剤であるPVDF((株)クレハ社製KFポリマー♯1120)とを、90/6/4(質量比)で混合して、スラリーを得た。
 上記スラリーを集電体であるアルミニウム箔上にドクターブレード法で塗布し、150℃で30分間乾燥し、プレス機械を用いてプレス加工して、正極を得た。正極は、目付10mg/cm、厚み50μmとした。
<負極>
 負極活物質として、黒鉛を用いた。
 分散剤として水を用い、上記の負極活物質と、結着剤である変性スチレン-ブタジエン共重合体ラテックス(SBR)と、増粘剤であるカルボキシメチルセルロースNa塩(CMC)とを98/1/1(質量比)で混合して、スラリーを得た。
 上記スラリーを集電体である銅箔上にドクターブレード法で塗布し、150℃で30分間乾燥し、プレス機械を用いてプレス加工して、負極を得た。負極は、目付5mg/cm、厚み70μmとした。
<樹脂製セパレータ>
 PE(ポリエチレン)製多孔質フィルムからなる20μm厚の市販のセパレータを用意した。
<多孔質耐熱層(HRL層)>
 比較例1では、多孔質耐熱層(HRL層)を使用しなかった。
 実施例1~9、及び比較例2~4において、多孔質耐熱層(HRL層)を使用し、表1に示す絶縁性無機フィラーを用いた。用いた絶縁性無機フィラーの平均粒径はいずれも8~10μmであった。
 実施例6~9においては、絶縁性無機フィラーとして、比較例1~3で用いた非プロトン導電性セラミックの表面をプロトン導電性セラミックで被覆したものを用いた。
 実施例6では、以下のようにして、非プロトン導電性セラミックの表面の少なくとも一部をプロトン導電性セラミックで被覆した。
 はじめに、EDTAをアンモニア水に溶解させた。この溶液に、酢酸セリウムと安定化剤としてのエチレングリコールとを添加し、加熱溶解した。
 次に、酢酸バリウムを添加し、再度、加熱溶解した。
 得られた前駆体溶液を濃縮して、0.45mol/LのBaCeO前駆体スラリーを得た。この前駆体スラリーをAl粒子にスプレー噴霧し、100℃で5分間乾燥した。その後、1200℃で2時間焼成し、Al粒子の表面をBaCeO膜で被覆した。
 走査型電子顕微鏡(SEM)で観察したところ、BaCeO膜の厚みは0.75μmであり、Al粒子の表面全体が良好にBaCeO膜で被覆されていることが観察された。
 実施例7~9についても、実施例6と同様に、前駆体として酢酸塩を用いて、非プロトン導電性セラミックの表面をプロトン導電性セラミックで被覆した。
 いずれの例においても、結着剤としてはアクリルゴムを用いた。絶縁性無機フィラーとアクリルゴムの質量比は、90:10(質量比)とした。多孔質耐熱層(HRL層)の厚みは5μmとした。
<非水電解質>
 エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/エチルメチルカーボネート=3/3/4(体積比)の混合溶液を溶媒とし、電解質としてリチウム塩であるLiPFを1mol/Lの濃度で溶解し、さらに過充電防止剤としてシクロヘキシルベンゼン(CHB)を2質量%溶解して、非水電界液を調製した。
<リチウムイオン二次電池の製造>
 比較例1では、上記の正極と負極と樹脂製セパレータとを積層した。この積層体と非水電解液とフィルム外装体を用い、公知方法により、フィルム型(ラミネート型)のリチウムイオン二次電池を製造した。
 実施例1~9、及び比較例2~4では、上記の正極と負極と樹脂製セパレータと多孔質耐熱層(HRL層)とを図2に示したように、積層した。この積層体と非水電解液とフィルム外装体を用い、公知方法により、フィルム型(ラミネート型)のリチウムイオン二次電池を製造した。
<過充電試験>
 予備実験と実施例1で得られたリチウムイオン二次電池について、過充電試験を実施した。
 25℃、1C、充電電圧4.6Vの条件で1回過充電したときのガス発生量を、浮力法(アルキメデス法)で求めた。過充電前後にそれぞれ、フィルム型(ラミネート型)のリチウムイオン二次電池を水中に浸漬させて、浮力から体積を求め、過充電前後の体積変化分をガス発生量として求めた。このガス発生量は、水素ガス発生量とみなせる。
 結果を表1に示す。
 比較例1と比較例2~4との比較から、非プロトン導電性セラミックからなる絶縁性無機フィラーを用いた多孔質耐熱層(HRL層)を用いると、水素ガス発生量が大幅に低減することが明らかとなった。
 比較例2~4と実施例1~9との比較から、多孔質耐熱層(HRL層)の絶縁性無機フィラーとして、プロトン導電性セラミック、あるいは非プロトン導電性セラミックの表面がプロトン導電性セラミックで被覆されたものを用いることで、水素ガス発生量を多孔質耐熱層(HRL層)なしの比較例1に近いレベルまで多くできることが明らかとなった。特に、BaCeOにYを添加したセラミックを用いた実施例5では、BaCeOを用いた実施例1よりも水素ガス発生量を多くすることができた。
Figure JPOXMLDOC01-appb-T000001
 本発明の非水電解質二次電池は、プラグインハイブリッド車(PHV)あるいは電気自動車(EV)に搭載されるリチウムイオン二次電池等に好ましく適用できる。
1 非水電解質二次電池
11 外装体
12 端子
13 電流遮断機構
20 積層体
21 正極
22 負極
23 樹脂製セパレータ
24 多孔質耐熱層(HRL層)

Claims (6)

  1.  正極と、負極と、前記正極及び前記負極の間に配置され、絶縁性無機フィラー及び結着剤を含む多孔質耐熱層と、過充電時に分解されてプロトンを発生する過充電防止剤が添加された非水電解質と、充電時に電池内圧が所定値以上になると充電を遮断する電流遮断機構とを備えた非水電解質二次電池であって、
     前記多孔質耐熱層の前記絶縁性無機フィラーの少なくとも一部がプロトン導電性セラミックにより構成された非水電解質二次電池。
  2.  前記絶縁性無機フィラーの表面の少なくとも一部が前記プロトン導電性セラミックである請求項1に記載の非水電解質二次電池。
  3.  前記プロトン導電性セラミックが、下記一般式(I)で表される少なくとも1種の金属酸化物を含む請求項1又は2に記載の非水電解質二次電池。
    AB1-x3-a・・・(I)
    (式中、AはBa及び/又はSr、BはCe及び/又はSr、Cは少なくとも1種の任意の添加元素、0≦x<1、a≧0である。)
  4.  前記プロトン導電性セラミックが、下記一般式(Ia)で表される少なくとも1種の金属酸化物を含む請求項3に記載の非水電解質二次電池。
    AB1-x3-a・・・(Ia)
    (式中、AはBa及び/又はSr、BはCe及び/又はSr、CはY及び/又はYb、0<x<1、a≧0である。)
  5.  xが0.01~0.5である請求項4に記載の非水電解質二次電池。
  6.  リチウムイオン二次電池である請求項1~5に記載の非水電解質二次電池。
PCT/JP2011/005720 2011-10-12 2011-10-12 非水電解質二次電池 WO2013054376A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112011105734.2T DE112011105734T5 (de) 2011-10-12 2011-10-12 Sekundärbatterie mit einem nichtwässrigen Elektrolyt
US14/351,193 US20140255736A1 (en) 2011-10-12 2011-10-12 Non-aqueous electrolyte secondary battery
CN201180074143.1A CN103875119B (zh) 2011-10-12 2011-10-12 非水电解质二次电池
JP2013538342A JP5790772B2 (ja) 2011-10-12 2011-10-12 非水電解質二次電池
KR1020147012268A KR101556486B1 (ko) 2011-10-12 2011-10-12 비수 전해질 2차 전지
PCT/JP2011/005720 WO2013054376A1 (ja) 2011-10-12 2011-10-12 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/005720 WO2013054376A1 (ja) 2011-10-12 2011-10-12 非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2013054376A1 true WO2013054376A1 (ja) 2013-04-18

Family

ID=48081460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005720 WO2013054376A1 (ja) 2011-10-12 2011-10-12 非水電解質二次電池

Country Status (6)

Country Link
US (1) US20140255736A1 (ja)
JP (1) JP5790772B2 (ja)
KR (1) KR101556486B1 (ja)
CN (1) CN103875119B (ja)
DE (1) DE112011105734T5 (ja)
WO (1) WO2013054376A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762411B (zh) * 2016-04-18 2018-05-11 合肥国轩高科动力能源有限公司 一种三元锂电池防过充安全性能的保障方法
JPWO2017221677A1 (ja) * 2016-06-23 2019-03-14 株式会社日立製作所 リチウム二次電池
CN109524612A (zh) * 2017-09-20 2019-03-26 宁德时代新能源科技股份有限公司 二次电池
CN112042038B (zh) * 2018-05-07 2024-03-08 本田技研工业株式会社 非水电解质二次电池
CN113314764A (zh) * 2021-05-27 2021-08-27 昆山宝创新能源科技有限公司 复合固态电解质膜及其制备方法和固态电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087168A (ja) * 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
WO2006134833A1 (ja) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
JP2007012598A (ja) * 2005-05-31 2007-01-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池モジュール
WO2010041556A1 (ja) * 2008-10-10 2010-04-15 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
JP2010160984A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141503A (ja) * 1989-10-26 1991-06-17 Tokuyama Soda Co Ltd プロトン導電性組成物
KR0165651B1 (ko) * 1995-09-28 1999-03-30 모리시타 요이치 전기화학 디바이스
JP4404322B2 (ja) * 1997-04-15 2010-01-27 昭和電工株式会社 二次電池及び該二次電池に用いる電解質、電極活物質
JP3856699B2 (ja) * 2002-01-11 2006-12-13 ニッポン高度紙工業株式会社 高イオン伝導性固体電解質及び該固体電解質を使用した電気化学システム
US7901730B2 (en) * 2004-04-26 2011-03-08 Johnson Research & Development Co., Inc. Thin film ceramic proton conducting electrolyte
KR100821442B1 (ko) * 2005-05-31 2008-04-10 마쯔시다덴기산교 가부시키가이샤 비수전해질 2차전지 및 전지모듈
JP2006351386A (ja) * 2005-06-16 2006-12-28 Mitsubishi Electric Corp 電池及びその製造方法
JP5040123B2 (ja) * 2006-02-28 2012-10-03 トヨタ自動車株式会社 プロトン伝導性電解質およびそれを用いた電気化学セル
EP1928049A1 (en) * 2006-11-23 2008-06-04 Technical University of Denmark Thin solid oxide cell
KR100922474B1 (ko) * 2007-01-18 2009-10-21 삼성에스디아이 주식회사 이차 전지
JP2008243659A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd 非水電解質電池
KR101115028B1 (ko) * 2007-05-15 2012-03-09 주식회사 엘지화학 비수전해액 첨가제 및 이를 이용하는 이차 전지
JP2010267475A (ja) * 2009-05-14 2010-11-25 Panasonic Corp リチウムイオン二次電池
JP5429811B2 (ja) * 2009-07-21 2014-02-26 日立マクセル株式会社 リチウムイオン二次電池用セパレータおよびリチウムイオン二次電池
JP5154590B2 (ja) * 2010-02-03 2013-02-27 株式会社日立製作所 過充電抑制剤並びにこれを用いた非水電解液及び二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087168A (ja) * 2002-08-23 2004-03-18 Mitsui Chemicals Inc 非水電解液およびそれを含むリチウム二次電池
JP2007012598A (ja) * 2005-05-31 2007-01-18 Matsushita Electric Ind Co Ltd 非水電解質二次電池および電池モジュール
WO2006134833A1 (ja) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
WO2010041556A1 (ja) * 2008-10-10 2010-04-15 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
JP2010160984A (ja) * 2009-01-08 2010-07-22 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池

Also Published As

Publication number Publication date
CN103875119B (zh) 2016-04-20
KR101556486B1 (ko) 2015-10-01
KR20140083011A (ko) 2014-07-03
CN103875119A (zh) 2014-06-18
JP5790772B2 (ja) 2015-10-07
US20140255736A1 (en) 2014-09-11
JPWO2013054376A1 (ja) 2015-03-30
DE112011105734T5 (de) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6318882B2 (ja) 非水電解質二次電池
JP5834940B2 (ja) 非水電解質二次電池用のセパレータ、及び非水電解質二次電池
US20110177369A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
CN106716683B (zh) 非水电解质蓄电元件用正极板及非水电解质蓄电元件
EP3041077B1 (en) Secondary battery comprising silicon-based compound
JP6152825B2 (ja) 非水電解液二次電池
KR20060106622A (ko) 비수성 이차 전지용 음극
JP2016173886A (ja) 非水電解質二次電池
JP2019114323A (ja) リチウム二次電池
JP5790772B2 (ja) 非水電解質二次電池
JP2011192561A (ja) 非水電解液二次電池の製造方法
WO2012049723A1 (ja) 非水電解質二次電池
US10541453B2 (en) Battery module for starting a power equipment
JP2018049821A (ja) 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP2013109931A (ja) 非水電解質二次電池用の電極、及び非水電解質二次電池
JP5838952B2 (ja) 非水電解質二次電池及びその製造方法
JP6631535B2 (ja) リチウムイオン電池
CN111653725B (zh) 非水系锂离子二次电池的负极和使用该负极的非水系锂离子二次电池
JP2014229554A (ja) 二次電池およびその製造方法
JP5644732B2 (ja) 非水電解質二次電池
KR20220053353A (ko) 난연성 및 안전성이 향상된 리튬 이차전지
WO2020017581A1 (ja) 非水電解質蓄電素子、及び蓄電装置
CN112447941A (zh) 非水电解质二次电池
JP6185403B2 (ja) 二次電池および該電池用のセパレータ
CN111029580B (zh) 二次电池用电极和二次电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180074143.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538342

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14351193

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111057342

Country of ref document: DE

Ref document number: 112011105734

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147012268

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11873993

Country of ref document: EP

Kind code of ref document: A1